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ABSTRACT 

 

PROBABILISTIC FINITE ELEMENT MODEL UPDATING AND 

DAMAGE DETECTION OF STRUCTURES BY USING BAYESIAN 

STATISTICS 
 

Finite element (FE) model updating is extensively employed in many 

applications of various engineering branches for damage detection purposes. An FE 

model is expected to reflect the properties of actual structures. However, it is almost 

impossible for an FE model to carry the properties of the real-life structure. As a result, 

differences exist between analytical models and actual structures. The aim of model 

updating is to minimize these differences as much as possible. In model updating 

procedures, there are inevitable uncertainties due to inevitable measurement noise and 

modelling errors. Therefore, model updating and damage detection process should be 

performed in a probabilistic way instead of a deterministic one. To this end, Bayesian 

model updating methods have gained much attention in the literature to account for the 

uncertainties of the parameters to be updated. Among these methods, those that use the 

concept of system modes have gained much more attention since it enables researchers 

to account for modelling error uncertainties and to avoid mode matching problem. For 

those methods, discrepancies between system modes and measured modes are 

considered and system modes are updated to obtain those that best fit the measured 

modes. Further, system modes are connected to the FE model via eigenvalue equations. 

In this study, a two-stage Bayesian model updating method which utilizes the concept 

of system modes has been firstly reformulated to compare three different assumptions 

on the modelling error variance of eigenvalue equations. Results reveal that the 

Bayesian model updating formulations that use the system modes concept give 

unreasonably too small posterior uncertainties for the updated parameters. This makes 

the probabilistic approach questionable since getting such small uncertainties may 

almost be equivalent to a deterministic approach. To increase the posterior uncertainty 

levels to more reasonable levels, a two-stage sensitivity-based Bayesian model updating 

methodology is proposed in this study. The results show that the proposed method 

successfully improves the updating results and increases the posterior uncertainties to 

more realistic levels.  
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ÖZET 

 

 

YAPILARIN BAYESYAN İSTATİSTİKLERİ İLE OLASILIKSAL 

SONLU ELEMANLAR MODEL GÜNCELLEMESİ VE HASAR 

TESPİTİ 
 

Sonlu elemanlar model güncelleme yöntemi, mühendisliğin çeşitli alanlarında 

hasar tespit çalışmaları için yaygın bir biçimde kullanılmaktadır. Bir sonlu elemanlar 

modelinin fiziksel yapının davranışını yansıtması beklenir. Fakat, bir modelin gerçek 

yapı davranışlarını bütünüyle karşılaması neredeyse imkansızdır. Fiziksel yapı ile bu 

yapının analitik modeli arasında her zaman bir fark vardır. Model güncellemenin amacı 

bu farkları mümkün olabildiğince düşürmektir. Model güncelleme yöntemlerinde, 

ölçüm gürültüsü ve modelleme hatalarından kaynaklı belirsizlikler de kaçınılmazdır. Bu 

nedenle, model güncelleme ve hasar tespiti konularında deterministik çalışmak yerine 

olasılıksal çalışmak daha uygundur. Bu doğrultuda, güncellenen parametrelerin 

belirsizliklerini de hesaba katabilmek adına Bayesyan model güncelleme teknikleri 

literatürde oldukça sık kullanılmaktadır. Bu teknikler arasında, sistem modlarını 

kullanan Bayesyan teknikleri modelleme hatasını hesaba katabilme ve mod eşleştirme 

sorununu önleme olanağı tanıdığı için, araştırmacıların oldukça dikkatini çekmiştir. 

Sistem modları, optimizasyon sürecinin bağımsız değişkenleri olup sonlu elemanlar 

modeline özdeğer denklemleriyle bağlanırlar. Bu çalışmada ilk olarak, sistem modları 

kavramını kullanan iki aşamalı bir Bayesyan model güncelleme yöntemi yeniden 

formüle edilmiştir. Buradaki amaç, literatürde geçen özdeğer denklemlerinin modelleme 

hatası varyansları üzerindeki farklı üç ayrı varsayımını kıyaslamaktır. Elde edilen 

sonuçlara göre, sistem modlarını kullanan Bayesyan model güncelleme tekniklerinin 

makul olmayan çok küçük değerlere sahip sonsal belirsizlikler verdiği gözlenmiştir. Bu 

sonuç, olasılıksal yaklaşımı sorgulanabilir hale getirmektedir, çünkü bu kadar küçük 

belirsizlik değerleri deterministik bir yaklaşıma eşdeğer sayılabilir. Bahsedilen sonsal 

belirsizlik seviyelerini makul düzeye çıkarabilmek adına, bu çalışmada, iki aşamalı 

hassasiyet tabanlı bir Bayesyan model güncelleme yöntemi önerilmiştir. Elde edilen 

sonuçlara göre, önerilen yöntemin güncelleme sonuçlarını başarılı bir şekilde iyileştirip 

sonsal belirsizlik seviyelerini daha gerçekçi düzeylere yükselttiği görülmüştür. 
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CHAPTER 1  

 

INTRODUCTION 

 

Structural damage is described as variations in properties of material, geometry 

and boundary conditions which affects its operating functionality (Khoshnoudian and 

Esfandiari, 2011). Damage generally results in loss of stiffness in a structure. Local 

cracks in a structure, plasticity formation due to overcapacity loadings or slipping of 

reinforcing bars in a reinforced concrete structure can be given as structural damage 

examples. Structural damage can increase with time such as fatigue or environmental 

damages, or it is caused due to sudden loadings such as blast and earthquakes. As 

damage increases, structures cannot maintain their integrity and structural failure 

occurs. If the propagation of damage causes an unexpected and sudden failure, it is 

inevitable to adversely affect the human life and economic value. Therefore, damage 

detection topics have gained much attention for lots of area such as mechanical, civil 

and aerospace engineering because of its importance on monitoring structural health 

(Perera et al., 2013). 

 

1.1. Introduction to Finite Element Model Updating 

 

Many implementations of different engineering branches extensively employ the 

finite element (FE) method, and an FE model is expected to reflect the properties of 

actual real-life structures. However, it is almost impossible for an FE model to carry the 

properties of the real-life structure as George E. P. Box expressed this fact by a 

beautiful idiom “All models are wrong, but some are useful”. As a result, differences 

exist between analytical models and actual structures. Than Soe (2013) indicated the 

reasons of these differences as  

 

o modelling errors caused by using nominal geometrical properties due to 

imperfections in actual geometry 

o modelling errors due to the uncertainties in modelling the exact connection 

details between the structural members 
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o errors in model order caused by discretization of FE models 

o errors in structural parameters such as using nominal material properties due to 

the obscurity of exact material properties, defining poorly known boundary 

conditions, etc. 

 

Sufficiently accurate FE models of structures are required to estimate the 

dynamic behaviors and to work on the scenarios that may affect the actual structures. To 

this end, extensive studies have been conducted on model updating for decades and 

researchers have developed effective FE model updating methods to decrease 

discrepancies between analytical models and actual structures. Further, FE model 

updating is effectively employed for damage identification purposes. Damage in a 

structure is traced by using model updating methods in such a way that FE model of the 

structure is firstly calibrated to reach the finest FE model reflecting undamaged 

structural behavior. When damage occurs in the structure, discrepancies appear between 

the created model and the damaged physical structure (Alkayem et al., 2018). These 

discrepancies are represented by deviations in structural parameters which are selected 

as possible damaged parameters. Then, FE model is adjusted by minimizing the 

deviations, and parameters are updated to be compatible with those of the damaged 

state. Final state of the FE model indicates the damage. A literature review of the 

existing model updating methods has been provided in the following section. 

 

1.1.1. A General Literature Review on the Model Updating Methods 

 

The model updating methods are classified by Mottershead and Friswell (1993) 

in accordance with the type of measurement and parameters which are updated. 

Measured response can be analyzed in frequency domain or modal parameters can be 

extracted to work in modal domain with modal frequencies and mode shapes. On the 

other hand, updating parameters can be selected as physical parameters, damping or 

stiffness matrices, whole mass matrix or individual element matrices, etc. Further, 

model updating methods can be grouped as non-iterative, iterative, sensitivity-based, 

probabilistic and statistical methods (Alkayem et al., 2018). 

In non-iterative methods, mass and stiffness matrices are directly reconstructed 

with just one step (Caesar and Peter, 1987). According to Abdullah et al. (2015), these 
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methods give convenient results and the model parameters well match with those 

obtained from the measured data. Further, incomplete model data can be employed 

without using any model reduction and model expansion methods (Carvalho et al., 

2007). However, studies in the literature state that direct methods are not practical. 

These methods require measurement data from full degrees of freedom (DOF) of 

structures (Than Soe, 2013). If the full measurement of all DOFs is available, model 

updating can be performed non-iteratively. However, measuring all DOFs of a structure 

is not possible and measured data is generally incomplete in practice. Therefore, direct 

methods have very limited applications in practice and the updated parameters may not 

carry the characteristics of the physical structure. Due to this reason, size of the 

measurement data and FE model should be equal to each other. On the contrary, these 

techniques impair the structural connectivity and updated structural properties may not 

reflect a physical meaning (Abdullah et al., 2015). 

In iterative methods, an objective function of selected updating parameters is 

used to update the parameters. Optimization procedures which require eigen solutions 

or FRF data provide a wider opportunity to select updating parameters (Chen and 

Bicanic, 2010). Therefore, selected optimization techniques, structural updating 

parameters, selected objective functions and constraints determine the effectiveness of 

the updating process. For example, Modak et al. (2002) select an objective function that 

defines the discrepancies between the modal parameters which are measured and those 

obtained from the analytical model. However, according to Zapico-Valle et al. (2012), 

selection of the structural updating parameters is not an easy task and requires a 

significant physical judgement of the actual structure. For example, selecting updating 

parameters for connections of structural elements are problematic due to the complex 

behaviors in actual connections.  

Mottershead et al. (2011) have characterized the sensitivity-based FE model 

updating methods as most outstanding one in model updating among the iterative 

methods. It is developed from the Taylor series expansion. The discrepancy between FE 

model and the measured data is described as 

 

 Re a = −R  (1.1) 

   

where Re and Ra the structural responses obtained from experimental data and analytical 

models, respectively. This structural response can be considered as FRF, modal 
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parameters or acceleration responses, etc. The residual in the ith iteration is described as 

∆R= Re-Rai. Sensitivity matrix is then be defined as 

 

 ai
ij

j


=


R
S

P
 (1.2) 

   

where Pj is the selected structural parameter. S is calculated for present value of the 

parameter P which is Pi. Here, P and Pi are the measured parameter and model 

parameter, respectively. Equation (1.2) is solved for the parameter P at each iteration, as 

its residuals; 

 

 
i = −P P P  (1.3) 

   

 

and model is updated to the next iteration until consecutive results of Pi is converged to 

each other. 

Sensitivity-based FE model updating methods are investigated by many 

researchers for damage detection. Farhat and Hemez (1993) applied an element-by-

element sensitivity method on four simple structures. Bakir et al. (2007) implemented a 

sensitivity-based constraint optimization algorithm on a reinforced concrete frame to 

update its FE model and detect the inflicted damage. However, it is reached in the 

literature that the sensitivity-based methods have some drawbacks. A sensitivity matrix 

has to be constructed for all updating parameters, which makes the method 

computationally extensive. They also may not be applied on structures with significant 

damage (Jung and Kim, 2013).  

Mthembu (2012) states in her thesis that decision of the number of the uncertain 

parameters is another important criterion for model updating process since the 

parameters of the FE model should have a certain minimum number to capture the 

dynamic characteristics of the actual system. She also stated that every structure and 

their FE model is unique and therefore designing a generalized model updating 

procedure that conforms every updating problem is a challenging issue. To overcome 

these problems, she proposed an automated procedure to detect and select the most 

uncertain parameters in any FE model. Therefore, several FE models (multi-model 
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framework approach) of one actual system have been constructed and selected the best 

model by updating each model simultaneously. 

 

1.2. Research Motivation  

 

Since almost everything is uncertain in real life, it is inevitable to have a certain 

discrepancy between the physical structure and its FE model. Measurement data 

obtained from actual systems have inevitable measurement noise by nature. Further, FE 

models cannot reflect the exact properties of the actual systems, no matter how detailed 

the physical systems are modeled. Therefore, statistics and probability theory come into 

the picture to deal with these uncertainties. Many researchers have employed 

probabilistic approaches to FE model updating and damage identification fields for 

several decades. Therefore, statistics-based and probabilistic FE model updating 

methods are widely utilized in the literature. Marwala and Sibisi (2005) use a Bayesian 

probabilistic approach to calibrate the beams. Mustafa and Matsumoto (2017) have 

developed a Bayesian model updating technique by using element-level 

parameterization since the different parts of structures experience different level of 

damage. They applied their methodologies on an existing truss structure by using an 

incomplete measurement data. They concluded that their method is capable of updating 

large-scale structures with incomplete measurements. However, local damage detection 

performed by the proposed method has been only possible for significant local damage. 

For the model updating procedures, matching the modes of the analytical model 

to the measured counterparts is a fundamental problem since the initial model may not 

reflect the dynamic properties of the real-life structure. Initial FE model is generally 

constructed by measuring the undamaged structure and the calibrated model is used to 

identify damage on the structure in a future time. Damaged structure may have different 

dynamic characteristics from its undamaged state, and this may result in the mode 

matching problem between the model of undamaged state and the damaged structure. 

To overcome the mode matching problem, Vanik et al. (2000) have introduced new 

variables to the Bayesian model updating literature. These variables are named as 

system modes, and they are independent form both FE model modes and measured 

modes. This independence solves the mode matching problem in the probabilistic model 

updating literature. System modes have been connected to the FE model by using 
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eigenvalue equations which brings out the modelling error term. By doing so, this 

concept also enables researchers to analyze modelling error uncertainties. After them, 

many researchers have used the concept of system modes for decades. Detailed 

literature is reviewed in the following chapters of this thesis. 

Motivation of the research done in this thesis is based on the inevitable 

uncertainties that exist in the model updating procedures. Therefore, the models should 

be updated in a probabilistic manner instead of deterministic approaches. Uncertainty 

quantification by using probabilistic approaches enables researchers to see how 

confident the model updating and damage identification procedure. 

 

1.3. Research Objective 

 

Numerous studies have been performed on the probabilistic FE model updating 

and damage identification in the literature. Among them, probabilistic approaches that 

use Bayesian statistics have gained much attention in recent years since Bayesian theory 

can define complete probability distributions of the updating and damage parameters. 

Besides, less data are employed in Bayesian model updating techniques compared to the 

frequentist statistics-based methods which need a large number of samples to define 

probability distributions. Due to these reasons, in this thesis, Bayesian model updating 

and damage identification techniques have been investigated in detail.  

Some problems that are found in the Bayesian model updating literature 

originate the main research objectives of the studies that is covered in this thesis and 

these problems are presented as follows 

 

• Model updating that is performed by using a single objective function needs 

weighting factors to weight each term of the objective function. It is 

investigated in the literature that there is almost no rational way to determine 

these factors. Some researchers solve this problem by using Bayesian 

inference. However, it is seen that these Bayesian approaches require 

multiple data sets which is encountered for the frequentist approach.  

• The resulting posterior uncertainties of the parameters that are updated using 

Bayesian model updating are found to have unrealistically too small values. 

This result suggests that the updated parameters are very close to their 
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deterministic counterparts and therefore there might be no need to use a 

probabilistic approach for the updating process. To this end, the Bayesian 

model updating strategies that result in such small posterior uncertainties 

have been revisited and reformulated to compare and discuss their results. 

• In the literature, parameters are updated and updating results are presented 

with their posterior uncertainties as a conclusion. Most of the research do not 

address the physical meaning of the updating results such as displacements, 

internal forces and stresses developing in structural members. These 

properties are essential to estimate the safety and remaining life of 

structures.    

 

1.4. Outlines  

 

The main research objectives are investigated under four chapters as follows 

 

• Chapter 2 revisits the FE model updating procedures that uses a single 

objective function and multi-objective functions. The problem of assigning 

weighting factors in a single objective optimization is addressed and a 

Bayesian method that already exists in the literature is investigated to get 

optimal prediction of the weighting factors. Then this method is compared 

with the analysis results of a frequentist approach.    

• In Chapter 3, a two-stage Bayesian model updating approach that utilizes the 

concept of system modes is reformulated by considering that modelling error 

variances are different for each mode. The results are compared with the 

other assumptions on the modelling error variances in the literature.  

• In Chapter 4, a sensitivity-based Bayesian model updating procedure is 

proposed based on the results obtained in Chapter 3, and the results are 

compared with the results obtained in Chapter 3.   

• Chapter 5 introduces the probabilistic damage detection topic. The Bayesian 

model updating methods presented in Chapter 3 and 4 are applied on the 

IASC-ASCE benchmark problem. 
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CHAPTER 2  

 

OPTIMALLY WEIGHTED SENSITIVITY-BASED MODEL 

UPDATING BY USING PREDICTION ERROR 

VARIANCES 

 

2.1. Introduction 

 

The assessment of structural condition involves damage identification by using 

measured responses. System identification techniques use these responses to determine 

the characteristics of structures and model updating method is used to assess the change 

in these characteristics. In this context, system identification can be performed by using 

the static or dynamic responses. When the static responses are used, damage detection is 

limited to local identification due to the sensitivity of static measurements near the 

sensors. On the other hand, when the dynamic responses are employed, global 

identification is possible due to their nature to reflect the global behavior. (Perera et al., 

2013). In vibration-based model updating, structural vibrations are measured to extract 

dynamic characteristics from the measured data. Structural properties which principally 

reflect the behavior of the structure are chosen as the updating parameters. The model 

parameters which minimize the discrepancies between the measured properties and 

those calculated from the model are obtained as the best parameters that carry the 

properties of actual structural behavior. Estimations of these parameters are sensitive to 

uncertainties that arise due to the restrictions in FE modeling of actual structures, 

inevitable existence of noise in the measured data and errors encountered during the 

modal parameter identification stage (Christodoulou et al., 2008). 

 

2.2. Problem of Parameter Estimation 

 

In this section, parameter estimation problem in FE model updating procedures 

is investigated for the optimization problems that use single and multi-objective 

functions. 



 9 

 

2.2.1. Problem of Parameter Estimation based on Modal Residual  

          Functions 

 

In dynamic-based model updating procedures, the objective functions that 

optimize the selected structural parameters are generally formed as the residual 

functions between the measured and model modal parameters.  

Let a structure be measured N times. From each measurement, one can obtain a 

modal data set with Nm number of modes. Let D be the cluster that has the measured 

modal properties, {𝑓𝑛
𝑟, 𝜙̂𝑛

𝑟}, in which n=1, …, Nm and r=1, …, N. Here, 𝑓𝑛
𝑟 and 𝜙̂𝑛

𝑟 

denote the measured eigenfrequency and eigenvector of the nth mode in the rth modal 

data set, respectively. Let θ be the vector of selected model parameters to model the 

dynamic behavior of the actual structure. Then, let 𝑓𝑛(𝛉) and 𝜙𝑛(𝛉) be the 

eigenfrequency and eigenvector of the nth mode, respectively, extracted from the FE 

model for a specific value of θ. 𝑓𝑛(𝛉) and 𝜙𝑛(𝛉) are evaluated by the eigenvalue 

analysis of the mass and stiffness matrix of the model, which is parameterized as 

𝐊(𝛉) = ∑ 𝜃𝑖𝐾𝑖
𝑁𝜃
𝑖 . Here, 𝐾𝑖 is the non-parametric part of the stiffness matrix. The aim 

here is to estimate the optimal value of the parameter set θ that will ensure 𝑓𝑛(𝛉) and 

𝜙𝑛(𝛉) to best match the measured modal data in the cluster D. Therefore, an error 

function is formed for each modal parameter in the least-squares manner as 
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where ||.|| represents the Euclidian norm and L0 is an observation matrix consisting of 

0’s and 1’s that interrelates the measured DOFs and FE model DOFs (Christodoulou 

and Papadimitriou, 2007). The functions in equations (2.1) and (2.2) are called error 

functions because there exists always a discrepancy between the measured and model 

modal properties due to the uncertainties mentioned before.  

There are numerous optimization methods in the literature to deal with the 

inverse parameter estimation problem. In conventional model updating optimization 
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methods, parameter estimation is performed by employing a single objective function. If 

the dynamic responses are measured, the objective function is generally considered in 

the form of weighted sum of the error functions of modal properties that correspond to 

each mode of the structure. The prediction error of an individual modal characteristic is 

generally obtained by using the least-squares approach.  

 

2.2.2. Formulation of Model Updating Procedures by Using Single-        

          objective Function 

 

In the most general form, the model updating is performed by optimizing the 

following objective function as a weighted least-squares approach; 

 

  

1 1

arg ( ) ( ) ( )

N Nm m

n f nn n

n n

min J w J w J 

= =

= + θ θ θ  (2.3) 

   

 

where 𝐽𝑓𝑛
(𝛉) and 𝐽𝜙𝑛

(𝛉)  are the error functions of an individual modal characteristic of 

the nth mode which are defined in equations (2.1) and (2.2). 𝑤𝑛 and 𝑤̅𝑛 are the 

weighting factors of the error functions 𝐽𝑓𝑛
(𝛉) and 𝐽𝜙𝑛

(𝛉), respectively, satisfying 

𝑤𝑛  ≥ 0 and 𝑤̅𝑛 ≥ 0, and ∑ 𝑤𝑛 + ∑ 𝑤̅𝑛 =
𝑁𝑚
𝑛=0 1

𝑁𝑚
𝑛=0

. J(θ) represents the fitness function 

(or the objective function) between the measured characteristics and those predicted 

from the FE model. Here, relative importance in prediction errors is determined by the 

values of these weighting factors. Estimation of the optimum values of the model 

parameters in the vector θ directly depends on the choice of the weighting factors. There 

will be a different set of optimum structural parameters for each different value. This 

means that the weighting factors which have different values will yield a different 

optimum structural model. Berman (1995) also states this issue emphasizing that the 

inverse problem of model updating is not unique. Therefore, the main question in the 

literature is that ‘which values should be assigned to the weighting factors that results in 

the optimum structural model which best represents the actual structural behavior?’  

There are many studies in the literature to deal with the estimation of the 

weighting factors. According to Haralampidis et al. (2005) and Christodoulou and 

Papadimitriou (2007), weighting factors should be determined according to the 
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sufficiency of the constructed FE model to represent the structural behavior and the 

quality of the measurements. However, quantification of the modelling error and 

uncertainties in the measured modal properties is not possible and such uncertainties 

always exist in real life applications. Therefore, they deduce that the selection of the 

values of the weightings is generally arbitrary and they are determined with the 

experience of users or trial and error procedure. Oh et al. (2015) also address that there 

are no studies that can determine the weighting values of each mode of the structure by 

using a methodology based on a general and logical basis and it is usually problem 

dependent.  

 

2.2.3. Formulation of the Parameter Estimation Problem by Using  

          Multi-objective Function 

 

The problems and limitations encountered in determination of weighting factors 

have forced researchers to search for the methods that will not require the weighting 

factors, and the approaches with the multi-objective functions have come into the 

picture. In multi-objective optimization methods, several objective functions are 

minimized simultaneously and a set of optimal parameters that may represent the actual 

structure is obtained. The resulting parameters form the Pareto optimal solutions. The 

idea behind the Pareto optimality is that the optimal solution is not unique, but there are 

alternative solutions that do not dominate each other when all objective functions are 

considered. Therefore, these solutions have a trade-off and each can be considered as 

the best solution with respect to at least one of the objectives. 

In fact, each error function in equations (2.1) and (2.2) forms an objective 

function that gives in a total number of T=2Nm objectives. Therefore, the problem can 

be investigated as a multi-objective optimization. It can be formulated as 

 

 
1 1

( ( ),,...., ( ), ( ),......, ( ))f fN Nm m
Min J J J J θ θ θ θ  (2.4) 

   

Equation (2.4) is minimized to get a set of Pareto optimal solutions, which is known as 

Pareto optimal front. Let θ be a parameter vector in the parameter space Θ. Here, θ is 

considered as non-dominated to other solutions if and only if no parameter vector in Θ 
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exists that dominates θ. Mathematically, 𝛉′ is dominated by a vector θ if the following 

condition is satisfied (Christodoulou et al., 2008); 

 

 ( ) ( ') {1,...., } ( ) ( ') {1,...., }i i j jJ J i T and J J j T     θ θ θ θ  (2.5) 

            

 

A representative pareto optimal front of a two-objective function is representatively 

shown in Figure 2.1. As Jin et al. (2014) have explained, for the solution C, the 

objective function F1 is decreased with no change in the objective function F2 by 

considering the solution A instead of the solution C. Similarly, the objective function F2 

is decreased with no change in the the objective function F1 by considering the solution 

B instead of the solution C. Then, solutions A and B dominate the solution C and 

therefore, C is not on the pareto optimal front. However, the solution A and the solution 

B are non-dominated to each other since there is no chance for both solutions to 

decrease one of the objective functions without increasing the other. It should be noted 

that the ideal solution is at a point in which both objectives have a value of zero and 

there will be no pareto solutions in an ideal case. However, pareto optimal solutions are 

always encountered due to the uncertainties. 

  

 

Figure 2.1. Pareto optimal front of a two-objective function  

(Source: Jin et al., 2014) 
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2.2.4. Comparison between Single and Multi-objective Optimization 

 

In single-objective optimization, optimal structural model is obtained by 

changing the weighting factors. It requires the user’s preference and trial-and-error 

procedure. Therefore, the chosen structural model directly depends on the selected 

weighting factors. On the contrary, multi-objective optimization does not require any 

weighting factors and results in all possible structural models in a single run. The 

number of Pareto solutions depends on the number of objective functions. As a 

conclusion of this, multi-objective optimization techniques also require a decision-

making strategy to select one of the alternative solutions. The relation between single 

and multi-objective optimization is that each optimal structural model in the Pareto 

front corresponds to the optimal structural model resulted from the single-objective 

optimization that is performed for a particular value of the weighting factors 

(Christodoulou and Papadimitriou, 2007). In other words, optimal Pareto structural 

models can be obtained by changing the values of the weightings from 0 to 1.     

However, Kim and de Weck (2005) state that no solutions can be obtained in the 

concave region of the Pareto optimal front by conventional weighted least-squares 

approach. Therefore, the single-objective optimization with weighted sums will miss the 

alternative solutions of a problem having a concave Pareto front region.  

In the present study, the problems with convex Pareto front have been 

considered to relate the single and multi-objective approaches. The aim is to focus on 

the problem of deciding one of the alternatives among the Pareto optimal solutions, 

which best represent the actual structure. This is equivalent to the selection of the 

optimum values of the weighting factors in a single-optimization problem. 

 

2.3. Estimating the Weighting Factors Using Bayesian Inference 

 

In this section, the studies performed by Christodoulou and Papadimitriou 

(2007) and Christodoulou et al. (2008) are followed to investigate the optimal selection 

of weighting factors in a single objective function by using the Bayesian inference 

which is a probabilistic approach. Thus, the presented theoretical background in this 

section is not novel but usefully to deal with the problem of estimating the weighting 

factors in a rational basis. The presented study is then applied on two numerical studies 
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to discuss this problem. The first study comprises a two-story shear frame and the 

second one is a ten-story shear frame. 

 

2.3.1. Probability Distribution of Model Parameters Using Modal Data 

 

The Bayes’ theorem is a convenient method to predict the parameters of a 

structural model enabling the use of probability distributions to have an idea about the 

uncertainty amount in the parameters. Let θ and D be the set of structural model 

parameters and cluster of the measured modal data, respectively, with reference to 

section 2.1. In addition, let M be the modelling assumptions and c be the set of 

prediction error parameters that denotes the coefficient of variation (c.o.v). Then, the 

posterior probability distribution, p(θ | D, M, c) is written as (Christodoulou and 

Papadimitriou, 2007); 

 

 ( | , , ) ( | , , ) ( | , )p M p M p M=θ D c D θ c θ c  (2.6) 

   

 

where κ is a normalizing constant to ensure that the integral p(θ | D, M, c) is one,  p(D | 

θ, M, c) denotes the probability of measuring the data from a model with parameters θ. 

Here, p(θ | M, c) represents the prior probability distribution of the model. Error term c 

includes the parameters to account for the modelling assumptions. Therefore, M can be 

taken out of the formulation for simplicity. 

The error vector, εr = [ε1
𝑟 , ε2

𝑟 , … , ε𝑁𝑚

𝑟 ] shows the modal property discrepancies 

between those of measured and FE model for each mode. The errors for 

eigenfrequencies and eigenvectors are defined as 

 

 ˆ ( )r r
f n nn

f f = − θ  (2.7) 

 
0

ˆ ( )r r
n rn

 = −L θ   (2.8) 

   

 

The prediction errors in equations (2.7) and (2.8) are modelled as zero-mean Gaussian 

vectors to be used in the Bayes’ theorem. For example, the prediction error for the nth 

eigenfrequency is modelled to be 𝜀𝑓𝑛

𝑟 ~𝑁(0, 𝑐𝑓𝑛

2 𝑓𝑛
𝑟2). The term 𝑐𝑓𝑛

2 𝑓𝑛
𝑟2 corresponds to the 

variance and 𝑐𝑓𝑛
𝑓𝑛

𝑟 corresponds to the standard deviation of the error term. Similarly, 
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prediction error of the nth eigenvector is modelled to be  𝜀𝜙𝑛

𝑟 ~𝑁(0, 𝐶𝑛
𝑟). The term 𝐶𝑛

𝑟 is 

the covariance matrix that has the diagonal elements of 𝑐𝜙𝑛

2 ‖𝜙𝑛
𝑟‖2. Here, the parameter 

c includes the set of c.o.v values of these prediction error vectors. 

 The prediction errors in εr are assumed to be independent and choosing that the 

prediction errors follow a multi-variate Gaussian probability distribution, p(D | θ, c) is 

obtained as (Christodoulou and Papadimitriou, 2007) 
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where J(θ, c) is the objective function and defined as  
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and ρ(c) denotes the covariance matrix of the prediction error parameters in the 

parameter vector c.  

Then, the probability distribution function of the prediction error parameters is 

defined as 
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ν is a constant which has a value of   
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In the above equations, N denotes the number of modal data sets and ND represents the 

number of measured modal data in a modal data set. Coefficients 𝛼𝑓𝑛
 and 𝛼𝜙𝑛
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corresponds to the number of modal parameters in the sub-objective functions 𝐽𝑓𝑛
(𝛉) 

and 𝐽𝜙𝑛
(𝛉), respectively. 

 If the parameters c are known, the optimal structural model parameters are 

obtained by maximizing the posterior probability density function (PDF) p(θ | D, M, c) 

in equation (2.6). However, the prediction errors are uncertain parameters of the 

updating process. Therefore, assuming an initial probability distribution, p(θ | M, c) to 

be 𝑞𝜃(𝛉), the optimal value of the structural parameters can be evaluated just by 

minimizing J(θ, σ) in equation (2.10). By doing so, optimal model parameters will 

directly depend on the assumption of the probability distribution of the prediction error 

parameters c. 

 

2.3.2. Estimation of Weighting Factors by Using the Prediction Error  

          Parameters 

 

The objective function in equation (2.10) is constructed with a weighted least-

squares approach, which is very similar to the objective function in equation (2.3). 

Therefore, Christodoulou and Papadimitriou (2007) have compared J(θ, c) and J(θ), and 

concluded that the values of the weighting factors can be defined as 
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Therefore, they have also concluded that estimation of the weighting factors is exactly 

the same with the estimation of the prediction errors. 

 Now, the problem has turned into estimating the optimal values of c from the 

measured modal data. Since the measured data include measurement errors and the FE 

model has modelling errors, this case is similar to evaluating the optimum values of the 

model parameters discussed in the previous section. Probability distributions are again 

employed to have an idea about the amount of uncertainty in the prediction error 

parameters. The updated probability distribution of the prediction error parameters, c, 

conditioned on the modal data is defined as  
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where p(D | c) denotes the probability of measuring modal parameters under the 

conditions of prediction error parameters c, it is defined as 

 

 ( | ) ( | , ) ( )p p q d= ΘD c D θ c θ θ  (2.15) 

   

 

𝑞𝑐(𝐜) is the prior probability distribution of the prediction error parameters, h is a 

normalizing constant to guarantee that the integral of p(c | D) results in unity.  

In equation (2.15), the initial probability distribution p(θ | c) of the structural 

model parameters conditioned on the prediction error parameters c, is assumed to be 

independent from c such that p(θ | c)= 𝑞(𝛉).  

Substituting p(D | θ, c) from equation (2.9) into equation (2.15), the following 

expression is obtained by Christodoulou and Papadimitriou (2007) as; 
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
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 Θ
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c D θ θ c θ
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(2.16) 

   

The most probable prediction error parameters, conditioned on the measured data set D, 

are obtained by maximizing equation (2.16).  However, it is not an easy task to 

overcome the integral term of this function over the parameter space Θ.  

 Differentiating equation (2.16) with respect to each parameter in c and solving 

the resulting equation, the optimal parameters 𝐜̂ is obtained as 

 

 

ˆ ˆ

( ) ( )
0 0

fn n

p p
and

c c
= =

 
= =

 
c c c c

c D c D
 (2.17) 

 

where n=1, …, Nm. Substituting p(D | c)  from equation (2.15) into equation (2.14), and 

then substituting the final expression into equation (2.17) by assuming a constant initial 

distribution of 𝑞𝑐(𝑐), the equation (2.17) can be written as 
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Then, taking the first derivative of p(D | θ, c) in equation (2.9) with respect to each 

parameter in the set of c, they have obtained the following relation for the optimal 

parameters 𝐜̂.  
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θ c θ θ θ c θ  (2.19) 

 

 

They have defined an asymptotic approximation for the Laplace-type integrations to 

calculate the integral in equation (2.19). The Laplace-type integration has been 

asymptotically approximated as 
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 (2.20) 

  

 

where 𝐱̂ is the optimum value of x, which minimizes the function g(x). Here, H(x) is the 

Hessian of the function k2g(x). 

 Comparing the integral on the left-side of the equation (2.19) with equation 

(2.20), it can be deduced that f(x)=1, g(x)= J(θ, 𝐜̂) and k2=0.5NND. Similarly, the right-

side of the equation (19) reveals that f(x)= 𝐽𝑓𝑛
(𝛉) or f(x)= 𝐽𝜙𝑛

(𝛉), g(x)= J(θ, 𝐜̂) and 

k2=0.5NND. It is clear that both integrations account for the same optimum value 𝛉̂(𝐜) 

which is the optimum value of the structural parameters conditioned on σ, and for the 

same Hessian HD(𝛉̂(𝐜), 𝐜). Therefore, the exponential terms and the Hessian 

determinant terms cancel each other. As a conclusion, equation (2.19) is reduced to the 

following relations 

 

 0.5 0.5ˆ ˆ( ( )) ( ( ))f fn n n n
c J and c J = =θ c θ c  (2.21) 
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This relation implies that the optimal prediction error c.o.v values, 𝑐̂𝑓𝑛
 and 𝑐̂𝛷𝑛

of the nth 

mode is equal to the square root of the optimal value of the error function that is 

calculated between the measured modal data of the nth mode and that estimated by using  

optimum structural model which has the optimum parameter set of 𝛉̂ = 𝛉̂(𝐜̂). Since the 

assumption of a constant initial distribution of 𝑞𝑐(𝑐) is considered during the derivation 

of this relation, Christodoulou and Papadimitriou (2007) have questioned the generality 

of this deduction and showed that the Bayesian approach already generalizes the 

relation for non-uniform initial distributions.  

 Since estimating the optimum values of the prediction error parameters directly 

related depends on estimating the optimal weighting factors, it has been also solved by 

the relation in equation (2.21). Therefore, by substituting equation (2.21) with the 

optimum values 𝑐̂𝑓𝑛
 and 𝑐̂𝛷𝑛

 into the equation (2.13), the optimal weighting factors for 

nth mode can be expressed as  

 

 ˆ ˆ
ˆ ˆ( ) ( )

fn n
fn n

fn n

w and w
J J






 
= =

θ θ
 (2.22) 

  

 

Here, the optimal value 𝛉̂ = 𝛉̂(𝐜̂) minimizes J(θ, c) in equation (2.10). This is equivalent 

to the minimization of J(θ, w) in equation (2.3) for w=𝐰̂. The single objective function 

is minimized by importing the optimal weighting factors such that 𝛉̂ = 𝛉̂(𝐰̂). This 

solution corresponds to the Pareto optimal parameters in multi-objective optimization.  

 However, optimal structural model parameters 𝛉̂ cannot be determined before 

assigning the optimal weighting factors. Since the optimal model parameters are not 

known, the denominator of equation (2.22) cannot be evaluated to obtain the optimum 

weighting factors. Therefore, the optimum values of 𝐰̂ and 𝛉̂ = 𝛉̂(𝐰̂) are calculated by 

simultaneously solving the equations in (2.22) for n=1, …, Nm and equation (2.3). 
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2.4. Numerical Studies 

 

• Implementation on a two-DOF model 

 

In the first numerical study, the numerical example of a two-DOF model 

developed by Christodoulou and Papadimitriou (2007) has been simulated and 

analyzed. They have considered a simple two-DOF spring-mass model that represents a 

two-story shear frame. The nominal values of mass and stiffness are assumed to be 

uniformly distributed over stories such that m1=m2=m and k1=k2=k, respectively. The 

values of k and m are prescribed for the first eigenfrequency value to be 1 Hz. To this 

end, k is set as 1013 N/m and m is set as 9.8 kg. The eigenvalue analysis results in the 

eigenfrequencies of f1=1.000 Hz and f2=2.618 Hz. 

The updating procedure is performed by using the eigenfrequencies only for 

demonstration purposes. To simulate the measurement data, Gaussian noise is included 

to the nominal values of the natural frequencies to deal with the measurement noise and 

modelling error. For the nth eigenfrequency, noise is added from the Gaussian 

distribution of N(𝜇𝑓𝑛
, 𝜀𝑓𝑛

2 𝑓𝑛
2 ). Thus, the uncertainties are controlled by the mean value μ 

and c.o.v ε of the associated parameters. To this end, measured modal data are 

simulated to have the uncertainty levels of 𝜇𝑓1
= 0% and 𝜀𝑓1

= 1% for the first mode. For 

the second mode, two values of 𝜇𝑓2
= 0% and  𝜇𝑓2

 = 5%, and five values of 𝜀𝑓2
 = 0.05%, 

0.5%, 1%, 3% and 5% have been used. Such high uncertainty level of 𝜇𝑓2
 = 5% relative 

to that of the first mode is selected on purpose so that both modes do not simultaneously 

match the measured modes. 

The mass is considered to be well-known as usual in the model updating 

literature. Stiffness values of the structure are parameterized as k1=k2=θk. In other 

words, a single model parameter θ is selected to be updated as the scaling coefficient of 

the stiffness values of both stories. Thus, the uniform distribution of the stiffness over 

the structure will be preserved after the updating process.  

This updating problem includes two sub-objectives which are the error functions 

𝑓𝑛
(𝜃) in equation (2.1) defined for n=1, 2. The single objective function is set as a 

weighted least squares of sub-objectives as in equation (2.3). The optimal values of 

weighting factors 𝑤𝑓𝑛
 and the parameter θ have been obtained by simultaneously 
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solving the objective function J(θ,w) in equation (2.3) and equations in (2.22) for n=1, 

2. As Christodoulou et al. (2008) stated, this is a nested optimization process since the 

estimation of the weighting factors requires estimation of the optimal model parameter 

𝜃. Therefore, this optimization is performed iteratively. Initial values of the weighting 

factors are taken to be inversely proportional to the c.o.v of the measured modal 

frequencies. Further, the initial value of the model parameter θ is considered as 1.00. 

Unconstrained nonlinear optimization tool ‘fminsearch’ which is a built-in function in 

Matlab program is employed for the minimization of J(θ,w). In each iteration, the value 

of each weighting factor, 𝑤𝑓𝑛
 in equation (2.22) is updated by employing the optimal 

value of its corresponding error function 𝑓𝑛
(𝜃). A tolerance value of 1E-5 is set for the 

error function calculated between the weightings in the current and previous iteration to 

stop the optimization process.  

