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ABSTRACT

DIRECT AND INTERIOR INVERSE GENERALIZED IMPEDANCE

PROBLEMS FOR THE MODIFIED HELMHOLTZ EQUATION

Our research is motivated by the classical inverse scattering problem to recon-

struct impedance functions. This problem is ill-posed and nonlinear. This problem can be

solved by Newton-type iterative and regularization methods. In the first part, we suggest

numerical methods for resolving the generalized impedance boundary value problem for

the modified Helmholtz equation. We follow some strategies to solve it. The strategies of

the first method are founded on the idea that the problem can be reduced to the boundary

integral equation with a hyper-singular kernel. While the strategy of the second approach

makes use of the concept of numerical differentiation, the first approach treats the hyper

singular integral operator by splitting off the singularity. We also show the convergence of

the first method in the Sobolev sense and the solvability of the boundary integral equation.

We give numerical examples which show exponential convergence for analytical data. In

the second part of this work, we take into account the inverse scattering problem of recon-

structing the cavity’s surface impedance from sources and measurements positioned on a

curve within it. For the approximate solution of an ill-posed and nonlinear problem, we

propose a direct and hybrid method which is a Newton-type method based on a boundary

integral equation approach for the boundary value problem for the modified Helmholtz

equation. As a consequence of this, the numerical algorithm combines the benefits of

direct and iterative schemes and has the same level of accuracy as a Newton-type method

while not requiring an initial guess. The results are confirmed by numerical examples

which show that the numerical method is feasible and effective.
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ÖZET

MODİFİYE EDİLMİŞ HELMHOLTZ DENKLEMİ İÇİN DİREK VE

İÇSEL TERS GENELLEŞTİRİLMİŞ EMPEDANS PROBLEMLER

Araştırmamız, empedans fonksiyonlarını yeniden yapılandırmak için klasik ters

saçılma problemi tarafından motive edilmiştir. Bu problem kötü tanımlanmıştır ve lineer

değildir. Bu problem Newton tipi yinelemeli ve düzenlileştirme yöntemleriyle çözülebilir.

İlk bölümde, modifiye edilmiş Helmholtz denklemi için genelleştirilmiş empedans sınır

değeri problemini çözmek için sayısal yöntemler öneriyoruz. Bunu çözmek için bazı

stratejiler izliyoruz. İlk yöntemin stratejileri, problemin hiper-tekil bir çekirdek ile sınır

integral denklemine indirgenebileceği fikri üzerine kurulmuştur. İkinci yaklaşımın strate-

jisi sayısal türev kavramını kullanırken, birinci yaklaşım hiper tekil integral operatörünü

tekilliği bölerek ele alır. Sobolev anlamında birinci yöntemin yakınsamasını ve sınır in-

tegral denkleminin çözülebilirliğini de gösteriyoruz. Analitik veriler için üstel yakınsama

gösteren sayısal örnekler veriyoruz. Bu çalışmanın ikinci bölümünde, kavitenin yüzey

empedansını kaynaktan ve bunun içinde bir eğri üzerinde konumlandırılmış ölçümlerden

yeniden yapılandırmanın ters saçılma problemini dikkate alıyoruz. Kötü konumlanmış ve

doğrusal olmayan bir problemin yaklaşık çözümü için, modifiye edilmiş Helmholtz den-

klemi için sınır değer problemi için sınır integral denklemi yaklaşımına dayalı Newton

tipi bir yöntem olan doğrudan ve hibrit bir yöntem öneriyoruz. Bunun bir sonucu olarak,

sayısal algoritma, doğrudan ve yinelemeli şemaların faydalarını birleştirir ve ilk tahmin

gerektirmeden Newton tipi bir yöntemle aynı doğruluk seviyesine sahiptir. Sonuçlar,

sayısal yöntemin uygulanabilir ve etkili olduğunu gösteren sayısal örneklerle doğrulan-

mıştır.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. PDE Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Boundary Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4. Nonlinear and Ill-posed Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 3. NUMERICAL SOLUTION OF DIRECT PROBLEM . . . . . . . . . . . . . . . . 15

3.1. The Boundary Integral equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2. Parametrization of the Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. Numerical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4. Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CHAPTER 4. INVERSE IMPEDANCE PROBLEM FOR THE MODIFIED

HELMHOLTZ EQUATION IN TWO DIMENSIONS . . . . . . . . . . . . . . . . 33

4.1. Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2. Solution Methods for Inverse Impedance Problem . . . . . . . . . . . . . . . . . . 38

4.3. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

CHAPTER 5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



LIST OF FIGURES

Figure Page
Figure 1.1 Geometry of the domain for inverse impedance problem . . . . . . . . . . . . . . . . . 3

Figure 3.1 Geometry of the Direct Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 3.2 Domain D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 4.1 Domain D with measurement C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.2 Fields in the domain and on the measurement circle . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.3 Reconstruction from the exact data of λ and μ for ellipse by hybrid . . . . . 47

Figure 4.4 Reconstruction from the exact data of λ and μ for ellipse by direct . . . . . . 48

Figure 4.5 Reconstruction from the exact data of λ and μ for peanut by hybrid . . . . . 49

Figure 4.6 Reconstruction from the exact data of λ and μ for peanut by direct . . . . . . 50

Figure 4.7 Average reconstructions of λ and μ with noisy data out of ten . . . . . . . . . . . 52

Figure 4.8 Best reconstructions of λ and μ with noisy data out of ten . . . . . . . . . . . . . . . 53

vii



LIST OF TABLES

Table Page

Table 3.1 Error analysis for Example 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 3.2 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 3.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 4.1 Errors for the exact data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 4.2 Numerical error for peanut-shaped domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



CHAPTER 1

INTRODUCTION

Many significant problems in science and engineering entail finding a solution to

the equation

Δu − k2u = 0 (1.1)

depending on the proper boundary conditions. This equation (1.1) is called the modi-

fied Helmholtz equation. Boundary value problems for the modified Helmholtz equa-

tion play a crucial role in various areas such as in heating and in cooling materials,

in implicit marching schemes for the heat equation, Debye-Huckel theory, and the lin-

earization of the Poisson-Boltzmann equation associated with electrostatic interactions

and electric potential governed by the modified Helmholtz equation, see Cheng et al.

(2006) and references therein. The Yukawa equation which is a modified version of the

Helmholtz equation, appears in a number of scientific applications (see, Bin-Mohsin and

Lesnic (2019); Yovanovich et al. (1988); Balakrishnan and Ramachandran (2000)). The

modified Helmholtz equation called Helmholtz equation with mines occurs in many el-

liptic PDEs(Golberg and Chen (1998)). It is also considered as a modified Helmholtz

equation when k is complex imaginary number. Possibly the most investigated prob-

lems are Laplace equation(Greenbaum et al. (1993)) Δu = 0 and the Helmholtz equation

Δu + k2u = 0. For more knowledge about Helmholtz and Laplace equation we refer to

Colton et al. (1998)’s book. There are numerous numerical techniques in the literature to

solve the boundary value problems for the modified Helmholtz equation. For instance, Li

(2006) introduced a technique based on plane wave functions in simply connected domain

in R2; Bin-Mohsin and Lesnic (2012) used the fundamental solution method; Kropinski

and Quaife (2011) employed fast multiple method with integral equations and dealt with

singularity by hybrid Gauss-trapezoidal rule. The Chen et al. (2014) applied a singular

boundary technique; Cheng et al. (2006) presented a fast multipole-accelerated integral
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equation; and Duruflé et al. (2006) considered the Trefftz technique. All these results

take into consideration the classical boundary condition. Our research is motivated by

generalized impedance boundary condition

∂u
∂ν
+ k

(
λu − d

ds
μ

du
ds

)
= g (1.2)

for the modified Helmholtz equation and also the corresponding inverse impedance prob-

lem. Direct interior problem consist of obtaining the solution to interior boundary value

problem (1.1)-(1.2). This problem is well-posed problem. Here we are interested in in-

tegral equation methods based on the reduction of the problem to the boundary integral

equation to solve (1.1) subject to boundary condition (1.2). Two methods are proposed

to solve the problem. In the first method the hyper-singular kernel is treated by splitting

off the singularity whereas in the second method the idea of numerical differentiation is

used. Moreover, we first have proved the solvability of the boundary integral equation

and shown the convergence of the first method in Sobolov space, which is verified by

numerical examples. Cakoni and Kress (2012) and Kress (2018) examined the direct and

inverse problems for the 2D Helmholtz equation, which are most pertinent to the current

work. The inverse problems for an elliptic partial differential equation in a bounded do-

main can be roughly classified into two groups of exterior and interior problems. The

exterior problems are concerned with either reconstructing the unknown boundary, Liu

(2019), Bin-Mohsin and Lesnic (2012) and Marin and Karageorghis (2009), or boundary

condition, source from the Cauchy data on the boundary, Yang et al. (2017), or concerned

with finding the solution inside the region from the Cauchy data on the boundary or its

segment, Nguyen et al. (2013). The interior inverse problem for the modified Helmholtz

equation, where the unknowns are the impedance functions defining the boundary condi-

tion, is the focus of this study.

Let us introduce operator F : D(F)→ R(F) described by

F(λ, μ) = us|C. (1.3)

The inverse problem introduced above is a nonlinear equation with respect to impedance
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Figure 1.1.: Geometry of the domain for inverse impedance problem

functions λ and μ and it is ill-posed problem. Iterative regularization method which is

Newton-type can successfully solve this issue. Our aim is to recover impedance functions

in (1.2) given boundary in Figure 1.1 and measurement data us on C. The second chapter

is concerned with a direct problem and its convergence analysis. We suggest two numeri-

cal methods for solving the boundary value problem for the modified Helmholtz equation

with generalized impedance boundary condition(GIBC) and show the method is conver-

gent in Sobolev space. The third chapter is devoted to the inverse impedance problem.

We develop a numerical scheme for recovery of impedance functions and provide results

which confirm uniqueness of the interior inverse impedance problem. We also give some

numerical examples showing the effectiveness of the methods.
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CHAPTER 2

PRELIMINARIES

This chapter includes some basic definitions and theorems which are employed in

the next chapters.

