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ABSTRACT

EXACTLY SOLVABLE BURGERS TYPE EQUATIONS WITH

VARIABLE COEFFICIENTS AND MOVING BOUNDARY

CONDITIONS

In this thesis, firstly, a generalized diffusion type equation is considered. A family

of analytical solutions to an initial value problem on the whole line for this equation is

obtained in terms of solutions to the characteristic ordinary differential equation and the

standard heat model by using Wei-Norman Lie algebraic approach for finding the evo-

lution operator of the associated diffusion type equation. Then, initial-boundary value

problems on half-line and an initial-boundary value problem with moving boundary for

this equation are studied. It is shown that if the boundary propagates according to an as-

sociated classical equation of motion determined by the time-dependent parameters, then

the analytical solution is obtained in terms of the heat problem on the half-line. For this,

a non-linear Riccati type dynamical system, that simultaneously determines the solution

of the diffusion type problem and the moving boundary is solved by a linearization proce-

dure. The mean position of the solutions, the influence of the moving boundaries and the

variable parameters are examined by constructing exactly solvable models. Then, an ini-

tial value problem for a generalized Burgers type equation on whole real line is discussed.

By using Cole-Hopf linearization and solution of the corresponding generalized linear

diffusion type equation, a family of analytical solution is obtained in terms of solutions to

the characteristic equation and the standard heat or Burgers model. Exactly solvable mod-

els are constructed and the influence of the variable coefficients are examined. Later, an

initial-boundary value problem for the generalized Burgers type equation with Dirichlet

boundary condition defined on the half-line is studied. Finally, an initial-boundary value

problem for the generalized Burgers type equations with Dirichlet boundary condition im-

posed at a moving boundary is considered. The analytical solution is obtained in terms of

solution to characteristic equation and the standard heat or Burgers model, if the moving

boundary propagates according to an associated classical equation of motion. In order to

show certain aspects of the general results, some exactly solvable models are introduced

and solutions corresponding to different types of initial and homogeneous/inhomogeneous

boundary conditions are discussed by examining the influence of the moving boundaries.
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ÖZET

DEĞİŞKEN KATSAYILI VE HAREKET EDEN SINIR KOŞULUNA

SAHİP TAM ÇÖZÜLEBİLEN BURGERS TİPİ DENKLEMLER

Bu tezde, ilk olarak genelleştirilmiş difüzyon tipi bir denklem ele alınmıştır. Tüm

reel çizgi üzerinde bir başlangıç değer probleminin analitik çözümler ailesi ilgili difüzyon

tipi denklemin evrim operatörünü bulmak için Wei-Norman Lie cebirsel yaklaşımı kul-

lanılarak karakteristik adi diferensiyel denklemin ve standart ısı modelinin çözümleri

cinsinden elde edilmiştir. Daha sonra bu denklem için yarım çizgideki başlangıç-sınır

değer problemleri ve hareketli sınır koşullu başlangıç-sınır değer problemi çalışılmıştır.

Sınır, zamana bağlı parametreler tarafından belirlenen ilişkili bir klasik hareket denklem-

ine göre yayılırsa, o zaman analitik çözümün yarım çizgi üzerindeki klasik ısı problemi

açısından elde edildiği gösterilmiştir. Bunun için difüzyon tipi problemin ve hareketli

sınırın çözümünü eş zamanlı olarak belirleyen lineer olmayan Riccati tipi bir dinamik

sistem bir lineerleştirme prosedürü ile çözülmüştür. Çözüm dağılımının ortalama kon-

umu, hareketli sınırların ve değişken parametrelerin etkisi tam olarak çözülebilir mod-

eller oluşturularak gösterilmiştir. Daha sonra, tüm reel cizgi üzerinde genelleştirilmiş bir

Burgers tipi denklem için bir başlangıç değer problemi tartışılmıştır. Cole-Hopf doğrusal-

laştırması ve karşılık gelen genelleştirilmiş doğrusal difüzyon tipi denklemin çözümü kul-

lanılarak, karakteristik denklem ve standart ısı veya Burgers modelinin çözümleri açısın-

dan bir analitik çözüm ailesi elde edilmiştir. Tam olarak çözülebilir modeller oluştu-

rulur ve değişken katsayıların etkisi incelenmiştir. Daha sonra, yarım çizgi üzerinde

tanımlanan Dirichlet sınır koşullu genelleştirilmiş Burgers tipi denklem için bir başlangıç-

sınır değer problemi incelenmiş ve farklı başlangıç ve sınır koşullarına sahip tam olarak

çözülebilir modeller sunulmuştur. Son olarak, hareketli bir sınıra dayatılan Dirichlet sınır

koşuluna sahip genelleştirilmiş Burgers tipi denklemler için bir başlan-gıç sınır değer

problemi ele alınmıştır. Eğer hareketli sınır ilişkili bir klasik hareket denklemine göre

yayılırsa, analitik çözüm, karakteristik denklemin ve standart ısının veya Burgers mod-

elinin çözümü cinsinden elde edilmiştir. Genel sonuçların belirli yönlerini göstermek için,

tam olarak çözülebilir bazı modeller tanıtılmış ve hareketli sınırların etkisi incelenerek

farklı başlangıç ve homojen/homojen olmayan sınır koşullarına karşılık gelen çözümler

tartışılmıştır.
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CHAPTER 1

INTRODUCTION

Partial differential equations often express fundamental laws of nature and usually

appear in the mathematical formulation of many problems in science and engineering.

In particular, time-evolution problems arise in different areas such as diffusion processes,

transport phenomena, fluid mechanics, wave propagation, chemical reactions and biol-

ogy. The study of partial differential equations (PDE’s) includes mathematical modeling,

investigation of the existence and uniqueness of solutions, approximation and numerical

techniques, methods for deriving analytical solutions and constructing exact closed form

solutions.

As known, analytical solutions to initial-value problems (IVP’s) and initial-boundary

value problems (IBVP’s) for linear PDE’s are usually obtained and investigated using

classical methods such as separation of variables, Fourier, Laplace, and other integral

transforms, Green’s functions approaches and method of images. Although commonly

used, these methods have some limitations as discussed in (Fokas, 2008): (i) For higher

order PDE’s and non-separable boundary conditions (BC’s) proper integral transforms

may not exist. (ii) The integral equations arising in the Green’s function approach are

difficult to solve explicitly in closed form. (iii) The method of images can be applied only

to problems that possess certain symmetries.

Although in the study of linear PDE’s one may encounter certain problems, in

general, their theory is well-developed. The situation with non-linear PDE’s is much

more complicated. There are no general techniques for solving non-linear PDE’s and

almost every non-linear equation should be investigated separately. An exception is the

class of C-integrable non-linear PDE’s that are directly linearizable by suitable trans-

forms, like the Burgers equation. Another exceptional class consists of completely inte-

grable non-linear equations that are characterized as systems possessing infinitely many

conserved quantities. For such problems the Inverse Scattering Transform (Ablowitz &

Segur, 1981), Hirota bilinear method (Hirota, 2004), Bäcklund transforms (Kingston

& Sophocleous, 1990), were developed and applied to some well-known models such as
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the Korteweg-de-Vries equation (KdV), Kadomtsev-Petviashvili (KP) equation and the

nonlinear Schrödinger equation. The use of Lie group symmetries is also a powerful and

algorithmic method for constructing exact solutions to differential equations, but these

solutions usually do not respect initial and boundary conditions.

An important point is that the methods mentioned above are mostly applied to

PDE’s with constant coefficients. When the problems possess space and time variable

coefficients, exact and analytical solutions to the associated linear or non-linear IBVP’s

exist only for some special PDE’s and specific BC’s. In most variable parametric problems

one has to use approximations and numerical techniques. However, knowing exact and

explicit solutions, if exist, usually plays a significant role in understanding the underlying

dynamics of the physical problems.

In this thesis, we investigate analytical and exact solutions written in terms of el-

ementary or special functions to a large class of linear one-dimensional diffusion-type

equations and generalized viscous Burgers equations with time and space variable coef-

ficients. For these linear and non-linear PDE’s first we study IVP’s on the whole real

line, then we discuss IBVP’s on the the fixed half-line, and finally, we study IBVP’s on a

semi-infinite interval with a moving boundary. More precisely, the content of the thesis is

as follows.

In Chapter 2, we provide some necessary concepts and brief background to the

problems. We mention some well-known results and examples related to our research.

In Chapter 3, we study IVP and IBVP’s for the one-dimensional linear PDE,

Φt =
1

2μ(t)
Φxx−[a(t)−b(t)x]Φx+μ(t)

[ω2(t)
2

x2− f (t)x+ f0(t)
]
Φ, x ∈ R, t > t0 > 0, (1.1)

with smooth diffusion coefficient depending on time, 1/(2μ(t)), smooth convection co-

efficients which is linear in space variable x, a(t) − b(t)x, and reaction coefficients that

depend on time and space, μ(t)
[
(ω2(t)/2)x2 − f (t)x + f0(t)

]
. Together with certain initial

and boundary conditions, this equation can describe convection-diffusion-reaction (CDR)

processes in unsteady and inhomogeneous media. This equation is widely employed to

model phenomena in many different fields in mathematics and sciences such as diffusion

processes, statistical mechanics, probabilty theory, financial mathematics, population ge-

netics, quantum chaos, modeling of biological systems, diffusion of neutrons, reaction of
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chemical, stochastic equation for Brownian motion and many more. It involves the change

of concentration/population of one or more substances/species distributed in space under

the influence of three processes: diffusion which refers to for example spreading of the

contaminant from highly concentrated areas to less consantrated areas, convection which

is defined as the movement of the species due to the fluid transport medium and reac-

tion which is the process of interaction through which the species in the phenomena are

generated or consumed. The solution can represent for instance concentration of a sub-

stance, heat energy or momentum. Eq.(1.1) comprises also Fokker-Planck type models

in statistical mechanics and the stochastic equation for a Brownian motion. In that case

solution represents the probability density that a Brownian particle is at position x, at time

t, (Risken, 1984), (Englefield, 1988), (Mazo, 2002), (Paganin & Morgan, 2019).

Mathematically, this equation is special in the sense that it is the most general

one-dimensional linear diffusive type PDE that can be written using generators of the

Heisenberg-Weil and su(1,1) Lie algebras. The Lie algebraic or group theoretical methods

for solving linear PDE’s that appear both in classical and quantum problems are known for

a long time. An important contribution in that direction is the work of Wei and Norman

(Wei & Norman, 1963), who proposed an efficient procedure for finding the evolution

operator of linear equations. In the previous works, such as in (Wolf, 1988), the Lie

algebraic solution of the linear Fokker-Planck equation has been concerned, in (Dattoli,

Gallardo & Torre, 1988), (Cheng & Fung, 1988), (Lo, 1991), authors have used the

Wei-Norman technique together with transformation methods to solve quantum evolution

problems. Recently, in (A. Büyükaşık, & Çayiç, 2019) by a straightforward application

of the Wei-Norman procedure and by properly choosing the ordering of the exponen-

tial operators, the evolution operator for a quantum parametric oscillator has been found.

For a constant coefficient case of the parabolic PDE (1.1), a long time ago in (Stein-

berg, 1977), a Lie algebraic approach was used and discussed the applications of Baker,

Campbell, Haussdorf, and Zassenhaus formulas for solving the corresponding IVP. Later,

for a nonautonomous diffusion-type equation of the form (1.1), authors in (Zola & et

all, 2008) have used a Green’s function ansatz and quite recently in (Suazo, Suslov &

Guzman, 2014) by a transformation method it has been reduced to a standard form and

fundamental solution has found by solving a Riccati type system. For some parabolic

PDE’s with variable coefficients, including Eq.(1.1), reduction transformations that lead
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to well-known PDE’s can be found in (Polyanin, 2002), however, their formal expressions

do not allow any understanding of the influence of the variable coefficients and behavior

of the solutions.

In this thesis, we solve the evolution problem for the linear PDE (1.1) by the

Wei-Norman Lie algebraic method. An important point in this direction is that we are

able to determine the unknown coefficients of the evolution operator exactly in terms of

two linearly independent homogeneous solutions and a particular solution to the linear

second-order inhomogeneous characteristic equation. As a result, we obtain the evolution

operator as product of simple exponential operators, and we provide analytical solution

to the IVP for PDE (1.1) explicitly in terms of solutions to the characteristic equation and

the standard heat model.

Then, we consider IBVP’s for linear diffusion type equations on the domain 0 <

x < ∞, 0 < t < T, and with Dirichlet, Neumann and Robin type BC’s imposed at x = 0.

As known, exact solutions of half-line IBVP’s exist only for limited cases. In (Zoppou,

Member & Knight, 1997), authors has presented analytical solutions to the spatially vari-

able coefficient advection and advection-diffusion equations, written in conservative and

nonconservative forms. Recently some variable coefficient diffusion type models with

analytical solutions and describing concrete physical phenomena have been discussed in

(Kumar, Jaiswal & Kumar, 2010), (Jaiswal, Kumar & Yadav, 2011), (Kumar & Yadav,

2013), (Kim, 2020) and references therein. Generalized parabolic type PDE’s are ad-

dressed also in (Polyanin, 2002), where solutions to IBVP’s are given without solving

the related problems.

We note that in general PDE (1.1) does not possess space inversion symmetry and

solving an IBVP on half-line is not always a straightforward task. However, for some

special cases we show that the IBVP’s with Dirichlet, Neumann and Robin type boundary

conditions can be reduced to standard models. We provide an integral representation of

the general solutions and obtain fundamental solution. Some exactly solvable models with

different initial and boundary conditions are introduced and their dynamics is discussed.

In Chapter 4, motivated by the results in previous chapter, we study an IBVP for

Eq.(1.1) on a semi-infinite interval s(t) < x < ∞ with a moving boundary s(t), 0 < t < T.

As known, in many applications there are problems in which the boundaries of the domain

are changing with time. In particular, diffusion and heat-conduction type problems with
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moving boundaries occur in different processes containing phase changes and chemical

reactions, (Dankwerts, 1950). Practical applications include the progressive freezing or

melting of water or liquids, solidification of melts, evaporation, laser glazing (Davis &

Hill, 1982), (Gupta & Arora, 1988), crystallization, ablation problems (Mitchell, 2012),

oxygen metabolism in tissues (Crank & Gupta, 1972a), (Evans & Gourlay, 1977). Such

applications often comprise PDE models in which the location of the boundary is not

known in advance and must be determined together with the solution. In that case, one

usually speaks about moving and/or free boundary problems (Chen & Shahgholian &

Vazquez, 2015 ), and the best known are the one-phase or two-phase Stefan-like prob-

lems, (Griffin & Coughanowr, 1965), (Crank, 1984). In general, finding solutions to

such problems is a difficult task mainly because the moving boundary makes the problem

nonlinear. Due to this, the study of moving boundary problems is usually based on nu-

merical methods, approximation techniques, or pure analysis. Only a few exact analytic

solutions are known for Stefan-like problems, (Bluman, 1974), (Crank, 1984), (Alexan-

drov & Malygin, 2006), (Johansson & Lesnic, 2011), (Salva & Tarzia, 2011), (Rodrigo

& Thamwattana, 2021) .

Since finding exact solutions to such problems occurs rarely, some authors have

considered the simplified problem of finding solutions for boundary conditions imposed

on a priory given moving boundary (Langford, 1967), (Kartashov, Lyubov & Bartenev,

1970), (Bluman, 1974), (Tait, 1979). When such solutions are available, one has an

approximation to the moving boundary problem in the sense that the solution gives a

possible state of the medium, if the heat can be supplied externally in a prescribed way,

(Tait, 1979). For example, in (Kartashov, Lyubov & Bartenev, 1970) authors have consid-

ered a problem in which the boundary of a crystallizing melt moves in accordance with a

quadratic crystallization law y(t) = ±βt2+αt and arrived at the standard diffusion equation

for the distribution of concentration in the region y(t) < x < ∞, t > 0. In that case, the so-

lution has been derived by changing to a moving coordinate system and using the Laplace

transform. In (Tait, 1979), the exterior ablation problem urr + (2ν + 1/r)ur − ut = 0

defined on the domain R(t) < r < ∞, t ∈ (0,T ), has been addressed using an ansatz

with similarity variable ξ = r/R(t), transforming conditions on the moving boundary to

conditions on the fixed one. Similar standard procedures were used also to study both sta-

tionary and non-stationary Schrödinger equations with moving boundaries describing for
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instance the oscillations of a particle in a potential well of time-dependent width, a quan-

tum bouncer and a cut-off oscillator (Munier & et all, 1981), (Makowski & Dembinski,

1991), (Makowski, 1992).

Although the subject is extensively studied for standard models, to the best of our

knowledge, the variable parametric generalized diffusion type models defined on the time-

dependent regions are less investigated. Since moving boundaries often and significantly

affect the behavior of the systems, finding exact solutions is an essential and motivating

step toward understanding their dynamics.

Therefore, in this thesis, we study an IBVP for Eq.(1.1) defined on the domain

s(t) < x < ∞, 0 < t < T and with Dirichlet boundary condition (BC) imposed on the

boundary x = s(t). For this, passing to a moving coordinate system, the mIBVP is trans-

formed into an IBVP on the half-line. As expected, the transformed problem is defined on

a simpler domain, but the associated PDE in the new variables becomes more complicated

since the boundary s(t) contributes to the convection and reaction coefficients of the PDE.

In that case, we prove that if the boundary function propagates according to an associated

forced classical equation of motion, then the mIBVP reduces to solving a standard heat

IBVP on the half-line. An important step in this direction is the solution of a nonlin-

ear Riccati-type dynamical system, which simultaneously determines the solution of the

mIBVP and the moving boundary for which this solution holds. As a result, we provide

an integral representation of the solution and fundamental solution of the mIBVP explic-

itly in terms of solutions to characteristic equation. Then, applying it to our general re-

sults, we present exactly solvable models that can describe for example diffusion-reaction,

convection-diffusion, and convection-diffusion-reaction type processes. For each model,

if a family of moving boundaries propagate according to characteristic equation, then we

derive families of exact solutions corresponding to different types of initial data and ho-

mogeneous boundary conditions explicitly and discuss their dynamics according to the

influence of the time-variable parameters and the prescribed moving boundaries.

On the other side, it is known that the spatial moments of a solution distribu-

tion are used to characterize the geometry of the evolving distribution of, for instance,

concentration such as zeroth, first and second moments. The zeroth moment gives the

total amount of substance, the first moment normalized by the total amount represents the

mean location of the distribution and the second central moment normalized by the total
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amount gives the second central moment normalized by the total amount gives the mean

square position and correspondingly it is used to find the variance which is a measure of

the spreading of the distribution about its mean position. Therefore, for the fundamental

solution of exactly solvable models, we find the moments of the solution distribution and

analyze the mean position of the distribution and motion of the moving boundary.

Next, we introduce an IBVP for the generalized diffusion type equation with Neu-

mann and Robin boundary condition imposed at a boundary x = s(t). Using the same

procesure given in previous section, we obtain that the solution of mIBVP with inho-

mogeneous Neumann and Robin BC reduces to the standard heat IBVP with Robin type

boundary condition with variable coefficient on the half line which requires solving a sec-

ond kind Volterra integral equation. Similarly, we obtain the exact analytical solution and

the integral representation of solution to the mIBVP’s with Neumann and Robin BC’s if

the time-dependent boundary is prescribed in a certain way. Then, in order to show cer-

tain aspects of the general results, we present exactly solvable models for some special

choices of boundary conditions.

In Chapter 5, we study an IVP and IBVP’s for generalized Burgers type equations

Ut +
μ̇(t)
μ(t)

U +UUx =
1

2μ(t)
Uxx − ((a(t)+ b(t)x)U)x −ω2(t)x+ f (t), x ∈ R, t > t0 > 0,

(1.2)

for the field U(x, t),with smooth coefficients of damping Γ(t) = μ̇(t)/μ(t), diffusion D(t) =

1/2μ(t), linear in position convection coefficient v(x, t) = a(t) − b(t)x, and an external

forcing term F(x, t) = −ω2(t)x + f (t). This equation can be seen as an extension of the

forced Burgers equation (FBE) discussed in (Eule & Friedrich, 2006), (A. Büyükaşık &

Pashaev, 2013), (A. Büyükaşık & Bozacı, 2019), and is special since it admits a direct

linearization in the form of Eq.(1.1).

As known, the one-dimensional standard Burgers equation (BE), Vt+VVx = νVxx,

is the simplest model combining nonlinear convection and linear dissipative effects. Due

to this, it appears in many fields such as fluid dynamics (Burgers, 1948), (Burgers,

1974), gas dynamics (Hopf, 1950), (Cole, 1951), nonlinear acoustics (Lighthill, 1956),

(Saichev, Gurbatov & Rudenko, 2011), (Enflo & Hedberg, 2002) and mass transport. It is

commonly used to describe the nonlinear propagation of waves in dissipative media and

shock formation (Bec & Khanin, 2007), distribution of matter in large-scale structures,
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and interface growth models (Kardar, Parisi & Yi, 1986), (Woyczynski, 1998).

From the mathematical point of view, standard BE is an integrable model that

admits direct linearization and analytic solution of the IVP on the whole real line is

found easily by using the Cole-Hopf transformation, (Hopf, 1950), (Cole, 1951). Then,

many interesting solutions can be derived from solutions of the associated heat equation,

(Saichev, Gurbatov & Rudenko, 2011), (Whitham, 1999), (Sachdev, 1987), (Benton,

1941). Later, other approaches like Hirota method (Wang & et all, 2004), Lie symme-

tries method (Sophocleous, 2004), (Vaganan & Kumaran, 2006), generalized Cole-Hopf

transform (Vaganan & Jeyalakshmi, 2011), etc., were also used to construct exact and

explicit solutions for Burgers type models.

Due to the great number of possible applications and its integrability, different

generalizations of Burgers equation were introduced and discussed from different per-

spectives (Orlowsky & Sobczyk, 1989), (Schulze-Halberg & Jimenez, 2009), (A.

Büyükaşık & Pashaev, 2013), (Zuparic & Hoek, 2019). One of them is when external

forces and forcing terms with time-dependent coefficients are included in the problem, so

that one can take into account inhomogeneities of media, non-uniformities of boundaries,

friction forces, and for example it can model the evolution of growing interfaces (Xu &

et all, 2007). Such problems were addressed also in some earlier works (Zola & et all,

2008), (Moreau & Vallee, 2006), (Suazo, Suslov & Guzman, 2014) and were treated

by different approaches. Recently, the exact solvability of generalized BE including a

nonlinear forcing term was addressed in (Schulze-Halberg, 2015) by introducing point

transformations for linearizing the Burgers model and relating it to its Schrödinger coun-

terpart. In (Pereira, Suazo & Trespalacios, 2018) reaction-diffusion equations and some

Burgers equations were solved through Riccati equations and similarity transformations,

a method of solving initial and boundary value problems for the nonlinear integrable sys-

tems was described in (Fokas & Pelloni, 2000).

Therefore, in this thesis, we solve the IVP for BE (1.2) using a generalized Cole-

Hopf transformation and our results are presented in Chapter 3. We formulate the general

closed-form solution of the IVP for BE (1.2) using the solutions to the characteristic

equation and the standard heat and Burgers models. Using the symmetries of standard

Burgers equation such as the shift of origin, change of scale, and Galilean symmetry

where usually solutions obtained from each other by symmetry transformations are said
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to be equivalent or isomorphic, since they don’t change the form of the original function

(Sachdev, 1987), (Benton, 1941), we show that a family of solutions obtained by the

translation and Galilean invariance of standard BE provide a more complete description

of the corresponding family of generalized traveling waves. We can say that the exact

and explicit results obtained in this work, provide deeper insight into the solutions of

the generalized Burgers equation and lead to a better understanding of the influence of

the time-variable parameters, external terms, and forcing terms on the dynamics of the

nonlinear waves.

Next we note that, the Cole-Hopf transform is special also in the sense that the

initial condition for Burgers equation transforms directly to the initial condition for the

corresponding heat equation. Then one can easily write and analyze solutions of the

Burgers initial value problem on the whole real line −∞ < x < ∞. However, for IBVP’s

posed on the infinite half-line 0 < x < ∞ the situation is different. Depending on the

type of the boundary conditions, solving the problem is not always a straightforward task.

A long time ago, Rodin in his work (Rodin, 1970) discussed the IBVP for a standard

Burgers equation on the half-line 0 < x < ∞, with Dirichlet boundary condition (BC)

imposed at x = 0, and showed that to find a solution of this IBVP, one must first solve

a corresponding second-kind linear Volterra type integral equation. Since in general, its

solution requires approximation techniques, Rodin discussed a technique for obtaining

closed-form solutions of Burgers equation on the half-line by "sacrificing" the initial data,

but retaining the exact boundary condition. By this approach, he re-obtained some well-

known solutions, and then Sachdev in (Sachdev, 1987) enlarged the solution class of

these problems. Calogero and De Lillo introduced a "generalized" Cole-Hopf transform

for the Dirichlet Burgers problem on the half-line (Calogero & De Lillo, 1989). Then in

(Biondini & De Lillo, 1991), authors obtain the explicit solution to the Burgers equation

on the semiline with flux-type boundary conditions at the origin. The Neumann problem

for Burgers equation is studied in (De Lilo & Sommacal, 2011) and it is reduced to a

nonlinear integral equation in one independent variable, whose unique solution is proven

to exist for small time. Later, Fokas and De Lillo used the unified transform method to

solve the Dirichlet problem for standard BE on the half-line (Fokas & De Lillo, 2014).

After the introduction of the unified transform method (Fokas method) (Fokas, 1997),

there is a renewed interest in IBVP’s for linear and non-linear PDE’s on the infinite half-
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line.

We recall that the standard Burgers equation has different types of exact solutions

and among them, rational-type solutions form an important class. Indeed, zeros of the

polynomial solutions of the heat problem lead to pole singularities for the Burgers ratio-

nal solutions. Then, the motion of these singularities corresponds formally to the motion

of one-dimensional particles interacting via two-body potentials and the corresponding

many-body problems are integrable, (Choodnovsky, 1977), (Calogero, 1978). For recent

work on the pole dynamics, one can see (Deconinck, Kimura & Segur, 2007), and for

classes of rational type solutions of the Burgers hierarchy, one can see (Kudryashov &

Sinelshchikov, 2009). Analysis of dynamics of complex pole singularities and spatial an-

alyticity properties of the solution to Burgers equation was addressed in (Senuof, 2007).

Here, we would like to notice that almost all research about IBVP’s for BE, was

done for the standard constant coefficient cases. In the present thesis, we consider Burg-

ers equation both with forcing term and with time-variable coefficients. For a recent

discussion on the presence of forcing terms in Burgers equation one can see (Rudenko

& Hedberg, 2018). On the other side, recently there is an increasing interest in evolution

equations with time variable coefficients, since they are able to reflect the varying inhomo-

geneities of media and non-uniformities of boundaries, as investigated in (Sophocleous,

2004), (Xu & et all, 2007).

Motivated by the above discussions, the question about exact solutions of IBVP’s

for forced Burgers equations with time-variable coefficients on the half-line appears nat-

urally. Precisely, in (A. Büyükaşık & Bozacı, 2019), we studied an IBVP for Burgers

equation (1.2) when a(t) = f (t) = 0 and b(t) = 0, on the half-line 0 < x < ∞, with initial

condition U(x, t0) = F(x) and Dirichlet boundary condition U(0, t) = D(t), t0 < t < T.

We provide a solution method for the Dirichlet IBVP on the infinite half-line, introduce

exactly solvable models, and construct exact solutions. For this, first, we show that the

Burgers IBVP can be transformed into a linear heat problem with Robin BC at x = 0.

Then, we obtain the analytical solution of the Burgers IBVP in terms of two indepen-

dent solutions to a second-order ordinary differential equation (ODE) and a second-kind

Volterra-type integral equation with a weakly singular kernel. Both ODE and the Volterra

integral equation are linear, but with time-dependent coefficients, and due to this, they

rarely admit exact solutions. However, exact solutions are always of considerable interest
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and as an application of the general results derived here, next we introduce Burgers-type

model with specific damping, diffusion, and forcing coefficients and construct special

classes of exact solutions. Burgers solutions satisfying smooth IC and homogeneous

Dirichlet BC are derived from solutions of the associated heat problem with Neumann

BC, and they are smooth on the domain x > 0, t > t0 > 0.More interesting types of exact

Burgers solutions are constructed by imposing special initial and boundary conditions.

These solutions have moving singularity on the real domain, due to pole-type singularity

in the initial profile. We investigate how time-dependent coefficients affect the propaga-

tion of the initial singularities, how their time-evolution is related to the given initial and

boundary data, and then illustrate their dynamics explicitly.

On the other side, there are problems with moving boundaries for the standard

Burgers equation. For example, in (De Lillo, 1998), the author has considered ini-

tial/boundary value problem for the Burgers equation on the semi-infinite interval x ∈
[s(t),∞) characterized by two sets of initial and boundary data. By introducing the gen-

eralized Hopf-Cole transformation, the problems have reduced to solving linear integral

equation of Volterra second type and closed form solution has been obtained. In (Bion-

dini & De Lillo, 2001), a method for solving Dirichlet problem for Burgers equation with

moving boundary has been introduced by reducing the problem to a linear integral equa-

tion of Volterra type with mildly singular kernel. Two explicit cases such as a boundary

moving with constant velocity and a rapidly oscillating boundary have been considered.

Moreover, Burgers-Stefan problem in the semi-infinite domain x ∈ (−∞, s(t)), where

the moving boundary is unknown, has been studied in (Ablowitz & De Lillo, 2000).

However, in these works, just the formalization of solutions have been found. Since the

subject with given moving boundary is less studied for standard Burgers equation, to the

best of our knowledge, the variable coefficient generalized Burgers type equation defined

on time-dependent domains have been almost never investigated.

In Chapter 6, we study an initial-boundary value problem for one dimensional

generalized Burgers type equation of the form (1.2) with moving boundary (mIBVP) on

a time-dependent domain s(t) < x < ∞, 0 < t < T and with Dirichlet BC imposed at

x = s(t). Following the same procedure as in the linear problem, we transform the moving

domain into the fixed one, but with the more complicated Burgers equation as expected.

Then, motivated from previous works, we obtain analytical solution in terms of standard
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Burgers model and correspondingly heat model provided that the boundary propagates

according to an associated classical equation of motion determined by the time-dependent

parameters of the Burgers equation. But, the difficulties in this mIBVP is that while

the corresponding standard Burgers IBVP has Dirichlet BC on half line, the heat IBVP

has variable coefficient Robin type BC which requires solving Volterra integral equation

of second-kind. As known from previous discussion, solving the second-kind Volterra

integral is quite intractable. However, for some specific initial and Dirichlet boundary

condition imposed at x = s(t), 0 < t < T, we are able present exactly solvable models.

First, we study the model for standard Burgers equation with oscillatory time-dependent

forcing term. For some special choices of initial and boundary conditions, we discuss

the behavior of the solution and the motion of the boundary. then, we examine unforced

Burgers model with space and time-dependent convection term. For rational type singular

initial data and homogeneous boundary condition, we analyze the influence of parameters

which creates moving singularities in the solution.

Chapter 7 includes brief discussion and concluding remarks.
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CHAPTER 2

PRELIMINARIES

This chapter briefly reviews of some properties and main results for the linear and

Burgers equation.

2.1. Heat equation in one dimension

The one-dimensional standard heat equation (HE),

Ψt = νΨxx,

is the simplest linear partial differential equation with constant diffusion coefficient ν > 0.

Here x and t are space and time variables respectively, subscripts denotes partial deriva-

tives with respect to x and t.

The heat equation is also known as the diffusion equation and it describes one-

dimensional unsteady state thermal processes in motionless medium or solids with con-

stant thermal diffusivity.

In this section we recall the invariance properties, the well-known solutions of the

heat equation and the main results for the solution of the IVP on whole line and IBVP’s

with Dirichlet, Neumann and Robin BC’s defined on the half-line.

Invariance properties of the heat equation

It is known that the heat equation admits some invariant transformations as follows

(a) Translations : IfΨ(x, t) is a solution of heat equation, then so isΨ(x−x0, t−t0),

where x0 and t0 are translation parameters in space and time respectively.

(b) Scaling : If Ψ(x, t) is a solution, then Ψ(αx, α2t) is also solution where α and

α2 are space and time scalied parameters for any constant α.

(c) Differentiation : If Ψ(x, t) is a solution, then so are Ψx,Ψt,Ψxx and so on.
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(d) Linear combinations : If Ψ1(x, t),Ψ2(x, t),Ψ3(x, t), ...,Ψn(x, t) are solutions,

then so is c1Ψ1(x, t) + c2Ψ2(x, t) + c3Ψ3(x, t) + ... + cnΨn(x, t) for any constants c1, ..., cn.

These symmetries are used to generate new solutions from the given one.

2.1.1. Solutions of the heat equation

Here, we list several known solutions for the heat equation, which are used in

Chapter 4, Chapter 5 and Chapter 6.

1) Similarity solutions

If Ψ(x, t) is a solution of the heat equation, then we look for a one-parameter transforma-

tion of variables x, t and Ψ under which the heat equation becomes invariant. Particularly,

we denote

Ψ(x, t) =
(

1√
2t

)−c

Ψ̃

(
x√
2t
,

1

2

)
, c ∈ R, (2.1)

where the right hand side depends on single variable. For the new similarity variable

z = x/
√

2t, which is a dimensionless parameter, let us define f (z) = Ψ̃( x√
2t
, 1

2
), where f (z)

is an unknown function of z to be determined. Then substituting Ψ(x, t) =
(
1/
√

2t
)−c

f (z)

into heat equation, we obtain second order ODE f ′′ + 2z f ′ − 2c f = 0 for ν = 1/2. For the

special case c = n for n ∈ N, this equation becomes f ′′ + 2z f ′ − 2n f = 0, −∞ < z < ∞,
which has solutions as follows

h̃−n (z) =

∫ ∞
0

e−(z−y)2

yndy, −∞ < z < ∞, (2.2)

h̃+n (z) =

∫ ∞
0

e−(z+y)2

yndy, −∞ < z < ∞, (2.3)

Hk
n(z) =

∫ ∞
−∞

e−(z−y)2

yndy. −∞ < z < ∞. (2.4)

Using similarity variable z = x/
√

2t and by changing variable
√

2ty→ ξ, we have
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h̃−n

(
x√
2t

)
=

∫ ∞
0

e−
(x−ξ)2

2t√
2t

(
ξ√
2t

)n
dξ, (2.5)

h̃+n

(
x√
2t

)
=

∫ ∞
0

e−
(x+ξ)2

2t√
2t

(
ξ√
2t

)n
dξ, (2.6)

Hk
n

(
x√
2t

)
=

∫ ∞
−∞

e−
(x−ξ)2

2t√
2t

(
ξ√
2t

)n
dξ, (2.7)

and define, (Widder, 1975)

h−n (x, t) =
1√
π

(
√

2t)nh̃−n

(
x√
2t

)
=

∫ ∞
0

e−
(x−ξ)2

2t√
2πt
ξndξ, (2.8)

h+n (x, t) =
1√
π

(
√

2t)nh̃+n

(
x√
2t

)
=

∫ ∞
0

e−
(x+ξ)2

2t√
2πt
ξndξ, (2.9)

Hk
n (x, t/2) =

1√
π

(
√

2t)nHk
n

(
x√
2t

)
=

∫ ∞
−∞

e−
(x−ξ)2

2t√
2πt
ξndξ, (2.10)

where function (2.10) is Kampé de Fériet polynomials (KFP) or heat polynomials, defined

by

Hk
n (x, t/2) = n!

[n/2]∑
m=0

(t/2)m

m!(n − 2m)!
xn−2m. (2.11)

The first few KFP in explicit form are H0(x, t) = 1, H1(x, t) = x, H2(x, t) = x2 +

t, H3(x, t) = x3 + 3xt, H4(x, t) = x4 + 6x2t + 3t2. Clearly, these functions are similarity

solutions which satisfy (2.1). In function (2.9), replacing ξ → −ξ, we get

h+n (x, t) = (−1)n
∫ 0

−∞

e−
(x−ξ)2

2t√
2πt
ξndξ.

Then it’s easily seen that for even n, i.e n = 2p for p = 0, 1, 2, · · · , we have even KFP in

terms of h+n and h−n ,

Hk
2p(x, t) = h−2p(x, t) + h+2p(x, t), p = 0, 1, 2, . . . ,
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and for odd n, say n = 2p + 1, we have odd KFP

Hk
2p+1(x, t) = h−2p+1(x, t) − h+2p+1(x, t), p = 0, 1, 2, . . . .

For fixed t > 0 and at x = 0, we have

h−n (0, t) = h+n (0, t) =
∫ ∞

0

e−
ξ2

2t√
2πt
ξndξ =

2
n−1

2 t
n+1

2 Γ[n+1
2

]√
2πt

,

Hk
2p(0, t) = h−2p(0, t) + h+2p(0, t) = 2

∫ ∞
0

e−
ξ2

2t√
2πt
ξ2pdξ,

Hk
2p+1(0, t) = h−2p+1(0, t) − h+2p+1(0, t) = 0.

For fixed x ∈ (−∞,∞) and as t → 0, h−n (x, 0) = xn, h+n (x, 0) = 0, Hk
n(x, 0) = xn.

Also, we can write Kampe de Feriet polynomials in terms of Hermite polynomials

Hm(x, t) =
tm/2

(2i)m hm

( ix√
2t

)
, m = 1, 2, . . . , (2.12)

where hm(ξ) are Hermite polynomials defined by

exp
[
2ξs − s2

]
=

∞∑
m=0

(sm/m!)hm(ξ).

Thus, the points where KFP vanish can be found in terms of the zeros of the Hermite

polynomials. Let ξ(l)
m ∈ R, l = 1, 2, ...,m, denote the zeros of Hermite polynomial hm(ξ),

so that for each fixed m, one has hm(ξ(l)
m ) = 0, for all l = 1, 2, ...,m. From relation (2.12) it

follows that

Hm(x, t) = 0 ⇐⇒ x = −iξ(l)
m

√
2t, l = 1, 2, . . . ,m. (2.13)

For ξ(l)
m = 0, we have zeros in real domain.
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2) Exponential solutions

The standard heat equation has family of exponential type solutions in the form

Ψ(x, t) = eαx+α2t, x ∈ R, t > 0, (2.14)

for real or complex constant α. The following functions

e−α
2t cos(αx), e−α

2t sin(αx), eα
2t cosh(αx), eα

2t sinh(αx), (2.15)

are also solutions to the heat equation.

In particular, the standard heat equation has solutions

Ψi(x, t) = exp
[
pi(x, t)
]
, pi(x, t) = −2α(i)

2

(
x − (α(i)

1
+ α(i)

2
t)
)
, i = 1, 2, . . . , k, (2.16)

for arbitrary real constants α(i)
1

and α(i)
2
, i = 1, 2, . . . , k. The linear superposition of solu-

tions (2.16) given as

Ψα(k)(x, t) = exp
[
p1(x, t)

]
+ exp
[
p2(x, t)

]
+ ... + exp

[
pk(x, t)

]
, (2.17)

for the index α(k) = (α(1), α(2), ..., α(k)), where α(i) = (α(i)
1
, α(i)

2
) ∈ R2 for each i = 1, 2, ..., k,

is also a solution for the heat equation.