The optimal values of 𝜃 and 𝐜̂, and the weighting factors 𝐰̂ are given in Table 

2.1 for various values of the initially introduced uncertainties 𝜇𝑓2
 and 𝜀𝑓2

. The optimal 

values of c for each mode are equal to the square-root of the optimal value that 

corresponds the error function from equation (2.21). 

For the uncertainty level of 𝜇𝑓2
= 0%, there are three optimal model parameters 

having the 𝜃 values of 1.02, 1.00 and 1.01. The model with 𝜃  = 1.02, which corresponds 

to 𝜀𝑓2
=3% and 5%, provides a small prediction error of 9E-4 % for the first mode and 

relatively high prediction error for the second mode. This result is due to the higher 

initial uncertainty in the second mode than that in the first mode (𝜀𝑓2
=3% and 5% > 

𝜀𝑓1
=1%). 

As a consequence of this, the error function corresponding to the first mode is 

optimally weighted with much higher value. Similarly, the model with 𝜃 = 1.00, which 

corresponds to 𝜀𝑓2
 = 0.05% and 0.5%, provides a very small prediction errors of 4E-4 % 

- 7E-4 % for the second mode and relatively high prediction error for the first mode due 

to the higher initial uncertainty in the first mode (𝜀𝑓2
 = 0.05% and 0.5% < 𝜀𝑓1

 = 1%). 

Therefore, the error function corresponding to the second mode is optimally weighted 

with much higher value. Further, the model with 𝜃  = 1.01, which corresponds to 𝜀𝑓2
 = 

1%, provides equal prediction errors of 0.31% for both modes since they have equal 

initial uncertainties (𝜀𝑓1
 = 𝜀𝑓2

 = 1%). Thus, the error functions of both modes are almost 

equally weighted. 
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For the uncertainty level of 𝜇𝑓2
 = 5%, there are two optimal model parameters 

having the 𝜃  values of 1.02 and 1.10. The model with 𝜃  =  1.02, which corresponds to 

𝜀𝑓2
 = 1%, 3% and 5%,  provides relatively small prediction errors of 0.005 - 9E-4 % for 

the first mode because of the higher initial uncertainty in the second mode (𝜀𝑓2
≥ 𝜀𝑓1=1% 

with 𝜇𝑓2
=5%). The model with 𝜃  = 1.10, which corresponds to 𝜀𝑓2=0.05% and 0.5%, 

provides relatively small prediction errors of 0.001% for the second mode because of 

the higher initial uncertainty in the first mode (𝜀𝑓2=0.05% and 0.5% < 𝜀𝑓1=1% with 

𝜇𝑓2
=5%). 

Table 2.1. Optimal structural parameters with the corresponding prediction errors (by 

using a single set of modal data) 

Optimally weighted 
Equally weighted 

𝑤1 = 𝑤2 = 0.5 

Initial errors 

(%) 

Optimal 

 str. 

param. 

Optimal  

prediction 

errors 

Optimal  

weights 

Optimal 

str. param. 

Optimal 

prediction 

errors 

𝜇𝑓1
 𝜀𝑓1

 𝜇𝑓2
 𝜀𝑓2

 𝜃̂ 𝑐̂1(%) 𝑐̂2(%) 𝑤̂1 𝑤̂2 𝜃̂ 𝑐̂1(%) 𝑐̂2(%) 

0 1 

0 

0.05 1.00 0.97 4E-4 2E-7 1.00 1.01 0.49 0.49 

0.5 1.00 0.80 7E-4 8E-7 1.00 1.01 0.40 0.40 

1 1.01 0.31 0.31 0.51 0.49 1.01 0.31 0.31 

3 1.02 9E-4 0.14 1.00 4E-5 1.02 0.07 0.07 

5 1.02 9E-4 0.89 1.00 1E-6 1.03 0.45 0.45 

5 

0.05 1.10 3.98 0.001 1E-6 1.00 1.06 1.91 1.99 

0.5 1.10 4.15 0.001 1E-7 1.00 1.06 1.99 2.07 

1 1.02 9E-4 4.15 1.00 5E-8 1.06 2.08 2.17 

3 1.02 9E-4 4.84 1.00 3E-8 1.07 2.42 2.54 

5 1.02 0.005 5.52 1.00 1E-6 1.07 2.76 2.92 

  

 

 For comparison purposes, optimal model parameters are evaluated by 

minimizing the equally weighted error functions. The values of the optimal model 

parameters 𝜃 increase with the increase in the initial uncertainties. For the uncertainty 

level of 𝜇𝑓2
=0%, the optimal prediction errors are equal for both modes while the initial 

uncertainty in each mode is in fact different. Therefore, the optimal prediction errors do 

not give any reasonable information about the uncertainties in the modes. For the 
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uncertainty level of 𝜇𝑓2
=5%, the optimal prediction errors are almost equal for both 

modes as in the case of 𝜇𝑓2
=0%. It can be realized that the optimal prediction errors are 

slightly greater for the second mode when compared to those of the first mode. This 

may be due to the uncertainty level of 𝜇𝑓2
=5% of the second mode. However, this does 

not give any reasonable information about the increase in the uncertainties 𝜀𝑓2. Equally 

considering the modes that have different uncertainty levels results in the biased 

estimation of the parameters with unrealistic prediction errors. 

The optimal weighting values are inversely proportional to the optimal values of 

the error functions. Since the resulting error values are too small numbers for the best 

fitted modes, there exist a considerable difference between the weighting values of best 

fitted and poorly fitted modes. In fact, the weighting factors for the best fitted ones have 

very large values relative to the poorly fitted ones. However, normalization of the 

weighting values to satisfy ∑ 𝑤𝑖 = 1𝑛
𝑖=0  causes them to have either a value that is very 

close to 1 or that very close to 0. 

 

• Implementation on a numerical model of an existing ten-story laboratory 

shear frame 

 

The updating methodology is implemented on a numerical model of an existing 

10-story laboratory frame. The structural model is set with shear frame assumptions 

since its stiffness is significantly higher than the other direction and no torsional 

behaviour is expected. The detailed physical properties of the laboratory model can be 

found in the paper published by Ceylan et al. (2020). The laboratory model and its 

analytical model are illustrated in Figure 2.2. The stiffness of each story is also shown 

on the figure.  

Modal damping ratios of the first six modes are extracted from experimental 

impulse response data by an exponential decaying function. Damping ratios of the 

higher modes are considered to be the same as that of sixth mode. The damping ratios 

are evaluated as less than 0.2%. 
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Figure 2.2. 10-story shear frame model 

 

The analytical model is excited by generating a Gaussian white noise excitation 

signal with a duration of 30 seconds having a sampling frequency of 10 kHz to extract 

acceleration measurements. The Newmark-β simulation is employed with the constant 

average acceleration approach. In addition, two different levels of random noise are put 

into each acceleration response to introduce different noise levels. The aim is to obtain 

two different modal sets for comparison purposes. Noise is added into each response to 

get an RMS of 50% and 300% of the RMS of the response itself. The relatively high 

noise level of 300% is selected on purpose to simulate poor quality data. Acceleration 

response measurements are created having a duration of 30 seconds and a sampling 

frequency of 10 kHz. The response data are resampled to a lower sampling frequency of 

100 Hz to decrease the sample size of the generated signals.  

Modal frequencies, fn the FE model and experimental damping ratios ξn are 

provided in Table 2.2. Modal parameters, 𝑓𝑛 and 𝜙̂𝑛 of the numerical model have been 

extracted by using the covariance-based stochastic subspace identification technique 

(SSI-COV) for the simulations with noise levels of 50% and 300%. 

Modal shapes, ϕn of the FE model and those predicted from the acceleration data 

with the noise levels of 50% and 300% have been provided in Figure 2.3. In the figure, 

some of the modal shapes identified from signal with the noise level of 300% are 

relatively ill-conditioned. 
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Table 2.2. Modal frequencies (Hz) and damping ratios of the analytical model 

# Mode, n fn 
𝑓𝑛 

%50 

𝑓𝑛 

%300 
ξn 

1 2.569 2.569 2.555 0.0019 

2 7.166 7.171 7.164 0.0018 

3 11.592 11.591 11.588 0.0018 

4 16.019 16.022 16.021 0.0018 

5 19.820 19.812 19.804 0.0017 

6 23.627 23.641 23.611 0.0017 

7 26.008 26.015 26.050 - 

8 28.342 28.330 28.294 - 

9 31.070 31.087 31.061 - 

10 34.633 34.640 34.668 - 

 

 

 

 

Figure 2.3. Mode shapes identified from the eigenvalue analysis of FE model and those 

obtained from the noisy signals 

 

For the model updating procedure, the mass of the structure is assumed to be 

well-known and the model parameter vector θ is selected to include the stiffness 
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parameters k1, k2 and k3 to be updated. This updating problem includes 20 sub-

objectives which are the error functions 𝑓𝑛
(𝛉) in equation (2.1) for each modal 

frequency and 𝜙𝑛
(𝛉) in equation (2.2) for each modal vector defined for n=1,..,10. The 

single objective function is constructed as a weighted sum of these sub-objectives as in 

equation (2.3). The optimum values of weighting factors and the parameter θ have been 

obtained by simultaneously solving J(θ,w) in equation (2.3) and the set of equations in 

(2.22) for i=1, 20. Initial value of each weighting factor is taken to be 0.05. Further, the 

initial value of the model parameters θ is taken as k1 = 35000 N/mm, k2 = 27000 N/mm 

and k3 = 20000 N/mm. The optimization problem is solved by the same process 

discussed in previous two-DOF example. The optimal values of the model parameters 

𝜃̂𝑜𝑝𝑡 and the weighting factors 𝑤̂ are provided in Table 2.3. 

Equally weighted sums of the error functions are minimized, and the results are 

also provided for comparison purposes. According to the results, the error functions 

corresponding to the seventh and tenth modal frequencies are optimally weighted with 

relatively high value in the analysis with the noise level of 50%. On the contrary, the 

error function of the sixth modal frequency is optimally weighted with a value of very 

close to unity in the analysis with the noise level of 300%. Further, smaller weighting 

values are obtained for the error functions that correspond to the mode shapes. The 

reason of this is that modal vectors are more sensitive to uncertainty levels. 

The optimal prediction error values are also provided in Figure 2.4. The optimal 

prediction errors of the mode shapes are significantly higher than those of the modal 

frequencies. By comparing the optimal prediction errors obtained by optimally and 

equally weighted error functions, it is obvious that the prediction errors obtained by the 

equally weighted ones have much higher values. This results in the FE models having 

the optimal model parameters provided in Table 2.3. Errors of the parameters are 

evaluated as the fractional error between model parameters of the initially constructed 

FE model and the updated ones. The errors obtained by using the equally weighted error 

functions are much higher than those of the optimally weighted ones.  
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Table 2.3. Values of the optimal model parameters and weighting factors 

 % 50  %300 

 
𝜽̂𝒐𝒑𝒕 

 Optimally 

weighted 

Error 

(%) 

Equally 

weighted 

Error 

(%) 

 Optimally 

weighted 

Error 

(%) 

Equally 

weighted 

Error 

(%) 

𝑘̂1(N/mm) 37007         0.12 36583 1.05  36715  0.68 35120 5.00 

𝑘̂2(N/mm) 27925 0.08 27461 1.74  28017  0.25 27211 2.64 

𝑘̂3(N/mm) 21232 0.08 21967 3.54  21195  0.10 23012 8.47 

 Optimal  

weights 
    

Optimal  

weights 
  

 

𝑤̂1 5.70E-8     2.22E-12    

𝑤̂2 4.16E-20     6.03E-11    

𝑤̂3 1.95E-19     9.90E-9    

𝑤̂4 1.15E-18     5.55E-10    

𝑤̂5 2.90E-20     9.38E-10    

𝑤̂6 4.20E-20     1.00    

𝑤̂7 0.9948     8.52E-12    

𝑤̂8 3.63E-20     2.01E-11    

𝑤̂9 1.28E-20     4.74E-11    

𝑤̂10 0.0052     3.20E-12    

𝑤̂11 2.28E-22     1.21E-14    

𝑤̂12 8.40E-22     1.53E-15    

𝑤̂13 1.30E-23     5.85E-14    

𝑤̂14 1.83E-22     1.73E-13    

𝑤̂15 1.40E-23     1.53E-15    

𝑤̂16 1.91E-23     3.10E-14    

𝑤̂17 8.05E-23     1.11E-14    

𝑤̂18 6.40E-24     1.28E-15    

𝑤̂19 1.34E-23     2.93E-15    

𝑤̂20 3.03E-24     1.24E-14    
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Figure 2.4. Optimal prediction errors for eqaully and optimally weighted analysis 

 

Here, an important conclusion is that although the optimal weighting values of 

most of the error functions seem nearly zero and seem as if they do not reflect the 

behavior of the corresponding modal property on the structure, they contribute to the 

optimization process due to relatively high values of the corresponding error function. 

This enables the contribution of the corresponding modal property with the high 

prediction error. The mode shapes of the FE models updated by using optimal weights 

for the noise levels of 50% and 300% are presented in Figure 2.5. Even though the 

mode shapes identified for the case of 300% are relatively ill-conditioned, those of the 

updated ones fit best with those of the initial FE model. 
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Figure 2.5. Mode shapes of the updated FE models by using optimal weights 

 

Another analysis is carried out on the numerical model to see the difference 

between the frequentist and the Bayesian approach on the weighting and prediction 

error values. To this end, 1000 different simulations of the numerical model are 

performed by introducing different noise levels. This is done to imitate the different 

excitation levels of various measurement periods as can be encountered in real 

applications. Then, the modal properties are extracted from each simulation and thus, 

1000 different modal data sets are obtained. Afterwards, 10, 100 and 500 samples from 

these modal data sets are randomly selected, and the sample variance of each modal 

property has been evaluated for 10, 100, 500 and 1000 samples. In accordance with 

equations (2.21) and (2.22), these variance values are used to obtain the weighting of 

the corresponding modal property. The single objective function has been obtained by 

using the weighted error functions. Calculated weights for the considered samples are 

presented in Figure 2.6. The optimal prediction errors obtained for the samples are also 

presented in Figure 2.7. According to this figure, it is obvious that prediction errors 

obtained for 10 samples are much higher than the other sample sizes. As seen in Figure 
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2.6, the reason may be the assignment of the relatively high weighting values on the 

first and fourth eigenfrequency modes for 10 samples because of the insufficient data to 

obtain the reasonable variance of samples. This causes the inadequate distribution of the 

weighting values on the modal properties. In addition, it is realized that the prediction 

error of the modal properties decreases when the sample size is increased. This reveals 

that the quality of the updating procedure improved with the increase in the number of 

acquired modal data sets. However, taking such a large number of measurements may 

not be practical in real applications. The more the sample size is, the results of the 

frequentist approach get closer to those of a probability distribution defined for the 

Bayesian approach. This shows the adequacy of the probabilistic approaches to use in 

the FE model updating procedures. 

 

           

Figure 2.6. Weighting values assigned for 10, 100, 500 and 1000 samples 
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Figure 2.7. Optimal prediction errors obtained for 10, 100, 500 and 1000 samples 

 

2.5. Conclusions 

 

In this chapter, the problems encountered in the FE model updating are 

addressed when the single objective function is set as the weighted sums of the error 

functions. It is observed by the performed numerical studies that the equally weighted-

least squares approach is problematic as already emphasized in the literature since it 

does not account for the uncertainties in the updating process. Thus, behavior of the 

updated structure is inevitably affected by these uncertainties. Further, each mode has 

different contributions to dynamic behavior of structures and equally weighted-least 

squares does not account for this, either. In the investigated study, weighting factors are 

optimally selected to be inversely proportional to the prediction error of each mode. The 

numerical investigations show that optimal selection of the weights gives reasonable 

updating results. However, it can be realized that the values of the weightings become 

too large if the corresponding prediction error is too small. This may result a specific 

mode to be considered redundantly dominant on the others. Considering the results of 

two-DOF example, a slight difference between the initial prediction errors of two modes 

causes the normalized weighting values to be very close to zero or one. The same 
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situation is encountered in the results of the ten-DOF example. There is no weighting 

value resulting in the mid-range of zero and one unless the uncertainties are equal. 

Further, it is shown in the last numerical study that a large amount of measurement data 

is needed to approach to the adequate probabilistic distributions. In the assumptions 

during the derivations of the performed procedure, the approximation of the integral in 

equation (2.20) is valid for β goes to infinity, which corresponds to the number of 

available data. The numerical results in the first two example is encountered due to the 

limited amount of generated modal data, which violates this assumption. Therefore, 

investigated methodology also requires large number of data sets to give reasonable 

results. This is similar to the situation in frequentist approach as shown by the last 

numerical example. 

The researchers in the literature state that there is still no rational way to assign 

the weighting factors, but the procedure is problem dependent. As an alternative to 

using single objectives, many researchers have suggested to use multi-objective 

functions which do not require any assignment of weighting factors. However, multi-

objective optimization results in Pareto solutions, which again requires a decision-

making strategy to select the best Pareto optimal parameter. This is almost equivalent to 

the selection of optimal weights in a single objective problem. Further, Oh et al., (2015) 

touch on the arbitrariness of the weighting values and propose using the modal 

participation factors to determine the weighting values with respect to the contribution 

of the modes on the dynamic characteristics of structures. However, this is also a 

problem dependent approach.  
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CHAPTER 3  

 

A TWO-STAGE BAYESIAN MODEL UPDATING 

METHOD UTILIZING THE CONCEPT OF SYSTEM 

MODES 

 

3.1. Introduction 

 

Damage detection has a crucial importance among many engineering 

communities. FE model updating is effectively used by many researchers for structural 

damage identification purposes. An FE model of a structure is expected to represent the 

properties of real-life structures. However, it is almost impossible for an FE model to 

carry all properties of the actual structure. There are various uncertainties that need to 

be considered during FE model updating. In dynamic-based FE model updating, 

structural vibrations are measured to extract dynamic characteristics from the measured 

data. Structural uncertain properties that principally reflect the behavior of the structure 

are selected as the parameters to be updated. Parameters which minimize the difference 

between the measured characteristics and those calculated from the FE model are 

obtained as the best parameters which represent the actual structural behavior. The 

estimations of these parameters are sensitive to uncertainties that arise because of the 

limitations in FE modeling of actual structures (referred as modelling error), inevitable 

existence of measurement noise in the acquired data (referred as measurement error), 

and inherent variability in structural characteristics because of variations in 

environmental conditions such as temperature and humidity (Behmanesh and Moaveni, 

2015, 2016; Song et al., 2020).  

In most of the modal-based FE model updating procedures, a single objective 

function is set by considering the discrepancies between the modal frequencies and 

mode shapes which are obtained from the FE model, and their measured counterparts. 

The following equation is an example of such kind of objective function.  
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Here, 𝑓𝑛 and 𝑓𝑛 are modal frequency and its measured counterpart for the nth mode, 

respectively. Similarly, 𝝓𝑛 and 𝝓̂𝑛 are the mode shape and its measured counterpart for 

the nth mode, respectively. 𝑤𝑛 and 𝑤̅𝑛 are the weighting factors for the corresponding 

discrepancy term, and Nm is the total number of observed modes. In most of the model 

updating literature, weighting factors are not determined in a rational way and no 

uncertainty information is included in such functions as discussed in the previous 

chapter. It should be noted that there are some published papers in the literature which 

associate the uncertainty level of each discrepancy term with its corresponding 

weighting factor to account for the uncertainties such as the studies conducted by 

Christodoulou et al. (2008), Christodoulou and Papadimitriou (2007) and, Kim and 

Weck (2005). Christodoulou and Papadimitriou (2007) have used a conventional 

Bayesian model updating to estimate optimal weighting factors and this study has been 

investigated by the author in detail in the previous chapter. On the other hand, the most 

important issue for this type of objective functions is mode matching problem between 

the modes of the model and measured ones. The model mode corresponding to its 

measured counterpart must be exactly known to write the objective function in equation 

(3.1). However, this is difficult for real-life applications. In general, the following 

problems may be encountered. 

 

• Measured modal data obtained from structures are incomplete with respect to 

their FE models since some modes of the structures may not be obtained during 

dynamic tests. For example, some lower or intermediate modes such as torsional 

ones may not be excited and identified due to the excitation conditions.  

• The initial FE model may result in some modes which do not exist for the 

measured structure, or the order of the modes might be different due to 

modelling assumptions. 

• Some modes may be more affected by local damage compared to other modes 

and such damage cases may change the order of the modes of the structure.  

(Yuen, 2010; page:194). 
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These problems limit the usage of the objective function in equation (3.1) for 

real-life applications. The concept of “system modes” is introduced in the literature to 

overcome the mode matching problem. System modes are included in the updating 

process as additional parameters to be updated. This concept will be further discussed in 

detail in the following sections. 

There are various stochastic model updating (SMU) methods in the literature 

that account for the uncertainties. In conventional SMU techniques, uncertainties are 

considered by the statistic-based modelling of the uncertain parameters and the 

corresponding statistical moments such as their mean and variance are obtained by 

employing Monte Carlo Simulation methods. However, multiple sets of measured data 

are needed for such methods and numerous iterations should be performed to evaluate 

statistical moments and distributions. Dealing with large structures and models makes 

the computational effort significantly high (Fang et al., 2012; Govers and Link, 2010).  

Among SMU methods, Bayesian model updating (BMU) approach is widely used in the 

literature to deal with the uncertainties in a probabilistic manner. The main idea behind 

BMU is to define the posterior (updated) probability of uncertain parameters by 

updating prior distributions of the parameters by using measured data. Here, the 

uncertainties that belong to measured data, FE modelling assumptions and uncertain 

parameters are modelled to follow a certain probability distribution. This approach also 

requires the calculation of statistical properties of the measured data which again 

requires simulations such as Monte Carlo employing multiple sets of data. In the 

literature, therefore, two-stage BMU framework has gained more attention by 

researchers. In this framework, the uncertainties of measured data are obtained by using 

Bayesian Modal Operational Analysis (BAYOMA) in the first stage (Katafygiotis and 

Yuen, 2001; Yuen and Katafygiotis, 2003, 2001). Thereafter, these uncertainties are 

employed in the Bayesian model updating process. Hence, need for multiple sets of 

measured data and statistical simulations are avoided and computational cost is 

considerably reduced. In these approaches, the concept of rigid constraints and soft 

constraints is also introduced for the uncertain parameters. When the uncertainty of a 

parameter is prescribed and is not updated during the updating process, it is considered 

as rigid constraint for that parameter. On the contrary, if the uncertainty of the 

parameter is also updated with an initial guess, it is considered as soft constraint. Yuen 

et al. (2006) have proposed a BMU method which considers the modelling error in the 

eigenvalue equations. Their procedure requires the uncertainty quantification of the 
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measured modal data and thus it is a kind of two-stage BMU. They consider a 

prescribed modeling error uncertainty that is equal for all modes as a rigid constraint 

and take the mass values as known and not included as a parameter to be updated. Hızal 

and Turan (2020) have a similar two-stage approach for multiple setups of 

measurements. Differently from Yuen et al. (2006), they consider the modelling error 

that is equal for all modes as soft constraint and take the mass values into account as 

uncertain parameters with small variances. Their study reveals that considering 

modelling error as soft constraint significantly reduces the computational time and 

posterior uncertainties in model parameters. Yan and Katafygiotis (2015) used another 

similar two-stage BMU for multiple setup measurements. They consider the modelling 

error uncertainty to be different for each mode and update it as soft constraint. In their 

approach, only the uncertainties of the measured mode shapes are considered and 

measured eigenvalues are assumed to be well-estimated. Yuen et al. (2006), and Hızal 

and Turan (2020), however, considered the uncertainties of both measured eigenvalues 

and mode shapes. The correlation between the measured eigenvalues and mode shapes 

may induce problems in two-stage BMU because of mode shape scaling (Au and 

Zhang, 2016; Hızal and Turan, 2020). Therefore, calculation of the correlation between 

measured eigenvalues and mode shapes are avoided in the literature. Yuen et al. (2006) 

do not consider this fact and include this correlation in their formulation. However, they 

use a diagonal posterior covariance matrix for the measured modal data which 

correspond to uncorrelated measured eigenvalues and mode shapes in all their 

applications. Yan and Katafygiotis (2015) avoid this fact by assuming measured 

eigenvalues with zero uncertainties. Hızal and Turan (2020) have introduced a 

modification into the Bayesian Fast Fourier Transform Approach (BFFTA) proposed by 

Au (2011) and they derived that measured eigenvalues and mode shapes are 

uncorrelated by defining norm constraints for mode shapes in the modal identification 

stage. 

This part of the thesis focuses on the two-stage Bayesian Model Updating 

formulations derived by Çağlayan Hızal in Chapter 5 of his dissertation (Hızal, 2019) 

and in the published work by Hızal and Turan (2020). Therefore, this study can be 

considered as a follow-up work. First, their formulations are reformulated for a single 

setup case assuming that mass values are known with a sufficient accuracy and are not 

taken as parameters to be updated as Yuen et al. (2006) do. Second, the modelling error 

uncertainty of eigenvalue equations are considered to be different for each mode and 
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updated in each iteration as Yan and Katafygiotis (2015) do in their study. In this 

regard, the study presented in this chapter can be considered as a compilation of these 

three related studies with minor modifications. Besides, the main objective of this 

chapter is to compare three different assumptions on modelling error variances 

considered in the literature. These are investigated under three different cases as 

follows: 

 

• Case 1: Modelling error variances of eigenvalue equations are considered to be 

different for each mode and updated in each iteration as soft constraints. Thus, 

an independent modelling error variance is defined for each mode. This study 

mainly focuses on this assumption.   

• Case 2: Modelling error variances of eigenvalue equations are considered to be 

the same for each mode and updated in each iteration as a soft constraint. Thus, 

a single modelling error variance is defined as a soft constraint. This case 

corresponds to a similar study performed by Hızal and Turan (2020). 

• Case 3: Modelling error variance has a prescribed value which is the same for all 

modes. It is not updated during the updating process and kept as a rigid 

constraint. This case corresponds to a similar study performed by Yuen (2010). 

 

A comparative numerical application is performed to investigate the influence of 

the three different assumptions on the Bayesian model updating procedure. Modal 

identification stage is performed by the proposed method by Hızal (2019) to avoid the 

calculation of the correlation between the measured eigenvalues and mode shapes. 

Numerical studies are performed on a numerical twelve-story shear frame model by 

employing complete and incomplete measured modal data.  

 

3.2. Two-Stage Bayesian Model Updating Utilizing the Concept of  

       System Modes 

 

In this section, a two-stage Bayesian model updating procedure that utilizes the 

concept of system modes is reformulated by assuming that the modelling error 

variances of eigenvalue equations are different for each mode and updated in each 

iteration as soft constraints. 
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3.2.1. Modal Identification Stage  

 

In two stage approaches, the modal identification phase which takes place as the 

initial step has a critical role to estimate a reliable probabilistic model for observed 

modal parameters. In this context, the use of BAYOMA techniques make a successful 

contribution for better representing the modal parameter distribution. Considering this 

aspect, BFFTA which has been first proposed by Au (2011) is adopted in this study. 

Implementing the BFFTA theory in the modal identification phase significantly reduces 

the computation effort since the likelihood function for the modal parameters of the 

measured structure can be well estimated. Here, as shown by Hızal (2019), another 

prominent merit of BFFTA can be considered the fact that it can provide a block 

diagonal posterior covariance matrix by inclusion of mode shape norm constraints. In 

this context, a negative log-likelihood function for posterior PDF of modal parameters 

based on the measured FFT data is defined as below (Au, 2011). 
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where p(Ξn | D) is the posterior probability distribution of modal parameter set, Ξn = {λn, 

ξn, 𝑆𝑛̅, 𝑆𝑒,𝑛, ψn}, based on the measurement data D. Here, λn is the eigenvalue, ξn is the 

damping ratio, 𝑆𝑒,𝑛 is the spectral density of the error function, 𝑆𝑛̅ is the spectral density 

of the modal excitation. These are defined as spectrum parameters. ψn is the modal 

shape vector, which has a unit norm for the nth mode. N is the number of measured 

DOFs and Nf,n is the number of data points in the frequency band selected by the user. 

In addition, following variables are defined by Hızal and Turan (2020) as 
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where Fk represents the Fast Fourier Transform (FFT) vector of the measured 

acceleration data and fk is the excitation frequency. 

Optimal values of the modal parameters can be estimated by minimizing the 

objective function in equation (3.2) by defining an extra norm constraint term for ψn to 

ensure the norm of the mode shapes to be unity. Then, the posterior probability 

distribution of modal parameters is assumed to follow a Gaussian distribution to obtain 

the most probable values (MPVs) and posterior uncertainties of the optimal modal 

parameters as 

 ˆ
1 ˆ ˆ( ) exp ( ) ( )
2

T
n k n n n n

n
p

 
= − − − 

 
Ξ

Ξ Z Ξ Ξ H Ξ Ξ  (3.4) 

 

where 𝚵̂𝑛is the set of MPVs of the modal parameters and Zk is the augmented FFT 

vector of measured acceleration data, which includes real and imaginary parts of the 

FFT vector of Fk. Here, 𝐇𝚵̂𝑛
is the Hessian matrix of the objective function, which is 

obtained by second order derivatives of Ln(Ξn) at MPV subjecting a norm constraint 

term for ψn. Hızal (2019) has shown that no correlation exists between the spectrum 

parameters of Ξs,n = {λn, ξn, 𝑆𝑛̅, 𝑆𝑒,𝑛} and ψn by the help of defined norm constraint term 

for ψn. This results in a block diagonal Hessian 𝐇𝚵̂𝑛
 matrix, which enables that the 

spectrum parameters can be separated from the mode shapes. Thus, the Hessian matrix 

𝐇𝚵̂𝑛
is written as (Hızal, 2019; Hızal and Turan, 2020) 
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where 𝐇𝚵̂𝑠,𝑛
is the Hessian matrix of the measured spectrum parameters, which is 

obtained from the second order derivatives of Ln(Ξn), and 𝐇𝛙̂𝑛
is the Hessian matrix of 

the measured mode shapes, which is obtained from the second order derivatives of the 

objective function, which is constructed by using Ln(Ξn) and the norm constraint term 

for ψn. Hızal (2019) shows and proves that 𝝍̂𝑛 is the eigenvector of 𝐇𝛙̂𝑛
which 
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corresponds to its zero eigenvalue. Thus, he also proves that 𝝍̂𝑛 is the null vector of 

𝐇𝛙̂𝑛
. 

 

3.2.2. Model Updating Stage 

 

In this section, posterior probability distributions of the modal parameters that 

are obtained in the modal identification stage are employed as the prior probability 

distributions of prediction errors between the measured and system modes. 

 

3.2.2.1. Concept of System Modes 

 

 Extra variables, referred as “system modes” in the literature (Vanik et al., 2000), 

are employed in model updating procedure to solve the mode matching problem. 

System modes are considered to reflect the actual eigenvalues and mode shapes of the 

measured structure independent from the modes of its FE model. There may be high 

discrepancies between the modes of the model and measured modes due to 

mathematical modelling assumptions (Beck et al., 2001; Yan and Katafygiotis, 2015; 

Yuen, 2010). In this context, there are three different mode definitions in this chapter 

which are measured modes, modes obtained from the FE model and the system modes. 

For the model updating procedures that use this concept, discrepancies between system 

modes and measured modes are considered and system modes are updated to obtain 

those that best fit the measured modes. Further, system modes are connected to the FE 

model and model parameters via eigenvalue equations. It will be seen later that modes 

obtained from the eigenvalue decomposition of the FE model are never used in the 

procedure, which solves the mode matching issue. Here, the system mode shapes are 

obtained to cover all DOFs of the FE model even though spatially incomplete mode 

shapes are measured from the actual structure. Thus, modal expansion techniques are 

not required to identify the unmeasured components of the measured mode shapes.  

 

3.2.2.2. Structural Model and Parametrization of Stiffness Matrix 

 

Let a linear structural model ℳ be assumed for a convenient parametrization of 

the stiffness matrix with Nd DOFs. The model is parameterized by defining the 
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parametric stiffness matrix, K(θ) with a size of Nd × Nd, in terms of a linear combination 

of substructure stiffness matrices, Ki as; 
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where K0 is the portion of the stiffness matrix which is not affected by the updating 

procedure. The substructure stiffness matrix, Ki, is the elementwise nominal stiffness 

matrix extended to the size of Nd × Nd. Thus, they represent the contributions of a part of 

the structure to the system stiffness matrix. 𝛉 = [ θ1  θ2  θ3 . . . 𝜃𝑁𝜃
]T is the vector of 

stiffness scaling factors 𝜃𝑖 ∈ 𝑅𝑁𝜃 which are required to be updated to modify Ki so that 

the FE model can represent the actual structural conditions. Here, Nθ represents the total 

number of stiffness scaling factors. In the literature, there is another definition for θi and 

Ki in the literature. θi can be employed as a stiffness parameter (stiffness value) instead 

of considering it as a scaling factor. In this case, θi is the ith stiffness parameter and Ki 

are the corresponding non-parametric and constant matrices which include just the 

geometrical information of a specific portion of the structure. In this chapter, θi is taken 

as the stiffness parameter and Ki is considered as the corresponding non-parametric and 

constant matrix. 

Beck et al. (1999) states that expressing the stiffness matrix as the linear 

parametrization that is given in equation (3.6) is convenient for the optimization process 

and sufficient to identify the presence and location of damage.  

For the framework presented above, parametrization of stiffness matrix is 

performed in element-level since practical experiences show that particular parts of a 

structure prone to varying levels of damage. Real-world examples show that the change 

in mass induced by local damage is significantly less than the variance in local stiffness. 

Further, it is well-known that mass matrix can be obtained with sufficient accuracy and 

corresponding uncertainties can be considered as negligible. Therefore, in most studies, 

the variation in mass is not considered and the stiffness parameters are updated only. To 

this end, mass matrix is assumed to be well-known and it is not considered as a 

parameter to be updated in this chapter. 
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3.2.2.3. Probability Model for the Stiffness Parameters 

 

The prior probability distribution of 𝛉 is considered to follow multivariate 

truncated Gaussian distribution which truncates the negative values of 𝛉 since the 

negative values are physically meaningless for the stiffness parameters. 

The prior PDF of 𝛉 with mean value of 𝛉̂0 and with covariance matrix of 𝚺𝛉 can 

be defined, assuming each stiffness parameter θi to be linearly independent, as 
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Here, 𝛉̂0 is the vector of prior MPVs of the stiffness parameters and it should be 

selected as the nominal parameters that represent the nominal FE model. 𝚺𝛉 is the prior 

covariance matrix of the stiffness parameters and it represents the uncertainty in the 

nominal FE model before the model updating procedure. Since each θi is assumed 

linearly independent, 𝚺𝛉 is a diagonal matrix whose diagonal elements consist of the 

prior variance of each stiffness parameter. 

 

3.2.2.4. Probability Model for the Eigenvalue-equation Errors 

 

The standard eigenvalue equation for a dynamic system is written as; 

 ( ) n n n=K θ M   (3.8) 

where 𝜆̅𝑛 and 𝝓̅𝑛 are the eigenvalues and mode shapes for the nth mode, respectively, 

which are obtained from the eigenvalue decomposition of the FE model. M denotes the 

mass matrix with a size of Nd × Nd and it is assumed to be sufficiently known. However, 

the nth mode of the measured structure may not correspond to the nth mode of the FE 

model because of the mode matching problems explained in the introduction part. 

Therefore, eigenvalues and mode shapes of the FE model are replaced by the system 

eigenvalues and system mode shapes to construct the eigenvalue equations. This 

operation inevitably introduces an uncertainty in the eigenvalue equation. To this end, 
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an error vector is included to account for the discrepancies between the system modes 

and FE model as  

 ( ) n n n n= +K θ M ε   (3.9) 

Rearranging equation (3.9), following error vector is obtained as   

  ( )n n n= −ε K θ M   (3.10) 

where εn is the modelling error vector for the nth mode and it is modelled as the 

independent Gaussian variables with a zero-mean value and the covariance matrix of 

𝚺𝑒𝑞,𝑛 as; 

 ,~ (0, )n eq nNε Σ  (3.11) 

Thus, system modes are mathematically connected with the FE model by introducing an 

error definition in-between.   

The prior PDF for the system eigenvalue and system mode shape of the nth mode 

is defined by selecting a Gaussian distribution as a probability model; 
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where, 𝚺𝑒𝑞,𝑛 is the prior covariance matrix for the eigenvalue-equation errors. The 

uncertainty in these equations for a specific mode n is assumed to be independent and 

identically distributed. Therefore, it is defined for the nth mode as 

 

 , ,eq n eq n Nd
S=Σ I  (3.13) 

 

Where 𝐈𝑁𝑑
 denotes Nd × Nd identity matrix and Seq,n represents the prior variance of 

modelling error for the nth mode. 

By assuming that modelling error is also independent for different modes of the 

selected structural model and defining  
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 ( )n n= −Γ K θ M  (3.14) 

 

one can define the following prior PDF; 
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where λ = [λ1  λ2  λ3 . . . 𝜆𝑁𝑚
] is the vector of system eigenvalues, Φ = [ϕ1  ϕ2  ϕ3 . . . 

ϕNm] is the matrix of system mode shapes, 𝚺𝑒𝑞 represents the covariance matrix whose 

diagonal elements consist of the set {𝚺𝑒𝑞,1 , 𝚺𝑒𝑞,2 , 𝚺𝑒𝑞,3 , . . . , 𝚺𝑒𝑞,𝑁𝑚
}. For simplicity 

in the later formulations, prior variances of the modelling error are collected in the set 

of 𝐒𝐞𝐪 = {𝑆𝑒𝑞,1 , 𝑆𝑒𝑞,2, 𝑆𝑒𝑞,3 , . . . , 𝑆𝑒𝑞,𝑁𝑚
}. 

 

3.2.2.5. Probability Model for the Discrepancy between Eigenvalues  

 

Measured eigenvalues can be related to the system eigenvalues by assuming a 

prediction error in-between as 
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where λ̂𝑛 is the measured eigenvalue for the nth mode and the error term ε𝜆̂𝑛
is modeled 

to follow a Gaussian distribution that has a zero-mean and the variance of 𝑆𝜆̂𝑛
as; 
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Prior probability distribution for the discrepancy between system eigenvalues, λn 

and measured eigenvalues, λ̂𝑛 of the nth mode can be defined by assuming a Gaussian 

probability model. Since the MPVs and prior uncertainties of the measured eigenvalues 

are already known from the modal identification process, this prior PDF is written as a 

likelihood function as follows;  
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where 𝑆𝜆̂𝑛
denotes the prior variance for the measured eigenvalues of λ̂𝑛 and it is 

obtained in the Bayesian modal identification process. 