2.1. PDE Part

Theorem 2.1 (Holmgren’s Theorem) Let D ⊂ R2 be bounded domain of class C2 and

u ∈ C2(D) ∩C1(D̄) be solution to the modified Helmholtz equation in D such that

u =
∂u
∂ν
= 0 on Γ (2.1)

for some open subset Γ ⊂ ∂D. Then u vanishes identically in D.

We refer to Colton et al. (1998) for more detail.

Theorem 2.2 (Green’s Theorem) Let D be a bounded domain of class C1 and let ν de-

note the unit normal vector to the boundary ∂D into the exterior of D. Then for u ∈ C1(D̄)

and υ ∈ C2(D̄), we have Green’s first theorem

∫
D

(uΔυ − grad u · grad υ)dx =
∫
∂D

u
∂υ

∂ν
ds, (2.2)

and for u, υ ∈ C2(D̄) we have Green’s second theorem

∫
D

(uΔυ − υΔu)dx =
∫
∂D

(
u
∂υ

∂ν
− υ∂u

∂ν

)
ds. (2.3)

For more knowledge we refer to Kress (2013).
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Definition 2.1 A function ψ ∈ L2[a, b] is said to be posses a weak derivative ψ′ ∈ L2[a, b]

if

∫ b

a
ψϕ′dx = −

∫ b

a
ψ′ϕdx (2.4)

for all ϕ ∈ C1[a, b] with ϕ(a) = ϕ(b) = 0.

For more knowledge we refer to Kress (2013).

Theorem 2.3 (Maximum-minimum principle) Let u satisfy differential inequality

(L + h)(u) ≥ 0

with h ≤ 0, with L uniformly elliptic in D and with the coefficients of L and h bounded. If

u attains a nonnegative maximum M at the interior point of D, then u = M.

More knowledge can be found in Protter and Weinberger (2012).

Theorem 2.4 The following problem

Δu − k2u = 0 in D (2.5)

u = f on ∂D (2.6)

has unique solution.

Theorem 2.5 The following problem

Δu − k2u = 0 in R2 \ D (2.7)

u = f on ∂D (2.8)

lim
R→∞ sup

|x|>R
u(x) = 0 (2.9)

has unique solution.
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For exterior and interior Dirichlet uniqueness theorems we refer to Quaife (2011).

2.2. Boundary Integral Equations

Definition 2.2 Given a function ϕ ∈ C(∂D), the functions

u(x) :=

∫
∂D
Φ(x, y)ϕ(y)ds(y), x ∈ Rn \ ∂D, (2.10)

and

υ(x) :=

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ Rn \ ∂D, (2.11)

are called single-layer and double-layer potential with density ϕ where Φ represents fun-

damental solution of the modified Helmholtz equation.

For this we refer to Kress (2013).

Theorem 2.6 For ∂D of class C2, the double layer potential υ with continuous density ϕ

can be extented from D→ D̄ and from Rn \ D̄ to Rn \ D with limiting values

υ±(x) =

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y) ± 1

2
ϕ(x), x ∈ ∂D, (2.12)

where υ±(x) := limh→+0 υ(x ± hν(x)) and the integral exists as an improper integral.

For more knowledge you can see Kress (2013).

Theorem 2.7 Let ∂D be of class C2 and μ ∈ C(∂D). Then the single layer potential u

with density ϕ is continuous throughout Rn. On the boundary we have

u(x) =

∫
∂D
Φ(x, y)ϕ(y)ds(y), x ∈ ∂D (2.13)
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and we also have

∂u±
∂ν

(x) =

∫
∂D

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y) ∓ 1

2
ϕ(x), x ∈ ∂D. (2.14)

For more knowledge you can see Kress (2013).

Definition 2.3 A linear operator S : X → Y from a normed space X into a normed space

Y is called compact if it maps each bounded set in X into a relatively compact set in Y.

Definition 2.4 X is compactly embedded in Y if the identity operator I : X → Y is

compact.

Theorem 2.8 Let A : X → X be compact linear operator on a normed space X. Then

I−A is injective if and only if it is surjective. If I−A is injective, then the inverse operator

(I − A)−1 : X → X is bounded.

For more knowledge we refer to Kress (2013). We can rewrite Theorem 2.8 in terms of

the solvability of an operator equation of the second kind as follows.

Theorem 2.9 Let A : X → X be a compact linear operator on a normed space X. If the

homogeneous equation

ϕ − Aϕ = 0 (2.15)

only has the trivial solution ϕ = 0, then for each f ∈ X the inhomogeneous equation

ϕ − Aϕ = f (2.16)

has a unique solution ϕ ∈ X and this solution depends continuously on f .

For more details you can see Kress (2013).

Theorem 2.10 Theorem 2.8 and 2.9 remain valid when I − A is replaced by S − A, where

S : X → Y is a bounded linear operator that has bounded inverse S −1 : Y → X, i.e.,

7



S : X → Y is an isomorphism, and A : X → Y is a compact linear operator from a

normed space X into a normed space Y.

For more knowledge you can see Kress (2013).

2.3. Numerical Methods

Definition 2.5 (Numerical integration) Quadrature formula computes the approxima-

tions to integrals by using numerical techniques. Consider quadrature formula of the

form

Q( f ) :=

∫ b

a
w(x) f (x)dx, (2.17)

where w is weight function and continous function f over the interval [a, b] and quadra-

ture form is presented by

Qn( f ) :=

n∑
i=1

α(n)
i f (x(n)

i ), (2.18)

where n is distinct quadrature points and α(n)
i quadrature weights. It is very efficient way

to approximate integral with periodic functions by trapezoidal rule described by

∫ b

a
f (x)dx ≈ h

(
1

2
f (x0) + f (x1) + . . . +

1

2
f (xn)

)
. (2.19)

To deal with singularity of the kernels we use and to have final dimensional sys-

tem, we introduce quadrature operators formula

8



1

2π

∫ 2π

0

ln
(
4 sin2 t − τ

2

)
(Pnϕ)(τ)dτ =

2n−1∑
j=0

R(n)
j (t)ϕ(t(n)

j ), t ∈ [0, 2π], (2.20)

1

2π

∫ 2π

0

cot
τ − t

2
(Pnϕ)′(τ)dτ =

2n−1∑
j=0

T (n)
j (t)ϕ(t(n)

j ), t ∈ [0, 2π], (2.21)

1

2π

∫ 2π

0

cot
τ − t

2
(Pnϕ)(τ)dτ =

2n−1∑
j=0

I(n)
j (t)ϕ(t(n)

j ), t ∈ [0, 2π], (2.22)

where Pn : C[0, 2π] → Tn is interpolation operator and Tn is subspace of trigonometric

polynomials and with the quadrature weights

Rj(t) = −1

n

⎛⎜⎜⎜⎜⎜⎝
n−1∑
m=1

1

m
cos m(t − t j) +

1

2n
cos n(t − t j)

⎞⎟⎟⎟⎟⎟⎠ , (2.23)

T j(t) = −1

n

n−1∑
m=1

m cos m(t − t j) − 1

2
cos n(t − t j), (2.24)

I j(t) =
1

2n

(
1 − cos n(t − t j)

)
cot

t − t j

2
, (2.25)

where j = 0, . . . , 2n − 1, t j = jh, h = π
n .

The derivation of quadrature formulas can be seen in Kress (2013).

Theorem 2.11 (Banach-Steinhaus) Let X and Y be Banach spaces, and let A, An : X →
Y be bounded linear operators. Let U be a dense subspace of X. Then in order that

Anϕ→ Aϕ for all ϕ ∈ X, it is necessary and sufficient that

• Anϕ→ Aϕ for all ϕ ∈ U,

• ||An|| < C for all n ∈ N and for some constant C.

Theorem 2.12 For nonnegative integer k, let f ∈ Ck
2π denoted by the space of k times

continuously differentiable 2π periodic functions from R to C and assume that 0 ≤ p ≤ k.

Then for all ϕ ∈ Hp[0, 2π] the product fϕ belongs to Hp[0, 2π] and

|| fϕ||p ≤ C
(
|| f ||∞ + || f k|∞

)
||ϕ||p (2.26)

9



for some constant C depending on p.

The proofs can be seen in Kress (2013).

Definition 2.6 For a function ϕ ∈ L2[0, 2π] the series

∞∑
m=−∞

ϕ̂meimt, (2.27)

where

ϕ̂m :=
1

2π

∫ 2π

0

ϕ(t)e−imt (2.28)

is called the Fourier series of ϕ, its coefficients ϕ̂m are called the Fourier coefficients of ϕ.

On L2[0, 2π], the mean square norm is described by the scalar product

(ϕ, ψ) :=

∫ 2π

0

ϕ(t)ψ̄(t)dt. (2.29)

Let 0 ≤ p < ∞. By Hp[0, 2π] we denote the space of all functions ϕ ∈ L2[0, 2π] with the

property

∞∑
m=−∞

(1 + m2)p|ϕ̂m|2 < ∞ (2.30)

for the Fourier coefficients ϕ̂m of ϕ. The space Hp[0, 2π] is called a Sobolev space.

Theorem 2.13 The Sobolev space Hp[0, 2π] is a Hilbert space with scalar product de-

fined by

(ϕ, ψ)p :=

∞∑
m=−∞

(1 + m2)pϕ̂m
¯̂ψm (2.31)

for ϕ, ψ ∈ Hp[0, 2π] with Fourier coefficients ϕ̂m, ψ̂m respectively. Note that the norm of

10



Hp[0, 2π] is given by

||ϕ||p =
⎛⎜⎜⎜⎜⎜⎝
∞∑

m=−∞
(1 + m2)p|ϕ̂m|2

⎞⎟⎟⎟⎟⎟⎠
1
2

. (2.32)

The trigonometric polynomials are dense in Hp[0, 2π].

Theorem 2.14 if q > p then Hq[0, 2π] is dense Hp[0, 2π] with compact embedding from

Hq[0, 2π] into Hp[0, 2π].

We refer to Kress (2013)’s book for more information about Sobolev space.

Definition 2.7 (Modified Bessel Functions) Modified Bessel fucntions Kn(x) and In(x)

are solution to Bessel’s modified differential equation, where n and x being termed the

order and argument of the function. We are interested in integer order n = 0, 1, 2 here.