3) Error and complementary error functions

Heat equation has also solutions

1 + Erf

(
x√
4νt

)
, Erfc

(
x√
4νt

)
, (2.18)

where Erf(x) is the error function and Erfc(x) is the complementary error function defined
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respectively by

Erf(x) =
2√
π

∫ x

0

e−u2

du, Erfc(x) =
2√
π

∫ ∞
x

e−u2

du, (2.19)

with Erf(0) = 0, Erf(∞) = 1, Erfc(0) = 1, Erfc(∞) = 0.

Using invariance properties one can enlarge the class of solutions to the heat equa-

tion.

2.1.2. Initial and boundary value problems for the heat equation

In this section, we recall solutions to the IVP on whole real line and IBVP’s de-

fined on the half-line with Dirichlet, Neumann and Robin type boundary conditions for

the heat equation, which are used during this thesis.

1) An Initial Value Problem

An initial value problem on whole real line −∞ < x < ∞ for the heat equation is defined

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ψt =

1
2
Ψxx, −∞ < x < ∞, t > 0,

Ψ(x, 0) = f (x), −∞ < x < ∞,
(2.20)

where f (x) is an arbitrary given smooth and bounded initial data.

Definition. The function G(x, ξ, t) is a fundamental solution for IVP (2.20) if it

satisfies the IVP

Gt =
1

2
Gxx, −∞ < x < ∞, t > 0, (2.21a)

G(x, ξ, 0) = δ(x − ξ), −∞ < x < ∞, (2.21b)

where δ(x − ξ) is the Dirac-delta distribution centered at x = ξ. Applying the Fourier
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transform, the fundamental solution is obtained as

G(x, ξ, t) =
1√
2πt

exp

[
− (x − ξ)2

2t

]
, (2.22)

which is also known as the source solution, Green’s function or the heat kernel.

It is not difficult to verify the properties:

a. G(x, ξ, t) satisfies the heat equation

b. For x, ξ ∈ R
lim
t→0

G(x, ξ, t) = δ(x − ξ).

During this thesis we denote the heat kernel as G(x, ξ, t) ≡ K(x, ξ, t). Therefore,

if the fundamental solution is known, then solution of IVP (2.20) for arbitrary initial data

f (x) is formally found as

Ψ(x, t) =
∫ ∞
−∞

K(x, ξ, t) f (ξ)dξ, (2.23)

where K(x, ξ, t) is given in (2.22).

Properties of heat kernel

1. K(x, t) > 0, t > 0.

2. limt→0 K(x, t) = 0, x � 0.

3. limt→0+ K(0, t) = ∞.

4.
∫ ∞
−∞ K(x, t)dx = 1.
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2) Initial-Boundary Value Problems on the Half-line

(a) Dirichlet IBVP

The IBVP defined on the half-line with initial condition at time t = 0 and the Dirichlet

boundary condition at x = 0 is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ψt =

1
2
Ψxx, 0 < x < ∞, t > 0,

Ψ(x, 0) = f (x), 0 < x < ∞,
Ψ(0, t) = g(t), t > 0,

(2.24)

where f (x) and g(t) are given sufficiently smooth functions of x and t respectively. Here

one assumes Ψ(x, t)→ 0 and Ψx(x, t)→ 0 as x→ ∞. Then, the IBVP (2.24) has solution

representation in integral form, (Widder, 1975), (Cannon, 1984), given as

Ψ(x, t) =
∫ ∞

0

(e− (x−ξ)2
2t − e−

(x+ξ)2
2t√

2πt

)
f (ξ)dξ +

∫ t

0

( x
t − t′

) e−
x2

2(t−t′)
√

2π(t − t′)
g(t′)dt′. (2.25)

Fundamental Solution : In particular, when we take the initial condition f (x) =

δ(x − x0), x0 > 0, and homogeneous boundary data g(t) = 0,

Gt =
1

2
Gxx, 0 < x < ∞, t > 0, (2.26a)

G(x, x0, 0) = δ(x − x0), x, x0 ∈ (0,∞), (2.26b)

G(0, x0, t) = 0, t > 0, (2.26c)

then we obtain the fundamental solution (or Green’s function) of the IBVP (2.24) as

GD(x, x0; t) =
1√
2πt

(
exp

[
− (x − x0)2

2t

]
− exp

[
− (x + x0)2

2t

])
, (2.27)

where GD(x, x0, t) = K(x − x0, t) − K(x + x0, t) denotes the Dirichlet heat kernel.

One can easily verify the following properties:

a. GD(x, x0, t) satisfies the heat equation
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b. For x > 0, x0 > 0 we have limt→0 GD(x, x0, t) = δ(x − x0).

c. GD(x, x0, t) satisfies the Dirichlet BC, i.e.

GD(0, x0, t) = K(−x0, t) − K(+x0, t) = 0.

Then, the solution (2.25) can be written in closed form

Ψ(x, t) =
∫ ∞

0

GD(x, ξ, t) f (ξ)dξ −
∫ t

0

∂xK(x, t − t′)g(t′)dt′, (2.28)

where ∂xK(x, t) is the partial derivative of heat kernel with respect to x.

(b) Neumann IBVP

The IBVP with Neumann boundary condition

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ψt =

1
2
Ψxx, 0 < x < ∞, t > 0,

Ψ(x, 0) = f (x), 0 < x < ∞,
Ψx(0, t) = h(t), t > 0,

(2.29)

where f (x) and h(t) are given functions, has solution, (Widder, 1975), (Cannon, 1984),

Ψ(x, t) =
∫ ∞

0

(e− (x−ξ)2
2t + e−

(x+ξ)2
2t√

2πt

)
f (ξ)dξ −

∫ t

0

e−
x2

2(t−t′)
√

2π(t − t′)
h(t′)dt′. (2.30)

Fundamental Solution : When f (x) = δ(x − x0), 0 < x < ∞, x0 > 0, and h(t) = 0, the

fundamental solution to the IBVP (2.29) is found as

GN(x, x0; t) =
1√
2πt

(
exp

[
− (x − x0)2

2t

]
+ exp

[
− (x + x0)2

2t

])
, (2.31)

where GN(x, ξ, t) = K(x + ξ, t) + K(x − ξ, t) denotes Neumann heat kernel. Similarly, it

can be satisfied the properties of the Neumann heat kernel. Therefore, the solution (2.25)
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can be also written in closed form

Ψ(x, t) =
∫ ∞

0

GN(x, ξ, t) f (ξ)dξ −
∫ t

0

K(x, t − t′)h(t′)dt′. (2.32)

(c) Robin type IBVP

The solution to the IBVP with homogeneous Robin BC on the half-line

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ψt =

1
2
Ψxx, 0 < x < ∞, t > 0,

Ψ(x, 0) = f (x), 0 < x < ∞,
Ψx(0, t) + β(t)Ψ(0, t) = 0, t > 0,

(2.33)

where f (x) and β(t) are given functions with β(t) � 0, can be found as follows, (Cannon,

1984):

Assume temporary we know Ψx(0, t) = h(t) in order to have IBVP with Neumann

boundary condition (2.29). Then using solution (2.30), we obtain Ψ(0, t) as follows

Ψ(0, t) = 2

∫ ∞
0

( e−
ξ2

2t√
2πt

)
f (ξ)dξ −

∫ t

0

h(t′)√
2π(t − t′)

dt′, (2.34)

and substituting Ψ(0, t) and Ψx(0, t) = h(t) into Robin BC in (2.33), we get

h(t) + β(t)
(
2

∫ ∞
0

( e−
ξ2

2t√
2πt

)
f (ξ)dξ −

∫ t

0

h(t′)√
2π(t − t′)

dt′
)
= 0, (2.35)

which is a second-kind Volterra type integral equation for the unknown function h(t). It is

also called as second-kind Volterra type integral equation with singular kernel K(t, t′) =

1/
√

t − t′. If we can solve it explicitly, we will fix Ψx(0, t) = h(t), so that the solution to

the heat IBVP (2.33) can be found. Notice that, while the first integral in (2.35) is known

for the given smooth initial function f (x). the second integral in (2.35) is unknown. So,

in what follows we need to recall the Volterra integral equation.
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2.1.3. Volterra integral equation

There exists two types of linear Volterra integral equations :

First-kind Volterra integral equation :

The linear Volterra integral equations of the first-kind have the form

u(x) =

∫ x

a
K(x, t)y(t)dt, (2.36)

where y(x) is the unknown function for a ≤ x ≤ b, K(x, t) is the kernel of the integral

equation, and u(x) is a given function. The functions y(x) and u(x) are usually assumed to

be continuous or square integrable on [a, b]. The kernel K(x, t) is usually assumed either

to be continuous on the square S = a ≤ x ≤ b, a ≤ t ≤ b or to satisfy the condition

∫ b

a

∫ b

a
K2(x, t)dxdt = B2 < ∞, (2.37)

where B is a constant.

Second-kind Volterra integral equation :

The second-kind Volterra integral equations have the form

u(x) = y(x) −
∫ x

a
K(x, t)y(t)dt, (2.38)

where y(x) is the unknown function, K(x, t) is the kernel of the integral equation, and

u(x) is a given function. The function classes to which y(x), u(x) and K(x, t) belong are

mentioned above.

Depending on the kernel, one can have special forms of the Volterra integral equa-

tions as follows:
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The integral equation

f (t) =
∫ t

0

1√
t − τu(τ)dτ, (2.39)

where f (t) is given and u(t) is unknown as a special form of first-kind Volterra integral

equation with weakly singular kernel K(t, τ) = 1/
√

t − τ, where K(t, τ) → ∞ as τ →
t. This equation can be solved by applying the Laplace transform and then by inverse

Laplace transform so that we have

u(t) =
1

π

d
dt

∫ t

0

f (τ)√
t − τdτ. (2.40)

Clearly, the formula (2.40) will be used for solving special form of first-kind Volterra

integral equation (2.39). It’s known that for some special functions f (t), the solution

(2.40) can be obtained explicitly as follows:

Case (i) : For f (t) = tn+1/2, n is a positive integer, we have solutions for u(t) as

follows

n = 1, f (t) = 4
3
t3/2 ⇒ u(t) = t,

n = 2, f (t) = 16
15

t5/2 ⇒ u(t) = t2,

n = 3, f (t) = 32
35

t7/2 ⇒ u(t) = t3,
...

(2.41)

In general, n = 1, 2, 3, . . . ,

f (t) =
2n+1Γ(n + 1)

1.3.5 · · · (2n + 1)
tn+1/2 ⇒ u(t) = tn. (2.42)

Case (ii) : For f (t) = tn, n is a positive integer, we have solutions for u(t) as
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follows

n = 1, f (t) = 1
2
πt ⇒ u(t) = t1/2,

n = 2, f (t) = 3
8
πt2 ⇒ u(t) = t3/2,

n = 3, f (t) = 5
16
πt3 ⇒ u(t) = t5/2,

...

(2.43)

and in general, we have

f (t) =
Γ(n + 1/2)

Γ(n + 1)

√
πtn ⇒ u(t) = tn−1/2, n = 1, 2, 3, .... (2.44)

On the other side, a special form of Volterra integral equations of the second-kind

with kernel K(t, t′) = 1/
√

t − t′ are given by

Q(t) = F(t) +
∫ t

0

β√
t − t′

Q(t′)dt′, t ∈ [0,T ], (2.45)

where F(t) is known and Q(t) is unknown with constant β. To solve this type of integral

equation, one can use again Laplace transform or method of successive approximations.

Special case : If β(t) = −k, k ∈ R, then the Robin IBVP has solution, (Carslaw

& Jaeger, 1959),

Ψ(x, t) =
∫ ∞

0

G(x, ξ, t) f (ξ)dξ − ν
∫ t

0

G(x, 0, t − t′)h(t′)dt′, (2.46)

where

G(x, ξ, t) =
1√
4πνt

(
exp

[
− (x − ξ)2

2t

]
+ exp

[
− (x + ξ)2

2t

]
− 2k
∫ ∞

0

exp

[
− (x + ξ + y)2

4νt
− ky
]

dy
)
.
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The improper integral may be calculated by the formula, (Carslaw & Jaeger, 1959),

∫ ∞
0

exp

[
− (x + ξ + y)2

4νt
− ky
]

dy =
√
πνt exp

[
νk2t + k(x + ξ)

]
Erfc

[
x + ξ√

4νt
+ k
√
νt
]
.

In particular, (Carslaw & Jaeger, 1959), when initial condition is taken as f (x) =

c0, c0 ∈ R and β(t) = h, h ∈ R, the exact solution to the Robin IBVP (2.33) is given as,

Ψ(x, t) = c0

(
Erf

[
x√
2t

]
+ e−hxeh2t/2Erfc

[
x − ht√

2t

])
. (2.47)

2.2. Linear transport phenomena

The linear transport equation, or advection equation, with constant speed c ∈ R is

ut + cux = 0, where u is a function of two variables (x, t), x ∈ R, t > 0 and subscripts

denote partial derivatives.

This equation is seen in fields of chemical processes, physics, biology and engi-

neering. It describes, for instance, the propagation of a wave without changing of shape

with speed c or models the concentration of substance flowing in a fluid at a constant rate

c, or is used as a transport of a scalar field such as material properties or temperature.

For any initial function f (x) ∈ C1(R), the corresponding IVP

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + cux = 0, x ∈ R, t > 0,

u(x, 0) = f (x), x ∈ R,
(2.48)

has implicit solution u(x, t) = f (x − ct), which is called traveling wave solution. Here the

sign of c characterizes the direction of propagation of wave, i.e. if c > 0, then the wave

propagates to the positive direction of x-axis, say moving to the right through x-direction,

if c < 0, then it moves to the negative x-direction, i.e. the propagation to the left in space.
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2.2.1. Convection-diffusion-reaction equation

The modification of linear diffusion equation with additional terms corresponding

to convection or reaction or both, with variable coefficients or constant coefficients, is

known as linear parabolic type diffusion equations of the form

Φt = d(x, t)Φxx + c(x, t)Φx + r(x, t)Φ + R(x, t), (2.49)

with coefficients of diffusion d(x, t) > 0, convection c(x, t) and reaction r(x, t) and with

source term R(x, t).

The convection-diffusion-reaction equation is widely employed to model phenom-

ena in many different fields in mathematics and sciences such as diffusion processes, sta-

tistical mechanics, probability theory, financial mathematics, population genetics, quan-

tum chaos, modeling of biological systems, diffusion of neutrons, reaction of chemical,

stochastic equation for Brownian motion and many more.

For instance, it involves the change of concentration of one or more substances

distributed in space under the influence of three processes:

1) diffusion, which refers to spreading of the contaminant from highly concentrated areas

to less consantrated areas,

2) convection which is defined as the movement of the concentration due to the fluid

transport medium,

3) reaction which is the process of interaction through which the concentration in the

phenomena are generated or consumed.

In view of its broad applicability, it is thus desirable to obtain analytic solutions of

this equation for as many systems as possible. However, just as any equation in sciences,

solving the diffusion-convection-reaction equation exactly is in general intractable, except

in a few simplified cases for instant by taking constant coefficients.

Constant coefficients case : One can see the transformation method for the con-

tant coefficients of the equation (2.49) as follows :
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When d(x, t) = ν > 0, c(x, t) = c, r(x, t) = r for c, r ∈ R and R(x, t) = 0 we have

Φt = νΦxx + cΦx + rΦ. (2.50)

The substitution Φ(x, t) = eβt+μxΨ(x, t), where β = r − c2/(4ν) and μ = −c/(2ν),

transforms the equation (2.50) to the heat equation Ψt = νΨxx. Or the transformation

Φ(x, t) = ectΨ(y, t), y = x + ct leads to the heat equation Ψt = νΨyy.

The exact solutions to the IVP and IBVP’s with Dirichlet, Neumann and Robin

type BC’s for the equation (2.50) are given in Appendix B.

Convection-diffusion equation

When r(x, t) = R(x, t) = 0, we have convection-diffusion equation, where the

solutionΦ(x, t) describes the heat transfer in a moving medium and the velocity of motion

is an arbitrary function of time and space.

The simplified linear model of nonlinear Navier-Stokes equation for fluid flow,

drift-diffusion equations of semi-conductor device modeling and Black-Sholes equation

from financial modeling have this form.

The convection-diffusion equation comprises also some other well-known mod-

els such as Kolmogorov equation and Fokker-Planck equation. The well-known one-

dimensional Fokker Planck (FP) equation has the form

Φt = − (A(x, t)Φ)x +
1

2
(B(x, t)Φ)xx , (2.51)

where Φ(x, t) mostly represents the probability density; A and B are differentiable func-

tions. This is the basic equation in the theory of continuous Markovian processes. The

Ornstein-Uhlenbeck process, Rayleigh-type process and Klein-Kramers or Kramers equa-

tion describing the Brownian motion in a potential are of special interests of FP equation:

(a) Ornstein-Uhlenbeck process

Φt = (kxΦ)x +
1

2
DΦxx, k ∈ R, D > 0.
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(b) Rayleigh-type process

Φt =

((
γx − ν

x

)
Φ

)
x
+

1

2
νΦxx, ν > 0, γ ∈ R.

The exact solutions to the IVP and IBVP’s for convection-diffusion equation are

given in Appendix B.

2.3. Nonlinear transport phenomena

The nonlinear transport equation is ut + c(u)ux = 0, where x ∈ R, t > 0, and

c(u)ux represents the nonlinear convection term with non-constant velocity c(u). For the

arbitrary initial function f (x), the corresponding IVP

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + c(u)ux = 0, x ∈ R, t > 0,

u(x, 0) = f (x), x ∈ R.
(2.52)

has implicit solution

u(x, t) = f (x − c(u)t), (2.53)

which can be found by method of characteristics. Here the dependence of c on u produces

a gradual nonlinear distortion of the wave profile as it propagates in the medium, i.e shape

of the wave changes. In the case c(u) > 0, higher values of u will propagate faster than

lower values, see Fig.2.2b when c(u) = u. This leads to a wave steepening, since upstream

values will advances faster than downstream values and there occurs discontinuities which

is called a shock since their process of development is identical to that of shock waves in

gas dynamics.
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2.3.1. Inviscid Burgers equation

When we take the velocity c(u) = u, we get the well-known inviscid Burgers

equation which is a quasilinear hyperbolic partial differential equation written as

ut + uux = 0, x ∈ R, t > 0. (2.54)

The corresponding IVP for this equation is

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + uux = 0, x ∈ R, t > 0,

u(x, 0) = f (x), x ∈ R.
(2.55)

The solution to the IVP (2.55) can be found by using solution of linear transport problem

(2.48) for the case c(u) = u. Here the speed of translation of the wave depends on u,

so different parts of the wave will move with different speeds, causing it to distort as it

propagates.

From method of characteristics, u is constant along the characteristics curves. So,

u(x, t) = f (x − ut) = f (ξ), (2.56)

where ξ is constant and x− ut = ξ. Therefore x = f (ξ)t + ξ are characteristics lines which

has slope f (ξ) for the initial data f . Let us write solution as

F(x, t, u) = u − f (x − ut). (2.57)

We recall Implicit Function Theorem stated as : For continuously differentiable

function F : R3 → R defining a surface F(x, t, u) = 0, if

∂F
∂u

(x0, t0, u0) � 0, (2.58)
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where (x0, t0, u0) is a point on F, then there exists a unique differentiable function u =

u(x, t) in the neighbourhood (x0, t0) satisfying F(x, t, u(x, t)) = 0, and ux = −Fu/Fx, we

can write u(x, t) = f (x − u(x, t)t). So we have

ux =
f ′(ξ)

1 + f ′(ξ)t
, (2.59)

where ξ = x − ut. If 1 + f ′(ξ)t → 0, then ux(x, t) approaches infinity and the solution

u(x, t) develops discontinuity at 1 + f ′(ξ)t = 0. Since t > 0, the equality 1 + f ′(ξ)t = 0

holds when f ′(ξ) < 0 and therefore we can say that the solution u(x, t) has discontinuity

at t = −1/ f ′(ξ).

Briefly, the time at which the solution first develops a discontinuity is called a

critical or breaking time and is given by

tb = min{− 1

f ′(ξ)
| f ′(ξ) < 0}. (2.60)

In what follows, one can see the behavior of solution to the IVP 2.55 correspond-

ing to different initial datas.

Example 2.1 (Rarefaction wave :) Consider the following IVP

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + uux = 0, x ∈ R, t > 0,

u(x, 0) = arctan (3x) + π/2, x ∈ R,
(2.61)

where the initial data is taken as f (x) = arctan (3x) + π/2. Therefore solution becomes

u(x, t) = arctan (3(x − ut)) +
π

2
, (2.62)

and since f ′(ξ) = 3/(1 + 9ξ2) > 0, there is no breaking time, i.e the shock behavior

doesn’t occur. The characteristic velocities on the left are smaller than those on the right

and the characteristics will diverge, see Fig.2.1a. This proper solution is a rarefaction

wave, which is a nonlinear wave that smoothly connects the left and the right state. We
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illustrate the behavior of rarefaction wave (2.62) at different times in Fig.2.1b.

(a) (b)

Figure 2.1 (a) The characteristics lines for ξ = −0.5, ξ = 3, ξ = 0.1. (b) The behavior

of solution (2.62) at t = 0, t = 1, t = 4.

Example 2.2 (Shock-traveling wave): The IVP

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + uux = 0, x ∈ R, t > 0,

u(x, 0) = π/6 − arctan (x)/3, x ∈ R.
(2.63)

has solution

u(x, t) =
π

6
− arctan (x − ut)

3
. (2.64)

When f ′(ξ) = −1/3(1 + ξ2) < 0, there occurs shock behavior after breaking time at

tb = min{3(1+ ξ2)} = 3, and behavior of solution at times t = 0, t = 3 and t = 12 is shown

in Fig.2.2b.
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(a) (b)

Figure 2.2 (a) The characteristics lines for ξ = −0.5, ξ = 3, ξ = 0.1. (b) The behavior

of solution (2.64) at times t = 0, t = 3 and t = 12.

Example 2.3 The IVP with Gaussian initial data

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + uux = 0, x ∈ R, t > 0,

u(x, 0) = e−x2

, x ∈ R.
(2.65)

has solution

u(x, t) = e−(x−ut)2

. (2.66)

Since f ′(ξ) = −2ξe−ξ
2

for ξ > 0, there exists breaking time at tb = min{eξ2/(2ξ)}, which

occurs at ξ = 1/
√

2. The characteristics lines and the behavior of solution at times t =

0, t = 1 and t = 4 is shown in Fig.2.3a and Fig.2.3b respectively.
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(a) (b)

Figure 2.3 (a) The characteristics lines for ξ = −0.5, ξ = 3, ξ = 0.1. (b) The

behavior of solution (2.66) at times t = 0, t = 1 and t = 4.

2.3.2. Viscous Burgers equation

The viscous Burgers equation which we called the standard Burgers equation, is a

well-known nonlinear partial differential equation

ut + uux = νuxx, (2.67)

where u(x, t) is a field, t > 0 is the time, x is the space variable, ν > 0 is viscosity

coefficient.

The equation describes time evolution of balance between nonlinear convection

and diffusion (or dissipation). The convection term is responsible for the steepening and

shock-formation, while the diffusive term has the smoothing effect on the shock discon-

tinues. No matter how small, the diffusion term always prevents the formation of shocks.

Hence the viscous BE with smooth initial data always leads to smooth solutions for all

t > 0. This is in contrast with the inviscid BE (ν = 0), where a smooth initial data can

lead to the jump discontinuity and shocks.

Usually the viscous BE describes the transport of quantity u with velocity u. For
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example, in nonlinear convection-diffusion processes u(x, t) may describe solute concen-

tration. In fluid dynamics one can speak about momentum transport and u(x, t) can repre-

sent the velocity field or local velocity of fluid particles. We mostly prefer the language of

wave dynamics, and speak about nonlinear diffusive waves, where u(x, t) describes both

the wave profile and its velocity.

Here, we present some properties and well-known exact solutions for the standard

Burgers equation such as single / multi -shock traveling waves, triangular-shaped wave,

N-shaped wave and rational type solutions.

2.3.2.1. Symmetries of Burgers equation

(a) (Translation) If u(x, t) is a solution of (2.67), then so is u(x − x0, t − t0), where

x→ x − x0 and t → t − t0 are translations in space and time respectively.

(b) (Scaling) If u(x, t) is a solution, then αu(αx, α2t) is solution, where αx, α2t

and αu are scalied variables for arbitrary number α.

(c) (Galilean invariance) If u(x, t) is a solution, then so is α + u(x − αt, t).

2.3.2.2. An initial value problem on whole real line

The initial value problem for standard Burgers equation on whole real line is de-

fined by (Bateman, 1915)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + uux = νuxx, −∞ < x < ∞, 0 < t < T,

u(x, 0) = u0(x), −∞ < x < ∞.
(2.68)

By Cole-Hopf transformation (Cole, 1951), (Hopf, 1950)

u(x, t) = −2ν
Ψx(x, t)
Ψ(x, t)

= −2ν(lnΨ)x, (2.69)

the Burgers equation in (2.68) is reduced to heat equation Ψt = νΨxx and the IC in (2.68)
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directly transforms to IC for heat equation, Ψ(x, 0) = exp
[
−ν ∫ x

u(x′, 0)dx′
]
.

By using the integral representation of solution to IVP for heat equation (2.23),

the IVP (2.68) has solution in integral representation form

u(x, t) = −2ν

∫ ∞
−∞ Kx(x − ξ, t)e− 1

2ν

∫ ξ
u0(x′)dx′dξ∫ ∞

−∞ K(x − ξ, t)e− 1
2ν

∫ ξ
u0(x′)dx′dξ

,

where K(x, t) is the heat kernel and Kx(x, t) is the partial derivative of heat kernel wrt x.

Therefore, many solutions can be derived from solutions of the associated HE.

2.3.2.3. Some exact solutions

The standard Burgers equation has many physically interesting exact solutions in

explicit form, such as traveling shock and multi-shock waves, diffusive waves (triangular-

shaped and N-shaped waves) and rational type solutions, see (Whitham, 1999) and (A.

Büyükaşık & Pashaev, 2013). Here, we recall these exact solutions used in Chapter 5.

1) Shock traveling wave solution : The standard Burgers equation corresponding

to α-parametrized initial condition uα(x, 0) = α2 − A tanh [A(x − α1)] , for arbitrary con-

stants A > 0 , α1, α2, has shock traveling wave solution

uα(x, t) = α2 − A tanh [A(x − (α1 + α2t))] . (2.70)

The solution (2.70) is a wave of constant amplitude, moving with constant speed and

without changing shape. Parameter A controls the amplitude and steepness of the shock

profile, while its "center" propagates according to x = α1 + α2t, with initial position α1

and velocity α2. Note that position of the center is described by a function of the form

xα(t) = α1r1(t) + α2r2(t), where r1(t) = 1 and r2(t) = t are two independent solutions

of r̈(t) = 0, satisfying the initial conditions r1(0) = 1, ṙ1(0) = 0; r2(0) = 0, ṙ2(0) =

1, (Atılgan Büyükaşık & Bozacı, 2021). Moreover, (2.70) is a wavefront type solution

satisfying boundary conditions uα(−∞, t) = α2 + A ≡ c2, uα(+∞, t) = α2 − A ≡ c1, t > 0.

Then, α2 = (c1 + c2)/2 and A = (c2 − c1)/2, show how the velocity α2 and the amplitude

36



A are related by the maximum and minimum values of the field uα(x, t). The behavior of

the solution can be seen in Fig. 2.4a.

2) Multi-shock traveling wave solution : Using solution (2.16) for the standard

heat equation, then standard BE (2.67) has solution of the form

uα(k)(x, t) = 2
α(1)

2
exp
[
p1(x, t)

]
+ α(2)

2
exp
[
p2(x, t)

]
+ ... + α(k)

2
exp
[
pk(x, t)

]
exp
[
p1(x, t)

]
+ exp
[
p2(x, t)

]
+ ... + exp

[
pk(x, t)

] , (2.71)

which depends on 2k− free parameters, and we use index notation α(k) = (α(1), α(2), ..., α(k)),

where α(i) = (α(i)
1
, α(i)

2
) ∈ R2 for each i = 1, 2, ..., k. For k = 2 and certain choice of con-

stants, one obtains one-shock wave. When k > 2 one expects formation of multi-shock

wave solutions. In that case, it is known that, for certain values of the free parameters in-

elastic interactions can occur in (2.71), such that when a number of shocks are produced,

shocks with higher speed can overtake the shocks with smaller speed, merge at certain

time and then continue to propagate as a single shock. Such inelastic interactions in col-

lisions or fusion processes of multiple-front waves are often addressed in literature and

one can see (Whitham, 1999), (Wang & et all, 2004), (Xu & et all, 2007), (Veksler &

Zarmi, 2005). In Fig.2.4b, we plot two-shock wave solution for certain parameters.

(a) (b)

Figure 2.4 (a) Solution (2.70) with A = 5, α1 = 1, α2 = 1. (b) Solution (2.71) with

α1
1 = −3, α1

2 = −1, α2
1 = 3, α2

2 = 1.2, α3
1
= −3 and α3

2
= 3.
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3) Triangular-shaped wave solution : The Burgers equation has triangular wave

solution, (Saichev, Gurbatov & Rudenko, 2011), (Whitham, 1999), (Sachdev, 1987),

which is a similarity solution as follows

u(x, t) =
1√
2πt

⎛⎜⎜⎜⎜⎜⎜⎜⎝ (eR − 1) exp
[
− x2

2t

]
1 + 1

2
(eR − 1) Erfc

[
x√
2t

]
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

corresponding to the IC limt→0 u(x, t) = (eR − 1)δ(x), where R is real constant, called

Reynolds number, and Erfc[a] = (2/
√
π)
∫ ∞

a
exp
(
−s2
)
ds is the complimentary error func-

tion.

Using scaling invariance of Burgers equation, we can generate a family of nonlin-

ear diffusive traveling waves for the standard BE

uα(x, t) = α2 +
1√
2πt

⎛⎜⎜⎜⎜⎜⎜⎜⎝ (eR − 1) exp
[
− (x−(α1+α2t))2

2t

]
1 + 1

2
(eR − 1) Erfc

[
x−(α1+α2t)√

2t

]
⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (α1, α2) ∈ R2. (2.72)

As time approaches zero, this solution weakly converges to shifted Dirac-delta function,

that is limt→0 uα(x, t) = α2+ (eR−1)δ(x−α1). Also, we note that solutions (2.72) are wave

packets localized in space with uα(±∞, t) = α2, t > 0, propagating with constant speed,

decreasing amplitude and spreading in time. The behavior of solution is seen in Fig.2.5a.

4) N-shaped wave solution : For the solution to the heat equation of the form

Ψ(x, t) = 1 +

√
c
t

exp

[
− x2

2t

]
, (2.73)

which has delta function behavior as t → 0, the corresponding N-shaped wave solution

for Burgers equation is obtained by using Cole-Hopf transform as given in the form,

u(x, t) =
( x

t

) ⎛⎜⎜⎜⎜⎜⎜⎝
√ c

t exp
[
− x2

2t

]
1 +
√ c

t exp
[
− x2

2t

]
⎞⎟⎟⎟⎟⎟⎟⎠ , (2.74)

where c > 0. Since Ψ(x, t) → δ(x) as t → 0, it is a little hard to interpret the solution
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(2.74) as an initial value problem on u(x, t).

Then, after translation and Galilean transform, the family of solutions becomes of

the form, (Atılgan Büyükaşık & Bozacı, 2021)

uα(x, t) = α2 +

(
x − (α1 + α2t)

t

) ⎛⎜⎜⎜⎜⎜⎜⎜⎝
√ c

t exp
[
− (x−(α1+α2t))2

2t

]
1 +
√ c

t exp
[
− (x−(α1+α2t))2

2t

]
⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (α1, α2) ∈ R2. (2.75)

These solutions are diffusive waves traveling with constant speed, and localized in space

with uα(±∞, t) = α2, and shown in Fig.2.5b.

(a) (b)

Figure 2.5 (a) Solution (2.72) with A = 5, α1 = 1, α2 = 1. (b) Solution (2.75) with

α1 = 1, α2 = 2, c = 50.

5) Rational type wave solution : The rational type solution is obtained by Kampe

de Feriet polynomial solution for the heat equation, (A. Büyükaşık & Pashaev, 2013),

un(x, t) = −n Hn−1(x, t)
Hn(x, t)

, n = 1, 2, 3, ...,

corresponding to pole type singularity in initial data u(x, 0) = −n/x.

The α−parameterized family of rational type solutions is, (Atılgan Büyükaşık &
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Bozacı, 2021)

αum(x, t) = α2 − m
Hm−1(x − (α1 + α2t), t)
Hm(x − (α1 + α2t), t)

. (2.76)

Using the relation (2.12), we have zeros of KFP as

Hm(x − (α1 + α2t), t) = 0⇐⇒ x = (α1 + α2t) − iξ(l)
m

√
2t, l = 1, 2, ...,m, (2.77)

showing that in general, singularities of (2.76) appear in the complex domain. Only for

odd m, say m = 2p + 1, p = 0, 1, 2, ..., Hermite polynomial h2p+1(ξ) has root at ξ = 0,

that’s ξ(0)

2p+1
= 0. Therefore, Burgers solution αu2p+1(x, t) has moving singularity whose

position is described by x = α1 + α2t.

For m = 3, we obtain solution explicitly

αu3(x, t) = α2 − 3
(x − (α1 + α2t))2 + t

(x − (α1 + α2t))3 + 3 (x − (α1 + α2t)) t
, (2.78)

which has moving singularity on the line x = 1 + t, initially located at x = 1.

Figure 2.6 Solution (2.78) with α1 = α2 = 1.
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Also notice that, using superposition of heat polynomials
∑N

m=0 amHm(x, t), where

am’s are real constants, one can write more general rational solutions of the standard BE

αuN(x, t) = α2 −
∑N

m=1 m am−1Hm−1 (x − (α1 + α2t), t)∑N
m=0 amHm (x − (α1 + α2t), t)

. (2.79)

2.4. Lie Group and Lie Algebra

Definition 2.1 (Group)

A group is a pair G = {S , ◦} where S is a set and ◦ is an operation mapping

pairs of elements in S to elements in S i.e. ◦ : S × S → S and satisfying the following

conditions:

1. Existence of an identity: ∃ e ∈ S such that e ◦ a = a ◦ e, ∀a ∈ S .

2. Existence of inverses : ∀a ∈ S , ∃ a−1 ∈ S such that a ◦ a−1 = a−1 ◦ a = e.

3. Associativity : ∀a, b, c ∈ S , a ◦ (b ◦ c) = (a ◦ b) ◦ c = a ◦ b ◦ c.

Definition 2.2 (Algebra)

An algebra is a vector space V over a field F on which a multiplication (×)

between vectors has been defined (yielding a vector in V) such that for all u, v,w ∈ V
and α ∈ F :

1. (αu) × v = α(u × v) = u × (αv).

2. (u + v) × w = (u × w) + (v × w) and w × (u + v) = (w × u) + (w × v).

Definition 2.3 (Lie group)

A Lie group is a finite dimensional smooth manifold G together with a group struc-

ture on G, such that the multiplication G × G → G and the attaching of an inverse

g→ g−1 : G → G are smooth maps.

Definition 2.4 (Lie algebra)

An algebra L is called a Lie algebra endowed with a binary operation, the Lie

bracket [ . ] : L ×L → L , that is anti-symmetry and bilinear respectively
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1. [X,Y] = −[Y, X],

2. [aX + bY,Z] = a[X,Z] + b[Y,Z], [Z, aX + bY] = a[Z, X] + b[Z,Y],

and satisfies Jacobi identity

3. [X, [Y,Z]] + [Y, [Z, X]] + [Z, [X,Y]] = 0,

for arbitrary scalars a, b and X,Y,Z ∈ L , (Wybourne, 1974).

su(1, 1) Lie algebra :

su(1, 1) Lie algebra has generators, (Wybourne, 1974)

K̂− = − i
2

∂2

∂x2
, K̂+ =

i
2

x2, K̂0 =
1

2

(
x
∂

∂x
+

1

2

)
,

satisfying the commutation relations

[K̂−, K̂+] = 2K̂0, [K̂+, K̂0] = −K̂+, [K̂−, K̂0] = K̂−,

which can be satisfied for an arbitrary function φ(x), as follows

[K̂−, K̂+]φ(x) =

[
− i

2

∂2

∂x2
,

i
2

x2

]
φ(x)

=
1

4

(
∂2

∂x2
(x2φ(x)) − x2 ∂

2

∂x2
φ(x)

)
=

(
1

2
+ x
∂

∂x

)
φ(x)

= 2K̂0φ(x). (2.80)

[K̂+, K̂0]φ(x) =

[
i
2

x2,
1

2

(
x
∂

∂x
+

1

2

)]
φ(x)

= −K̂+φ(x). (2.81)

By the same way, other commutation relation can be calculated. These commutation

relations are used in Chapter 3.
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Heisenberg-Weyl Lie algebra :

Heisenberg-Weyl Lie algebra has generators

Ê1 = ix, Ê2 =
∂

∂x
, Ê3 = iÎ,

satisfying the commutation relations.

[Ê1, Ê2] = −Ê3, [Ê1, Ê3] = 0, [Ê2, Ê3] = 0,

which can be found as follows

[Ê1, Ê2]φ(x) =

[
ix,
∂

∂x

]
φ(x) (2.82)

= i
(
x
∂

∂x
φ(x) − ∂

∂x
(xφ(x))

)
= −iφ(x)

= −Ê3φ(x).

Similarly the other commutation relations can be shown.

The generators K̂−, K̂+K̂0, and Ê1, Ê2, Ê3, have the following mutual commutation

relations :

[Ê1, K̂−] = −Ê2, [Ê1, K̂+] = 0, [Ê1, K̂0] = −1

2
Ê1,

[Ê2, K̂−] = 0, [Ê2, K̂+] = Ê1, [Ê2, K̂0] =
1

2
Ê2,

[Ê3, K̂−] = 0, [Ê3, K̂+] = 0, [Ê3, K̂0] = 0.

2.4.1. Wei-Norman Lie Algebraic Approach

Wei and Norman proposed an efficient procedure for finding evolution operator of

linear equations, (Wei & Norman, 1963). Supppose Û(t) and Ĥ(t) are explicitly time-
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dependent operators and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dt Û(t) = Ĥ(t)Û(t),

Û(t0) = Î,
(2.83)

where H and U are given and unknown linear operators respectively and Î is identity

operator.

It is known that if the linear operator Ĥ(t) can be expressed in the form

Ĥ(t) =
n∑

i=1

ai(t)Hi ,

where Hi’s, i = 1, ..., n are time-independent operators of finite dimension n, then there

exists a neighborhood of t = t0, in which the solution of the equation (2.83) may be

expressed in the form

Û(t) =
n∏

i=1

Exp [gi(t)Hi],

where Hi, i = 1, ..., n is a basis for L , and the gi(t) are scalar functions of time. Moreover,

the gi(t), i = 1, ..., n depend only on the Lie algebra L and the ai(t), satisfing a nonlinear

system of first-order differential equations.

Exponential operators

The actions of exponential operators on a given function φ(x) can be seen as in the

followings:

Shifting operator :

exp

[
λ
∂

∂x

]
φ(x) =

∞∑
n=0

λn

n!

∂n

∂xnφ(x) =

∞∑
n=0

λn

n!
φ(n)(x) = φ(x + λ), (2.84)

for arbitrary constant parameter λ.
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Dilatation operator :

exp

[
λx
∂

∂x

]
φ(x) =

∞∑
n=0

λnxn

n!