The prediction error is assumed to be independent for different modes of the 

selected structural model and one can define the following prior PDF; 
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where 𝝀̂ = [𝜆̂1  𝜆̂2  𝜆̂3 . . . 𝜆̂𝑁𝑚
] is the vector of measured eigenvalues and 𝚺𝝀̂ represents 

the prior covariance matrix whose diagonal elements consist of the set {𝑆λ̂1
 , 𝑆λ̂2

 , 

𝑆λ̂3
 , . . . , 𝑆λ̂𝑁𝑚

}  

 

3.2.2.6. Probability Model for the Discrepancy between Mode Shapes 

 

 In this study, structures are assumed to be measured with a single setup to obtain 

the required vibration data. However, in most real-life applications, measured DOFs of 

structures are smaller than those of their FE model. Mode shape components of the 

model should be matched with their spatially incomplete measured counterparts. Since 

direct usage of FE model mode shapes is avoided in this study to overcome mode 
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matching problem, components of the system mode shapes have been matched with 

their measured counterparts. To this end, following relation can be written      

 0n n=L   (3.20) 

where L0 is the selection matrix consisting of 1’s and 0’s to pick the components of the 

system mode shape, 𝝓𝑛, which correspond to measured DOFs only, and 𝝓̃𝑛 is the 

vector including the corresponding components of 𝝓𝑛. Then, measured mode shapes 𝝍̂𝑛 

can be related to 𝝓̃𝑛 for the nth mode by including a prediction error as 

 

 
ˆ

ˆ0

ˆn n n

n n

= +

= +

ε

L ε





 


 (3.21) 

 

where 𝛆𝝍̂𝑛
is the prediction-error vector consisting of the error term for each mode shape 

component and it is modelled as Gaussian variables with zero-means and the covariance 

matrix of 𝚺𝝍̂𝑛
 as; 

 ˆ ˆ~ (0, )
n n

Nε Σ   (3.22) 

 

Discrepancy between 𝝓̃𝑛 and 𝝍̂𝑛 should be considered to construct the probability 

model. Here, the measured mode shapes are normalized to have a unit norm. Therefore, 

𝝓̃𝑛 should also have unit norm so that the discrepancy in equation (3.21) can be 

defined. Therefore, discrepancy between 
𝝓̃𝑛

‖𝝓̃𝑛‖
 and 𝝍̂𝑛 should be considered instead of 

𝝓̃𝑛 and 𝝍̂𝑛. Note that the resulting vector 
𝝓̃𝑛

‖𝝓̃𝑛‖
 is constrained to have unit norm.   

Here, 𝚺𝝍̂𝑛
is the prior covariance matrix that is used to define the uncertainties in 

the prediction error vector 𝛆𝝍̂𝑛
and it is also the posterior covariance matrix for 𝝍̂𝑛 

obtained in Bayesian modal identification process. However, it should be kept in mind 

that 𝚺𝝍̂𝑛
 cannot be obtained explicitly since the Bayesian modal identification process 

does not output an invertible Hessian matrix, 𝐇𝝍̂𝑛
, of the measured mode shapes. 
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Prior probability distribution for the discrepancy between 
𝝓̃𝑛

‖𝝓̃𝑛‖
 and measured 

mode shapes, 𝝍̂𝑛 of the nth mode can be defined by assuming a Gaussian probability 

model. Since the MPVs and prior uncertainties of the measured mode shapes are 

already known from the modal identification process, this prior PDF is written as a 

likelihood function as follows;  
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 (3.23) 

 

Substituting equation (3.20) into equation (3.23), one can obtain the following PDF 
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 (3.24) 

 

It should be noticed that the Hessian matrix 𝐇𝝍̂𝑛
 is introduced in equations (3.23) and 

(3.24) since 𝚺𝝍̂𝑛
cannot be obtained.  

By assuming that the prediction error vectors are also independent for different 

modes of the selected structural model, one can define the following prior PDF; 
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 (3.25) 

 

where 𝛙̂ = [𝝍̂1  𝝍̂2  𝝍̂3 . . . 𝝍̂𝑁𝑚] denotes the vector of measured mode shapes and 𝐇𝝍̂ 

represents the block diagonal Hessian matrix whose diagonal elements consist of the set 

{𝐇𝝍̂1
 , 𝐇𝝍̂2

 , 𝐇𝝍̂3
 , . . . , 𝐇𝝍̂𝑁𝑚

}. 
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3.2.2.7. Posterior (updated) Probability Model for the Parameters to be  

             Updated 

 

Defining the set of all parameters to be updated as Θ = {θ , λ , Φ , 𝐒𝐞𝐪} and the 

set of all measured modal data as 𝛀̂ = { 𝝀̂ ,  𝛙̂ , 𝚺𝝀̂ , 𝐇𝝍̂}, and by using the Bayes’ 

Theorem, posterior probability of the parameters Θ conditioned on the measured modal 

data 𝛀̂ is written as 

 0
ˆ ˆ( ) ( ) ( )p c p p=Θ Ω Ω Θ Θ  (3.26) 

 

where c0 = 1 / p(𝛀̂). Since it does not depend on the parameters of Θ, it services as a 

normalizing constant so that the posterior probability function p(Θ | 𝛀̂) integrates to 1. 

Here, the likelihood function p(𝛀̂ | Θ) is defined as 
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 (3.27) 

 

and prior PDF, p(Θ), of the parameters to be updated are defined as   

 

 
( ) ( , , , )

( , , ) ( )

eq

eq

p p

p p

=

=

Θ θ λ Φ Σ

λ Φ Σ θ θ
 (3.28) 

 

Substituting equations (3.27) and (3.28) into equation (3.26), posterior PDF of Θ 

conditioned on 𝛀̂ can be written as follows 

 

 ˆ ˆ0
ˆ ˆ ˆ( ) ( , ) ( , ) ( , , ) ( )eqp c p p p p=

λ
Θ Ω λ Σ λ ψ H Φ λ Φ Σ θ θ  (3.29) 

 

MPVs of the parameters, Θ, conditioned on the measured modal data can be obtained 

by maximizing the posterior PDF given in equation (3.29). It is known in the literature 
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that more convenient strategy to solve such optimization problem is to minimize the 

negative log-likelihood function of the posterior PDF.  

 

3.2.2.8. Negative Log-likelihood Function of the Posterior Distribution 

 

 Negative log-likelihood function of the posterior PDF which is given in equation 

(3.29) can be written as  
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 (3.30) 

 

Calculating the negative natural logarithm of each term, one can obtain the following 

negative log-likelihood function 
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(3.31) 

 

It should be noted that constant terms are neglected while writing equation (3.31) since 

they have no effect on the optimization of the parameters. This function needs to be 

minimized with respect to each parameter to obtain most probable values. However, it is 

not quadratic for 𝝓𝑛 due to the norm term of ‖𝐋0𝝓𝑛‖ and therefore explicit expressions 

cannot be obtained for the MPVs of the parameters. Computationally challenging 

numerical optimization methods need to be applied to solve for the most probable 

values. Instead of using such type of numerical optimization methods and to obtain the 

explicit expressions for the most probable values, a new independent variable is 

assigned for the norm term. Thus, negative log-likelihood function turns into a complete 

quadratic form. Introducing the new variable as 
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 0n n = L   (3.32) 

 

Negative log-likelihood function in equation (3.31) is rewritten by substituting equation 

(3.32) as 
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(3.33) 

 

As a result, negative log-likelihood function in equation (3.33) is in a completely 

quadratic form and its minimization with respect to each parameter can be easily 

performed. However, introducing 𝜂n as an independent variable removes the norm 

constraint on 𝐋0𝝓𝑛. Therefore, a norm constraint should be extrinsically added to the 

negative log-likelihood function to enforce 𝐋0𝝓𝑛 to have a unit norm. Besides, a norm 

constraint should also be added for 𝝓𝑛 to have a unit norm. The reason for this is that, 

as it will be shown later, measured mode shapes do not contribute to the optimization 

process of parameters and the mode shape information is gathered by just the posterior 

Hessian matrix of 𝐇𝝍̂𝑛
. Therefore, 𝝓𝑛 should have the same norm for each iteration to 

comply with 𝐇𝝍̂𝑛
. Otherwise, incompatible results can be obtained in each iteration due 

to the dependence of minimization process on the norm of the 𝝓𝑛 and the optimization 

process can end up with a minimum value which is unreasonable. Then, the final 

objective function to minimize is formed by using the Lagrange multiplier method as 
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where α = [α1  α2  α3 . . . αNm] and β = [β1  β2  β3 . . . βNm] are the vectors of 

corresponding Lagrange multipliers. 

 

3.2.3. Optimization Problem 

 

The objective function in equation (3.34) should be minimized with respect to 

each parameter in the set of Θ = {θ , λ , Φ , 𝐒𝐞𝐪} to obtain the optimum values of each 

parameter. As can be realized, this function is not quadratic for these parameters at the 

same time to minimize. However, it becomes quadratic when any other three of them 

are fixed and considered as being constant at their optimal values (Yuen and Kuok, 

2011). Therefore, this optimization problem is solved in an iterative manner as a series 

of optimizations which are; 
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 (3.35) 

 

The iterative process is ended when prescribed convergence criteria are satisfied 

for the updated parameters. Each optimization problem in equation (3.35) is explained 

in detail in the following sections.  

 

3.2.3.1. Minimization of J with respect to System Mode Shapes 

 

Minimization of the objective function J with respect to mode shapes is 

performed for each mode separately. Thus, the optimal value of the system mode shape 

for the nth mode is obtained by minimizing J with respect to 𝝓𝑛 as 
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By fixing the rest of parameters at their optimum values and equating the first derivative 

obtained in equation (3.36) to zero, one can obtain the following equation; 
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where 

 ( )n n
  = −Γ K θ M  (3.38) 

and  
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Hızal and Turan (2020) have proved that measured mode shape 𝝍̂𝑛 is a null vector of its 

corresponding posterior Hessian matrix 𝐇𝝍̂𝑛
for the nth mode. 
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By eliminating the term in equation (3.40) from equation (3.37), since it is a vector of 

zeros, one can obtain the following standard eigenvalue problem.  

 

 n n n n   =A    (3.41) 

 

Optimal value for the Lagrange multiplier, 𝛽𝑛
∗  can be evaluated as the minimum 

eigenvalue of the matrix 𝐀𝑛
∗ . Besides, optimal value of the system mode shape for the 

nth mode, 𝝓𝑛
∗  , is then obtained as the eigenvector which corresponds to this minimum 

eigenvalue. However, the optimal values of 𝛉∗, 𝜆𝑛
∗ , 𝑆𝑒𝑞,𝑛

∗ , 𝜂𝑛
∗ and 𝛼𝑛

∗  must be defined to 
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obtain the matrix 𝐀𝑛
∗ . Therefore, an initial guess for each of these parameters is needed 

to start iterations.  

 

• Initial value for the optimum stiffness parameter vector, 𝛉∗ , can be taken as the 

nominal stiffness parameter vector of the nominal FE model as 𝛉∗= 𝛉̂0.  

• Optimal value of 𝜂𝑛
∗  can be calculated by using its definition as 

*
0n n 

L=   (3.42) 

• Optimal value of 𝛼𝑛
∗  can be evaluated by minimizing the objective function J 

with respect to 𝜂𝑛 as; 
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           Optimal value of 𝛼𝑛
∗  is calculated as; 

 

* 4
ˆ0 0

1

2

T T
n n n n

n
  −  = − L H L


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            Since the values of 𝛼𝑛
∗  and 𝜂𝑛

∗  depend on the optimal value of the system mode   

shape of  𝝓𝑛
∗ , an initial guess for 𝝓𝑛

∗  is necessary to start iterations. The 

measured mode shapes cannot be considered as the initial guess for 𝝓𝑛
∗  due to 

the fact that they are generally spatially incomplete.  

• Initial guess for 𝝓𝑛
∗  can be calculated by assuming that the modelling error, in 

eigen-equations for the nth mode, goes to infinity (𝑆𝑒𝑞,𝑛 →  ∞) so that the initial 

guess values are not affected by the nominal FE model. Then, the following 

matrix is obtained as 
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0 2
ˆ0 0 0 0

T T
n n nn

 −= +A L H L L L  (3.45) 

 

Initial guess value for 𝝓𝑛
∗  is obtained as the eigenvector of the matrix 𝐀𝑛

0  which 

corresponds to its minimum eigenvalue. Here, 𝜂̅𝑛 and 𝛼̅𝑛 are the initial values 

for 𝜂𝑛 and 𝛼𝑛, respectively. They are employed only for the calculation of the 

initial value of 𝝓𝑛
∗ . Any positive number may be assumed as the initial value, 

since the order of the eigenvalues of 𝐀𝑛
0  and scaling of its eigenvectors are not 

affected. For simplicity, they can be taken as 𝜂̅𝑛 = 1 and 𝛼̅𝑛 = 1.  

 The optimal values for 𝜂𝑛
∗ and 𝛼𝑛

∗  can be calculated using equations (3.42) 

and (3.44), respectively, by substituting the initial guess of 𝝓𝑛
∗ . To calculate the 

optimum value for 𝝓𝑛
∗  in the first iteration by using equation (3.39), the initial 

guess values for 𝜆𝑛
∗  and 𝑆𝑒𝑞,𝑛

∗  are required which will be explained in the next 

sections. 

 

3.2.3.2. Minimization of J with respect to System Eigenvalues 

 

Minimization of the objective function J with respect to system eigenvalues is 

performed for each mode separately. Thus, the optimal value of the system eigenvalue 

for the nth mode is obtained by minimizing J with respect to 𝜆𝑛 as 
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By fixing the rest of the parameters at their optimum values and equating the first 

derivative obtained in equation (3.46) to zero, one can obtain the following equation; 
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In order to simplify this expression for future usage, the following terms are replaced by 

their scalar values as  
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Substituting equation (3.48) into equation (3.47), the optimal value of the system 

eigenvalue for the nth mode can be expressed as 
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Initial guess for 𝜆𝑛
∗  can be calculated by assuming that the modelling error in eigen-

equations for the nth mode goes to infinity (𝑆𝑒𝑞,𝑛 →  ∞) so that the initial guess values 

are not affected by the nominal FE model. Thus, equation (3.49) is reduced to the 

following equality; 

 ˆ
n n  =  (3.50) 

which means measured eigenvalues can be used as the initial guess for the system 

eigenvalues. 

 

3.2.3.3. Minimization of J with respect to Stiffness Parameters 

 

Optimal values of the stiffness parameters 𝛉∗ can be obtained by searching for 

the minimum value of J with respect to 𝛉 if a zero slope exists in the search domain. 
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For simplicity in the notations, following variables are defined; 
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By fixing the rest of the parameters at their optimum values, and equating the first 

derivative to zero, one can obtain the following equation; 

 

 

1 1 1 1
, 0 ,

1 1

1 1 1 1
, 0 ,

1 1

ˆ 0

ˆ

N Nm m
T T

eq n K K eq n K Kn n n n

n n

N Nm m
T T

eq n K K eq n K Kn n n n

n n

J

S S

−  −  − −

= = =

− −  − −

= =


=  + − − =



 
   + =  +
 
 

 

 

θ θ
θ θ

θ θ

θ S G G θ θ S G g
θ

G G θ θ G g

 (3.53) 

 

Then, optimal values of the stiffness parameters can be expressed as 
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3.2.3.4. Minimization of J with respect to Modelling Error Variances 

 

Minimization of the objective function J with respect to modelling error 

variances can be performed for each mode separately. Thus, the optimal value of 

modelling error variance for the nth mode is obtained by searching the minimum value 

of J with respect to 𝑆𝑒𝑞,𝑛 in the parameter space.  
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By fixing the rest of the parameters at their optimum values, and equating the first 

derivative to zero, one can obtain the following equation 
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The optimum value of the modelling error variance for the nth mode can be obtained as 

the non-trivial solution as follows 
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The trivial solution leads to 𝑆𝑒𝑞,𝑛 = ∞. Initial guess for 𝑆𝑒𝑞,𝑛 can be calculated for the 

first iteration by substituting the initial values of 𝜆𝑛
∗ , 𝛉∗ and 𝝓𝑛

∗  into equation (3.57). 

 

3.2.4. Posterior Uncertainty for the Updated Parameters 

 

Posterior PDF of the parameters in set Θ = {θ , λ , Φ , 𝐒𝐞𝐪} can be modelled as a 

Gaussian distribution evaluated at the optimum parameters with their posterior 

covariance matrix. Thus, optimal parameters can be considered as the MPVs of the 

parameters with the uncertainties in the posterior covariance matrix. The posterior 

covariance matrix is evaluated as the inverse of the Hessian matrix which is calculated 

at the optimum parameter values. Then, the posterior variance of each parameter can be 

extracted from the posterior covariance matrix. However, the resulting Hessian matrix is 

a singular matrix because of the norm constraints induced for modal shapes. To this 

end, pseudo inverse of the following Hessian matrix should be evaluated to calculate the 

posterior covariance matrix. To this end, the Hessian matrix is calculated as 
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where Nh = 2Nm+NdNm+Nθ and the elements represent the derivatives of the objective 

function of J (θ, α, β). For example,
( )λ ,Φ

J represents the differentiation of J with 

respect to λ and Φ, respectively. The Hessian matrix, H(Θ*) is a symmetric matrix and 

the elements in the lower triangle are the transpose of the corresponding elements in the 

upper triangle. (i.e., 
( , ) ( )

T
 =
 

θ λ λ ,θ
J J ). Therefore, one of these corresponding 

elements and all diagonal elements are derived and each derivation has been provided in 

Appendix A.  

 

3.2.5. Iterative Procedure and Computational Issues 

 

In the presented two-stage Bayesian model updating procedure, the system 

modes, stiffness parameters and modelling error variance of each mode are updated by 

employing the measured modal data in an iterative manner by utilizing the presented 

formulations in Section 3.2.3. The flow chart of the overall process is presented in 

Figure 3.1 The optimization process is performed as a series of optimization problems 

defined in equation (3.35) as follows: 

 

Modal identification stage: 

• Step 1: By using the BFFTA, estimate the MPVs of the measured eigenvalues 𝛌̂ 

and corresponding posterior covariance matrix 𝚺𝝀̂. It should be noticed that there 

is no need to estimate the MPVs of the measured mode shapes. Instead, estimate 

𝐇𝝍̂ which is used in the formulations.  

Model updating stage: 

• Step 2: Take the initial values of the stiffness parameters as 𝛉∗= 𝛉̂0, and initial 

values of system eigenvalues as 𝛌∗= 𝛌̂. Calculate initial value of 𝐊∗ = 𝐊(𝛉∗). 
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• Step 3: Calculate the initial guess for the system mode shape 𝝓𝑛
∗  by using 

equation (3.45). Here, 𝐀𝑛
0  is a positive semi-definite matrix. Therefore, 𝝓𝑛

∗  is the 

eigenvector of 𝐀𝑛
0 , which corresponds to its minimum positive eigenvalue. 

• Step 4: Calculate 𝑆𝑒𝑞,𝑛
∗  by using equation (3.57). 

• Step 5: Calculate 𝜂𝑛
∗  and 𝛼𝑛

∗  by using equations (3.42) and (3.43), respectively.  

• Step 6: Calculate the system mode shapes 𝝓𝑛
∗  by using equation (3.41).  

• Step 7: Calculate the system eigenvalues 𝜆𝑛
∗  by using equation (3.49). 

• Step 8: Calculate the stiffness parameters 𝛉∗ by using equation (3.54) 

• Step 9: Calculate 𝐊∗ = 𝐊(𝛉∗) by using calculated stiffness parameters in Step 8.  

• Iterate over Steps 4 to 9 until the calculated stiffness parameters 𝛉∗ satisfy a 

prescribed convergence criterion.  

•  Step 10: Calculate the posterior covariance matrix of the updated parameters. 

The posterior covariance matrix is calculated by the pseudo-inverse of equation 

(3.58) and diagonal elements result in the posterior variance of the parameters. 

 

 

 

Figure 3.1. Flow chart of the presented two-stage Bayesian model updating  

procedure 
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3.2.6. Numerical Studies 

 

The presented methodology is implemented on a numerical twelve-story shear 

frame structure to reveal the accuracy of the formulated algorithms. This numerical 

model has been proposed by Yuen (2010, page: 202) to validate his proposed 

methodology. The same numerical model is intentionally investigated in this study to 

compare the model updating results. To this end, the mass of each story is considered to 

be M = 100 tons and stiffness value of each story is selected to be K = 202.767 × 103 

kN/m. This structure is considered as the actual structure. For numerical simulations, 

modal damping ratio is taken as 0.1% for each mode. The structure is excited at story 

levels by independent Gaussian white noise. The simulations are carried out by the 

Newmark-beta method with the constant average acceleration for 500 seconds and a 

time step of 0.005 seconds. Acceleration measurements are obtained from all story 

levels in a single setup. Each acceleration response is contaminated with Gaussian white 

noise to mimic the measurement noise. To this end, the noise level is set to have an 

RMS of 50% of the RMS of the noise-free response. Modal identification of the 

numerical model is performed by using Fast Bayesian FFT method (Au, 2011) and the 

posterior uncertainties of modal parameters have been obtained by using the alternative 

method proposed by Hızal (2019) in Chapter 2 of  his dissertation. 

Stiffness value of each story is selected as an updating parameter, which results 

in a total of 12 stiffness parameters to be updated (Nθ = 12). Therefore, a non-parametric 

and constant elementwise stiffness matrix is defined, for the first story, as 
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and, for the remaining stories, as 
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where i = 2, 3, …, 12. Since all elements are affected by the updating process,  

 

 0 12 12=K 0  (3.61) 

 

To construct the initial (nominal) model of the structure, nominal stiffness value of each 

story is chosen from a uniform distribution which is defined between 2K and 3K. Thus, 

the nominal values are overestimated with 100% and 200% of the actual stiffness 

values. To start iteration process of the updating procedure, initial value of the stiffness 

parameters, 𝛉̂0, are assigned as the vector of nominal stiffness parameters. Besides, a 

large prior variance is selected for each stiffness parameter to have a non-informative 

prior stiffness distribution. In this context, variance of each stiffness parameter is 

assigned as the square of its stiffness value. The prior covariance matrix of the stiffness 

parameters, 𝚺𝛉, is constructed as a diagonal matrix and each diagonal element is the 

calculated variance value. 

 In this numerical study, three different cases are investigated. In Case 1, modelling 

error variance of each mode is considered to be different, and each is updated with the 

system eigenvalues, mode shapes and stiffness parameters as soft constraints. 

Accordingly, Case 1 corresponds to the results of present study. In Case 2, the identical 

modelling error variance is used for all modes and it is updated with the system 

eigenvalues, mode shapes and stiffness parameters as soft constraint. This case 

corresponds to a similar study done by Hızal and Turan (2020). In Case 3, modelling 

error variance is considered as rigid constraint and its value is prescribed before the 

updating procedure and it is not updated. This case corresponds to a similar study done 

by Yuen (2010).  

As the first application for the validation purpose, it is considered that all modes 

and DOFs of the structure are available and the structure is updated by the complete 

modal data. MPVs of the updated system frequencies with their posterior c.o.v are 

presented for each case in Table 3.1. Besides, updated modelling error variances are 

provided for Case 1 and 2. For Case 3, a prescribed value of 1 is used for the modelling 

error variance. For all three cases, updated system frequencies agree very well with the 

actual natural frequencies even if the initial values are not close to the actual ones. One 

can notice that posterior uncertainties are completely same for Case 2 and 3. This is 
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reasonable because posterior uncertainties of measured eigenfrequencies are 

considerably small when compared to the values of modelling errors obtained in these 

cases. Thus, posterior uncertainties of system frequencies converge to the posterior 

uncertainties of the measured ones. However, for Case 1, different modelling error 

variances are obtained for each mode and considerably small values are obtained for the 

first two modes. This significantly reduces the posterior uncertainties of the system 

frequencies. 

Table 3.1. Updated system frequencies and modelling error variances with complete 

modal data 

 Case 1 

Presented Study 
 Case 2  Case 3 

Actual 

(Hz) 

Upd. 

(Hz) 
c.o.v 

Upd. 

𝑆𝑒𝑞,𝑛  
 

Upd. 

(Hz) 

c.o.v 

(×10-4) 

Upd. 

𝑆𝑒𝑞 
 

Upd. 

(Hz) 

c.o.v 

(×10-4) 
𝑆𝑒𝑞 

0.90 0.90 3.19 ×10-8 8.38 ×10-6  0.90 4.70 

0.0083 

 0.90 4.70 

1 

2.69 2.69 1.23 ×10-10 2.87 ×10-4  2.69 3.46   2.69 3.46  

4.43 4.43 6.11 ×10-19 0.022  4.43 2.47  4.43 2.47 

6.10 6.11 8.92 ×10-19 0.123  6.11 2.68  6.11 2.68 

7.68 7.68 4.99 ×10-19 0.207  7.68 2.05  7.68 2.05 

9.14 9.14 2.82 ×10-18 0.040  9.14 1.84  9.14 1.84 

10.45 10.45 3.04 ×10-19 0.851  10.45 1.90  10.45 1.90 

11.60 11.60 2.17 ×10-19 0.257  11.60 2.02  11.60 2.02 

12.56 12.56 2.55 ×10-19 0.559  12.56 1.54  12.56 1.54 

13.33 13.33 1.26 ×10-20 16.192  13.33 1.58  13.33 1.58 

13.88 13.88 1.52 ×10-20 21.996  13.88 1.67  13.88 1.67 

14.22 14.23 7.84 ×10-21 25.245  14.23 1.98  14.23 1.98 

 

MPVs of the updated stiffness parameters are provided with their posterior 

uncertainties for each case in Table 3.2. All the updated stiffness values agree well with 

their actual values despite the high initial values. One can see that Case 2 has slightly 

better convergence of all the parameters to their actual values. The posterior c.o.v 

values for all cases appear to be in the same order of magnitude. However, Case 1 

results in the relatively lowest values for the posterior c.o.v values of the stiffness 

parameters. Here, for Case 3, stiffness parameter values do not converge to their actual 

ones for prescribed values of modelling error variance smaller than 1 since selections of 

different values affect all updating procedure. Selecting a small value for modelling 

error variance does not mean that it is small at the beginning of iterations. Therefore, 

this fact should be kept in mind while comparing the level of uncertainty results of Case 

3 with Case 1 and 2. However, the values of posterior c.o.v for Case 1 are relatively 

smaller than those of Case 2 and Case 3. 
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Table 3.2. Updated stiffness parameters with complete modal data (× 103 kN/m) 

 
 

 
Case 1 

Presented Study 
 Case 2  Case 3 

Param. Actual Initial Updated 
c.o.v 

(×10-11) 
 Updated 

c.o.v 

(×10-11) 
 Updated 

c.o.v 

(×10-11) 

𝜃1 202.767 517.2 201.7 6.18  203.4 36.83  205.5 131.24 

𝜃2 202.767 549.1 205.3 15.73  202.8 217.47  202.0 416.93 

𝜃3 202.767 464.5 202.8 1.79  202.7 400.58  202.9 292.15 

𝜃4 202.767 509.1 202.1 5.33  203.0 487.38  203.2 145.62 

𝜃5 202.767 586.6 202.2 8.48  202.9 430.31  202.8 90.07 

𝜃6 202.767 587.3 204.3 10.43  202.9 235.75  203.2 122.18 

𝜃7 202.767 431.0 202.5 3.66  202.8 121.20  203.0 17.66 

𝜃8 202.767 447.5 202.9 2.95  202.5 332.10  201.5 62.62 

𝜃9 202.767 415.9 202.8 2.92  203.0 444.54  203.2 27.68 

𝜃10 202.767 494.9 203.9 4.00  203.1 417.37  203.7 167.97 

𝜃11 202.767 411.6 202.1 3.85  202.9 270  202.8 185.36 

𝜃12 202.767 498.2 202.7 0.35  202.6 94.29  202.5 54.77 

 

 

Most probable system mode shapes are presented for each case in Figure 3.2. 

Their modal assurance criterion (MAC) values and posterior c.o.v values of the modal 

shapes are provided in Table 3.3. In this study, MAC values are calculated between the 

updated system mode shapes and actual mode shapes of the numerical model. Referring 

to Figure 3.2 and MAC values, all updated mode shapes are acceptable when compared 

to mode shapes of the actual numerical structure. Besides, Case 2 performs very well 

with all MAC values of 100%. For Case 1, relatively smaller MAC values and slightly 

larger posterior c.o.v values are obtained for the last three modes. Case 1 results in 

relatively higher modelling error variances for these modes, which may explain the low 

MAC values larger c.o.v values. Since the modelling error variances for the higher 

modes are obtained higher as expected and mode shapes are sensitive to the modelling 

error, this result may be considered to be more realistic when compared with the results 

of Case 2 and 3. 
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Figure 3.2. Updated system mode shapes with complete modal data for each case 
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Table 3.3. MAC values and posterior c.o.v of the updated system mode shapes   

with complete modal data 

 
Case 1 

Presented Study 
 Case 2  Case 3 

# 

Mode  
MAC (%) 

c.o.v 

(×10-3) 
 MAC (%) 

c.o.v 

(×10-3) 
 MAC (%) 

c.o.v 

(×10-3) 

1 100.00 0.12  100.00 0.81  100.00 1.28 

2 100.00 0.64  100.00 1.38  100.00 2.57 

3 100.00 1.97  100.00 1.62  100.00 3.16 

4 99.99 3.53  100.00 1.75  99.99 4.61 

5 99.99 3.93  100.00 1.58  99.99 4.77 

6 100.00 2.84  100.00 1.53  100.00 5.78 

7 99.99 6.76  100.00 1.54  100.00 6.92 

8 100.00 6.20  100.00 1.63  100.00 8.38 

9 100.00 7.73  100.00 1.81  100.00 8.58 

10 99.94 15.09  100.00 2.19  99.99 10.44 

11 99.92 22.14  100.00 2.90  99.99 13.55 

12 99.89 37.07  100.00 2.68  99.99 18.84 

 

 

Further, Case 1 is investigated for incomplete modal data. First, different 

numbers of measured modes are considered with spatially complete measured mode 

shapes. For this investigation, it is considered as if the first two, four, seven or ten 

modes only are measured from the structure and model updating is performed by using 

these modes only. MPVs of the updated stiffness parameters are provided in Table 3.4. 

Further, results are illustratively presented in Figure 3.3. 

Table 3.4. Updated stiffness parameters using different number of modes (× 103 kN/m) 

 Number of considered measured modes 

 2  4  7  10 

Parameter   Updated 
c.o.v 

(×10-15) 
 Updated 

c.o.v 

(×10-14) 
 Updated 

c.o.v 

(×10-12) 
 Updated 

c.o.v 

(×10-11) 

𝜃1 201.7 1.94  201.8 4.61  201.8 7.34  201.6 6.04 

𝜃2 206.4 4.49  206.4 7.28  206.3 12.42  205.4 14.61 

𝜃3 203.8 1.60  203.8 1.55  203.4 1.27  202.9 1.29 

𝜃4 202.0 0.52  201.8 3.13  202.1 3.12  202.1 4.59  

𝜃5 201.8 0.51  201.8 2.03  202.1 9.75  202.1 7.93 

𝜃6 205.2 0.83  204.9 5.71  204.5 11.57  204.2 9.35 

𝜃7 203.3 1.06  202.8 2.12  202.8 5.02  202.5 3.78 

𝜃8 203.6 1.97  203.3 2.14  202.9 7.08  202.9 3.01 

𝜃9 202.9 0.14  203.1 0.11  202.9 4.42  202.9 2.52 

𝜃10 203.8 2.69  203.9 0.13  203.7 3.32  203.9 3.30 

𝜃11 199.8 1.64  201.4 3.90  201.9 3.53  202.1 3.31 

𝜃12 207.8 1.40  203.2 0.99  202.4 0.67  202.6 3.30 
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Updated values are not as good as the ones obtained for the complete modal data. Since 

the model is updated with respect to the considered modes only and the available 

information is reduced, this is an expected result. Even so, the values of the updated 

stiffness parameters are in a good agreement with the actual ones. According to Figure 

3.3, the presented study has slightly more convergence problems than the other cases. 

For example, for 𝜃12, the convergence quality is poor when the number of considered 

modes is very limited. 

 

 

Figure 3.3. Convergence of some stiffness parameters with the number of considered 

modes 

Figure 3.4 shows the graphical representation of the change in the posterior c.o.v 

values with the number of modes considered in the analysis. According to results 

presented in Table 3.4 and Figure 3.4, posterior c.o.v of the stiffness parameters 

increase with the increased number of considered measured modes. It is known that the 

updating process is performed to obtain the updating parameters which best fit the 

measured modes. When the considered number of modes increases, it may become 
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harder to obtain the parameters which best-fit all the considered modes. Besides, 

modelling error is generally high for higher modes of structures. Due to these facts, 

uncertainty in the updated parameters increases with the increase in considered 

measured modes. However, this result is exactly the opposite of that presented in the 

literature. Figure 3.5 provides the change in posterior c.ov. levels with the considered 

number of modes presented by Yuen (2010) for the same numerical example. Since the 

available information increases with the increase in mode number, it is found in the 

literature that uncertainties should decrease with the increase in the number of 

considered measured modes.   

 

 

Figure 3.4. Change in posterior c.o.v values with the considered number of modes for 

Case 1, 2 and 3 
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Figure 3.5. Change in posterior c.o.v values with the considered number of modes 

presented by Yuen (2010) for the same numerical example 

 

Second, the performance of Case 1, 2 and 3 is investigated in case of using 

incomplete measured modal data and spatially incomplete mode shapes. To this end, 

two different incompleteness scenarios are investigated, and measurement scheme of 

each scenario is shown in Table 3.5. It is worth to note that the influence of change in 

number of modes on the updating process is already analyzed by keeping the number of 

measured DOFs unchanged. Therefore, here, both the number of modes and measured 

DOFs are increased while considering Scenario 2. 
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Table 3.5. Measurement schemes for Scenario 1 and Scenario 2 

Scenario 1  Scenario 2 

Measured Modes Measured DOFs  Measured Modes Measured DOFs 

 

1, 2, 3 

 

1, 2, 6, 8, 11, 12 

  

1, 2, 3, 4, 5, 6, 7, 8 

 

1, 2, 4, 5, 7, 8, 9, 10, 12  

 

 

3.2.6.1. Results of Scenario 1: 

 

MPVs of the updated system frequencies with their posterior c.o.v values are 

provided in Table 3.6 for each case. Modelling error variances are also given in the 

table. Updated system frequencies are found to be compatible with the actual values for 

each case. Further, Case 1 significantly reduces the posterior c.o.v of the updated 

system frequencies since the modelling error variance is accounted for each mode.  

 

Table 3.6. Updated system frequencies for Scenario 1 

 Case 1 

Presented Study 
 Case 2  Case 3 

Actual 

(Hz) 

Upd. 

(Hz) 
c.o.v 

Updated 

𝑆𝑒𝑞,𝑛  
 

Upd. 

(Hz) 
c.o.v  

Upd. 

𝑆𝑒𝑞 
 

Upd. 

(Hz) 
c.o.v  𝑆𝑒𝑞 

0.90 0.90 2.26 ×10-17 9.08 ×10-15  0.90 4.66 ×10-4 

0.006 

 0.90 4.66 ×10-4 

1 2.69 2.69 5.28 ×10-52 0.09  2.69 3.43 ×10-4  2.69 3.43 ×10-4 

4.43 4.43 2.39 ×10-52 1.61  4.43 2.48 ×10-4  4.43 2.48 ×10-4 

 

 

Updating results for the stiffness parameters are provided in Table 3.7 for each 

case. According to the results, most of the updated stiffness parameters in each case are 

biased from their actual values when compared to the results obtained with spatially 

complete mode shape data. Since half of the DOFs are not measured, at least one of the 

incomplete mode shapes may not reflect the dynamic behavior of the actual structure as 

good as the complete ones. Further, increment in the number of measured modes does 

not improve the biased results, it even causes the worse updating results. It is reasonable 

since increasing the number of modes introduces higher uncertainties in the 

identification of stiffness parameters. On the other hand, Case 1 results in considerably 
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lower posterior c.o.v values, which proves that the reliability of model updating with 

Case 1 is significantly higher with spatially incomplete mode shape data. 

 

Table 3.7. Updated stiffness parameters for Scenario 1 (× 103 kN/m) 

 
 

 
Case 1 

Present Study 
 Case 2  Case 3 

Param. Actual Initial Updated 
c.o.v 

(×10-24) 
 Updated 

c.o.v 

(×10-12) 
 Updated 

c.o.v 

(×10-11) 

𝜃1 202.767 517.2 202.8 5.60  200.2 8.58  202.2 20.47 

𝜃2 202.767 549.1 206.5 30.14  199.6 13.67  202.9 6.28 

𝜃3 202.767 464.5 183.5 9.15  195.5 50.79  196.7 103.76 

𝜃4 202.767 509.1 192.5 1.03  189.9 28.48  194.7 34.64 

𝜃5 202.767 586.6 221.1 7.35  204.4 7.49  202.8 15.87 

𝜃6 202.767 587.3 233.0 9.98  207.7 22.12  202.2 85.12 

𝜃7 202.767 431.0 195.7 8.28  189.8 29.68  189.8 15.39 

𝜃8 202.767 447.5 215.4 6.58  218.7 3.44  218.6 4.07 

𝜃9 202.767 415.9 197.0 2.51  190.4 49.66  185.2 132.98 

𝜃10 202.767 494.9 228.4 2.85  229.2 4.74  230.0 11.91 

𝜃11 202.767 411.6 184.4 6.28  192.5 31.28  197.2 59.22 

𝜃12 202.767 498.2 207.1 5.72  205.9 9.18  202.8 11.12 

  

 

To account for the convergence speed, the same convergence criterion is applied 

for each case and iteration histories are presented in Figure 3.6. As the convergence 

criterion, relative error between the updated stiffness parameters which are obtained in 

two consecutive iterations are calculated and iterations are stopped if the relative error is 

smaller than 10-3. As seen from the figure, Case 1 has the highest convergence speed 

with a total of 7 iterations.  

Most probable system mode shapes are presented in Figure 3.7 for each case, 

and their MAC values and posterior c.o.v values are provided in Table 3.8. Referring to 

Figure 3.7 and the MAC values, all updated mode shapes are in an acceptable 

agreement with the first three mode shapes of the actual numerical model. However, the 

third system mode shape is slightly distorted for Case 1 and its MAC value is lower 

than that of the other modes. Further, Case 1 gives significantly lower posterior c.o.v 

values for the first and second mode, and relatively large value for the third mode. The 

updated modelling error variance is also higher for the third mode. This may explain the 

relatively low MAC value and larger c.o.v for this mode. The components of the 

updated system mode shapes, which correspond to the incomplete components of the 
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measured mode shapes, are identified in good agreement with the actual values of the 

missing components for all three cases.  

 

 

Figure 3.6. Iteration histories of Scenario 1 for (a) Case 1 (b) Case 2 and (c) Case 3 

 

Table 3.8. MAC values and posterior c.o.v of the updated system mode shapes for 

Scenario 1 

 
Case 1 

Presented Study 
 Case 2  Case 3 

# 

Mode  
MAC (%) c.o.v  MAC (%) c.o.v  MAC (%) c.o.v 

1 99.99 1.87 ×10-7  100.00 0.87 ×10-3  100.00 6.31 ×10-3 

2 99.98 0.92 ×10-7  99.98 1.15 ×10-3  99.97 4.80 ×10-3 

3 99.68 2.97 ×10-3  99.92 1.49 ×10-3  99.94 7.26 ×10-3 

(a) 
(b) 

(c) 
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Figure 3.7. Updated system mode shapes for Scenario 1 

 

3.2.6.2. Results of Scenario 2: 

 

Since the updated stiffness parameters are unsatisfactory for all three cases in 

scenario 1, another analysis needs to be performed as “Scenario 2” by increasing the 

number of measured modes and measured DOFs. MPVs of the updated system 

frequencies with their posterior c.ov values are provided in Table 3.9 for each case. 

Modelling error variances are also given in the table. Updated system frequencies are 

compatible with the actual values for each case. As previously obtained, Case 1 

significantly reduces the posterior c.o.v of the updated system frequencies. The results 

in Table 3.9 are compared with those provided in Table 3.1 and Table 3.6, which 

correspond to the complete modal data and Scenario 1, respectively. It can be clearly 

seen that system frequencies are updated very well for all cases and scenarios. Besides, 

the values of posterior c.o.v of the updated system frequencies, which are obtained by 

Case 2 and Case 3, are not affected from incomplete measured modal data. In contrast, 

those obtained by Case 1 show variations with the change in the incompleteness 

condition of the measured modal data. According to Table 3.1, Table 3.6 and Table 3.9, 
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it can be concluded that the values of the posterior c.o.v of the system frequencies show 

a decreasing trend with the decrease in the number of measured modal data. 

 

Table 3.9. Updated system frequencies for Scenario 2 

 Case 1 

Presented Study 
 Case 2  Case 3 

Actual 

(Hz) 

Upd. 

(Hz) 
c.o.v 

Updated 

𝑆𝑒𝑞,𝑛  
 

Upd. 

(Hz) 
c.o.v  

Upd. 