Kn is called the modified Bessel function of the second kind or alternatively the modified

Hankel function and also In represents the modified Bessel function of the first kind. They

are given by

I0(x) = 1 +
x2

4
+

x4

64
+

x6

2304
+ · · · (2.33)

I1(x) =
x
2
+

x3

16
+

x5

384
+

x7

18432
· · · (2.34)

I2(x) =
x2

8
+

x4

96
+

x6

3072
+ · · · (2.35)

The limit In at large and small arguments are given by

In(x→ ∞) ∼ ex

√
2πx

and In(x→ 0) ∼ 1

n!

( x
2

)2

. (2.36)

hn = In,Kn satisfy the formula for derivatives

(
1

z
d
dx

)k

(xnhn(x)) = xn−khn−k(x), k = 0, 1, 2, . . . (2.37)
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We have I′0(x) = I1(x) and K′0(x) = −K1(x) from derivative formula and both obeys reflec-

tion formula

hn+1(x) =
2n
x

hn(x) + hn−1. (2.38)

Also

K0(x) = −
(
γ + ln

x
2

)
I0(x) + 2

∞∑
j=1

I2 j(x)

j
, (2.39)

K1(x) =
1

x
I0(x) +

(
γ − 1 + ln

x
2

)
I1(x) −

∞∑
j=1

2 j + 1

j2 + j
I2 j+1(x), (2.40)

where γ is Euler’s constant and the limit values for small and large arguments are de-

scribed by

Kn(x→ 0)→ ln
2

x
− γ and Kn(x→ ∞)→

√(
π

2x

)
e−x. (2.41)

Many details about solution to modified Helmholtz can be found in Abramowitz and

Stegun (1964) and Oldham et al. (2009).

2.4. Nonlinear and Ill-posed Problems

Definition 2.8 Let f : X → Y be a function and X,Y be Banach spaces. f is Gateaux

differentiable at x0 if there is an operator d f (x0, h) : X → Y such that

lim
τ→0
|| f (x0 + τh) − f (x0) − τd f (x0, h)|| = 0, (2.42)

where x0 + τh ∈ X.

Definition 2.9 Let X,Y be Banach spaces and and U be open set in X. The operator

f : X → Y is called Frechet differentiable at x0 ∈ U ⊂ X if there is linear bounded

12



operator A : X → Y such that

lim
||h||→0

|| f (x0 + h) − f (x0) − A(h)||Y
||h||X = 0. (2.43)

Theorem 2.15 Let A : X → Y be bounded linear operator and let α > 0. Then for each

f ∈ Y there exists a unique ϕα ∈ X such that

||Aϕα − f ||2 + α||ϕα||2 = in fϕ∈X
{
||Aϕ − f ||2 + α||ϕ||2

}
. (2.44)

The minimizer ϕα is given by the unique solution of the equation

αϕα + A∗Aϕα = A∗ f . (2.45)

Definition 2.10 Let F : D → Rn continuously differentiable mapping with D ⊂ Rn. Let

F′ denotes Frechet derivative and the Newton method is given by

Xk+1 = Xk −
(
F′(Xk)

)−1
F(Xk), (2.46)

where F′(Xk) is Jacobian matrix.

Definition 2.11 (Morozov’s Discrepancy Principle) The stopping rule is defined with

the discrepancy principle is

||Fxδ − yδ|| ≤ τδ, (2.47)

where yδ is noisy data, δ is noise level and τ > 1.

Definition 2.12 (Numerical derivative) The numerical derivative of f at x is defined by
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approximation

f ′(x) ≈ f (x + h) − f (x)

h
. (2.48)
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CHAPTER 3

NUMERICAL SOLUTION OF DIRECT PROBLEM

In this chapter we suggest numerical algorithms to solve the boundary value prob-

lem for the modified Helmholtz equation with generalized impedance boundary condi-

tion. The solution of the methods are based on reduction of the problem to boundary

integral equation with hyper singular-kernel. For more details about this method we refer

to Kress (2014b). We describe two methods to solve the problem. In the first way the

hyper-singular kernel of the integral operator is treated by splitting off the singularity ap-

proaches. As second way numerical differentiation is employed to solve it. Additionally

we investigate the solvability of the boundary integral equation and convergence of the

first method we proposed. The problem we consider here is stated as following.

Figure 3.1.: Geometry of the Direct Problem

Let D be a simply connected and bounded domain in R2 with boundary ∂D of

class C3. Given g ∈ H−
1
2 (∂D), λ > 0 and μ > 0, λ ∈ C(∂D), μ ∈ C1(∂D) with k > 0, we

consider the problem to find u ∈ H2(D) to the modified Helmholtz equation

Δu − k2u = 0 in D (3.1)
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which satisfies the boundary condition

∂u
∂ν
+ k

(
λu − d

ds
μ

du
ds

)
= g on ∂D (3.2)

in the weak sense, i.e.

∫
∂D

(
ξ
∂u
∂ν
+ kλξu + kμ

dξ
ds

du
ds

)
=

∫
∂D
ξgds, ∀ξ ∈ H

3
2 (∂D), (3.3)

where ν denotes the unit normal vector directed into the exterior of D and d
ds is a tangential

derivative. To have existence of solution for the problem we study, we should have the

following theorem.

Theorem 3.1 The boundary value problem (3.1)-(3.3) has at most one solution.

Proof 3.1 Let us assume that u1 and u2 are solutions to problem (3.1)-(3.3). Then the

difference u = u1 − u2 satisfies the problem. Multiplying (3.1) by u and integrating over

D, we receive

∫
D

uΔudx − k2

∫
D

u2dx = 0, (3.4)

and also by the Green’s first theorem (2.2) and the condition (3.3) for ξ = u|∂D, we have

−
∫

D
(∇u)2 dx − k2

∫
D

u2dx − k
∫
∂D
λu2ds − k

∫
∂D
μ

(
du
ds

)2

ds = 0. (3.5)

It follows that u = 0 in D since k, λ and μ are positive.

3.1. The Boundary Integral equations

In this section we describe a boundary integral equation method for solving the

problem (3.1)-(3.3).
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We seek a solution of (3.1)-(3.3) in the form of a single layer potential

u(x) =

∫
∂D
Φ(x, y)ϕ(y)ds(y), x ∈ D (3.6)

where ϕ ∈ H
1
2 (∂D) and Φ(x, y) = 1

2π
K0(k|x − y|) is a fundamental solution of modified

Helmholtz equation in R2 with

K0(x) = −
(
ln

x
2
+ γ

)
I0(x) + 2

∞∑
k=1

I2k(x)

k
(3.7)

where γ = 0.5772156 . . . and K0, I0 are modified Bessel functions of second and the first

kind of order zero respectively. For this we refer to Oldham et al. (2009). The modified

Bessel function of the first kind with order zero is

I0(x) = 1 +
x2

4
+

x4

64
+ . . . (3.8)

We note that I0 is analytic function whereas K0 has singularity at x = 0. Let us now derive

the boundary integral equation. By substituting (3.6 ) into boundary condition (3.2) on

∂D with aid of limiting values for single layer potential (2.14), we end up with

K′ψ +
1

2
ψ + k

(
λ − d

ds
μ

d
ds

)
Sψ = g on ∂D (3.9)

where S : H
1
2 (∂D) → H

3
2 (∂D) and K′ : H

1
2 (∂D) → H

1
2 (∂D) are bounded integral opera-

tors introduced by

(Sψ)(x) =

∫
D
Φ(x, y)ψ(y)ds(y) and (K′ψ)(x) =

∫
∂D

∂Φ(x, y)

∂ν(x)
ψ(y)ds(y), x ∈ ∂D.

(3.10)

More details about bounded operators can be seen in McLean (2000); Kress (2013). We
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provide the following theorem to show injectivity of the integral equation (3.9).

Theorem 3.2 For each g ∈ H−
1
2 (∂D), the boundary integral equation (3.9) has a unique

solution ψ ∈ H
1
2 (∂D) under the condition λ > 0, μ > 0 and k > 0.

Proof 3.2 Equation (3.9) can be reformulated in the equivalent form

(A1 + A2)ψ = −1

μ
g, (3.11)

where

A1ψ = k
(

d2

ds2
Sψ +

∫
∂D

Sψds
)
, (3.12)

A2ψ =
k
μ

dμ
ds

d
ds

Sψ − k
λ

μ
Sψ − 1

μ

(
K′ψ +

1

2
ψ

)
− k

∫
∂D

Sψds. (3.13)

The bounded invertibility of A1 : H
1
2 (∂D) → H−

1
2 (∂D) is shown by Cakoni and Kress

(2012); Kress (2018) and the operator A2 : H
1
2 (∂D) → H−

1
2 (∂D) is compact since (3.10)

is bounded and the map H
1
2 (∂D) ↪→ H−

1
2 (∂D) is compactly embedding(Kress (2013)). In

order to show (3.11) is one-to-one, assume that ψ ∈ H
1
2 (∂D) such that

(A1 + A2)ψ = 0, (3.14)

and define the function

u(x) :=

∫
∂D
Φ(x, y)ψ(y)ds(y), x ∈ R2 \ ∂D. (3.15)

Since u satisfies the modified Helmholtz equation (3.1) and the homogeneous boundary

condition (3.3) and by uniqueness Theorem 3.1, we have u = 0 in D. Moreover, u solves

equation (3.1) in the exterior of D. That follows from u(x) = O
(

1
|x|
)

as |x| → ∞. The

uniqueness of exterior Dirichlet problem(Quaife (2011)) yields u = 0 in R2 \ D̄. From the

limiting case for the normal derivative of the single layer potential (2.14), we obtain ψ =
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0. That implies our assertion. By the Riesz-Fredholm theory(Kress (2013)) the boundary

integral equation (3.11 ) has a unique solution.

3.2. Parametrization of the Integral Equations

We consider boundary ∂D is analytic with 2π periodic representation of the form

∂D = {z(t) = (z1(t), z2(t)) : t ∈ [0, 2π)} , (3.16)

where zi : R → R2, i = 1, 2 is 2π periodic and analytic function with |z′(t)| > 0 for all t.