∂n

∂xnφ(x) =

∞∑
n=0

λn

n!
xnφ(n)(x)

= φ(eλx), (2.85)

for arbitrary constant parameter λ.

Proposition 2.1 For a given function φ0(x) ∈ C∞, we have

exp

[
z
2

∂2

∂x2

]
φ0(x) = φ(x, z),

where φ(x, z) satisfies the IVP for the standard heat equation

1

2

∂2

∂x2
φ(x, z) =

∂

∂z
φ(x, z), (2.86a)

φ(x, z)|z=0 = φ(x, 0) ≡ φ0(x). (2.86b)

Proof Suppose φ(x, z) satisfies (2.86a). Then we have

exp

[
λ

2

∂2

∂x2

]
φ(x, z) = exp

[
λ
∂

∂z

]
φ(x, z).

It follows that

exp

[
λ

2

∂2

∂x2

]
φ0(x) = exp

[
λ

2

∂2

∂x2

]
φ(x, z)|z=0 = exp

[
λ
∂

∂z

]
φ(x, z)|z=0

= φ(x, z + λ)|z=0 = φ(x, λ).

�
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CHAPTER 3

GENERALIZED DIFFUSION TYPE EQUATIONS WITH

VARIABLE COEFFICIENTS

In this chapter, we study IVP and IBVP’s for one dimensional generalized diffu-

sion type equation of the form

Φt =
1

2μ(t)
Φxx−[a(t)−b(t)x]Φx+μ(t)

[ω2(t)
2

x2− f (t)x+ f0(t)
]
Φ, x ∈ R, t > t0 > 0, (3.1)

with diffusion coefficient depending on time, and convection and reaction coefficients that

depend on time and space. First, we consider IVP defined on whole real line −∞ < x < ∞,
and obtain analytical solution in terms of solutions to the characteristic ordinary differen-

tial equation and standard heat model. Second, we study IBVP’s defined on the half-line

0 < x < ∞, t > 0, with Dirichlet, Neumann and Robin boundary conditions. Then using

our general results, we introduce exactly solvable models and investigate influence of the

variable parameters.

3.1. Initial Value Problem on the Whole Real Line

In this section, we consider an IVP defined on −∞ < x < ∞, t > t0 > 0 for the

generalized diffusion type equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φt =

1
2μ(t)Φxx − [a(t) − b(t)x]Φx + μ(t)

[ω2(t)
2

x2 − f (t)x + f0(t)
]
Φ, x ∈ R, t > t0 > 0,

Φ(x, t0) = Φ0(x), x ∈ R,
(3.2)

where coefficients μ(t) > 0, ω2(t) > 0, a(t), b(t), f (t) and f0(t) are given real-valued

smooth functions depending on time and initial data Φ0(x) at time t = t0 is given smooth

and bounded function of x.
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Proposition 3.1 If r1(t), r2(t) are two independent homogeneous solutions and rp(t) is a

particular solution of the following characteristic ODE

r̈ +
μ̇(t)
μ(t)

ṙ +
[
ω2(t) +

(
ḃ(t) +

μ̇(t)
μ(t)

b(t) − b2(t)
)]

r = ȧ(t) − a(t)
[
b(t) − μ̇(t)

μ(t)

]
+ f (t), (3.3)

satisfying initial conditions r1(t0) = r0 � 0, ṙ1(t0) = −b(t0)r0, r2(t0) = 0, ṙ2(t0) = r0/μ(t0)

and rp(t0) = 0, ṙp(t0) = a(t0) respectively, then the IVP (3.2) has solution of the form

Φ(x, t) =

√
r1(t0)

r1(t)
× exp
[
−pp(t)rp(t)

]
× exp

[∫ t

t0

(
Lp(t′) − b(t′)

2

)
dt′
]

× exp

[∫ t

t0

(
a(t′)pp(t′) − μ(t′)

(
f (t′)rp(t′) − f0(t′)

))
dt′
]

× exp

[
−μ(t)

2

( ṙ1(t)
r1(t)

+ b(t)
) (

x − rp(t)
)2] × exp

[
−pp(t)

(
x − rp(t)

)]
× Ψ(ηp(x, t), τ(t)), (3.4)

where Lp(t) is a Lagrangian type function given by

Lp(t) =
μ(t)
2

( (
ṙp(t) + b(t)rp(t) − a(t)

)2 − ω2(t)r2
p(t) + 2 f (t)rp(t)

)
, (3.5)

and generalized momentum function

pp(t) = μ(t)
(
ṙp(t) + b(t)rp(t) − a(t)

)
, (3.6)

one has also coordinate transformation (x, t)→ (η, τ)

ηp(x, t) =
r1(t0)

r1(t)
(x − rp(t)), τ(t) =

r2(t)
r1(t)
, t > t0 > 0, (3.7)
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and Ψ(η, τ) is solution of the IVP on whole real line for the standard heat equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ψτ =

1
2
Ψηη, −∞ < η < ∞, τ > 0,

Ψ(η, 0) = Φ(η, t0), −∞ < η < ∞.
(3.8)

Proof To apply Wei-Norman algebraic approach, (Wei & Norman, 1963), first we

write IVP (3.2) as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂
∂tΦ(x, t) = T̂ (t)Φ(x, t), −∞ < x < ∞, t > t0,

Φ(x, t0) = Φ0(x), −∞ < x < ∞,
(3.9)

where we have

T̂ (t) =
1

2μ(t)
∂2

∂x2
− a(t)

∂

∂x
+ b(t)
(
x
∂

∂x
+

1

2
Î
)
+ μ(t)
(
ω2(t)

2
x2 − f (t)x + d(t)

)
Î,

which is a linear second-order differential operator with variable coefficients. Here we

used the brief notation d(t) ≡ f0(t) − b(t)/(2μ(t)). The operator T̂ can be expressed as a

finite linear combination of a closed Lie algebra generators, that is

T̂ (t) = i
1

μ(t)
K̂− + 2b(t)K̂0 − a(t)Ê2 − iμ(t)

(
ω2(t)K̂+ − f (t)Ê1 + d(t)Ê3

)
, (3.10)

where the operators

Ê1 = ix, Ê2 =
∂

∂x
, Ê3 = iÎ,

are generators of the Heisenberg-Weyl Lie algebra and operators

K̂− = − i
2

∂2

∂x2
, K̂+ =

i
2

x2, K̂0 =
1

2

(
x
∂

∂x
+

1

2

)
,
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are generators of su(1, 1) Lie algebra. Here, we notice that, PDE in (3.2) is special in the

sense that it is the most general equation with variable coefficients that can be written as

a linear combination of the generators of su(1, 1) and Heisenberg-Weyl Lie algebras.

Then, the evolution operator Ŵ(t, t0) for IVP (3.2) can be found by solving the

operator problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dt Ŵ(t, t0) = T̂ (t)Ŵ(t, t0), t ≥ t0,

Ŵ(t0, t0) = Î.
(3.11)

We assume that the evolution operator can be written as product of exponential operators

Ŵ(t, t0) = eiγ(t)Ê3 × eip(t)Ê1 × e−β(t)Ê2 × eiρ(t)K̂+ × e2g(t)K̂0 × eiτ(t)K̂− , (3.12)

where ρ(t), g(t), τ(t), p(t), β(t), γ(t) are unknown real-valued functions of time t to be de-

termined. Performing time-differentiation of the assumed evolution operator like for the

product of ordinary functions, but preserving the ordering of the operators such as

d
dt

(
e f1(t)Â × e f2(t)B̂

)
=

(
d
dt

e f1(t)Â

)
× e f2(t)B̂ + e f1(t)Â ×

(
d
dt

e f2(t)B̂

)
= ḟ1(t)Âe f1(t)Âe f2(t)B̂ + ḟ2(t)e f1(t)Â B̂e f2(t)B̂, (3.13)

we get

d
dt

Ŵ = iγ̇(t) × Ê3 × eiγ(t)Ê3 × eip(t)Ê1 × e−β(t)Ê2 × eiρ(t)K̂+ × e2g(t)K̂0 × eiτ(t)K̂−

+ iṗ(t) × eiγ(t)Ê3 × Ê1 × eip(t)Ê1 × e−β(t)Ê2 × eiρ(t)K̂+ × e2g(t)K̂0 × eiτ(t)K̂−

− β̇(t) × eiγ(t)Ê3 × eip(t)Ê1 × Ê2 × e−β(t)Ê2 × eiρ(t)K̂+ × e2g(t)K̂0 × eiτ(t)K̂− (3.14)

+ iρ̇(t) × eiγ(t)Ê3 × eip(t)Ê1 × e−β(t)Ê2 × K̂+ × eiρ(t)K̂+ × e2g(t)K̂0 × eiτ(t)K̂−

+ 2ġ(t) × eiγ(t)Ê3 × eip(t)Ê1 × e−β(t)Ê2 × eiρ(t)K̂+ × K̂0 × e2g(t)K̂0 × eiτ(t)K̂−

+ iτ̇(t) × eiγ(t)Ê3 × eip(t)Ê1 × e−β(t)Ê2 × eiρ(t)K̂+ × e2g(t)K̂0 × K̂− × eiτ(t)K̂− .
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Then, using Baker-Campbell-Hausdorff relation given by

eξÂ B̂e−ξÂ = B̂ + ξ[Â, B̂] +
ξ2

2!
[Â, [Â, B̂]] +

ξ3

3!
[Â, [Â, [Â, B̂]]] + ... (3.15)

where Â, B̂ are two non-commuting operators and ξ is a parameter, we obtain equivalent

form of (3.14) as follows

d
dt

Ŵ =
( [

iτ̇(t)e−2g(t)
]

K̂− +
[
2ġ(t) + 2τ̇(t)ρ(t)e−2g(t)

]
K̂0

+
[
−β̇(t) − ġ(t)β(t) + τ̇(t)p(t)e−2g(t) − τ̇(t)ρ(t)β(t)e−2g(t)

]
Ê2 (3.16)

+
[
iρ̇(t) − 2iρ(t)ġ(t) − iτ̇(t)ρ2(t)e−2g(t)

]
K̂+

+
[
iṗ(t) − iρ̇(t)β(t) − iġ(t)p(t) + 2iρ(t)ġ(t)β(t) − iτ̇(t)ρ(t)p(t)e−2g(t) + iτ̇(t)ρ2(t)β(t)e−2g(t)

]
Ê1

+
[
iγ̇(t) + iβ̇(t)p(t) + iρ̇(t)

β2(t)
2
+ iġ(t)β(t)p(t) − iρ(t)ġ(t)β2(t) − i

2
τ̇(t)p2(t)e−2g(t)

+ iρ(t)β(t)p(t)τ̇(t)e−2g(t) − i
2
ρ2(t)β2(t)τ̇(t)e−2g(t)]Ê3

)
Ŵ.

When we compare the right sides of equations (3.11) and (3.16), we obtain that Ŵ(t, t0) is

the required evolution operator, if the unknown functions satisfy the nonlinear system of

six first-order differential equations

ρ̇(t) +
ρ2(t)
μ(t)
− 2b(t)ρ(t) + μ(t)ω2(t) = 0, ρ(t0) = 0, (3.17)

ġ(t) +
ρ(t)
μ(t)
− b(t) = 0, g(t0) = 0,

τ̇(t) − e2g(t)

μ(t)
= 0, τ(t0) = 0,

β̇(t) + b(t)β(t) = a(t) +
p(t)
μ(t)
, β(t0) = 0, (3.18)

ṗ(t) − b(t)p(t) = μ(t) f (t) − μ(t)ω2(t)β(t), p(t0) = 0,

γ̇(t) = − p2(t)
2μ(t)

− a(t)p(t) +
μ(t)ω2(t)

2
β2(t) − μ(t)d(t), γ(t0) = 0.

We note that, (3.17) and (3.18) are two independent systems, one for ρ, g, τ and second for

p, β, γ. System (3.17) can be solved by realizing that the first line is an initial value prob-

lem for a nonlinear Riccati equation, and using substitution ρ(t) = μ(t) [ṙ(t)/r(t) + b(t)] ,
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it transforms to the linear second-order homogeneous differential equation

r̈ +
μ̇(t)
μ(t)

ṙ +
[
ω2(t) +

(
ḃ(t) +

μ̇(t)
μ(t)

b(t) − b2(t)
)]

r = 0, (3.19)

with initial conditions r(t0) = r0 � 0, ṙ(t0) = −b(t0)r0, whose solution we denote by r1(t).

Assuming that all coefficients in Eq.(3.19) are continuous on time interval containing

t0 > 0, by r2(t) we denote a second solution of Eq.(3.19) satisfying the initial conditions

r2(t0) = 0, ṙ2(t0) = r0/μ(t0), and using Abel’s formula we can write

r2(t) = r2
0r1(t)
∫ t

t0

1

μ(t′)r2
1
(t′)

dt.

Also, we assume r1(t) > 0 for r0 > 0 and r2(t) > 0 throughout this thesis. Then,

we have g(t) = ln(r1(t0)/r1(t)) for r1(t) > 0. Therefore, we get the solution to the third

equation in system (3.17) as

τ(t) = r2
0

∫ t

t0

dt′

μ(t′)r2
1
(t′)
.

As a result, we obtain the solution of system (3.17) in terms of two independent solutions

r1(t) and r2(t) of the homogeneous equation (3.19) as follows

ρ(t) = μ(t)
(
ṙ1(t)
r1(t)

+ b(t)
)
, (3.20)

g(t) = ln

(
r1(t0)

r1(t)

)
,

τ(t) =
r2(t)
r1(t)
.

On the other hand, taking derivative of the first equation in system (3.18) we obtain

β̈(t) +
μ̇(t)
μ(t)
β̇(t) +
[
ω2(t) +

(
ḃ(t) +

μ̇(t)
μ(t)

b(t) − b2(t)
)]
β(t) = ȧ(t) − a(t)

[
b(t) − μ̇(t)

μ(t)

]
+ f (t).

(3.21)
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Thus, β(t) is a particular solution of the inhomogeneous Eq.(3.19), satisfying ini-

tial conditions

β(t0) = 0, β̇(t0) = a(t0),

and we denote this solution by β(t) ≡ rp(t). It follows that the solution of the system

(3.18) is

β(t) = rp(t), (3.22)

p(t) = μ(t)
(
ṙp(t) + b(t)rp(t) − a(t)

)
≡ pp(t),

γ(t) = −
∫ t

t0

(
(pp(t′))2

2μ(t′)
+ a(t′)pp(t′) − μ(t

′)ω2(t′)
2

rp(t′) + μ(t′) f0(t′) − b(t′)
2

)
dt′.

Now, after finding all unknown functions in (3.12), the exact form of the evolution oper-

ator in terms of r1(t), r2(t), rp(t) and pp(t) is obtained as follows

Ŵ(t, t0) = exp
[
−γ(t)Î
]
× exp
[
−pp(t)x

]
× exp

[
−rp(t)

∂

∂x

]
× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
)

x2

]
(3.23)

× exp

[
ln

(
r0

r1(t)

) (
x
∂

∂x
+

1

2

)] × exp

[
r2(t)

2r1(t)
∂2

∂x2

]
.

Using the expressions

exp
( z
2

∂2

∂x2

)
Ψ0(x) = Ψ(x, z),

where Ψ(x, z) satisfies the IVP

1

2

∂2

∂x2
Ψ(x, z) =

∂

∂z
Ψ(x, z), Ψ(x, 0) = Ψ0(x) ≡ Φ(x, t0),

and expressions for the shift and dilatation operators respectively,

exp
(
λ
∂

∂x

)
Ψ(x, z) = Ψ(x + λ, z), exp

(
λx
∂

∂x

)
Ψ(x, z) = Ψ(eλx, z),
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the evolution operator (3.23) is applied to the initial function Φ(x, t0), that’s Φ(x, t) =

Ŵ(t, t0)Φ(x, t0) and we obtain solution (3.4) of the generalized diffusion IVP (3.2). �

3.1.1. On the characteristic equation

Notice that for the Lagrangian type function of the form (3.5), it is not difficult to

show that using the Euler-Lagrange equation

d
dt

(∂L
∂ṙ

)
− ∂L
∂r
= 0, (3.24)

one recovers the Newtonian equation of motion given by (3.3). Also, the generalized

(conjugate) momentum is defined as

p(t) ≡ ∂L
∂ṙ
= μ(t)
(
ṙ(t) + b(t)r(t) − a(t)

)
. (3.25)

In the absence of convection (a(t) = 0, b(t) = 0) and for constant μ(t) = m, one gets

the standard momentum p(t) = m ṙ(t). In particular, if ṙ(t) = a(t) − b(t)r(t), then the

generalized momentum is zero.

3.1.2. Integral representation and fundamental solution

Using the integral representation (2.23) for the solution to the IVP for standard

heat equation, we can write the solution to IVP (3.2) in integral form

Φ(x, t) =

√
r1(t0)

r1(t)
× exp
[
−pp(t)rp(t)

]
× exp

[∫ t

t0

(
Lp(t′) − b(t′)

2

)
dt′
]

× exp

[∫ t

t0

(
a(t′)pp(t′) − μ(t′)

(
f (t′)rp(t′) − f0(t′)

))
dt′
]

× exp

[
−μ(t)

2

( ṙ1(t)
r1(t)

+ b(t)
) (

x − rp(t)
)2] × exp

[
−pp(t)

(
x − rp(t)

)]
×
∫ ∞
−∞

1√
2πτ(t)

exp

[
− (ηp(x, t) − ξ)2

2τ(t)

]
Φ0(ξ)dξ, (3.26)
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where ηp(x, t) and τ(t) are given in (3.7). And for the bounded initial data Φ0(x), the

integral in solution (3.26) converges.

Fundamental solution : For the initial conditionΦ0(x) = δ(x−x0),where δ(x−x0)

is a shifted Dirac delta distribution, we obtain corresponding fundamental solution as

follows

K(x, t; x0, t0) =

√
r0√

2πr2(t)
× exp
[
−pp(t)rp(t)

]
× exp

[∫ t

t0

(
Lp(t′) − b(t′)

2

)
dt′
]

× exp

[∫ t

t0

(
a(t′)pp(t′) − μ(t′)

(
f (t′)rp(t′) − f0(t′)

))
dt′
]

× exp

[
−μ(t)

2

( ṙ1(t)
r1(t)

+ b(t)
) (

x − rp(t)
)2] × exp

[
−pp(t)

(
x − rp(t)

)]

× exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(
r0(x − rp(t)) − x0r1(t)

)2
2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (3.27)

Therefore, solution of IVP (3.2) can be formulated also as

Φ(x, t) = K(x, t; x0, t0) ∗ Φ0(x) =

∫ ∞
−∞

K(x, t; ξ, t0) Φ0(ξ)dξ,

where K(x, t; x0, t0)∗Φ0(x) is the convolution of the fundamental solution and initial func-

tion.

Here, we see that b(t) influences the amplitude and spreading of the solution

(3.27), while f0(t) affects just the amplitude. In the absence of the reaction term with

quadratic in x coefficient (ω(t) = 0), for given b(t) we have the relation ṙ1(t)/r1(t) = −b(t),

so that the Gaussian term in above solution vanishes as expected. Indeed, in that case, take

any real-valued smooth function b(t) and suppose it satisfies ḃ(t) + μ̇(t)/μ(t)b(t) − b2(t) =

Λ2(t), so that the characteristic equation (3.47) becomes r̈+ μ̇(t)/μ(t)ṙ+Λ2(t)r = 0. On the

other side, Riccati equation for b(t) can be linearized by letting b(t) = −ẏ(t)/y(t), which

gives ÿ+ μ̇(t)/μ(t)ẏ+Λ2(t)y = 0. Since ODEs are the same, it follows that we are allowed

to replace the original b(t) by b(t) = −ṙ1(t)/r1(t).

Also we notice that if a(t) = f (t) = 0 which implies rp(t) = 0 and correspondingly

pp(t) = Lp(t) = 0, then in that case the fundamental solution becomes
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K(x, t; x0, t0) =

√
r0√

2πr2(t)
× exp

[
−
∫ t

t0

(
b(t′)

2
− μ(t′) f0(t′)

)
dt′
]

× exp

[
−μ(t)

2

( ṙ1(t)
r1(t)

+ b(t)
)
x2

]
× exp

[
− (r0x − x0r1(t))2

2r1(t)r2(t)

]
. (3.28)

3.1.3. Spatial moments, mean and variance of the fundamental

solution

The first three spatial moments of a solution distribution Φ(x, t) are defined as

M0(t) =
∫

Dx

Φ(x, t)dx, M1(t) =
∫

Dx

xΦ(x, t)dx, M2(t) =
∫

Dx

x2Φ(x, t)dx, (3.29)

where Dx is the spatial domain of the problem. These moments are usually used to de-

scribe the shape and behavior of the distribution profile. If Φ(x, t) is the mass density

function of the solute (or concentration of a substance), then zeroth moment M0(t) gives

the total mass of the solute (or amount of the substance) contained in Dx at time t. The

first moment M1(t) normalized by the total mass gives the mean location of the distribu-

tion in Dx, or say the "center of mass", denoted by 〈x〉(t), where the weighted relative

positions sum to zero. The second central moment about the mean, M2(t), normalized by

the total mass gives the mean square position denoted by 〈x2〉(t). And the variance which

is a measure of the spreading of the distribution about its mean position, in other words

the deviation from the center of the mass, is defined as

Var(t) =
∫ ∞
−∞

(x − 〈x〉)2 K(x, t)dx = 〈x2〉(t) − 〈x〉2(t), (3.30)

or in terms of the moments it can be written as

Var(t) =
M2(t)
M0(t)

−
(

M1(t)
M0(t)

)2
. (3.31)

In what follows, we provide explicit results for the fundamental solution of the
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IVP (3.2) for the convection-diffusion-reaction equation when ω(t) = 0, which implies

also b(t) = −ṙ1(t)/r1(t). Without loss of generality we take r0 = 1 and for simplicity, we

take t0 = 0, so that initial data is Φ(x, 0) = δ(x − x0) and we denote the fundamental

solution as K(x, t; x0, t0) ≡ K(x, t; x0). In that case, the total initial mass or concentration

amount is equal to ∫ ∞
−∞
Φ(x, 0)dx =

∫ ∞
−∞
δ(x − x0)dx = 1.

Therefore, the corresponding fundamental solution can be written in the form

K(x, x0; t) =
A0(t)

√
r1(t)√

2πr2(t)
× exp
(
− pp(t)(x − rp(t))

)
× exp
(
− (x − rp(t) − x0r1(t))2

2r1(t)r2(t)

)
,

where A0(t) denotes the product of the exponential terms in K(x, x0; t) that depend only

on time. Then, we find the moments as follows.

a) Zeroth Moment

First we compute the zeroth moment

M0(t) =
∫ ∞
−∞

K(x, x0; t)dx

=
A0(t)

√
r1(t)√

2πr2(t)

∫ ∞
−∞

exp
(
− pp(t)(x − rp(t))

)
× exp
(
− (x − rp(t) − x0r1(t))2

2r1(t)r2(t)

)
dx,

=
A0(t)

√
r1(t)√

2πr2(t)
exp
(
1

2
pp(t)r1(t)

(
pp(t)r2(t) − 2x0

) )

×
∫ ∞
−∞

exp
(
− (x − rp(t) − x0r1(t) + r1(t)r2(t)pp(t))2

2r1(t)r2(t)

)
dx,

which finally becomes

M0(t) = A0(t)r1(t) × exp
(1
2

p2
p(t)r1(t)r2(t) − x0 pp(t)r1(t)

)
. (3.32)

In particular, if f (t) = 0 which implies pp(t) = 0 and Lp(t) = 0 since ṙp(t) = a(t)−b(t)rp(t),
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we have total mass

M0(t) = r1(t) exp
( ∫ t

t0
μ(t′) f0(t′)dt′

)
, (3.33)

depending on r1(t) > 0, μ(t) > 0 and the first-order reaction rate f0(t). For instance,

assume r1(t) = 1, then the followings happen :

• when f0(t) = 0, then total mass is conserved with M0(t) = 1 for all t > 0,

• when f0(t) < 0, there is "loss of mass" due to reaction,

• when f0(t) > 0, there is "gain of mass" due to reaction.

b) First Moment and Mean Position

Next, we compute the first spatial moment

M1(t) =
∫ ∞
−∞

x K(x, x0; t)dx

=
A0(t)

√
r1(t)√

2πr2(t)
exp
(
1

2
p2

p(t)r1(t)r2(t) − x0 pp(t)r1(t)
)

×
∫ ∞
−∞

x exp
[
− (x − rp(t) − x0r1(t) + r1(t)r2(t)pp(t))2

2r1(t)r2(t)

]
dx,

=
A0(t)r1(t)√
π

exp
(
1

2
p2

p(t)r1(t)r2(t) − x0 pp(t)r1(t)
)

×
( ∫ ∞
−∞

√
2r1(t)r2y e−y2

dy +
(
rp(t) + x0r1(t) − r1(t)r2(t)pp(t)

) ∫ ∞
−∞

e−y2

dy
)
.

Therefore, we get the first moment in terms of zeroth moment and the solutions to the

characteristic ODE as follows

M1(t) = M0(t)
(
rp(t) + x0r1(t) − r1(t)r2(t)pp(t)

)
.

•Mean position : Then, normalizing the first moment by zeroth moment gives the mean

position

〈x〉 f (t) ≡ M1(t)
M0(t)

= rp(t) + x0r1(t) − σ(t)pp(t), σ(t) = r1(t)r2(t), (3.34)
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and if f (t) = 0, then mean position is 〈x〉0(t) = rp(t) + x0r1(t), that is the deformation due

to reaction f (t) in (3.34) has disappeared as expected.

c) Second Moment and Variance

Second spatial moment is found as

M2(t) =
∫ ∞
−∞

x2 K(x, x0; t)dx

=
A0(t)

√
r1(t)√

2πr2(t)
exp
(
1

2
pp(t)r1(t)

(
pp(t)r2(t) − 2x0

) )

×
∫ ∞
−∞

x2 exp
(
− (x − rp(t) − x0r1(t) + r1(t)r2(t)pp(t))2

2r1(t)r2(t)

)
dx,

=
A0(t)r1(t)√
π

exp
(
1

2
pp(t)r1(t)

(
pp(t)r2(t) − 2x0

) )

×
∫ ∞
−∞

( √
2r1(t)r2y + rp(t) + x0r1(t) − r1(t)r2(t)pp(t)

)2
e−y2

dy,

which becomes

M2(t) = M0(t) ×
(
r1(t)r2(t) +

(
rp(t) + x0r1(t) − r1(t)r2(t)pp(t)

)2 )
. (3.35)

Then we obtain corresponding mean-square position

〈x2〉 f ≡ M2(t)
M0(t)

= σ(t) + (rp(t) + x0r1(t) − σ(t)pp(t))2. (3.36)

• Variance : Using the formula (3.31), we get the variance about the mean as follows

Var(t) = σ(t). (3.37)

As expected, the variance σ(t) = r1(t)r2(t) depends only on the homogenous solutions of

the characteristic equation determined by the coefficients μ(t) and b(t), while the mean

position 〈x〉 f (t) depends also on the external forcing parameters a(t) and f (t), due to con-

vection and reaction term with linear in position coefficient in the diffusion model. The
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reaction rate f0(t) has influence on the total mass, but it does not affect the mean and

variance. The computations of the mean and variance for the general case when ω(t) � 0

and of solution distributions corresponding to different initial data can be computed in a

similar way, when necessary.

In what follows we study the exactly solvable model to investigate the influence

of parameters and time evolution of the center of the distribution.

Example 3.1 Consider the IVP defined by convection-diffusion equation and Dirac-delta

initial data as follows

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φt =

e−γt
2
Φxx − ((a0 sin(ωt) − βx)Φ)x , x ∈ R, t > 0,

Φ(x, 0) = δ(x − x0), x ∈ R,
(3.38)

where we have exponentially decaying diffusion coefficient, μ(t) = eγt, γ > 0 and sinu-

soidal convection term with frequency ω > 0, amplitude a0 ≥ 0, and β ∈ R.

Then the corresponding ODE is

r̈ + γṙ + (γβ − β2)r = F0 cos(ωt + θ), t > 0, (3.39)

where we denote F0 = a0

√
ω2 + (β − γ)2 and θ = arctan((β − γ)/ω). We note that, the

sinusoidal velocity in diffusion equation has generated external periodic force in (3.39)

as expected, with amplitude F0 and phase shifting θ, both depending on frequency ω > 0

and β ∈ R. For the discriminant Δ = (γ − 2β)2 and r0 = 1, we have homogeneous and

particular solutions respectively

r1(t) = e−βt,

r2(t) =
1

γ − 2β

(
e−βt − e−(γ−β)t) , (3.40)

rp(t) =
a0ω
(
ω2 + (β − γ)2

)
Ω

e−βt − (ω2 − γβ + β2)F0

Ω
cos(ωt + θ) +

γωF0

Ω
sin(ωt + θ),

where γ � 2β and Ω = (ω2 − γβ + β2)2 + (γω)2. Since the parameter β has influence on
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all solutions to the characteristic equation given in (3.40), the behavior of these solutions

change according to the the followings :

(i) When β < 0 and γ > 0, all solutions tends to infinity as t → ∞.
(ii) If β = 0 and γ > 0, then r1(t) becomes constant function, r2(t)→ 1/γ and rp(t)

just oscillates as time increases.

(iii) In the condition 0 < γ < β, while r1(t) goes to zero, r2(t) tends to infinity as

t → ∞, and the particular solution keeps oscillating in time.

On the other hand notice that we have b(t) = −ṙ1(t)/r1(t) and rp(t) satisfies ṙp(t) =

a(t) − b(t)rp(t). Therefore we have pp(t) = Lp(t) = 0 and obtain the fundamental solution

to the problem (3.38) as follows

K(x, x0; t) =

√
γ − 2β

2π
(
e−2βt − e−γt

) × exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rp(t) − x0e−βt

)2
2
(
e−2βt − e−γt

)
/(γ − 2β)

⎤⎥⎥⎥⎥⎥⎦ . (3.41)

Then, we get total amount of mass as

M0(t) =
∫ ∞
−∞

K(x, x0; t)dx = 1, (3.42)

which shows that the total mass is conserved. The first moment is

M1(t) =
∫ ∞
−∞

x K(x, x0; t)dx = rp(t) + x0e−βt. (3.43)

and normalizing it by total mass, we get mean position of the distribution

〈x〉(t) = rp(t) + x0e−βt, (3.44)

where rp(t) is given in (3.40).

In the case β < 0, the distribution follows the exponentially oscillating trajectory

moving to the right in x-direction with decreasing amplitude. When β = 0, then it prop-

agates just along the oscillatory path with constant amplitude. In Fig.3.1a, we plot the

behavior of distribution for β < 0 and certain parameters. For the case β = 0, one can see
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the influence of parameter on the behavior of solution in Fig.3.1b.

(a) (b)

Figure 3.1 Solution (3.41) with ω = 18, γ = 1, a0 = 75, x0 = 1, (a) β = −0.7. (b)

β = 0.

3.2. Initial-Boundary Value Problems on the Half-line

In this section, we obtain analytic solutions to IBVP’s on the half-line 0 < x < ∞
for convection-diffusion-reaction equations with space and time-variable coefficients, and

constructing exactly solvable models.

Results of Proposition 3.1 show that the generalized diffusion equations of the

form (3.1) can be reduced to the standard heat equation by space and time transformations

and the IVP on the whole real line can be solved analytically. However, more difficulties

appear when we impose boundary conditions. Indeed, in the presence of certain con-

vection and/or reaction terms, usually the fixed boundaries convert to moving boundaries.

This can be explicitly seen from solution (3.4) by letting x = 0, and noting that the Dirich-

let boundary condition, prescribed on the fixed boundary x = 0, converts to Dirichlet BC

for the standard heat equation on the moving boundary s0(t) = −r0rp(t)/r1(t). Therefore,

exactly solvable IBVP’s for equation (1.1) can be constructed only for some particular

cases.

First we note that, the convection and reaction terms in the diffusion type equation,

generate external forces in the characteristic equation (3.3). Therefore, Eq.(3.4) shows
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that the displacement of the position coordinate of Φ(x, t) by the particular solution rp(t)

appears due to certain convection or/and reaction terms, as expected. Moreover, according

to (3.4) the value of Φ(x, t) at x = rp(t) is of the form

Φ(rp(t), t) = A(t, rp(t)) × Ψ(0, τ(t)), 0 < t < T,

where by A(t, rp(t)) we briefly denote the amplitude like function in (3.4) that depends

only on time, and Ψ(0, τ(t)) is the value of the standard heat solution at η = 0, which

depends on τ(t) = r2(t)/r1(t). Then, for rp(t) = 0 we have

Φ(0, t) = A(t, 0) × Ψ(0, τ(t)), 0 < t < T,

which suggests that IBVP’s on 0 < x < ∞ for Eq.(3.1) can be converted to IBVP’s for

the standard heat equation on the half-line 0 < x < ∞, if rp(t) = 0. According to the

characteristic equation (3.3) this can happen in the following cases:

(i) a(t)- constant, μ(t)-constant, b(t) = 0, f (t) = 0;

(ii) a(t) = f (t) = 0; (symmetric case),

(iii) a(t)-constant, b(t) = μ̇(t)/μ(t) and f (t) = 0;

(iv) f (t) = −ȧ(t) and b(t) = μ̇(t)/μ(t).

In what follows we provide and discuss exactly solvable IBVP’s for the symmetric case

(ii), i.e. the case when the PDE is invariant under space inversion. Other cases can be

studied in a similar way when necessary.

3.2.1. Analytical solution to the IBVP with Dirichlet boundary

condition

First, we consider IBVP on the half-line with Dirichlet boundary condition. The

result is formulated as follows.
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Proposition 3.2 The Dirichlet IBVP on the half-line

Φt =
1

2μ(t)
Φxx + b(t)xΦx + μ(t)[

ω2(t)
2

x2 + f0(t)]Φ, 0 < x < ∞, 0 < t < T, (3.45a)

Φ(x, 0) = Φ0(x), 0 < x < ∞, (3.45b)

Φ(0, t) = D(t), 0 < t < T, (3.45c)

where the parameters μ(t) > 0, μ(0) = 1, b(t), ω(t), f0(t) are given real-valued func-

tions of time and Φ0(x), D(t) are given sufficiently smooth functions in their domains, has

solution of the form

Φ(x, t) =
1√
r1(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)
dt′
]
× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
)

x2

]
× Ψ (η(x, t), τ(t)) , (3.46)

if r1(t), r2(t) are positive and linearly independent homogeneous solutions of the homoge-

neous characteristic equation

r̈ +
μ̇(t)
μ(t)

ṙ +
[
ω2(t) +

(
ḃ(t) +

μ̇(t)
μ(t)

b(t) − b2(t)
)]

r = 0, (3.47)

satisfying initial conditions r1(0) = 1, ṙ1(0) = −b(0), r2(0) = 0, ṙ2(0) = 1 respectively,

also

η(x, t) =
x

r1(t)
, τ(t) =

r2(t)
r1(t)
, 0 < t < T, (3.48)

and Ψ(η, τ) is solution of the following IBVP for heat equation with Dirichlet boundary

condition

Ψτ =
1

2
Ψηη, 0 < η < ∞, 0 < τ < τ(T ), (3.49a)

Ψ(η, 0) = Φ0(η), 0 < η < ∞, (3.49b)

Ψ(0, τ) = D0(τ), 0 < τ < τ(T ), (3.49c)
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with boundary data

D0(τ) = D(t(τ))
√

r1(t(τ)) × exp

[∫ t(τ)

0

(
b(t′)

2
− μ(t′) f0(t′)

)
dt′
]
. (3.50)

Proof This Proposition 3.2 is a direct consequence of Proposition 3.1. Here we give an

alternative proof by assuming that equation (3.45a) has solution of the form

Φ(x, t) = eF(x,t) × Ψ(η(x, t), τ(t)), (3.51)

where F(x, t) = −ρ(t)x2/2 + γ(t), η(x, t) = eg(t)x and ρ(t), g(t), γ(t), τ(t) are unknown

parameters to be determined. For this we compute

Φt =
[ − ρ̇(t)

2
x2 + γ̇(t)

]
eF(x,t)Ψ + ġ(t)eg(t)xeF(x,t)Ψη + τ̇(t)eF(x,t)Ψτ,

Φx =
[ − ρ(t)x

]
eF(x,t)Ψ + eg(t)eF(x,t)Ψη, (3.52)

Φxx =
[ − ρ(t) + ρ2(t)x2]eF(x,t)Ψ − 2ρ(t)xeg(t)eF(x,t)Ψη + e2g(t)eF(x,t)Ψηη.

If we substitute these derivatives into Eq.(3.45a), then we get

τ̇(t)Ψτ =
e2g(t)

2μ(t)
Ψηη −
[
ρ(t)
μ(t)
− b(t) + ġ(t)

]
xeg(t)Ψη (3.53)

+

[(
ρ̇(t)
2
+
ρ2(t)
2μ(t)

− b(t)ρ(t) +
μ(t)ω2(t)

2

)
x2 − γ̇(t) − ρ(t)

2μ(t)
+ μ(t) f0(t)

]
Ψ.

From (3.53), Ψ(η, τ) satisfies heat equation Ψτ = (1/2)Ψηη and with initial condition

Ψ(η, 0) = Φ0(η) from ansatz (3.51), if the auxiliary functions ρ, g, τ and γ solve the

non-linear system of first order ordinary differential equations
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ρ̇(t) +
ρ2(t)
μ(t)
− 2b(t)ρ(t) + μ(t)ω2(t) = 0, ρ(0) = 0, (3.54)

ġ(t) +
ρ(t)
μ(t)
− b(t) = 0, g(0) = 0,

τ̇(t) − e2g(t)

μ(t)
= 0, τ(0) = 0,

γ̇(t) +
ρ(t)

2μ(t)
− μ(t) f0(t) = 0, γ(0) = 0.

Note that when t0 = 0, the first three equations of the above system (3.54) is the same

as system (3.17), so does the corresponding solutions given in (3.20). It follows that, the

solution to the last equation in (3.54) is

γ(t) = − ln(r1(t))
2

−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)
dt′. (3.55)

Writting the auxiliary functions back into the ansatz (3.51), gives solution (3.46). We

notice that continuity of μ(t) > 0 and r2
1(t) > 0 for t ∈ (0,T ), imply that τ(t), t > 0 de-

fined in (3.48) is strictly increasing continuous function on (0,T ) and thus its inverse t(τ)

exists for τ ∈ (0, τ(T )). Then Dirichlet boundary condition (3.45c) transforms to Dirichlet

boundary condition (3.49c) with D0(τ) given in (3.50) for heat equation. Therefore IBVP

(3.45) for the diffusion type equation transforms to the IBVP (3.49), which completes the

proof. �

In summary, we see that the analytical solution to IBVP (3.45) is obtained in terms of

solution to the second order linear homogeneous characteristic equation and heat model.