𝑆𝑒𝑞 
 

Upd. 

(Hz) 
c.o.v  𝑆𝑒𝑞 

0.90 0.90 1.05 ×10-13 2.49 ×10-8  0.90 4.68  

0.01 

 0.90 4.68 ×10-4 

1 

2.69 2.69 1.14 ×10-23 0.018  2.69 3.44 ×10-4  2.69 3.44 ×10-4 

4.43 4.43 1.23 ×10-23 0.35  4.43 2.50 ×10-4  4.43 2.50 ×10-4 

6.10 6.11 1.24 ×10-23 0.89  6.11 2.69 ×10-4  6.11 2.69 ×10-4 

7.68 7.68 6.74 ×10-24 8.10  7.68 2.06 ×10-4  7.68 2.06 ×10-4 

9.14 9.14 4.55 ×10-24 8.66  9.14 1.85 ×10-4  9.14 1.85 ×10-4 

10.45 10.46 3.61 ×10-24 47.22  10.46 1.95 ×10-4  10.46 1.95 ×10-4 

11.60 11.60 3.02 ×10-24 22.71  11.60 2.01 ×10-4  11.60 2.01 ×10-4 

 

 

MPVs of the stiffness parameters are provided in Table 3.10 and their iteration 

history for each case is presented in Figure 3.8. According to these results, updated 

stiffness parameters by using Case 2 and 3 agree well with the actual values whereas 

those obtained by Case 1 has some biased values similar to the results obtained for 

Scenario 1. These results can also be visually observed by investigating the iteration 

history plots in Figure 3.8. Increasing the modal information (number of considered 

modes and measured DOFs) corrects the updated results for Case 2 and 3. Since Case 1 

accounts for modelling error for each mode, it implicitly gives less weights to the modes 

with high uncertainties. Therefore, updating process concentrates on some modes with 

lower uncertainties and by-pass the other modes. When the modal data is already 

incomplete, it may result in significantly less information for a successful updating 

process. The uncertainty results in Table 3.10 are compared with those provided in 

Table 3.2 and Table 3.7, which correspond to the results of complete modal data and 

Scenario 1, respectively. Posterior c.o.v values of the updated stiffness parameters are in 

a significantly decreasing trend with the decrease in measured modal data for Case 1. 

However, any significant change cannot be realized for Case 2 and 3. 
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Table 3.10. Updated stiffness parameters for Scenario 2 (× 103 kN/m) 

 
 

 
Case 1 

Presented Study 
 Case 2  Case 3 

Param.  Actual Initial Updated 
c.o.v 

(×10-19) 
 Updated 

c.o.v 

(×10-10) 
 Updated 

c.o.v 

(×10-10) 

𝜃1 202.767 517.2 201.6 1.45  204.1 1.74  203.4 1.56 

𝜃2 202.767 549.1 205.1 3.20  203.4 3.05  204.0 3.85 

𝜃3 202.767 464.5 194.5 4.00  199.1 1.45  202.2 7.83 

𝜃4 202.767 509.1 208.4 1.88  202.5 2.60  202.0 3.44 

𝜃5 202.767 586.6 207.3 1.43  207.6 1.86  203.2 3.17 

𝜃6 202.767 587.3 230.1 2.08  203.6 1.86  201.3 5.90 

𝜃7 202.767 431.0 183.5 8.65  200.1 2.82  202.9 6.25 

𝜃8 202.767 447.5 200.7 1.08  202.4 1.33  203.8 2.66 

𝜃9 202.767 415.9 202.1 1.01  203.4 2.24  203.3 2.07 

𝜃10 202.767 494.9 203.5 0.88  204.0 1.63  203.6 3.29 

𝜃11 202.767 411.6 193.5 3.31  202.7 0.94  202.1 9.05 

𝜃12 202.767 498.2 211.5 0.83  202.4 2.71  202.8 10.00 

 

 

 

Figure 3.8. Iteration histories of Scenario 2 for (a) Case 1 (b) Case 2 and (c) Case 3 

(a) (b) 

(c) 
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Most probable system mode shapes are presented in Figure 3.9 for each case, 

and their MAC values and posterior c.o.v values are provided in Table 3.11. According 

to the results, all updated mode shapes are in an acceptable agreement with the first 

eight mode shapes of the actual model. However, some distortions are visible for Case 

1, which is proved by lower MAC values when compared with the results obtained for 

Case 2 and 3. Further, Case 1 gives lower posterior c.o.v values for the first and second 

mode, and relatively large values for higher modes. For higher modes, there is no 

considerable difference among posterior c.o.v obtained in different cases.  

 

 

Figure 3.9.  Updated system mode shapes for Scenario 2 
 

Table 3.11. MAC values and posterior c.o.v of the updated system mode shapes for 

Scenario 2 

 
Case 1 

Present Study 
 Case 2  Case 3 

# 

Mode  
MAC (%) c.o.v  MAC (%) c.o.v  MAC (%) c.o.v 

1 100.00   6.52 ×10-6  100.00 1.02 ×10-3  100.00 3.16 ×10-3 

2 99.99   2.35 ×10-6  100.00 1.70 ×10-3  100.00 4.34 ×10-3 

3 99.94   2.57 ×10-3  100.00 1.71 ×10-3  99.99 4.12 ×10-3 

4 99.94   3.71 ×10-3  100.00 2.17 ×10-3  99.99 4.69 ×10-3 

5 99.66   6.19 ×10-3  99.99 2.33 ×10-3  99.99 6.38 ×10-3 

6 99.91 13.04 ×10-3  99.99 1.80 ×10-3  100.00 6.73 ×10-3 

7 99.76 14.11 ×10-3  99.99 1.74 ×10-3  99.98 6.59 ×10-3 

8 100.00 15.31 ×10-3  99.99 1.99 ×10-3  100.00 7.70 ×10-3 
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3.3. Conclusions 

 

In this section, remarkable findings and discussions on the results are briefly 

presented for the investigated two-stage Bayesian model updating methodology.  

 

3.3.1. Concluding Remarks 

 

This chapter is a follow-up study on the two-stage Bayesian FE model updating 

formulations derived by Çağlayan Hızal in Chapter 5 of his dissertation (Hızal, 2019) 

and in the published work by Hızal and Turan (2020). They consider the measurement 

error in the measured modal data and modelling error in the model updating stage. No 

correlation is assumed between the eigenvalues and eigenvectors and therefore, they 

could define prior distributions for eigenvalues and eigenvectors, separately. As 

previously proposed in the literature, the concept of system modes is also used to avoid 

the mode matching which is one of the main problems in the model updating literature. 

First, their derivations are reformulated for a single setup case assuming that mass 

values are known with a sufficient accuracy and are not taken as parameters to be 

updated. Hızal and Turan (2020) have considered the modelling error variances of 

eigenvalue equations to be the same for each mode. They have defined a single 

modelling error variance as a soft constraint. In the present study, however, 

reformulation is performed by considering the modelling error variances of eigenvalue 

equations to be different for each mode and updated in each iteration. Therefore, an 

independent modelling error variance is defined for each mode. Besides, there are some 

studies in the literature which consider the modelling error variance as a rigid constraint 

such as Yuen (2010). They assign a prescribed value for the modelling error variance 

and do not update it. The major objective of this chapter is to compare these three 

different assumptions on modelling error variances. To this end, a comparative 

numerical analysis is conducted to investigate the influences of these three assumptions 

on the Bayesian model updating procedure. The numerical study is performed on a 

twelve-story shear frame structure. 

The results of numerical study reveal that considering modelling error variance 

to be different for each mode significantly reduces the posterior uncertainties of the 

updated system frequencies and stiffness parameters. By considering different 
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modelling error variances for each mode, less weight is assigned for the modes with 

higher uncertainties and this fact significantly reduces the posterior c.o.v values. 

Minimization process concentrates on some specific modes with lower uncertainties and 

by-pass the other modes. On the other hand, investigated assumption of modelling error 

variance does not significantly reduce the posterior uncertainties of the system mode 

shapes.  

The influence of different modelling error assumptions is also investigated for 

incomplete modal data. It is found that the uncertainty in the updated parameters, for the 

modelling error assumptions which is the same for all modes and with a prescribed 

value, does not significantly change under different incomplete modal data conditions. 

Further, the posterior uncertainties of system frequencies are never affected by 

incomplete modal data. However, it is observed for the considered modelling error 

assumption that uncertainty in the updated parameters significantly increases with the 

increase in considered number of measured modes and measured DOFs. The reason can 

be explained as follows; the updating process is performed to obtain the parameters 

which best-fit all the measured modes. When the considered number of modes 

increases, it may become harder to optimize the parameters that best-fit all the 

considered modes. However, as discussed by referring to Figure 3.5, this result is the 

opposite of findings in the literature. According to the literature, uncertainties should 

decrease with the increase in the considered number of modes since the available 

information is increasing. Further, modelling error is generally high for higher modes of 

structures and the uncertainty in the updated parameters may increase by introducing 

higher modes in the updating process. On the contrary, with the increase in number of 

the measured modes, updated parameters better converge to the actual values while their 

posterior uncertainties are getting increased. 

 

3.3.2. Discussions on the Conclusions 

 

It can be concluded that considering modelling error variance to be different for 

each mode results in convergence problems for incomplete measured modal data even if 

it reduces the posterior uncertainties. Besides, using a rigid constraint for the modelling 

error is not realistic since the prescribed value may not represent the actual modelling 

errors. Taking the modelling error variance to be the same for each mode does not 
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account for the modelling errors of the eigen equations of each mode and therefore they 

are not weighted with a proper value which is also not realistic. Introducing the 

modelling error term in the updating procedure is needed to account for the modelling 

errors, however, it brings some other problems to be solved. There are studies in the 

literature which do not consider the modelling error. However, this inevitably increases 

the posterior uncertainties of the updated parameters (Yan and Katafygiotis, 2015). As a 

result, the underlying solution may be somehow removing the modelling error term. It 

may be removed from the formulations by combining Bayesian model updating 

framework with the sensitivity-based approaches which are employed by many 

researchers in the model updating field. By doing so, sensitivity equations which 

account for the changes in the parameters can be derived in the optimization process 

and thus, modelling error term will no longer be necessary to account for the 

discrepancies in the eigen equations. Thus, a robust model updating technique can be 

developed to solve the incomplete modal data problem. 
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CHAPTER 4  

 

A TWO-STAGE SENSITIVITY-BASED BAYESIAN 

MODEL UPDATING METHOD UTILIZING THE FE 

MODEL MODES 

 

4.1. Introduction 

 

The previous chapter has focused on the two-stage Bayesian FE model updating 

formulations by utilizing the concept of system modes. In that study, concept of system 

modes is used to avoid the mode matching problem in model updating procedure. Using 

the system modes requires the definition of modelling error term which sets the relation 

between the system modes and the FE model via eigenvalue equations. Modelling error 

variance is updated separately for each mode differently from Hızal’s (2019) research 

which assumes a single modelling error variance for all modes. For both studies, 

modelling error variance has been updated as a soft constraint. Besides, there are some 

studies in the literature which consider the modelling error variance as a rigid 

constraint, such as Yuen (2010). They assign a prescribed value for the modelling error 

variance and do not update it. The major objective of the previous chapter has been to 

compare three different assumptions on modelling error variances. Results of the 

previous study have revealed that the formulations with the three modelling error 

assumptions give unreasonably small posterior c.o.v values. Even if the updating results 

are not convergent to the actual values, too small posterior c.o.v values are obtained. 

This shows that the algorithm strictly relies on the divergent results, which is 

unreasonable. 

Besides the modelling error term, formulation in the previous chapter requires a 

norm constraint term in the objective function for the normalization of the system mode 

shapes. The reason is that the system mode shapes are used as independent variables 

and therefore their norms may not remain same over iterations. To guarantee a constant 

norm over iterations for the mode shape vectors, a norm constraint term is added to the 

objective function. However, this results in an invertible Hessian matrix of the updated 
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parameters, which requires pseudo-inverse operation to obtain the posterior covariance 

matrix. It is realized in the literature that researchers who use a norm constraint term in 

the objective function generally face relatively small posterior uncertainties for the 

updated parameters (Yan and Katafygiotis, 2015; Hızal, 2019; Hızal and Turan, 2020).  

According to the above discussions, it can be deduced that the underlying 

solution to avoid too small posterior uncertainties may be somehow removing the 

modelling error and/or the norm constraint terms from the formulations. However, Au ( 

2012), and Yan and Katafygiotis (2015) state that removing modelling error term in 

classical formulations increases the posterior parameter uncertainties since the 

modelling error still exists in reality. If the concept of system modes is still used in the 

formulations, modelling error term should be considered to account for the 

corresponding uncertainties. Therefore, to remove the modelling error term, one should 

leave the concept of system modes. To this end, in this chapter, Bayesian model 

updating framework is combined with a deterministic sensitivity-based model updating 

approach. By doing so, modal properties of the FE model are directly employed instead 

of system modes. Thus, the eigenvalue equations are constructed by using FE model 

modes, which eliminates modelling error term from the objective function. Besides, 

using the FE modes automatically removes the need for the norm constraint for the 

mode shapes since they can be directly obtained from the eigenvalue analysis of the 

updated system. In this case, eigen frequencies and mode shapes should be considered 

in terms of updating stiffness parameters. This results in a closed-form non-linear 

objective function of updating parameters. Minimization of such an objective function 

requires numerical optimization algorithms such as the Newton method. Therefore, 

sensitivity equations which account for the changes in the parameters are derived in this 

chapter. 

Derivations of the sensitivity equations are obtained by following the 

formulations proposed by Otsuki et al. (2021). All their derivations are performed from 

a deterministic point of view. Thus, in the present study differently from Otsuki et al. 

(2021), sensitivity derivations are performed in a probabilistic way by introducing the 

Bayesian model updating framework. It is shown that posterior covariance matrix of the 

updated parameters is the inverse of Hessian matrix of the objective function that is 

constructed as a non-linear function of stiffness and mass parameters. Therefore, 

posterior uncertainties of the updated parameters are obtained by using the posterior 
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covariance matrix. To this end, Hessian of the objective function is derived for the 

existing problem.  

To solve the optimization problem, “SMU: MATLAB Package for Structural 

Model Updating” which is shared by Wang et. al. (2019) is used for the solution of the 

optimization problem. The existing SMU package is modified from a deterministic 

approach to the probabilistic one.  

A comparative numerical study is performed to investigate the effects of the 

presented formulations on the MPVs and the posterior uncertainties of the updated 

parameters. To this end, numerical studies are performed on the same numerical twelve-

story shear frame model that is used in the previous chapter by employing complete and 

incomplete measured modal data. Then, the proposed method is experimentally verified 

on a 10-story laboratory shear frame model. 

 

4.2. A Two-stage Sensitivity-based Bayesian Model Updating Utilizing  

       the FE Model Modes 

 

The main difference from the formulations derived by Otsuki et al. (2021) is that 

the deterministic formulations are turned into probabilistic ones. Further, each term of 

the objective function is considered as a scalar value in this study instead of vectors. 

This considerably reduces the dimension of the analytical Jacobian when compared with 

their derivations. 

 

4.2.1. Modal Identification Stage  

 

In this stage, the modal identification is performed with the same Bayesian 

modal identification strategy that is introduced in Section 3.2.1. 

 

4.2.2. Model Updating Stage 

 

In this section, sensitivity-based formulations are introduced to develop a 

sensitivity-based Bayesian model updating methodology.  
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4.2.2.1. Structural Model and Parametrization of Stiffness and Mass  

             Matrices 

 

In Chapter 3, the stiffness matrix is parameterized only and mass is assumed to 

be known and it is not considered as a parameter to be updated. Differently from the 

parameterization that is discussed in Section 3.2.2.2, the mass of the structure is also 

considered as an updating variable in this chapter.  

The model is parameterized by defining the parametric stiffness and mass 

matrices, K(θ) and M(ρ), with a size of Nd × Nd, in terms of a linear combination of 

substructure stiffness and mass matrices, Ki and Mj, respectively, as; 
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where M0 and K0 are the non-parametric portions of the mass and stiffness matrix which 

are not affected by the updating procedure, respectively. The substructure stiffness and 

mass matrices, Ki and Mj, are the elementwise nominal stiffness and mass matrices 

extended to the size of Nd × Nd, respectively. Thus, they represent the contributions of a 

part of the structure to the overall stiffness and mass matrix. 𝛉 = [ θ1  θ2  θ3 . . . 𝜃𝑁𝜃
]T is a 

vector that comprises stiffness scaling factors 𝜃𝑖 ∈ 𝑅𝑁𝜃 and 𝛒 = [ ρ1  ρ2  ρ3 . . . 𝜌𝑁𝜌
]T is a 

vector that comprises mass scaling factors 𝜌𝑗 ∈ 𝑅𝑁𝜌. These factors are required to 

modify Ki and Mj so that the FE model can reasonably represent the actual structural 

conditions based on the measured modal data. Here, Nθ and Nρ represent the total 

number of stiffness and mass scaling factors, respectively. The parameter vectors θ and 

ρ are combined into a single vector for the clarity of further formulations as 
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4.2.2.2. Posterior (updated) Probability Model for the Parameters to be        

             Updated 

 

After achieving the most probable parameter set, D = { 𝝀̂ ,  𝛟̂, 𝚺𝝀̂ , 𝐇𝛟̂} by 

making use of the BAYOMA, the conditional probability distribution for the set of 

stiffness and mass scaling parameters can be derived by employing well-known Bayes’ 

theorem based on the identified modal data. Here, the corresponding posterior PDF for χ 

given D can be defined as 

 

 0( ) ( ) ( ) ( )p c p p p=χ D D χ θ ρ  (4.3) 

 

where c0 = 1 / p(D) represents a normalizing factor so that the probability function p(χ | 

D) integrates to 1. Here, the likelihood function p(D | χ) is expanded as 

 

 ˆ ˆ ˆ ˆ
ˆ ˆˆ ˆ( ) ( , , ) ( , ) ( )p p p p= =

λ λ
D χ λ Σ H χ λ Σ χ H χ

 
   (4.4) 

 

Substituting equation (4.4) into equation (4.3), posterior PDF of the parameters χ 

conditioned on the measured modal data D can be written as follows 

 

 ˆ ˆ0
ˆˆ( ) ( , ) ( ) ( ) ( )p c p p p p=

λ
χ D λ Σ χ H χ θ ρ


  (4.5) 

 

MPVs of the parameters, χ based on the measured modal data can be obtained by 

maximizing the posterior PDF given in equation (4.5). It is known in the literature that 

more convenient way to solve this optimization problem is to minimize the negative 

log-likelihood function of the posterior PDF. 
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4.2.2.3. Probability Model for the Stiffness and Mass Parameters 

 

The prior probability distribution of θ and ρ is taken as multivariate truncated 

Gaussian distribution which truncates the negative values since the negative values of 

the stiffness and mass parameters have no physical meaning.  

The prior PDF of 𝛉 with mean value of 𝛉̂0 and with covariance matrix of 𝚺𝛉 can 

be defined as 
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Similarly, the prior PDF of 𝛒 with mean value of 𝛒̂0 and with covariance matrix of 𝚺𝛒 

can be defined as 

 

 

( ) ( )1
0 0

1 1
ˆ ˆexp , 0

2(2 )( )

0, 0

T
j

N

j

for each

p

for any






−  
− − −     = 




ρ
ρ

ρ

ρ ρ Σ ρ ρ
Σρ  (4.7) 

 

In equations (4.6) and (4.7), 𝛉̂0 and 𝛒̂0 are the vectors of prior MPVs of the stiffness 

and mass parameters, respectively, and they should be selected as the nominal 

parameters that represent the nominal FE model. 𝚺𝛉 and 𝚺𝛒 are the prior covariance 

matrix of the stiffness and mass parameters, respectively. They represent the uncertainty 

in the nominal FE model before the model updating procedure. In this study, mass and 

stiffness parameters are considered to be linearly independent. This makes 𝚺𝛉 a 

diagonal matrix with diagonal elements that consist of the prior variance of each 

stiffness parameter. Similarly, 𝚺𝛒 is a diagonal matrix whose diagonal elements are the 

prior variance of each mass parameter. 
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4.2.2.4. Probability Model for the Discrepancy between Eigenvalues 

 

This section and the rest of the following sections are newly introduced as part of 

this progress report. Differently from the previous study, eigenvalues of the FE model 

are employed instead of the system eigenvalues to remove the modelling error term 

from the objective function. Then, measured eigenvalues can be related to the FE model 

eigenvalues, 𝜆𝑛(𝛘), by assuming a prediction error in-between as 

 

 ˆ
ˆ ( ) ε ( )n n

n
 = +χ χ  (4.8) 

 

where λ̂𝑛 is the measured eigenvalue for the nth mode and the error term ε𝜆̂𝑛
(𝛘) is 

modelled as a Gaussian distribution with a zero-mean and the variance of 𝑆𝜆̂𝑛
as; 

 

 ˆ ˆε ~ (0, )
n n

N S
   (4.9) 

 

Prior probability distribution for the discrepancy between the FE model 

eigenvalues, λn(𝛘) and measured eigenvalues, λ̂𝑛 of the nth mode can be defined by 

assuming a Gaussian probability model. Since the MPVs and prior uncertainties of the 

measured eigenvalues are already known from the modal identification process, this 

prior PDF is written as a likelihood function as follows;  
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χ
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where 𝑆𝜆̂𝑛
denotes the prior variance for the measured eigenvalues of λ̂𝑛 and it is 

obtained in the Bayesian modal identification process. 

By assuming that the prediction error for each mode is independent, one can define 

the following prior PDF as; 
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where 𝝀̂ = [𝜆̂1  𝜆̂2  𝜆̂3 . . . 𝜆̂𝑁𝑚
] is the vector of measured eigenvalues and 𝚺𝝀̂ represents 

the prior covariance matrix whose diagonal elements consist of the set {𝑆λ̂1
 , 𝑆λ̂2

 , 

𝑆λ̂3
 , . . . , 𝑆λ̂𝑁𝑚

}. 

 

4.2.2.5. Probability Model for the Discrepancy between the Mode  

             Shapes 

 

In this study, it is assumed that a single setup of vibration data is available at 

hand for the model updating process. The data can be obtained by a complete 

measurement of a structure in a single setup, or a pre-identification data merging 

strategy can be employed to merge multiple setup data into a single setup data (Ceylan 

et al., 2020). In most real-life applications, measured DOFs of structures are, however, 

smaller than those of the FE model. Spatially incomplete measured mode shape vectors 

and mode shape components of the FE model should be matched. For this purpose, 

following relation is implemented      

 0( ) ( )n n=χ L χ   (4.12) 

where L0 is the selection matrix consisting of 1’s and 0’s to pick the components of the 

mode shape of the FE model, 𝝓𝑛(𝛘). Thus, 𝝓̅𝑛(𝛘)  can be compared to the measured 

modal shapes. 

Bayesian modal identification process uses a unit norm constraint for mode 

shape normalization. Therefore, MPV of the measured mode shape 𝝍̂𝑛 has a unit norm 

and 𝐇𝝍̂𝑛
is the Hessian of 𝝍̂𝑛. In the model updating procedure presented in this study, 

however, each measured mode shape is normalized as its coordinate (ℎ𝑛
𝑡ℎ coordinate) 

with the largest absolute value to be 1. This type of normalization is employed since it 

leads to a solution for the calculation of eigenvector derivatives. Let the measured mode 
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shape with the aforementioned normalization be defined as 𝝓̂𝑛, then 𝝍̂𝑛 can be 

substituted by the following relation  

 

ˆ
ˆ

ˆ
n

n

n

=





 (4.13) 

 

where || . || denotes 2-norm of a vector. Then, the partial modes shapes of the FE model, 

𝝓̅𝑛(𝛘), which corresponds to the measured DOFs, are also normalized as its ℎ𝑛
𝑡ℎ 

coordinate to be 1. 

Measured mode shape 𝝓̂𝑛 can be related to 𝝓̅𝑛(𝛘) for the nth mode by including 

a prediction error as 
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n n
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χ ε χ

L χ ε χ
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 (4.14) 

 

where 𝛆𝝓̂𝑛
(𝛘) is the prediction-error vector consisting of the error term for each mode 

shape component and it is modelled as Gaussian variables with zero-means and the 

covariance matrix of 𝚺𝜙̂𝑛
 as; 

 ˆ ˆ~ (0, )
n n

Nε Σ
   (4.15) 

Here, 𝚺𝜙̂𝑛
is the prior covariance matrix that is used to define the uncertainties in 

the prediction error vector 𝛆𝝓̂𝑛
(𝛘). 

Discrepancy between 𝝓̅𝑛(𝛘) and 𝝓̂𝑛 should be considered to construct the 

probability model. To this end, prior probability distribution for the discrepancy 

between 𝝓̅𝑛(𝛘) and measured mode shapes, 𝝓̂𝑛 of the nth mode can be defined by 

assuming a Gaussian probability model. Since the MPVs and prior uncertainties of the 

measured mode shapes are already known from the modal identification process, this 

prior PDF is written as a likelihood function as follows;  
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 ˆ ˆ
1ˆ ˆ ˆ( , ) exp ( ) ( )
2

T

n n n n n
n n

p
    = −     

H χ χ H χ
 

  −   −   (4.16) 

 

𝐇𝝓̂𝑛
is the Hessian matrix of 𝝓̂𝑛 and it is different from 𝐇𝝍̂𝑛

which is the output of the 

Bayesian modal identification procedure. 𝐇𝝍̂𝑛
 represents the Hessian of the mode shape 

vector of 𝝍̂𝑛which has a unit norm.  

The PDF of the error term in equation (4.14) should not be affected by the 

normalization of the modal shape vector. Thus, the following equality should be 

satisfied 

 ˆ ˆ
ˆˆ( , ) ( , )n nn n

p p=H χ H χ 
   (4.17) 

where  
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H χ χ H χ   −   −   (4.18) 

 

and 𝝓̅̅𝑛(𝛘) represents the measured counterpart of the mode shape of the FE model for 

the nth mode, which has a unit norm.  

By substituting equation (4.16) and (4.18) into equation (4.17), one can obtain 

the following expression; 
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By substituting equation (4.13) into equation (4.19), one can obtain 
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Equation (4.20) reveals the relation between 𝐇𝝍̂𝑛
 and 𝐇𝝓̂𝑛

as; 
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In equation (4.16), Hessian matrix is introduced instead of the covariance 

matrix. The reason is that it is not possible to obtain the exact 𝚺𝝍̂𝑛
since the Bayesian 

modal identification process does not output an invertible Hessian matrix, 𝐇𝝍̂𝑛
, of the 

measured mode shapes. Pseudo-inverse of 𝐇𝝍̂𝑛
can be obtained instead (Hızal, 2019). 

By assuming that the prediction error vectors are independent for different 

modes of the selected structural model, one can define the following prior PDF; 
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where 𝛟̂ = [𝝓̂1  𝝓̂2  𝝓̂3 . . . 𝝓̂𝑁𝑚] is the matrix of measured mode shapes and 𝐇𝛟̂ 

represents the block diagonal Hessian matrix whose diagonal elements consist of the set 

{𝐇𝛟̂1
 , 𝐇𝛟̂2

 , 𝐇𝛟̂3
 , . . . , 𝐇𝛟̂𝑁𝑚

}. 

 

4.2.2.6. Negative Log-likelihood Function of the Posterior PDF 

 

Substituting equations (4.6), (4.7), (4.11) and (4.22) into equation (4.5), and 

after some arrangements, a negative log-likelihood function for the posterior PDF is 

written as follows 
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(4.23) 
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It should be noted that constant terms are neglected while writing equation (4.23) since 

they have no effect on the optimization of the parameters. The objective function in 

equation (4.23) needs to be minimized with respect to each parameter to obtain most 

probable value of χ which consists of θ and ρ. 

 

4.2.3. Optimization Problem 

 

The objective function is a closed-form non-linear function of χ and therefore 

minimization process requires a numerical optimization algorithm. To solve this 

optimization problem, “SMU: MATLAB Package for Structural Model Updating” 

which is shared by Wang et al. (2019) is used for the existing problem. The existing 

SMU package is modified by following the formulations derived by Otsuki et al. 

(2021). Wang et al. (2019) have used the lsqnonlin and fmincon solvers in MATLAB 

optimization toolbox. These solvers numerically solve the optimization problem in an 

iterative way and in each iteration, Jacobian of the objective function is needed. The 

solvers have built-in numerical gradient calculators. However, Otsuki et al. (2021) state 

that providing an analytical gradient of the objective function results in more accurate 

results while decreasing the computational time. Therefore, in this study, the analytical 

Jacobian matrix of the objective function is derived in a similar way proposed by Otsuki 

et al. (2021). They have derived sensitivity equations for two different objective 

functions which are constructed by a weighted least squares sense. Both use the 

discrepancies between eigenvalues and mode shape vectors. The difference is that one 

uses the modal assurance criterion (MAC) values of the mode shapes and the other one 

uses the direct difference between the mode shape vectors. In the present study, direct 

difference between the mode shape vectors is formulized in the objective function and 

therefore their derivations have been followed for the direct difference method. To this 

end, the objective function is rewritten in the following form 
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where r(χ) is a residual vector, and Lχ and Uχ are the vectors that include lower and 

upper bounds of each parameter, respectively. 

Each term in equation (4.23) has a scalar value. Thus, this equation can be 

rewritten as follows 
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where   
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where 𝛼𝑛(𝛘), 𝛽(𝛉) and 𝛾(𝛒) are scalar quantities. 

As a result, the residual vector r(χ) can be defined as   
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where  

 ˆ

1/2

2 1

ˆ ( )1

2( ) 1,2,...,

( )

n n

n mn

n

n N

 






 −
 

= = 
 
  

χ

r χ

χ

 (4.30) 

 
1/2 1/2( ) ( ) ( ) ( )r and r  = =θ θ ρ ρ  (4.31) 
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Thus, the residual vector r(χ) is a column vector with a size of (2Nm+2) × 1. 

Otsuki et al. (2021) do not consider the mode shape term αn(χ) as a scalar term in their 

formulations, rather they use this term as a complete mode shape vector. By using their 

approach, r(χ) should have a size of (NmdNm+Nθ+Nρ) × 1 which is quite large with 

respect to the proposed one in this study. Therefore, considering the mode shape term as 

a scalar one reduces the computational time significantly, especially for large systems.   

 

4.2.3.1.  Derivation of Jacobian of the Objective Function L(χ) 

 

Jacobian of the objective function L(χ) in equation (4.25) with respect to 

updating parameters χ is performed by following the formulations derived by Otsuki et 

al. (2021). For the sake of clarity, 𝐫(𝛘) =  𝐫 is used in the following equations. Jacobian 

of L(χ) with respect to χ can be defined by using the chain rule of derivative as; 
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where 𝜕𝐿(𝛘)/𝜕𝐫 can be obtained as 
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and 𝜕𝐫/𝜕𝛘 can be defined as  
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Here, the Jacobian of the residual term for the nth mode can be defined as  
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where the term, 𝜕𝐫𝑛/𝜕𝜃𝑖, can be obtained by the first order differentiation of 𝐫𝑛 with 

respect to 𝜃𝑖 as; 

 

 ˆ

1/2

2 1

( )

1

2

1 ( )
( )

2

n

i

n
n

i
n

n
i















−



 
 

−  
 =

  
 

  

χ

r

χ
χ

 (4.36) 

 

Here, 𝜕α𝑛(𝛉)/𝜕𝜃𝑖 is derived as  
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The term, 𝜕𝐫𝑛/𝜕𝜌𝑗, in equation (4.35) can be obtained by the first order differentiation 

of 𝐫𝑛 with respect to 𝜌𝑗 as; 
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The Jacobian of the residual term, 𝑟𝛽 is calculated as 
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where  
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which is a row vector with a size of 1 × Nθ. The Jacobian of the residual term, 𝑟𝛾 is 

calculated as 
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where 

 ( ) 1
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ρ
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 (4.43) 

 

which is a row vector with a size of 1 × Nρ. 

𝜕𝐫𝑛/ ∂𝛘  is a matrix with a size of 2 × (Nθ + Nρ) and 𝜕𝐫/𝜕𝛉 is a matrix with a 

size of (2Nm+2) × (Nθ + Nρ). By using the original formulations derived by Otsuki et al. 

(2021), the Jacobian matrix should have a larger size of (NmdNm+Nθ+Nρ) × (Nθ + Nρ). 

Considering the terms of the objective function L(θ) as scalars significantly reduces the 

dimension of the Jacobian, and thus the computational time for the optimization 

process.  

To evaluate the Jacobian of the objective function L(θ), it is required to calculate 

the Jacobian of eigenvalues, 𝜕𝜆𝑛(𝛘)/𝜕𝜃𝑖 and 𝜕𝜆𝑛(𝛘)/𝜕𝜌𝑗 in equations (4.36) and 

(4.38), and the Jacobian of eigenvectors, 𝜕𝝓𝑛(𝛘)/𝜕𝜃𝑖 and 𝜕𝝓𝑛(𝛘)/𝜕𝜌𝑗 in equations 

(4.37) and (4.39), respectively. 
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4.2.3.2. Jacobian of Eigenvalues and Eigenvectors  

 

Jacobian of the eigenvalues and eigenvectors of the nth mode are formulated by 

following the derivations done by Otsuki et al. (2021).  

Eigenvalue equation for the corresponding mode is defined as 

 

  ( ) ( ) ( ) ( )n n− =K θ χ M ρ χ 0  (4.44) 

 

• Differentiation with respect to the stiffness parameters 

 

Differentiating equation (4.44) with respect to 𝜃𝑖 gives the following equation; 
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Rearranging equation (4.45), one can obtain the following expression; 
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Equation (4.46) is pre-multiplied by 𝝓𝒏
𝑇(𝛘) 
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Since 𝝓𝒏
𝑇(𝛘) is the left eigenvector of the matrix ( ) ( ) ( )n−K θ χ M ρ , left-hand side 

of equation (4.47) is zero. Then, 𝜕𝜆𝑛(𝛘)/𝜕𝜃𝑖 can be obtained as 
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Jacobian of mode shape vector of the nth mode 𝜕𝝓𝑛(𝛘)/𝜕𝜃𝑖 cannot be obtained 

by using equation (4.46) since the matrix ( ) ( ) ( )n−K θ χ M ρ  on the left-hand side is rank 

deficient. As a remedy, the fact that the measured mode shape is normalized as its 

coordinate (ℎ𝑛
𝑡ℎ coordinate) with the largest absolute value to be 1 has been used. The 

partial modes shapes of the FE model 𝝓̅𝑛(𝛘), which corresponds to the measured 

DOFs, are also normalized as its ℎ𝑛
𝑡ℎ coordinate to be 1. Thus, the value of the ℎ𝑛

𝑡ℎ 

coordinate for both mode shape vectors never changes over iterations and sensitivity of 

the ℎ𝑛
𝑡ℎ coordinate is zero, and it is defined as 

 

 
, ( )

0
h nn

i


=



χ
 and  

, ( )
0

a nn

i


=



χ
 (4.49) 

 

Note that ℎ𝑛
𝑡ℎ coordinate of 𝝓̅𝑛(𝛘) corresponds to 𝑎𝑛

𝑡ℎ coordinate of the mode shape of 

the FE model, 𝝓𝑛(𝛉) with complete DOFs of the model. Since the 𝑎𝑛
𝑡ℎ coordinate of 

𝜕𝝓𝑛(𝛘)/𝜕𝜃𝑖 is always 0, it can be removed from equation (4.46) to solve the rank 

deficiency problem. For this purpose, a transformation for the modal shape vector is 

implemented as follows  

 

 ( ) ( )n n n
−= +χ A χ 1   (4.50) 

 

where 

 

1 ( 1) ( )

1 ( 1) 1 ( )

( ) ( 1)
( 1)

a a N an n d n

n a N an d n

N a a N ad n n d n N Nd d

− −  −

 −  −

−  − −
 −

 
 

=  
 
  

I 0

A 0 0

0 I

 (4.51) 
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and 𝝓𝑛
−(𝛘) denotes the reduced mode shape vector of the FE model for the nth mode 

without the 𝑎𝑛
𝑡ℎ coordinate, and 𝟏̃ is a zero-column vector with its 𝑎𝑛

𝑡ℎ coordinate equal 

to 1. 

Since the rank deficiency problem exists on the left-hand side of equation (4.46), 

the transformation in equation (4.50) is substituted in here. It should be noted that 

∂𝟏̃ / ∂𝜃𝑖 is a zero vector, and the following equation is obtained 

 

  
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )n n
n n n i n

i i




 

− 
− = −

 

χ χ
K θ χ M ρ A M ρ χ K χ


   (4.52) 

 

The matrix  ( ) ( ) ( )n n−K θ χ M ρ A  on the left-hand side of equation (4.52) has more rows 

than columns and therefore a pseudo-inverse operation is needed to solve the equation 

for 𝜕𝝓𝑛
−(𝛘)/𝜕𝜃𝑖. A simpler solution can be obtained, however, by pre-multiplying 

equation (4.52) with 𝐀𝑛
𝑇  as 

 

 

 
( )

( ) ( ) ( )

( )
( ) ( ) ( )

T n
n n n

i

T n
n n i n

i








−
−



 
= − 

 

χ
A K θ χ M ρ A

χ
A M ρ χ K χ



 

 (4.53) 

 

Then, 𝜕𝝓𝑛
−(𝛘)/𝜕𝜃𝑖 can be obtained as  

 

  ( )
1( ) ( )

( ) ( ) ( ) ( ) ( ) ( )T Tn n
n n n n n i n

i i




 

− −   
= − − 

  

χ χ
A K χ χ M ρ A A M ρ χ K χ


   (4.54) 

 

The resulting Jacobian of the mode shape vector of the nth mode 𝜕𝝓𝑛(𝛘)/𝜕𝜃𝑖 can be 

obtained as 

 
( ) ( )n n

n
i i 

− 
=

 

χ χ
A

 
 (4.55) 
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• Differentiation with respect to the mass parameters 

 

By using similar steps, Jacobian of the eigenvalues and eigenvectors have been 

obtained with respect to the mass parameters. 

Differentiating equation (4.44) with respect to 𝜌𝑗 gives the following equation; 

 

  
( ) ( )

( ) ( ) ( ) ( ) ( )n n
n j n n

i j


 

 

  
− − + − = 

  

χ χ
M M ρ χ K θ θ M ρ 0


  (4.56) 

 

Rearranging equation (4.56), one can obtain the following expression; 

 

  
( ) ( )

( ) ( ) ( ) ( ) ( )n n
n n j n

j j


 

 

  
− = + 

   

χ χ
K θ χ M ρ M M ρ χ


  (4.57) 

 

Equation (4.57) is pre-multiplied by 𝝓𝒏
𝑇(𝛘) 

 

 

 
( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

T n
n n

j

T Tn
n n n i n

j









−




= −



χ
χ K θ χ M ρ

χ
χ M ρ χ χ K χ




   
 

(4.58) 

 

Since 𝝓𝒏
𝑇(𝛘) is the left eigenvector of the matrix ( ) ( ) ( )n−K θ χ M ρ , left-hand side 

of equation (4.58) is zero. Then, 𝜕𝜆𝑛(𝛘)/𝜕𝜌𝑗 can be obtained as 

 

 
( ) ( ) ( )( )

( ) ( ) ( )

T
n n j nn
T

j n n






=



χ χ M χχ

χ M ρ χ

−  

 
 (4.59) 

 

Jacobian of mode shape vector of the nth mode 𝜕𝝓𝑛(𝛘)/𝜕𝜌𝑗 cannot be obtained 

by using equation (4.57) since the matrix ( ) ( ) ( )n−K θ χ M ρ  on the left-hand side is rank 
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deficient. As discussed under the previous title for the differentiation with respect to the 

stiffness parameters, the measured and FE model mode shapes are normalized as their 

coordinate (ℎ𝑛
𝑡ℎ coordinate) with the largest absolute value to be 1. Thus, the value of 

the ℎ𝑛
𝑡ℎ coordinate for both mode shape vectors never changes over iterations and 

sensitivity of the ℎ𝑛
𝑡ℎ coordinate is zero, and it is defined as 

 

 
, ( )

0
h nn

j


=



χ
 and  

, ( )
0

a nn

j


=



χ
 (4.60) 

 

ℎ𝑛
𝑡ℎ coordinate of 𝝓̅𝑛(𝛘) corresponds to 𝑎𝑛

𝑡ℎ coordinate of the mode shape of the FE 

model, 𝝓𝑛(𝛉) with complete DOFs of the model. Since the 𝑎𝑛
𝑡ℎ coordinate of 𝜕𝝓𝑛(𝛘)/

𝜕𝜌𝑗 is always 0, it can be removed from equation (4.57) to solve the rank deficiency 

problem.  