The parametrized single layer operator is introduced by

(S̃ ψ̃)(t) =
1

2π

∫ 2π

0

K0(k|z(t) − z(τ)|)ψ̃(τ)dτ, t ∈ [0, 2π] (3.17)

where |z′(τ)|dτ is equivalent to arc length ds and also ψ̃(τ) = ψ(z(τ))|z′(τ)|. The kernel of

the operator S has a weakly singular since series (3.7) includes singularity at x = 0. That

creates issues with numerical calculation. Kress and Sloan (1993) suggested a method to

deal with this singularity. We adjust this method to the integral operators we presented

here. We begin with splitting off singularity of the kernel. By adding and subtracting

1

2
ln

(
4 sin2 t − τ

2

)
(3.18)

to the kernel of operator S̃ which can be decomposed into

F1(t, τ) ln
(
4 sin2 t − τ

2

)
+ F2(t, τ), (3.19)
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where

F1(t, τ) = − 1

4π
I0(k|z(t) − z(τ)|), (3.20)

F2(t, τ) =
1

2π
K0(k|z(t) − z(τ)|) − F1(t, τ) ln

(
4 sin2 t − τ

2

)
(3.21)

with smooth diagonal terms

F1(t, t) = − 1

4π
, F2(t, t) = − 1

2π

(
γ + ln

k
2
|z′(t)|

)
. (3.22)

The parametrized operator K̃′ is described by

(K̃′ψ̃)(t) =
∫ 2π

0

M(t, τ)ψ̃(τ)dτ (3.23)

with continuous kernel

M(t, τ) =
1

|z′(t)|

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[z′(t)]⊥ · z′′(t)

4π
, t = τ

1
2π

k[z′(t)]⊥ · (z(t) − z(τ)) K1(k|z(t)−z(τ)|)
|z(t)−z(τ)| , t � τ

and where [z′(t)]⊥ = (z′2(t),−z′1(t)) also using parametrization d
dsμ

d
dsS ◦ z = 1

|z′|
d
dt

μ̃

|z′|
d
dt S̃ we

rewrite the boundary integral equation (3.9) in the form

1

b
K̃ψ̃ +

ψ̃

2b
+

k
b
λ̃|z′|S̃ ψ̃ + a

b
dS̃ ψ̃
dt
+

d2S̃ψ
dt2

= h, (3.24)

where

a(t) =
kμ̃(t)z′(t) · z′′(t)
|z′(t)|3 − k

|z′(t)|
μ̃(t)
dt

, b(t) = −kμ̃(t)
|z′(t)| , h(t) =

|z′(t)|g(z(t))
b(t)

.

The boundary integral (3.24) includes continuous, weakly singular and hyper sin-

gular kernels of operator. The technique in Kress (2013)[Chapter 13] is used to treat the
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hyper singular kernel. The tangential derivative of single layer operator is

d(S̃ϕ)

ds
=

k
2π|z′(t)|

∫ 2π

0

K′0(k|z(t) − z(τ|)z′(t) · (z(t) − z(τ)

|z(t) − z(τ)| ϕ(z(τ))|z′(τ)|dτ, t ∈ [0, 2π]

(3.25)

with the help of expansion (2.38) and (2.39), (3.25) can be rewritten as

dS̃ψ(z(t))
ds

= − 1

2π

1

|z′(t)|
∫ 2π

0

z′(t) · (z(t) − z(τ))

|z(t) − z(τ)|2 I0(k|z(t) − z(τ)|)ψ(z(τ))|z′(τ)|dτ

− k
2π

1

|z′(t)|
∫ 2π

0

z′(t) · (z(t) − z(τ))

|z(t) − z(τ)| I′0(k|z(t) − z(τ)|)
(
ln

(
k
|z(t) − z(τ)|

2

)
+ α

)
ψ(z(τ))|z′(τ)|dτ

+
1

2π

1

|z′(t)|
∫ 2π

0

d
dt

⎛⎜⎜⎜⎜⎜⎝2
∞∑

n=1

I2n(k|z(t) − z(τ|)
n

⎞⎟⎟⎟⎟⎟⎠
︸����������������������������︷︷����������������������������︸

Continous

ψ(z(τ))|z′(τ)|dτ.

We are not interested in continuous kernel which goes to 0 as τ→ t. We are going to treat

the singularity in the rest of kernels which are not continuous. By using Taylor expansion

z(t) − z(τ) = (t − τ)z′(τ) + (t − τ)2

∫ 1

0

(1 − λ)z′′(τ + λ(t − τ))dλ (3.26)

and with the aid of expansion (3.7) and (3.8), the hyper singular kernel of the operator can

be translated into

dS̃ ψ̃
dt

(t) =
1

4π

∫ 2π

0

cot
τ − t

2
ψ̃(τ)dτ +

∫ 2π

0

L(t, τ)ψ̃(τ)dτ (3.27)

and by splitting off singular of kernel L, one obtain

L(t, τ) = L1(t, τ) ln
(
4 sin2 t − τ

2

)
+ L2(t, τ), (3.28)
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where the continuous terms are

L1(t, τ) =
k

4π

z′(t) · (z(t) − z(τ))I′0(k|z(t) − z(τ)|)
|z(t) − z(τ)| , (3.29)

L2(t, τ) =
1

2π

dK0(k|z(t) − z(τ)|)
dt

− L1(t, τ) ln
(
4 sin2 t − τ

2

)
− 1

4π
cot

τ − t
2

(3.30)

which have limit values as τ→ t

L1(t, t) = 0, (3.31)

L2(t, t) = − 1

4π

z′(t) · z′′(t)
|z′(t)|2 . (3.32)

Moreover,
d2S̃ ψ̃
dt2 presented by

d2S̃ ψ̃
dt2

(t) =
1

2π

d2

dt2

∫ 2π

0

K0(k|z(t) − z(τ)|)ψ̃(τ)dτ (3.33)

can be rewritten, with the aid of partial integration, Taylor expansion (3.26 ) and series

expansion (3.7) and (3.8), as follows.

d2S̃ ψ̃
dt2

(t) =
1

4π

∫ 2π

0

cot
τ − t

2
ψ̃′(τ)dτ +

∫ 2π

0

N(t, τ)ψ̃(τ)dτ (3.34)

with

N(t, τ) = N1(t, τ) ln
(
4 sin2 t − τ

2

)
+ N2(t, τ), (3.35)
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where

N1(t, τ) =
1

4π
kI1(k|z(t) − z(τ)|)z′(t) · (z(t) − z(τ))2

|z(t) − z(τ)|3 (3.36)

− k2I0(k|z(t) − z(τ)|)z′(t) · (z(t) − z(τ))2

4π|z(t) − z(τ)|2 (3.37)

+ kI1(k|z(t) − z(τ)|)
(
z′′(t) · (z(τ) − z(t)) − |z′(t)|2

4π|z(t) − z(τ)| +
(z′(t) · (z(t) − z(τ)))2

4π|z(t) − z(τ)|3
)

(3.38)

and

N2(t, τ) =
1

2π

d2K0(k|t − τ|)
dt2

+
1

8π

1

sin2 t−τ
2

− N1(t, τ) ln
(
4 sin2 t − τ

2

)
(3.39)

with diagonal terms

N1(t, t) = −k2 |z′(t)|2
8π

, (3.40)

N2(t, t) =
1

2π

(
−k2 |z′(t)|2

4
− γk2|z′(t)|2

2
− k2 |z′(t)|2

2
ln

(
k
2
|z′(t)|

))
(3.41)

+
6(z′(t) · z′′(t))2 − |z′(t)|4 − 4|z′(t)|2z′(t) · z′′′(t) − 3|z′(t)|2|z′′(t)|2

12|z′(t)|4 . (3.42)

We note that for the static case continuous representation of regular part of a mixed second

order tangential derivative is found by Erhard (2005). After some calculations of the limit

values of kernels, we are able to solve boundary integral equation (3.9) numerically. Now

the parametrized eqution (3.24) can be rewritten, where all singularities appear explicitly

1

4π

∫ 2π

0

cot
(
τ − t

2

)
ψ̃′(τ)dτ +

1

4π

a(t)
b(t)

∫ 2π

0

cot
(
τ − t

2

)
ψ̃(τ)dτ (3.43)

+
1

b(t)

∫ 2π

0

(
H1(t, τ) ln

(
4 sin2

( t − τ
2

))
+ H2(t, τ) + |z′(t)|M(t, τ)

)
ψ̃(τ)dτ

+
ψ̃(t)
2b(t)

= h(t), 0 ≤ t ≤ 2π.
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Here

Hi(t, τ) = kλ̃(t)|z′(t)|Fi(t, τ) + a(t)Li(t, τ) + b(t)Ni(t, τ) (3.44)

are analytic functions for i = 1, 2.

Theorem 3.3 For any h ∈ H−
1
2 [0, 2π] and λ̃ ∈ C[0, 2π], μ̃ ∈ C1[0, 2π], λ̃ > 0, μ̃ > 0, the

integral equation (3.24) has unique solution ψ̃ ∈ H
3
2 [0, 2π] which depends continuously

on the data.

Proof 3.3 To investigate solvability of the parametrized integral equation (3.24), we de-

scribe the following operators

(T ψ̃)(t) =
1

4π

∫ 4π

0

cot
τ − t

2
ψ̃′(τ)dτ +

1

2π

∫ 2π

0

ψ̃(τ)dτ, (3.45)

(B1ψ̃)(t) =
1

b(t)

∫ 2π

0

ln
(
4 sin2 t − τ

2

)
H1(t, τ)ψ̃(τ)dτ,

(B2ψ̃)(t) =
∫ 2π

0

H2(t, τ)ψ̃(τ)dτ +
|z′(t)|
b(t)

∫ 2π

0

M(t, τ)ψ̃(τ)dτ +
ψ̃(t)
2b(t)

− 1

2π

∫ 2π

0

ψ̃(τ)dτ,

(B3ψ̃)(t) =
1

4π

∫ 2π

0

cot
τ − t

2
ψ̃(τ)dτ

and now set B = B1 + B2 +
a
b B3.