Integral Representation and Fundamental Solution :

Using integral representation of solution for heat IBVP with homogeneous Dirichlet BC

given in (2.28), we obtain the solution to the IBVP (3.45) in integral form as

Φ(x, t) =
1√
r1(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)
dt′
]
× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
)

x2

]

×
( ∫ ∞

0

GD(η(x, t), ξ, τ(t))Φ(ξ, 0)dξ −
∫ τ(t)

0

Kη(η(x, t), τ(t) − τ′)Ψ(0, τ′)dτ′
)
,

provided the integrals converge for the given initial and boundary data. Here, GD(η, ξ, τ) =
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K(η− ξ, τ)−K(η+ ξ, τ) denotes the Dirichlet heat kernel, Kη(η, τ) is the partial derivative

of heat kernel wrt η, and η(x, t), τ(t) are as given in the statement of Proposition 3.1.

Fundamental solution: When we take Dirac-delta IC Φ0(x) = δ(x − x0), for

0 < x < ∞, x0 > 0, and boundary condition Φ(0, t) = 0, then the IBVP reduces to the

heat IBVP with initial condition Ψ(η, 0) = δ(η− x0) and homogeneous Dirichlet boundary

condition Ψ(0, τ) = 0. Then, by using fundamental solution of heat IBVP given in (2.27),

the fundamental solution to the diffusion equation is obtained as

K(x, x0; t) =
1√

2πr2(t)
× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)
dt′
]
× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
)

x2

]

×
(
exp

[
− (x − x0r1(t))2

2r1(t)r2(t)

]
− exp

[
− (x + x0r1(t))2

2r1(t)r2(t)

])
. (3.56)

The parameter b(t) affects the amplitude and spreading of the solution. When ω(t) = 0,

then the Gaussian term in (3.56) vanishes as expected. Notice that the solution given in

(3.28) for the IVP when a(t) = f (t) = 0 is different then the solution (3.56) due to the

corresponding heat solution for the related problem.

In the following section we construct exactly solvable models with different initial

and boundary data.

3.2.1.1. Exactly solvable convection-diffusion-reaction type models

with Dirichlet boundary condition

MODEL 1 : IBVP with homogeneous boundary condition

Here, we consider a diffusion type model

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Φt =

1
2
e−γtΦxx + (

γ

2
−Ωb tanh(Ωbt))xΦx − ω

2
0

2
eγt x2Φ, 0 < x < ∞, t > 0,

Φ(x, 0) = Φ0(x), 0 < x < ∞,
Φ(0, t) = 0, t > 0,

(3.57)

with exponentially decaying diffusion coefficient for γ > 0, positive and bounded dilation

parameter b(t) = (γ/2) − Ωb tanh(Ωbt) with 0 ≤ Ωb ≤ γ/2 and a reaction term with
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exponentially growing coefficient, depending both on time and position, where ω0 > 0.

Then the corresponding characteristic equation

r̈ + γṙ + (γ2/4 − (ω2
0 + Ω

2
b))r = 0, t > 0, (3.58)

has positive solutions

r1(t) = e−γt/2 cosh(Ωt), r2(t) =
e−γt/2

Ω
sinh(Ωt), Ω =

√
ω2

0
+ Ω2

b, t > 0, (3.59)

satisfying conditions r1(0) = 1, ṙ1(0) = −γ/2, r2(0) = 0, ṙ2(0) = 1. It is seen that, for

given γ > 0, 0 ≤ Ωb ≤ γ/2 and ω0 > 0, if one has Ω < γ/2, then solutions r1(t) and r2(t)

approach zero ; if Ω > γ/2, they tend to infinity as t → ∞ ; and for Ω = γ/2 solutions are

bounded.

Therefore, according to Proposition 3.2, the IBVP (3.57) has solution of the form

Φ(x, t) =

√
cosh(Ωbt)
cosh(Ωt)

× exp

[
−eγt

2

(
Ω tanh(Ωt) −Ωb tanh(Ωbt)

)
x2

]
× Ψ(η(x, t), τ(t)), (3.60)

where the axuiliary functions

η(x, t) =
eγt/2 x

cosh(Ωt)
, τ(t) =

tanh(Ωt)
Ω

, t > 0, (3.61)

with inverse t(τ) = tanh−1(Ωτ)/Ω for 0 < τ < 1/Ω. Since Ω > Ωb, for each t > 0 the

Gaussian term in solution (3.60) approaches zero as x→ ∞. But the behavior of solution

Φ(x, t) at x = ∞ depends also on the behavior of Ψ(η(x, t), τ(t)) at x = ∞. Therefore, in

what follows, we give some concrete examples vanishing at infinity.

Fundamental solution: If we take the model (3.57) with Dirac delta initial con-

dition Φ(x, 0) = Aδ(x − x0), 0 < x < ∞, x0 > 0, A > 0, then according to our result

(3.60), the solution becomes
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K(x, x0; t) = A

√
Ω cosh(Ωbt)
2π sinh(Ωt)

× exp

[
−eγt

2
(Ω tanh(Ωt) −Ωb tanh(Ωbt)) x2

]
(3.62)

×
(
exp

[
−Ω(x − x0e−γt/2 cosh(Ωt))2

e−γt sinh(2Ωt)

]
− exp

[
−Ω(x + x0e−γt/2 cosh(Ωt))2

e−γt sinh(2Ωt)

])
,

which tends to zero as t → ∞ for any x > 0 and Ω > γ/2. Furthermore, limt→0Φ(x, t) =

A (δ(x − x0) − δ(x + x0)) = Aδ(x − x0) where the second Delta function becomes zero

since x = −x0 is not in our domain 0 < x < ∞, x0 > 0. Also, since Ω > Ωb ≥ 0, γ > 0,

then for x → ∞ the solution approaches zero for any t > 0. In Fig.3.2a, we plot solution

(3.62) corresponding to Dirac-delta initial distribution centered at x = 1 and with strength

A = 20.

Example 3.2 Now we consider the model (3.57) with smooth and bounded, periodic IC

Φ(x, 0) = A (1 + cos(Bx)), 0 < x < ∞, (3.63)

where A > 0 is amplitude and B ∈ R is frequency. Then, we have solution (3.60) where

Ψ(η(x, t), τ(t))=A × Erf
(
η(x, t)√

2τ(t)

)
(3.64)

+
A e−

B2τ(t)
2

2

[
e−iBη(x,t) Erf

(
η(x, t) − iBτ(t)√

2τ(t)

)
+ eiBη(x,t) Erf

(
η(x, t) + iBτ(t)√

2τ(t)

)]
,

and η(x, t), τ(t) are given in (3.61). For certain constant parameters the behavior of solu-

tion is shown in Fig.3.2b. We observe that, the solution is kept equal to zero on the fixed

boundary x = 0, and near the initial time t = 0 the solution is oscillatory in space with

frequency that can be controlled by parameter B ∈ R.When time increases the amplitude

of oscillations decreases approaching zero for any x > 0, as expected.
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(a) (b)

Figure 3.2 (a) Solution (3.62) with A = 20, Ωb = 0.5, γ = 2, ω0 = 1, x0 = 1 and

Ω =
√

5/2. (b) Solution with A = 8, B = 5, Ωb = 0.5, γ = 1, ω0 = 0.5
and Ω = 1/

√
2.

MODEL 2 : IBVP with inhomogeneous boundary condition

Next, consider the following model with homogeneous initial condition Φ(x, 0) = 0, 0 <

x < ∞, and time-dependent boundary condition Φ(0, t) = D(t), t > 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Φt =

1
2
e−γtΦxx +

γ

2
xΦx − γ2

8
eγt x2Φ, 0 < x < ∞, t > 0,

Φ(x, 0) = 0, 0 < x < ∞,
Φ(0, t) = D(t), t > 0.

(3.65)

Then the corresponding characteristic equation becomes r̈ + γṙ = 0, and the solution to

the IBVP (3.65) is obtained as

Φ(x, t) =
√

sech(γt/2) × exp

[
−γe

γt

4
tanh
(γ
2

t
)
x2

]
×
(
−
∫ τ(t)

0

Kη(η(x, t), τ(t) − τ′)D0(τ′)dτ′
)
,

where boundary data

D0(τ) =

√
cosh
(
tanh−1(γτ/2)

)
× D
(
2

γ
tanh−1(γτ/2)

)
, 0 < τ < 2/γ, (3.66)
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and the auxilary functions

η(x, t) =
eγt/2 x

cosh(γt/2)
, τ(t) =

2 tanh(γt/2)

γ
, t > 0. (3.67)

We note that, in general for an arbitrary boundary data D(t), the expression for D0(τ) will

be complicated, which creates also difficulties in solution. However, based on exact solu-

tions of the heat equation with zero initial data and time-dependent boundary conditions,

for some special choices of D(t) one can obtain exact solutions. Here, we write only two

of them as follows.

Case i. Let us take D(t) = A
√

sech(γt/2), A > 0. Then, the solution becomes

Φ(x, t) = A
√

sech(γt/2) × exp

[
−γe

γt

4
tanh
(γ
2

t
)
x2

]
× Erfc

⎡⎢⎢⎢⎢⎢⎣
√
γ eγt/2 x√

2 sinh(γt)

⎤⎥⎥⎥⎥⎥⎦ . (3.68)

The distribution D(t) on the boundary x = 0 is maximum at time t = 0, and as γ increases

the spreading of boundary data increases which causes approaching zero more rapidly.

But notice that, initially while the, for instance, temperature is zero everywhere for x ≥ 0,

the boundary data is D(0) � 0 at initial time t = 0. So the compatibility condition is not

satisfied at (x, t) = (0, 0). This means that there is a jump of temperature at the extremity as

soon as t > 0. Then as time increases, this jumping temperature of which rate of decrease

influenced by parameter γ will go to zero. For any t > 0 we have Φ(∞, t) = 0, as one can

see in Fig.3.3a.

Case ii. For D(t) = A
√

sech(γt/2) tanh(γt/2), A > 0, the compatibility con-

dition is satisfied since D(0) = 0. So there is no jump of temperature at the extremity

as soon as t > 0. In that case the distribution on the boundary is maximum at time

t = (2/γ)tanh−1(
√

2/3) and as time increases it approaches zero smoothly. Then the

solution is

Φ(x, t) = A
√

sech(γt/2) × tanh(γt/2) × exp

[
−γe

γt

4
tanh
(γ
2

t
)
x2

]

×
( (

1 +
γeγt x2

sinh(γt)

)
Erfc

⎡⎢⎢⎢⎢⎢⎣
√
γ eγt/2 x√

2 sinh(γt)

⎤⎥⎥⎥⎥⎥⎦ −
√

2γ eγt/2 x√
π sinh(γt)

exp

[
− γe

γt x2

2 sinh(γt)

] )
, (3.69)
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which is localized in space and time, and for certain constant parameters its behavior is

shown in Fig.3.3b.

(a) (b)

Figure 3.3 (a) Solution (3.68) with A = 20, γ = 7. (b) Solution (3.69) with A = 20,

γ = 7.

3.2.2. Analytical solution of the IBVP with Neumann boundary

condition

Here, we study the IBVP with Neumann boundary condition and the results are

formulated as follows.

Proposition 3.3 The IBVP defined by equation (3.45a), initial condition (3.45b) and Neu-

mann boundary condition imposed at x = 0 as follows

Φx(0, t) = N(t), 0 < t < T, (3.70)

for the given smooth function N(t), has solution in the form (3.46) where Ψ(η, τ) is the

solution of IBVP defined by equation (3.49a), initial condition (3.49b) and with inhomo-

geneous Neumann BC

Ψη(0, τ) = N0(τ), 0 < τ < τ(T ), (3.71)
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where the boundary data is

N0(τ) =
√

r3
1
(t(τ)) exp

[∫ t(τ)

0

(
b(t′)

2
− μ(t′) f0(t′)

)
dt′
]

N(t(τ)), 0 < τ < τ(T ). (3.72)

Proof The proof follows the similar line with proof of Proposition 3.2, but the only dif-

ference is that the inhomogeneous Neumann BC (3.70) leads to inhomogeneous Neumann

boundary data (3.72). In particular, if N(t) = 0, then one has homogeneous Neumann BC

Ψη(0, τ) = 0. �

Integral Representation and Fundamental Solution :

According to Proposition 3.3, by using the integral representation of solution to heat IBVP

(2.32) with Neumann boundary condition (3.71), we obtain solution to the IBVP defined

by (3.45a), (3.45b) and (3.70) in integral form

Φ(x, t) =
1√
r1(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)
dt′
]
× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
)

x2

]

×
( ∫ ∞

0

GN(η(x, t), ξ, τ(t))Φ(ξ, 0)dξ −
∫ τ(t)

0

K(η(x, t), τ(t) − τ′)N0(τ′)dτ′
)
, (3.73)

where GN(η, ξ, τ) = K(η − ξ, τ) + K(η + ξ, τ) denotes Neumann heat kernel.

Fundamental solution : When the initial and boundary conditions are taken as

Φ(x, 0) = δ(x − x0), 0 < x < ∞, x0 > 0, and Φx(0, t) = 0 respectively, then by using fun-

damental solution for heat IBVP with Neumann boundary condition Ψη(0τ) = 0, given in

(2.31), it follows that the Neumann IBVP for diffusion equation (3.45a) has fundamental

solution

K(x, x0; t) =
1√

2πr2(t)
× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)
dt′
]
× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
)

x2

]

×
(
exp

[
− (x − x0r1(t))2

2r1(t)r2(t)

]
+ exp

[
− (x + x0r1(t))2

2r1(t)r2(t)

])
. (3.74)
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Example 3.3 If we consider the equation in (3.57) and IC Φ(x, 0) = Aδ(x − x0), defined

on 0 < x < ∞, x0 > 0, but now we have homogeneous Neumann boundary condition

Φx(0, t) = 0, t > 0, then the fundamental solution is obtained

K(x, x0; t) = A

√
Ω cosh(Ωbt)
2π sinh(Ωt)

× exp

[
−eγt

2
(Ω tanh(Ωt) −Ωb tanh(Ωbt)) x2

]
(3.75)

×
(
exp

[
−Ω(x − x0e−γt/2 cosh(Ωt))2

e−γt sinh(2Ωt)

]
+ exp

[
−Ω(x + x0e−γt/2 cosh(Ωt))2

e−γt sinh(2Ωt)

])
,

which in the long time limit approaches zero for any x > 0 if Ω > γ/2. On the other hand,

the initial condition is indeed satisfied, i.e limt→0Φ(x, t) = Aδ(x − x0). The difference of

solution (3.75) from solution obtained in (3.62) is that the sign of the second exponential

term in the last line, which originates from the solution of the corresponding heat problem,

is negative. And as in the previous investigation, since Ω > Ωb ≥ 0, γ > 0, then for

x → ∞ the solution approaches zero for any t > 0. In Fig.3.4 we plot solution (3.75)

corresponding to Dirac-delta initial data centered at x = 1 and with strength A = 20.

Figure 3.4 Solution (3.75) with A = 20, Ωb = 0.5, γ = 2, ω0 = −1, x0 = 1, Ω =
√

5/2.
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3.2.3. Analytical solution of the IBVP with Robin boundary

condition

Proposition 3.4 The IBVP defined by defined by equation (3.45a), initial condition (3.45b)

and Robin boundary condition imposed at x = 0

Φx(0, t) + β1(t)Φ(0, t) = 0, 0 < t < T, (3.76)

where β1(t) � 0 is a given real-valued smooth function of time 0 < t < T, has solution

of the form (3.46) where Ψ(η, τ) is the solution of the IBVP (3.49a), (3.49b) and Robin

boundary condition

Ψη(0, τ) + β1(t(τ))r1(t(τ))Ψ(0, τ) = 0, 0 < τ < τ(T ). � (3.77)

In that case the integral representation of solution to Robin IBVP for the diffusion type

equation becomes

Φ(x, t) =
1√
r1(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)
dt′
]
× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
)

x2

]

×
(∫ ∞

0

GN(η(x, t), ξ, τ(t))Φ0(ξ)dξ −
∫ τ(t)

0

K(η(x, t), τ(t) − τ′)Q2(τ′)dτ′
)
, (3.78)

where the unknown function Q2(τ) is obtained by solving the following equation

Q2(τ) = β1(t(τ))r1(t(τ)) ×
⎛⎜⎜⎜⎜⎜⎜⎝
∫ τ

0

Q2(τ′)√
2π(τ − τ′) )dτ′ − 2

∫ ∞
0

e−
ξ2

2τ√
2πτ
Φ0(ξ)dξ

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.79)

which is a second-kind Volterra type integral equation. It is seen that solving IBVP

with Robin BC on the half-line for diffusion type equation requires solving second-kind

Volterra integral equation which is a formidable task due to the variable coefficients.

We plan to investigate the details of the Robin IBVP in a future work.
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CHAPTER 4

GENERALIZED DIFFUSION TYPE PROBLEMS WITH

MOVING BOUNDARIES

In this chapter, we study initial-boundary value problems in a time-dependent

semi-infinite domain s(t) < x < ∞, 0 < t < T for the generalized diffusion type equation

(1.1) with variable coefficients and Dirichlet, Neumann and Robin type boundary condi-

tions imposed at the boundary x = s(t).We provide analytical solution and present exactly

solvable models.

4.1. Analytical Solution of the Dirichlet IBVP with Moving

Boundary

First, we consider the mIBVP for a generalized diffusion type equation defined on

s(t) < x < ∞, 0 < t < T as follows

Φt =
1

2μ(t)
Φxx − [a(t) − b(t)x]Φx + μ(t)

[ω2(t)
2

x2 − f (t)x + f0(t)
]
Φ, (4.1a)

Φ(x, 0) = Φ0(x), s(0) < x < ∞, (4.1b)

Φ(s(t), t) = D(t), 0 < t < T, (4.1c)

where all time-dependent parameters are given real-valued smooth functions in their do-

mains, μ(t) > 0, μ(0) = 1 and time-dependent boundary s(t) is twice continuously differ-

entiable function. We obtain analytical solution to the mIBVP under the condition that the

boundary propagates according to an associated classical equation of motion determined

by the time-dependent parameters of the diffusion type equation. For this, we solve the

corresponding nonlinear Riccati type dynamical system, that simultaneously determines

the solution of the diffusion type problem and the moving boundary s(t). The results are

formulated in the following proposition.
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Proposition 4.1 If the boundary function s(t) is of the form

s(t) = rαg (t) ≡ α1r1(t) + α2r2(t) + rp(t), α = (α1, α2) ∈ R2 , (4.2)

where r1(t), r2(t) are positive, linearly independent homogeneous solutions and rp(t) is a

particular solution of the inhomogeneous characteristic equation

r̈ +
μ̇(t)
μ(t)

ṙ +
[
ω2(t) +

(
ḃ(t) +

μ̇(t)
μ(t)

b(t) − b2(t)
)]

r = ȧ(t) − a(t)
[
b(t) − μ̇(t)

μ(t)

]
+ f (t), (4.3)

satisfying IC’s r1(0) = 1, ṙ1(0) = −b(0), r2(0) = 0, ṙ2(0) = 1 and rp(0) = 0, ṙp(0) = a(0)

respectively, then the mIBVP (4.1) has solution

Φαg (x, t) =
1√
r1(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)]
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

(4.4)

× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
) (

x − rαg (t)
)2] × exp

[
− pαg (t)(x − rαg (t))

]
× Ψ
(
ηαg (x, t), τ(t)

)
,

where one has the Lagrangian type function for the moving boundary

Lαg (t) =
μ(t)
2

((
ṙαg (t) + b(t)rαg (t) − a(t)

)2 − ω2(t)(rαg )2(t) + 2 f (t)rαg (t)
)
, (4.5)

the corresponding generalized momentum

pαg (t) = μ(t)
(
ṙαg (t) + b(t)rαg (t) − a(t)

)
, (4.6)

the coordinate transformation (x, t) �→ (η, τ) as follows

ηαg (x, t) =
x − rαg (t)

r1(t)
, τ(t) =

r2(t)
r1(t)
, 0 < t < T, (4.7)

and Ψ(η, τ) is solution of the Dirichlet IBVP for the standard heat equation defined on the
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half-line

Ψτ =
1

2
Ψηη, 0 < η < ∞, 0 < τ < τ(T ), (4.8a)

Ψ(η, 0) = Φ0(η + α1) eα2η, 0 < η < ∞, (4.8b)

Ψ(0, τ) = D0(τ), 0 < τ < τ(T ), (4.8c)

with boundary data

D0(τ) =
√

r1(t(τ)) exp

[∫ t(τ)

0

(
b(t′)

2
− μ(t′) f0(t′) + Lαg (t′)

)
dt′
]

D(t(τ)). (4.9)

Proof To transfom the moving boundary to the fixed one, first we define new variable

y = x − s(t) and denote Φ(x, t) = Φ̃(y(x, t), t). Then performing time and space differenti-

ations of Φ(x, t), we get

Φt = −ṡ(t)Φ̃y + Φ̃t, Φx = Φ̃y, Φxx = Φ̃yy, (4.10)

and using the variable for initial and boundary conditions

Φ(x, 0) = Φ0(x) =⇒ Φ̃(y, 0) = Φ(y + s(0), 0) = Φ0(y + s(0)), (4.11)

Φ(s(t), t) = D(t), =⇒ Φ̃(0, t) = D(t), (4.12)

we obtain the following IBVP defined on 0 < y < ∞ for the new function Φ̃(y, t)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Φ̃t =

1
2μ(t)Φ̃yy +

[
b(t)(y + s(t)) − a(t) + ṡ(t)

]
Φ̃y + μ(t)

[
ω2(t)

2

(
y + s(t)

)2 − f (t)
(
y + s(t)

)
+ f0(t)
]
Φ̃,

Φ̃(y, 0) = Φ0(y + s(0)), 0 < y < ∞,
Φ̃(0, t) = D(t), 0 < t < T.

(4.13)

This IBVP (4.13) is defined on the half-line 0 < y < ∞ as expected, but the equation

for the new function Φ̃(y, t) is more complicated than the original one since the boundary
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s(t) has moved to the equation by contributing to the convection and reaction coefficients.

Motivated from works mentioned in previous chapter, we assume solution

Φ̃(y, t) = eF(y,t) × Ψ(η(y, t), τ(t)), (4.14)

where the functions F(y, t) and η(y, t) are of the form

F(y, t) = −ρ(t)y2/2 − p(t)y + γ(t)/2, η(y, t) = eg(t)y,

with ρ(t), g(t), τ(t), p(t), γ(t) to be determined. Since we have

Φ̃t=

([ − ρ̇(t)
2

y2 − ṗ(t)y +
γ̇(t)
2

]
Ψ + ġ(t)eg(t)yΨη + τ̇(t)Ψτ

)
eF(y,t)

Φ̃y=
(
−[p(t) + ρ(t)y

]
Ψ + eg(t)Ψη

)
eF(y,t) (4.15)

Φ̃yy=
([

p2(t) − ρ(t) + 2p(t)ρ(t)y + ρ2(t)y2]Ψ − 2(p(t) + ρ(t)y)eg(t)Ψη + e2g(t)Ψηη
)

eF(y,t),

then substituting the derivatives (4.15) into (4.13), we obtain

τ̇(t)Ψτ =
e2g(t)

2μ(t)
Ψηη −
[(

ġ(t) +
ρ(t)
μ(t)
− b(t)
)
y − ṡ(t) − b(t)s(t) +

p(t)
μ(t)
+ a(t)
]

eg(t)Ψη

+

[−γ̇(t)
2
− ρ(t)

2μ(t)
+

p2(t)
2μ(t)

− b(t)s(t)p(t) − ṡ(t)p(t) + a(t)p(t)
]
Ψ (4.16)

+

[(
ṗ(t) − ṡ(t)ρ(t) − b(t)s(t)ρ(t) +

p(t)ρ(t)
μ(t)

+ a(t)ρ(t) + μ(t)ω2(t)s(t) − b(t)p(t)
)
y
]
Ψ

+

[(
ρ̇(t)
2
+
ρ2(t)
2μ(t)

+
μ(t)ω2(t)

2
− b(t)ρ(t)

)
y2 + μ(t)

(
f0(t) − f (t)s(t) +

ω2(t)s2(t)
2

− f (t)y
)]
Ψ.

Then, the function Ψ(η, τ) satisfies Ψτ = (1/2)Ψηη and IC Ψ(η, 0) = Φ0(η + α1) eα2η if

the auxiliary functions and the moving boundary s(t) with initial position s(0) = α1 and

initial velocity ṡ(0) = α2 + a(0) − α1b(0) satisfy the following nonlinear system of six

differential equations
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ρ̇(t) +
ρ2(t)
μ(t)
− 2b(t)ρ(t) + μ(t)ω2(t) = 0 , ρ(0) = 0,

ġ(t) +
ρ(t)
μ(t)
− b(t) = 0 , g(0) = 0, (4.17)

τ̇(t) − e2g(t)

μ(t)
= 0 , τ(0) = 0,

ṡ(t) + b(t)s(t) − p(t)
μ(t)
− a(t) = 0 , s(0) = α1,

ṗ(t) − b(t)p(t) + μ(t)ω2(t)s(t) − μ(t) f (t) = 0 , p(0) = α2, (4.18)

γ̇(t) +
p2(t)
μ(t)

− μ(t)ω2(t)s2(t) + 2μ(t) f (t)s(t) − 2μ(t) f0(t) +
ρ(t)
μ(t)
= 0, γ(0) = 0,

where α1 and α2 are arbitrary real constants. The first system (4.17) is same as the one

in (3.17), so does the solution, given in (3.20). In system (4.18), taking time derivative of

the first equation and substituting into the second one, we obtain that s(t) must satisfy the

differential equation

s̈ +
μ̇(t)
μ(t)

ṡ +
[
ω2(t) +

(
ḃ(t) +

μ̇(t)
μ(t)

b(t) − b2(t)
)]

s = ȧ(t) − a(t)
[
b(t) − μ̇(t)

μ(t)

]
+ f (t), (4.19)

and initial conditions s(0) = α1, ṡ(0) = α2 + a(0) − α1b(0). Therefore, its solution can

be written in the form s(t) = rαg (t) ≡ α1r1(t) + α2r2(t) + rp(t), where r1(t), r2(t), rp(t) are

as defined in the statement of Proposition 4.1. Thus, the solution to the second system is

obtained as follows

s(t) = rαg (t),

p(t) = pαg (t) ≡ μ(t)
(
ṙαg (t) + b(t)rαg (t) − a(t)

)
, (4.20)

γ(t) = −
∫ t

0

⎛⎜⎜⎜⎜⎝ (pαg )2(t′)

μ(t′)
+ μ(t′)

[
−ω2(t′)(rαg )2(t′) + 2 f (t′)rαg (t′) − 2 f0(t′)

]
+ b(t′) +

ṙ1(t′)
r1(t′)

⎞⎟⎟⎟⎟⎠ dt′.

Notice that the above non-linear Riccati type system determines both the moving bound-

ary and the analytical solution of the diffusion problem, in terms of solutions to the

second-order linear characteristic equation (4.3). Indeed, writing the auxiliary functions

into the ansatz (4.14), we get
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Φ̃(y, t) =
1√
r1(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)]
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
)

y2

]
× exp
[
−pαg (t)y

]
× Ψ
(

y
r1(t)
,

r2(t)
r1(t)

)
, (4.21)

where Lαg (t) is as defined in (4.5) and using back substitution y = x − rαg (t), we get the

desired solution (4.4) satisfying the IC (4.1b). Lastly, we notice that τ(t) is positive and

strictly increasing for 0 < t < T, so that τ = τ(t), 0 < t < T if and only if t = t(τ),

0 < τ < τ(T ). Therefore, one can easily show that solution (4.4) will satisfy the Dirichlet

BC (4.1c) if Ψ(η, τ) satisfies the Dirichlet BC given in (4.9), which completes the proof.

�

Obviously, the characteristic equation (4.3) is directly related to the transport pro-

cess described by the equation (4.1a). Its solution is of the form rαg (t) = rαh (t)+rp(t),where

the homogeneous solution rαh (t) is affected by diffusion, dilation and a first-order reaction

with quadratic in position coefficient, while the particular solution rp(t) appears due to

convection and/or a first-order reaction with linear in position coefficient. The solution of

the pure IVP for the PDE (4.1a) is also described in terms of solution of the ODE (4.3),

(Atılgan Büyükaşık & Bozacı, 2021). Therefore, the special choice of the boundary as

to satisfy the characteristic equation appears as a natural setting for reduction to standard

model and construction of exactly solvable models.

4.1.1. Integral representation and fundamental solution

Using the integral representation of solution to the Dirichlet IBVP for heat equa-

tion (4.8) and the result of Proposition 4.1, an integral representation of the solution to

mIBVP (4.1) is found as

Φαg (x, t) =
1√
r1(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)]
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
) (

x − rαg (t)
)2] × exp

[
− pαg (t)(x − rαg (t))

]
(4.22)

×
(∫ ∞

0

GD(ηαg (x, t), ξ, τ(t))Φ0(ξ + α1)eα2ξdξ −
∫ τ(t)

0

Kη(ηαg (x, t), τ(t) − τ′)Ψ(0, τ′)dτ′
)
,
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whenever the given initial and boundary data guarantee its convergence.

We notice that solution properties depend on the initial data Φ0(x), the time-

dependent parameters of equation (4.1a), and the moving boundary s(t). When we have

s(t) = 0 and a(t) = f (t) = 0, then the mIBVP reduces to the IBVP defined on the

half-line which we consider in Proposition 3.2. Therefore, the influence of the moving

boundary can be seen by comparing solutions given by (4.4) and (3.46). We see that the

prescribed moving boundary not only acts as displacement, but as expected it induces an

additional exponential factor with linear in space argument and the Lagrangian function,

Lαg (t) ≡ L(r(t), ṙ(t), t) which affects the solution amplitude. The Lagrangian type function

describes the motion of the boundary point and the Euler-Lagrange equation

d
dt

(
∂L
∂ṙ

)
(r(t), ṙ(t), t) − ∂L

∂r
(r(t), ṙ(t), t) = 0,

recovers the Newtonian equation of motion given by (4.3). The corresponding action

functional S αg (t) =
∫ t

0
Lαg (t′)dt′ carries the properties of the boundary function and the

time-dependent parameters, and influences the amplitude of the solution. For instance,

if S αg (t) is positive and increasing, then the amplitude decreases in time, while if S αg (t) is

oscillatory, the amplitude will also oscillate.

Fundamental Solution:

Consider equation (4.1a) with shifted Dirac-delta initial condition Φ(x, 0) = δ(x − x0) on

α1 < x < ∞, x0 > α1, where α1 = s(0), and homogeneous Dirichlet boundary data D(t) =

0, t > 0. Then it reduces to the Dirichlet problem for standard heat equation on the half-

line with initial condition Ψ(η, 0) = δ(η− (x0 −α1)) eα2η and Dirichlet boundary condition

Ψ(0, τ) = 0. By using fundamental solution for heat problem, mIBVP for diffusion type

equation with boundary s(t) = rαg (t), as described in Proposition 4.1, has fundamental

solution of the form

Kαg (x, x0; t) = eα2(x0−α1) × 1√
2πr2(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)]
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
) (

x − rαg (t)
)2] × exp

[
− pαg (t)(x − rαg (t))

]
(4.23)

×
⎛⎜⎜⎜⎜⎜⎜⎝exp

⎡⎢⎢⎢⎢⎢⎢⎣−
(
x − rαg (t) − (x0 − α1)r1(t)

)2
2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎥⎦ − exp

⎡⎢⎢⎢⎢⎢⎢⎣−
(
x − rαg (t) + (x0 − α1)r1(t)

)2
2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ .
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Clearly, it is seen that the fundamental solution is completely determined by the time-

dependent parameters of the generalized diffusion type equation and the boundary s(t) =

rαg (t). For instance, in the absence of the reaction term with quadratic in x coefficient

(ω(t) = 0), for given b(t) we have the relation ṙ1(t)/r1(t) = −b(t), so that the Gaussian term

in above solution vanishes as expected. On the other side, even when a(t) = f (t) = 0, there

will be shifting of position coordinate by rαh (t) due to moving boundary, and exponential

term with linear in x argument will be present in the solution.

However, in general, evaluating the integrals in (4.22) explicitly is a formidable

task and requires numerical or asymptotic approaches. Due to this, we provide exact

solutions corresponding only to homogeneous boundary data in next models.

4.1.2. Exactly solvable models with moving boundary

In this section, we consider three types of models as diffusion-reaction, convection-

diffusion and convection-diffusion-reaction type as follows.

4.1.2.1. Model 1 : Diffusion-Reaction type mIBVP

First we study the following model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φt =
1
2
e−γtΦxx − ω

2
0

2
eγt x2Φ, s(t) < x < ∞, t > 0,

Φ(x, 0) = Φ0(x), s(0) < x < ∞,
Φ(s(t), t) = 0, t > 0,

(4.24)

with exponentially decaying diffusion coefficient where μ(t) = eγt, γ > 0, and reaction

term with time-dependent and quadratic in x coefficient, where ω2(t) = −ω2
0, ω0 > 0. The

corresponding characteristic equation is homogeneous

r̈ + γṙ − ω2
0r = 0, t > 0, (4.25)
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with damping Γ(t) = γ > 0 due to the time-dependent diffusion coefficient. It has smooth

and positive solutions increasing with time

r1(t) =
ω0

Ω
e−γt/2 cosh(Ωt + σ), r2(t) =

e−γt/2

Ω
sinh(Ωt), t > 0, (4.26)

with

Ω =

√
γ2/4 + ω2

0
, σ = tanh−1(γ/(2Ω)),

and satisfying the initial conditions r1(0) = 1, ṙ1(0) = 0, r2(0) = 0, ṙ2(0) = 1. Since

Ω > γ/2, both r1(t) and r2(t) tend to infinity as time increases. Then, if the position of

the boundary changes according to s(t) = rαh (t) ≡ α1r1(t) + α2r2(t), where α1 = s(0) is the

initial position and α2 = ṡ(0) is the initial velocity, then the mIBVP (4.24) has solution

Φαh (x, t) =

√
Ωeγt/2

ω0 cosh(Ωt + σ)
× exp

[
−
∫ t

0

Lαh (t′)dt′
]

× exp

[
−eγt

2

(
Ω tanh(Ωt + σ) − γ

2

)
(x − rαh (t))2

]
× exp
[−pαh (t)(x − rαh (t))

]
× Ψ (ηαh (x, t), τ(t)

)
, (4.27)

where

Lαh (t) =
eγt

2

(
(ṙαh (t))2 + ω2

0(rαh (t))2
)
, pαh (t) = eγtṙαh (t), (4.28)

and classical action

Sαh (t) =
∫ t

0

Lαh (t′)dt′ =
α2

1ω
2
0γ − α2

2γ + 4α1α2ω
2
0

8Ω2
(cosh(2Ωt) − 1) +

α2
2 + α

2
1ω

2
0

4Ω
sinh(2Ωt),

are smooth and increasing in time functions. Also, in (4.27) we have

ηαh (x, t) =
Ωeγt/2

ω0 cosh(Ωt + σ)
(x − rαh (t)), τ(t) =

sinh(Ωt)
ω0 cosh(Ωt + σ)

, (4.29)
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and Ψ(η, τ) is solution of the following IBVP

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ψτ =

1
2
Ψηη, 0 < η < ∞, 0 < τ < 2/(γ + 2Ω),

Ψ(η, 0) = Φ0(η + α1) eα2η, 0 < η < ∞,
Ψ(0, τ) = 0, 0 < τ < 2/(γ + 2Ω).

(4.30)

In this model, since τ(t) is positive and increasing function of time, for t > 0, then its

inverse t = t(τ) = 1/Ω tanh−1(2Ωτ/(2 − γτ)) is defined for τ < 2/(γ + 2Ω). And we

note that, since the PDE in this problem is symmetric with respect to space inversion and

there is no external forcing, then by letting α1 = 0, α2 = 0 one has rαh (t) = 0, pαh (t) = 0,

Lαh (t) = 0, and therefore from (4.27) one can easily recover the solution of the problem on

the half-line 0 < x < ∞. This allows us to see explicitly how the moving boundary affects

the solution. Indeed, in the presence of a moving boundary we see that the amplitude

of the solution is influenced by the Lagrangian Lαh (t), the boundary also contributes to

displacement in position by rαh (t), and momentum pαh (t) brings an additional exponential

term with linear in position argument.

Fundamental solution: We consider mIBVP (4.24) with Dirac-delta data

Φ0(x) = δ(x − x0), α1 < x < ∞, x0 > α1. (4.31)

In that case solution is found explicitly

Kαh (x, x0; t) = eα2(x0−α1) ×
√

Ωeγt/2

2π sinh(Ωt)
× exp

[
−
∫ t

0

Lαh (t′)dt′
]

(4.32)

× exp

[
−eγt

2

(
Ω tanh(Ωt + σ) − γ

2

)
(x − rαh (t))2

]
× exp
[−pαh (t)(x − rαh (t))

]

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(
x − rαh (t) − (x0 − α1)r1(t)

)2
2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ − exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(
x − rαh (t) + (x0 − α1)r1(t)

)2
2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where α1 = s(0) and α2 = ṡ(0) are initial position and velocity, respectively.
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(a) (b)

Figure 4.1 Solution (4.32) with α1 = 0.5, ω0 = 1, γ = 3, x0 = 2 and (a) α2 = −3.5.
(b) α2 = 2.

Here, since Ω > γ/2, as x → ∞ the solution approaches zero for any time t > 0,

that is it satisfies the boundary condition Φαh (∞, t) = 0. In Fig.4.1a for parameters α1 =

0.5, α2 < 0 the boundary point initially located at x = 0.5 moves along x-axis in negative

direction and with increasing speed, while in Fig.4.1b we take α1 = 0.5 and α2 > 0, and

observe the boundary propagates in positive x-direction with speed, that can be controlled

by parameters γ > 0 and ω0 > 0. In any case, the Dirac-delta distribution initially located

at x = 2 smoothly spreads out and vanishes with time.

Example 4.1 For the mIBVP (4.24), we take a family of nonnegative and oscillatory type

initial data

Φ0(x) = Ae−Cx(1 + cos(Bx)), α1 < x < ∞, (4.33)

with amplitude A > 0, frequency B ∈ R and parameter C ≥ 0 that determines the rate

of decrease as x→ ∞. Clearly, parameter B can be used also to control the values of the

position coordinate, where local minima and maxima of the initial distribution occur. In

that case, we obtain a family of exact solutions given as

Φαh (x, t) =

√
Ωeγt/2

ω0 cosh(Ωt + σ)
× exp

[
−
∫ t

0

Lαh (t′)dt′
]

× exp

[
−eγt

2

(
Ω tanh(Ωt + σ) − γ

2

)
(x − rαh (t))2

]
× exp
[−pαh (t)(x − rαh (t))

]
× Ψ(ηαh (x, t), τ(t)), (4.34)
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where ηαh (x, t), τ(t) are given in (4.29) and

Ψ(η, τ) = A eC̃2τ
[
e−C̃η

(
1 + Erf

(
η − C̃τ√

2τ

))
+ eC̃η

(
−1 + Erf

(
η + C̃τ√

2τ

)) ]
(4.35)

+
A
4

e
(C̃−iB)2τ

2

[
e−(C̃−iB)η Erf

(
η + (iB − C̃)τ√

2τ

)
− e(C̃−iB)η Erf

(−η + (iB − C̃)τ√
2τ

)]

+
A
4

e
(C̃+iB)2τ

2

[
e−(C̃+iB)η Erf

(
η − (iB + C̃)τ√

2τ

)
− e(C̃+iB)η Erf

(−η − (iB + C̃)τ√
2τ

)]
,

with C̃ = C − α2 ≥ 0. Here, parameter B controls the frequency of the oscillations

in space, and parameters γ and ω0 control the spreading rate of the solution as time

increases. For certain parameters, where we take α1 = 0 for simplicity, the behavior of

the solution is shown in Fig.4.2. The boundary initially located at x = 0 moves along

x-axis in positive direction and solution is zero on the moving boundary for all t > 0, as

required. The initial profile is oscillatory in space but oscillations quickly disappear and

their amplitude decreases as x→ ∞.