The same transformation for the modal shape vector is implemented as 

introduced in equation (4.50). To this end, equation (4.50) is substituted in equation 

(4.57) and the following equation is obtained 

 

  
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )n n
n n n n j n

j j


 

 

− 
− = +

 

χ χ
K θ χ M ρ A M ρ χ χ M χ


   (4.61) 

 

The matrix  ( ) ( ) ( )n n−K θ χ M ρ A  on the left-hand side of equation (4.61) has more rows than 

columns and therefore a pseudo-inverse operation is needed to solve the equation for 

𝜕𝝓𝑛
−(𝛘)/𝜕𝜌𝑗. A simpler solution can be obtained, however, by pre-multiplying equation 

(4.61) with 𝐀𝑛
𝑇  as 

 

 

 
( )

( ) ( ) ( )

( )
( ) ( ) ( )

T n
n n n

j

T n
n n i n

j








−
−



 
= − 

  

χ
A K θ χ M ρ A

χ
A M ρ χ K χ



 
 

(4.62) 
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Then, 𝜕𝝓𝑛
−(𝛘)/𝜕𝜌𝑗 can be obtained as  

 

  ( )
1( ) ( )

( ) ( ) ( ) ( ) ( ) ( )T Tn n
n n n n n i n

j j




 

− −   
= − − 

   

χ χ
A K χ χ M ρ A A M ρ χ K χ


   (4.63) 

 

The resulting Jacobian of the mode shape vector of the nth mode 𝜕𝝓𝑛(𝛘)/𝜕𝜌𝑗 can be 

obtained as 

 
( ) ( )n n

n
j j 

− 
=

 

χ χ
A

 
 (4.64) 

 

 

4.2.4. Posterior Uncertainty for the Updated Parameters 

 

Let Θ be a normally distributed (Gaussian) random vector with mean value of 

𝚯̂0 and a covariance matrix of 𝚺𝚯. Then, PDF of Θ is written as 

 

 ( ) ( )1
0 0

1 1 ˆ ˆ( ) exp
2(2 )

T

N
p



−



 
= − − − 

 
Θ

Θ

Θ Θ Θ Σ Θ Θ

Σ
 (4.65) 

 

Objective function is defined as a negative logarithm function to deal with a 

minimization problem. Therefore, the negative logarithm of equation (4.65) is given as 

 

   ( ) ( )1
0 0

1 1 1 ˆ ˆ( ) ln ( ) ln(2 ) ln
2 2 2

T
L p N  −

= − = + + − −Θ αΘ Θ Σ Θ Θ Σ Θ Θ  (4.66) 

 

First derivative of L(Θ) with respect to the random variable vector, Θ gives the Jacobian 

of the objective function as 

 

 ( ) 1
0

( ) ˆ
TL −

= −


Θ

Θ
Θ Θ Σ

Θ
 (4.67) 
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Then, second derivative of the objective function can be obtained by differentiating 

equation (4.67) with respect to Θ and it gives the Hessian matrix of the objective 

function L(Θ) as 

 

 
2

1

2

( )
( )

L −
= =


Θ

Θ
H Θ Σ

Θ
 (4.68) 

 

Equation (4.68) reveals that inverse of the covariance matrix is equal to the Hessian 

matrix or inverse of the Hessian matrix is equal to the covariance matrix. 

Now, Bayes’ Theorem is revisited here and it is 

 

 0( ) ( ) ( )p c p p=θ D D θ θ  (4.69) 

 

If the prior PDF of p(𝛉) is selected as a non-informative prior, then the posterior PDF of 

p(𝛉 | D) is considered to follow the distribution of the likelihood function p(D | 𝛉). 

Since the likelihood function is modeled to follow a Gaussian distribution in this study, 

then p(𝛉 | D) should also follow a Gaussian distribution. Therefore, posterior PDF of 

p(𝛉 | D) can be considered as 

 

 ( ) ( )p pθ D Θ  (4.70) 

 

Then, by referring to equation (4.68), one can say that inverse of the Hessian of the 

objective function which is defined in equation (4.23) should give the covariance matrix 

of the updated parameters.  

Hessian of the objective function can be calculated by differentiating equation 

(4.32) with respect to 𝛘 

 

 

2 2

2 2
( ) 2 2

T
T

L

L       
= = +    

     

r r r
H χ r

χ χχ χ
  (4.71) 

 

where 𝜕2𝐫 / ∂𝛘2 should be defined since it is the only undefined term to calculate the 

Hessian of the objective function. If both 𝛘 and 𝐫 are vectors, then 𝜕2𝐫 / ∂𝝌 is a third-
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order tensor. Therefore, the second term in equation (4.71) is modified to transform 3-D 

matrix problem into an equivalent 2-D matrix representation. To this end, 𝜕2𝐫 / ∂𝛘2 can 

be considered as an array of Hessian matrices, one for each component of 𝐫 . In this 

study, it is defined for each mode instead of each component. However, it should be 

kept in mind that 𝐫 that is provided in equation (4.29) includes 𝑟𝛽 and 𝑟𝛾 which are 

defined only in terms of 𝛉 and 𝛒, respectively. 

By defining 𝜕2𝐫𝑛 / ∂𝛘2 for the nth mode, 𝜕2𝑟𝛽 / ∂𝛘2 and 𝜕2𝑟𝛾 / ∂𝛘2,  equation 

(4.71) can be rewritten as 

 

 

2 222

2 2 2 2

1

( ) 2 2 2 2

NT m
T n

L n

n

r rL
r r

 
 

=

            
   = = + + +    

                 


rr r
H χ r

χ χχ χ χ χ
 (4.72) 

 

where 
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1 1 1 1 1 1

2 2 2 2

2 1 1
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 

   

       

       

       

      

   
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   
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=

    

       

   

     

r r r r

r r r r

r

χ r r r r

r r r r

N N 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  
(4.73) 

 

and each element can be obtained as 

 

 

2

2

ˆ

2
3/2 1/2

2 1

( )

1

2

1 ( ) ( ) 1 ( )
( ) ( )

4 2

n

p q

n
n

p q

n n n
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p q p q

x y

x y

x y x y







  
 − −



 
 

  − 
  

=   
       
 − +    

             

χ

r

χ χ χ
χ χ

 (4.74) 
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where  

 
2 2

ˆ ˆ0 0 0 0

( ) ( ) ( ) ( )ˆ( )

T
T

n n n n
n n

n n
p q q p p qx y y x x y

     
 = + −          

χ χ χ χ
L H L L χ H L

 

  
   (4.75) 

 

Here, x and y represent the corresponding parameters in equations (4.73) and sub-

indices p and q correspond to the sub-indices of the associated parameters. For instance, 

if one needs to evaluate 𝜕2𝐫𝑛/ ∂𝜌𝑗 ∂𝜃𝑖  in equation (4.73), 𝑥𝑝 should be replaced by 𝜌𝑗 

and 𝑦𝑞 should be replaced by 𝜃𝑖 in equations (4.74) and (4.75).  

In equation (4.73), 𝜕2𝐫𝑛 / ∂𝛘2 has a size of 2(Nθ + Nρ) × (Nθ + Nρ) and it cannot 

be directly multiplied with 𝐫𝑛
𝑇 which has a size of 2 × 1. Therefore, 𝐫𝑛 is modified as 

 

 

2 1 2 1

2 1 2 1

2 1 2 1
2( ) ( )

n

n
n

n
N N N N   

 

 

 
+  +

 
 
 

=
 
 
  

r 0 0

0 r 0
r

0 0 r

 (4.76) 

 

In equation (4.72), 𝜕2𝑟𝛽 / ∂𝛘2 and 𝜕2𝑟𝛾 / ∂𝛘2 are 2D matrices. 𝜕2𝑟𝛽 / ∂𝛘2 can 

be calculated by differentiating equations (4.40) with respect to 𝛘 and it results in the 

following matrix 

 

 

2 2

1 1 1

2

2 2 2

1

N

N N

N N N

N N N N
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r
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 


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 
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   
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

 

  
 
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 

  
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 
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 
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0

χ

0 0

 (4.77) 

 

where 

  

2 2
3/2 1/21 ( ) ( ) 1 ( )

( ) ( )
4 2i m i m i m

r   
 

     

− −       
= − +               

θ θ θ
θ θ  (4.78) 
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In equation (4.78), m = 1, 2, …, Nθ and, 𝜕𝛽(𝛉)/𝜕𝜃𝑖 and 𝜕𝛽(𝛉)/𝜕𝜃𝑚 are obtained as 

 

 ( ) 1
0

( ) ˆ
i i i

i



 



−
= − 



θ
 (4.79) 

 ( ) 1
0

( ) ˆ
m m m

m



 



−
= − 



θ
 (4.80) 

 

where 𝜃𝑖0 and 𝜃𝑚0 denote the prior MPVs of 𝜃𝑖 and 𝜃𝑚. Σ𝜃𝑖

−1 and Σ𝑚
−1 represent the ith 

and mth diagonal element of 𝚺𝛉
−𝟏, respectively. Further, 𝜕2𝛽(𝛉)/ ∂𝜃𝑖 ∂𝜃𝑚 can be 

defined as 

 

12 ,( )

0 ,

i

i m

if i m

if i m



 

− = 
= 

  

θ
 (4.81) 

 

Similarly, 𝜕2𝑟𝛾 / ∂𝛘2 can be evaluated by differentiating equations (4.42) with 

respect to 𝛘 and it results in the following matrix 
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 (4.82) 

 

where 
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In equation (4.83), k = 1, 2, …, Nρ and, 𝜕𝛾(𝛒)/𝜕𝜌𝑗 and 𝜕𝛾(𝛒)/𝜕𝜌𝑠 are obtained as 
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ρ
 (4.85) 

 

where 𝜌𝑗0 and 𝜌𝑘0 denote the prior MPVs of 𝜌𝑗 and 𝜌𝑘. Σ𝜌𝑗

−1 and Σ𝜌𝑠
−1 represent the jth 

and kth diagonal element of 𝚺𝛒
−𝟏, respectively. Further, 𝜕2𝛾(𝛒)/ ∂𝜌𝑗 ∂𝜌𝑘 can be defined 

as 
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= 
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ρ
 (4.86) 

 

To evaluate the Hessian of the objective function, L(θ), it is required to calculate 

the Hessian of the eigenvalues, 𝜕2𝜆𝑛(𝛉) / ∂𝜃𝑖 ∂𝜃𝑚, 𝜕2𝜆𝑛(𝛉) / ∂𝜃𝑖 ∂𝜌𝑗 and 𝜕2𝜆𝑛(𝛉) /

∂𝜌𝑗 ∂𝜌𝑘 in equation (4.74). Further, Hessian of the eigenvectors, 𝜕2𝝓𝑛(𝛉) / ∂𝜃𝑖 ∂𝜃𝑚, 

𝜕2𝝓𝑛(𝛉) / ∂𝜃𝑖 ∂𝜌𝑗 and 𝜕2𝝓𝑛(𝛉) / ∂𝜌𝑗 ∂𝜌𝑘 in equation (4.75). Note that equations 

(4.74) and (4.75) are generalized by using 𝑥𝑝 and 𝑦𝑞 to avoid repetition of same 

equations for different parameters. One should substitute the corresponding parameter 

and indices into 𝑥𝑝 and 𝑦𝑞 to obtain the aforementioned Hessian terms. 

 

4.2.4.1.  Hessian of Eigenvalues and Eigenvectors 

 

Calculation of the second derivatives of the eigenvalues and eigenvectors is a 

long procedure when compared to the calculation of their Jacobians. Therefore, final 

results are provided in this section for the sake of clarity. Detailed derivations can be 

found in Appendix B. 

 

• Differentiation with respect to 𝜃𝑖 and 𝜃𝑚 

 

After calculations, Hessian of the eigenvalue of the nth mode, 𝜕2𝜆𝑛(𝛉) /

∂𝜃𝑖 ∂𝜃𝑚, has been obtained as 
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and Hessian of the eigenvector of the nth mode has been obtained as 
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Here, 𝜕2𝝓𝑛
−(𝛉) / ∂𝜃𝑖 ∂𝜃𝑚 is defined as 
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where  
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• Differentiation with respect to 𝜃𝑖 and 𝜌𝑗 

 

Similarly, Hessian of the eigenvalue of the nth mode, 𝜕2𝜆𝑛(𝛉) / ∂𝜃𝑖 ∂𝜌𝑗, has 

been obtained as 
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(4.91) 
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and Hessian of the eigenvector of the nth mode has been obtained as 
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Here, 𝜕2𝝓𝑛
−(𝛉) / ∂𝜃𝑖 ∂𝜌𝑗 is defined as 
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• Differentiation with respect to 𝜌𝑗 and 𝜌𝑘 

 

Similarly, Hessian of the eigenvalue of the nth mode, 𝜕2𝜆𝑛(𝛉) / ∂𝜌𝑗 ∂𝜌𝑘, has 

been obtained as 
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(4.95) 

 

and Hessian of the eigenvector of the nth mode has been obtained as 
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Here, 𝜕2𝝓𝑛
−(𝛉) / ∂𝜌𝑗 ∂𝜌𝑘 is defined as 
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4.2.5. Updating Procedure and Computational Issues 

 

In the presented two-stage sensitivity-based Bayesian model updating procedure, 

stiffness scaling parameter vector 𝛉 and mass scaling parameter vector ρ are updated by 

minimizing the objective function L(χ) in equation (4.23) by using “SMU: MATLAB 

Package for Structural Model Updating” which is shared by Wang et al. (2019). In the 

SMU package, fmincon solver is used with the ‘interior-point algorithm’ by employing 

the analytical Jacobian that is derived in the previous section. The objective function 

L(χ) is a non-convex function and therefore it may have local minimum points. 

However, the solvers used in the SMU package may get stuck at the local minimum 

points and cannot guarantee the global minimum. Therefore, Otsuki et al. (2021) 

randomly choose initial parameter values of θ from a uniform distribution defined in the 

interval of Lθ ≤ θ ≤  Uθ, and initiate the optimization process from each random points 

to increase the chance of finding global minimum. Similar procedure is followed in this 

study. Since the prior distribution of the stiffness and mass scaling parameters are 
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considered to follow a truncated Gaussian distribution, initial parameter values are 

randomly chosen from a Gaussian distribution truncated by Lχ and Uχ. It should be 

noted here that this procedure is only increasing the chance of finding global minimum 

in the corresponding interval, but it is not guaranteed. SMU MATLAB package in its 

original form performs the updating of stiffness parameters in a deterministic way by 

minimizing the objective functions that are constructed with a weighted least squares 

sense. Therefore, the package is modified to include all derivations presented in the 

previous sections. 

Figure 4.1 shows the flow chart for the presented model updating procedure. 

The flow chart can be summarized as the following steps 

 

Modal identification stage: 

• Step 1: By using the BFFTA, estimate the MPVs of the measured eigenvalues as 

𝛌̂ with their corresponding posterior covariance matrix 𝚺𝝀̂, and the MPVs of the 

mode shape matrix 𝛙̂ = [𝝍̂1  𝝍̂2  𝝍̂3 . . . 𝝍̂𝑁𝑚] with the corresponding block 

diagonal Hessian matrix 𝐇𝛙̂ whose diagonal elements consist of the set {𝐇𝝍̂1
 , 

𝐇𝝍̂2
 , 𝐇𝝍̂3

 , . . . , 𝐇𝝍̂𝑁𝑚
}. 

 

Model updating stage: 

• Step 2: Normalize the measured mode shape 𝝍̂𝑛 as its coordinate (ℎ𝑛
𝑡ℎ 

coordinate) with the largest absolute value to be 1 and it will give the 

normalized mode shape vector 𝝓̂𝑛. In addition, obtain 𝐇𝝓̂𝑛
by scaling 𝐇𝝍̂𝑛

using 

equation (4.21). 

• Step 3: Set a prior variance for each stiffness scaling parameter. To do so, first 

consider the nominal value of 𝛉 by using engineering judgement. Prior 

estimation of stiffness distribution of physical structures is not precise since the 

actual distribution is highly uncertain due to the uncertainties in stiffness of 

joints, real boundary conditions, etc. Therefore, a large prior variance is 

generally assigned for the stiffness scaling parameters according to their 

nominal values. By doing so, the posterior distribution is not dominated by the 

prior distribution of the parameters. The prior covariance matrix of the stiffness 

parameters, 𝚺𝛉, is constructed with a diagonal matrix and each diagonal element 

consists of the calculated variance value. 
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• Step 4: Set a prior variance for each mass scaling parameter. In this study, both 

mass and stiffness scaling parameters are modeled as the updating parameters. 

In the literature, it is known that considering both parameters with high prior 

uncertainties results in an ill-conditioned optimization problem since it may give 

an infinite number of solutions that minimize the objective function. To 

overcome this issue, mass parameters are assumed to be well-estimated with 

small prior uncertainties since the mass is less uncertain than the stiffness in real 

life. Therefore, a small prior variance is generally assigned for the mass scaling 

parameters according to their nominal values. The prior covariance matrix of the 

mass parameters, 𝚺𝛒, is constructed with a diagonal matrix and each diagonal 

element consists of the calculated variance value. 

• Step 5: Set number of runs, Nrun to identify a global minimum. A higher value of 

Nrun increases the chance to catch the global minimum while increasing the 

computational time. 

• Step 6: Determine the prior value of each stiffness scaling parameter, 𝛉̂0. It is 

extracted from a truncated Gaussian distribution having a prior variance 

determined in Step 3. It is truncated by setting a lower bound, Lθ, and an upper 

bound, Uθ, according to the prior value 𝛉̂0. 

• Step 7: Determine the prior value of each mass scaling parameter, 𝛒̂0. It is again 

extracted from a truncated Gaussian distribution having a prior variance 

determined in Step 4. It is truncated by setting a lower bound, Lρ, and an upper 

bound, Uρ, according to the prior value 𝛒̂0. 

• Step 8: Calculate the prior stiffness matrix 𝐊(𝛉̂0) and mass matrix 𝐌(𝛒̂0), and 

evaluate λn(𝛘̂0) and ϕn(𝛘̂0) by the eigenvalue analysis of the current FE model. 

Note that 𝛘̂0 =  [𝛉̂0  𝛒̂0]
𝑇
. 

• Step 9: Normalize the mode shape vector ϕn(𝛘̂0) such that its 𝑎𝑛
𝑡ℎ coordinate is 

equal to 1. Note that the 𝑎𝑛
𝑡ℎ coordinate of the vector 𝝓𝑛(𝛉) with complete 

DOFs of the FE model corresponds to the ℎ𝑛
𝑡ℎ coordinate of the measured mode 

shape vector 𝝓̂𝑛 which includes measured DOFs, only. 

• Step 10: Use equation (4.29) to construct the residual vector 𝐫(𝛘) and use 

equation (4.32) to construct the analytical Jacobian of the objective function, 

𝜕𝐿(𝛘)/𝜕𝛘. 



 111 

 

• Step 11: Solve the optimization problem to obtain the MPVs of the updated 

stiffness and mass scaling parameters. In this study, it is solved by using fmincon 

solver with the ‘interior-point algorithm’ in “SMU: MATLAB Package for 

Structural Model Updating” which is shared by Wang et al. (2019). 

• Step 12: Repeat Step 6 – Step 11 to obtain Nrun solutions for randomly selected 

initial points. The solution which results in minimum objective function value is 

selected as the MPV of the updated parameter vector, 𝛘̂. It should be kept in 

mind that this point is the global minimum among the solutions obtained, and it 

may not guarantee the actual global minimum of the objective function. 

• Step 13: Calculate the Hessian matrix of the objective function, HL(𝛘̂), by using 

equation (4.72). Then, calculate the posterior covariance matrix of the updated 

parameters. The posterior covariance matrix is calculated by inverse of the 

Hessian matrix and diagonal elements result in the posterior variance of the 

updated parameters. 

 

 

 

Figure 4.1. Flow chart of the proposed model updating procedure 
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4.2.6. Numerical and Experimental Studies  

 

In this section, the sensitivity-based Bayesian model updating procedure is 

investigated by numerical and experimental studies. The results are compared to those 

of the results obtained in the previous chapter.  

 

4.2.6.1. Numerical Studies 

 

The proposed two-stage sensitivity-based Bayesian model updating method is 

implemented on the numerical twelve-story shear frame structure that is used in the 

previous chapter (in the beginning of Section 3.2.6) to compare the model updating 

results. All measurement process and stiffness parametrization procedure is performed 

in exactly the same way. Therefore, it is skipped here to avoid repetition.  

Square of the actual stiffness value of K = 202.767 × 103 kN/m is considered as 

the variance of each corresponding stiffness parameter to have a non-informative prior 

distribution. The prior covariance matrix of the stiffness parameters, 𝚺𝛉, is constructed 

as a diagonal matrix and each diagonal element is the calculated variance value. Then, 

the initial value, 𝛉̂0, of the stiffness parameter vector is randomly selected from a 

Gaussian distribution by setting the mean of the distribution as the value of 𝛉 and 

setting the variance to be 𝚺𝛉. The upper and lower bounds are selected as Lθ =100 × 103 

kN/m and Uθ = 1000 × 103 kN/m. Upper bound is intentionally selected as a high 

stiffness value to investigate whether the proposed methodology is convergent with high 

initial parameter values. Then, Gaussian distribution is defined in only these bounds and 

generated values out of these bounds are discarded. To increase the chance of global 

optimality in the considered interval, number of runs is set as Nrun=100. Thus, 100 

different optimizations are performed by using 100 different initial models of the 

structure. In this numerical application, mass is assumed to be well-estimated and it is 

not considered as an updating parameter so that the results are comparable to those of 

the previous chapter.  

In the numerical study, results of the proposed method (SensBMU) are 

compared with the results of three different cases that are already investigated in the 

previous chapter. As a reminder, assumption of each case is defined as follows;   
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• Case 1: Modelling error variance of each mode is considered to be different for 

each mode and each is updated as soft constraints. This case is the main focus of 

the previous chapter. 

• Case 2: Modelling error variance is considered to be the same for each mode and 

updated in each iteration as a soft constraint. This case corresponds to a similar 

study performed by Hızal and Turan (2020). 

• Case 3: Modelling error variance has a prescribed value which is the same for all 

modes. It is not updated and kept as a rigid constraint. This case corresponds to a 

similar study performed by Yuen (2010). 

 

As the first application, it is considered that all modes and DOFs of the structure 

are available and the structure is updated by the complete modal data. Model updating 

results are provided with the posterior uncertainties for each case in Table 4.1. In the 

tables of the present study, instead of the MPVs of the updated parameters, relative 

errors between the actual and MPVs of the updated parameters are provided in 

percentage and a negative value means the updated parameter has a smaller value than 

the actual one. According to the results, all the updated stiffness parameters have 

converged well to their actual values. The posterior c.o.v values for Case 1, 2 and 3 

appear to be in the same order of magnitude and they are unrealistically too small. 

However, it is seen that the methodology presented in the present study results in more 

realistic values with higher c.o.v values. It should be noted that the present study and 

Case 3 do not include the norm constraint term for modal shapes. Besides, the present 

study removes the modelling error term while Case 3 includes it. Therefore, here, one 

may conclude that the reason of the increase in the posterior uncertainties is most 

probably the removal of the modelling error term. Of course, it should be kept in mind 

that the formulations of the present study and Case 3 are different from each other and 

therefore removing the modelling error term may not be the only reason for the increase 

in posterior uncertainties of the updated parameters.  
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Table 4.1. Updated stiffness parameters with complete modal data (× 103 kN/m) 

 SensBMU 
 

Case 1 
 

Case 2  Case 3 

 

Updated 

(Rel. Err.) 

(%) 

c.o.v 

(×10-4) 

 Updated 

(Rel. Err.) 

(%) 

c.o.v 

(×10-11) 

 Updated 

(Rel. Err.) 

(%) 

c.o.v 

(×10-11) 
 

Updated 

(Rel. Err.) 

(%) 

c.o.v 

(×10-11) 

𝜃1    0.30 9.35  − 0.53 6.18      0.31 36.83      1.35 131.24 

𝜃2    0.24 7.70     1.25 15.73      0.02 217.47  − 0.38 416.93 

𝜃3    − 0.01 7.73     0.02 1.79  − 0.03 400.58      0.07 292.15 

𝜃4     0.13 8.21  − 0.33 5.33      0.11 487.38      0.21 145.62 

𝜃5 − 0.26 7.97  − 0.28 8.48      0.07 430.31      0.02 90.07 

𝜃6 − 0.32 8.28      0.76 10.43      0.07 235.75      0.21 122.18 

𝜃7     0.42 7.62  − 0.13 3.66      0.02 121.20      0.11 17.66 

𝜃8     0.61 8.34     0.07 2.95  − 0.13 332.10  − 0.62 62.62 

𝜃9 − 0.24 8.24     0.02 2.92      0.12 444.54      0.21 27.68 

𝜃10     0.03 7.90     0.56 4.00      0.16 417.37      0.46 167.97 

𝜃11  − 0.02 7.58  − 0.33 3.85      0.07 270      0.02 185.36 

𝜃12  − 0.11 7.61  − 0.03 0.35  − 0.08 94.29  − 0.13 54.77 

 

Further, the present study is investigated for incomplete modal data. First, different 

numbers of measured modes are considered with spatially complete measured mode 

shapes. For this investigation, it is considered as if the first two, four, seven or ten 

modes only are measured from the structure and model updating is performed by using 

these modes only. Updating results are provided in Figure 4.2. Updated values are not 

as good as the ones obtained for the complete modal data, especially when two and four 

modes are used only. Since the model is updated with respect to the considered modes 

only, this is an expected result. According to Table 4.2, posterior c.o.v of the stiffness 

parameters decrease with the increased number of considered measured modes. This is 

an expected result since the information used in the probabilistic model is increasing 

with the increased number of measured modes. Therefore, parameter uncertainty is 

expected to decrease (Yuen, 2010; Hizal, 2019; Hızal and Turan, 2020). In Table 4.3, 

results are provided for Case 1 by using the same number of considered modes for 

comparison purposes. It is seen that the posterior c.o.v values of the parameters are 

unrealistically too small. Besides, the uncertainties decrease with the increase in the 

number of considered modes. This result is quite opposite the results obtained in the 

present study and in the literature. On the other hand, especially for the smaller number 

of considered modes, the updated stiffness parameter values of the previous study 

converge to the actual values better than those of the present study. However, it can be 

observed from the results, for example, when the number of considered modes is two 

that parameter 𝜃12 is the most divergent one from the actual value with a relative error 

of – 26.02% (corresponds to a stiffness value of 150 × 103 kN/m) and its posterior c.o.v 
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value is also the highest one with a value of 133.15 × 10-4. It should be noted here that, 

even though the posterior c.o.v results seem reasonable from this point of view, they are 

still small numbers since the standard deviation of 𝜃12 is about 𝜎𝜃12
= 2 × 103 kN/m. 

Then, 150 × 103 kN/m ± 𝜎𝜃12
 results in the stiffness values far from the actual value of 

202.767 × 103 kN/m.  

The results are illustratively presented in Figure 4.2 and Figure 4.3. Figure 4.2 is 

the graphical representation of convergence quality of some stiffness parameters with 

respect to the number of considered modes. Here, results of the proposed methodology 

are compared with those of the previous chapter. All the four plots reveal that the 

proposed method has higher convergence problems when a smaller number of modes 

are considered. Figure 4.3 shows the graphical representation of the change in the 

posterior c.o.v with the number of considered modes. Proposed method results in 

significantly high posterior c.o.v values when compared to the results of the previous 

chapters. Besides, for Case 1, 2 and 3, the uncertainties are increasing with the increase 

in the number of considered modes. This result is quite opposite of the results obtained 

in the proposed method and in the literature. The results of the proposed method are 

found to be compatible with the literature. However, again the posterior c.o.v values 

seem small especially for complete modal data. 

 

Table 4.2. Updated stiffness parameters of the proposed method using different number 

of modes (× 103 kN/m) 

 Number of considered measured modes 

 2  4  7  10 

 

Updated 

(Rel. Err.) 

(%) 

c.o.v 

(×10-4) 
 

Updated 

(Rel. Err.) 

(%) 

c.o.v 

(×10-4) 
 

Updated 

(Rel. Err.) 

(%) 

c.o.v 

(×10-4) 
 

Updated 

(Rel. Err.) 

(%) 

c.o.v 

(×10-4) 

𝜃1      4.68 42.48       1.13 22.25      − 1.74 16.40       0.14 12.17 

𝜃2 − 4.72 61.04       2.75 40.06       1.89 20.70       0.27 8.37 

𝜃3     3.71 80.96       2.35 49.11      − 1.02 15.06       0.26 9.93 

𝜃4    − 0.38 98.00      − 2.02 33.57      0.37 16.19       0.29 11.60 

𝜃5     6.75 84.48       3.67 36.69      0.38 15.06   − 0.30 9.29 

𝜃6 − 8.47 115.42       − 4.33 35.52  − 0.73 13.45   − 0.63 9.97 

𝜃7     2.87 80.19  − 2.40 34.69      0.73 18.44       0.02 10.10 

𝜃8 − 2.29 68.49      2.17 35.31      0.83 14.64       0.45 9.65 

𝜃9     4.05 71.43  − 4.80 36.22     1.24 15.89   − 0.08 10.33 

𝜃10 − 2.71 73.11      5.02 35.80  − 0.78 14.45       0.27 10.61 

𝜃11     9.97 111.89  − 4.52 31.42      0.86 14.85       0.15 8.32 

𝜃12 − 26.02 133.15      7.09 51.71      0.55 11.85   − 0.08 9.84 
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Table 4.3. Updated stiffness parameters of Case 1 using different number of modes  

(× 103 kN/m) 

 Number of considered measured modes 

 2  4  7  10 

 

 Updated 

(Rel. 

Err.) 

(%) 

c.o.v 

(×10-15) 
 

Updated 

(Rel. Err.) 

(%) 

c.o.v 

(×10-14) 
 

Updated 

(Rel. Err.) 

(%) 

c.o.v 

(×10-12) 
 

Updated 

(Rel. Err.) 

(%) 

c.o.v 

(×10-11) 

𝜃1  − 0.53 1.94     − 0.48 4.61      − 0.48 7.34      − 0.58 6.04 

𝜃2      1.79 4.49        1.79 7.28      1.74 12.42       1.30 14.61 

𝜃3      0.51 1.60        0.51 1.55      0.31 1.27       0.07 1.29 

𝜃4  − 0.38 0.52    − 0.48 3.13     − 0.33 3.12      − 0.33 4.59  

𝜃5  − 0.48 0.51    − 0.48 2.03     − 0.33 9.75   − 0.33 7.93 

𝜃6      1.20 0.83       1.05 5.71     0.85 11.57       0.71 9.35 

𝜃7      0.26 1.06       0.02 2.12     0.02 5.02      − 0.13 3.78 

𝜃8      0.41 1.97       0.26 2.14         0.07 7.08          0.07 3.01 

𝜃9      0.07 0.14      0.16 0.11         0.07 4.42      0.07 2.52 

𝜃10      0.51 2.69      0.56 0.13     0.46 3.32      0.56 3.30 

𝜃11 − 1.46 1.64  − 0.67 3.90     − 0.43 3.53  − 0.33 3.31 

𝜃12     2.48 1.40      0.21 0.99     − 0.18 0.67  − 0.08 3.30 

 

 

Figure 4.2. Convergence of some updated stiffness parameters with the number of 

considered modes 
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Figure 4.3. Variation of posterior c.o.v values of some stiffness parameters with the 

number of considered modes 

 

To investigate the reasons of having too small posterior uncertainties, the order 

of the prior c.o.v values of eigen frequencies that are obtained in the modal 

identification stage is compared with the order of the posterior c.o.v values of the 

updated parameters. The comparison is presented in Figure 4.4. It should be noted that 

modal identification here has been performed by adding a noise level 50% of the RMS 

value of each noise-free response. As seen from the tables in the figure, they are 

actually found to be compatible with each other. This may be an answer to the question 

why such small posterior c.o.v values are encountered for the updated parameters. 
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Figure 4.4. Comparison of the prior c.o.v levels of eigen frequencies and posterior c.o.v 

levels of the updated parameters 

 

To question this hypothesis, the prior c.o.v values of the measured modal 

parameters are considered as in Yuen’s study because Yuen defines a prescribed value 

of 0.01 for the prior c.o.v values (Yuen, 2010). He does not perform a modal 

identification. Instead, he adds a random noise directly on the actual modal parameter 

values by using the following relations; 

 

 

ˆ (1 ε )n n nf f c= +
 

ˆ (1 ε )kn kn knc= + 
 

(4.99) 

 

Here, 𝜀𝑛 and 𝜀𝑘𝑛 represent the Gaussian random numbers from standard normal 

distribution and c denotes c.o.v of the noise level. The same procedure is used in the 

proposed methodology to make a comparison. Further, to investigate whether there is a 

problem in modal identification stage, modal identification is performed with a noise 

level of 300% so that the resulting prior c.o.v values are close to 0.01 as seen in Figure 

4.5 
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Figure 4.5. Comparison of measured eigenfrequencies and prior c.o.v levels in Yuen’s 

study and those obtained in modal identification stage of the proposed method. 

 

The results are compared in Figure 4.6. Red line shows the model updating 

results when the prior variances are obtained by 300% noise level from the Bayesian 

modal identification. Blue line shows the results when the modal identification is not 

performed, and prior variances are taken directly as 0.01. As seen from the plots, all 

three cases gives the posterior c.o.v values of the parameters in the similar order and 

they are higher from the results of previous numerical example. Therefore, the reason of 

the resulting smaller c.o.v values could be just the low noise level of 50%. These results 

reveal that modelling error term may not be responsible for too small posterior c.o.v 

values because Yuen’s formulations include the modeling error term. 
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Figure 4.6. Comparison of the results of Yuen’s original study and the proposed method 

(SensBMU) 

 

4.2.6.2. Experimental Study  

 

For the experimental study, presented methodology is applied on a 10-story 

physical shear frame laboratory model. The model is presented in Figure 4.7. The 

nominal mass and stiffness values obtained from the geometrical measurements are 

provided in the figure.  

The model is measured by three piezo-electric accelerometers which have a 

1000 mV/g sensitivity and 11.4 μg/√𝐻𝑧 spectral noise density. A laptop with a 1.5 GHz 

CPU and Linux operating system, a 16-channel USB-DUX Sigma data acquisition 

device with a 24-bit A/D converter, a first-order analog lowpass filter with a cut-off 

frequency at 120 Hz for each channel have been used to acquire the measurements. The 

acceleration responses are acquired in five measurement setups with 1000 Hz sampling 
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frequency for five minutes duration. Then, the multiple setup data is merged with the 

proposed methodology in the published work by Ceylan et al. (2020) to have a single 

measurement including 10 DOFs. 

 

 

 

Figure 4.7. 10-story shear frame laboratory model 

 

To construct the multiple initial FE models, a Gaussian distribution is defined 

for stiffness values with a prior c.o.v level of 50%. The nominal stiffness values are not 

considered different between stories, and it is selected uniform with a value of 30 kN/m. 

Lower bound is selected as 10 kN/m and upper bound is selected as 50 kN/m. The mass 

is also modelled as a Gaussian distribution with a prior c.o.v level of 5%. Lower bound 

is selected as 2 kg and upper bound is selected as 3 kg. Then, the optimization is 

repeated for 100 random initial FE models. The stiffness value of each story is selected 

as an updating parameter which makes as total of 10 stiffness parameters to be updated.  

Table 4.4 provides the updating stiffness parameters and their c.o.v values for 

the 10-story shear frame model. The updating results can be considered to be reasonable 

when compared to the nominal values even though 𝜃1 and 𝜃7 have divergent values 

from the nominal ones. Besides, posterior c.o.v values are in similar order for all 

updated parameters.  

Table 4.5 provides the eigenfrequencies of the updated FE model. Here, the first 

five modes are compared with the results in the work published by Hızal (2021) for the 
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verification purposes. It seems that the eigen frequency of the first mode is sligthly 

divergent only. 

 

Table 4.4. Updated stiffness parameters and their posterior c.o.v values for 

the10-story shear frame laboratory model 

 
 

SensBMU 
 Case 1 

Previous Study 

 
Case 2  Case 3 

 Nom. 

Updated 

(Rel. 

Err.) 

(%) 

c.o.v 

(×10-4) 

 Updated 

(Rel. 

Err.) 

(%) 

c.o.v 

(×10-10) 

 Updated 

(Rel. 

Err.) 

(%) 

c.o.v 

(×10-8) 
 

Updated 

(Rel. 

Err.) 

(%) 

c.o.v 

(×10-8) 

𝜃1 37.5   31.2 3.21    15.6 2.13      6.7 16.35      8.2 45.62 

𝜃2 37.5    4.1 3.43    10.6 5.64      4.2 12.65      6.8 25.32 

𝜃3 37.5    − 9.2 1.65      2.3 7.96  − 12.3 8.32       12.7 12.69 

𝜃4 25  − 21.5 1.32   − 11.2 2.65      1.2 5.64     − 7.7 27.67 

𝜃5 25        9.0     2.60     − 0.2 7.63      5.6 3.69      8.6 31.81 

𝜃6 25  − 15.6 3.26     5.4 3.45  − 17.4 25.65       14.5 47.98 

𝜃7 25  − 31.2 1.82   − 12.8   15.46   − 16.8 3.24   − 20.2 17.59 

𝜃8 18.75  − 0.8 3.37    4.6 32.89     6.3 65.35       10.3 48.63 

𝜃9 18.75 − 2.3 1.16  − 7.1 6.58  − 10.9 21.27   − 15.7 14.54 

𝜃10 18.75   − 7.4 2.25    2.3 11.12      5.7 3.42     8.3 21.52 

 

 

Table 4.5. Eigenvalues of the updated FE model of the laboratory frame 

 
 

 SensBMU 

# 

Mode  
Nominal 

BFFTA 

(Hızal, 2021)  

BFFTA 

Upd. 
𝑓𝑛 

c.o.v 

(×10-3) 

1 2.66 2.61 2.61 1.02 2.65 

2 7.37 7.32 7.32 1.97 7.32 

3 11.87 11.65 11.64 2.02 11.64 

4 16.32 16.99 17.01 2.74 17.01 

5 20.21 20.63 20.64 2.60 20.64 

6 24.19 - 24.65 3.01 24.66 

7 26.52 - 26.94 2.85 26.94 

8 29.10 - 29.92 3.13 29.92 

9 31.58 - 33.53 2.79 33.53 

10 37.01 - 37.58 10.25 37.58 

 

 

Figure 4.8 presents the updated modal shape vectors and they are compared with the 

measured ones. It is seen that some modes are not in very well agreement. However, 

most of the mode shapes are in an acceptable condition. 
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Figure 4.8. Updated mode shape vectors of the laboratory model 

 

4.3. Conclusions 

 

This chapter focuses on the reasons of the unreasonably small posterior 

uncertainties of the updated parameters that are obtained in the previous chapter. In the 

previous one, modelling error term is employed to account for the uncertainties in the 

eigenvalue equation which arise due to using system modes. Formulation has been 

performed by assuming the modelling error variances of eigenvalue equations to be 

different for each mode and updated in each iteration. Besides, formulations derived by 

Hızal (2019) which assumes a single modelling error variance for all modes are 

investigated as the second assumption. Yuen (2010) considers the modelling error 

variance as a rigid constraint and assigns a prescribed value for the modelling error 

variance and does not update it. 