The operator T : Hp[0, 2π] → Hp−1[0, 2π] is bounded and its inverse is bounded for

all p ≥ 0. From Kress (1995) and Kress (2013) considering trigonometric monomials

um(t) = eimt are eigenfunction of operator T , we have

Tum = βmum (3.46)

for m ∈ Z with βm = −|m|2
,m � 0 and β0 = 1. Consequently, it shows that T : Hp[0, 2π]→

Hp−1[0, 2π] is bounded and its existence of inverse operator T−1 : Hp−1[0, 2π]→ Hp[0, 2π]
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given by

T−1um =
1

βm
um. (3.47)

The operator B : Hp[0, 2π] → Hp−1[0, 2π] is compact since B3 : Hp[0, 2π] → Hp[0, 2π]

is bounded(Kress (2013)). We can infer that from Theorem 3.2 ,T + B is injective. For

this reason, T + B has bounded inverse by Theorem 2.10.

3.3. Numerical Approaches

In this section we briefly describe numerical approaches to solve the parametrized

integral equation (3.24). Namely, we approximate the operators we considered in (3.43)

with quadrature rule based on trigonometric interpolation. After separating the kernels of

integrals in (3.43) into an analytical and singular part, we substitute quadrature operators

for the singular part. For more information on quadrature operators, we refer to Kress

(2013). Recall the trigonometric interpolation operator Pn : Hp[0, 2π] → Tn, n ∈ N with

2n equidistant interpolation points

t(n)
i =

iπ
n
, i = 0, . . . , 2n − 1. (3.48)

There is an important error estimate

||Pnψ̃ − ψ̃||q ≤ C
np−q ||ψ̃||, 0 ≤ q ≤ p, p >

1

2
(3.49)

which holds for all ψ̃ ∈ Hp,see details in Kress (2013). If the function is 2π periodic

and analytic, the interpolation error (3.49) decays exponentially. Now we introduce the
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following quadrature rules based on trigonometric interpolation.

∫ 2π

0

h(τ)dτ ≈ π
n

2n−1∑
i=0

h(t(n)
i ), (3.50)

1

2π

∫ 2π

0

cot
τ − t

2
ψ̃′(τ)dτ ≈

2n−1∑
i=0

T1,i(t)ψ̃(t(n)
i ), (3.51)

1

2π

∫ 2π

0

cot
τ − t

2
ψ̃(τ)dτ ≈

2n−1∑
i=0

T2,i(t)ψ̃(t(n)
i ), (3.52)

1

2π

∫ 2π

0

ln
(
4 sin2 τ − t

2

)
ψ̃(τ)dτ ≈

2n−1∑
i=0

Ri(t
(n)
i ) (3.53)

with quadrature weights

T (n)

1,i (t) = −1

n

n−1∑
m=1

m cos m(t − t(n)
i ) − 1

2
cos n(t − t(n)

i ), (3.54)

T (n)

2,i (t) =
1

2n

(
1 − cos n(t − t(n)

i )
)

cot
t − t(n)

i

2
, (3.55)

R(n)
i (t) = −1

n

n−1∑
m=1

1

m
cos m(t − t(n)

i ) − 1

2n2
cos n(t − t(n)

i ). (3.56)

The derivation of equations (3.54), (3.55 ) and (3.56) can be found in Kress (2013). The

integral equation (3.43) is reduced to full discrete system

(T + PnBn)ψ̃n(ti) = (Pnhn)(ti), i = 1, . . . , 2n (3.57)

where Bn = B1,n + B2,n + B3,n,

(B1,nψ̃)(t) =
1

b(t)

∫ 2π

0

ln
(
4 sin2 t − τ

2

) (
Pn(H1(t, ·)ψ̃)

)
(τ)dτ, (3.58)

(B2,nψ̃)(t) =
1

b(t)

∫ 2π

0

(
Pn(H2(t, ·)ψ̃)

)
(τ)dτ +

1

b(t)

∫ 2π

0

(
Pn(M(t, ·)ψ̃)

)
dτ +

1

2b(t)
ψ̃(t),

(3.59)

(B3,nψ̃)(t) =
1

4π

∫ 2π

0

cot
τ − t

2
(Pnψ̃)(τ)dτ. (3.60)
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We select ti for i = 1, . . . , 2n as collocation points since we wish to compare two tech-

niques. This choice gives guarantee to approximate the derivative of 2π periodic func-

tion by derivative the unique interpolatory trigonometric polynomial of degree n without

sin(nt).

Theorem 3.4 Under the assumption that λ, μ and ∂D are analytic the fully discrete col-

location method (3.57) converges in Hp[0, 2π] for each p > 3/2.

Proof 3.4 From Kress (2013)[Theorem 12.18], the convergence of weakly singular ker-

nels of operators for B1,n to the kernel B1 given by

||B1,nψ̃ − Bψ̃||q+1 ≤ c
np−q ||ψ̃||p, p >

1

2
(3.61)

for all ψ̃ ∈ Hp[0, 2π] and some constant depending on p and q. Also same convergence

estimate works for analytic kernel of B2,n. If we integrates B3,n for trigonometric poly-

nomials of degree less then or equal to n exactly Kress (2013)[page 164] and Kirsch

and Ritter (1999), then we have Bnψ̃ → Bψ̃ as n → ∞ for all ψ̃ ∈ Tn ⊂ Hp[0, 2π].

Banach-Steinhaus Theorem 2.11 states that Bnψ̃ → Bψ̃ for all ψ̃ ∈ Hp[0, 2π] because

Tn is dense in Hp[0, 2π]. From Kress (2013)[Theorem, 11.8] interpolation polynomials

Pn : Hp[0, 2π]→ Hp[0, 2π] are bounded for p > 1
2
. By employing (3.61) and boundedness

of the interpolation operator, it is obvious that

||Pn(B1,n − B1)ψ̃||p−1 ≤ c
n
||ψ̃||p, p >

3

2
. (3.62)

By the same approach, the estimate (3.62) can be done for the operator B2 with analytic

kernels. The boundedness of Pn for p > 3
2

and Theorem 2.12 yields

||Pn

(a
b

(
B3,n − B3

)
ψ̃
)
||p−1 ≤ c||(B3,n − B3)ψ̃||p−1, (3.63)

where a/b is analytic. We have convergence for all trigonometric polynomials since B3,n is

derived by precisely integrating a trigonometric polynomial. With the aid of the Banach-

Steinhaus theorem, we have PnBnψ̃→ PnBψ̃ as n→ ∞ for all ψ̃ ∈ Hp[0, 2π]. Then Kress
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(2013)[Corollary 13.13] gives what is desired.

We have provided some information regarding the first solution method to the problem

until now. As a second strategy, we use the concept of numerical differentiation in place

of splitting off singularities in the kernels of integral operators resulting from tangential

derivatives of single layer operators suggested Kress (2014a). Introducing the derivative

Dn := P′n of trigonometric interpolation operator, integro-differential opperator is approx-

imated as follows

(
1

|z′|
d
dt

μ̃

|z′|
d
dt

S̃ ψ̃n

)
(ti)

∣∣∣
i=1,...,2n

≈ 1

|z′(ti)|Dndiag
(
μ̃(ti)

|z′(ti)|
)

Dn(S̃ ψ̃)(ti)
∣∣∣
i=1,...,2n

(3.64)

for ψ̃ ∈ Tn,

(Dng)(ti) =

2n−1∑
k=0

d(n)

k−i(tk)g(tk), i = 0, 1, . . . , 2n − 1, (3.65)

and

d(n)
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)i

2
cot iπ

2n , i = ∓1, . . . ,∓(2n − 1)

0, i = 0.

(3.66)

3.4. Numerical Examples

In this section we provide some illustrations to test both methods. Let us assume

that boundary ∂D in Figure 3.2 is parameterized by

z(t) =
(
2 cos t − 2 cos2 t + 1, 5 sin t − cos t sin t

)
, 0 ≤ t ≤ 2π (3.67)
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Figure 3.2.: Domain D

and coefficient k is chosen as 1
2
. The impedance functions we considered are

λ̃(t) = − sin(|z(t)|) + 4.5 and μ̃(t) = −2 cos(|z(t)|) + 4.5. (3.68)

In all examples u† denotes the exact solution and it is considered a point source with

location x1 = (2, 0.4)

u†(x) = Φ(x, x1), x ∈ D, x1 ∈ R2 \ D̄. (3.69)

Additionally, the approximate solutions u1 and u2 to the first and second methods, respec-

tively, are taken into consideration. The parametrized measurement curve given by

Πm =

(
ρ(t) = (5 cos t, 5 sin t), t ∈

[
2π

3
,

7π

6

])
(3.70)

to analyze numerical convergence of the proposed methods.

Example 3.1 The boundary value problem (3.1)-(3.3) solved by two numerical approaches
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with known exact solution in order to compare methods. The problem reads

Δu − k2u = 0 in D (3.71)

∂u
∂ν
+ k

(
λu − d

ds
μ

du
ds

)
= g on ∂D (3.72)

g(x) =
∂Φ(x, x1)

∂ν
+ k

(
λ(x)Φ(x, x1) − d

ds
μ(x)

dΦ(x, x1)

ds

)
, x ∈ ∂D. (3.73)

By solving the problem with two methods we obtain the following Table 3.1. We present

the maximum absolute errors at points y ∈ Πm in the Table 3.1.

Table 3.1.: Error analysis for Example 3.1

n ||u1 − u†||Πm,∞ ||u2 − u†||Πm,∞

8 1.24e-03 3.54e-03
16 1.37e-05 4.72e-05
32 9.90e-09 4.23e-07
64 1.00e-15 1.52e-12

||u1−u†||Πm,∞ indicates the maximum error for the first method and ||u2−u†||Πm,∞ de-

notes the maximum error for the second approach based on numerical differentiation.For

the case of analytic boundary and data, the theoretical investigation predicts that the nu-

merical error of the first scheme decreases exponentially and it is confirmed by Table 3.1.

The convergence is slower for the second method because the approximation of the hyper

singular kernel is inaccurate, as can be shown in Table 3.1. Indeed, from (3.46),we have

1

4π

d2

dt2

∫ 2π

0

ln
(
sin2 t − τ

2

)
cos nτdτ = −n

2
cos nt, n ∈ N (3.74)

whereas for its approximation from (3.66), we obtain

DnDn
1

2π

∫ 2π

0

ln
(
sin2 t − τ

2

)
cos nτdτ = 0, n ∈ N. (3.75)

By including additional weights in the calculation of DnDnS̃ or by selecting an odd num-
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ber of interpolation and collocation points, the drawback of the trigonometric differention

can be overcome. For more knowledge about this, we refer to Kress (2014a).The bound-

ary value problem is solved numerically for the next experiment in the scenario where the

exact solution is unknown. We choose boundary data g to be given by

g(x) = Φ(x, x1), x ∈ ∂D, x1 = (3.2) ∈ R2 \ D̄. (3.76)

The other parameters remain the same. Table 3.2 exhibits the value of the solution of the

Table 3.2.: Numerical solution

n u1

8 0.012063279277905
16 0.012284634729342
32 0.012285858740215
64 0.012285858683054

128 0.012285858683054

boundary value problem at the point y = (0, 0.5) ∈ D via the first method. We observe

that the number of correct digits of the exact solution doubles when the number of grid

points is increased twofold.