Figure 4.2 Solution (4.34) with A = 20, B = 12, C = 0.5, ω0 = 1, γ = 1, α1 = 0 and

α2 = 0.5.

Example 4.2 Next, we take a family of positive initial functions

Φ0
c,n(x) = A e−c2(x−c1)(x − c1)n, α1 < x < ∞, c1 ≥ α1, n = 0, 1, 2, ..., (4.36)

parametrized by c = (c1, c2), with A > 0, displacement parameter c1 and parameter c2 > 0

that determines the rate of convergence for given n. Since for given n the maximum of the
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initial function occurs at x = c1 + (n/c2), the parameters c1, c2 can be used also to control

the value of the position coordinate where the maximum occurs. Then, the mIBVP (4.24)

has solution of the form (4.27), where ηαh (x, t), τ(t) are given in (4.29) and Ψ(η, τ) is

solution of the IBVP (4.8) with IC Ψ(η, 0) = A eα2η e−c2(η−(c1−α1))
(
η − (c1 − α1)

)n
, η > 0

and BC Ψ(0, τ) = 0 for 0 < τ < 2/(γ + 2Ω). For the special choice α2 = c1 and α2 = c2,

solution of the heat problem is of the form

Ψn(η, τ) = A
∫ ∞

0

(e− (η−ξ)2
2τ − e−

(η+ξ)2

2τ√
2πτ

)
ξndξ, n = 0, 1, 2, .... (4.37)

For odd powers n = 2p + 1, p = 0, 1, 2, ..., solutions (4.37) become

Ψ2p+1(η, τ) = AH2p+1(η, τ), p = 0, 1, 2, ..., (4.38)

where H2p+1(η, τ) are odd Kampe de Feriet polynomials (KFP). The first few Kampe de

Feriet polynomials in explicit form are H0 = 1, H1(η, τ) = η, H2(η, τ) = η2+τ, H3(η, τ) =

η3 + 3ητ. Therefore, one family of solutions to the diffusion problem is

Φα,2p+1(x, t) = A ×
√

Ωeγt/2

ω0 cosh(Ωt + σ)
× exp

[
−
∫ t

0

Lαh (t′)dt′
]

× exp

[
−eγt

2

(
Ω tanh(Ωt + σ) − γ

2

)
(x − rαh (t))2

]
× exp
[−pαh (t)(x − rαh (t))

]
× H2p+1

(
Ωeγt/2(x − rαh (t))
ω0 cosh(Ωt + σ)

,
sinh(Ωt)

ω0 cosh(Ωt + σ)

)
. (4.39)

For p = 0, i.e n = 1, and by choosing parameters α1 = 0 for simplicity, α2 = 2, the

solution (4.39) corresponding to IC Φ0
2,1(x) = Axe−2x explicitly becomes

Φα,1(x, t) = A ×
√

Ωeγt/2

ω0 cosh(Ωt + σ)
× exp

[
−
∫ t

0

Lαh (t′)dt′
]

× exp

[
−eγt

2

(
Ω tanh(Ωt + σ) − γ

2

)
(x − rαh (t))2

]
× exp
[−pαh (t)(x − rαh (t))

]
×
(
Ωeγt/2(x − rαh (t))
ω0 cosh(Ωt + σ)

)
. (4.40)
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Indeed, it is seen that limt→0Φα,1(s(t), t) = 0 and limx→0Φα,1(x, 0) = limx→0Φ
0
2,1(x) = 0.

Since the compatibility condition is satisfied, there is no jump at origin and as x → ∞,
the initial function approaches zero. On the boundary solution is also zero for t > 0. For

any time t > 0, the solution approaches zero as x→ ∞, since Ω > γ/2 and all parameters

γ, ω0, α2 are positive real numbers. In Fig.4.3a, one can see the behavior of solution.

On the other hand, we note that the even KFP’s do not satisfy the Dirichlet BC

Ψ(0, τ) = 0. So, for even powers n = 2p, p = 0, 1, 2, ..., solutions (4.37) can be written

Ψ2p(η, τ) = A

⎛⎜⎜⎜⎜⎜⎜⎝
∫ ∞

0

e−
(η−ξ)2

2τ − e−
(η+ξ)2

2τ√
2πτ

ξ2pdξ

⎞⎟⎟⎟⎟⎟⎟⎠ ≡ A
(
h−2p(η, τ) − h+2p(η, τ)

)
, (4.41)

where h−2p(η, τ) and h+2p(η, τ) are defined as, (Widder, 1975)

h−p (η, τ) =

∫ ∞
0

e−
(η−ξ)2

2τ√
2πτ
ξpdξ, h+p (η, τ) =

∫ ∞
0

e−
(η+ξ)2

2τ√
2πτ
ξpdξ. (4.42)

Therefore another solution family for diffusion problem corresponding to (4.41) is

Φα,2p(x, t) = A ×
√

Ωeγt/2

ω0 cosh(Ωt + σ)
× exp

[
−
∫ t

0

Lαh (t′)dt′
]

× exp

[
−eγt

2

(
Ω tanh(Ωt + σ) − γ

2

)
(x − rαh (t))2

]
× exp
[−pαh (t)(x − rαh (t))

]
(4.43)

×
[
h−2p

(
Ωeγt/2(x − rαh (t))
ω0 cosh(Ωt + σ)

,
sinh(Ωt)

ω0 cosh(Ωt + σ)

)
− h+2p

(
Ωeγt/2(x − rαh (t))
ω0 cosh(Ωt + σ)

,
sinh(Ωt)

ω0 cosh(Ωt + σ)

)]
.

For p = 0 and parameters α1 = 0, α2 = 2, the solution (4.43) corresponding to IC

Φ0
2,0(x) = Ae−2x is found as

Φα,0(x, t) = A ×
√

Ωeγt/2

ω0 cosh(Ωt + σ)
× exp

[
−
∫ t

0

Lαh (t′)dt′
]

× exp

[
−eγt

2

(
Ω tanh(Ωt + σ) − γ

2

)
(x − rαh (t))2

]
× exp
[−pαh (t)(x − rαh (t))

]
× Erf

(
Ωeγt/2
(
x − rαh (t)

)
√

2ω0 cosh(Ωt + σ) sinh(Ωt)

)
. (4.44)
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Here, since limt→0Φα,0(s(t), t) = 0 and limx→0Φα,0(x, 0) = A, the compatibility condition

is not satisfied at point (x, t) = (0, 0). This means that there is a jump of, for example,

temperature at the extremity as soon as x > 0. Then as x → ∞, the initial function goes

to zero exponentially. Behavior of solution and spreading of moving boundary controlled

by γ, ω is illustrated in Fig.4.3b.

(a) (b)

Figure 4.3 (a) Solution Φα,1(x, t) with A = 60, ω0 = 2, γ = 3, c1 = α1 = 0 and

c2 = α2 = 2. (b) Solution Φα,0(x, t) with A = 60, ω0 = 2, γ = 3,
c1 = α1 = 0 and c2 = α2 = 2.

4.1.2.2. Model 2 : Convection-Diffusion type mIBVP

Now, we introduce the following model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φt =
1

2μ(t)Φxx − ((a(t) − b(t)x)Φ
)

x , s(t) < x < ∞, t ∈ (0,T ),

Φ(x, 0) = Φ0(x), s(0) < x < ∞,
Φ(s(t), t) = 0, 0 < t < T,

(4.45)

with time-dependent diffusion coefficient and velocity field v(x, t) = a(t) − b(t)x of the

fluid (medium) flow. Here, the characteristic equation is inhomogeneous

r̈ +
μ̇(t)
μ(t)

ṙ +
(
ḃ(t) +

μ̇(t)
μ(t)

b(t) − b2(t)
)

r = ȧ(t) − a(t)
[
b(t) − μ̇(t)

μ(t)

]
, (4.46)
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with external forcing term induced by the flow velocity of the medium. According to

Proposition 4.1, if the boundary satisfies the equation (4.46), that is if s(t) ≡ rαg (t) =

α1r1(t) + α2r2(t) + rp(t), then the solution of the mIBVP (4.45) is of the form

Φαg (x, t) = exp

[
−
∫ t

0

Lαg (t′)dt′
]
× exp
[
− pαg (t)(x − rαg (t))

]

×
( ∫ ∞

0

GD(ηαg (x, t), ξ, τ(t))Φ0(ξ + α1)eα2ξdξ, (4.47)

with

Lαg (t) =
μ(t)
2

( (
ṙαg (t) + b(t)rαg (t) − a(t)

)2 )
, pαg (t) = μ(t)

(
ṙαg (t) + b(t)rαg (t) − a(t)

)
.

Fundamental solution: When we consider mIBVP (4.45) with Dirac-delta initial

condition (4.31), the fundamental solution is found explicitly

Kαg (x, x0; t) = eα2(x0−α1) × 1√
2πr1(t)r2(t)

× exp

[
−
∫ t

0

Lαg (t′)dt′
]
× exp
[
− pαg (t)(x − rαg (t))

]

×
⎛⎜⎜⎜⎜⎜⎜⎝exp

⎡⎢⎢⎢⎢⎢⎢⎣−
(
x − rαg (t) − (x0 − α1)r1(t)

)2
2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎥⎦ − exp

⎡⎢⎢⎢⎢⎢⎢⎣−
(
x − rαg (t) + (x0 − α1)r1(t)

)2
2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ . (4.48)

Remark: Notice that, since the velocity field is v(x, t) = a(t) − b(t)x, then the

velocity of a fluid particle along any path x(t) by definition is

ẋ(t) = a(t) − b(t)x(t). (4.49)

By direct calculation, we see that any path x(t) with velocity (4.49) satisfies the inhomoge-

neous characteristic equation (4.46). In this model, since rp(t) satisfies the characteristic

equation (4.46) and the IC’s rp(0) = 0, ṙp(0) = a(0), then the following holds

ṙp(t) = a(t) − b(t)rp(t).
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It follows that, the boundary s(t) will move with the velocity of the fluid flow if

ṡ(t) = a(t) − b(t)s(t). (4.50)

Since s(t) = α1r1(t) + α2r2(t) + rp(t), then the condition (4.50) becomes

α1

(
ṙ1(t) + b(t)r1(t)

)
+ α2

(
ṙ2(t) + b(t)r2(t)

)
+
(
ṙp(t) −

(
a(t) − b(t)rp(t)

) )
= 0. (4.51)

In this model, we have b(t) = −ṙ1(t)/r1(t) since ω(t) = 0, and particular solution rp(t)

satisfies ṙp(t) = a(t) − b(t)rp(t). Then the equation (4.51) will be true if α2 = 0, where

α2 = ṡ(0). As a result, any boundary point with position described by s(t) = α1r1(t)+ rp(t)

will move with the velocity of the fluid flow and pαg (t) = 0, Lαg (t) = 0. Therefore, if we let

α2 = 0, the fundamental solution (4.48) becomes

Kα1
g (x, x0; t) =

1√
2πr1(t)r2(t)

(4.52)

×
⎛⎜⎜⎜⎜⎜⎝exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) − (x0 − α1)r1(t)
)2

2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎦ − exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) + (x0 − α1)r1(t)
)2

2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠ .

Moments of the Solution Distribution

When α2 = 0, for the solution distribution Kα1
g (x, x0; t), initially the total amount is

∫ ∞
x=α1

Φ(x, 0)dx =
∫ ∞

x=α1

δ(x − x0)dx = 1, x0 > α1,

and the total amount of substance is found as

M0(t) =
∫ ∞

x=rα1
g (t)

Kα1
g (x, x0; t)dx =

1√
2πr1(t)r2(t)

(4.53)

×
∫ ∞

x=rα1
g (t)

(
exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) − (x0 − α1)r1(t)
)2

2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎦ − exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) + (x0 − α1)r1(t)
)2

2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎦
)

dx.
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As a result, we obtain

M0(t) = Erf

(
x0 − α1√

2τ(t)

)
, τ(t) =

r2(t)
r1(t)
, (4.54)

where Erf(x) is the error function with Erf(0) = 0 and Erf(∞) = 1. In that case, in general,

the total amount of substance is not conserved in the spatial domain s(t) < x < ∞. It

changes according to τ(t) as follows

(i) If τ(t) → 0 as t → ∞, then M0(t) → 1. In that case, the concentration amount is

conserved during time evolution.

(ii) If τ(t)→ ∞, then M0(t)→ 0.

(iii) If |τ(t)| < c as t → ∞, for any positive real constant c, then 0 < |M0(t)| < 1.

So, one can say that the total substance amount is between 0 and 1.

First moment : In this case, the first moment becomes

M1(t) =
∫ ∞

x=rα1
g (t)

x Kα1
g (x, x0; t) dx =

1√
2πr1(t)r2(t)

×
∫ ∞

x=rα1
g (t)

x
(

exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) − (x0 − α1)r1(t)
)2

2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎦ − exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) + (x0 − α1)r1(t)
)2

2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎦
)

dx,

=
1√
π

( ∫ ∞
−(x0−α1)

√
r1(t)√

2r2(t)

( √
2r1(t)r2(t)y + rα1

g (t) + (x0 − α1)r1(t)
)

exp
(
−y2
)

dy

−
∫ ∞

(x0−α1)
√

r1(t)√
2r2(t)

( √
2r1(t)r2(t)y + rα1

g (t) − (x0 − α1)r1(t)
)

exp
(
−y2
)

dy
)
.

Evaluating the integrals gives

M1(t) = (x0 − α1)r1(t) + rα1
g (t) Erf

(
(x0 − α1)√

2τ(t)

)
. (4.55)

= (x0 − α1)r1(t) + rα1
g (t) M0(t).
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•Mean position : Normalizing the first moment by total amount gives the center

of the distribution

〈x〉(t) = M1(t)
M0(t)

=

∫ ∞
x=rα1

g (t)
x Kα1

g (x, x0; t)dx

∫ ∞
x=rα1

g (t)
Kα1

g (x, x0; t)dx
= rα1

g (t) +
(x0 − α1)r1(t)

Erf
(

(x0−α1)√
2τ(t)

) , (4.56)

which depends on the behavior of r1(t), r2(t) and rp(t).We notice that in this model bound-

ary propagates according to s(t) = rα1
g (t) and therefore

|〈x〉(t) − s(t)| = (x0 − α1)r1(t)

Erf
(

(x0−α1)√
2τ(t)

) , (4.57)

from which we can determine the behavior as t → ∞.

Second moment : We have the second spatial moment as follows

M2(t) =
∫ ∞

x=rα1
g (t)

x2 Kα1
g (x, x0; t)dx =

1√
2πr1(t)r2(t)

×
∫ ∞

x=rα1
g (t)

x2

(
exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) − (x0 − α1)r1(t)
)2

2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎦ − exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) + (x0 − α1)r1(t)
)2

2r1(t)r2(t)

⎤⎥⎥⎥⎥⎥⎦
)

dx,

=
1√
π

( ∫ ∞
−(x0−α1)

√
r1(t)√

2r2(t)

( √
2r1(t)r2(t)y + rα1

g (t) + (x0 − α1)r1(t)
)2

exp
(
−y2
)

dy

−
∫ ∞

(x0−α1)
√

r1(t)√
2r2(t)

( √
2r1(t)r2(t)y + rα1

g (t) − (x0 − α1)r1(t)
)2

exp
(
−y2
)

dy
)
,

which gives

M2(t) = 2 (x0 − α1) r1(t)rα1
g (t) +

(
(rα1

g (t))2 + (x0 − α1)2 r2
1(t) + r1(t)r2(t)

)
Erf

(
(x0 − α1)

√
r1(t)√

2r2(t)

)

+
(x0 − α1)

√
2r1(t)r2(t) r1(t)√
π

× exp

[
−r1(t)(x0 − α1)2

2r2(t)

]
.
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Then normalizing the second moment by total amount of concentration, we get

mean square

〈x2〉(t) = M2(t)
M0(t)

=

∫ ∞
x=rα1

g (t)
x2 Kα1

g (x, x0; t)dx

∫ ∞
x=rα1

g (t)
Kα1

g (x, x0; t)dx
, (4.58)

= (rα1
g (t))2 + (x0 − α1)2r2

1(t) + r1(t)r2(t)

+
2(x0 − α1)r1(t)rα1

g (t) + (x0 − α1)
√

2r1(t)r2(t)r1(t) exp
[
− r1(t)(x0−α1)2

2r2(t)

]
/
√
π

Erf
(

(x0−α1)
√

r1(t)√
2r2(t)

) .

• Variance : The variance about the mean is

Var(t) =
∫ ∞

x=rα1
g (t)

(x − 〈x〉)2 Kα1
g (x, x0; t)dx =

M2(t)
M0(t)

−
(

M1(t)
M0(t)

)2
,

= r1(t)r2(t) + (x0 − α1)2r2
1(t)
(
1 − 1(

Erf
(

(x0−α1)
√

r1(t)√
2r2(t)

))2
)

+ (x0 − α1)r1(t)
( √

2r1(t)r2(t) exp
[
− r1(t)(x0−α1)2

2r2(t)

]
√
π Erf
(

(x0−α1)
√

r1(t)√
2r2(t)

) )
.

Notice that only homogeneous solutions, r1(t), r2(t), of the characteristic equations affect

the variance about mean.

In the following examples, we study the model (4.45) with concrete coefficients,

Dirac-delta initial data and homogeneous boundary condition. Then we analyze the mo-

tion of the mean position and the moving boundary.

Example 4.3 (mIBVP with homogeneous Dirichlet BC)

Now, in mIBVP (4.45), by taking the coefficients

μ(t) = 1, a(t) = a0 cosh(Λ0t), a0 ≥ 0, b(t) = −Λ0 tanh(Λ0t), Λ0 > 0, (4.59)
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we have the following inhomogeneous characteristic equation

r̈ − Λ2
0r = 2a0Λ0 sinh(Λ0t), t > 0, (4.60)

with solutions

r1(t) = cosh(Λ0t), r2(t) = sinh(Λ0t)/Λ0, rp(t) = a0 t cosh(Λ0t).

Therefore, if the boundary propagates according to

s(t) = rαg (t) ≡ (α1 + a0t) cosh(Λ0t) + α2 sinh(Λ0t)/Λ0, (4.61)

then the problem has analytical solution of the form

Φαg (x, t) =
√
Λ0√

π sinh(2Λ0t)
× exp
[
− α

2
2

2Λ0

tanh(Λ0t)
]
× exp
[
− α2sech(Λ0t)

(
x − rαg (t)

]

×
∫ ∞

0

(
exp
[
−
(
x − rαg (t) − ξ cosh(Λ0t)

)2
sinh(2Λ0t)/Λ0

]

− exp
[
−
(
x − rαg (t) + ξ cosh(Λ0t)

)2
sinh(2Λ0t)/Λ0

])
× Φ0(ξ + α1)eα2ξdξ. (4.62)

Thus, the exact form of the solution can be found if the integral converges for the given

initial data Φ0(x). Notice that since a(t) = a0 cosh(Λ0t) and b(t) = −Λ0 tanh(Λ0t), it

implies that rp(t) satisfies ṙp(t) = a(t) − b(t)rp(t). And we have generalized momentum

pαg (t) = α2sech(Λ0t). In what follows we consider two particular cases : in the first one

by choosing α2 � 0, we have boundary moves with different velocity than the velocity of

the fluid flow. The latter involves the case α2 = 0, where the boundary moves with the

velocity of the fluid flow.
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Case 1 . Let α2 � 0 so that the boundary moves according to (4.61). In that case

the generalized momentum and Lagrangian type function is obtained respectively,

pα2
g (t) = α2sech(Λ0t), Lα2

g (t) =
α2

2

2
sech2(Λ0t).

Therefore, the explicit form of the fundamental solution is

Kαg (x, x0; t) = eα2(x0−α1)

√
Λ0

π sinh(2Λ0t)
× exp
[
− α

2
2

2Λ0

tanh(Λ0t)
]

× exp
(
− α2sech(Λ0t)

(
x − [(α1 + a0 t) cosh(Λ0t)) + α2(sinh(Λ0t)/Λ0)]

))

×
[

exp
(
−
(
x − [(a0 t + x0) cosh(Λ0t) + α2(sinh(Λ0t)/Λ0)

])2
sinh(2Λ0t)/Λ0

)

− exp
(
−
(
x − [(a0 t − x0 + 2α1) cosh(Λ0t) + α2(sinh(Λ0t)/Λ0)

])2
sinh(2Λ0t)/Λ0

)]
. (4.63)

We note that

lim
t→0

Kαg (x, x0; t) = e−α2(x−x0) (δ(x − x0) − δ(x + x0 − 2α1)) = δ(x − x0), (4.64)

since x = 2α1 − x0 is not in our domain, α1 < x < ∞. In the long time behavior the

solution (4.63) approaches zero.

Here, parameters a0 and Λ0 affect the displacement of the solution distribution, i.e

mean position, the velocity of both moving boundary and flowing medium. Moreover, Λ0

has influence also on spreading of the distribution.

The parameter α2 controls both the velocity of the boundary and the rate of de-

crease of distribution amplitude as x → ∞. In this case, since α2 � 0, the boundary

propagates with different velocity than the velocity of the medium. As α2 increases, the

distribution reaches the boundary in less time, then its amplitude vanishes.

On the other side, since the fundamental distribution (4.63) includes the expo-

nential terms which are quadratic and linear in x, finding the spatial moments is rather

complicated task. Here, we provide only the total amount of mass and mean position of
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the distribution as follows

M0(t) =
1

2
Erfc

( √
Λ0(α1 − x0 + α2 tanh(Λ0t)/Λ0)√

2 tanh(Λ0t)

)

− e2α2(x0−α1)

2
Erfc

( √
Λ0(x0 − α1 + α2 tanh(Λ0t)/Λ0)√

2 tanh(Λ0t)

)
,

which is not conserved as time increases. Then the first spatial moment of distribution is

found as

M1(t) =
1

2

√
sinh(2Λ0t)
πΛ0

×
(

exp

[
− (Λ0(x0 − α1) cosh(Λ0t) − α2 sinh(Λ0t))2

Λ0 sinh(2Λ0t)

]

− e2α2(x0−α1) exp

[
− (Λ0(x0 − α1) cosh(Λ0t) + α2 sinh(Λ0t))2

Λ0 sinh(2Λ0t)

] )

− α2 sinh(Λ0t)
2Λ0

[
Erfc

(
α1 − x0 + α2 tanh(Λ0t)/Λ0√

2 tanh(Λ0t)/Λ0

)

− e2α2(x0−α1)Erfc

(
x0 − α1 + α2 tanh(Λ0t)/Λ0√

2 tanh(Λ0t)/Λ0

) ]

+
1

2

(
(x0 + a0t) cosh(Λ0t) + α2 sinh[Λ0t]/Λ0

)
Erfc

(
α1 − x0 + α2 tanh(Λ0t)/Λ0√

2 tanh(Λ0t)/Λ0

)

− e2α2(x0−α1)

2

(
(−x0 + 2α1 + a0t) cosh(Λ0t) + α2 sinh(Λ0t)/Λ0

)
× Erfc

(
x0 − α1 + α2 tanh(Λ0t)/Λ0√

2 tanh(Λ0t)/Λ0

)
, (4.65)

and normalizing the first moment by the total amount, we get the mean position of the

concentration, 〈x〉(t). For certain parameters, one can see the behavior of solution dis-

tribution (4.63) initially located at x = 2 in Fig.4.4a. The time evolution for the mean

position and the boundary is shown in Fig.4.4b, where the boundary moves with the ve-

locity different than the velocity of the medium. It is seen that after certain time the center

of the solution reaches to the boundary for chosen parameters, then it goes on propagating

along the boundary.
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(a) (b)

Figure 4.4 For the parameters x0 = 2, Λ0 = 4, α1 = 0.5, a0 = 4, α2 = 6, (a) the

behavior of the solution distribution (4.63). (b) the motion of the mean

position of the solution distribution and the boundary.

Case 2 . Now let α2 = 0 so that the boundary moves according to

s(t) =
(
α1 + a0t

)
cosh(Λ0t).

Then we have pαg (t) = Lαg (t) = 0 and obtain the fundamental solution as

Kα1
g (x, x0; t) =

√
Λ0

π sinh(2Λ0t)
× (4.66)

×
[

exp
(
−
(
x − [(a0 t + x0) cosh(Λ0t)

])2
sinh(2Λ0t)/Λ0

)
− exp
(
−
(
x − [(a0 t − x0 + 2α1) cosh(Λ0t)

])2
sinh(2Λ0t)/Λ0

)]
,

which approaches zero as t → ∞. Fig.4.5a exhibits the behavior of fundamental distri-

bution (4.66) for certain parameters. It is seen that the concentration distribution never

reaches the boundary as time increases.

In this case, we have the total amount of substance

M0(t) = Erf

( √
Λ0(x0 − α1)√
2 tanh(Λ0t)

)
,
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which depends on time so that the total amount of substance is not conserved. Moreover

we have 0 <| M0(t) |< 1.

The first spatial moment is found as

M1(t) = (x0 − α1) cosh(Λ0t) +
(
α1 + a0t

)
cosh(Λ0t) × Erf

( √
Λ0(x0 − α1)√
2 tanh(Λ0t)

)
,

and normalizing by the total amount of substance, we get the expectation value of position

given explicitly as

〈x〉(t) =
(
α1 + a0t +

(x0 − α1)

Erf
( √
Λ0(x0−α1)√
2 tanh(Λ0t)

)) cosh(Λ0t). (4.67)

Therefore, the relation between mean position 〈x〉(t) and the boundary s(t) is of the form

〈x〉(t) = s(t) +
(x0 − α1) cosh(Λ0t)

Erf
( √
Λ0(x0−α1)√
2 tanh(Λ0t)

) . (4.68)

In Fig.4.5b, we illustrate the time evolution for the center of the distribution and the

moving boundary.

Then by finding the second spatial moment of the solution distribution

M2(t) =
(
sinh(2Λ0t)

2Λ0

+
((
α1 + a0t

)2
+ (x0 − α1)2 ) cosh2(Λ0t)

)
Erf

( √
Λ0(x0 − α1)√
2 tanh(Λ0t)

)
+ 2 (x0 − α1)

(
α1 + a0t

)
cosh2(Λ0t)

+
(x0 − α1)

√
sinh(2Λ0t) cosh(Λ0t)√
Λ0π

× exp

[
−Λ0(x0 − α1)2

2 tanh(Λ0t)

]
, (4.69)

we can obtain the expectation value of square of position as
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〈x2〉(t) =
(
sinh(2Λ0t)

2Λ0

+
((
α1 + a0t

)2
+ (x0 − α1)2 ) cosh2(Λ0t)

)

+
(
2 (x0 − α1)

(
α1 + a0t

)
cosh2(Λ0t)

)
× 1

Erf
( √
Λ0(x0−α1)√
2 tanh(Λ0t)

)
+

(x0 − α1)
√

sinh(2Λ0t) cosh(Λ0t)√
Λ0π

× exp

[
−Λ0(x0 − α1)2

2 tanh(Λ0t)

]
× 1

Erf
( √
Λ0(x0−α1)√
2 tanh(Λ0t)

) . (4.70)

Then, we get the variance formulated in (3.31)

Var(t) =
sinh(2Λ0t)

2Λ0

+

(
1 − 1(

Erf
( √
Λ0(x0−α1)√
2 tanh(Λ0t)

))2
)
(x0 − α1)2 cosh2(Λ0t)

+
(x0 − α1)

√
sinh(2Λ0t) cosh(Λ0t)√
Λ0π

× exp

[
−Λ0(x0 − α1)2

2 tanh(Λ0t)

]
× 1

Erf
( √
Λ0(x0−α1)√
2 tanh(Λ0t)

) . (4.71)

It is easy to see that as time increases, the variance goes to infinity, which means that the

concentration distribution decreases in time.

(a) (b)

Figure 4.5 For the parameters x0 = 2, Λ0 = 4, α1 = 0.5, a0 = 4, α2 = 0, (a) the

behavior of the distribution (4.66). (b) the mean position and the boundary.
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Example 4.4 (mIBVP with homogeneous Dirichlet BC)

As a second example, in mIBVP (4.45) we consider

μ(t) = eγt, γ > 0, a(t) = a0 sin(ωt), a0 ≥ 0, b(t) = β, β ∈ R,

so that we have exponentially decaying diffusion coefficient and sinusoidal velocity of the

flowing fluid with frequency ω > 0. The corresponding ODE is

r̈ + γṙ + (γβ − β2)r = F0 cos(ωt + θ), t > 0, (4.72)

where we denote F0 = a0

√
ω2 + (β − γ)2 and θ = arctan( β − γ/ω). We note that, the

sinusoidal velocity in diffusion equation has generated external periodic force in (4.72)

as expected, with amplitude F0 and phase shifting θ, both depending on frequency ω > 0

and β. For the discriminant Δ = (γ − 2β)2, we have homogeneous and particular solutions

respectively given as

r1(t) = e−βt,

r2(t) =
1

γ − 2β

(
e−βt − e−(γ−β)t) ,

rp(t) =
a0ω
(
ω2 + (β − γ)2

)
Ω

e−βt − (ω2 − γβ + β2)F0

Ω
cos(ωt + θ)

+
γωF0

Ω
sin(ωt + θ), (4.73)

where γ � 2β and Ω = (ω2 − γβ + β2)2 + (γω)2. The behavior of these solutions change

according to the the followings :

(i) When β < 0 and γ > 0, all solutions tends to infinity as t → ∞.
(ii) If β = 0 and γ > 0, then r1(t) becomes constant function, r2(t)→ 1/γ and rp(t)

just oscillates as time increases.

(iii) If 0 < γ < β, then while r1(t) goes to zero, r2(t) tends to infinity as t → ∞,
and the particular solution keeps oscillating in time.

As before, in what follows we consider two particular cases : α2 � 0 and α2 = 0.
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Case 1 . Assume α2 � 0 in order to have boundary moves according to

s(t) =
(
α1 +

α2

γ − 2β
+

a0ω
(
ω2 + (β − γ)2

)
Ω

)
e−βt − α2

γ − 2β
e−(γ−β)t

− (ω2 − γβ + β2)F0

Ω
cos(ωt + θ) +

γωF0

Ω
sin(ωt + θ), (4.74)

with the momentum and Lagrangian function are obtained respectively as follows

pαg (t) = α2eβt, Lαg (t) =
α2

2

2
e−(γ−2β)t. (4.75)

Therefore, we obtain the fundamental solution

Kαg (x, x0; t) = eα2(x0−α1)

√
γ − 2β

2π
(
e−2βt − e−γt

) × exp

⎡⎢⎢⎢⎢⎢⎢⎣−α
2
2

(
1 − e−(γ−2β)t

)
2γ − 4β

⎤⎥⎥⎥⎥⎥⎥⎦ × exp
[
−α2eβt(x − rαg (t))

]

×
(

exp

⎡⎢⎢⎢⎢⎢⎢⎣−
(
x − rαg (t) − (x0 − α1)e−βt

)2
2
(
e−2βt − e−γt

)
/(γ − 2β)

⎤⎥⎥⎥⎥⎥⎥⎦ − exp

⎡⎢⎢⎢⎢⎢⎢⎣−
(
x − rαg (t) + (x0 − α1)e−βt

)2
2
(
e−2βt − e−γt

)
/(γ − 2β)

⎤⎥⎥⎥⎥⎥⎥⎦
)
, (4.76)

which satisfies the boundary condition, Kαg (s(t), x0; t) = 0, as required. And we note also

that Kαg (∞, x0, t) = 0 for any t > 0.

For this example, the total mass is in the following form

M0(t) =
1

2
Erfc

⎛⎜⎜⎜⎜⎜⎜⎝α1 − x0 + α2

(
1 − e−(γ−2β)t

)
/(γ − 2β)

2
√(

1 − e−(γ−2β)t) /(γ − 2β)

⎞⎟⎟⎟⎟⎟⎟⎠
− e2α2(x0−α1)

2
Erfc

⎛⎜⎜⎜⎜⎜⎜⎝ x0 − α1 + α2

(
1 − e−(γ−2β)t

)
/(γ − 2β)√(

1 − e−(γ−2β)t) /(γ − 2β)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Here, we notice that for the cases (i), (ii) and (iii), we have M0(t)→ 0 as t → ∞.
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The first moment of distribution is calculated as

M1(t) =

√
e−2βt − e−γt

2π(γ − 2β)
× exp

⎡⎢⎢⎢⎢⎣−
(
α2τ(t) − (x0 − α1)

)2
2τ(t)

⎤⎥⎥⎥⎥⎦
− e2α2(x0−α1)

√
e−2βt − e−γt

2π(γ − 2β)
× exp

⎡⎢⎢⎢⎢⎣−
(
α2τ(t) + x0 − α1

)2
2τ(t)

⎤⎥⎥⎥⎥⎦
−
α2

(
e−βt − e−(γ−β)t)
2γ − 4β

× Erfc

(
α2τ(t) − (x0 − α1)√

2τ(t)

)

+
α2e2α2(x0−α1)

(
e−βt − e−(γ−β)t)

2γ − 4β
× Erfc

(
α2τ(t) + x0 − α1√

2τ(t)

)

+
1

2

(
s(t) + (x0 − α1)r1(t)

)
Erfc

(
α2τ(t) − (x0 − α1)√

2τ(t)

)

− e2α2(x0−α1)(s(t) − (x0 − α1)r1(t)
) × Erfc

(
α2τ(t) + x0 − α1√

2τ(t)

)
,

where τ(t) =
(
1 − e−(γ−2β)t

)
/(γ − 2β) and r1(t), r2(t), rp(t) are given in (4.73).

In what follows, we illustrate how the mean position and the moving boundary

change according to time and how the fundamental solution behaves for β < 0, β = 0,

and 0 < γ < β :

(i) In the case β < 0, the distribution Kαg (x, x0; t) given in (4.76) approaches

zero with decreasing amplitude, as t → ∞ for any x, see Fig.4.6a for the behavior of the

solution propagating to the right in x-direction by choosing α2 > 0. In Fig.4.6b, we plot

the time evolution for the the center of the distribution 〈x〉(t) and the moving boundary

s(t). It is seen that the mean position moves away from the boundary in time.

(ii) When β = 0, it is seen in Fig.4.7a that while the solution and the moving

boundary propagate to the positive x-direction for chosen parameters, they interact after

a certain time. Then, the amplitude of distribution becomes zero on the boundary and the

mean position keeps oscillating along the moving boundary. We illustrate the motion of

both the boundary and the center of the distribution in Fig.4.7b. One can also concern

different choices of parameters a0 ≥ 0, α2, ω > 0 to see different motion of distribution

and the boundary.
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(a) (b)

Figure 4.6 For the parameters α1 = 0.5, ω = 15, a0 = 15, α2 = 1.5, x0 = 4,
β = −0.5. γ = 0.5, (a) the behavior of the solution distribution (4.76). (b)

the time evolution for the mean position of the distribution 〈x〉(t) and the

boundary s(t).

(a) (b)

Figure 4.7 For the parameters α1 = 0.5, ω = 15, a0 = 15, α2 = 3.5, x0 = 5, β = 0,
γ = 0.5, (a) the behavior of the solution (4.76). (b) the mean position and

the boundary.
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(iii) For 0 < γ < β, by choosing α2 > 0, while the center of the solution prop-

agates to the left in x-axis for certain parameters, the oscillatory boundary moves to the

right in x-axis tending to infinity and the amplitude of oscillations decreases approaching

zero as t → ∞, see Fig.4.8a. The behavior of the boundary and the mean position can be

seen Fig.4.8b for certain parameters.

(a) (b)

Figure 4.8 For the parameters α1 = 0.5, ω = 15, a0 = 15, α2 = 3.5, x0 = 5, β = 0,
γ = 0.5, (a) the solution (4.76). (b) mean position and the boundary.

Case 2 . Let α2 = 0 so that the boundary moves according to

s(t) = rα1
g (t) = α1r1(t) + rp(t).

Then we have pαg (t) = 0 and Lαg (t) = 0. Thus the fundamental solution is

Kα1
g (x, x0; t) =

√
γ − 2β

2π
(
e−2βt − e−γt

) (4.77)

×
(

exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) − (x0 − α1)e−βt
)2

2
(
e−2βt − e−γt

)
/(γ − 2β)

⎤⎥⎥⎥⎥⎥⎦ − exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) + (x0 − α1)e−βt
)2

2
(
e−2βt − e−γt

)
/(γ − 2β)

⎤⎥⎥⎥⎥⎥⎦ ).

In this case, the total amount of concentration is

M0(t) = Erf

⎛⎜⎜⎜⎜⎜⎝
√
γ − 2β (x0 − α1)√
2(1 − e−(γ−2β)t)

⎞⎟⎟⎟⎟⎟⎠ .
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Note that, initially total amount is M0(t) = 1, then as time increases the amount of con-

centration is not conserved, i.e. we have M0(t) → 0 for all cases β < 0, β = 0 and

0 < γ < β.

Then the first moment and the mean position of the distribution (4.77) are obtained

respectively

M1(t) = (x0 − α1)e−βt + rα1
g (t) × Erf

⎛⎜⎜⎜⎜⎜⎝
√
γ − 2β (x0 − α1)√
2(1 − e−(γ−2β)t)

⎞⎟⎟⎟⎟⎟⎠ .
〈x〉(t) = rα1

g (t) +
(x0 − α1)e−βt

Erf

( √
γ−2β (x0−α1)√
2(1−e−(γ−2β)t)

) . (4.78)

It is seen from the equation (4.78) that the parameters β and γ > 0 have influence on

determining the distance between the mean position and the boundary. Therefore by

choosing β < 0, β = 0 and β > 0, we investigate the motion of the boundary and the

center of the distribution as follows :

(i) For β < 0 and γ > 0, we plot the behavior of solution in Fig.4.9a. The

points on the mean position and the boundary move away from each other in the positive

x-direction as t → ∞, see Fig.4.9b.

(ii) When β = 0, one can see the behavior of solution distribution in Fig.4.10a.

The boundary and the mean position follow the paths where the distance between them

remains constant, Fig.4.10b.
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(a) (b)

Figure 4.9 For the parameters α1 = 0.5 α2 = 0, ω = 15, a0 = 15, γ = 0.5, x0 = 4,
β = −0.5, (a) the behavior of the solution (4.77). (b) the mean position

〈x〉(t) and the boundary s(t).

(a) (b)

Figure 4.10 For the parameters α1 = 0.5 α2 = 0, ω = 15, a0 = 15, γ = 0.2, x0 = 7,
β = 0, (a) the solution (4.77). (b) the mean position and the boundary.
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(iii) If 0 < γ < β, the behavior of distribution is shown in Fig.4.11a. As time in-

creases, the mean position of the distribution moves to the boundary and on the boundary

the amplitude of distribution decreases approaching zero. Then, the center keeps oscillat-

ing along the boundary, see Fig.4.11b.

(a) (b)

Figure 4.11 For the parameters α1 = 0.5 α2 = 0, ω = 15, a0 = 15, γ = 0.5, x0 = 7,
β = 2, (a) the solution (4.77). (b) the mean position and the boundary.