Results of the previous chapter have revealed that the formulations with the 

three modelling error assumptions give unreasonably small posterior c.o.v values. On 

the other hand, it is realized in the literature that researchers who use a norm constraint 
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term in the objective function generally face relatively small posterior uncertainties for 

the updated parameters (Yan and Katafygiotis, 2015; Hızal, 2019; Hızal and Turan, 

2020). As a result, it is considered that underlying solution to avoid too small posterior 

uncertainties may be somehow removing the modelling error and/or the norm constraint 

terms from the formulations. In this context, in this chapter, Bayesian model updating 

framework is combined with a sensitivity-based model updating approach. By doing so, 

modal properties of the FE model are directly employed instead of system modes which 

are the sources of the modelling errors in the eigenvalue equations. Besides, using the 

FE model modes automatically removes the need for the norm constraint for the mode 

shapes since they can be directly obtained from the eigenvalue analysis of the updated 

system. In this case, eigen frequencies and mode shapes should be dependent on the 

parameters to be updated. This results in a closed-form non-linear objective function of 

updating parameters. Optimization of such an objective function has been required 

numerical optimization algorithms. Therefore, in the present study, sensitivity equations 

which account for the changes in the parameters have been derived in a probabilistic 

way by introducing the Bayesian model updating framework and posterior uncertainty 

analysis are performed by using the derived Hessian matrix of the updated parameters.  

The results of the numerical study reveal that the presented two-stage 

sensitivity-based Bayesian model updating procedure significantly increases the 

posterior c.o.v values of the updated parameters to more reasonable levels when 

compared to the results of the previous chapter. Formulation of Case 3 in the previous 

study does not include the norm constraint term as in the present study and it also gives 

unreasonably small posterior c.o.v values. Therefore, it is concluded that modelling 

error term may be responsible for the small uncertainties. Of course, it should be kept in 

mind that the formulations of the present study and Case 3 are different from each other 

and therefore removing the modelling error term may not be the only reason for the 

increase in posterior uncertainties of the updated parameters. Further, it is observed that 

posterior c.o.v of the updated parameters decrease with the increased number of 

considered measured modes as expected and stated in the literature. On the other hand, 

if the updated parameter value is divergent from the actual value, its posterior 

uncertainty is relatively high when compared to the convergent ones. These may be 

considered as a proof to interpret the resulting uncertainties as reasonable. Even so, the 

resulting posterior c.o.v values are still small numbers which may be considered as 

unrealistic if the updated parameters diverge from the actual values. 
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CHAPTER 5  

 

PROBABILSTIC DAMAGE DETECTION OF 

STRUCTURES 

 

5.1. Introduction 

 

Damage detection means identifying the differences between two states of a 

structure and making comparisons of these two states (Torres, 2017). Generally, the 

initial state is called “undamaged state” and the other states are called “damaged states”. 

In order to make a comparison between these two states, it is required to observe a 

structure for a period of time (i.e., acquisition of measurements from the structure), 

evaluation of damage-sensitive features and examination of these features. According to 

Farrar et al. (2001), the damage identification process involves four steps which are 

operational evaluation, data acquisition, feature extraction and classification. In 

operational evaluation, implementation of the process, operational and environmental 

conditions, and limitations are analyzed. In data acquisition, measurement types and its 

duration, types of sensors and their locations, and type of data which is necessary to 

extract damage sensitive parameters are determined. In future extraction step, damage 

sensitive features are evaluated and in classification step, comparison between the initial 

and current states is performed.      

 

5.1.1. General Description of Dynamics of a Damaged System  

 

The dynamics of a general non-linear, time-varying damaged structure is 

described by Fritzen and Kraemer (2009) as   

 

 ( , , , ) ( , , , , ) ( ) ( )op testE t E t t t + = +M u u F u u F F  (5.1) 

 ( , , , , )E t = g u u  (5.2) 

   

where M is the mass matrix, F is the force vector of elastic and inelastic forces, 

damping forces depending on the displacements u, the velocities 𝐮̇ and the time t. 𝜃 
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represents a damage parameter (such as crack length or loss in stiffness, etc.) and E 

represents the influence of environmental and operational conditions on the equation of 

motion (such as temperature, humidity, etc.). The external force vector, F is divided 

into two parts which are operational loads, Fop and test loads, Ftest.  For example, there 

is no test load developing during ambient vibration tests and therefore it is zero in that 

case. Equation (5.2) represents the fundamentals of the damage detection process. g is a 

non-linear function for the evaluation of the change in damage parameter, 𝜃. Therefore, 

equation (5.2) projects into the future in each step and give information about the 

remaining service life. However, due to the statistical variations in measurements, 

assumptions and uncertainties in the future loads and damage propagation models, the 

estimation of remaining service life is not an easy task, and it is a probabilistic problem 

rather than the deterministic one. Further, Fritzen and Kraemer (2009) state that the 

evaluation of damage and the dynamic response of structures have different time scales. 

The propagation of damage in structures is a relatively slow process with respect to 

vibration measurements of structures. Therefore, during a damage detection process, 

investigated damage parameter 𝜃 is assumed to be unchanged. 

The damaged dynamic response of the structure, q(t) can be described as  

 

 ( ) ( , , , , )t E t=q d u u  (5.3) 

 

This equation relates the internal model parameters with the output variables such as 

measured strains or accelerations, etc. Similarly, transformation of the input signals, x(t) 

into the forces can be represented as 

 

  ( ) ( , , ( ))test t E t= d xF  (5.4) 

 

Here, x(t) may represent the action of ambient excitation, impact hammer and 

controlled forces. In equations (5.3) and (5.4), damage parameter 𝜃 includes any sensor 

or actuator failure. Although above descriptions seem like a direct solution to obtain the 

damage parameter 𝜃, this parameter cannot be obtained directly. Instead, changes in the 

dynamic response are investigated in the damage detection process and the results are 

linked to the damage parameter. To do so, the damaged dynamic response of the 

system, q(t) is compared with an earlier measured baseline response, 𝐪0(t) which 

corresponds to the undamaged state of the system. The difference between q(t) and 
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𝐪0(t) arises due to the parameters of damage, 𝜃 and operational and environmental 

conditions, E. In the literature, this is known as the forward problem and it is described 

as  

 
0 ( , )E = − =q q q f  (5.5) 

 

However, in the damage detection process, damaged response, q and the initial response 

𝐪0 are known and damage parameter, 𝜃 is tried to be obtained. Therefore, damage 

detection is an inverse problem and described as 

 

 1( , )E −= qf  (5.6) 

 

The difficulty in solving this inverse problem arises because the solution is not unique 

due to the incomplete measurement data or inconsistent solutions because of the 

measurement noise level. The aim of damage detection is to maximize the correlation 

between the damage parameter, 𝜃 and the selected damage feature. In damage detection 

process, time responses q(t) and 𝐪0(t) are not directly used; instead, dynamic 

characteristics from frequency domain q(ω) or modal domain q(ω𝑛) are extracted to 

have a lower dimensional parameter space. Minimization of the parameters leads to a 

linear or non-linear optimization problem to be solved. In addition, selection of the 

proper damage sensitive features is an important task. However, numerous possible 

damage patterns may occur in the structures and numerous damage sensitive features 

are available. Therefore, damage detection is a problem-dependent process and there is 

no individual methodology to solve all damage detection problems, which makes 

selection of a proper approach disputable (Fritzen and Kraemer, 2009). 

 

5.1.2. A General Literature Review on the Damage Detection Methods 

 

There are numerous damage detection methods in the literature which have 

advantages and disadvantages based on the area of their utilization. Therefore, damage 

detection techniques can be classified from many different points of views, and they 

have various subbranches. In Table 5.1, some of the classifications of these techniques 

have been presented with their explanations. 
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Damage detection of structures can be performed in conjunction with on-line 

and off-line structural health monitoring (SHM) techniques. An on-line SHM technique 

means the monitoring of structures during operation of the structure and an off-line 

SHM technique means the monitoring of structures during maintenance. Non-

destructive testing methods are the most attractive ones among the damage detection 

techniques since they can be applied with on-line SHM methods which enables damage 

assessment of structures under service. At the present time, ongoing developments in 

technology of sensors, data acquisition systems and the computer processor capacities 

make it possible to deal with large amount of data, which makes vibration-based 

damage detection methods very attractive among the non-destructive testing methods. 

Such statistics based damage detection techniques are preferred over visual inspection 

and localized experiments (Mahmood et al., 2014).  

 

Table 5.1. Classification of damage detection techniques 

Classification Types Explanation Reference 

Performance to 

detect damaged 

state 

 

 

Existence 
determines whether the damage exists in the 

structure or not 

Rytter, 1993 

Location determines the location of the damage 

Type determines the type of the damage 

Extension determines the severity of the damage 

Prognosis 
determines remaining service life of the 

structure 

Inspection 
Local a local part of the structure is analysed Fritzen and Kraemer, 

2009 
Global the whole structure is analysed 

Model 

 or 

 non-model 

based 

Model 

based 

results are compared with those obtained 

from an analytical model 

Ooijevaar, 2014 Non-

model 

based 

comparison of damage sensitive parameters 

obtained from two different measurements 

of the structure 

Baseline 

 or 

 non-baseline 

Baseline 

response of the structure measured at earlier 

stage is used to compare damaged and 

undamaged states 
Worden et al., 2007 

Non-

baseline 

current response of the structure is 

compared with the expected behaviour of 

the structure 
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The main idea behind the vibration-based damage detection methods is that the 

dynamic behavior of a structure changes if the structure experiences any damage 

(Ooijevaar, 2014). Damage in a structure affects the physical properties of the structure 

such as mass, stiffness and damping. Any change in these physical properties directly 

affects the dynamic behavior of the structure which is a function of the mentioned 

physical properties. The dynamic behavior of a structure gives the information about the 

damage in a structure. It can be expressed in time, frequency and modal domain. 

Therefore, vibration-based damage detection techniques also have many subbranches 

that gather under three main categories which are time, frequency and modal-based 

methods. The first studies on vibration-based damage detection was on the natural 

frequency or modal damping change with the structural damage (Cawley and Adams, 

1979). This was one of the first modal-based damage detection techniques. Now, 

researchers also focus on the statistical time series methods such as cross-correlations in 

time domain, and enhanced signal processing methods such as Wavelet and Hilbert 

transforms in frequency domain. Different methods are classified based on their 

approach to the damage detection problem such as detecting changes in modal 

frequencies, mode shapes or structural flexibility, damage index method, modal residual 

vectors method, etc. Besides, matrix update methods, nonlinear methods, computational 

intelligence methods such as neural networks and genetic algorithms are also available 

in the literature. These methods are also known as data-based damage identification 

methods. Some of these methods are discussed in the following paragraphs. 

The existence of damage in a structure changes its natural frequencies. Since the 

measurements of frequencies are quick and practical, it is very often used in damage 

detection of structures. Measured frequencies are compared with those obtained from 

the undamaged state of the structure or those obtained from the analytical model of the 

structure.  

In the late seventies, Cawley and Adams (1979) presented one of the first types 

of frequency change methods in damage detection. They compared the ratios of the 

natural frequencies obtained from response measurements with those obtained from the 

analytical model. They stated that the existence of damage was revealed immediately by 

checking the natural frequency changes without any computations. Kim et al. (2003) 

proposed a method to estimate damage in structures using a few natural frequencies. 

They state that the frequency change method is preferred due to the simplicity in its 

measurement. However, the usage of natural frequencies in damage detection is very 
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limited. Their reason for this is that severe damage may result in significantly low  

changes in natural frequencies and the errors in ambient measurements can cause 

significant uncertainty in frequencies. In addition, Farrar and Cone (1994) have 

observed that a significant change in natural frequencies occurs just after the final stage 

of the structural damage and they have concluded that it is too late to prevent the 

structure from failure when the damage is detected by changes in natural frequencies. 

Therefore, more sensitive methods have been searched in the literature. 

After realizing that the natural frequency observations cannot give a detailed and 

early damage information, researchers have focused on using changes in mode shapes. 

Modal shapes have found to be much more sensitive to damage. Mode shapes are also 

found to be sensitive to local damage while frequency change gives a global 

information. Salawu and William (1995) worked on a reinforced concrete bridge and 

studied on the damage-detection sensitivity of natural frequencies, damping values, 

frequency response functions and mode shapes. They used a modal assurance criterion 

(MAC) to investigate the mode shape quality. They investigated that MAC values 

obtained from mode shapes showed significant change in case of damage and concluded 

that investigation of mode shapes is more reliable than investigating the shifts in natural 

frequencies. Moreover, mode shapes can give information about the location of the 

damage. However, as Kim et al. (1993) explained, there are some reasons to discuss the 

feasibility of using mode shapes as damage sensitive parameters. Since the large 

structures generally faces a local damage rather than a global one, mode shapes of the 

lower modes may not be affected by the damage. Further, mode shape identification is 

very sensitive to the random errors induced by measurement noise or human 

interference. Number of sensors and sensor locations also have an influence on the 

quality of the identified mode shapes. 

Another approach is to use modal shapes curvatures as damage indicators. Mode 

shape curvature for a beam can be estimated numerically from mode shapes. It is known 

from the basic engineering knowledge that the curvature is inversely proportional to the 

flexural stiffness of the beam. The curvature is also the second derivative of the bending 

deflection. Therefore, any damage affects the flexural stiffness, and so the bending 

deflection. Reduction in the stiffness increases the curvature of the mode shapes. 

Change of mode shape curvature gives information about the location of the damage. 

Further, the extent of the damage can be predicted by investigating the amount of 

change in the mode shape curvature (Than Soe, 2013). Maeck and De Roeck (2000) 
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arrived the conclusion in their study that using modal curvatures gives more sensitive 

results in local damage identification than using the modal displacements. 

Damage in a structure can be estimated by observing the change in the flexibility 

matrix (Jaishi and Ren, 2006). Investigating the difference between the flexibility 

matrices before and after damage, damage and its location can be estimated by checking 

the largest value among the columns of the difference matrix. Farrar and Doebling 

(1999) compared the change in flexibility, mode shape curvature methods and strain 

energy and reached the conclusion that strain energy-based methods was the most 

successful ones in detecting damage. As concluded in the natural-frequency-change 

methods, it is concluded that stiffness and flexibility of the system result in a change in 

case of severe damage. Further, these methods generally assume that mass matrix of the 

system is not affected by damage. 

Another method is the damage index method which is also known as modal 

strain energy method. In this method, modal strain energy is compared for undamaged 

and damaged states. According to Carden and Fanning (2004) and Humar et al. (2006), 

the modal strain energy, SEi, in an Euler-Bernoulli beam for a certain mode can be 

calculated as 
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When the beam is split into the elements, the strain energy in an element for a certain 

mode is calculated as 
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where j and j+1 define the limits of element j. Strain energy of each element is related 

with the strain energy of the whole beam for a certain mode by using the fractional 

strain energy FSEij which is defined as the ratio of the element strain energy SEij to the 

beam strain energy SEi. Similar expressions can also be defined for damaged case. The 

comparison of the differences between the fractional strain energies gives information 

about the location of the possible damage. Farrar and Doebling (1999) used this damage 

indicator on a bridge and compared it with the other damage detection methods. They 

revealed that modal strain energy method gives more successful results than the change 
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in mode shape curvature. They also concluded as the disadvantage of this method that 

detection of damage would be impossible if the damaged member does not significantly 

contribute to the strain energy of the estimated modes. 

In the literature, there are numerous damage detection methods based on 

computational intelligence. Torres (2017) has classified these methods in five groups 

which are neural networks, support vector machine, fuzzy inference, metaheuristic 

algorithms and hybrid methods. According to Yu and Xu (2011), the computational 

intelligence methods based on a constrained optimization problem has been considered 

as the most successful ones. 

Chang et al. (2000) employ an iterative neural network to detect various damage 

scenarios for a clamped-clamped T-beam and successfully identified location and extent 

of damages in the beam. Chandrashekhar and Ganguli (2009) employed a fuzzy logic 

system to estimate changes in modal curvatures. Numerical simulations of the finite 

element model of a cantilever beam showed a good estimation of structural damage. 

Mares and Surace (1996) detected the location and extent of the damage in beams and 

trusses using the classical genetic algorithm. Boonlong (2014) used a cooperative 

coevolutionary genetic algorithm to detect damages in beams by using vibration 

measurements. Yu and Xu (2011) used an ant colony optimization technique to detect 

damages of two and three-story building models. Zhu et al. (2017) used a bird mating 

optimizer algorithm to identify damages in structures. They minimized the differences 

between the measured and analytical natural frequencies of damaged and undamaged 

states. Many more researchers have used metaheuristic-based methods in structural 

damage identification. Swarm intelligence (Yu et al., 2012), Big bang-big crunch 

(Tabrizian et al., 2013), Global artificial fish swarm algorithm (Yu and Li, 2014) and 

Firefly algorithm (Pan and Yu, 2015) are some of these techniques studied in the 

literature. Furthermore, hybrid algorithms which means the usage of a combination of 

several optimization algorithms have been used by many researchers. Rao and 

Anandakumar (2007) performed a combination of a particle swarm algorithm and the 

nelder-mead algorithm to obtain the optimal locations of sensors for SHM. Sandesh and 

Shankar (2010) used a hybrid of particle swarm algorithm and genetic algorithm on a 

thin plate to detect multiple crack damages. They used a finite element model for 

comparison. Identification was performed by minimizing the difference between 

measured and estimated time-domain acceleration data. Fatahi and Moradi (2018) 

employed particle swarm algorithm with multi-elitist artificial bee colony to detect 
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multiple cracks in the frames using a limited number of measured natural frequencies. 

Torres (2017) proposed some hybrid algorithms to improve the effectiveness of the 

methods. In his study, multi-particle collision algorithm with Hooke-Jeeves which is 

already a hybrid algorithm was used with opposition, center-based sampling or rotation-

based sampling. He also proposed a hybrid algorithm by combining q-gradient and 

Hooke-Jeeves algorithms. He verified his proposed damage detection methods on 

numerical models and different experimental structures, concluding good estimations of 

location and severity of damage even if some false positive results were obtained. 

 

5.2. Probabilistic Damage Detection Measure 

 

In the literature, only the relative changes in MPVs of the stiffness parameters 

from the undamaged condition are generally investigated for the purpose of damage 

detection. However, investigating the relative changes only does not involve the 

calculated uncertainties for the stiffness parameters. Therefore, a probabilistic damage 

detection measure, which is already proposed in the literature, has been used in the 

present study to obtain the relative change in the stiffness parameters in a probabilistic 

framework.   

Vanik et al. (2000) define the probability that the ith parameter of the possibly 

damaged condition is less the ith parameter of the undamaged condition as  
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where di is the damage extent defined for the ith parameter in the interval of [0 , 1], 𝜃𝑖
𝑢𝑑 

and 𝜃𝑖
𝑝𝑑

 are the stiffness scaling parameters of the undamaged and possibly damaged 

conditions for the ith parameter, respectively. Dud and Dpd represent the sets of the 

measured data obtained from the structure in its undamaged condition and its later 

condition, which is possibly its damaged condition, respectively. Vanik et al. (2000) 

have defined 𝑃𝑖
𝑑𝑎𝑚(𝑑𝑖) as the probabilistic damage measure and it shows the 

probability of the decrease in parameter 𝜃𝑖 with the damage extent di compared to the 

undamaged condition.  
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Calculation of the damage measure defined in equation (5.9) requires the 

marginal posterior PDF, p(𝜃𝑖
𝑢𝑑 | Dud) (or p(𝜃𝑖

𝑝𝑑
 | Dpd) for a possibly damage condition), 

of each updated stiffness parameter 𝜃𝑖. However, the posterior PDF which is obtained in 

equation (4.5) is the joint PDF of all the updated parameters in the parameter space. 

Therefore, p(θ | D) given in equation (4.5) must be integrated over the whole parameter 

space to obtain the posterior marginal PDF of the individual stiffness parameter 𝜃𝑖. 

 For the later definitions, the parameter vector θ is decomposed as θ = [𝜃𝑖   𝛉
𝑖−]T 

where 𝛉𝑖− = [ θ1 , θ2 , …. , θi-1 , θi+1 , …. , 𝜃𝑁𝜃
]. Then, the PDF p(θ | D) can be written as 

p([𝜃𝑖   𝛉
𝑖−]T | D). Then, the marginal PDF of the parameter 𝜃𝑖 can be defined as 

 

 ( ) ( )
T

i i

i iP P d  − − =  D θ D θ  (5.10) 

 

Here, p([𝜃𝑖   𝛉𝑖−]T | D) is integrated over the parameter space 𝛉𝑖−. However, this 

integration generally cannot be performed analytically (Vanik et al., 2000). Therefore, 

various numerical sampling methods are developed in the literature to handle this 

integration such as Metropolis-Hasting sampler and Gibbs sampler defined under the 

Markov Chain Monte Carlo samplers (Lye et al., 2021). However, these sampling 

methods are not introduced in this present study. Instead, the asymptotic expansion that 

is developed by Papadimitriou et al. (1997) is employed to approximate the integral. 

They develop this asymptotic approximation for a joint PDF that has a single peak point 

at the MPVs of the parameters by using Laplace’s method. The final form of this 

approximation is provided as  
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where φ represents the standard normal PDF, 𝜃𝑖 is the MPV of the stiffness parameter 

𝜃𝑖 and  𝜎̂𝑖 is the posterior standard deviation of 𝜃𝑖. 

 Vanik et al. (2000) have estimated the integral in equation (5.9) by using the 

Gaussian asymptotic approximation provided in equation (5.11) as 
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where Φ represents the standard normal cumulative distribution function (CDF).   

  

5.3. Applications on the IASC-ASCE Benchmark Problem 

 

The formulations provided in Chapter 3 and 4 are applied on the FE models 

which are simple with a low damping ratio and have no modelling error. Therefore, 

c.o.v. of the updated parameters have still relatively low small values, and it has been 

concluded that this problem may stem from the FE models used in the numerical 

applications. Besides, previous chapters just focus on the estimation of most probable 

values of the parameters and no study is performed for a probabilistic damage 

identification. Therefore, in this chapter, the algorithms developed in Chapter 3 and 4 

are applied on a benchmark problem that is designed by the IASC-ASCE Structural 

Health Monitoring (SHM) Task Group in the early 2000s. This benchmark problem 

includes different cases with various damage scenarios, which gives a chance to take the 

formulations a step further from parameter estimation to a damage detection process. 

This is one of the main objectives of this chapter.  

The benchmark structure is a four-story, two-bay by two-bay quarter-scale steel 

frame model tested in the Earthquake Engineering Research Laboratory at the 

University of British Columbia.  

The benchmark problem has been designed to be investigated in two phases 

(Phase-I and Phase-II). Each phase includes numerical models and experimental parts, 

and the IASC-ASCE SHM Task Group have provided all the analytical models and 

experimental data on the benchmark website in 2000s. Unfortunately, the benchmark 

website is not active today. However, FE analysis codes for Phase-I and the 

experimental data obtained for Phase-II are available on the website of Network for 

Earthquake Engineering Simulation (NEES) Database for Structural Control and 

Monitoring Benchmark Problems. 

 In Phase-I, In Phase-I of the benchmark problem, a 12-DOF shear building 

model and a 120-DOF model of the structure are constructed by the Task Group. Due to 

oversimplified assumptions in the analytical models, however, researchers do not 
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consider the discrepancies between FE models and the experimental structure in this 

phase (Das and Saha, 2018). Researchers deal with only the simulated data to study on 

various types of damage, effects of sensor noise, etc. Therefore, this phase is considered 

just as an analytical study in the literature and the experimental part of Phase-I is used 

to obtain some preliminary results to set up Phase-II. In Phase-II, the FE model 

provided by the group is open to modifications, which gives an extra flexibility to the 

researchers to analyze damage scenarios. Therefore, this phase is considered as the 

experimental part of the benchmark problem in the literature. Unfortunately, FE 

analysis codes of this phase are not available.    

In the present study, as researchers do in the literature, Phase-I is investigated as 

a numerical study and Phase-II is investigated as an experimental study. Phase-I 

includes different cases for simulations and each case includes various damage 

scenarios. The cases include either a 12-DOF shear building model or a more complex 

120-DOF model This gives a chance to analytically investigate the effect of modelling 

error in the updating process. This compensates another main objective of the present 

study since no modelling error exists in the previous chapters.  

The experimental Phase-II also includes various damage scenarios that are 

induced on the physical structure. This phase has given a chance to deal with higher 

modelling error levels since there exists significantly higher uncertainties between the 

actual structures and their mathematical models.   

In this chapter, a comparative study is also performed to investigate the effects 

of modelling error on the MPVs and the posterior uncertainties of the updated 

parameters by using the formulations developed in Chapter 3 by using system modes 

concept, and by using the sensitivity-based Bayesian model updating procedure 

developed in Chapter 4. The results are also compared with those available in the 

literature for the same benchmark problem. 

The methodologies proposed in the previous two chapters are applied on the 

benchmark problem. Figure 5.1 shows the benchmark structure, which is a four-story, 

two-bay by two-bay quarter-scale steel frame model. The structure has a 2.5 m × 2.5 m 

floor plan with a total height of 3.6 m. All members are made of hot-rolled 300 W grade 

steel with a nominal yield strength of 300 MPa. All columns are oriented to be stronger 

in the x direction and all beams are oriented to be stronger in the vertical z direction 

(Johnson et al., 2004). There are two braces on each outer face of each floor, which 
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makes a total of eight bracings for each floor as shown in Figure 5.1. Table 5.2 provides 

section properties of the structural members. 

 

Table 5.2. Properties of Structural Members  

(Source: Johnson et al., 2004) 

Property  Columns Beams Braces 

Section type  B100×9 S75×11 L25×25×3 

Cross-sectional area, A (m2) 1.133 × 10-3 1.43 × 10-3 0.141 × 10-3 

Iy - strong direction (m4) 1.97 × 10-6 1.22 × 10-6 0 

Ix - weak direction (m4) 0.664 × 10-6 0.249 × 10-6 0 

Torsion constant, J (m4) 8.01 × 10-9 38.2 × 10-9 0 

Young’s modulus, E (Pa) 2 × 1011 2 × 1011 2 × 1011 

Shear modulus, G (Pa) 0.77 × 1011 0.77 × 1011 0.77 × 1011 

Mass per unit volume, ρ (kg/m3) 7800 7800 7800 

 

 

 

 

 

 

Figure 5.1. IASC-ASCE Benchmark Model Structure  

(Source: Johnson et al., 2004) 
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5.3.1. Numerical Studies: Phase-I of the IASC-ASCE Benchmark 

Problem 

 

In this section, Phase-I of the IASCASCE Benchmark problem is investigated in 

detail to introduce the probabilistic damage detection. 

 

5.3.1.1. Description of the Benchmark Problem: Phase-I 

 

Phase-I of the benchmark problem is explained in detail in the paper published 

by Johnson et al. (2004). In this section, information necessary to describe this phase is 

extracted from their publication.  

In this phase, two FE models are constructed by the task group to simulate the 

response data and these models with all the FE analysis codes are provided to the 

researchers in the MATLAB environment. The first one is a 12-DOF model which is 

constructed by shear building assumptions. The model has two translational DOFs in 

the x and y directions assuming the floors move as rigid diaphragms, and one rotational 

DOF about the center column, which makes a total of 3 DOFs per floor. All other 

motions are constrained.  

The second one is a 120-DOF model that assumes the translations in the x and y 

directions, and rotation about the center column for all nodes in each floor to be equal. 

This makes the floors rigid for the in-plane motions. All the remaining out-of-plane 

motions (translation in the z direction, rotations about x and y axes) are not constrained, 

which results in 30 DOFs per floor. This model is more complex than the 12-DOF 

model. Thus, it gives researchers an opportunity to investigate the modelling error 

effects between these two models as encountered in real life. To this end, Johnson et al. 

(2004) recommend that the 120-DOF model should be used to simulate response data as 

if measuring an actual structure and the12-DOF model can be used as the identification 

model to account for the modeling error between the analytical models.  

Phase-I includes six different cases for simulations. Cases are generated to have 

either the 12-DOF or 120-DOF model to simulate response data, a different excitation 

scenario, symmetric or asymmetric mass distribution on the top floor, etc. Table 5.3 

defines the properties of each case. For all cases, there are four slabs on each bay of 

each floor. There are four 800 kg slabs at the first floor, four 600 kg slabs at the second 
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floor and third floor. For Cases 1, 2 and 3 with a symmetric top floor mass distribution, 

there are four 400 kg slabs at the fourth (top) floor. For Cases 4, 5 and 6 with 

asymmetric top floor mass distribution, there are three 400 kg slabs and one 550 kg slab 

(shaded slab in Figure 5.1) at the fourth (top) floor. In the provided FE analysis codes, 

mass matrix is modeled with lumped mass assumptions for both 12-DOF and 120-DOF 

models.  

The models in Case 1 and Case 2 are excited with independent loadings on the 

center column at each floor level in y direction only and those in Case 3, 4, 5 and 6 are 

excited at the center column of the top floor in the x and y directions. For all cases, 

excitations are modeled as independent Gaussian white noise processes filtered by a 

sixth order low-pass filter with a cut-off frequency of 100 Hz.   

Measurements are assumed to be acquired as acceleration response data at the 

middle column of each outer face of each floor, which results in a total of 16 

measurement locations. Figure 5.2 illustrates these measurement points on each floor 

for Cases 1 to 5.  In Case 6, the second and fourth floor are assumed to be measured 

only to simulate incomplete sensor data scenario. 

 

 

Figure 5.2. Measurement points on each floor for Phase-I of the benchmark problem 

 

Phase-I also includes six different damage scenarios. These damage scenarios 

are illustrated in Figure 5.3 and explained in Table 5.4.  
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Table 5.3. Considered Simulation Cases in Phase-I 

Case 

Data 

Generation 

Model 

Top Floor Mass 

Distribution 

Excitation  

Type  
Damage Scenario 

Case 1 12 DOF Symmetric 
Ambient 

(at each floor in y-dir only) 
i, ii 

Case 2 120 DOF Symmetric 
Ambient 

(at each floor in y-dir only) 
i, ii 

Case 3 12 DOF Symmetric 
Shaker 

(x and y-dir on roof only) 
i, ii 

Case 4 12 DOF Asymmetric 
Shaker 

(x and y-dir on roof only) 
i, ii, iii, iv, vi 

Case 5 120 DOF Asymmetric 
Shaker 

(x and y-dir on roof only) 
i, ii, iii, iv, v, vi 

 

 

 

 

Figure 5.3. Damage scenarios in Phase-I of the Benchmark Problem  

(Source: Johnson et al., 2004) 
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Table 5.4. Descriptions of the damage scenarios in Phase-I of the Benchmark Problem 

Damage 

Scenario 
Description 

i There is no stiffness in any of the braces of the first floor  

ii There is no stiffness in any of the braces of the first and third floor 

iii 
There is no stiffness in one brace of the first floor  

(brace on the east bay of the north face of the first floor) 

iv 

There is no stiffness in one brace of the first floor and in one brace of the third floor  

(brace on the east bay of the north face of the first floor and  

brace on the north bay of the east face of the third floor) 

v Damage scenario iv  +  beam-column connection on the east bay of the north face weakened 

vi 
1/3 stiffness loss in one brace of the first story 

(brace on the east bay of the north face of the first floor) 

 

 

It should be noted that the last column in Table 5.3 provides the damage 

scenarios recommended by the task group to be investigated for the corresponding case. 

Accordingly, only the damage scenarios i and ii are recommended to be investigated for 

Cases 1 – 3 and Cases 4 – 6 includes damage scenarios that are relatively harder to 

detect. Case 4 does not include damage scenario v since 12-DOF model assumes 

perfectly rigid floors which makes weakening in beam-column connection meaningless. 

Case 5 and 6 includes all the damage scenarios.  

The actual stiffness values of the 12-DOF model and percent loss in stiffness 

values are provided for all damage scenarios in Table 5.5 and Table 5.6, respectively. 

Table 5.7 provides the natural frequencies of the 12-DOD and 120-DOF models for 

Case 1 – 3. Eigen frequencies of the 12-DOF model with asymmetric mass defined for 

Case 4 can be found in Table 5.8 and Table 5.9 provides those of the 120-DOF model 

with asymmetric mass defined for Case 5. 

 

 

 



142 

 

Table 5.5. Stiffness Values (in MN/m) of 12-DOF Model for Each Story   

(Source: Johnson et al., 2004) 

Story    Damage scenarios 

DOF Undamaged (i) (ii) (iii) (iv) (v) (vi) 

1 

x 106.60 58.37 58.37 106.60 106.60 106.60 106.60 

y 67.90 19.67 19.67 55.85 55.85 55.85 63.89 

θ 232.02 81.30 81.30 209.11 209.11 209.11 225.35 

2 

x 106.60 106.60 106.60 106.60 106.60 106.60 106.60 

y 67.90 67.90 67.90 67.90 67.90 67.90 67.90 

θ 232.02 232.02 232.02 232.02 232.02 232.02 232.02 

3 

x 106.60 106.60 58.37 106.60 94.54 94.54 106.60 

y 67.90 67.90 19.67 67.90 67.90 67.90 67.90 

θ 232.02 232.02 81.30 232.02 210.78 210.78 232.02 

4 

x 106.60 106.60 106.60 106.60 106.60 106.60 106.60 

y 67.90 67.90 67.90 67.90 67.90 67.90 67.90 

θ 232.02 232.02 232.02 232.02 232.02 232.02 232.02 

 

 

Table 5.6. Percent Loss in Stiffness Values of 12-DOF Model for various damage 

scenarios (Source: Johnson et al., 2004) 

Story  Damage Scenarios 

DOF (i) (ii) (iii) (iv) (v) (vi) 

1 

x 45.24 ％ 45.24 ％ 0 0 0 0 

y 71.03 ％ 71.03 ％ 17.76％ 17.76％ 17.76％ 5.92％ 

θ 64.96％ 64.96％ 9.87％ 9.87％ 9.87％ 2.88％ 

2 

x 0 0 0 0 0 0 

y 0 0 0 0 0 0 

θ 0 0 0 0 0 0 

3 

x 0 45.24 ％ 0 11.31％ 11.31％ 0 

y 0 71.03 ％ 0 0 0 0 

θ 0 64.96％ 0 9.16％ 9.16％ 0 

4 

x 0 0 0 0 0 0 

y 0 0 0 0 0 0 

θ 0 0 0 0 0 0 
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Table 5.7. Natural Frequencies (Hz) of 12-DOF and 120-DOF models for Case 1 – 3 

   Damage Scenarios 

Undamaged  i  ii 

12 - DOF 120 - DOF  12 - DOF 120 - DOF  12 - DOF 120 - DOF 

  9.41  y   8.20  y    6.24  y   4.91  y    5.82  y   4.36  y 

11.79  x   8.53  x    9.91  x   6.61  x    9.51  x   5.77  x 

16.53  θ 13.95  θ  11.73  θ   8.82  θ  11.01  θ   7.74  θ 

25.60  y 22.54  y  21.53  y 18.38  y  14.89  y 10.26  y 

32.07  x 24.24  x  28.92  x 21.06  x  24.91  x 15.22  x 

38.85  y  35.58  y   37.37  y  32.56  θ  28.41  θ  18.32  θ  

45.17  θ 39.05  θ  38.28  θ 33.98  y  36.06  y 33.80  y 

48.37  y  39.73  x   47.34  x  38.09  x   41.35  y  37.47  y  

48.68  x 46.12  y  47.83  y 45.80  y  46.79  x 37.83  x 

60.60  x  55.16  x   59.99  x  54.68  x   54.34  x  47.81  x  

68.64  θ 60.75  θ  65.31  θ 58.11  θ  63.64  θ 58.01  θ 

85.51  θ 79.46  θ  83.31  θ 78.80  θ  72.61  θ 66.38  θ 

 

 

Table 5.8. Natural Frequencies (Hz) of 12-DOF Model with Asymmetric Mass 

Distribution for Case 4 

 
Damage Scenarios 

Undamaged (i) (ii) (iii) (iv) (v) (vi) 

9.29 y 6.18 y 5.76 y 8.79 y 8.79 y 8.79 y 9.15 y 

11.64 x 9.80 x 9.39 x 11.64 x 11.50 x 11.50 x 11.64 x 

16.19 θ 11.63 θ 10.90 θ 15.80 θ 15.68 θ 15.68 θ 16.07 θ 

25.27 y 21.27 y 14.78 y 24.37 y 24.36 y 24.36 y 24.98 y 

31.66 x 28.59 x 24.70 x 31.66 x 30.82 x 30.82 x 31.66 x  

38.26 y 36.87 y 28.22 θ 37.77 y 37.76 y 37.76 y 38.10 y 

44.20 θ 37.93 θ 35.97 y 43.61 θ 42.91 θ 42.91 θ 43.99 θ 

44.75 y 46.81 x 40.60 y 47.68 y 47.68 y 47.68 y 47.72 y 

47.97 x 47.54 y 46.46 x 47.96 x 47.96 x 47.96 x 47.97 x 

59.81 x 59.63 x 53.68 x 59.81 x 58.18 x 58.18 x 59.81 x 

66.90 θ 64.67 θ 63.44 θ 66.58 θ 66.56 θ 66.56 θ 66.79 θ 

83.23 θ 82.89 θ 71.58 θ 83.18 θ 81.76 θ 81.76 θ 83.21 θ 
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Table 5.9. Natural Frequencies (Hz) of 120-DOF Model with Asymmetric Mass 

Distribution for Case 5 

 Damage Scenarios 

Undamaged (i) (ii) (iii) (iv) (v) (vi) 

   8.09 y 4.86 y 4.30 y 7.61 y 7.61 y 7.59 y 7.86 y 

   8.40 x 6.53 x 5.69 x 8.40 x 8.13 x 8.13 x 8.40 x 

13.78 θ 8.74 θ 7.65 θ 13.38 θ 13.21 θ 13.21 θ 13.58 θ 

22.27 y 18.12 y 10.20 y 21.34 y 21.30 y 21.29 y 21.78 y 

23.92 x 20.77 x 15.11 x 22.95 x 22.95 x 22.95 x 23.92 x 

35.21 y 32.12 θ 18.22 θ 34.49 y 34.49 y 34.49 y 34.87 y 

38.58 θ 33.62 y 33.53 y 37.20 θ 37.20 θ 37.20 θ 38.30 θ 

39.44 x 37.68 x 37.00 y 39.17 x 39.17 x 39.17 x 39.42 x 

45.95 y 45.60 y 37.30 x 45.84 y 45.84 y 45.83 y 45.88 y 

55.02 x 54.51 x 47.63 x 53.16 x 53.16 x 53.16 x 55.02 x 

60.21 θ 57.51 θ 57.48 θ 59.81 θ 59.81 θ 59.81 θ 59.99 θ 

79.22 θ 78.53 θ 65.83 θ 77.50 θ 77.50 θ 77.50 θ 79.16 θ 

 

 

5.3.1.2. Analyses and Results of Each Simulation Case of Phase-I  

 

In this section, all cases are investigated one by one in detail with the 

recommended damage scenarios provided in Table 5.3. To do so, FE models are 

downloaded with all the FE analysis codes in the MATLAB environment from the 

website of Network for Earthquake Engineering Simulation (NEES) Database for 

Structural Control and Monitoring Benchmark Problems. Then, the FE model in each 

case is updated by using the sensitivity-based Bayesian Model Updating methodology 

presented in the present study. The updating results are compared with those of the 

previous formulations presented in the previous thesis progress reports. The results are 

compared to those obtained in the model updating literature, which employ the same 

benchmark problem.  

In this study, independent Gaussian white noise signals are used to excite the 

structure for all cases to simulate low-amplitude ambient vibrations. All response data 

are considered as acceleration measurements, and each is contaminated with a Gaussian 

white noise signal with a 10% of the root mean square (RMS) of the maximum 

acceleration response to simulate measurement noise (unless otherwise stated). In the 

published literature, damping ratio of each mode of the physical laboratory structure is 
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reported to be approximately 1%. Therefore, the damping ratio of each mode is taken to 

be 1% for all simulation cases in Phase-I. 