In the last experiment the disk of radius 2 centered at the origin as a domain is

considered and the constant impedance functions μ̃ = 1, λ̃ = 1 are chosen. Moreover the

boundary data g is given by

g(t) =
3

π
arcsin(sin t) + 0.04 cos(16t) + 0.02 cos(8t) − 0.02 cos(32t). (3.77)

We contrast the differences in error between the Dirichlet traces of the results

produced by the two methods, which are shown in a Table 3.3 by columns ||u1 − u2||Π∂D,∞ .

The solution found by the first technique with n = 256 can also be taken into consideration

since the first approach converges, which is guaranteed by the theorem and supported by

the previous two examples.
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Table 3.3.: Error analysis

n ||u1 − u2||Π∂D,∞ ||u1 − u†||Πm,∞ ||u2 − u†||Πm,∞

8 2.69e-03 1.03-01 1.00e-01
16 3.60e-03 3.35e-02 3.71e-02
32 1.06e-03 1.60e-03 2.65e-03
64 7.00e-10 3.93-04 3.93e-04
128 2.31e-11 7.99e-05 7.99e-05

The results of first part published by Ivanyshyn Yaman and Özdemir (2021).
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CHAPTER 4

INVERSE IMPEDANCE PROBLEM FOR THE MODIFIED

HELMHOLTZ EQUATION IN TWO DIMENSIONS

In this chapter we consider classic inverse problem to reconstruct impedance func-

tions from measurements of the sources. Let D ⊂ R2 be bounded simply connected

domain with C3 boundary ∂D and with positive impedance functions λ ∈ C(∂D), μ ∈
C1(∂D). For a given function h ∈ C(∂D) and constant k > 0 let us ∈ H2(D) satisfy the

modified Helmholtz equation

Δus − k2us = 0 in D (4.1)

and the boundary condition

∂us

∂ν
+ k

(
λus − d

ds
μ

dus

ds

)
= −∂Φ(·, x∗)

∂ν
− k

(
λΦ(·, x∗) − d

ds
μ

dΦ(·, x∗)
ds

)
on ∂D (4.2)

i.e, total field u = us + Φ(·, x∗) satisfies

∂u
∂ν
+ k

(
λu − d

ds
μ

du
ds

)
= 0 on ∂D (4.3)

where ν denotes the unit normal vector directed into exterior of D and d
ds is tangential

derivative. The well posedness of the interior direct problem is investigated in Chapter 3

and it is well known it has a unique solution us ∈ H2(D). Let x∗ be on closed curve C ⊂ D

and measure us for x∗ ∈ C.

The inverse problem we are interested is to recover λ and μ simultaneously from

knowledge of the sources and measured data us|C = f placed on the curve C in the Fig-

ure 4.1. To do that we need to ask what is the minimum amount of sources is necessary

to uniquely reconstruct impedance functions simultaneously. The following counter ex-
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Figure 4.1.: Domain D with measurement C

ample, inspired by counterexample in Kress (2018) depicts nonuniqueness issues. The

modified Helmholtz equation is considered in the disk of radius R centered at the ori-

gin and two sources chosen to be modified Bessel function In,Kn of the first kind and

the second kind, respectively, with order n ∈ N. Total fields in this case have following

formulation

u1(r, θ) = (In(kr) + bnKn(kr)) cos θ, (4.4)

u2(r, θ) = (In(kr) + bnKn(kr)) sin θ. (4.5)

The following boundary condition represents (4.3) in polar coordinates of the form

∂u
∂r
− μ

r2

∂2u
∂θ2
+ λu = 0 on r = R (4.6)

under condition λ and μ being positive constant and employing (4.4), (4.5) and (4.6), we

have the coefficients

bn = − R2I′n(kR) + (R2λ + n2μ)In(kR)

R2K′n(kR) + (R2λ + n2μ)Kn(kR)
. (4.7)

The well posedness of the direct problem guarantees that the denominator does not vanish.
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Apparently, there are many combinations λ and μ that yield the same value bn. Thus, two

sources are not sufficient to reconstruct impedance functions. Now we can give unique-

ness theorem.

Theorem 4.1 The values us
1
|C, us

2
|C, us

3
|C corresponding to the three different sources x∗1, x

∗
2, x
∗
3

on the measurement C uniquely determine the impedance functions λ and μ for known ∂D.

Proof 4.1 We first show that the corresponding solution u1|∂D, u2|∂D, u1|∂D are linearly

independent. Recall that ui = us
i + Φ(x∗i , ·), i = 1, 2, 3 solves

Δus
i − k2us

i = 0 in D (4.8)

∂ui

∂ν
+ k

(
λui − d

ds
μ

d
ds

ui

)
= 0 on ∂D. (4.9)

Let α1, α2, α3 ∈ R with assumption α1α2α3 � 0. Define u := α1u1 + α2u2 + α3u3. Assume

that u ≡ 0. The function u solves the modified Helmholtz equation in domain

D \
(
B(x∗

1
, ε) ∪ B(x∗

2
, ε) ∪ B(x∗

3
, ε)

)
(4.10)

where B(x∗i , ε) = {x, |x − xi| < ε} for i = 1, 2, 3. Also u satisfies the homogeneous general-

ized impedance boundary condition and therefore, ∂u
∂ν
|∂D = 0. From Holmgren’s theorem

2.1 and analyticity, we have

u = 0 in D \ (B(x∗1, ε) ∪ B(x∗2, ε) ∪ B(x∗3, ε)
)

(4.11)

which can be rewritten as

α1us
1 + α2us

2 + α3us
3 = −

(
α1Φ(x∗1, ·) + α2Φ(x∗2, ·) + α3Φ(x∗3, ·)

)
on ∂B(x∗1, ε), (4.12)

α1us
1 + α2us

2 + α3us
3 = −

(
α1Φ(x∗1, ·) + α2Φ(x∗2, ·) + α3Φ(x∗3, ·)

)
on ∂B(x∗2, ε), (4.13)

α1us
1 + α2us

2 + α3us
3 = −

(
α1Φ(x∗1, ·) + α2Φ(x∗2, ·) + α3Φ(x∗3, ·)

)
on ∂B(x∗3, ε). (4.14)
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The absolute value of the right-hand sides (4.12)-(4.14) increase as ε → 0, that is, the

solutions us
1
, us

2
, us

3
to the modified Helmholtz equation take their maximum or minimum

values inside D. Hence we arrive at a contradiction with the maximum principle and for

that reason the functions Φ(x∗1, ·),Φ(x∗2, ·) and Φ(x∗3, ·) are linearly independent and the

right hand sides cannot vanish. The proof finishes with the result of Cakoni and Kress

(2012)[Theorem 3.1].

Therefore, we can reconstruct uniquely λ and μ with at least three Cauchy pairs.

4.1. Synthetic Data

Synthetic data are obtained by solving the integral equation for Green’s approach

whereas the inverse solver is based on the single layer approach. Direct and inverse solver

should be different due to obtaining unrealistically good reconstructions otherwise we

commit inverse crime. To avoid committing such a crime, we choose Green’s representa-

tion formula

us(x) =

∫
∂D

(
∂us

∂ν
Φ(x, y) − us(y)

∂Φ(x, y)

∂ν(y)

)
ds, x ∈ D (4.15)

which is solution to (4.1)-(4.2). By employing jump relations for the single-layer 2.14

and double-layer 2.12 potentials and the boundary condition (4.2), we obtain

(
K +

I
2
+ kS

(
λ − d

ds
μ

d
ds

))
us|∂D =

∫
∂D
Φ(·, y)h(y)ds(y) on ∂D (4.16)

where S : H−
1
2 (∂D) → H

1
2 (∂D),K : H−

1
2 (∂D) → H−

1
2 (∂D) and A : H−

1
2 (∂D) →

H
1
2 (C) are bounded integral operators described by

(Sϕ)(x) =

∫
∂D
Φ(x, y)ϕ(y)ds(y), x ∈ ∂D, (4.17)
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(Kϕ)(x) =

∫
∂D

∂Φ(x, y)

∂ν
ϕ(y)ds(y), x ∈ ∂D (4.18)

and

(Aϕ)(x) =

∫
∂D
Φ(x, y)ϕ(y)ds(y), x ∈ C (4.19)

where Φ(x, y) = 1
2π

K0(k|x − y|) with the modified Bessel function of the second kind K0.

For each h ∈ H−
1
2 (∂D), the boundary integral equation (4.16) has unique solution

us|∂D ∈ H−
1
2 (∂D) under condition λ > 0, μ > 0, k > 0.

We have adjoint boundary integral equation (4.16) in Chapter 3 which is

(
K′ +

I
2
+ k

(
λ − d

ds
μ

d
ds

)
S
)
ψ = g. (4.20)

From Ivanyshyn Yaman and Özdemir (2021)[Theorem 2.1], the boundary integral equa-

tion (4.20) has Fredholm index zero. More specifically, the solution exists and it is unique.

The proof can be concluded from Fredholm alternative Kress (2013)[Corollary 4.18].