The second moment for (4.77) is

M2(t) = (x0 − α1)e−βtrα1
g (t) +

(x0 − α1)
√

2(e−4βt − e−(γ+2β)t)√
(γ − 2β)π

× exp

[
− (γ − 2β)(x0 − α1)2

2(1 − e−(γ−2β)t)

]

+

(
(rα1

g (t))2 + (x0 − α1)2e−2βt +
e−2βt − e−γt

γ − 2β

)
× Erf

⎛⎜⎜⎜⎜⎜⎝
√
γ − 2β (x0 − α1)√
2(1 − e−(γ−2β)t)

⎞⎟⎟⎟⎟⎟⎠ . (4.79)

Then normalizing (4.79) by concentration total amount, we obtain mean square

〈x2〉(t) =
(
(rα1

g (t))2 + (x0 − α1)2e−2βt +
e−2βt − e−γt

γ − 2β

)
+

(x0 − α1)e−βtrα1
g (t)

Erf

( √
γ−2β (x0−α1)√
2(1−e−(γ−2β)t)

)

+
(x0 − α1)

√
2(e−4βt − e−(γ+2β)t)√
(γ − 2β)π

× exp

[
− (γ − 2β)(x0 − α1)2

2(1 − e−(γ−2β)t)

]
1

Erf

( √
γ−2β (x0−α1)√
2(1−e−(γ−2β)t)

) , (4.80)
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and the variance is

σ(t) =
(
(x0 − α1)2e−2βt +

e−2βt − e−γt

γ − 2β

)
− (x0 − α1)e−βtrα1

g (t)

Erf

( √
γ−2β (x0−α1)√
2(1−e−(γ−2β)t)

) (4.81)

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√

2(e−4βt − e−(γ+2β)t)√
(γ − 2β)π

× exp

[
− (γ − 2β)(x0 − α1)2

2(1 − e−(γ−2β)t)

]
− (x0 − α1)e−2βt

Erf

( √
γ−2β (x0−α1)√
2(1−e−(γ−2β)t)

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(x0 − α1)

Erf

( √
γ−2β (x0−α1)√
2(1−e−(γ−2β)t)

) ,

which tends to infinity for β < 0, β = 0 and 0 < γ < β as t → ∞.

4.1.2.3. Model 3 : Convection-Diffusion-Reaction type mIBVP

Lastly, we introduce an exactly solvable diffusion-convection-reaction type model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φt =
1
2
Φxx − (sin(ωt) − βx)Φx − ω

2
0

2
x2Φ, s(t) < x < ∞, t > 0,

Φ(x, 0) = Φ0(x), s(0) < x < ∞,
Φ(s(t), t) = 0, t > 0,

(4.82)

with moving boundary, constant diffusion coefficient, time-periodic velocity of fluid flow

with a(t) = sin(ωt), ω > 0, b(t) = β ≥ 0 and a reaction term with ω2(t) = −ω2
0, ω0 > 0. In

this model, the presence of convection term creates again forced characteristic equation

as follows

r̈(t) −Ω2r(t) = F0 cos(ωt + θ), t > 0, (4.83)

where Ω =
√
ω2

0
+ β2, F0 =

√
ω2 + β2 and θ = arctan(β/ω). Eq.(4.83) has positive and

increasing homogeneous solutions

r1(t) =
ω0

Ω
cosh(Ωt − σ), r2(t) =

sinh(Ωt)
Ω

, σ = arctanh(β/Ω), (4.84)
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and an oscillatory particular solution,

rp(t) =
1

Ω2 + ω2

(
ω0ω

Ω
cosh(Ωt − σ) − F0 cos(ωt + θ)

)
, t > 0. (4.85)

Therefore, if the moving boundary is s(t) = rαg (t) ≡ α1r1(t)+α2r2(t)+rp(t),with s(0) = α1,

ṡ(0) = α2−α1β being the initial position and velocity respectively, then the mIBVP (4.82)

has solution found as

Φαg (x, t) =

√
Ω exp(−βt)

ω0 cosh(Ωt − σ)
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp
[
− 1

2

(
Ω tanh(Ωt − σ) + β

)
(x − rαg (t))2

]
× exp
[
− pαg (t)(x − rαg (t))

]
× Ψ
(
ηαg (x, t), τ(t)

)
, (4.86)

where Lagrangian function and the generalized momentum are respectively

Lαg (t) =
1

2

( (
ṙαg (t) + βrαg (t) − sin(ωt)

)2
+ ω2

0(rαg )2(t)
)
, pαg (t) = ṙαg (t) + βrαg (t) − sin(ωt).

Also, the coordinate transformations are

ηαg (x, t) =
Ω(x − rαg (t))

ω0 cosh(Ωt − σ)
, τ(t) =

sinh(Ωt)
ω0 cosh(Ωt − σ)

, (4.87)

with t(τ) = (1/Ω) tanh−1 (Ωτ/(1 + βτ)) for 0 < τ < 1/(Ω − β), and Ψ(η, τ) is solution of

IBVP (4.8) with BC Ψ(0, τ) = 0.

In this model since ṙp(t) � a(t)− b(t)rp(t), the velocity of the boundary is different

than the velocity of the flowing stream as expected. And the parameters are chosen so

that the boundary s(t) = rαg (t) propagates forward in positive x-direction while oscillating.
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Fundamental solution : The mIBVP (4.82) with Dirac-delta initial condition

Φ0(x) = δ(x − x0), centered at x0 > α1 has fundamental solution of the form

Kαg (x, x0; t) = eα2(x0−α1)

√
Ω exp(−βt)
2π sinh(Ωt)

× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp
[
− 1

2

(
Ω tanh(Ωt − σ) + β

)
(x − rαg (t))2

]
× exp
[
− pαg (t)(x − rαg (t))

]

×
(

exp

⎡⎢⎢⎢⎢⎣− (Ω(x − rαg (t)) − (x0 − α1)ω0 cosh(Ωt − σ))2

2ω0 cosh(Ωt − σ) sinh(Ωt)

⎤⎥⎥⎥⎥⎦
− exp

⎡⎢⎢⎢⎢⎣− (Ω(x − rαg (t)) + (x0 − α1)ω0 cosh(Ωt − σ))2

2ω0 cosh(Ωt − σ) sinh(Ωt)

⎤⎥⎥⎥⎥⎦
)
, (4.88)

which is shown in Fig.4.12a. We observe that the oscillatory boundary motion creates

solution oscillating with respect to time and this influence is felt mainly in regions close

to the moving boundary. Also it is clearly seen that solution spreads in positive x-direction

as time increases and as x→ ∞ it goes to zero, that is Kαg (∞, t) = 0 for any t > 0.

Some concrete examples corresponding to different initial data and boundary prop-

agating according to (4.83), are discussed in what follows.

Example 4.5 We take a family of oscillatory initial data given by (4.33). Then, mIBVP

(4.82) has family of solutions

Φαg (x, t) =

√
Ω exp(−βt)

ω0 cosh(Ωt − σ)
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp
[
− 1

2

(
Ω tanh(Ωt − σ) + β

)
(x − rαg (t))2

]
× exp
[
− pαg (t)(x − rαg (t))

]
× Ψ
(
ηαg (x, t), τ(t)

)
, (4.89)

where Ψ(ηαg (x, t), τ(t)) is given in (4.35) and ηαg (x, t), τ(t) are defined in (4.87). Since La-

grangian function is oscillatory, the classical action function S (t) carries this oscillatory

behavior and creates oscillating fluctuations with decreasing amplitude felt in a very short

time interval and this can be controlled by the frequency ω > 0 of the flowing medium.

Also the solution has oscillatory behavior in space due to the initial data controlled by

parameter B ∈ R. In Fig.4.12b we plot the solution for certain values of the parameters.

Here, it is seen that Φαg (∞, t) = 0 for any t > 0.
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(a) (b)

Figure 4.12 (a) Solution (4.88) with ω = 20, ω0 = 0.1, x0 = 1.5, α1 = 0.5, α2 = 0.4
and β = 0.01. (b) Solution (4.89) with A = 20, B = 6, ω = 20, ω0 = 0.1,
α1 = 0, C = α2 = 0.5 and β = 0.01.

Example 4.6 Next, for initial data given by (4.36) with c1 = α1 and c2 = α2, the mIBVP

(4.82) has solutions Φαg,n(x, t), which for odd n = 2p + 1, p = 0, 1, 2, ... are

Φαg,2p+1(x, t) = A

√
Ω exp(−βt)

ω0 cosh(Ωt − σ)
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp

[
−1

2

(
Ω tanh(Ωt − σ) + β

)
(x − rαg (t))2

]
× exp
[
−pαg (t)(x − rαg (t))

]
× H2p+1

(
Ω(x − rαg (t))

ω0 cosh(Ωt − σ)
,

sinh(Ωt)
ω0 cosh(Ωt − σ)

)
. (4.90)

When p = 0, we have explicit solution as

Φαg,1(x, t) = A

√
Ω exp(−βt)

ω0 cosh(Ωt − σ)
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

(4.91)

× exp

[
−1

2

(
Ω tanh(Ωt − σ) + β

)
(x − rαg (t))2

]
× exp
[
−pαg (t)(x − rαg (t))

]
×
(
Ω(x − rαg (t))

ω0 cosh(Ωt − σ)

)
.
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And for even n = 2p they become

Φαg,2p(x, t) = A

√
Ω exp(−βt)

ω0 cosh(Ωt − σ)
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp
[
− 1

2

(
Ω tanh(Ωt − σ) + β

)
(x − rαg (t))2

]
× exp
[
− pαg (t)(x − rαg (t))

]

×
[
h−2p

(
Ω(x − rαg (t))

ω0 cosh(Ωt − σ)
,

sinh(Ωt)
ω0 cosh(Ωt − σ)

)
− h+2p

(
Ω(x − rαg (t))

ω0 cosh(Ωt − σ)
,

sinh(Ωt)
ω0 cosh(Ωt − σ)

)]
,

when p = 0 the explicit solution is found as

Φαg,0(x, t) = A

√
Ω exp(−βt)

ω0 cosh(Ωt − σ)
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp
[
− 1

2

(
Ω tanh(Ωt − σ) + β

)
(x − rαg (t))2

]
× exp
[
− pαg (t)(x − rαg (t))

]
× Erf

[ x − rαg (t)√
sinh(2Λ0t)/Λ0

]
. (4.92)

Notice that while in solution (4.91) the compatibility condition is satisfied, in solution

(4.92) it is not satisfied which causes jump at point (x, t) = (0, 0) in the case α1 = 0.

The behavior of the solutions (4.91) and (4.92) is shown in Fig.4.13a and Fig.4.13b,

respectively. As before, we see that solution is kept equal to zero on the boundary point

that moves in positive x-direction while oscillating. Here again fluctuations is felt at time

close to zero and position close to the boundary. And for all n = 0, 1, 2, ... and any t > 0,

solutions tend to zero as x→ ∞.

Clearly, above solutions can be used also to solve the mIBVP with generalized ini-

tial data Φ0
c,N(x) =

∑N
n=0 Ane−c2(x−c1)(x − c1)n, and investigate its behavior when necessary,

for different choices of the coefficients An ≥ 0 and N = 1, 2, 3, ....
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(a) (b)

Figure 4.13 (a) Solution Φαg,1(x, t) with A = 50, ω = 20, ω0 = 0.1, β = 0.1, c1 = α1 = 0,

c2 = α2 = 1.5. (b) Solution Φαg,0(x, t) with A = 50, ω = 25, ω0 = 0.1,

β = 0.5, c1 = α1 = 0, c2 = α2 = 0.7.

4.2. Analytical Solution of the Neumann IBVP with Moving

Boundary

Now we provide the solution of the mIBVP with Neumann boundary conditions.

The derivation of the following proposition follows the same lines as in Proposition 4.1,

however the result give an insight into to the different effect of the boundary condition

and construction of exact solution.

Proposition 4.2 The mIBVP defined on s(t) < x < ∞, 0 < t < T for the generalized

diffusion type equation with initial data Φ0(x) and inhomogeneous Neumann boundary

condition imposed on the boundary x = s(t) given as

Φt =
1

2μ(t)
Φxx − [a(t) − b(t)x]Φx + μ(t)

[ω2(t)
2

x2 − f (t)x + f0(t)
]
Φ, (4.93a)

Φ(x, 0) = Φ0(x), s(0) < x < ∞, (4.93b)

Φx(s(t), t) = N(t), 0 < t < T, (4.93c)

has solution of the form (4.4), where Ψ(η, τ) is solution of the IBVP on the half-line with
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inhomogeneous Robin type BC

Ψτ =
1

2
Ψηη, 0 < η < ∞, 0 < τ < τ(T ), (4.94a)

Ψ(η, 0) = Φ0(η + α1) eα2η, 0 < η < ∞, (4.94b)

Ψη(0, τ) − r1(t(τ))pαg (t(τ))Ψ(0, τ) = Ñ(τ), 0 < τ < τ(T ), (4.94c)

with boundary data

Ñ(τ) = N(t(τ))
√

(r1(t(τ)))3 × exp

[∫ t(τ)

0

(
b(t′)

2
− μ(t′) f0(t′) + Lαg (t′)

)
dt′
]
. �

Proposition 4.2 shows that, the mIBVP with an inhomogeneous Neumann BC im-

posed on the moving boundary reduces to standard heat IBVP with an inhomogeneous

Robin type BC prescribed at x = 0. In general, when N(t) � 0, the solution is com-

plicated and exact solvability may not be possible. Therefore, we provide the integral

representation of the solution for two particular cases:

Case 1 : pαg (t) � 0

In this case we assume that the generalized momentum is different than zero. Then we

investigate the solution to the problem corresponds to homogeneous Neumann boundary

data as follows :

• When N(t) = 0, using the solution of the heat IBVP with homogeneous Robin

BC on the half-line, we have

Φαg (x, t) =
1√
r1(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)]
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
) (

x − rαg (t)
)2] × exp

[
− pαg (t)(x − rαg (t))

]
(4.95)

×
(∫ ∞

0

GN(ηαg (x, t), ξ, τ(t))Φ0(ξ + α1)eα2ξdξ −
∫ τ(t)

0

K(ηαg (x, t), τ(t) − τ′)Q1(τ′)dτ′
)
,
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where Q1(τ) is found by solving the second-kind Volterra type integral equation

Q1(τ) = r1(t(τ))pαg (t(τ))
(
2

∫ ∞
0

K(ξ, τ)Ψ(ξ, 0)dξ −
∫ τ

0

Q1(τ′)√
2π(τ − τ′)dτ′

)
. (4.96)

Since the integral equation (4.96) has variable coefficient depending on r1(t)pαg (t), eval-

uating it exactly is a formidable task. But for some particular cases, for instance when

r1(t)pαg (t) = c, where c ∈ R, then it is possible to solve the equation (4.96) exactly. Corre-

spondingly, the exact analytical solution to the mIBVP (4.93) can be obtained.

Case 2 : pαg (t) = 0

In this case we assume pαg (t) ≡ μ(t)
(
ṙαg (t) + b(t)rαg (t) − a(t)

)
= 0, which is possible in the

following cases:

(i) α1 = α2 = 0 and ṙp(t) = a(t) − b(t)rp(t), which follows rαg (t) = rp(t).

(ii) α2 = 0, b(t) = −ṙ1(t)/r1(t) and ṙp(t) = a(t) − b(t)rp(t).

If we have case (ii), then in that case the boundary is at rest with respect to fluid

motion and instead of Lαg (t), we have

Lα1
g (t) = μ(t) f (t)rα1

g (t),

and the corresponding heat problem has inhomogeneous Neumann BC (N(t) � 0). There-

fore, for the mIBVP we have

Φα1
g (x, t) = exp

[∫ t

0

μ(t′) f0(t′)dt′
]
× exp

[
−
∫ t

0

Lα1
g (t′)dt′

]

×
(∫ ∞

0

GN(ηα1
g (x, t), ξ, τ(t))Φ0(ξ + α1)dξ −

∫ τ(t)
0

K(ηα1
g (x, t), τ(t) − τ′)Ñ(τ′)dτ′

)
, (4.97)

where ηα1
g (x, t) = (x − rα1

g (t))/r1(t) and

Ñ(τ) = N(t(τ))r1(t(τ)) × exp

[∫ t(τ)

0

(
Lα1

g (t′) − μ(t′) f0(t′)
)

dt′
]
. (4.98)
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Fundamental solution: In this case if we take Dirac-delta initial distribution Φ(x, 0) =

δ(x − x0), and homogeneous Neumann boundary data N(t) = 0, then we get the funda-

mental solution

Kα1
g (x, x0; t) =

√
r1(t)√

2πr2(t)
× exp

[
−
∫ t

0

(
Lα1

g (t′) − μ(t′) f0(t′)
)

dt′
]

×
(

exp

[
− (x − rα1

g (t) − (x0 − α1)r1(t))2

2r1(t)r2(t)

]
+ exp

[
− (x − rα1

g (t) + (x0 − α1)r1(t))2

2r1(t)r2(t)

] )
. (4.99)

Zeroth moment: The total amount of distribution (4.99) is defined as

M0(t) =
∫ ∞

rα1
g (t)

Kα1
g (x, x0; t)dx =

√
r1(t)√

2πr2(t)
× exp

[
−
∫ t

0

(
Lα1

g (t′) − μ(t′) f0(t′)
)

dt′
]

×
∫ ∞

rα1
g (t)

(
exp

[
− (x − rα1

g (t) − (x0 − α1)r1(t))2

2r1(t)r2(t)

]
+ exp

[
− (x − rα1

g (t) + (x0 − α1)r1(t))2

2r1(t)r2(t)

] )
dx,

and evaluating the integrals gives the result as follows

M0(t) = r1(t) exp

[
−
∫ t

0

(
Lα1

g (t′) − μ(t′) f0(t′)
)

dt′
]
.

First moment: We obtain the first moment as

M1(t) =
∫ ∞

rα1
g (t)

x Kα1
g (x, x0; t)dx

= M0(t)
(
rα1

g (t) + (x0 − α1)r1(t)Erf

(
(x0 − α1)√

2τ(t)

)
+

√
2r1(t)r2(t)√
π

× exp

[
− (x0 − α1)2r1(t)

2r2(t)

] )
.

• Mean position : Therefore, normalizing the first moment by total amount, we get the

mean position

〈x〉(t) = rα1
g (t) + (x0 − α1) r1(t)Erf

(
(x0 − α1)√

2τ(t)

)
+

√
2r1(t)r2(t)√
π

× exp

[
−r1(t) (x0 − α1)2

2r2(t)

]
.
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In what follows we consider the mIBVP with homogeneous Neumann BC for the

diffusion-convection equation studied in previous section.

4.2.1. Model : Convection - Diffusion type mIBVP with Neumann BC

Consider the following convection-diffusion model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φt =
1

2μ(t)Φxx − ((a(t) − b(t)x)Φ
)

x , s(t) < x < ∞, t ∈ (0,T ),

Φ(x, 0) = Φ0(x), s(0) < x < ∞,
Φx(s(t), t) = 0, 0 < t < T.

(4.100)

If s(t) moves according to

s(t) = rα1
g (t) = α1r1(t) + rp(t), (4.101)

then for the Dirac-delta initial data Φ0(x) = δ(x− x0), x0 > α1 we obtain the fundamental

solution

Kα1
g (x, x0; t) =

1√
2πr1(t)r2(t)

×
(

exp

[
− (x − rα1

g (t) − (x0 − α1)r1(t))2

2r1(t)r2(t)

]
+ exp

[
− (x − rα1

g (t) + (x0 − α1)r1(t))2

2r1(t)r2(t)

] )
. (4.102)

Zeroth moment : In this case, the total amount of concentration distribution is

M0(t) =
∫ ∞

rα1
g (t)

Kα1
g (x, x0; t)dx =

1√
2πr1(t)r2(t)

×
∫ ∞

rα1
g (t)

(
exp

[
− (x − rα1

g (t) − (x0 − α1)r1(t))2

2r1(t)r2(t)

]
+ exp

[
− (x − rα1

g (t) + (x0 − α1)r1(t))2

2r1(t)r2(t)

] )
dx,

which gives

M0(t) = 1.
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So, the total amount of substance is conserved.

First moment : The first moment is

M1(t) =
∫ ∞

rα1
g (t)

Kα1
g (x, x0; t)dx =

1√
2πr1(t)r2(t)

×
∫ ∞

rα1
g (t)

x
(

exp

[
− (x − rα1

g (t) − (x0 − α1)r1(t))2

2r1(t)r2(t)

]
+ exp

[
− (x − rα1

g (t) + (x0 − α1)r1(t))2

2r1(t)r2(t)

] )
dx.

As a result we get

M1(t) = rα1
g (t) + (x0 − α1) r1(t)Erf

(
(x0 − α1)√

2τ(t)

)
+

√
2r1(t)r2(t)√
π

× exp

[
− (x0 − α1)2

2τ(t)

]
.

•Mean position : Since the total mass is M0(t) = 1, then the center of the distribution is

〈x〉(t) = M1(t).

Now, we discuss the model (4.100) defined by the equation having some concrete coeffi-

cients as follows.

Example 4.7 Let consider the mIBVP (4.100) with coefficients

μ(t) = 1, a(t) = a0 cosh(Λ0t), a0 ≥ 0, b(t) = −Λ0 tanh(Λ0t), Λ0 > 0. (4.103)

In that case, we have characteristic equation r̈ − Λ2
0r = 2a0Λ0 sinh(Λ0t), t > 0, with

solutions satisfying required initial conditions r1(t) = cosh(Λ0t), r2(t) = sinh(Λ0t)/Λ0,

rp(t) = a0 t cosh(Λ0t). If the boundary propagates according to

s(t) = (α1 + a0t) cosh(Λ0t), (4.104)
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then we have fundamental solution

Kα1
g (x, x0; t) =

√
Λ0

π sinh(2Λ0t)
× (4.105)

×
[

exp
(
−
(
x − [(a0 t + x0) cosh(Λ0t)

])2
sinh(2Λ0t)/Λ0

)
+ exp
(
−
(
x − [(a0 t − x0 + 2α1) cosh(Λ0t)

])2
sinh(2Λ0t)/Λ0

)]
.

Therefore, the mean position of the solution distribution (4.105) is

〈x〉(t) = rα1
g (t) + (x0 − α1)Erf

( √
Λ0(x0 − α1)√
2 tanh(Λ0t)

)
cosh(Λ0t)

+

√
sinh(2Λ0t)
πΛ0

× exp

[
−Λ0(x0 − α1)2

2 tanh(Λ0t)

]
.

As time increases, since both the mean and boundary grow hyperbolically, they

propagates as if parallel to the each other, see Fig.4.14a for the behavior of the solution

distribution and Fig.4.14b for the time evolution of the boundary and the mean position

of the distribution.

(a) (b)

Figure 4.14 For the parameters α1 = 0.5, α2 = 0, Λ0 = 5, a0 = 4, x0 = 2, (a) the

solution Kα1
g (x, x0; t). (b) the center of distribution and the boundary.
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Example 4.8 (mIBVP with homogeneous Neumann BC)

Now consider the mIBVP (4.100) with coefficients

μ(t) = e−γt, γ > 0, a(t) = a0 sin(ωt), a0 ≥ 0, b(t) = β, β ∈ R. (4.106)

The corresponding characteristic equation and its solutions are given in (4.72) and (4.73),

respectively. Therefore if the boundary moves according to (4.101), then we have

Kα1
g (x, x0; t) =

√
γ − 2β

2π
(
e−2βt − e−γt

)
×
(

exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) − (x0 − α1)e−βt
)2

2
(
e−2βt − e−γt

)
/(γ − 2β)

⎤⎥⎥⎥⎥⎥⎦ + exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − rα1

g (t) + (x0 − α1)e−βt
)2

2
(
e−2βt − e−γt

)
/(γ − 2β)

⎤⎥⎥⎥⎥⎥⎦ ). (4.107)

Mean position : The center of the distribution is

〈x〉(t) = rα1
g (t) + (x0 − α1)e−βtErf

⎛⎜⎜⎜⎜⎜⎝ (x0 − α1)
√
γ − 2β√

2(1 − e−(γ−2β)t)

⎞⎟⎟⎟⎟⎟⎠
+

√
2(e−2βt − e−γt)
π(γ − 2β)

exp

[
− (γ − 2β)(x0 − α1)2

e−2βt − e−γt

]
.

As time increses, the mean position of the solution distribution moves away from

the boundary for β < 0, never approaches to boundary for β = 0.

(i) For β < 0, the trajectories of the mean position and the boundary move away

from each other, see Fig.4.15a.

(ii) When β = 0, as in the Example 4.4 ( Case 2 ), the solution propagates with

decreasing amplitude and following the trajectory of mean position parallel to the bound-

ary, see Fig.4.15b.
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(a) (b)

Figure 4.15 Solution (4.107) with α1 = 0.5, α2 = 0, a0 = 15, ω = 15, (a) γ = 0, 5
β = −0.5, x0 = 4. (b) γ = 0.2, β = 0, x0 = 7.

4.3. Analytical Solution of the Robin type IBVP with moving

boundary

In this section, we provide the analytical solution to the mIBVP for generalized

diffusion type equation with Robin boundary condition. The result is formulated as fol-

lows.

Proposition 4.3 The mIBVP for the generalized diffusion type equation with initial data

Φ0(x) and homogeneous Robin type boundary condition given as

Φt =
1

2μ(t)
Φxx − [a(t) − b(t)x]Φx + μ(t)

[ω2(t)
2

x2 − f (t)x + f0(t)
]
Φ, (4.108a)

Φ(x, 0) = Φ0(x), s(0) < x < ∞, (4.108b)

Φx(s(t), t) + ε(t)Φ(s(t), t) = 0, 0 < t < T, (4.108c)

for ε(t) � 0, has solution of the form (4.4), where Ψ(η, τ) is solution of the IBVP on the
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half-line with homogeneous Robin BC

Ψτ =
1

2
Ψηη, (4.109a)

Ψ(η, 0) = Φ0(η + α1) eα2η, 0 < η < ∞, (4.109b)

Ψη(0, τ) − r1(t(τ))
(
pαg (t(τ)) − ε(t(τ))

)
Ψ(0, τ) = 0. � (4.109c)

In that case solution of the mIBVP (4.108) is

Φαg (x, t) =
1√
r1(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)]
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
) (

x − rαg (t)
)2] × exp

[
− pαg (t)

(
x − rαg (t)

)]
(4.110)

×
(∫ ∞

0

GN(ηαg (x, t), ξ, τ(t))Φ0(ξ + α1)eα2ξdξ −
∫ τ(t)

0

K(ηαg (x, t), τ(t) − τ′)Q2(τ′)dτ′
)
,

where Q2(τ) is found by solving the second kind Volterra type integral equation

Q2(τ) = r1(t(τ))
(
pαg (t(τ)) − ε(t(τ))

)(
2

∫ ∞
0

K(ξ, τ)Ψ(ξ, 0)dξ −
∫ τ

0

Q2(τ′)√
2π(τ − τ′)dτ′

)
.(4.111)

Therefore, the mIBVP (4.108) reduces solving the integral equation. One can

solve the integral equation (4.111) correspondingly the mIBVP (4.108) explicitly for some

particular cases :

(i) ε(t) = pαg (t).

(ii) ε(t) = pαg (t) − c/r1(t) for c ∈ R.
In what follows we consider the case (i) and the other case will be investigated in future.

Case (i) : If ε(t) = pαg (t) in boundary condition (4.108c), then the mIBVP for

generalized diffusion type equation with Robin type BC reduces to IBVP for heat equation
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with homogeneous Neumann BC. In that case we have

Φαg (x, t) =
1√
r1(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)]
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
) (

x − rαg (t)
)2] × exp

[
− pαg (t)

(
x − rαg (t)

) ]

×
(∫ ∞

0

GN(ηαg (x, t), ξ, τ(t))Φ0(ξ + α1)eα2ξdξ
)
. (4.112)

If we take Φ(x, 0) = δ(x − x0), α1 < x < ∞, x0 > α1, then we obtain the

fundamental solution

Kαg (x, x0; t) = eα2(x0−α1) 1√
2πr2(t)

× exp

[
−
∫ t

0

(
b(t′)

2
− μ(t′) f0(t′)

)]
× exp

[
−
∫ t

0

Lαg (t′)dt′
]

× exp

[
−μ(t)

2

(
ṙ1(t)
r1(t)

+ b(t)
) (

x − rαg (t)
)2] × exp

[
− pαg (t)

(
x − rαg (t)

) ]

×
(

exp

⎡⎢⎢⎢⎢⎣− (x − rαg (t) − (x0 − α1)r1(t))2

2r1(t)r2(t)

⎤⎥⎥⎥⎥⎦ + exp

⎡⎢⎢⎢⎢⎣− (x − rαg (t) + (x0 − α1)r1(t))2

2r1(t)r2(t)

⎤⎥⎥⎥⎥⎦ ). (4.113)

Therefore, we can construct an exactly solvable model for this particular case, ε(t) =

pαg (t), as follows.

4.3.1. Model : Convection - Diffusion type mIBVP with Robin BC

Consider the convection-diffusion model with homogeneous Robin BC

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φt =
1
2
Φxx − a0 sin(ωt)Φx, s(t) < x < ∞, t > 0,

Φ(x, 0) = Φ0(x), s(0) < x < ∞,
Φx(s(t), t) + pαg (t)Φ(s(t), t) = 0, t > 0,

(4.114)

where we have constant diffusion coefficient, time-periodic flux velocity a(t) = a0 sin(ωt),

with frequencyω ∈ R, a0 ≥ 0. Then, the characteristic equation r̈(t) = a0ω cos(ωt), t > 0,
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has two independent positive homogeneous solutions and oscillatory particular solution

r1(t) = 1, r2(t) = t, rp(t) =
a0

ω
(1 − cos(ωt)) , t > 0. (4.115)

Therefore, if the boundary propagates according to

s(t) = rαg (t) ≡ α1 + α2t +
a0

ω
(1 − cos(ωt)) , (4.116)

then we obtain the solution to the mIBVP (4.114) explicitly

Φαg (x, t) = exp

[
−α

2
2t
2

]
× exp
[
−α2

(
x − rαg (t)

)] × Ψ (x − rαg (t), t
)
, (4.117)

where Ψ(η, τ) is solution of the IBVP for the standard heat equation defined by (4.8a),

(4.8b) and homogeneous Neumann BC Ψη(0, τ) = 0. Since the generalized momentum is

pαg (t) = α2, it implies that the Robin BC (4.108c) has constant coefficient.

However, we notice that if we had different constant from pαg (t) = α2 in Robin

BC (4.108c), then the corresponding heat problem would have Robin type BC in the form

Ψη(0, τ)+d0Ψ(0, τ) = 0, for d0 ∈ R. And in that case constructing exactly solvable models

would require solving second-kind Volterra integral equation.

Fundamental solution : Take Dirac delta IC Φ(x, 0) = δ(x − x0), A > 0, α1 <

x < ∞, x0 > α1. If the boundary is as in (4.116), then the fundamental solution becomes

Kαg (x, x0; t) = eα2(x0−α1) × 1√
2πt
× exp

[
−α

2
2t
2

]
× exp
[
−α2

(
x − rαg (t)

)]

×
⎛⎜⎜⎜⎜⎝exp

⎡⎢⎢⎢⎢⎣− (x − rαg (t) − (x0 − α1))2

2t

⎤⎥⎥⎥⎥⎦ + exp

⎡⎢⎢⎢⎢⎣− (x − rαg (t) + (x0 − α1))2

2t

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ . (4.118)

The evolution of the solution distribution on the boundary is found as

Kαg (s(t), x0; t) = 2eα2(x0−α1) × 1√
2πt
× exp

[
−α

2
2t
2

]
× exp

[
− (x0 − α1)2

2t

]
, (4.119)
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which is a Gaussian distribution centered at x = x0 and with time-dependent amplitude.

From the Robin BC in (4.114), where pαg (t) = α2, one can say that the flux of the solution

distribution on the boundary is proportional to the value (4.119) which means that the flux

at the boundary is also Gaussian distribution.

The total amount is

M0(t) =
∫ ∞

rαg (t)
Kαg (x, x0; t)dx =

1√
2πt
× eα2(x0−α1) × exp

[
−α

2
2t
2

]

×
∫ ∞

rαg (t)
exp
[
−α2

(
x − rαg (t)

)] × ( exp

⎡⎢⎢⎢⎢⎣− (x − rαg (t) − (x0 − α1))2

2t

⎤⎥⎥⎥⎥⎦
+ exp

⎡⎢⎢⎢⎢⎣− (x − rαg (t) + (x0 − α1))2

2t

⎤⎥⎥⎥⎥⎦
)

dx,

which gives the result

M0(t) = 1 − 1

2
Erfc

[
x0 − α1 − α2t√

2t

]
+

e2α2(x0−α1)

2
× Erfc

[
x0 − α1 + α2t√

2t

]
.

(i) If α2 = 0, then the Robin mIBVP becomes mIBVP with homogeneous Neu-

mann boundary condition. And also in that case the concentration amount is M0(t) = 1.

(ii) When α2 > 0, then M0(t)→ 0 as time increases, since Erfc(∞) = 0,

Erfc(−∞) = 2. In the case α2 < 0, the amount increases but remains bounded, i.e. we

have M0(t)→ 1 + e2α2(x0−α1).

Then we obtain the first spatial moment

M1(t) = rαg (t) +

√
2t
π

exp

[
− (x0 − α1 − α2t)2

2t

]

+
1

2

(
x0 − 2α1 − 2α2t − a0

ω
+

a0

ω
cos(ωt)

)
× Erfc

[
x0 − α1 − α2t√

2t

]

+ (x0 − α1 − α2t) × Erf

[
x0 − α1 − α2t√

2t

]

+
1

2
e2α2(x0−α1) ×

(
2α1 − x0 +

a0

ω
− a0

ω
cos(ωt)

)
× Erfc

[
x0 − α1 + α2t√

2t

]
.
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Therefore, the mean position is

〈x〉(t) = M1(t)
M0(t)

.

In Fig.4.16a, the behavior of solution distribution is shown for certain parameters.

It is seen that solution, with pulse initially, propagates with decreasing amplitude in flow-

ing medium, at the time it reaches to the boundary its flux on the boundary changes for a

while, and then it vanishes.

Next, we consider Gaussian initial data Φ0(x) = Ae−(x−c)2

, centered at x = c with

maximum amplitude A > 0, α1 < x < ∞, c > α1. Then the corresponding heat problem

has Gaussian type IC Ψ(η, 0) = Aeα2(c−α1+α2/4)e−(η−(c−α1+α2/2))2

, 0 < η < ∞ centered at

η = c − α1 + α2/2 with maximum amplitude Aeα2(c−α1+α2/4) and homogeneous Neumann

BC Ψη(0, τ) = 0, τ > 0. Therefore, if the boundary is of the form (4.116), then we obtain

exact analytical solution as follows

Φαg (x, t) =
Aeα2(c−α1+α2/4)

2
√

(2t + 1)
exp

[
−α

2
2t
2

]
× exp
[
−α2

(
x − rαg (t)

)]
(4.120)

×
(

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(
x − rαg (t) + (c − α1 + α2/2)

)2
2t + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×
(
1 + Erf

(−x + rαg (t) + 2 (c − α1 + α2/4) t√
2 t (2t + 1)

))

+ exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(
x − rαg (t) − (c − α1 + α2/2)

)2
2t + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×
(
1 + Erf

( x − rαg (t) + 2 (c − α1 + α2/4) t√
2 t (2t + 1)

)) )
.

The evolution of solution on the boundary x = s(t) is

Φαg (s(t), t) =
Aeα2(c−α1+α2/4)

√
(2t + 1)

exp

[
−α

2
2t
2

]
× exp

[
− (c − α1 + α2/2)2

2t + 1

]
(4.121)

×
(
1 + Erf

(
2 (c − α1 + α2/4) t√

2 t (2t + 1)

))
.

Similar effect is seen also here, i.e while the solution propagates following the

mean position path with decreasing amplitude in flowing medium, at the time it reaches
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to the boundary, its flux on the boundary changes for a while, and then it vanishes, see

Fig.4.16b.

(a) (b)

Figure 4.16 (a) Solution (4.118) with ω = 15, a0 = 12, α1 = 0.5, α2 = 9, x0 = 10.
(b) Solution (4.121) with A = 10, ω = 10, a0 = 3, α1 = 0.5, α2 = 1,
c = 5.
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CHAPTER 5

GENERALIZED BURGERS TYPE EQUATION WITH

VARIABLE COEFFICIENTS

In this chapter, we study IVP and IBVP with Dirichlet boundary condition for a

one dimenional generalized forced Burgers type equation of the form

Ut +
μ̇(t)
μ(t)

U + UUx =
1

2μ(t)
Uxx − ((a(t) + b(t)x)U)x − ω2(t)x + f (t), (5.1)

for the field U(x, t), with smooth coefficients of damping Γ(t) = μ̇(t)/μ(t), diffusion

D(t) = 1/2μ(t), convection coefficient linear in position v(x, t) = a(t)−b(t)x, and F(x, t) =

−ω2(t)x + f (t) is an external forcing term linear in position variable. First we consider

IVP on whole real line and obtain analytical solution in terms of solution to corresponding

characteristic equation and standard Burgers (or heat ) models. Then we study IBVP de-

fined on half-line 0 < x < ∞ with Dirichlet boundary condition. As a result, we construct

exactly solvable models and discuss the influence of variable parameters.

5.1. Analytical Solution of the Initial Value Problem on the Whole

Line

In this section, we derive the solution of the IVP defined on x ∈ (−∞,∞) and

t ∈ (t0,∞), t0 > 0, for the generalized Burgers type equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ut +

μ̇(t)
μ(t)U + UUx =

1
2μ(t)Uxx − ((a(t) + b(t)x)U)x − ω2(t)x + f (t), x ∈ R, t > t0 > 0,

U(x, t0) = U0(x), x ∈ R,
(5.2)

where coefficients μ(t) > 0, ω2(t) > 0, a(t), b(t) and f (t) are given real-valued smooth

functions depending on time and initial data U0(x) at time t = t0 is given smooth and
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bounded function of x. The result is formulated as follows.

Proposition 5.1 If r1(t), r2(t) are two independent homogeneous solutions and rp(t) is a

particular solution of characteristic equation

r̈ +
μ̇(t)
μ(t)

ṙ +
[
ω2(t) +

(
ḃ(t) +

μ̇(t)
μ(t)

b(t) − b2(t)
)]

r = ȧ(t) − a(t)
[
b(t) − μ̇(t)

μ(t)

]
+ f (t), (5.3)

satisfying initial conditions r1(t0) = r0 � 0, ṙ1(t0) = −b(t0)r0, r2(t0) = 0, ṙ2(t0) = r0/μ(t0)

and rp(t0) = 0, ṙp(t0) = a(t0) respectively, then IVP (5.2) has solution in the forms:

(a) U(x, t) = − r1(t0)

μ(t)r1(t)
Ψη(ηp(x, t), τ(t))
Ψ(ηp(x, t), τ(t))

+

( ṙ1(t)
r1(t)

+ b(t)
)
(x − rp(t)) +

pp(t)
μ(t)
, (5.4)

where the generalized momentum

pp(t) = μ(t)
(
ṙp(t) + b(t)rp(t) − a(t)

)
, (5.5)

coordinate transformation (x, t)→ (η, τ)

ηp(x, t) =
r1(t0)

r1(t)
(x − rp(t)), τ(t) =

r2(t)
r1(t)
, t > t0, (5.6)

and Ψ(η, τ) satisfies the IVP on whole line for the heat equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ψτ =

1
2
Ψηη, −∞ < η < ∞, τ > 0,

Ψ(η, 0) = exp
[ − μ(t0)

∫ η
U(x, t0)dx

]
, −∞ < η < ∞.