The Phase-I results of the present study are compared with those of four 

different studies. First and second ones are the results obtained by the previous 

formulations presented as “Case 1 and Case 2” in CHAPTER 2. As a reminder of these 

cases, assumption of each case is defined as follows. In the present study, Case 1 is 

renamed as Algorithm 2 and Case 2 is renamed as Algorithm 1 since the word “Case” 

conflicts with the Case definitions in Phase-I of the benchmark problem. 

 

• Algorithm 1: Modelling error variance is considered to be the same for each 

mode and updated in each iteration as a soft constraint. This case corresponds to 

a similar study performed by Hızal and Turan (2020). This case is named as 

Algorithm 1 since Case 2 is formulated before Case 1.  

• Algorithm 2: Modelling error variance of each mode is considered to be 

different for each mode and each is updated as soft constraints. 

• Both algorithms employ system modes to account for modelling error.  

          

Third and fourth studies to compare the results are the ones in the literature, 

which are published by Yuen et al. (2004) and Lam et al. (2004). Both employ a 

Bayesian model updating technique and implement their methodologies on each 

simulation case of Phase-I of the IASC-ASCE benchmark problem. Yuen et al. (2004) 

uses a two-stage updating methodology based on the Bayes’ theorem. In the first stage, 

they employ a model-based statistical modal identification technique called MODE-ID. 

In this stage, they construct an objective function by using the prediction error between 

the time-domain response measurements obtained from the FE model and the actual 

structure and extract the modal data. In the second stage, they use the obtained modal 

properties in a Bayesian model updating strategy similar to the one presented in this 

present study.  

Lam et al. (2004) use a one-step statistical model updating methodology based 

on the Bayes’ theorem. They combine the modal identification and model updating 

steps and update the modal and model parameters simultaneously in one step. 

In this study, for all cases, the prior PDF of each 𝜃𝑗 is set to follow a truncated 

Gaussian distribution with mean 𝜃𝑗  = 1 for j = 1, 2, 3, 4 and a diagonal covariance 
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matrix having a prior variance value of 0.25 on each diagonal. This value corresponds 

to a relatively large c.o.v of 50% to have a non-informative prior distribution. The 

normal distribution is truncated as Lθ ≤ θ ≤  Uθ setting Lθ = 0 since negative stiffness 

value has not a physical meaning and Uθ = 2 since an increase in the stiffness is not 

expected in case of any damage. Further, mass is considered as well-known and not 

taken as an updating parameter since the exact mass of the measured model is already 

known in a numerical study. There is no need to consider the mass with a small prior 

variance.  

 

5.3.1.2.1. Analyses and Results for Case 1: 

 

This case includes 12-DOF model with symmetrical mass distribution. Four 

independent Gaussian white noise is used to excite the structure simulating the low-

amplitude ambient vibrations. Loadings are applied on the center column at each floor 

in the y direction (weak direction) only. Since the structure is symmetric for the 

undamaged condition, damage scenarios i and ii, no translational motion in the x 

direction and no torsional motion are expected for the perfectly ideal world of numerical 

studies. Therefore, a 4-DOF shear frame model, which is sufficient to represent the y-

direction dynamics, is employed as the model to be updated instead of the 12-DOF one. 

The same 4-DOF model is excited to obtain the response data from the structure. A 

stiffness scaling parameter 𝜃𝑗  is selected to scale the stiffness matrix of the jth story, 

which makes a total of four scaling parameters to be updated. Each substructure 

stiffness matrix, Kj, is constructed by using the shear building assumption with a size of 

4 × 4. Each inter-story stiffness is taken to be 67.9 MN/m from Table 5.5.  

MPVs of the stiffness scaling parameters and their corresponding uncertainties 

are obtained by using the sensitivity-based Bayesian model updating approach 

developed in the present study and by using Algorithm 1 and Algorithm 2 presented in 

the previous studies. The updating results are provided in Table 5.10 with their posterior 

c.o.v values (in parentheses) for undamaged condition (UD), damage scenarios i and ii. 

The results that are obtained by Lam et al. (2004) and Yuen et al. (2004) are also 

provided in the table for comparison. The results are also illustrated in Figure 5.4 with 

the error bars showing ∓1 posterior standard deviations (∓1𝜎). The stiffness loss is 

provided in Table 5.6 as 71.03% in the y direction for all stories in damage scenarios i 
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and ii, and it corresponds to an exact value of 0.2897 for the stiffness scaling parameters 

of the damaged floors. For the undamaged floors, exact value of the parameters is 1.00. 

The actual values are shown in Figure 5.4 by using black dashed lines for comparison 

purposes. 

Table 5.10. MPVs of stiffness scaling parameters and their posterior c.o.v.’s (%) for 

Case 1 

Damage 

Scenario 
Related Research 𝜃1 ( c.o.v. ) 𝜃2 ( c.o.v. ) 𝜃3 ( c.o.v. ) 𝜃4 ( c.o.v.) 

 Actual     1.00     1.00    1.00    1.00 

UD 

Present Study 1.00 (3.22) 1.01 (3.24) 1.00 (3.22) 1.00 (3.20) 

Algorithm 1 0.99 (0.14) 1.00 (0.07) 0.99 (0.06) 1.00 (0.05) 

Algorithm 2 0.99 (0.07) 1.01 (0.06) 0.99 (0.05) 1.00 (0.07) 

Yuen et al. (2004) 0.97 (0.50) 0.96 (0.40) 1.01 (0.27) 1.02 (0.32) 

Lam et al. (2004) 0.99 (1.79) 1.00 (2.21) 1.00 (1.68) 1.00 (2.30) 

i 

Actual     0.29     1.00      1.00     1.00  

Present Study 0.29 (0.51) 1.00 (0.34) 1.00 (0.34) 1.00 (0.24) 

Algorithm 1 0.29 (0.15) 1.00 (0.02) 0.99 (0.02) 1.00 (0.02) 

Algorithm 2 0.29 (0.08) 1.00 (0.03) 0.99 (0.02) 1.00 (0.02) 

Yuen et. al (2004) 0.28 (0.27) 0.98 (0.39) 1.01 (0.36) 1.01 (0.27) 

Lam et al (2004) 0.29 (2.41) 1.00 (2.03) 1.00 (1.40) 1.00 (2.12) 

ii 

Actual     0.29     1.00      0.29     1.00  

Present Study 0.29 (0.62) 1.00 (0.33) 0.29 (0.47) 1.00 (0.24) 

Algorithm 1 0.30 (0.03)    1.00 (0.004) 0.29 (0.01)  1.00 (0.003) 

Algorithm 2 0.30 (0.003)     1.00 (0.0003) 0.30 (0.003) 0.99 (0.00) 

Yuen et. al (2004) 0.28 (0.32)     0.99 (0.17) 0.29 (0.66) 1.01 (0.18) 

Lam et al (2004) 0.29 (2.74) 1.00 (0.88) 0.29 (2.03) 1.00 (0.76) 

 

 

According to the results, all five methods can successfully detect the damages 

introduced in damage scenarios i and ii without giving any false damage alarm. All the 

undamaged stiffness parameters give a value close to 1. This is an expected result since 

there is no modelling error between the updated model and the measured one. Posterior 

c.o.v values obtained by the present study are found to be compatible with those 
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obtained in the literature. However, Algorithms 1 and 2 result in smaller c.o.v values as 

this was the discussion topic of the previous thesis progress reports. In fact, all the 

posterior c.o.v. values are small numbers in percent since there is no modelling error in 

the investigated case. 

 

 

Figure 5.4. Updated stiffness scaling parameters with ∓1𝜎 for Case 1 

In this case, extent and locations of damage are estimated in story level since the 

excitation type, updated model and symmetry in the measured model allow only the 

damage identification in story level. Damage extent for each damage scenario is decided 

by using the probabilistic framework provided in Section 5.2. Figure 5.5 presents the 

posterior CDF of each damage scenario calculated by using equation (5.9) for the 

formulations in the present study. In Figure 5.5 (a) for damage scenario i, according to 

the blue curve which represents 𝜃1, it has the probability that damage is 66.5% or higher 

(a) Undamaged (b) Damage Scenario, i 

(c) Damage Scenario, ii 
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is almost 1 and damage in 𝜃1 has a probability of 0.025 to exceed 72.5%. Therefore, the 

mean value of all probabilities is considered to give 70.2% stiffness loss for 𝜃1 where 

the actual value is 71.03%. The same interpretation is used for Figure 5.5 (b) and the 

damage in 𝜃1 is identified to be 70.3%, and the damage in 𝜃3 is identified to be 70.7% 

for damage scenario ii. Table 5.11 summarizes the damage detection results for Case 1.  

 

 

            (a) Damage scenario i                                               (b) Damage scenario ii                     

Figure 5.5. Probability of damage for the parameters in damage scenarios (a) i  and  

(b) ii for the present study (Case 1) 

 

Table 5.11. Damage detection results of Case 1 for the present study 

 Actual Present Study 

Damage Scenario 
Damage Location 

(Stiffness Loss) 

Damage Location 

(Stiffness Loss) 

i 
First Floor 

71.03 % 

First Floor 

70.20 % 

ii 

First Floor 

71.03 % 

 

Third Floor 

71.03 % 

First Floor 

70.70 % 

 

Third Floor 

70.03  
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5.3.1.2.2. Analyses and Results for Case 2: 

 

The only difference between Case 1 and Case 2 is that measured structural 

model is now the 120-DOF model, and the model to be updated is again the 12-DOF 

shear frame model. Both models have the symmetric mass distribution. Since 120-DOF 

model does not have shear building assumptions, the effects of modelling error exist in 

this case differently from Case 1. Loadings are applied on the center column at each 

floor in the y direction (weak direction) only. Since the 120-DOF structure model is 

symmetric for the undamaged condition, damage scenarios i and ii, the motion is 

restricted as a translational motion in the y direction only. Therefore, the 4-DOF shear 

frame model, which is the same with that used in Case 1 is employed as the model to be 

updated instead of the 12-DOF one. 

Since the 120-DOF model does not constrain out-of-plane DOFs of the floor 

slabs, it is expected that this model is more flexible than the 12-DOF model which 

constrains out-of-plane DOFs. Therefore, stiffness scaling parameters of the 12-DOF 

model which is updated by measuring the 120-DOF model should not be close to 1 and 

they are expected to be smaller than 1. Therefore, it is hard to obtain the actual stiffness 

scaling parameters equivalent to those of 12-DOF model for this case. One approach 

recommended by Johnson et al. (2004) is that the equivalent stiffness can be obtained 

by using the basic stiffness matrix derivation procedure applying a unit force to each 

DOF of 120-DOF model that corresponds to DOFs of the 12-DOF model. Another 

recommended approach is that a least squares approach can be employed to obtain the 

equivalent model. However, this brings another model updating problem similar to the 

present one which makes it meaningless. Therefore, in this case, the MPVs of the 

stiffness scaling parameters are firstly obtained by measuring the undamaged 120-DOF 

model. Then, the 12-DOF model is updated by measuring the damaged 120-DOF 

model. The results are provided as the ratio of the MPVs of the stiffness scaling 

parameters obtained from the damaged structure to those obtained from the undamaged 

one. It should be noted here that posterior c.o.v.’s for the parameter ratios are obtained 

by the square root of the sum of the squares (SRSS) of the posterior standard deviations 

obtained from the undamaged and damaged cases. The reason is to account for the error 

propagation developed due to the division of the MPVs of the stiffness parameters. 
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Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s (in 

parentheses) are provided in Table 5.12 for undamaged condition (UD), damage 

scenarios i and ii. The results are also illustrated in Figure 5.6 with the error bars 

showing ∓1 posterior standard deviations (∓1𝜎). The stiffness loss is provided in Table 

5.6 as 71.03% in the y direction for all stories in damage scenarios i and ii and it 

corresponds to an exact value of 0.2897 for the ratio of the stiffness scaling parameters 

of the damaged floors. 

 

Table 5.12. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s 

(%) for Case 2 

Damage 

Scenario 
Related Research 

𝜃1 / 𝜃1
𝑢𝑛  

( c.o.v ) 
 

𝜃2 / 𝜃2
𝑢𝑛  

( c.o.v ) 
 

𝜃3 / 𝜃3
𝑢𝑛  

 ( c.o.v ) 
 

𝜃4 / 𝜃4
𝑢𝑛  

( c.o.v ) 

i 

Actual    0.29     1.00    1.00    1.00 

Present Study 0.20 (1.82)  1.00 (0.38)  0.99 (0.47)  1.00 (0.26) 

Algorithm 1 0.26 (4.72)  1.00 (3.82)  1.00 (3.91)  1.00 (3.48) 

Algorithm 2   0.27 (10.98)  1.00 (1.44)  0.86 (4.66)  0.98 (1.22) 

Yuen et. al (2004)    0.26 (1.62)  0.97 (1.65)  0.93 (1.62)  1.02 (1.63) 

Lam et al (2004)    0.26 (3.24)  1.28 (2.96)  0.77 (2.39)  0.82 (2.17) 

ii 

Actual    0.29     1.00    0.29    1.00 

Present Study 0.20 (1.75)  1.01 (0.55)  0.13 (2.54)  0.94 (0.41) 

Algorithm 1   0.26 (17.67)  1.00 (3.46)   0.22 (15.26)    0.97 (3.02) 

Algorithm 2 0.33 (0.04)  1.00 (0.005)  0.28 (0.05)   0.96 (0.004) 

Yuen et. al (2004) 0.26 (1.63)  0.99 (1.71)  0.21 (1.64)  1.05 (1.62) 

Lam et al (2004) 0.27 (4.02)  0.90 (2.80)  0.13 (2.80)  1.12 (2.08) 

 

 

The updating results are not as good as the results obtained in Case 1. This proves that 

modelling error significantly affects the updating procedures for all investigated five 

methods. However, the most unsatisfactory results are obtained by the present study 

with a value of 0.20 for 𝜃1 for damage scenario i and ii, which is about 30% smaller 

than the actual value. Similarly, 𝜃3 is obtained with a value of 0.13 which is about 55% 

smaller than the actual value. However, similar results are observed in the studies 

performed by Yuen et al. (2004) and Lam et al. (2004). Besides, Lam et al. (2004) have 
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relatively large biased results for undamaged stiffness parameters, which may result in 

false positive damage alarms. Any of the methods gives false negative results and can 

locate damage even if the damage extent is somehow biased.  

The posterior c.o.v values are obtained with relatively higher values when 

compared to those of Case 1. This is an expected result since the modelling error 

induces more uncertainties in the updating procedure and increases the posterior 

uncertainties. Further, since the ratio of the parameters are considered in this case, the 

error propagation also results in an increase in the c.o.v values. For direct comparison, 

the c.o.v of each stiffness scaling parameter itself (without taking ratios) also is also 

investigated and an increasing trend is observed when compared with those of Case 1.  

 

 

                              (a) Damage Scenario, i                                           (b) Damage Scenario, ii 

Figure 5.6. Ratios of the stiffness scaling parameters with ∓1𝜎 for Case 2 

 

In this case, as in Case 1, the extent and locations of damage are estimated in 

story level due to the excitation type, updated model, and symmetry in the measured 

model. Figure 5.7 presents the posterior CDF of each damage scenario in the present 

study. By using these curves, damage extents are calculated by the same procedure 

discussed in Case 1. For the damage scenario i and ii, damage in 𝜃1 is identified to be 

79.8%, and for the damage scenario ii, damage in 𝜃3 is identified to be 86.60%. Damage 

detection results are summarized in Table 5.13 for Case 2. 
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                               (a) Damage scenario, i                                             (b) Damage scenario, ii 

Figure 5.7. Probability of damage for the parameters in damage scenarios (a) i and  

(b) ii for the present study (Case 2) 

 

Table 5.13. Damage detection results of Case 2 for the present study 

 Actual Present Study 

Damage Scenario 
Damage Location 

(Stiffness Loss) 

Damage Location 

(Stiffness Loss) 

i 
First Floor 

71.03 % 

First Floor 

79.80 % 

ii 

First Floor 

71.03 % 

 

Third Floor 

71.03 % 

First Floor 

79.80 % 

 

Third Floor 

86.60 % 

 

 

5.3.1.2.3. Analyses and Results for Case 3: 

 

The only difference between Case 3 and Case 1 is the excitation type. In Case 3, 

loadings are applied on the center column at each floor in both x and y directions.  

Therefore, as in Case 1, the structure is symmetric for the undamaged condition, 

damage scenarios i and ii, and no torsional motion is expected for these damage 

conditions. This makes these damage scenarios very similar to those in Case 1 since the 
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same 12-DOF model is used for the identification model and the measured model. For 

the higher damage scenarios, Case 3 becomes interesting since damage scenarios iii, iv, 

v, and vi makes the structure asymmetric and different modes of the structure are 

excited for different damage scenarios. However, asymmetric stiffness distribution 

cannot be modeled by using the 12-DOF model provided by the IASC-ASCE task group 

since only one stiffness parameter is defined for the x direction and the same for the y 

direction. Therefore, in the present study, damage scenarios iii, iv and vi in Case 3 are 

investigated by constructing a 3D 12-DOF torsional shear building model and this 

model is used as the one to be updated. 

Figure 5.8 shows the floor plan of the rth story of the 3D 12-DOF model. In each 

story level, a translational DOF in the x direction, a translational DOF in the y direction 

and a rotational DOF are defined at the geometrical center of the floor plan. Therefore, 

these DOFs coincide with the active DOFs in the 12-DOF model that is used to get 

measurements (the original model recommended for this case). Since the damage 

scenarios are designed by removing various brace elements on a specific face of a 

specific floor, a stiffness parameter is defined for each face of each floor, which makes 

a total of 16 stiffness parameters to be updated. The stiffness values are named as kr,s 

where the sub-index r denotes the story number r = 1, 2, 3 and 4, and s represents the 

direction of the face on which the stiffness value is defined such as s = +x, +y, −x and 

−y.  

 

Figure 5.8. Floor plan of the rth story of the 3D 12-DOF torsional shear building model 
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The parametrization of the FE model is performed as; 
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In equation (5.14), Kr,s is the substructural stiffness matrix and θr,s is the corresponding 

stiffness scaling parameter. Each substructural stiffness matrix that represents the 

contribution of the stiffness of each face to the global stiffness matrix is provided in 

Figure 5.9.  
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Figure 5.9. Substructural stiffness matrices of 3-D 12-DOF torsional shear frame model 

 

Here, kr,+x , kr,+y , kr,-x and kr,-y are shown in Figure 5.8 with their nominal values which 

are obtained as the half of the corresponding values in Table 5.5.  

The measured model is the 12-DOF model that is available in FE analysis code 

provided by the task group. This model is excited by independent white noise signals 

from all 3 DOFs of each floor. Thus, almost all modes of the structure are excited. 

However, in the updating process for all the investigated damage scenarios, only the 

first three translational modes in x and y directions are employed in the modal 

identification stage. Torsional modes are not included in model updating process since 
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the modelling error for the torsional behavior is found to be large between the 12-DOF 

shear building model provided by the task group and 3D 12-DOF torsional shear frame 

model, and this causes the updating results to diverge from the reasonable results. It 

should be noted here that translational modes are coupled with torsional ones in some 

extent due to the asymmetric stiffness distribution induced in damaged cases. 

Nevertheless, the induced damages could be successfully obtained with true damage 

locations and damage extents.  

Similar to Case 2, ratios of the stiffness parameters of the damaged scenarios to 

the undamaged condition are considered and they are provided in Table 5.14, Table 

5.15 and Table 5.16 with the obtained c.o.v. values for the damage scenarios iii, iv and 

vi, respectively. 

The results are also illustrated in Figure 5.10 for damage scenarios (a) iii, (b) iv 

and (c) vi with the error bars showing ∓1 posterior standard deviations (∓1σ). It should 

be noted that, in the literature, it could not be found a similar study that investigates the 

damage scenarios iii, iv and vi in Case 3, probably since these damage scenarios are not 

recommended by the task group to be investigated in Case 3. Therefore, the results 

could not be compared with any studies in the literature.  

In Case 3, stiffness loss values are different in percentage scale from those 

provided in Table 5.6 since the stiffness values are uniformly distributed on two 

opposing faces in x and y directions and only one face sustains damage. Accordingly, 

for damage scenario iii, the actual stiffness loss on +x face of the first floor is calculated 

as 35.49% and it corresponds to an exact value of 0.6451 for the ratio of the 

corresponding stiffness scaling parameter. Similarly, for damage scenario iv, the actual 

stiffness loss on +x face of the first floor is the same and the actual stiffness loss on -y 

face of the third floor is calculated as 22.63% and it corresponds to an exact value of 

0.7738 for the ratio of the corresponding stiffness scaling parameter. For damage 

scenario vi, the actual stiffness loss on +x face of the first floor is calculated as 11.81% 

and it corresponds to an exact value of 0.8819 for the ratio of the corresponding 

stiffness scaling parameter. 
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Table 5.14. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s 

(%) for Damage Scenario iii in Case 3 

        Parameters        Actual        Present Study         Algorithm 1        Algorithm 2 

          1,+𝑥 /1,+𝑥
  𝑢𝑛

 0.65 0.62 (1.96) 0.62 (0.39) 0.65 (0.04) 

1,+𝑦 /1,+𝑦
  𝑢𝑛

 1.00 1.01 (1.03) 1.00 (0.17) 1.00 (0.01) 

1,−𝑥 /1,−𝑥
  𝑢𝑛

 1.00 1.01 (1.35) 1.00 (0.24) 1.00 (0.02) 

1,−𝑦 /1,−𝑦
  𝑢𝑛

 1.00 1.00 (1.03) 1.00 (0.17) 1.00 (0.01) 

2,+𝑥 /2,+𝑥
  𝑢𝑛

 1.00 1.01 (1.57) 1.00 (0.14) 1.00 (0.02) 

2,+𝑦 /2,+𝑦
  𝑢𝑛

 1.00 0.97 (1.50) 0.98 (0.12) 1.00 (0.02) 

2,−𝑥 /2,−𝑥
  𝑢𝑛

 1.00 1.02 (1.68) 1.00 (0.14) 1.00 (0.02) 

2,−𝑦 /2,−𝑦
  𝑢𝑛

 1.00 0.99 (1.49) 1.00 (0.11) 1.00 (0.02) 

3,+𝑥 /3,+𝑥
  𝑢𝑛

 1.00 1.02 (2.09) 1.00 (0.20) 0.98 (0.03) 

3,+𝑦 /3,+𝑦
  𝑢𝑛

 1.00 1.01 (0.90) 1.00 (0.07) 1.00 (0.006) 

3,−𝑥 /3,−𝑥
  𝑢𝑛

 1.00 0.99 (2.19) 0.97 (0.21) 1.00 (0.03) 

3,−𝑦 /3,−𝑦
  𝑢𝑛

 1.00 1.00 (0.90) 1.00 (0.07) 1.00 (0.006) 

4,+𝑥 /4,+𝑥
  𝑢𝑛

 1.00 1.01 (1.22) 1.00 (0.13) 1.00 (0.02) 

4,+𝑦 /4,+𝑦
  𝑢𝑛

 1.00 0.99 (1.03) 0.98 (0.07) 0.98 (0.00) 

4,−𝑥 /4,−𝑥
  𝑢𝑛

 1.00 0.99 (1.21) 0.99 (0.13) 1.00 (0.02) 

4,−𝑦 /4,−𝑦
  𝑢𝑛

 1.00 0.98 (1.03) 0.97 (0.07) 0.98 (0.00) 

 

Table 5.15. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v’s 

(%) for Damage Scenario iv in Case 3 

         Parameters        Actual       Present Study        Algorithm 1        Algorithm 2 

1,+𝑥 /1,+𝑥
  𝑢𝑛

 0.65 0.61 (1.89) 0.62 (0.40) 0.64 (0.04) 

1,+𝑦 /1,+𝑦
  𝑢𝑛

 1.00 1.01 (1.05) 1.00 (0.18) 1.00 (0.01) 

1,−𝑥 /1,−𝑥
  𝑢𝑛

 1.00 1.01 (1.29) 1.00 (0.25) 1.00 (0.02) 

1,−𝑦 /1,−𝑦
  𝑢𝑛

 1.00 0.99 (1.00) 0.99 (1.18) 1.00 (0.01) 

2,+𝑥 /2,+𝑥
  𝑢𝑛

 1.00 1.01 (1.51) 1.00 (0.14) 1.00 (0.02) 

2,+𝑦 /2,+𝑦
  𝑢𝑛

 1.00 1.02 (1.52) 1.00 (0.12) 1.00 (0.02) 

2,−𝑥 /2,−𝑥
  𝑢𝑛

 1.00 1.02 (1.60) 1.00 (0.14) 1.00 (0.02) 

2,−𝑦 /2,−𝑦
  𝑢𝑛

 1.00 0.97 (1.47) 0.97 (0.12) 0.97 (0.02) 

3,+𝑥 /3,+𝑥
  𝑢𝑛

 1.00 1.02 (1.82) 1.00 (0.21) 0.99 (0.03) 

3,+𝑦 /3,+𝑦
  𝑢𝑛

 1.00 1.00 (0.92) 1.00 (0.07) 1.00 (0.006) 

3,−𝑥 /3,−𝑥
  𝑢𝑛

 1.00 0.98 (1.91) 0.97 (0.22) 1.00 (0.03) 

3,−𝑦 /3,−𝑦
  𝑢𝑛

           0.77 0.76 (1.10) 0.77 (0.09) 0.78 (0.008) 

4,+𝑥 /4,+𝑥
  𝑢𝑛

 1.00 1.01 (1.16) 1.00 (0.13) 1.00 (0.02) 

4,+𝑦 /4,+𝑦
  𝑢𝑛

 1.00 1.02 (1.03) 1.00 (0.07) 1.00 (0.00) 

4,−𝑥 /4,−𝑥
  𝑢𝑛

 1.00 0.98 (1.15) 1.00 (0.13) 1.00 (0.02) 

4,−𝑦 /4,−𝑦
  𝑢𝑛

 1.00 0.97 (1.02) 0.97 (0.08) 0.95 (0.00) 
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Table 5.16. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s 

(%) for Damage Scenario vi in Case 3 

         Parameters        Actual       Present Study        Algorithm 1        Algorithm 2 

          1,+𝑥 /1,+𝑥
  𝑢𝑛

 0.88 0.78 (1.77) 0.78 (1.67) 0.80 (0.03) 

1,+𝑦 /1,+𝑦
  𝑢𝑛

 1.00 1.01 (1.02) 1.00 (0.93) 0.99 (0.05) 

1,−𝑥 /1,−𝑥
  𝑢𝑛

 1.00 1.01 (1.43) 1.00 (0.37) 1.00 (0.02) 

1,−𝑦 /1,−𝑦
  𝑢𝑛

 1.00 1.01 (1.02) 0.99 (0.93) 1.00 (0.05) 

2,+𝑥 /2,+𝑥
  𝑢𝑛

 1.00 1.01 (1.65) 1.00 (0.77) 1.00 (0.02) 

2,+𝑦 /2,+𝑦
  𝑢𝑛

 1.00 0.97 (1.48) 0.98 (0.63) 1.00 (0.08) 

2,−𝑥 /2,−𝑥
  𝑢𝑛

 1.00 1.02 (1.69) 1.00 (0.78) 1.00 (0.02) 

2,−𝑦 /2,−𝑦
  𝑢𝑛

 1.00 0.98 (1.47) 1.00 (0.63) 0.99 (0.07) 

3,+𝑥 /3,+𝑥
  𝑢𝑛

 1.00 1.02 (2.19) 1.00 (1.17) 0.98 (0.03) 

3,+𝑦 /3,+𝑦
  𝑢𝑛

 1.00 1.01 (0.88) 1.00 (0.39) 1.00 (0.04) 

3,−𝑥 /3,−𝑥
  𝑢𝑛

 1.00 0.98 (2.28) 0.97 (1.23) 1.00 (0.03) 

3,−𝑦 /3,−𝑦
  𝑢𝑛

 1.00 1.00 (0.88) 1.00 (0.40) 1.00 (0.04) 

4,+𝑥 /4,+𝑥
  𝑢𝑛

 1.00 1.01 (1.25) 1.00 (0.78) 1.00 (0.02) 

4,+𝑦 /4,+𝑦
  𝑢𝑛

 1.00 0.99 (1.01) 0.98 (0.44) 0.99 (0.002) 

4,−𝑥 /4,−𝑥
  𝑢𝑛

 1.00 0.99 (1.24) 1.00 (0.77) 0.99 (0.02) 

4,−𝑦 /4,−𝑦
  𝑢𝑛

 1.00 0.98 (1.01) 0.97 (0.44) 0.98 (0.002) 

 

The results are also illustrated in Figure 5.10 for damage scenarios (a) iii, (b) iv 

and (c) vi with the error bars showing ∓1 posterior standard deviations (∓1𝜎). It should 

be noted that, in the literature, it could not be found a similar study that investigates the 

damage scenarios iii, iv and vi in Case 3, probably since these damage scenarios are not 

recommended by the task group to be investigated in Case 3. Therefore, the results 

could not be compared with any studies in the literature.  

In Case 3, stiffness loss values are different in percentage scale from those 

provided in Table 5.6 since the stiffness values are uniformly distributed on two 

opposing faces in x and y directions and only one face sustains damage. Accordingly, 

for damage scenario iii, the actual stiffness loss on +x face of the first floor is calculated 

as 35.49% and it corresponds to an exact value of 0.6451 for the ratio of the 

corresponding stiffness scaling parameter. For damage scenario iv, the actual stiffness 

loss on +x face of the first floor is the same and the actual stiffness loss on -y face of the 

third floor is calculated as 22.63% and it corresponds to an exact value of 0.7738 for the 

ratio of the corresponding stiffness scaling parameter. For damage scenario vi, the 

actual stiffness loss on +x face of the first floor is calculated as 11.81% and it 
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corresponds to an exact value of 0.8819 for the ratio of the corresponding stiffness 

scaling parameter. 

 

 

Figure 5.10. Ratios of stiffness scaling parameters with ∓1𝜎 for Damage Scenarios  

(a) iii, (b) iv and (c) vi in Case 3 

(a) 

(b) 

(c) 
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Differently from previous cases, in Case 3, damage location could be obtained 

more precisely by indicating the faces on which the damage is occurred. The provided 

results reveal that all the three algorithms could successfully detect the location of the 

induced damages in the investigated damage scenarios. However, identified damage 

extents are biased from the actual scaling parameters. The reason of the biased results 

might be that there exists a certain level of modelling error between 12-DOF model 

provided by the task group and 3D 12-DOF model since the torsional behaviors are 

differently modeled for these structures. Due to this modelling error, torsional modes 

are not employed in the model updating stage which may result in biased results. The 

modelling error effect is not expected to be as large as encountered in Case 2 since Case 

2 includes a 120-DOF model which is not constructed with shear building assumptions. 

However, a simpler 4-DOF model is used as the identification model in Case 2 and all 

identified modes in the direction of the excitation are employed in the updating 

procedure, which is not the issue in Case 3. Therefore, it may be meaningless to 

compare the c.o.v. levels for these two cases.  

Figure 5.11 presents the posterior CDF for damage scenarios iii, iv and vi in the 

present study. By using these curves, damage extents are calculated as follows. For the 

damage scenario iii and iv, damage in 𝜃1 is identified to be 79.8% and for the damage 

scenario ii, damage in 𝜃3 is identified to be 86.6%. The damage detection results are 

provided in Table 5.17. The results show that the values of stiffness loss are 

overestimated when compared with the actual stiffness loss especially for the damage 

scenario vi. This might be due to the modelling error between the measured model and 

the identification model since the damage in this scenario relatively hard to determine 

with respect to the other scenario.  
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Figure 5.11. Probability of damage for the parameters in damage scenarios (a) iii, (b) iv 

and (c) vi for the present study (Case 3) 

Table 5.17. Damage detection results of Case 3 for the present study 

 Actual Present Study 

Damage Scenario 
Damage Location 

(Stiffness Loss) 

Damage Location 

(Stiffness Loss) 

iii 
First Floor (+x face) 

35.49 % 

First Floor 

38.20 % 

iv 

First Floor (+x face) 

35.49 % 

 

Third Floor (-y face) 

22.63 % 

First Floor 

39.00 % 

 

Third Floor 

23.80 % 

vi 
First Floor (+x face) 

11.81 % 

First Floor 

21.70 %  

(a) Damage Scenario, iii (b) Damage Scenario, iv 

(c)Damage Scenario, vi 
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5.3.1.2.4. Analyses and Results for Case 4: 

 

The only difference between Case 4 and Case 3 is the mass distribution of the 

floors. Case 4 has an asymmetric mass on the top floor by changing one of the four 400 

kg floor slabs with 550 kg one. Since the mass distribution is also asymmetric with 

damage cases that also cause an asymmetry in stiffness distribution, vibrational modes 

are easier to excite in Case 4 when compared with Case 3. For case 4, the same stiffness 

model of the 3D 12-DOF torsional shear building model is used for the identification 

model and the 12-DOF shear frame model is used to get measurements. Mass matrix 

model of these building models is updated to reflect the asymmetrical mass distribution. 

As in Case 3, ratios of the MPVs of the stiffness parameters are obtained in this case 

since there exists a certain level of modelling error between the mentioned models. All 

damage scenarios except damage scenario v are investigated in Case 4. Damage 

scenario v includes the weakening of a beam-column connection which cause the 

rotation of the corresponding slab. This damage case cannot be investigated due to the 

shear building assumption in the identification model, which restricts the out-of-plan 

motion. Therefore, damage scenarios iv and v are identical under this assumption.  

The results of all the remaining cases are provided in the following tables and 

bar graphs illustratively. Whole model updating and damage detection process is 

performed exactly with the same procedures discussed in Case 3. Therefore, long 

explanations are skipped here.    

The updating results of damage scenarios i and ii are in very good agreement 

with the actual stiffness parameters and those obtained by Yuen et al., (2004). The 

present study gives largest posterior c.o.v values. The reason is thought to be the fact 

that the formulations in present study does not include modelling error term and directly 

compares the FE model modes and measured modes. However, the remaining studies 

includes the modelling error term which results in a decrease in posterior uncertainties.    

The present study gives slightly biased results for the damage scenarios iii and iv 

and larger biased results are obtained for the damage scenario vi. The similar results are 

also obtained in Case 3. This shows that it is getting hard for the present formulations to 

detect damage as the damage level decreases under a certain modelling error. However, 

the Algorithms 1 and 2 give also biased results for the damage scenario vi. The 

summary of the damage detection results can be found in Table 5.23 and Table 5.24.  