Parametrization of the boundary. We introduce the parameterized boundaries and the

involved integral operators. We assume that

∂D := {z(t) = (z1(t), z2(t)) : 0 ≤ t ≤ 2π} (4.21)

and

C := {ζ(t) = (ζ1(t), ζ2(t)) : 0 ≤ t ≤ 2π} (4.22)

with 2π periodic functions z, ζ : R → R2 such that z, ζ are injective on [0, 2π) and satisfy

|z′(t)| > 0 and |ζ′(t)| > 0 for all t. The parameterized integral operators are denoted S̃ , K̃
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and represented by

(K̃ϕ̃)(t) =
∫ 2π

0

∂K0(k|z(t) − z(τ)|)
∂ν(z(τ))

ϕ̃(τ)|z′(τ)|dτ (4.23)

and

(S̃ ϕ̃)(t) =
∫ 2π

0

K0(k|z(t) − z(τ)|)ϕ̃(τ)|z′(τ)|dτ. (4.24)

Approximation The parameterized boundary integral equation ( 4.16 ) is solved by method

which has been initially developed by Kress and Sloan (1993) and after the kernel of in-

tegral operators K̃, S̃ are divided, they are evaluated by quadrature operators based on

trigonometric interpolation formula, Kress (2018) and Ivanyshyn Yaman and Özdemir

(2021). Moreover, the numerical computation of the tangential derivatives is accom-

plished by trigonometric interpolation polynomial Pn, i.e the approximation can be calcu-

lated in the formula

1

|z′|
d
dt
μ ◦ z
|z′|

d
dt

S̃ ϕ̃ ≈ 1

|z′|P
′
n
μ ◦ z
|z′| P′nS̃ ϕ̃. (4.25)

For a detailed study of the use of numerical derivative of integral equations with trigono-

metric interpolation, we refer to Kress (2013).

4.2. Solution Methods for Inverse Impedance Problem

In this section we describe two inversion methods. One of the method called direct

method which is the extension of the technique suggested Cakoni and Kress (2012). The

uniqueness Theorem 4.1 indicates the requirement of three sources which create three

fields u1, u2 and u3. Multiplying the boundary condition (4.3) for u1 by u2 and the bound-

38



ary condition (4.3) for u2 by u1 and taking difference, we obtain

k
d
ds
μ

(
u1

du2

ds
− u2

du1

ds

)
= u1

∂u2

∂ν
− u2

∂u1

∂ν
on ∂D. (4.26)

Then μ can be obtained by integrating (4.26) from a fixed point x0 to any x ∈ ∂D as

following.

kμ(x)

(
u1(x)

du2(x)

ds
− u2(x)

du1(x)

ds

)
− kμ(x0)

(
u1(x0)

du2(x0)

ds
− u2(x0)

du1(x0)

ds

)
(4.27)

=

∫ x

x0

(
u1(y)

∂u2(y)

∂ν
− u2(y)

∂u1(y)

∂ν

)
ds on ∂D. (4.28)

Following similar steps for pairs u2, u3 and u3, u1 as above, we have

kμ(x)

(
u2(x)

du3(x)

ds
− u3(x)

du2(x)

ds

)
− kμ(x0)

(
u2(x0)

du3(x0)

ds
− u3(x0)

du2(x0)

ds

)
(4.29)

=

∫ x

x0

(
u2(y)

∂u3(y)

∂ν
− u3(y)

∂u2(y)

∂ν

)
ds on ∂D (4.30)

and

kμ(x)

(
u3(x)

du1(x)

ds
− u1(x)

du3(x)

ds

)
− kμ(x0)

(
u3(x0)

du1(x0)

ds
− u1(x0)

du3(x0)

ds

)
(4.31)

=

∫ x

x0

(
u3(y)

∂u1(y)

∂ν
− u1(y)

∂u3(y)

∂ν

)
ds on ∂D. (4.32)

To implement the direct inversion method, we approximate μ by trigonometric polynomi-

als of degree m as follows.

μ(t) ≈
m∑

k=0

ak cos kt +
m∑

k=1

bk sin kt. (4.33)

39



Choosing equidistant mesh

h =
π

n
, n ∈ N (4.34)

and collocation points for (4.27), (4.29) and (4.31) as t j = h j, j = 1, 2, . . . 2n and comput-

ing the integration in (4.27), (4.29) and (4.31) by trapezoidal rule with equidistant points,

we get a linear system

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1(t1) − c1(t0) (c1(t1) − c1(t0))(cos(t0) − 1) (c1(t1) − c2(t0)) sin(t1) (c1(t1) − c1(t0)) cos(2t1) (c1(t1) − c1(t0)) sin(2t1)
...

...
...

...
...

c1(t2n−1) − c1(t0) (c1(t2n−1) − c1(t0))(cos(t2n−1) − 1) (c1(t2n−1) − c1(t0)) sin(t2n−1) (c1(t2n−1) − c1(t0)) cos(2t2n−1) (c1(t2n−1) − c1(t0)) sin(2t2n−1)

c2(t1) − c2(t0) (c2(t1) − c2(t0))(cos(t0) − 1) (c2(t1) − c2(t0)) sin(t1) (c2(t1) − c2(t0)) cos(2t1) (c2(t1) − c2(t0)) sin(2t1)
...

...
...

...
...

c2(t2n−1) − c2(t0) (c2(t2n−1) − c2(t0))(cos(t2n−1) − 1) (c2(t2n−1) − c2(t0)) sin(t2n−1) (c2(t2n−1) − c2(t0)) cos(2t2n−1) (c2(t2n−1) − c2(t0)) sin(2t2n−1)

c3(t1) − c3(t0) (c3(t1) − c3(t0))(cos(t0) − 1) (c3(t1) − c2(t0)) sin(t1) (c3(t1) − c3(t0)) cos(2t1) (c3(t1) − c3(t0)) sin(2t1)
...

...
...

...
...

c3(t2n−1) − c3(t0) (c3(t2n−1) − c3(t0))(cos(t0) − 1) (c3(t2n−1) − c2(t0)) sin(t2n−1) (c3(t2n−1) − c3(t0)) cos(2t2n−1) (c3(t2n−1) − c3(t0)) sin(2t2n−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

b1

a2

b2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

d4

...

d2n−1

...

d4n

...

d6n−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where c1, c2, c3 and d = d1, · · · , d6n−3 for t j, j = 1, · · · , 2n represent left hand side of

the equations (4.27), (4.29), (4.31) and their right hand side respectively after plugging

approximation of μ above. Then this overdetermined system is solved by least square

sense. Similarly we approximate λ by trigonometric polynomial of degree m and having

boundary condition (4.3) for all three solutions u1, u2 and u3 at collocation points, we

obtain a linear system for 2m + 1 Fourier coefficients of λ via least square method. To

recover λ and μ we need to determine the image of inverse operator

FCauchy : us|C →
(
u|∂D,

∂u
∂ν
|∂D

)
. (4.35)

This can be performed by representing the solution (4.1)-(4.2) as single layer potential

and solving the ill-posed set of Fredholm equations of the first kind

(Aϕi)(x) = us
i (x), x ∈ C, i = 1, 2, 3 (4.36)
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for the case of three sources. The operator A has analytic kernel and it is compact there-

fore (4.36) is severely ill-posed.

Implementation of Regularization method

Hadamard (2003) gave definition of the ill-posedness for boundary and initial value prob-

lems for partial differential equations. These properties:

• Existence of the solution.

• Uniqueness of the solution.

• Continuous dependence of the solution on the data.

A problem is called well-posedness if these three conditions above are met. Otherwise it is

called ill-posedness. Equation (4.36) is ill-posed since A−1 is unbounded inverse. In order

to treat this problem, there are many type of regularization methods such as Landweber,

truncated SVD and the Tikhonov method etc. One of the most successful regularization

methods is probably the Tikhonov method. In our work we consider Tikhonov regular-

ization method described as follows from Kress (2013)’s book.

Theorem 4.2 Let A : X → Y is be bounded injective linear operator and let α > 0. Then

for each us ∈ Y there exists a unique ϕα ∈ X such that

||Aϕα − us||2 + α||ϕα||2 = inf
ϕ∈X

{
||Aϕ − us||2 + α||ϕ||2

}

equivalent unique solution of th equation given by

αϕα + A∗Aϕα = A∗us. (4.37)

In our case we will apply Tikhonov Hs regularization method described by

(αDs + A∗A)ϕ = A∗us (4.38)
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equivalent to solution to minimizer of the equation

||Aϕα − us||2L2 + α||ϕα||2Hs = inf
ϕ∈Hs

{
||Aϕ − us||2L2 + α||ϕ||2Hs

}
, (4.39)

where α is regularization parameter and Ds is diagonal matrix introduced in thesis

of Hohage (1999). We choose s = 2 in all experiments. In order to apply Tikhonov

regularization technique to solve (4.36), we have the following lemma.

Lemma 4.1 The integral operator A : L2(∂D)→ L2(C) is injective and has dense range.

Proof 4.2 Define the function

υ(x) :=

∫
∂D
Φ(x, y)ϕ(y)ds(y), x ∈ D (4.40)

which satisfies equation Δυ − kυ2 = 0 in the region bounded by curve C and assume

υ|C = 0. Then the analyticity gives rise to υ = 0 in D. Hence, υ−|∂D = 0 and ∂υ
∂ν
|∂D = 0 in

D. Also single layer potential υ fulfills the exterior Dirichlet boundary value problem for

modified Helmholtz equation with behavior for υ(x) = O
(

1
|x|
)

as |x| → ∞. For extended

investigation, we refer to Quaife (2011). It follows that uniqueness of the exterior Dirich-

let boundary value problem yields υ = 0 in R2 \ D. By the aid of limiting case of single

layer potential (2.14), we have ϕ = 0 on ∂D, i.e. A is injective. We continue similarly to

prove denseness. It is well known that A is dense in L2(C) if and only if its annihilator is

trivial in L2(C). The adjoint operator A∗ : L2(C)→ L2(∂D) is defined by

(A∗σ)(x) =

∫
C
Φ(x, y)σ(y)ds(y), x ∈ ∂D (4.41)

and consider the function

ρ(x) =

∫
C
Φ(x, y)σ(y)ds(y), x ∈ R2 \C. (4.42)

Let A∗σ = 0, then the function vanishes on ∂D and satisfies the modified Helmholtz
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equation in R2 \ C. The uniqueness of exterior Dirichlet problem leads to ρ = 0 and
∂ρ

∂ν
= 0. The function ρ has analytic kernel in the region by the contours C and ∂D and

plus the Cauchy pair
(
ρ|∂D,

∂ρ

∂ν
|∂D

)
vanish on ∂D. By Holmgren’s theorem 2.1, ρ = 0 in

the same region. Finally, considering ∂ρ

∂ν
we receive the homogeneous Fredholm integral

equation of second kind. Then using (Kress, 2013, Theorem 6.21), ρ has to be trivial and

therefore the operator A∗ is one-to-one.