(5.7)

(b) U(x, t) =
r1(t0)

μ(t)r1(t)
V(η(x, t), τ(t)) +

( ṙ1(t)
r1(t)

+ b(t)
)
(x − rp(t)) +

pp(t)
μ(t)
, (5.8)
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where V(η, τ) satisfies the IVP for the standard Burgers equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Vτ + VVη = 1

2
Vηη, −∞ < η < ∞, τ > 0,

V(η, 0) = μ(t0)U(η, t0), −∞ < η < ∞. �
(5.9)

Proof (a) Here, it is straightforward to verify that Proposition 5.1 is a direct conse-

quence of Proposition 3.1, that is by generalized Cole-Hopf transform

U(x, t) = − Φx(x, t)
μ(t)Φ(x, t)

, (5.10)

the generalized Burgers equation in (5.2) is reduced to generalized diffusion type equa-

tion in (3.2) and the initial condition in (5.2) directly transforms to initial condition

Φ(x, t0) = exp
[
−μ(t0)
∫ x

U0(x′)dx′
]
. Therefore applying generalized Cole-Hopf trans-

form for the solution obtained in (3.2), we get the desired result (5.4).

Part (b) follows from part (a) and Cole-Hopf transformation

V(η, τ) = −Ψη(η, τ)
Ψ(η, τ)

. (5.11)

�

Thus we show that the solution to the IVP (5.2) is obtained in terms of solutions

of forced characteristics equation and standard heat or Burgers model.

Moreover, using symmetries of standard Burgers equation such as space and time

translation, scaling and Galilean transform, we can create new solutions from given ones.

In particular, if V(η, τ) is solution of BE (5.9), using translation in space and Galilean

invariance given in (2.3.2.1), we can find two parametric, an infinite family of solutions

Vα(η, τ) = α2 + V(η − (α1 + α2τ), τ), η ∈ R, τ > 0,
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parameterized by α = (α1, α2) ∈ R2. Then, according to Proposition 5.1, the generalized

Burgers equation (5.1) will have family of solutions as in the following form

Uα(x, t) =
1

μ(t)r1(t)

[
α2 + V

(
1

r1(t)
(
x − (α1r1(t) + α2r2(t) + rp(t)

)
,

r2(t)
r1(t)

)]

+

( ṙ1(t)
r1(t)

+ b(t)
)
(x − rp(t)) +

pp(t)
μ(t)
, (5.12)

where r1(t), r2(t) and rp(t) are solutions of Eq.(3.3) satisfying the prescribed initial condi-

tions and without loss of generality we take r0 = 1. By using Wronskian of homogeneous

solutions to the characteristics equation (3.3),

W(r1(t), r2(t)) = ṙ2(t)r1(t) − ṙ1(t)r2(t) =
1

μ(t)
,

we have equivalent form for the solution (5.12) as

Uαg (x, t) =
1

μ(t)r1(t)
V
(

1

r1(t)
(
x − rαg (x, t)

)
,

r2(t)
r1(t)

)

+

( ṙ1(t)
r1(t)

+ b(t)
)
(x − rαg (t)) +

pαg (t)

μ(t)
, (5.13)

where we denote

rαg (t) ≡ α1r1(t) + α2r2(t) + rp(t) = rαh (t) + rp(t), (α1, α2) ∈ R2, (5.14)

and the generalized momentum

pαg (t) = ṙαg (t) + b(t)rαg (t) − a(t),

and Uαg (x, t) for the generalized Burgers solution obtained in terms of (5.14).
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On the unforced characteristic and Burgers equation

As a particular case to have homogeneous characteristic equation, consider the Burgers

equation (5.1) without forcing terms, ω(t) = f (t) = 0, and shifting term, a(t) = 0,

Ut +
μ̇(t)
μ(t)

U + UUx =
1

2μ(t)
Uxx + b(t)(xU)x, −∞ < x < ∞, t > t0. (5.15)

Thus, we have corresponding homogeneous characteristic equation as

r̈ +
μ̇(t)
μ(t)

ṙ +
(
ḃ(t) +

μ̇(t)
μ(t)

b(t) − b2(t)
)

r = 0, (5.16)

and solution of BE (5.15) becomes

Uαh (x, t) =
1

μ(t)r1(t)
V
(
x − rαh (t),

r2(t)
r1(t)

)
+

( ṙ1(t)
r1(t)

+ b(t)
) (

x − rαh (x, t)
)
+ ṙαh (t) + b(t)rαh (t),

or equivalently

Uαh (x, t) =
1

μ(t)r1(t)

(
α2 + V

(
x − rαh (t),

r2(t)
r1(t)

))
+

( ṙ1(t)
r1(t)

+ b(t)
)
x. (5.17)

Notice that, in general, the solution (5.17) is unbounded at x = ±∞. However, in many

applications we are interested in bounded solutions that are localized in space or ap-

proaching finite values as x→ ±∞. As mentioned in Chapter 3, we are allowed to replace

the original b(t) by special choice, b(t) = −ṙ1(t)/r1(t). In that case the solution of Burgers

equation (5.15) becomes

Uαh (x, t) =
1

μ(t)r1(t)

(
α2 + V

(
1

r1(t)
(
x − rαh (t)

)
,

r2(t)
r1(t)

))
. (5.18)

Now, how solutions of the form (5.18) behave depends on V(η, τ) as shown in

what follows.
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5.1.1. Special solutions of the generalized Burgers model

In this part, we write and investigate some special solutions such as single and

multiple shocks, triangular waves, N-shaped waves and rational type solutions of the gen-

eralized Burgers equation.

(a) Generalized single shocks:

As well known, the standard BE (5.9) has shock traveling wave solution (2.70). By Propo-

sition 5.1, it follows that the generalized Burgers equation (5.1) subject to initial condition

Uαg (x, t0) = (α2 − A tanh[A(x − α1)])/μ(t0), (α1, α2) ∈ R2, (5.19)

has generalized single shock type solution of the form

Uαg (x, t) =
−A
μ(t)r1(t)

tanh

[
A

r1(t)

(
x − rαg (t)

)]
+

[ ṙ1(t)
r1(t)

+ b(t)
]
(x − rαg (t)) +

pαg (t)

μ(t)
. (5.20)

Here, the shock amplitude A(t) = A/μ(t)r1(t) and steepness B(t) = A/r1(t) depend on

time, and x = rαg (t) describes the motion of the "center" of the wave profile explicitly

written as (5.14), where v = ṙαg (t) gives its velocity. In solution (5.20), the term which

is linear in position x contributes to the total wave amplitude and due to it, in general

solution is unbounded as x→ ±∞. However, if we consider the special homogeneous BE

(5.15) with b(t) = −ṙ1(t)/r1(t), then it has a single shock solution of the form

Uαh (x, t) =
1

μ(t)r1(t)

(
α2 − A tanh

[
A

r1(t)

(
x − rαh (t)

)] )
, (5.21)

satisfying time-dependent boundary conditions

Uαh (−∞, t) = 1

μ(t)r1(t)
(α2 + A), Uαh (+∞, t) = 1

μ(t)r1(t)
(α2 − A), t ≥ 0, (5.22)

whose behavior at large times is determined by μ(t)r1(t).
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(b) Generalized multi-shocks:

By using the standard Burgers multi shock traveling wave solution given in (2.76), we can

obtain generalized multi-shock wave solutions for the generalized Burgers equation (5.1)

Uα(k)
g (x, t) =

2

μ(t)r1(t)

⎡⎢⎢⎢⎢⎢⎣α(1)

2
exp
[
p1(η(x, t), τ(t))

]
+ ... + α(k)

2
exp
[
pk(η(x, t), τ(t))

]
exp
[
p1(η(x, t), τ(t))

]
+ ... + exp

[
pk(η(x, t), τ(t))

]
⎤⎥⎥⎥⎥⎥⎦

+

( ṙ1(t)
r1(t)

+ b(t)
)
(x − rp(t)) +

[
ṙp(t) + b(t)rp(t) − a(t)

]
, (5.23)

where pi(η(x, t), τ(t)) are polynomial functions defined by

pi(η(x, t), τ(t)) = −2α(i)
2

r1(t)

(
x − r(i)

g,α(t)
)
, r(i)

g,α(t) = α
(i)
1

r1(t) + α(i)
2

r2(t) + rp(t), (5.24)

for each i = 1, 2, ..., k. Again, for suitably chosen parameters one can produce generalized

multi-shock traveling waves, as we show and discuss in next section for certain models.

(c) Generalized triangular waves: It is known that the standard Burgers equa-

tion has family of triangular type wave solution given in (2.72). Then the generalized

Burgers equation (5.1) has generalized triangular wave solutions

Uαg (x, t) =
1

μ(t)
√

2 π r1(t)r2(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(eR − 1) exp

[
− (x−rαg (t))2

2r1(t)r2(t)

]
1 + 1

2
(eR − 1) Erfc

[
(x−rαg (t))√
2r1(t)r2(t)

]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

( ṙ1(t)
r1(t)

+ b(t)
)
(x − rαg (t)) +

pαg (t)

μ(t)
, (5.25)

when σ(t) ≡ r1(t)r2(t) > 0. Here, amplitude and width of the wave profile depend on σ(t),

displacement of position is given by x = rαg (t), and in general the wave is not localized in

space. However, for the unforced BE (5.15), if b(t) = −ṙ1(t)/r1(t), then solution becomes

Uαh (x, t) =
α2

μ(t)r1(t)
+

1

μ(t)
√

2 πσ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(eR − 1) exp

[
− (x−rαh (t))2

2σ(t)

]
1 + 1

2
(eR − 1) Erfc

[
(x−rαh (t))√

2σ(t)

]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (5.26)
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which is a wave packet whose amplitude and width again depend on σ(t) but position is

displaced in time according to x = rh
α(t), and boundary conditions become

Uαh (±∞, t) = α2

μ(t)r1(t)
, t ≥ 0. (5.27)

Clearly, if α2 = 0 in (5.26), then the wave packet, which is Gaussian like for small R, is

positive and smooth for all x ∈ R, localized with Uα(±∞, t) = 0 and moves with velocity

v = α1ṙ1(t). If in addition μ(t) = 1, then solution belongs to L1(R) and can be normalized,

with norm

∫ ∞
−∞
|Uαh (x, t)|dx = R. (5.28)

(d) Generalized N-shaped waves: Using N-shaped similarity solutions of stan-

dard BE given in (2.75), then the corresponding family of generalized N-shaped traveling

wave solutions become

Uαg (x, t) =
( x − rαg (t)

μ(t)r1(t)r2(t)

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√

c r1(t)
r2(t) exp

[
− (x−rαg (t))2

2r1(t) r2(t)

]
1 +
√

c r1(t)
r2(t) exp

[
− (x−rαg (t))2

2r1(t) r2(t)

]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

( ṙ1(t)
r1(t)

+ b(t)
)
(x − rαg (t)) +

pαg (t)

μ(t)
, (5.29)

where rαg (t) is again given by (5.14), and amplitude and width of the wave profile is con-

trolled byσ(t) = r1(t)r2(t). If we consider Burgers equation (5.15) with b(t) = −ṙ1(t)/r1(t),

then we get solution

Uαh (x, t) =
α2

μ(t)r1(t)
+

(
x − rαh (t)
μ(t)σ(t)

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√

c r1(t)
r2(t) exp

[
− (x−rαh (t))2

2σ(t)

]
1 +
√

c r1(t)
r2(t) exp

[
− (x−rαh (t))2

2σ(t)

]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (5.30)

which satisfies boundary conditions (5.27). If α2 = 0 in (5.30), then the wave packet is

localized in space with Uα(±∞, t) = 0, its amplitude and width depend on σ(t) and it
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has moving zero whose position changes with time according to x = α1r1(t). Here, for

μ(t) = 1, L1(R) norm depends on time

∫ ∞
−∞
|Uαh (x, t)|dx = 2 ln

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 +
√

c r1(t)
r2(t)

× exp
[ − (rαh (t))2

2σ(t)
]⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (5.31)

(e) Generalized rational type solutions: We know that the standard Burgers

equation has family of rational solution given in (2.76). Then, it follows that the general-

ized Burgers equation (5.1) with initial condition

Um(x, t0) =
1

μ(t0)

(
α2 − m

x − α1

)
, m = 1, 2, . . . , (α1, α2) ∈ R2, (5.32)

has family of rational type solution

αUm(x, t) = − m
μ(t)r1(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣Hm−1

( x−rαg (t)
r1(t) ,

r2(t)
r1(t)

)
Hm
( x−rαg (t)

r1(t) ,
r2(t)
r1(t)

)
⎤⎥⎥⎥⎥⎥⎥⎥⎦ +
( ṙ1(t)
r1(t)

+ b(t)
)
(x − rαg (t)) +

pαg (t)

μ(t)
. (5.33)

We notice that αUm(x, t) has singularities at points where

Hm

( x − rαg (t)

r1(t)
,

r2(t)
r1(t)

)
= 0.

Then using the relation between KFP and Hermite polynomials, (2.13), the position of

the pole singularities is obtained

x = rαg (t) − iξ(l)
m

√
2r1(t)r2(t), t > t0. (5.34)

Only for the case m = 2p + 1 and p = 0, 1, 2, ..., the generalized rational solution (5.33),

that is only αU2p+1(x, t) has a moving singularity on the real domain, and its position is

described by x = rαg (t). It shows that the generalized Burgers solutions may have singu-

larities propagating in time according to a Newtonian equation of motion.
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In particular, for the BE (5.15) with b(t) = −ṙ1(t)/r1(t), the solution becomes

αUm(x, t) =
1

μ(t)r1(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝α2 − m

⎡⎢⎢⎢⎢⎢⎢⎢⎣Hm−1

( x−rαh (t)
r1(t) ,

r2(t)
r1(t)

)
Hm
( x−rαh (t)

r1(t) ,
r2(t)
r1(t)

)
⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (5.35)

which at x = ±∞ satisfies (5.27), and for odd m, position of the pole type singularity is

described by x = rαh (t). Finally, we recall that the standard BE has solutions (2.79), then

the corresponding solutions of the generalized BE will take the form

αUm(x, t) = − 1

μ(t)r1(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
m=1

m am−1Hm−1

( x − rαg (t)

r1(t)
,

r2(t)
r1(t)

)
N∑

m=0

amHm

( x − rαg
r1(t)

,
r2(t)
r1(t)

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

( ṙ1(t)
r1(t)

+ b(t)
)
(x − rαg (t)) +

pαg (t)

μ(t)
. (5.36)

Depending on the constant coefficients am, these solutions may or may not have singular-

ities on the real domain, and an analysis can be done when necessary.

5.1.2. Exactly solvable generalized Burgers models

In this section we introduce some exactly solvable Burgers type models with ex-

ternal terms in order to illustrate certain aspects of the general results. In Model 1, we

consider Burgers type model including only a dilation external term with special time-

variable coefficient. In Model 2, in addition to dilation term we take also a constant

damping term and a decreasing with time diffusion coefficient. In Model 3, we study

simultaneously the effects of dilation and time-periodic forcing.

MODEL 1 : Constant diffusion and variable convection coefficient

Consider the generalized Burgers type equation

Ut + UUx =
1

2
Uxx − Λ0 tanh(Λ0t) (xU)x , (5.37)
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with μ(t) = 1, dilation coefficient b(t) = −Λ0 tanh(Λ0t), Λ0 > 0. The corresponding

characteristic equation is r̈(t)−Λ2
0r = 0, and solutions satisfying required initial conditions

are r1(t) = cosh(Λ0t), r2(t) = sinh(Λ0t)/Λ0, t ≥ 0, which are increasing functions of time

such that r1, r2 → ∞ as t → ∞. Since b(t) = −ṙ1(t)/r1(t), then according to our results,

the equation (5.37) has solution

Uαh (x, t) = sech(Λ0t)
[
α2 + V

(
sech(Λ0t)(x − rαh (t)), tanh(Λ0t)/Λ0

)]
, α = (α1, α2) ∈ R2,

where V(η, τ) is a solution of standard BE and displacement of position is given by

rh
α(t) = α1 cosh(Λ0t) + α2 sinh(Λ0t)/Λ0, α = (α1, α2) ∈ R2, t ≥ 0. (5.38)

Clearly, time behavior of rh
α(t) can be controlled by parameters α1 = rh

α(0) and α2 = ṙh
α(0),

which are the initial position and velocity respectively. For example, when α1, α2 > 0,

then rh
α(t) → +∞ as t → ∞. If α1, α2 < 0, then rh

α(t) → −∞ and if α2 = −Λ0α1, then

rh
α(t)→ 0 as t → ∞. In what follows, we discuss some special solutions.

Example 5.1 Shock type traveling waves

Burgers model (5.37) with IC (5.19) has shock type solution

Uαh (x, t) = sech(Λ0t)
(
α2 − A tanh

[
A sech(Λ0t)

(
x − rαh (t)

)] )
, (5.39)

which is a traveling wave satisfying boundary conditions

Uαh (−∞, t) = sech(Λ0t)(α2 + A), Uαh (+∞, t) = sech(Λ0t)(α2 − A), t ≥ 0,

and its center propagates according to x = rαh (t) given by (5.38). Due to (5.38), if α1, α2 >

0, then shock profile will move away in positive x−direction, with speed vα = ṙαh (t), as

we show in Fig.5.1a. If α1, α2 < 0, then "center" of the shock profile will go away from
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the origin in negative x-direction, and using (5.38) one can work other possibilities. Here,

since sech(Λ0t) → 0 as time increases, then both amplitude and steepness of the shock

profile decrease during the propagation, and it is not difficult to see that Uαh (x, t) → 0 as

t → ∞, for x ∈ R.
In that model, interaction of two-shocks is given by

Uαh (x, t) = 2sech(Λ0t) (5.40)

×
⎡⎢⎢⎢⎢⎢⎣α(1)

2
exp
[
p1(η(x, t), τ(t))

]
+ α(2)

2
exp
[
p2(η(x, t), τ(t))

]
+ α(3)

2
exp
[
p3(η(x, t), τ(t))

]
exp
[
p1(η(x, t), τ(t))

]
+ exp
[
p2(η(x, t), τ(t))

]
+ exp
[
p3(η(x, t), τ(t))

]
⎤⎥⎥⎥⎥⎥⎦ ,

where

pi(η(x, t), τ(t)) = −2α(i)
2

sech(Λ0t)

⎛⎜⎜⎜⎜⎜⎝x − [α(i)
1

cosh(Λ0t) +
α(i)

2

Λ0

sinh(Λ0t)
]⎞⎟⎟⎟⎟⎟⎠ , i = 1, 2, 3,

and in Fig.5.1b we illustrate confluence of two shocks.
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Figure 5.1 (a) Single shock solution (5.39) with α = (1, 3), A = 2, Λ0 = 1, (b)

Two-shock solution (5.40) with α(1) = (1, 6), α(2) = (16,−1), α(3) =

(10,−7), Λ0 = 1.5.
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Example 5.2 Triangular waves

Burgers model (5.37) has triangular wave solutions of the form

Uαh (x, t) = α2sech(Λ0t) +
(eR − 1) exp

[
− (x−rαh (t))2

2σ(t)

]
√

2πσ(t)
(
1 + 1

2
(eR − 1) Erfc

[ x−rαh (t)√
2σ(t)

]) , (5.41)

where parameter

σ(t) = sinh(2Λ0t)/2Λ0, (5.42)

shows that the wave packet is spreading in space and rh
α(t) given by (5.38) describes the

displacement of the wave profile during the evolution process, as one can see in Fig.5.2a.

In particular, if α2 = 0, then Uα(±∞, t) = 0 and we have smooth and localized in space

wave packet which is normalizable.

Example 5.3 N-shaped waves

The N-shaped wave solution of Burgers model (5.37) is

Uαh (x, t) = α2sech(Λ0t) +
(x − rαh (t))

√
cΛ0 coth(Λ0t) exp

[
− (x−rαh (t))2

2σ(t)

]
σ(t)
(
1 +
√

cΛ0 coth(Λ0t) exp
[
− (x−rαh (t))2

2σ(t)

]) , (5.43)

where σ(t) given by (5.42) controls the spreading of the wave packet and rαh (t) given by

(5.38) describes shifting of its position, as illustrated in Fig.5.2b.

141



�2

0

2

4

6

x

0.1

0.5

1

t
2

4

6

8

U

(a)

�2

0

2

4

6

x

0.1

0.5

1

1.5

2

t

0

2

4

6

U

(b)

Figure 5.2 (a) Triangular wave solution (5.41) with α = (1, 3), R = 5, Λ0 = 1. (b)

N-shaped wave solution (5.43) with α = (1, 3), c = 15, Λ0 = 1.

Example 5.4 Rational type solutions

The generalized Burgers equation (5.37) with IC (5.32), has solution

αUm(x, t) = sech(Λ0t)

⎡⎢⎢⎢⎢⎢⎢⎣α2 − m
Hm−1

(
sech(Λ0t)(x − rh

α(t)),
tanh(Λ0t)
Λ0

)
Hm
(
sech(Λ0t)(x − rh

α(t)),
tanh(Λ0t)
Λ0

)
⎤⎥⎥⎥⎥⎥⎥⎦ , (5.44)

where α ∈ R2, and m = 1, 2, .... As an example, we write this solution for even m = 2,

αU2(x, t) = α2sech(Λ0t) − 2Λ0(x − rh
α(t))

Λ0(x − rh
α(t))2 + sinh(Λ0t) cosh(Λ0t)

, (5.45)

and observe that for t = 0 it has singularity located at x = α1, but at later times t > 0 it is

smooth for all x ∈ R, see Fig.5.3a. On the other side for odd m = 3, explicit form of the

solution is

αU3(x, t) = α2sech(Λ0t) − 3Λ0(x − rh
α(t))

2 + 3 sinh(Λ0t)cosh(Λ0t)
(x − rh

α(t))
[
Λ0(x − rh

α(t))2 + 3 sinh(Λ0t)cosh(Λ0t)
] , (5.46)

and it has moving singularity whose position is described by x = rh
α(t) given by (5.38),

and its behavior depends on the parameters α1, α2, as discussed before. For α1, α2 > 0, as
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one can see in Fig.5.3b, the singularity initially located at x = 1, moves away in positive

x−direction when time increases.
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Figure 5.3 (a) Rational type solution (5.45) with α = (1, 3), Λ0 = 1. (b) Rational

type solution (5.46) with α = (1, 3), Λ0 = 1.

MODEL 2 : Variable diffusion and convection coefficients

Now, we consider a generalized Burgers equation

Ut + γU + UUx =
e−γt

2
Uxx + (γ/2 −Ω tanh (Ω))(xU)x, (5.47)

with constant damping Γ(t) = γ > 0, exponentially decreasing diffusion coefficient

D(t) = e−γt/2 and b(t) = γ/2 − Ω tanh (Ω), where Ω =
√
γ2/4 − Λ2

0
, |Λ0| < γ/2. The

corresponding characteristic equation is r̈(t) + γṙ(t) + Λ2
0r(t) = 0, with solutions

r1(t) = cosh(Ω t)e−
γ
2 t, r2(t) =

sinh(Ω t)
Ω

e−
γ
2 t, t ≥ 0, (5.48)

such that r1(t), r2(t) → 0 as t → ∞. Since again dilatation coefficient satisfies b(t) =

−ṙ1(t)/r1(t), then Burgers equation (5.47) has solution of the form

Uαh (x, t) = sech
(
Ω t
)
e−
γ
2 t

[
α2 + V

(
sech
(
Ω t
)
e
γ
2 t(x − rαh (t)

)
,

tanh(Ω t)
Ω

)]
, α = (α1, α2) ∈ R2,
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where

rαh (t) =
(
α1 cosh

(
Ω t
)
+ α2 sinh(Ω t)/Ω

)
e−γt/2, t ≥ 0. (5.49)

In that model, we note that the long-time behavior of rαh (t) is not influenced by the initial

parameters, since rαh (t)→ 0 as t → ∞ for any α = (α1, α2) ∈ R2. Some particular solutions

are as follows.

Example 5.5 Shock type traveling waves

BE (5.47) has shock wave solution

Uαh (x, t) = sech
(
Ω t
)
e−
γ
2 t
(
α2 − A tanh

[
A sech
(
Ω t
)
e
γ
2 t (x − rαh (t)

)])
, (5.50)

satisfying boundary conditions

Uαh (−∞, t) = sech
(
Ω t
)
e−
γ
2 t(α2 + A), Uαh (+∞, t) = sech

(
Ω t
)
e−
γ
2 t(α2 − A), t ≥ 0,

which tend to zero as time increases. In that model, center moves according to x = rαh (t)

given by (5.49), so that when time increases it approaches x = 0 for every α = (α1, α2).

Steepness of the shock profile increases with time according to sech(Ω t)eγt/2, but shock

amplitude is proportional to sech(Ω t)e−γt/2, so that it decreases and tends to zero as t →
∞. Clearly, parameters γ and Λ0 can be used to control the steepness and shock amplitude

of the wave packet.One can see the behavior of shock traveling wave solution in Fig.5.4a.

Next, as an example, we write also the three-shock wave solution to equation (5.47)

Uαh (x, t) =
2e−

γ
2 t

cosh(Ω t)

⎡⎢⎢⎢⎢⎢⎣α(1)

2
exp
[
p1(η(x, t), τ(t))

]
+ ... + α(4)

2
exp
[
p4(η(x, t), τ(t))

]
exp
[
p1(η(x, t), τ(t))

]
+ ... + exp

[
p4(η(x, t), τ(t))

]
⎤⎥⎥⎥⎥⎥⎦ , (5.51)
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where

pi(η(x, t), τ(t)) = −2α(i)
2

sech(Ωt)e
γ
2 t

⎛⎜⎜⎜⎜⎜⎝x − [α(i)
1

cosh(Ωt) +
α(i)

2

Ω
sinh(Ωt)

]
e−
γ
2 t

⎞⎟⎟⎟⎟⎟⎠ , i = 1, 2, 3, 4,

and in Fig.5.4b we plot it for certain parameters.
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Figure 5.4 (a) Single shock solution (5.50) with α = (1, 5), A = 5, Λ0 = 0.1, γ =
1. (b) Three-shock wave solution (5.51) with α(1) = (−3, 1), α(2) =

(6,−2), α(3) = (−1, 5), α(4) = (−2, 9), Λ0 = 0.1, γ = 1.

Example 5.6 Triangular waves

Generalized BE (5.47) has triangular wave solution

Uαh (x, t) = α2sech(Ω t)e−
γ
2 t +

(eR − 1) exp
[
−(x − rαh (t))2/2σ(t)

]
√

2πσ(t)eγt
(
1 + 1

2
(eR − 1) Erfc

[
(x − rαh (t))/

√
2σ(t)
]) ,(5.52)

where parameter

σ(t) = e−γt sinh(2Ωt)/2Ω, (5.53)

is increasing in time for any γ > 0 and Λ0 ∈ R, so that the wave packet is spreading

during the propagation, its amplitude decreases and displacement rαh (t) is given by (5.49),

see Fig.5.5a.
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Example 5.7 N-shaped waves

The N-shaped wave solution of BE (5.47) is

Uαh (x, t) = α2sech(Ω t)e−
γ
2 t +

sech(Ω t)(x − rαh (t))
√

cΩ coth(Ωt) exp
[
−(x − rαh (t))2/2σ(t)

]
σ(t)eγt

(
1 +
√

cΩ coth(Ωt) exp
[−(x − rh

α(t))2/2σ(t)
]) ,(5.54)

where spreading of the wave profile again depends on σ(t) given by (5.53) and rαh (t) is

given by (5.49).
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Figure 5.5 (a) Triangular traveling wave solution (5.52) with α = (1, 5), R =

10, Λ0 = 0.1, γ = 1. (b) N-shaped wave solution (5.54) with α =
(1, 5), c = 100, Λ0 = 0.1, γ = 1.

Example 5.8 Rational type solutions

Burgers equation (5.47) has solution

αUm(x, t) = sech(Ω t)e−
γ
2 t

⎡⎢⎢⎢⎢⎢⎣α2 − m
Hm−1

(
sech(Ω t)e

γ
2 t(x − rαh (t)), tanh(Ωt)/Ω

)
Hm
(
sech(Ω t)e

γ
2 t(x − rαh (t)), tanh(Ωt)/Ω

)
⎤⎥⎥⎥⎥⎥⎦ , m = 1, 2, ...(5.55)
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For m = 2 solution is of the form

αU2(x, t) = α2sech(Ω t)e−
γ
2 t − 2Ω (x − rαh (t))
Ωeγt(x − rαh (t))2 + sinh(Ωt) cosh(Ωt)

, (5.56)

which is smooth for t > 0, x ∈ R and αU2(x, t)→ 0 as t → ∞, for any x ∈ R, see Fig.5.6a.

For m = 3 solution is explicitly found as

αU3(x, t) = α2sech(Ω t)e−
γ
2 t − 3Ω (x − rαh (t))2 + 3e−γt sinh(Ωt) cosh(Ωt)

(x − rαh (t))
[
Ω eγt(x − rαh (t))2 + 3 sinh(Ωt) cosh(Ωt)

] ,(5.57)

and one can easily see that it has singularity moving according to x = rαh (t), given by

(5.49). In that model, due to (5.49), independently of how parameters α1, α2 are chosen,

as t → ∞ the singularity will eventually approach the origin x = 0, see Fig.5.6b.
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Figure 5.6 (a) Rational type solution (5.56) with α = (1, 5), γ = 1, Λ0 = 0.1. (b)

Rational type solution (5.57) with α = (1, 5), γ = 1, Λ0 = 0.1.

MODEL 3 : Variable coefficient convection and forcing term

The last generalized Burgers model that we discuss is

Ut + UUx =
1

2
Uxx − ω0 tanh(ω0t)(xU)x − ω2

0x + F0 sin(ωt), (5.58)
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where b(t) = −ω0 tanh(ω0t), ω2(t) = ω2
0, ω0 ∈ R, and we take sinusoidal forcing term

f (t) = F0 sin(ωt), with frequency ω ∈ R. The characteristic equation is r̈(t) = F0 sin(ωt)

with two independent homogeneous solutions and a particular solution, respectively

r1(t) = 1, r2(t) = t, rp(t) =
F0

ω2
(ωt − sin(ωt)), t ≥ 0. (5.59)

Then, Burgers equation (5.58) has solution

Ugα(x, t) = α2 + V (x − rα(t), t) − ω0 tanh(ω0t)x +
F0

ω
(1 − cos(ωt)), α = (α1, α2) ∈ R2,

where

rαg (t) = α1 + α2t +
F0

ω2
(ωt − sin(ωt)), t ≥ 0. (5.60)

Example 5.9 Shock traveling waves

Burgers model (5.58) has solution

Uαg (x, t) = α2 − A tanh
[
A
(
x − rαg (t)

)]
− ω0 tanh(ω0t)x +

F0

ω
(1 − cos(ωt)), (5.61)

where center of the shock profile moves according to x = rαg (t) given by (5.60), and can

be controlled by the initial parameters α1, α2, and F0 and ω. For example, if α2 = −F0/ω,

then the center will just oscillate around the initial position x = α1 with frequency ω.

Otherwise position of the center could oscillate while propagating, or could propagate

with alternating speed. In any case, the amplitude of the shock profile and its steepness

does not change during the evolution, since the relation between the coefficients ω2(t) +

ḃ(t) − b2(t) = 0, implies r1(t) = 1. On the other side, the total wave amplitude Uαg (x, t)

itself is unbounded at x = ±∞ when ω0 � 0, due to the linear in position x term, and there
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is a global time oscillation of the wave due to a sinusoidal forcing, see Fig.5.7a.

Two-shocks wave is of the form

Uαg (x, t) = 2
α(1)

2
exp
[
p1(η(x, t), τ(t))

]
+ α(2)

2
exp
[
p2(η(x, t), τ(t))

]
+ α(3)

2
exp
[
p3(η(x, t), τ(t))

]
exp
[
p1(η(x, t), τ(t))

]
+ exp
[
p2(η(x, t), τ(t))

]
+ exp
[
p3(η(x, t), τ(t))

]
− ω0 tanh(ω0t)x +

F0

ω
(1 − cos(ωt)), (5.62)

where

pi(η(x, t), τ(t)) = −2α(i)
2

(
x − [α(i)

1
+ α(i)

2
t +

F0

ω2
(ωt − sin(ωt))

])
, i = 1, 2, 3. (5.63)

and we plot it in Fig.5.7b.
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Figure 5.7 (a) Single shock solution (5.61) with α = (−1, 1), A = 15, ω0 =

3, ω = 15, F0 = 75. (b) Two-shock wave solution (5.62) with

α(1) = (0,−8), α(2) = (5, 0), α(3) = (−5, 10), ω = 15, F0 = 75, ω0 = 1.
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Example 5.10 Triangular waves

Burgers Eq.(5.58) has generalized triangular wave solution

Uαg (x, t) = α2 +
1√
2π t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(eR − 1) exp

[
− (x−rαg (t))2

2t

]
1 + (eR−1)

2
Erfc[

x−rαg (t)√
2t

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − ω0 tanh(ω0t)x

+
F0

ω
(1 − cos(ωt)), (5.64)

where σ(t) = 2t is the spreading parameter and displacement rαg (t) is given by (5.60). As

one can see in Fig.5.8a, due to periodic forces the global wave amplitude shows oscillatory

behavior in time, while the amplitude of the wave profile decreases. For ω0 � 0 the wave

packet is unbounded at x = ±∞.

Example 5.11 N-shaped waves

N-shaped wave solution for generalized forced Burgers model (5.58) is of the form

Uαg (x, t) = α2 +

( x − rα(t)
t

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√ c

t exp
[
− (x−rαg (t))2

2t

]
1 +
√ c

t exp
[
− (x−rαg (t))2

2t

]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− ω0 tanh(ω0t)x +
F0

ω
(1 − cos(ωt)). (5.65)

where again σ(t) = 2t and rαg (t) is given by (5.60).
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Figure 5.8 (a) Triangular wave solution (5.64) with α = (−1, 1), R = 15, ω =
45, F0 = 75, ω0 = 1. (b) N-shaped wave solution (5.65) with α =
(−1, 1), c = 50, ω = 25, F0 = 25, ω0 = 1.

Example 5.12 Rational type solutions

Generalized Burgers model (5.58) has rational type solutions

αUm(x, t) = α2 − m
Hm−1

(
x − rαg (t), t

)
Hm
(
x − rαg (t), t

) − ω0 tanh(ω0t)x +
F0

ω
(1 − cos(ωt)), (5.66)

where rαg (t) is given by (5.60). For m = 2 solution is explicitly found as

αU2(x, t) = α2 −
2(x − rαg (t))

(x − rαg (t))2 + t
− ω0 tanh(ω0t)x +

F0

ω
(1 − cos(ωt)), (5.67)

which is smooth except at t = 0, for all x ∈ R, it is unbounded at x = ±∞, and due

to the sinusoidal forcing term there is a time oscillation of the total wave amplitude, as

illustrated in Fig.5.9a. For m = 3 we have

αU3(x, t) = α2 −
3(x − rαg (t))2 + 3t

(x − rαg (t))[(x − rα(t))2 + 3t]
− ω0 tanh(ω0t)x +

F0

ω
(1 − cos(ωt)),(5.68)

from which we see that solution is unbounded at x = ±∞ and total wave amplitude peri-
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odically oscillates with time, except at singularity points where it becomes infinite. In that

model, position of the singularity is given by x = α1 + α2t + (F0/ω
2)(ωt − sin(ωt)) show-

ing that in general singularity oscillates while propagating along the x−axis, as shown in

Fig.5.9b. Clearly, its exact motion can be controlled by the initial position and velocity

parameters α1, α2, by the strength F0 of the time-periodic force and its frequency ω.
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Figure 5.9 (a) Rational type wave solution αU2(x, t) with α = (−1, 1), ω = 15, F0 =

55, ω0 = 1. (b) Rational type wave solution αU3(x, t) with α =
(−1, 1), ω = 15, F0 = 100, ω0 = 1.

5.2. Analytical Solution of the IBVP with Dirichlet Boundary

Condition on the Half-line

In (A. Büyükaşık & Bozacı, 2019), we studied IBVP with Dirichlet boundary

condition on the half-line for the forced Burgers equation of the form Ut + (μ̇(t)/μ(t))U +

UUx =
1

2μ(t)Uxx − ω2(t)x. We obtained solution in terms of solution to the second order

ordinary differential equation and a second-kind singular Volterra type integral equation.

According to the general results, we introduced some different Burgers type models with

specific damping, diffusion and forcing coefficients and constructed classes of exactly

solvable models. We see that the Burgers problems with smooth time-dependent bound-

ary data and an initial profile with pole type singularity have exact solutions with moving

singularity. For each model we provided the solutions explicitly and described the dy-
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namical properties of the singularities depending on the time-variable coefficients and the

given initial and boundary data.

Now, as an extension, in this thesis we study IBVP with Dirichlet boundary con-

dition for the generalized Burgers equation of the form (5.1). In previous section, we see

that the generalized Burgers equation (5.1) is linearized to the generalized diffusion type

equation of the form (3.1). Due to the difficulties of the IBVP’s on the half-line for the

generalized diffusion type equations mentioned in Chapter 3, the IBVP on the half-line

for the generalized Burgers type equation also has difficulties, which causes from the in-

homogeneity of the characteristic equation. So, in this section, we provide a solution to

the following Dirichlet IBVP for the BE of the form (5.15)

Ut +
μ̇(t)
μ(t)

U + UUx =
1

2μ(t)
Uxx + b(t)(xU)x − ω2(t)x, 0 < x < ∞, 0 < t < T, (5.69a)

U(x, 0) = U0(x), 0 < x < ∞, (5.69b)

U(0, t) = D(t), 0 < t < T, (5.69c)

where the parameters μ(t) > 0, μ(0) = 1, b(t), ω(t) are given real-valued smooth func-

tions of time, initial data U0(x) and boundary data D(t) are given sufficiently smooth

functions in their domains. The result is summarized as follows.

Proposition 5.2 The IBVP (5.69) has solution in the form

U(x, t) =
(
ṙ1(t)
r1(t)

+ b(t)
)

x (5.70)

−
(

1

μ(t)r1(t)

)∫ ∞
0
∂ηGN(η(x, t), ξ; τ(t))F0(ξ)dξ − ∫ τ(t)

0
∂ηK(η(x, t), τ(t) − τ′)Q(τ′)dτ′∫ ∞

0
GN(η(x, t), ξ; τ(t))F0(ξ)dξ − ∫ τ(t)

0
K(η(x, t), τ(t) − τ′)Q(τ′)dτ′

,

where η(x, t), τ(t) and r1(t), r2(t) are all as defined in Proposition 3.45, GN(η, ξ, τ),K(η, τ)

denote the Neumann heat kernel and heat kernel respectively, and

F0(ξ) = exp
(
−
∫ ξ

U0(x)dx
)
, (5.71)
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and the function Q(τ) is obtained by solving the second-kind Volterra integral equation

Q(τ) = r1(t(τ))μ(t(τ))U(0, t(τ))
( ∫ τ

0

Q(τ′)√
2π(τ − τ′)dτ′ − 2

∫ ∞
0

K(ξ, τ)F0(ξ)dξ
)
.