 163 

 

Table 5.18. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s 

(%) for Damage Scenario i in Case 4 

Parameters Actual Present Study Algorithm 1 Algorithm 2 Yuen et. al (2004) 

      1,+𝑥 /1,+𝑥
  𝑢𝑛

 0.29 0.31 (5.22) 0.30 (4.07) 0.30 (0.001) 0.28 (0.62) 

1,+𝑦 /1,+𝑦
  𝑢𝑛

 0.55 0.56 (1.52) 0.58 (1.49) 0.56 (0.00) 0.54 (0.35) 

1,−𝑥 /1,−𝑥
  𝑢𝑛

 0.29 0.28 (5.54) 0.29 (4.21) 0.29 (0.001) 0.29 (0.53) 

1,−𝑦 /1,−𝑦
  𝑢𝑛

 0.55 0.54 (1.53) 0.55 (1.55) 0.55 (0.00) 0.54 (0.31) 

2,+𝑥 /2,+𝑥
  𝑢𝑛

 1.00 1.03 (1.83) 0.99 (0.74) 0.95 (0.002) 1.06 (0.90) 

2,+𝑦 /2,+𝑦
  𝑢𝑛

 1.00 1.00 (1.86) 0.99 (0.53) 1.00 (0.00) 0.98 (1.10) 

2,−𝑥 /2,−𝑥
  𝑢𝑛

 1.00 0.93 (1.92) 0.99 (0.73) 1.00 (0.002) 0.98 (0.56) 

2,−𝑦 /2,−𝑦
  𝑢𝑛

 1.00 1.01 (1.98) 1.00 (0.57) 1.00 (0.00) 1.03 (1.09) 

3,+𝑥 /3,+𝑥
  𝑢𝑛

 1.00 0.96 (3.28) 1.00 (1.11) 1.00 (0.00) 1.03 (0.95) 

3,+𝑦 /3,+𝑦
  𝑢𝑛

 1.00 1.00 (1.24) 1.00 (0.37) 1.00 (0.00) 0.99 (0.54) 

3,−𝑥 /3,−𝑥
  𝑢𝑛

 1.00 1.04 (3.01) 1.00 (1.10) 0.97 (0.00) 1.07 (0.64) 

3,−𝑦 /3,−𝑦
  𝑢𝑛

 1.00 0.99 (1.19) 1.00 (0.36) 0.99 (0.00) 0.98 (0.56) 

4,+𝑥 /4,+𝑥
  𝑢𝑛

 1.00 0.96 (1.51) 1.00 (0.69) 1.00 (0.002) 1.05 (0.81) 

4,+𝑦 /4,+𝑦
  𝑢𝑛

 1.00 1.01 (1.60) 1.01 (0.42) 1.00 (0.00) 0.98 (0.91) 

4,−𝑥 /4,−𝑥
  𝑢𝑛

 1.00 1.02 (1.32) 1.00 (0.66) 1.00 (0.002) 0.94 (0.63) 

4,−𝑦 /4,−𝑦
  𝑢𝑛

 1.00 1.00 (1.43) 1.00 (0.40) 1.00 (0.00) 1.03 (0.95 ) 

 

Table 5.19. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s 

(%) for Damage Scenario ii in Case 4 

Parameters Actual Present Study Algorithm 1 Algorithm 2 Yuen et. al (2004) 

     1,+𝑥 /1,+𝑥
  𝑢𝑛

 0.29 0.31 (5.25) 0.31 (3.86) 0.33 (0.00) 0.28 (0.56) 

1,+𝑦 /1,+𝑦
  𝑢𝑛

 0.55 0.56 (1.57) 0.57 (1.50) 0.58 (0.00) 0.55 (0.34) 

1,−𝑥 /1,−𝑥
  𝑢𝑛

 0.29 0.29 (5.35) 0.27 (4.53) 0.28 (0.00) 0.29 (0.46) 

1,−𝑦 /1,−𝑦
  𝑢𝑛

 0.55 0.54 (1.60) 0.55 (1.53) 0.56 (0.00) 0.54 (0.32) 

2,+𝑥 /2,+𝑥
  𝑢𝑛

 1.00 0.99 (1.89) 0.98 (0.75) 0.94 (0.00) 1.10 (1.06) 

2,+𝑦 /2,+𝑦
  𝑢𝑛

 1.00 1.02 (1.03) 1.01 (0.53) 1.00 (0.00) 0.96 (0.87) 

2,−𝑥 /2,−𝑥
  𝑢𝑛

 1.00 0.97 (1.97) 1.00 (0.72) 1.00 (0.00) 0.99 (1.25) 

2,−𝑦 /2,−𝑦
  𝑢𝑛  1.00 0.98 (1.12) 0.98 (0.58) 1.00 (0.00) 1.00 (0.91) 

3,+𝑥 /3,+𝑥
  𝑢𝑛

 0.29 0.27 (8.35) 0.29 (3.77) 0.32 (0.00) 0.29 (0.58) 

3,+𝑦 /3,+𝑦
  𝑢𝑛  0.55 0.55 (1.26) 0.55 (0.66) 0.57 (0.00) 0.56 (0.34) 

3,−𝑥 /3,−𝑥
  𝑢𝑛

 0.29 0.31 (7.24) 0.29 (3.85) 0.26 (0.00) 0.29 (0.45) 

3,−𝑦 /3,−𝑦
  𝑢𝑛

 0.55 0.55 (1.26) 0.54 (0.65) 0.55 (0.00) 0.55 (0.32) 

4,+𝑥 /4,+𝑥
  𝑢𝑛

 1.00 1.00 (0.63) 0.99 (0.70) 1.00 (0.00) 0.99 (0.47) 

4,+𝑦 /4,+𝑦
  𝑢𝑛

 1.00 1.01 (0.79) 1.01 (0.42) 1.00 (0.00) 0.96 (1.22) 

4,−𝑥 /4,−𝑥
  𝑢𝑛

 1.00 1.00 (1.55) 1.01 (0.65) 1.00 (0.00) 0.98 (0.43) 

4,−𝑦 /4,−𝑦
  𝑢𝑛

 1.00 1.01 (0.73) 1.00 (0.39) 1.00 (0.00) 0.29 (0.58) 
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Figure 5.12. Ratios of stiffness scaling parameters with ∓1𝜎 for Damage Scenarios  

(a) i, and (b) ii in Case 4 

 

 

Figure 5.13. Probability of damage for the parameters in damage scenarios (a) i and (b) 

ii for the present study (Case 4) 

(a) 

(b) 

(a) Damage Scenario, i (b) Damage Scenario, ii 
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Table 5.20. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s 

(%) for Damage Scenario iii in Case 4 

Parameters Actual Present Study Algorithm 1 Algorithm 2 Yuen et. al (2004) 

     1,+𝑥 /1,+𝑥
  𝑢𝑛

 0.65 0.62 (2.96) 0.62 (2.12) 0.63 (0.00) 0.64 (0.40) 

1,+𝑦 /1,+𝑦
  𝑢𝑛

 1.00 1.00 (1.01) 1.01 (0.94) 1.00 (0.04) 0.99 (0.45) 

1,−𝑥 /1,−𝑥
  𝑢𝑛

 1.00 1.03 (1.82) 1.02 (1.34) 1.04 (0.00) 0.97 (0.34) 

1,−𝑦 /1,−𝑦
  𝑢𝑛

 1.00 1.01 (0.98) 1.00 (0.93) 0.99 (0.04) 1.00 (0.31) 

2,+𝑥 /2,+𝑥
  𝑢𝑛

 1.00 0.96 (2.03) 0.98 (0.81) 1.04 (0.00) 1.04 (0.53) 

2,+𝑦 /2,+𝑦
  𝑢𝑛

 1.00 1.00 (1.22) 1.00 (0.58) 0.99 (0.02) 1.01 (0.77) 

2,−𝑥 /2,−𝑥
  𝑢𝑛

 1.00 1.02 (1.98) 1.01 (0.78) 0.88 (0.00) 1.00 (0.43) 

2,−𝑦 /2,−𝑦
  𝑢𝑛  1.00 1.00 (1.31) 1.01 (0.63) 1.00 (0.02) 1.01 (0.61) 

3,+𝑥 /3,+𝑥
  𝑢𝑛

 1.00 0.97 (2.94) 1.00 (1.21) 0.96 (0.00) 1.00 (0.83) 

3,+𝑦 /3,+𝑦
  𝑢𝑛  1.00 1.00 (0.83) 1.00 (0.40) 0.98 (0.03) 0.98 (0.64) 

3,−𝑥 /3,−𝑥
  𝑢𝑛

 1.00 1.04 (2.80) 1.00 (1.22) 1.04 (0.00) 0.99 (0.55) 

3,−𝑦 /3,−𝑦
  𝑢𝑛

 1.00 1.00 (0.83) 1.00 (0.39) 1.01 (0.02) 0.98 (0.58) 

4,+𝑥 /4,+𝑥
  𝑢𝑛

 1.00 1.02 (1.46) 1.00 (0.77) 0.98 (0.00) 1.01 (0.39) 

4,+𝑦 /4,+𝑦
  𝑢𝑛

 1.00 1.00 (0.92) 1.00 (0.46) 1.01 (0.02) 1.09 (1.01) 

4,−𝑥 /4,−𝑥
  𝑢𝑛

 1.00 0.97 (1.36) 1.01 (0.71) 1.02 (0.00) 0.99 (0.35) 

4,−𝑦 /4,−𝑦
  𝑢𝑛

 1.00 1.00 (0.86) 1.00 (0.43) 1.00 (0.03) 1.00 (0.83) 

 

Table 5.21. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s 

(%) for Damage Scenario iv in Case 4 

Parameters      Actual Present Study Algorithm 1 Algorithm 2 Yuen et. al (2004) 

     1,+𝑥 /1,+𝑥
  𝑢𝑛

 0.65 0.60 (2.96) 0.63 (1.91) 0.63 (0.00) 0.63 (0.54) 

1,+𝑦 /1,+𝑦
  𝑢𝑛

 1.00 1.01 (1.01) 1.02 (0.84)   1.00 (0.002) 1.00 (0.22) 

1,−𝑥 /1,−𝑥
  𝑢𝑛

 1.00 1.03 (1.77) 1.02 (1.21)         1.05 (0.00) 0.98 (0.42) 

1,−𝑦 /1,−𝑦
  𝑢𝑛

 1.00 0.98 (0.96) 0.98 (0.86)    0.98 (0.001) 1.00 (0.30) 

2,+𝑥 /2,+𝑥
  𝑢𝑛

 1.00 0.97 (1.98) 1.98 (0.75)         1.04 (0.00) 1.01 (0.79) 

2,+𝑦 /2,+𝑦
  𝑢𝑛

 1.00 1.02 (1.26) 1.01 (0.52)         0.99 (0.00) 0.99 (0.43) 

2,−𝑥 /2,−𝑥
  𝑢𝑛

 1.00 1.03 (1.92) 1.00 (0.72)         0.88 (0.00) 1.03 (0.65) 

2,−𝑦 /2,−𝑦
  𝑢𝑛  1.00 0.99 (1.27) 0.99 (0.58)  0.98 (0.00) 0.99 (0.46) 

3,+𝑥 /3,+𝑥
  𝑢𝑛

 1.00 0.99 (2.72) 0.98 (1.12)  0.96 (0.00) 1.02 (0.98) 

3,+𝑦 /3,+𝑦
  𝑢𝑛  1.00 1.00 (0.83) 0.99 (0.37)    0.98 (0.001) 0.98 (0.42) 

3,−𝑥 /3,−𝑥
  𝑢𝑛

 1.00 1.02 (2.64) 1.02 (1.08)  1.05 (0.00) 0.97 (0.62) 

3,−𝑦 /3,−𝑦
  𝑢𝑛

 0.77 0.76 (0.99) 0.77 (0.46)    0.76 (0.001) 0.77 (0.32) 

4,+𝑥 /4,+𝑥
  𝑢𝑛

 1.00 1.02 (1.40) 1.01 (0.68)  0.98 (0.00) 1.00 (0.59) 

4,+𝑦 /4,+𝑦
  𝑢𝑛

 1.00 1.01 (0.94) 1.01 (0.42)    1.01 (0.002) 1.03 (0.75) 

4,−𝑥 /4,−𝑥
  𝑢𝑛

 1.00 0.97 (1.32) 0.99 (0.66)  1.02 (0.00) 1.02 (0.47) 

4,−𝑦 /4,−𝑦
  𝑢𝑛

 1.00 1.00 (0.83) 1.00 (0.40)    0.99 (0.002) 1.02 (0.98) 
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Table 5.22. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s 

(%) for Damage Scenario vi in Case 4 

Parameters Actual Present Study Algorithm 1 Algorithm 2 

        1,+𝑥 /1,+𝑥
  𝑢𝑛

 0.88 0.79 (2.39) 0.81 (1.50) 0.82(0.00) 

1,+𝑦 /1,+𝑦
  𝑢𝑛

 1.00 1.00 (1.02) 1.01 (0.86)    0.99 (0.002) 

1,−𝑥 /1,−𝑥
  𝑢𝑛

 1.00 1.02 (1.85) 1.00 (1.24) 1.00 (0.00) 

1,−𝑦 /1,−𝑦
  𝑢𝑛

 1.00 1.01 (0.99) 1.00 (0.85)   1.00 (0.002) 

2,+𝑥 /2,+𝑥
  𝑢𝑛

 1.00 0.98 (2.03) 0.99 (0.74) 1.00 (0.00) 

2,+𝑦 /2,+𝑦
  𝑢𝑛

 1.00 1.00 (1.21) 1.00 (0.53)   1.00 (0.003) 

2,−𝑥 /2,−𝑥
  𝑢𝑛

 1.00 1.02 (1.96) 1.01 (0.72) 1.00 (0.00) 

2,−𝑦 /2,−𝑦
  𝑢𝑛  1.00 1.00 (1.30) 1.01 (0.58)   1.00 (0.002) 

3,+𝑥 /3,+𝑥
  𝑢𝑛

 1.00 0.97 (3.04) 1.00 (1.11) 0.99 (0.00) 

3,+𝑦 /3,+𝑦
  𝑢𝑛  1.00 1.00 (0.82) 1.00 (0.37)   1.00 (0.001) 

3,−𝑥 /3,−𝑥
  𝑢𝑛

 1.00 1.03 (2.89) 0.99 (1.12) 1.00 (0.00) 

3,−𝑦 /3,−𝑦
  𝑢𝑛

 1.00 1.00 (0.82) 1.00 (0.36)   1.00 (0.001) 

4,+𝑥 /4,+𝑥
  𝑢𝑛

 1.00 1.02 (1.45) 0.98 (0.71)  0.99 (0.00) 

4,+𝑦 /4,+𝑦
  𝑢𝑛

 1.00 1.00 (0.91) 1.00 (0.43)   1.00 (0.002) 

4,−𝑥 /4,−𝑥
  𝑢𝑛

 1.00 0.98 (1.35) 1.01 (0.65) 1.00 (0.00) 

4,−𝑦 /4,−𝑦
  𝑢𝑛

 1.00 1.00 (0.85) 1.00 (0.40)   1.00 (0.002) 
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Figure 5.14. Probability of damage for the parameters in damage scenarios (a) iii, (b) iv 

and (c) vi for the present study (Case 4) 

(a) Damage Scenario, iii (b) Damage Scenario, iv 

(c) Damage Scenario, vi 
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Figure 5.15. Ratios of stiffness scaling parameters with ∓1𝜎 for Damage Scenarios  

(a) iii, (b) iv and (c) vi in Case 4 

(a) 

(b) 

(c) 
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Table 5.23. Damage detection results of Case 4 for the present study  

(for damage scenarios i and ii) 

 Actual Present Study 

Damage Scenario 
Damage Location 

(Stiffness Loss) 

Damage Location 

(Stiffness Loss) 

i 

First Floor (+x face) 

71.03 % 

 

First Floor (-x face) 

71.03 % 

 

First Floor (+y face) 

45.24 % 

 

First Floor (-y face) 

45.24 % 

First Floor (+x face) 

68.60 % 

 

First Floor (-x face) 

71.95 % 

 

First Floor (+y face) 

44.00 % 

 

First Floor (-y face) 

45.70 % 

ii 

First Floor (+x face) 

71.03 % 

 

First Floor (-x face) 

71.03 % 

 

First Floor (+y face) 

45.24 % 

 

First Floor (-y face) 

45.24 % 

 

Third Floor (+x face) 

71.03 % 

 

Third Floor (-x face) 

71.03 % 

 

Third Floor (+y face) 

45.24 % 

 

Third Floor (-y face) 

45.24 % 

First Floor (+x face) 

69.30 % 

 

First Floor (-x face) 

71.25 % 

 

First Floor (+y face) 

43.60 % 

 

First Floor (-y face) 

45.85 % 

 

Third Floor (+x face) 

72.70 % 

 

Third Floor (-x face) 

69.05 % 

 

Third Floor (+y face) 

44.80 % 

 

Third Floor (-y face) 

45.40 % 
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Table 5.24. Damage detection results of Case 4 for the present study 

(for damage scenarios iii, iv and vi) 

 Actual Present Study 

Damage Scenario 
Damage Location 

(Stiffness Loss) 

Damage Location 

(Stiffness Loss) 

iii 
First Floor (+x face) 

35.49 % 

First Floor 

38.15 % 

iv 

First Floor (+x face) 

35.49 % 

 

Third Floor (-y face) 

22.63 % 

First Floor 

39.35 % 

 

Third Floor 

23.45 % 

vi 
First Floor (+x face) 

11.81 % 

First Floor 

20.40 %  

 

 

5.3.1.2.5. Analyses and Results for Case 5: 

 

The only difference of Case 5 from Case 4 is that the measured model is the 

120-DOF model in Case 5. Therefore, this case is known as the most difficult case with 

asymmetric mass distribution in the literature since a large modelling error exist in the 

identification model, which is constructed by shear building assumptions. All modes are 

excited in this case, however, only the first three translational modes in the x and y 

directions are employed in the model updating process. As in previous cases, ratios of 

the MPVs of the stiffness parameters are obtained in this case since there exists a 

considerable level of modelling error between the models. 

The results of the damage scenarios i, ii and iii are provided in the following 

tables and bar graphs illustratively. The results of the remaining damage scenarios are 

not provided in this case since the actual damage cannot be distinguished from the many 

false detections with a similar level of damage extents. In this case, a stiffness 

parameter ratio with a value of 0.90 or smaller is accepted as a damaged one. 

Accordingly, the updating results for all the investigated damage scenarios give some 

false damage detection results for the present study. Besides, there is almost no false 

detection in the results obtained by the Algorithms 1 and 2. However, the results have 
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some bias from the actual values for each study. The CDF curves provided in Figure 

5.16 (c) reveal that, for the present study, the damaged parameter is not distinguishable 

from the false detections for the damage scenario iii. The summary of the damage 

detection results can be found in Table 5.28 for the present study in terms of stiffness 

loses. Further, it is observed that the posterior c.o.v (especially the c.o.v. of the damaged 

parameters) has the largest values among all the cases. This proves that the largest 

modelling error exists in this case.   

 

Table 5.25. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s 

(%) for Damage Scenario i in Case 5 

Parameters              Actual Present Study Algorithm 1 Algorithm 2 

1,+𝑥 /1,+𝑥
  𝑢𝑛

 0.29   0.21 (15.60)  0.28 (28.11) 0.28 (2.83) 

1,+𝑦 /1,+𝑦
  𝑢𝑛

 0.55         0.51 (0.94)    0.57 (9.90) 0.51 (0.06) 

1,−𝑥 /1,−𝑥
  𝑢𝑛

 0.29         0.25 (12.23)  0.24 (30.86) 0.24 (3.20) 

1,−𝑦 /1,−𝑦
  𝑢𝑛

 0.55         0.49 (1.42) 0.55 (9.86) 0.53 (0.01) 

2,+𝑥 /2,+𝑥
  𝑢𝑛

 1.00 0.88 (3.32) 1.00 (4.89) 1.00 (0.22) 

2,+𝑦 /2,+𝑦
  𝑢𝑛

 1.00 1.03 (2.28) 1.00 (1.69) 1.00 (0.02) 

2,−𝑥 /2,−𝑥
  𝑢𝑛  1.00 0.78 (4.28) 1.00 (4.72) 1.00 (0.20) 

2,−𝑦 /2,−𝑦
  𝑢𝑛

 1.00 1.03 (1.93) 1.00 (1.58) 1.00 (0.02) 

3,+𝑥 /3,+𝑥
  𝑢𝑛

 1.00 0.80 (1.98) 1.00 (6.74) 0.96 (0.52) 

3,+𝑦 /3,+𝑦
  𝑢𝑛  1.00 0.90 (1.65)  0.91 (4.96) 0.97 (0.03) 

3,−𝑥 /3,−𝑥
  𝑢𝑛

 1.00 0.87 (1.98) 1.00 (6.96) 0.97 (0.57) 

3,−𝑦 /3,−𝑦
  𝑢𝑛

 1.00 0.76 (2.51) 0.91 (4.87)   1.00 (0.004) 

4,+𝑥 /4,+𝑥
  𝑢𝑛

 1.00 0.96 (1.40) 1.00 (3.66) 0.92 (0.24) 

4,+𝑦 /4,+𝑦
  𝑢𝑛

 1.00 0.95 (1.57) 0.90 (6.13) 0.97 (0.02) 

4,−𝑥 /4,−𝑥
  𝑢𝑛

 1.00 0.94 (1.53) 1.00 (3.86) 0.94 (0.26) 

4,−𝑦 /4,−𝑦
  𝑢𝑛

 1.00 0.87 (1.71) 0.94 (5.75)   0.93 (0.007) 
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Table 5.26. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s 

(%) for Damage Scenario ii in Case 5 

          Parameters        Actual Present Study Algorithm 1 Algorithm 2 

1,+𝑥 /1,+𝑥
  𝑢𝑛

 0.29 0.23 (15.44) 0.29 (31.20) 0.32 (0.002) 

1,+𝑦 /1,+𝑦
  𝑢𝑛

 0.55    0.53 (0.93) 0.47 (12.87)    0.57 (0.00) 

1,−𝑥 /1,−𝑥
  𝑢𝑛

 0.29 0.24 (14.20) 0.31 (28.46) 0.25 (0.003) 

1,−𝑦 /1,−𝑦
  𝑢𝑛

 0.55    0.51 (1.44) 0.45 (12.49)    0.58 (0.00) 

2,+𝑥 /2,+𝑥
  𝑢𝑛

 1.00    0.83 (3.79) 1.00 (4.74) 1.00 (0.00) 

2,+𝑦 /2,+𝑦
  𝑢𝑛

 1.00    1.03 (1.34) 0.98 (4.53) 0.99 (0.00) 

2,−𝑥 /2,−𝑥
  𝑢𝑛

 1.00    0.85 (4.28) 1.00 (4.52) 0.89 (0.00) 

2,−𝑦 /2,−𝑦
  𝑢𝑛  1.00    1.03 (1.15) 0.95 (4.61) 1.00 (0.00) 

3,+𝑥 /3,+𝑥
  𝑢𝑛

 0.29    0.13 (7.42)   0.25 (22.75)   0.26 (0.002) 

3,+𝑦 /3,+𝑦
  𝑢𝑛  0.55    0.31 (3.94) 0.42 (8.90) 0.46 (0.00) 

3,−𝑥 /3,−𝑥
  𝑢𝑛

 0.29    0.15 (5.66)   0.25 (23.13)   0.20 (0.003) 

3,−𝑦 /3,−𝑦
  𝑢𝑛

 0.55    0.25 (7.03) 0.40 (8.69) 0.49 (0.00) 

4,+𝑥 /4,+𝑥
  𝑢𝑛

 1.00    0.87 (1.11) 1.12 (5.56) 0.94 (0.00) 

4,+𝑦 /4,+𝑦
  𝑢𝑛

 1.00    1.01 (0.24) 1.02 (2.33) 0.99 (0.00) 

4,−𝑥 /4,−𝑥
  𝑢𝑛

 1.00    0.99 (0.88) 1.10 (5.58) 0.93 (0.00) 

4,−𝑦 /4,−𝑦
  𝑢𝑛

 1.00    1.01 (0.18) 0.98 (2.42) 0.93 (0.00) 

 

Table 5.27. Ratios of the MPVs of the stiffness parameters and their posterior c.o.v.’s 

(%) for Damage Scenario iii in Case 5 

          Parameters Actual Present Study Algorithm 1 Algorithm 2 

1,+𝑥 /1,+𝑥
  𝑢𝑛

 0.65 0.68 (6.04) 0.65 (8.74)   0.67 (0.001) 

1,+𝑦 /1,+𝑦
  𝑢𝑛

 1.00 1.00 (6.04) 1.00 (3.59) 1.00 (0.00) 

1,−𝑥 /1,−𝑥
  𝑢𝑛

 1.00 1.09 (3.72) 1.05 (4.84) 1.00 (0.00) 

1,−𝑦 /1,−𝑦
  𝑢𝑛

 1.00 0.78 (5.42) 0.97 (3.45) 0.97 (0.00) 

2,+𝑥 /2,+𝑥
  𝑢𝑛

 1.00 0.78 (5.42) 1.00 (7.98) 1.00 (0.00) 

2,+𝑦 /2,+𝑦
  𝑢𝑛

 1.00 1.03 (1.35) 1.00 (6.76) 1.00 (0.00) 

2,−𝑥 /2,−𝑥
  𝑢𝑛

 1.00 0.87 (5.45) 1.00 (6.76) 1.00 (0.00) 

2,−𝑦 /2,−𝑦
  𝑢𝑛  1.00 1.03 (1.26) 1.00 (6.53) 1.00 (0.00) 

3,+𝑥 /3,+𝑥
  𝑢𝑛

 1.00 0.87 (1.60) 1.00 (8.81) 1.00 (0.00) 

3,+𝑦 /3,+𝑦
  𝑢𝑛  1.00 1.04 (1.24) 1.00 (7.00) 1.00 (0.00) 

3,−𝑥 /3,−𝑥
  𝑢𝑛

 1.00 0.94 (1.53) 1.00 (7.70) 1.00 (0.00) 

3,−𝑦 /3,−𝑦
  𝑢𝑛

 1.00 1.05 (1.72) 1.00 (6.55)   1.00 (0.001) 

4,+𝑥 /4,+𝑥
  𝑢𝑛

 1.00 1.02 (1.32)   1.00 (10.28)  0.95 (0.00) 

4,+𝑦 /4,+𝑦
  𝑢𝑛

 1.00 1.01 (0.54) 1.00 (5.78) 1.00 (0.00) 

4,−𝑥 /4,−𝑥
  𝑢𝑛

 1.00 0.88 (1.60) 1.00 (9.28) 0.98 (0.00) 

4,−𝑦 /4,−𝑦
  𝑢𝑛

 1.00 0.97 (0.47) 1.00 (6.31) 1.00 (0.00) 
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Figure 5.16. Probability of damage for the parameters in damage scenarios (a) iii, (b) iv 

and (c) vi for the present study (Case 5) 

(a) Damage Scenario, iii (b) Damage Scenario, iv 

(c) Damage Scenario, vi 
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Figure 5.17. Ratios of stiffness scaling parameters with ∓1𝜎 for Damage Scenarios  

(a) iii, (b) iv and (c) vi in Case 5 

 

 

(a) 

(b) 

(c) 
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Table 5.28. Damage detection results of Case 5 for the present study 

 Actual Present Study 

Damage Scenario 
Damage Location 

(Stiffness Loss) 

Damage Location 

(Stiffness Loss) 

i 

First Floor (+x face) 

71.03 % 

 

First Floor (-x face) 

71.03 % 

 

First Floor (+y face) 

45.24 % 

 

First Floor (-y face) 

45.24 % 

 

 

First Floor (+x face) 

78.40 % 

 

First Floor (-x face) 

74.15 % 

 

First Floor (+y face) 

48.65 % 

 

First Floor (-y face) 

51.15 % 

 

Some minor false damages exist 

on other faces  

ii 

First Floor (+x face) 

71.03 % 

 

First Floor (-x face) 

71.03 % 

 

First Floor (+y face) 

45.24 % 

 

First Floor (-y face) 

45.24 % 

 

Third Floor (+x face) 

71.03 % 

 

Third Floor (-x face) 

71.03 % 

 

Third Floor (+y face) 

45.24 % 

 

Third Floor (-y face) 

45.24 % 

 

 

First Floor (+x face) 

76.35 % 

 

First Floor (-x face) 

75.45 % 

 

First Floor (+y face) 

46.70 % 

 

First Floor (-y face) 

48.70 % 

 

Third Floor (+x face) 

86.80 % 

 

Third Floor (-x face) 

84.90 % 

 

Third Floor (+y face) 

68.85 % 

 

Third Floor (-y face) 

74.45 % 

 

Some minor false damages exist 

on other faces 

iii 
First Floor (+x face) 

35.49 % 

 

 

First Floor 

30.20 % 

 

Some major false damages exist 

on other faces 
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5.4. Conclusions 

 

It is observed from the results of the previous chapters that the problem of 

having unreasonably small posterior c.o.v values of the MPVs of the stiffness 

parameters may stem from the FE models used in the numerical applications. The 

reason of this problem is linked to the fact that the previous models have no modelling 

errors. Therefore, in this chapter, a benchmark problem which includes modelling error 

in its analytical FE models is investigated to see the effects of modelling error on the 

updating results. Besides, previous chapters just focus on the estimation of MPVs of the 

parameters and no study is performed for a probabilistic damage identification. 

Therefore, in this chapter, the algorithms developed previously are applied on the 

benchmark problem since it includes different cases with various damage scenarios, 

which gives a chance to take the formulations a step further from parameter estimation 

to a damage detection process. 

In the investigated benchmark problem, Case 1 includes no modelling error as in 

the previous chapters. However, the resulting posterior c.o.v levels in Case 1 are not as 

small as those encountered in the previous studies which have an order of 10-11. 

Besides, the noise level is 10% in the present study while it is 20% in the previous 

studies. Therefore, it is concluded that damping ratio of the structure may be the 

parameter that is responsible for the posterior c.o.v. levels to be significantly small. The 

damping ratio is taken as 1% for all modes in the present study while it is taken as 0.1% 

in the previous studies. To this end, Case 1 is investigated under the same conditions 

with 20% noise level, 0.1% damping ratios for all modes and with the same duration of 

measurements. The results show that the c.o.v values decrease approximately from 3% 

to 0.05% for the present study. The same trend is observed for Algorithm 1 and 2. This 

result reveals that damping ratio is not only the parameter that is responsible for an 

order of 10-11 c.o.v values, but the posterior c.o.v values directly depend on the FE 

model itself. 

The other conclusion is that modelling error affects all the investigated studies 

together with those in the literature. However, it is found that the results of the 

sensitivity-based Bayesian model updating procedure which is proposed in Chapter 4 

are more prone to the modelling error when compared with the algorithms discussed in 

Chapter 3. This result is obtained by comparing the results of Case 2 and 5, which have 
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relatively larger modelling errors, with those of other cases that have no modelling error 

or relatively smaller one. It is observed that the present study gives relatively larger 

biased estimates of the MPVs of the stiffness parameters. This results in false detections 

of damage levels. Thus, the present study identifies false damage locations while the 

other algorithms can successfully identify the damage locations despite the biased 

results. 

In the context of this study, the experimental Phase-II of the benchmark problem 

is also investigated with the same strategies followed in Phase-I. To do so, ambient 

acceleration measurements are used to obtain the experimental modal frequencies and 

mode shapes of the physical structure. The mass distribution of the physical structure is 

designed so that the mass center of each floor is shifted with a considerable amount 

from the geometrical center, and the amount of shift is also different for each floor. 

Therefore, even in the undamaged condition, the identified vibrational modes are found 

to be highly coupled. Therefore, the same 3-D 12-DOF torsional shear building model 

that is introduced in Case 3 is used as the identification model. However, any 

reasonable stiffness parameter values could not be obtained by using the two-stage 

sensitivity-based Bayesian model updating strategy when the mass is not considered as 

an updating variable. Then, the methodology is reformulated to include the mass as the 

parameter to be updated and it is already presented in Chapter 4. This significantly 

improves the updating results in a reasonable way. Besides, the Algorithms 1 and 2 give 

relatively reasonable updating results. However, identified damage extents and locations 

have various false detections. As a conclusion, it is thought that the modelling error 

between the physical structure and the analytical model is significantly high since the 

physical one is a moment-resisting frame and model is constructed by shear frame 

assumptions. It is already found in the numerical studies that all algorithms are affected 

by the modelling error, but the two-stage sensitivity-based Bayesian model updating 

method  is more prone to this. 
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CHAPTER 6  

 

CONCLUSIONS 

 

Conclusions of each study have been already provided at the end of each 

chapter. In this section, a brief summary of remarkable findings and general concluding 

remarks are presented. 

• In Chapter 2, the problems encountered in FE model updating are addressed 

when the single objective function is set as the weighted sums of the error 

functions. The literature has still no rational ways to assign weighing factors 

in such objective functions. To this end, a Bayesian inference method which 

already exists in the literature is investigated in detail. Further, the results are  

compared with those obtained from the frequentist approach. It is observed 

that the Bayesian inference method requires a large number of modal data set 

to give reasonable optimal weighting values. Frequentist approach also 

requires large number of samples. Therefore, the investigated method is not 

found to be practical.  

• In Chapter 3, a two-stage Bayesian model updating technique is reformulated 

to make comparisons between three different modelling error assumptions. It 

is found that all investigated assumptions result in too small posterior c.o.v 

values. Besides, the presented Bayesian model updating strategy gives the 

smallest values among three of them. Having small posterior c.o.v is found 

to be unrealistic since there might be no need to make probabilistic analysis 

to get such small uncertainties. As the reason of this outcome, modelling 

error term and norm constraint terms in the objective function are blamed. 

Therefore, if these terms are omitted from the objective function, the 

resulting posterior c.o.v values should increase. This idea brings the 

development of the sensitivity-based Bayesian model updating method that 

is proposed in Chapter 4.  

• In Chapter 4, a two-stage sensitivity-based Bayesian model updating method 

is proposed to bring the posterior c.o.v values to reasonable levels. For this 

purpose, a deterministic sensitivity-based approach which already exists in 
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the literature is modified to have a probabilistic Bayesian-based model 

updating procedure. To this end, the Hessian matrix is derived for the 

posterior uncertainty analysis of the updated parameters. Further, mass is 

included as the parameter to be updated to increase the robustness of the 

methodology. The results of the proposed method are compared to those 

obtained in Chapter 3. Comparisons reveal that the proposed methodology is 

successful to give posterior c.o.v values in reasonable levels when compared 

to the results of Chapter 3. One drawback of the proposed method is that the 

mode matching problem inevitably exists since the objective function is set 

by using the modes of the FE model instead of system modes.   

• In Chapter 5, the two-stage sensitivity-based Bayesian model updating 

method proposed in Chapter 4 and the presented methods in Chapter 3 are 

implemented on a benchmark problem that has numerical and experimental 

phases. This benchmark problem also includes different damage scenarios. 

Therefore, in this chapter, probabilistic damage identification is also 

performed by using the investigated model updating techniques. The results 

reveal that the posterior c.o.v values are increased for all updating methods 

when compared to the results provided in previous chapters. Therefore, it is 

concluded that the posterior c.o.v levels are the modelling error level 

between FE model and measured structure. However, as in the previous 

comparisons, the proposed sensitivity-based Bayesian model updating 

method has resulted in the highest posterior c.o.v values which fulfills one of 

the main research objectives of this thesis.  
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APPENDIX A  

 

DERIVATION OF HESSIAN MATRIX FOR THE 

BAYESIAN MODEL UPDATING METHOD UTILIZING 

THE CONCEPT OF SYSTEM MODES 

 

Derivation of the the Hessian matrix in equation (3.58); 

 

➢ Derivation of ( )λ ,λJ : 

( )λ ,λJ = diag( 
( , )n nJ
 

 ) is a diagonal matrix with a size of Nm × Nm and the nth 

diagonal element is obtained as 

 

2
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2
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(A.1) 

 

➢ Derivation of 
( )λ ,Φ

J : 
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 
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
K θ M M M     

 

( )λ ,Φ
J = diag( 

( , )n n
J


 ) is a block diagonal matrix with a size of Nm × NdNm and 

the nth row vector is obtained as 
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 (A.2) 

 



 181 

 

➢ Derivation of 
( )θ,λ

J : 

 

( , )( , )( , )( , ) 1 Nn m

N Nm



 

 =
  

θθθθJ J J J  

 

where the nth column vector is obtained as 
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(A.3) 

 

➢ Derivation of ( )Φ,ΦJ : 

( )Φ,ΦJ = diag( 
( ),n n

J
 

 ) is a block diagonal matrix with a size of NdNm × NdNm and 

the nth block matrix is evaluated as 
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(A.4) 

 

➢ Derivation of 
( )θ,Φ

J : 

( ) ( ) ( ) ( ),, ,, 1 Nn m

N N Nd m 

 
=  
 

θθ θθ Φ
J J J J

 
 

where the nth block matrix is obtained as 
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and the ith row vector is calculated as 
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➢ Derivation of 
( )θ,θ

J : 
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➢ Derivation of 
( )λ , SeqJ : 

( )λ , SeqJ = diag( 
( ), ,Sn eq n

J


 ) is a diagonal matrix with a size of Nm × Nm and the nth 

diagonal element is obtained as 
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➢ Derivation of 
( )Φ, SeqJ : 

( )Φ, SeqJ = diag( 
( ), ,Sn eq n

J


 ) is a block diagonal matrix with a size of NdNm × Nm 

and the nth block vector is obtained as 
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➢ Derivation of 
( )θ, SeqJ : 
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N Nm 

 
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      where the nth column vector is obtained as  
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➢ Derivation of 
( )S , Seq eqJ : 

( )S , Seq eqJ = diag( 
( ),, ,S Seq n eq n

J  ) is a diagonal matrix with a size of Nm × Nm and 

the nth diagonal element is obtained as 
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APPENDIX B  

 

DERIVATION OF HESSIAN OF EIGENVALUES AND 

EIGENVECTORS FOR THE SENSITIVITY-BASED 

BAYESIAN MODEL UPDATING METHOD 

 

This Appendix provides the derivations of Hessian of eigenvalues and 

eigenvectors with respect to the stiffness and mass parameters for the sensitivity-based 

Bayesian model updating method proposed in Chapter 4. 

 

Defining the eigenvalue equation for the nth mode  

 

  ( ) ( ) ( ) ( )n n− =K θ χ M ρ χ 0  (B.1) 

 

• Differentiation with respect to 𝜃𝑖 and 𝜃𝑚 

 

Differentiating equation (B.1) with respect to 𝜃𝑖 gives the following expression 
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(B.2) 

 

 

Then, differentiating equation (B.2) with respect to 𝜃𝑚 gives the following expression 
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Pre-multiplying equation (B.3) by 𝝓𝑛
𝑇(𝛘); 
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(B.4) 

 

 

Since 𝝓𝑛
𝑇(𝛘) is the left eigenvector of the matrix ( ) ( ) ( )n−K θ χ M ρ  in equation (B.4), last 

term of the left side of the equation is zero. Then, rearranging equation (B.4); 
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(B.5) 

 

 

By rearranging equation (B.5), Hessian of the eigenvalue of the nth mode can be 

obtained as 
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Equation (B.3) is rearranged to solve for the Hessian of the eigenvector of the nth mode 

as 

 

 
2

2

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

n
n

i m

n n n
n i

i m i m

n n
m

m i


 

 

   



 


−

 

   
= − − 

    

  
− − 

  

χ
K θ χ M ρ

χ χ χ
M ρ χ K M ρ

χ χ
K M ρ








 
(B.7) 

 

 

However, Hessian of the eigenvectors cannot be obtained by using equation (B.7) since 

the matrix ( ) ( ) ( )n−K θ χ M ρ  on the left-hand side is a rank deficient one. Therefore, rank 

deficiency problem is solved by the same procedure that is performed for the calculation 

of the Jacobian of eigenvectors in Section 4.2.3.2. Accordingly, since the Jacobian of 

the ℎ𝑛
𝑡ℎ coordinate of 𝝓̅𝑛(𝛘) and since the Jacobian of the 𝑎𝑛

𝑡ℎ coordinate of 𝝓𝑛(𝛉) are 

zeros (See equation (4.49)), the Hessian of these coordinates are also zeros. Then, 
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The transformation in equation (4.50) is substituted into the left-hand side of equation 

(B.7). Further, 𝜕2𝟏̃ / ∂𝜃𝑖 ∂𝜃𝑚 is a zero vector, and the following equation is obtained as 
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where dnim represents the right-hand side of equation (B.7) as 
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Similar to Section 4.2.3.2, equation (B.9) is pre-multiplied by 𝐀𝑛
𝑇  as 
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and one can obtain 𝜕2𝝓𝑛
−(𝛘) / ∂𝜃𝑖 ∂𝜃𝑚 as  

 

  ( ) ( )
2

1( )
( ) ( ) ( )T Tn

n n n n nim
i m


 

−
−

= −
 

χ
A K θ χ M ρ A A d


 (B.12) 

 

Then, Hessian of the nth mode shape vector, 𝜕2𝝓𝑛(𝛘) / ∂𝜃𝑖 ∂𝜃𝑚, can be obtained as 
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• Differentiation with respect to 𝜃𝑖 and 𝜌𝑗 

 

Differentiating equation (B.2) with respect to 𝜌𝑗 gives the following expression 
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Pre-multiplying equation (B.14) by 𝝓𝑛
𝑇(𝛘); 
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Since 𝝓𝑛
𝑇(𝛘) is the left eigenvector of the matrix ( ) ( ) ( )n−K θ χ M ρ  in equation (B.15), 

last term of the left side of the equation is zero. Then, rearranging equation (B.15), 

Hessian of the eigenvalue of the nth mode can be obtained as 
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Equation (B.14) is rearranged to solve for the Hessian of the eigenvector of the nth mode 

as 
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However, Hessian of the eigenvectors cannot be obtained by using equation (B.17) 

since the matrix ( ) ( ) ( )n−K θ χ M ρ  on the left-hand side is a rank deficient one. Therefore, 

rank deficiency problem is solved by the same procedure that is performed for the 

calculation of the Jacobian of eigenvectors in Section 4.2.3.2. Accordingly, since the 

Jacobian of the ℎ𝑛
𝑡ℎ coordinate of 𝝓̅𝑛(𝛘) and since the Jacobian of the 𝑎𝑛

𝑡ℎ coordinate of 

𝝓𝑛(𝛉) are zeros (See equation (4.49)), the Hessian of these coordinates are also zeros. 

Then, 
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(B.18) 

 

 

The transformation in equation (4.50) is substituted into the left-hand side of equation 

(B.17). Further, 𝜕2𝟏̃ / ∂𝜃𝑖 ∂𝜌𝑗 is a zero vector, and the following equation is obtained as 
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where dnij represents the right-hand side of equation (B.17) as 
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Equation (B.19) is pre-multiplied by 𝐀𝑛
𝑇  as 
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and one can obtain 𝜕2𝝓𝑛
−(𝛘) / ∂𝜃𝑖 ∂𝜌𝑗 as  
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Then, Hessian of the nth mode shape vector, 𝜕2𝝓𝑛(𝛘) / ∂𝜃𝑖 ∂𝜌𝑗, can be obtained as 
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• Differentiation with respect to 𝜌𝑗 and 𝜌𝑘 

 

Differentiating equation (B.1) with respect to 𝜌𝑗 gives the following expression 
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Then, differentiating equation (B.24) with respect to 𝜌𝑘 gives the following expression 
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Pre-multiplying equation (B.25) by 𝝓𝑛
𝑇(𝛘); 
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Since 𝝓𝑛
𝑇(𝛘) is the left eigenvector of the matrix ( ) ( ) ( )n−K θ χ M ρ  in equation (B.26), last 

term of the left side of the equation is zero. Then, rearranging equation (B.26), Hessian 

of the eigenvalue of the nth mode can be obtained as 
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Equation (B.25) is rearranged to solve for the Hessian of the eigenvector of the nth mode 

as 
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However, Hessian of the eigenvectors cannot be obtained by using equation (B.28) 

since the matrix ( ) ( ) ( )n−K θ χ M ρ  on the left-hand side is a rank deficient one. Therefore, 

rank deficiency problem is solved by the same procedure that is performed for the 

calculation of the Jacobian of eigenvectors. Accordingly, since the Jacobian of the ℎ𝑛
𝑡ℎ 

coordinate of 𝝓̅𝑛(𝛘) and since the Jacobian of the 𝑎𝑛
𝑡ℎ coordinate of 𝝓𝑛(𝛉) are zeros 

(See equation (4.49)), the Hessian of these coordinates are again zeros. Then, 
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The transformation in equation (4.50) is substituted into the left-hand side of equation 

(B.28). Further, 𝜕2𝟏̃ / ∂𝜌𝑗 ∂𝜌𝑘 is a zero vector, and the following equation is obtained 

as 

  
2 ( )

( ) ( ) ( ) n
n n njk

j k


 

−
− =

 

χ
K θ χ M ρ A d


 (B.30) 

 

where dnjk  represents the right-hand side of equation (B.28) as 
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Equation (B.30) is pre-multiplied by 𝐀𝑛
𝑇  as 
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and one can obtain 𝜕2𝝓𝑛
−(𝛘) / ∂𝜌𝑗 ∂𝜌𝑘 as  
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Then, Hessian of the nth mode shape vector, 𝜕2𝝓𝑛(𝛘) / ∂𝜌𝑗 ∂𝜌𝑘, can be obtained as 
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