This theorem depicts the ill-posedness of the inverse problem which is consequence of

the compactness property of the mapping ∂D→ C.

As a second method we introduce a hybrid method which is combination of the

direct method and the regularized Newton method. The reconstructions are obtained by

direct method will be used as an initial guess for the a regulerized Newton-type method.

To begin the second part of the hybrid method, we introduce nonlinear operator equation

F(λm, μm) = us|C, us|C = [
us

1, u
s
2, u

s
3

]T
(4.43)

the inverse problem consists of solving nonlinear operator equation (4.43) for the un-

known λ and μ. λm, μm are the Fourier coefficient vector corresponding to the trigonomet-

ric approximation of (4.33). To reconstruct λ and μ with a given ∂D more accurately,

we will apply the regularized Newton method to equation (4.43). The linearized form of

equation (4.43) is given by

F(λm, μm) + F′λm
(λm, μm)ςm + F′μm

(λm, μm)ηm = us|C, (4.44)

where F′λm
and F′μm

are Frechet derivative. The determination of the Frechet derivatives

F′λm
and F′μm

in the hybrid method has been obtained by numerical differentiating with

step size h = 10−5. The analysis of the Frechet derivative for generalized impedance

boundary condition with Helmholtz equation is studied in Bourgeois et al. (2012). The

ill-posedness of the linearized equation (4.44) is reflected through the ill-posedness of

the data equation (4.43). It is solved by regularized least square for update λm + ςm and

μm + ηm. For iteration as a stopping rule Morozov’s discrepancy principle is employed
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until the the following condition

||F(λm, μm) − f δ|| < τδ, for some fixed constant τ > 1 (4.45)

is satisfied and δ is noise level. The second method motivates the following algorithm.

Algorithm for hybrid method

input : λ0, μ0 and ∂D; % λ0, μ0 obtained by direct method

while ||F(λm, μm) − f δ|| < τδ
Jλ, Jμ; % compute Jacobien

F(λm, μm) + F′λm
(λm, μm)ςm + F′μm

(λm, μm)ηm = f ; % solve for ςm, ηm

λm ← ςm + λm; % update λm

μm ← ηm + μm; % update ηm

end

Output : λ, μ.

4.3. Numerical Results

In this section we provide some numerical results to exhibit the effectiveness and

accuracy of the reconstruction methods illustrated in previous section. We compare the

performance of the methods described for the inverse impedance problem. For the imple-

mentation the parameterized impedance functions are given by

λ(t) =
1

1 − 0.1 sin(2t)
and μ(t) =

1

1 + 0.3 cos(t)
− 0.15, t ∈ [0, 2π]. (4.46)

In all experiments the regularization parameter is chosen by trial and error and the wave

number is taken k = 1
2
. The number of quadrature and measurement points for producing

the Cauchy data are chosen as 2n = 80 and the impedance functions are approximated

by trigonometric polynomial of degree m = 2. Also the density function ϕ in the data

equation (4.36) is approximated by trigonometric polynomial with degree m = 12. To

generate the perturbed data, some normally distributed noise was added to synthetic data
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with respect to L2 norm. Equally distant sources points are considered as

x+ = 0.9 (cos 0, sin 0) , x× = 0.9

(
cos

2π

3
, sin

2π

3

)
, x∗ = 0.9

(
cos

4π

3
, sin

4π

3

)
. (4.47)

Example 4.1 The first example studied is here a peanut parameterized by

∂D =
{

0.8

√
cos2(t) + 0.25 sin2(t)(cos(t), sin(t)), 0 ≤ t ≤ 2π

}
. (4.48)

The numerical computations of the functions (4.46) in the following table are evaluated

by hybrid method. Table 4.1 consist of numerical error with L2 norm where the choice of

the involved regularization parameters is αλ = αμ = 10−8 × 0.8 j where j is iteration num-

ber. Approximation of λ and μ in the Table 4.1 correspond to λapp, μapp respectively. The

Table 4.1.: Errors for the exact data

Iteration ||λ − λapp||L2/||λ||L2 ||μ − μapp||L2/||μ||L2 ||us − F(λ, μ)||L2(C)/||us||L2(C)

0 0.0185 0.0321 0.0134
1 0.0036 0.0067 4.8371e-04
2 0.0035 0.0067 2.8069e-04

numerical relative error decreases as seen in the Table 4.1. The third column is calcu-

lated for the source point x+. That table shows reconstructions of λ and μ are reasonable

according to numerical error in the Table 4.1.

Example 4.2 In this example the source points (4.47) are considered. The left and middle

plots of Figure 4.2 demonstrates the solution to (4.1)-(4.2) for the source point x+.

Three sources and two different forms of the domain, convex and concave, are

represented by variation of the appropriate fields on the measuring circle C in the right-

hand side plot of Figure 4.2. In specifically, the dashed lines correspond to the elliptical

domain, the solid lines represent fields for the peanut, and the line color represents the

source taken into consideration. One can see that a convex domain’s field amplitude is

45



Figure 4.2.: Fields in the domain and on the measurement circle

higher than that of a convex domain with a comparable size. The fields generated by two

symmetric points sources xx and x∗ differ more for the convex domain, which might be a

reason why the impedance reconstructions for the convex domain are more accurate.

Example 4.3 The second example considered here is reconstruction from the exact data

for the parameterized ellipse

z(t) = (1.9 cos(t), 1.5 sin(t)). (4.49)

The reconstructions for the direct method are done with regularization parameter αϕ =

10−10. For the hybrid method regularization parameter αμ = αλ = 10−8
(

4
5

) j
are consid-

ered with iteration number j = 2. There is no much difference between reconstructions of

the methods since the domain is very smooth for ellipse. Hybrid method is slightly better

than another method.

Also we have exact reconstructions for peanut (4.48) with both methods. The

hybrid method introduced in section (4.2) gives more accurate reconstructions than the

another method considered here. The regularized parameters for hybrid taken as αϕ =

10−10 and αλ = αμ = 10−8
(

4
5

) j
with iteration number j = 2. The direct method includes

parameter αϕ = 10−10.

To understand the shift of the function obtained by using the direct reconstruction

algorithm we analyze the Cauchy data and the tangential derivative for the total field

evaluated on ∂D in Table 4.2. We chose λ, μ, defined in (4.46) and a point source located

at x∗ = (0.9, 0) in D. The approximate field û|∂D is obtained by solving problem (4.36) and
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Hybrid Method⏐⏐⏐,

Figure 4.3.: Reconstruction from the exact data of λ and μ for ellipse by hybrid
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Direct Method⏐⏐⏐,

Figure 4.4.: Reconstruction from the exact data of λ and μ for ellipse by direct

48



Hybrid Method⏐⏐⏐,

Figure 4.5.: Reconstruction from the exact data of λ and μ for peanut by hybrid
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Direct Method⏐⏐⏐,

Figure 4.6.: Reconstruction from the exact data of λ and μ for peanut by direct
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exact u|∂D is computed by (4.16) in Table 4.2. We notice that the accuracy of u and the nor-

mal derivative of u is better than the tangential derivative since their computation involves

numerical differentiation. In the presence of normally distributed noise with respect to L2

Table 4.2.: Numerical error for peanut-shaped domain

2n ‖û − u‖L2(∂D)/‖u∂D‖L2(∂D) ‖∂û
∂ν
− ∂u

∂ν
‖L2(∂D)/‖∂u

∂ν
‖L2(∂D) ‖ dû

ds − du
ds ‖L2(∂D)/‖ du

ds ‖L2(∂D)

16 0.0328 0.2306 0.0934
32 0.0070 0.1282 0.0720
64 0.0031 0.0493 0.0527

norm, we consider the regularized parameters for the hybrid taken as αϕ = 10−6 and

αλ = αμ = 10−4
(

4
5

) j
with iteration j number changing between 1 and 15. The parameters

αϕ = 10−6 is chosen for direct method. Also we have employed discrepancy principle

(2.47) with τ = 0.99 to stop the hybrid scheme. Here τ is chosen slightly smaller than 1

since the amount of input data is much higher than the number of unknowns. In general

Figure 4.7 and 4.8 show that the reconstructions deteriorate when noise level increases

slightly. In other words, we observe that the interior inverse impedance problem is very

sensitive to noise. Moreover, sources close to each other makes reconstruction worse and

there is a analogous effect while the measurement circle and the boundary of the domain

are near to each other. Due to these reasons equally spaced source distribution and the

measurement circle, which is not in proximity to the boundary, were preferred. In the

Figure 4.7 we choose average reconstructions out of ten.

These results are submitted as " An interior inverse generalized impedance problem for

the modified Helmholtz equation in two dimensions". by Ivanyshyn Yaman and Özdemir.
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1 % Noise

←ellipse→

2 % Noise

←peanut→

Figure 4.7.: Average reconstructions of λ and μ with noisy data out of ten
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1 % Noise; best out of 10

←ellipse→

2 % Noise; best out of 10

←peanut→

Figure 4.8.: Best reconstructions of λ and μ with noisy data out of ten
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CHAPTER 5

CONCLUSION

In this thesis, the numerical solution methods for the direct and inverse problems

are proposed. We demonstrate the existence and uniqueness of the solution to the GIBC

problem for the two-dimensional modified Helmholtz equation and the solvability of the

resulting boundary integral equation are established. The numerical solution approach

is suggested using boundary integral equations. The technique relies on detaching sin-

gularities from integral operator kernels. Numerical examples are used to demonstrate

and validate the convergence in the Sobolev space. If all the input data are analytic, the

numerical solution converges super-algebraically. The methodology based on trigono-

metric differentiation and the numerical method is contrasted. The potential drawbacks

of the second strategy are discussed and demonstrated with examples. Moreover, we in-

dicate that the impedance functions are determined uniquely by the knowledge of three

sources and measured data situated on an inner curve. We provide the direct method and a

more complex hybrid strategy for the problem’s numerical solution. The hybrid method,

a Newton-type approach, uses the direct method’s solution as an initial guess and hence

yields more accurate reconstructions. The proposed hybrid method for the interior inverse

problem provides accurate reconstructions in the case of the data with the low noise level

without a priori information about the impedance functions.
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