Proof The proof can be done by reducing the IBVP (5.69) to the IBVP for simpler

PDE’s and by applying linearization procedure as follows :

First approach : Motivated from previous works, when b(t) = 0, first we show

that the IBVP (5.69) has solution of the form

U(x, t) =
(
ṙ1(t)
r1(t)

+ b(t)
)

x +
1

μ(t)r1(t)
V(η(x, t), τ(t)), (5.72)

where V(η, τ) satisfies the IBVP for the standard Burgers equation with Dirichlet BC

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Vτ + VVη = 1

2
Vηη, 0 < η < ∞, 0 < τ < τ(T ),

V(η, 0) = U(η, 0), 0 < η < ∞,
V(0, τ) = μ(t(τ))r1(t(τ))U(0, t(τ)), 0 < τ < τ(T ).

(5.73)

Indeed, in (A. Büyükaşık & Pashaev, 2013) it was found that the forced Burgers equation

(FBE) with specific time-variable coefficients in (5.69a) has solution of the form (5.72),

where the functions η(x, t), and τ(t) are as defined in (3.7). Then, using (5.72) the initial

condition U(x, 0) gives the initial condition V(η, 0) = U(η, 0) ≡ F(η). On the other hand,

we notice that continuity of μ(t) > 0 and r2
1(t) > 0 for t ∈ [0,T ), imply that τ(t) defined in

(3.7) is strictly increasing continuous function on [0,T ) and thus its inverse t(τ) exists for

τ ∈ [0, τ(T )). Then, Dirichlet boundary condition U(0, t) = D(t) transforms to Dirichlet

boundary condition in (5.73), and IBVP (5.69) for the FBE transforms to the IBVP (5.73).

Second, using Cole-Hopf transform V = −Ψη/Ψ it is not difficult to show that the

IBVP (5.69) has solution of the form

U(x, t) =
(
ṙ1(t)
r1(t)

+ b(t)
)

x − 1

μ(t)r1(t)
Ψη(η(x, t), τ(t))
Ψ(η(x, t), τ(t))

, (5.74)
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where Ψ(η, τ) satisfies the IBVP for the standard heat equation with Robin BC

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ψτ =

1
2
Ψηη, 0 < η < ∞, 0 < τ < τ(T ),

Ψ(η, 0) = exp
[
− ∫ ηU(x, 0)dx

]
, 0 < η < ∞,

Ψη(0, τ) +
[
μ(t(τ))r1(t(τ))U(0, t(τ))

]
Ψ(0, τ) = 0, 0 < τ < τ(T ).

(5.75)

Thus, solving the IBVP (5.69) for FBE reduces to the problem of solving IBVP (5.75) for

heat equation with Robin BC. Formally, we can write solution of the heat IBVP (5.75) us-

ing two approaches: the Neumann boundary approach and Dirichlet boundary approach,

(Cannon, 1984) and (Rodin, 1970). (For Dirichlet boundary approach one can assume

temporary we know Ψ(0, τ) = H(τ).) Here, we use the Neumann boundary approach and

assume temporary we know Ψη(0, τ) = Q(τ). Then, the following IBVP with Neumann

BC

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ψτ =

1
2
Ψηη, 0 < η < ∞, 0 < τ < τ(T ),

Ψ(η, 0) = exp
[
− ∫ ηU(x, 0)dx

]
, 0 < η < ∞,

Ψη(0, τ) = Q(τ), 0 < τ < τ(T ),

(5.76)

has solution

Ψ(η, τ) =

∫ ∞
0

GN(η, ξ; τ)F0(ξ)dξ −
∫ τ

0

K(η, τ − τ′)Q(τ′)dτ′, (5.77)

where F0(ξ) = Ψ(ξ, 0). It follows that

Ψ(0, τ) = 2

∫ ∞
0

K(ξ, τ)F0(ξ)dξ −
∫ τ

0

Q(τ′)√
2π(τ − τ′)dτ′.

Substituting Ψ(0, τ) and Ψη(0, τ) = Q(τ) into the Robin BC of (5.75) gives,

Q(τ) = r1(t(τ))μ(t(τ))U(0, t(τ))
( ∫ τ

0

Q(τ′)√
2π(τ − τ′)dτ′ − 2

∫ ∞
0

K(ξ, τ)F0(ξ)dξ
)
,
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which is exactly the second-kind singular Volterra type integral equation for the unknown

function Q(τ). Then, with Q(τ) determined by this integral equation the function (5.77) is

solution of the heat problem (5.75). Therefore, Cole-Hopf transform V = −Ψη/Ψ gives

the solution of the IBVP (5.73), that is

V(η, τ) = −
∫ ∞

0
∂ηGN(η, ξ, τ)F0(ξ)dξ − ∫ τ

0
∂ηK(η, τ − τ′)Q(τ′)dτ′∫ ∞

0
GN(η, ξ, τ)F0(ξ)dξ − ∫ τ

0
K(η, τ − τ′)Q(τ′)dτ′

,

which substituted back in (5.72) gives the solution (5.70) of the IBVP (5.69). �

Second approach : On the other side, by generalized Cole-Hopf transformation

U(x, t) = − Φx(x, t)
μ(t)Φ(x, t)

, (5.78)

the generalized BE (5.69a) is linearized to the equation in (3.45) and initial condition

(5.69b) directly transforms to IC Φ(x, 0) = exp
[
− ∫ x

U0(x′)dx′
]
. And we notice that

continuity of μ(t) > 0 and r2
1(t) > 0 for t ∈ [0,T ), imply that τ(t) defined in (3.7) is strictly

increasing continuous function on [0,T ) and thus its inverse t(τ) exists for τ ∈ [0, τ(T )).

Then, by transformation (5.78), Dirichlet boundary condition (5.69c) transforms to Robin

type boundary condition for generalized diffusion equation

Φx(0, t) + μ(t)D(t)Φ(0, t) = 0. (5.79)

Therefore, according to Proposition (3.4), the IBVP (3.76) with initial conditionΦ(x, 0) =

exp
[
− ∫ x

U0(x′)dx′
]

and Robin type BC (5.79) reduces to IBVP (3.77) with IC Ψ(η, 0) =

exp
[
− ∫ ηU0(x′)dx′

]
and Robin BC Ψη(0, τ) + r1(t(τ))μ(t(τ)))D(t(τ))Ψ(0, τ) = 0 for the

heat equation. So using the integral representation of solution for the heat IBVP with

Robin BC and applying transformation (5.78), we get the desired solution (5.70). �
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5.2.1. Exactly Solvable Models

First, we discuss an exactly solvable model for b(t) = 0. For the other models with

b(t) = 0, one can see (A. Büyükaşık & Bozacı, 2019).

Forced Burgers Model with Damping and Time-varying Diffusion Coefficient

We study the IBVP for a forced Burgers equation,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ut + γU + UUx =

1
2
e−γtUxx − γ2

4
x, 0 < x < ∞, t > 0,

U(x, 0) = U0(x), 0 < x < ∞,
U(0, t) = D(t), t > 0,

(5.80)

with constant damping Γ(t) = γ > 0, exponentially decaying diffusion coefficient 1/2μ(t) =

(1/2)e−γt, and ω2(t) = −(γ2/4).We notice that, when parameter γ > 0 increases damping

and forcing coefficients become larger, while diffusion coefficient gets smaller and goes

to zero when t → ∞. The corresponding linear characteristic equation is

r̈(t) + γṙ(t) +
γ2

4
r(t) = 0, t ≥ 0, (5.81)

and it has two independent solutions satisfying the prescribed IC’s

r1(t) = e−
γt
2

(
1 +
γ

2
t
)
, r2(t) = te−γt/2, t ≥ 0. (5.82)

In this model, both solutions are positive and approaching zero when t → ∞. Then Burg-

ers problem (5.80) has solution of the form

U(x, t) = −
(
γ

2

)2 ( t
1 +

γ

2
t
x
)
−
(

e−γt/2

1 +
γ

2
t

)
Ψη(η(x, t), τ(t))
Ψ(η(x, t), τ(t))

,
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where

η(x, t) =
eγt/2

(1 + γt/2)
x, τ(t) =

t
(1 + γt/2)

, t ≥ 0, (5.83)

τ(t) being positive, strictly increasing, bounded above with inverse t(τ) = τ/(1−γτ/2) for

t ≥ 0, and Ψ(η, τ) satisfies the IBVP for the heat equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψτ =
1
2
Ψηη, 0 < η < ∞, 0 < τ < 2/γ,

Ψ(η, 0) = exp
[
− ∫ ηU(x, 0)dx

]
, 0 < η < ∞,[

( 2
2−γτ )e
(
γτ

2−γτ
)
U(0, t(τ))

]
Ψ(0, τ) + Ψη(0, τ) = 0, 0 < τ < 2/γ.

(5.84)

Solution of the heat problem is formally of the form

Ψ(η, τ) =

∫ ∞
0

(e− (η−ξ)2
2τ + e−

(η+ξ)2

2τ√
2πτ

)
e−
∫ ξ

U0(x)dxdξ −
∫ τ

0

e−
η2

2(τ−τ′)
√

2π(τ − τ′)Q(τ′)dτ′,

where Q(τ) is found by solving the integral equation

Q(τ) =

⎡⎢⎢⎢⎢⎢⎣ 2 e
γτ

2−γτ

(2 − γτ)U(0, t(τ))

⎤⎥⎥⎥⎥⎥⎦ (
∫ τ

0

Q(τ′)√
2π(τ − τ′)dτ′ − 2

∫ ∞
0

e−
ξ2

2τ√
2πτ

e−
∫ ξ

U0(x)dxdξ
)
.

Clearly, for arbitrary initial and boundary data solving the integral equation may require

numeric or asymmtotic approaches. But for some special choices of initial and boundary

datas it is possible to obtain exact solution to the integral equation correspondingly to the

IBVP (5.80). In this model we are interested in two special boundary conditions : the first

one is when U(0, t(τ)) = 0, which leads to homogeneous Neumann boundary condition

for the heat problem, and second one is when the boundary condition is chosen so that

U(0, t(τ)) = D0(2 − γτ)/(2e
γτ

2−γτ ).
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Example 5.13 Let the Burgers problem (5.80) with rational initial condition and homo-

geneous Dirichlet boundary condition be given

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ut + γU + UUx =

1
2
e−γtUxx − γ2

4
x, 0 < x < ∞, t > 0,

U(x, 0) = −m
x , 0 < x < ∞, m = 0, 1, 2, ...

U(0, t) = 0, t > 0.

(5.85)

It reduces (without loss of generality for a suitable integration constant) to an

IBVP for the heat equation, with homogeneous Neumann BC

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ψτ =

1
2
Ψηη, 0 < η < ∞, 0 < τ < 2/γ,

Ψ(η, 0) = ηm, 0 < η < ∞, m = 0, 1, 2, ...,

Ψη(0, τ) = 0, 0 < τ < 2/γ,

(5.86)

whose solutions depending on m, can be easily expressed in terms of the functions

h−p(η, τ) =

∫ ∞
0

e−
(η−ξ)2

2τ√
2πτ
ξpdξ, (5.87)

h+p(η, τ) =

∫ ∞
0

e−
(η+ξ)2

2τ√
2πτ
ξpdξ. (5.88)

These functions are well-known solutions of the heat equation for −∞ < η < ∞, and are

positive for 0 < η < ∞, τ > 0, see for example (Widder, 1975), (Rosenbloom & Widder,

1958), (Jeffreys, 1988), (Sachdev, 1987). Then, the heat problem (5.86) and hence the

Burgers IBVP have the following solutions:

(a) For m = 2p, p = 0, 1, 2, ..., solution of the heat problem is the even Kampe

de Feriet polynomial Ψ2p(η, τ) = H2p(η, τ), and therefore solution of the Burgers problem

(5.85) is of the form

U2p(x, t) = −
(
γ

2

)2 ( t
1 + γt/2

x
)
−
[

e−γt/2

1 + γt/2

]
2pH2p−1

(
eγt/2

1+γt/2 x, t
1+γt/2

)
H2p

(
eγt/2

1+γt/2 x, t
1+γt/2

) . (5.89)
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Note that the odd KFP’s defined by H2p+1(η, τ) = h−2p+1(η, τ) − h+2p+1(η, τ) do not satisfy

the Neumann BC Ψη(0, τ) = 0, and therefore are not solutions of IBVP (5.85).

(b) For m = 2p + 1, p = 0, 1, 2, ..., solution of the heat problem can be written as

Ψ2p+1(η, τ) = h−2p+1(η, τ) + h+2p+1(η, τ), (5.90)

and the corresponding solution of the Burgers problem (5.85) becomes

U2p+1(x, t) = −
(
γ

2

)2 ( t
1 + γt/2

x
)

− (2p + 1)

[
e−γt/2

1 + γt/2

] ⎡⎢⎢⎢⎢⎢⎣ h−2p
(
η(x, t), τ(t)

) − h+2p
(
η(x, t), τ(t)

)
h−

2p+1

(
η(x, t), τ(t)

)
+ h+

2p+1

(
η(x, t), τ(t)

)
⎤⎥⎥⎥⎥⎥⎦ , (5.91)

where η(x, t) and τ(t) are as defined in (5.83) and we used that ∂η[h−p(η, τ) + h+p(η, τ)] =

p[h−p−1(η, τ) − h+p−1(η, τ)], for each p = 1, 2, .... These solutions are also smooth for x > 0,

t > 0.

In this model, for x > 0 we have

lim
t→∞ η(x, t) = ∞, lim

t→∞ τ(t) = 2/γ,

and the long-time behavior of Burgers solution U(x, t) is described by

lim
t→∞U(x, t) = −γx/2,

where the limiting function U∗(x) = −γx/2 satisfies the equation γU +UUx = −γ2x/4 on

the interval 0 < x < ∞ with boundary condition U(0) = 0.
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Example 5.14 Now we study the IBVP

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ut + γU + UUx =

1
2
e−γtUxx − γ2

4
x, 0 < x < ∞, t > 0,

U(x, 0) = − (2m+1)[x−2m/D0]

x[x−(2m+1)/D0]
, 0 < x < ∞,

U(0, t) = D0e−γt/2/(1 + γt/2), t > 0,

(5.92)

where D0 > 0 is a constant parameter, and m = 0, 1, 2, .... The initial profile has simple

zero at x = 2m/D0, and pole type singularity at x = (2m+1)/D0, for x > 0. The boundary

data has changed according to the time-variable coefficients, but we still have U(0, t)→ 0

as t → ∞. Here, parameter D0 can be used to control the relation between the initial and

boundary data. That is, when the strength D0 of the BC increases, the initial singularity

becomes closer to the boundary x = 0, and conversely, when parameter D0 is small and

close to zero the initial singularity is away from the boundary x = 0.

Burgers problem (5.92) reduces to the heat problem reduce to heat problems with

polynomial type initial data and Robin BC as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψτ =
1
2
Ψηη, 0 < η < ∞, 0 < τ < 2/γ,

Ψ(η, 0) =
(
η2m+1 − (2m+1)

D0
η2m
)
, 0 < η < ∞,

Ψη(0, τ) + D0Ψ(0, τ) = 0, 0 < τ < 2/γ.

(5.93)

Solution of (5.93), according to (5.77), is given by Ψ(η, τ) ≡ Ψm(η, τ), where

Ψm(η, τ) =

∫ ∞
0

(e− (η−ξ)2
2τ + e−

(η+ξ)2

2τ√
2πτ

) (
ξ2m+1 − (2m + 1)

D0

ξ2m

)
dξ (5.94)

−
∫ τ

0

e−
η2

2(τ−τ′)
√

2π(τ − τ′)Qm(τ′)dτ′,

and Qm(τ) is solution of the following Abel integral equation of the second kind which is

a special form of Volterra integral equation of second-kind.

Using that, the integral equation has solution Qm(τ) = 1.3.5...(2m + 1)τm, and
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substituting it into (C.2), as expected solution of the heat problem (5.93) becomes

Ψm(η, τ) = H2m+1(η, τ) − (2m + 1)

D0

H2m(η, τ), (5.95)

which is a special linear superposition of two Kampe de Feriet polynomials.

For m = 0, 1, 2 solutions (5.95) are explicitly written as

Ψ0(η, τ) = H1(η, τ) − 1

D0

H0(η, τ) = η − 1/D0,

Ψ1(η, τ) = H3(η, τ) − 3

D0

H2(η, τ) = (η3 + 3ητ) − 3

D0

(
η2 + τ
)
,

Ψ2(η, τ) = H5(η, τ) − 5

D0

H4(η, τ) = (η5 + 10η3τ + 15ητ2) − 5

D0

(
η4 + 6η2τ + 3τ2

)
.

Note that IC in (5.93) has only one simple real zero η = (2m + 1)/D0 for D0 > 0,

η > 0 and each m = 0, 1, 2, .... Then, the corresponding heat solution (5.95) has a zero

for η > 0, τ > 0, which propagates along the semiline 0 < η < ∞ during the evolution

process and its position can be described by a continuous function η = χm(τ), satisfying

χm(0) = (2m + 1)/D0 and

Ψm(χm(τ), τ) = 0, m = 0, 1, 2, .... (5.96)

The corresponding solution U(x, t) ≡ Um(x, t) for the Burgers IBVP (5.92) becomes

Um(x, t) = −
(
γ

2

)2 ( t
1 + γt/2

x
)
−
(

e−γt/2

1 + γt/2

)
∂ηΨm(η(x, t), τ(t))
Ψm(η(x, t), τ(t))

,

where Ψm(η, τ) is given by (5.95) and η(x, t), τ(t) are as defined in (5.83). According to

(6.41) heat function Ψm(η, τ) has moving zero η = χm(τ), and it follows that for x > 0, t >

0, Burgers solution Um(x, t) has moving singularity described by

xm(t) = (1 + γt/2)e−γt/2 χm

(
t

1 + γt/2

)
, t > 0. (5.97)
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Here, we have xm(t)→ 0 as t → ∞, showing that singularity initially located at x = (2m+

1)/D0 approaches the boundary x = 0, when time increases and by changing parameter

γ > 0, one can control the speed at which singularity approaches the boundary. More

precisely, when γ becomes larger, diffusion coefficient and boundary data go faster to

zero and singularity goes faster to x = 0.

As an example, we investigate Burgers problem (5.92) for m = 0, 1, For m = 0,

the initial profile is U0(x, 0) = −1/(x − 1/D0), x > 0 with discontinuity at x = 1/D0, and

we have smooth boundary condition U0(0, t) = D0e−γt/2/(1 + γt/2), t > 0. Since initial

and boundary data are compatible, at time t = 0 the value of U0 at point x = 0 can be

fixed to be a constant D0 > 0, and boundary data shows that at later times the value of U0

at point x = 0 will smoothly decrease and approach zero. Under these conditions Burgers

solution becomes

U0(x, t) = −
(
γ

2

)2 ( t
1 + γt/2

x
)
− D0e−γt/2

D0eγt/2x − (1 + γt/2)
. (5.98)

Here, the singularity motion is described by the monotone decreasing function x = (1/D0)(1+

γt/2)e−γt/2, and it shows that the singularity initially located at x = 1/D0 will move along

the semiline 0 < x < ∞ continuously approaching the boundary point x = 0, when time

increases. This behavior can be seen in Fig.5.10a for D0 = 0.5 and γ = 2.

Similarly, for m = 1, we have U1(x, 0) = −3(x− 2/D0)/x(x− 3/D0), x > 0, which

is discontinuous at x = 3/D0, and boundary data is same as for case m = 0. Then, Burgers

solution becomes

U1(x, t) = −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
γ

2

)2
t

1 + γt/2
x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5.99)

− 3D0eγt/2x2 − 6(1 +
γt
2

)x + 3D0(1 +
γt
2

)e−γt/2t

D0e3γt/2x3 − 3(1 +
γt
2

)eγt x2 + 3D0(1 +
γt
2

)teγt/2x − 3(1 +
γt
2

)2t
,

and its behavior is illustrated in Fig.5.10b for D0 = 0.5 and γ = 2. For these parameters,

solution U1(x, t) has moving singularity described by x1(t) = (1+t)e−t χ1 (t/(1 + t)) , t > 0,

where χ1(τ) is the zeros of the first KFP, Ψ1(η, τ), at η = τ(t).
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Figure 5.10 Example 5.14 (a) Solution U0(x, t) given by (5.98) with D0 = 0.5 and

γ = 2. (b) Solution U1(x, t) given by (5.99) with D0 = 0.5 and γ = 2.
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CHAPTER 6

GENERALIZED BURGERS TYPE EQUATIONS WITH

MOVING BOUNDARIES

In this chapter, we study an initial-boundary value problem with moving boundary

(mIBVP) on a time-dependent domain s(t) < x < ∞, 0 < t < T for a one dimensional

generalized Burgers type equation of the form

Ut +
μ̇(t)
μ(t)

U + UUx =
1

2μ(t)
Uxx − ((a(t) − b(t)x)U)x + F(x, t), (6.1)

for the field U(x, t),with smooth coefficients of damping Γ(t) = μ̇(t)/μ(t), diffusion D(t) =

1/2μ(t), linear convection term additional to nonlinear one and F(x, t) = −ω2(t)x + f (t)

is an external forcing term linear in position variable. We obtain analytical solution and

present classes of exactly solvable models.

6.1. Analytical solution of the Dirichlet IBVP with moving boundary

Consider the generalized Burgers type equation on a time-varying domain s(t) <

x < ∞, 0 < t < T, with Dirichlet boundary condition imposed at x = s(t),

Ut +
μ̇(t)
μ(t)

U + UUx =
1

2μ(t)
Uxx − ((a(t) − b(t)x)U)x − ω2(t)x + f (t), (6.2a)

U(x, 0) = U0(x), s(0) < x < ∞, (6.2b)

U(s(t), t) = D(t), 0 < t < T, (6.2c)

where all coefficients are given real-valued sufficiently smooth functions in their domains,

μ(t) > 0, μ(0) = 1 and time-dependent boundary s(t) is a twice differentiable function.

The main result reducing to the analytically solvable standard models is summarized as

follows.
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Proposition 6.1 If the boundary function s(t) is of the form

s(t) = rαg (t) ≡ α1r1(t) + α2r2(t) + rp(t), α ≡ (α1, α2) ∈ R2, (6.3)

where r1(t), r2(t) are positive, linearly independent homogeneous solutions and rp(t) is a

particular solution of the inhomogeneous characteristic equation

r̈ +
μ̇(t)
μ(t)

ṙ +
[
ω2(t) +

(
ḃ(t) +

μ̇(t)
μ(t)

b(t) − b2(t)
)]

r = ȧ(t) − a(t)
[
b(t) − μ̇(t)

μ(t)

]
+ f (t), (6.4)

satisfying IC’s r1(0) = 1, ṙ1(0) = −b(0), r2(0) = 0, ṙ2(0) = 1 and rp(0) = 0, ṙp(0) = a(0)

respectively, then the solution to the mIBVP (6.2) is obtained in the following two forms :

(a) Uαg (x, t) =
1

μ(t)r1(t)
V(ηαg (x, t), τ(t)) +

(
ṙ1(t)
r1(t)

+ b(t)
) (

x − rαg (t)
)
+

pαg (t)

μ(t)
, (6.5)

where pαg (t) and ηαg (x, t), τ(t) are given in the statement of the Proposition 4.1, and V(η, τ)

is solution of the IBVP for standard Burgers equation with inhomogeneous Dirichlet

boundary condition on the half-line

Vτ + VVη =
1

2
Vηη, 0 < η < ∞, 0 < τ < τ(T ), (6.6a)

V(η, 0) = U0(η + α1) − α2, 0 < η < ∞, (6.6b)

V(0, τ) = q1(τ), 0 < τ < τ(T ). (6.6c)

where the boundary data

q1(τ) = μ(t(τ))r1(t(τ))
[
D(t(τ)) − pαg (t)

μ(t)

]
. (6.7)

(b) Uαg (x, t) = − 1

μ(t)r1(t)

Ψη(η
α
g (x, t), τ(t))

Ψ(ηαg (x, t), τ(t))
+

(
ṙ1(t)
r1(t)

+ b(t)
) (

x − rαg (t)
)
+

pαg (t)

μ(t)
, (6.8)
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where Ψ(η, τ) is solution of the IBVP for the standard heat equation with Robin boundary

condition on the half line

Ψτ =
1

2
Ψηη, 0 < η < ∞, 0 < τ < τ(T ), (6.9a)

Ψ(η, 0) = exp

[
−
∫ η

U0(x + α1)dx + α2η

]
, 0 < η < ∞, (6.9b)

Ψη(0, τ) + q1(τ)Ψ(0, τ) = 0, 0 < τ < τ(T ), (6.9c)

where q1(τ) is as defined in (6.7).

Proof The part (a) of Proposition 6.1 can be proved by using an ansatz and part (b)

can be obtained by using a generalized Cole-Hopf transformation. In both methods, the

results are related to each other.

Proof (a) : Here, our aim is to transform the IBVP defined on time-dependent

domain to the IBVP on fixed domain. So, we define new variable y = x − s(t) and denote

U(x, t) = Ũ(y, t). Then performing time and space differentiations

Ut = −ṡ(t)Ũy + Ũt, Ux = Ũy, Uxx = Ũyy, (6.10)

we get the following IBVP defined on the half line, 0 < y < ∞, 0 < t < T, for the new

function Ũ(y, t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ũt +
μ̇(t)
μ(t)Ũ + ŨŨy =

1
2μ(t)Ũyy +

((
b(t)s(t) + ṡ(t) − a(t) + b(t)y

)
Ũ
)

y
− ω2(t)y − ω2(t)s(t) + f (t),

Ũ(y, 0) = U0(y + s(0)), 0 < y < ∞,
Ũ(0, t) = D(t), 0 < t < T.

(6.11)

Motivated from previous works, let assume the solution is of the form

Ũ(y, t) =
1

μ(t)
[
ρ(t)y + p(t) + g(t)V

(
η(x, t), τ(t)

)]
. (6.12)

where η(y, t) = g(t)y with ρ(t), p(t), g(t) and τ(t) to be determined. Taking y and t deriva-
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tives we have

Ũt=

(
ρ̇(t)
μ(t)
− μ̇(t)ρ(t)
μ2(t)

)
y − μ̇(t)p(t)

μ2(t)
+

ṗ(t)
μ(t)
+

ġ(t)g(t)
μ(t)

yVη +
g(t)τ̇(t)
μ(t)

Vτ +
(
ġ(t)
μ(t)
− μ̇(t)g(t)
μ2(t)

)
V,

Ũy=
ρ(t)
μ(t)
+

g2(t)
μ(t)

Vη,

Ũyy=
g3(t)
μ(t)

Vηη. (6.13)

Then substituting all these derivatives into equation (6.11), we obtain

τ̇(t)Vτ +
g2(t)
μ(t)

VVη =
g2(t)
2μ(t)

Vηη −
(
g2(t)p(t)
μ2(t)

− b(t)s(t)g2(t)
μ(t)

− ṡ(t)g2(t)
μ(t)

+
a(t)g2(t)
μ(t)

)
Vη

−
(
ġ(t)g(t)
μ(t)

− g2(t)b(t)
μ(t)

+
g2(t)ρ(t)
μ2(t)

)
yVη −
(
ρ(t)g(t)
μ2(t)

− b(t)g(t)
μ(t)

+
ġ(t)
μ(t)

)
V

− ṗ(t)
μ(t)
− ρ(t)p(t)
μ2(t)

− a(t)ρ(t)
μ(t)

+
b(t)p(t)
μ(t)

+
b(t)s(t)ρ(t)
μ(t)

+
ṡ(t)ρ(t)
μ(t)

+

(
2b(t)ρ(t)
μ(t)

− ρ
2(t)
μ2(t)

− ω2(t) − ρ̇(t)
μ(t)

)
y − ω2(t)s(t) + f (t). (6.14)

Thus, the function V(η, τ) satisfies Vτ + VVη = 1/2Vηη and initial condition V(η, 0) =

Ũ0(η) − α2, if the auxiliary functions and the boundary function s(t) with initial position

s(0) = α1 and initial velocity ṡ(0) = α2 − α1b(0) + a(0) satisfy the following nonlinear

system of five differential equations

ρ̇(t) +
ρ2(t)
μ(t)
− 2b(t)ρ(t) + μ(t)ω2(t) = 0 , ρ(0) = 0,

ġ(t) +
(
ρ(t)
μ(t)
− b(t)
)

g = 0 , g(0) = 1,

τ̇(t) − g2(t)
μ(t)

= 0 , τ(0) = 0, (6.15)

ṡ(t) + b(t)s(t) − p(t)/μ(t) − a(t) = 0 , s(0) = α1,

ṗ(t) − b(t)p(t) + μ(t)ω2(t)s(t) − μ(t) f (t) = 0 , α(0) = α2, (6.16)
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for arbitrary real constants α2, α2. The systems (6.15) and (6.16) have solutions given in

(3.20) where g(t) = 1/r1(t) and (4.20) respectively. When we write all auxiliary functions

into ansatz (6.12), we get

Ũ(y, t) =
1

μ(t)r1(t)
V(η(y, t), τ(t)) +

(
ṙ1(t)
r1(t)

+ b(t)
)

y +
pαg (t)

μ(t)
. (6.17)

Then, by using back substitution y = x−rαg (t), we obtain the desired solution (6.5) satisfy-

ing the initial condition (6.2b). And we notice that τ(t) is positive and strictly increasing

for 0 < t < T, so that τ = τ(t), 0 < t < T if and only if t = t(τ), 0 < τ < τ(T ). There-

fore, the solution (6.5) will satisfy the Dirichlet BC (6.2c) if V(η, τ) satisfies the Dirichlet

boundary condition (6.6c), which completes the proof for part (a). And by Cole-Hopf

transformation

V(η, τ) = −Ψη(η, τ)
Ψ(η, τ)

, (6.18)

part (b) of Proposition 6.1 can be easily obtained. �

Proof (b) : The formulation (b) can be proved by generalized Cole-Hopf transfor-

mation

U(x, t) = − 1

μ(t)
Φx(x, t)
Φ(x, t)

. (6.19)

Then the Dirichlet IBVP (6.2) with moving boundary is linearized to the Robin type IBVP

with moving boundary for generalized diffusion type equation mentioned in Chapter 4 as

follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φt =
1

2μ(t)Φxx − [a(t) − b(t)x]Φx + μ(t)
[ω2(t)

2
x2 − f (t)x + f0(t)

]
Φ, s(t) < x < ∞, 0 < t < T,

Φ(x, 0) = exp
[
− ∫ x

U(x′, 0)dx′
]
, s(0) < x < ∞,

Φx(s(t), t) + D(t)Φ(s(t), t) = 0, 0 < t < T.

(6.20)

By using the solution representation for the problem (6.20) obtained in Chapter 4, and
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applying transformation (6.19), the desired solution (6.48) can be obtained. �

Therefore in two approaches, the solution of the mIBVP for the generalized Burg-

ers equation is obtained in terms of solution to the characteristic equation and a Burgers

(or heat) model. �

Integral Representation of the Solution :

The IBVP (6.9) with Robin boundary condition on the half line for the heat equa-

tion has integral representation as follows

Ψ(η, τ) =

∫ ∞
0

GN(η, ξ, τ)Ψ(ξ, 0)dξ −
∫ τ

0

e−
η2

2(τ−τ′)
√

2π(τ − τ′)Q(τ′)dτ′, (6.21)

where Q(τ) is found by solving second kind Volterra integral equation

Q(τ) = q1(τ)
( ∫ τ

0

Q(τ′)√
2π(τ − τ′)dτ′ − 2

∫ ∞
0

GN(0, ξ, τ)Ψ(ξ, 0)dξ
)
, (6.22)

with

q1(τ) = μ(t(τ))r1(t(τ))
[
D(t(τ)) − pαg (t)

μ(t)

]
. (6.23)

For some specific boundary data D(t), it is possible to solve second kind Volterra inte-

gral equation explicitly. Therefore according to Proposition (6.1), we obtain an integral

representation of the solution to the mIBVP (6.2) in the form

Uαg (x, t) =
(
ṙ1(t)
r1(t)

+ b(t)
) (

x − rαg (t)
)
+

pαg (t)

μ(t)
(6.24)

− 1

μ(t)r1(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫ ∞

0
∂ηGN(η(x, t), ξ, τ(t))e−

∫ ξ
U0(x+α1)dx+α2ηdξ − ∫ τ

0
Kη(η(x, t), τ(t) − τ′)Q(τ′)dτ′∫ ∞

0
GN(η(x, t), ξ, τ(t))e−

∫ ξ
U0(x+α1)dx+α2ηdξ − ∫ τ(t)

0
K(η(x, t), τ(t) − τ′)Q(τ′)dτ′

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

We notice that solutions of the half-line IBVP’s appear as a direct consequence of

Proposition 6.1. For this, by letting α1 = α2 = 0 and rp(t) = 0, which can happen in the

following cases:
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i) a(t) = f (t) = 0,

ii) a(t)-constant, b(t) = μ̇(t)/μ(t) and f (t) = 0,

iii) ȧ(t) = − f (t) and b(t) = μ̇(t)/μ(t),

one can recover solutions of the corresponding IBVP’s on the half-line 0 < x < ∞.

6.1.1. Standard Burgers equation with forcing term

Here we present exactly solvable models reducing to the heat IBVP on half line

and discuss some examples corresponding to different initial and boundary data imposed

at x = s(t) propagating according to (6.3).

Consider the following Burgers model with time-dependent oscillatory forcing

term f (t) = F0 sin(ωt), with frequency ω > 0, and strength F0 > 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ut + UUx =

1
2
Uxx + F0 sin(ωt), s(t) < x < ∞, t > 0,

U(x, 0) = U0(x), s(0) < x < ∞,
U(s(t), t) = D(t), t > 0.

(6.25)

The corresponding characteristic equation r̈(t) = F0 sin(ωt) has two independent homo-

geneous solutions and a particular solution, respectively

r1(t) = 1, r2(t) = t, rp(t) =
F0

ω2
(ωt − sin(ωt)), t ≥ 0. (6.26)

Then we have the moving boundary s(t) as

s(t) ≡ rαg (t) = α1 + α2t +
F0

ω2
(ωt − sin(ωt)), (α1, α2) ∈ R2. (6.27)

• If α2 > F0/ω, then the time-varying boundary s(t) moves to the positive x-direction,

otherwise it moves to the left in x-axis.

• When α2 = −F0/ω, then the boundary will just oscillate parallel to the x = α1 axis

where α1 = s(0) is the initial position.

171



• If α2 < 0 and |α2| > F0/ω, then the boundary moves to the negative x-direction.

Also we notice that since μ(t) = 1 and a(t) = b(t) = 0, then generalized momen-

tum is

pαg (t) = ṡ(t) =
(
α2 +

F0

ω

)
− F0

ω
cos(ωt).

Then according to our result, if s(t) is of the form (6.27), then Burgers mIBVP

(6.25) has solution

Uαg (x, t) = ṡ(t) −
Ψη
(
ηαg (x, t), t

)
Ψ
(
ηαg (x, t), t

) , α = (α1, α2) ∈ R2, (6.28)

where ηαg (x, t) = x − rαg (t), τ(t) = t and Ψ(η, τ) satisfies the following Robin type IBVP

defined on the half line for heat equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψτ =
1
2
Ψηη, 0 < η < ∞, τ > 0,

Ψ(η, 0) = exp
[
− ∫ ηU0(x + α1)dx + α2η

]
, 0 < η < ∞,

Ψη(0, τ) +
(
D(τ) − ṡ(τ)

)
Ψ(0, τ) = 0. τ > 0.

(6.29)

The integral representation of solution to the IBVP (6.29) is given in (6.21) where Q(τ) is

found by solving the second-kind Volterra integral equation

Q(τ) =
(
D(τ) − ṡ(τ)

)
×
( ∫ τ

0

Q(τ′)√
2π(τ − τ′)dτ′ − 2

∫ ∞
0

( e−
ξ2

2τ√
2πτ

)
e−
∫ ξ

U0(x+α1)dxeα2ξdξ
)
.

(6.30)

It is possible to find explicit solution to the integral equation (6.30) for some specific

boundary data D(t) as in the following cases :

Case (i) : If D(t) = ṡ(t), then the corresponding heat IBVP (6.29) will have

homogeneous Neumann boundary condition, i.e Ψη(0, τ) = 0. Then using solution to the

Neumann IBVP defined on the half line for the heat equation, we obtain the corresponding

solution to the mIBVP (6.25).
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Case (ii) : When the boundary data is chosen such a way that,

D(t) = D0 + ṡ(t),

where D0 > 0 is a constant parameter, then the integral equation will be constant coef-

ficient second-kind Volterra integral equation and the corresponding heat problem will

have Robin BC with constant coefficient which is possible to solve for some specific ini-

tial datas. Then, using the solution to the heat IBVP with Robin BC, the corresponding

solution to the problem with moving boundary (6.25) is obtained.

One can also consider different cases to solve the integral equation and the related

problem explicitly.

In what follows, we discuss some examples with specific initial and boundary

conditions mentioned in the cases (i) and (ii).

Example 6.1 Consider the Burgers model with family of rational type continuous initial

data that is parametrized by c = (c1, c2) ∈ R2, and inhomogeneous boundary condition

imposed at x = s(t) given by

Ut + UUx =
1

2
Uxx + F0 sin(ωt), s(t) < x < ∞, t > 0, (6.31a)

U(x, 0) = c2 −
P′2N(x − c1)

P2N(x − c1)
, c1 ≥ α1, c2 ≥ 0, s(0) < x < ∞, (6.31b)

U(s(t), t) = ṡ(t), t > 0, (6.31c)

where the parameter c1 controls shifting in space, c2 ≥ 0 in (6.31b) just affects the ampli-

tude of the initial data, P2N(x) is a linear superposition of even Kampe de Feriet polyno-

mials at t = 0, and P′2N(x) denotes its derivatives with respect to x, defined by respectively

P2N(x) =

N∑
n=0

H2n(x, 0) =

N∑
n=0

x2n, P′2N(x) =

N∑
n=1

2nH2n−1(x, 0),

where we used that ∂ηHn(η, τ) = nHn−1(η, τ), for all n = 1, 2, ...,N.

As x→ ∞, the initial condition is localized in space, i.e U(∞, 0) = c2.
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Notice that for parameter c = α, i.e c1 = α1, c2 = α2 where α1 = s(0) and

ṡ(0) = α2, the initial and boundary data is compatible at x = s(0) and t = 0, i.e at

(x, t) = (s(0), 0).

Therefore, if moving boundary s(t) is

s(t) = α1 + α2t +
F0

ω2
(ωt − sin(ωt)),

then the class of mIBVP (6.31) has solution (6.28) where Ψ(η, τ) is solution of the IBVP

for heat equation with Kampe de Feriet initial data and homogeneous Neumann BC for

heat equation on the half line

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ψτ =

1
2
Ψηη, 0 < η < ∞, τ > 0,

Ψ(η, 0) =
∑N

n=0 H2n(x, 0), n = 0, 1, 2, ...,N, 0 < η < ∞,
Ψη(0, τ) = 0, τ > 0.

(6.32)

It is easy to obtain that the problem (6.32) has solution ΨN(η, τ) ≡ ∑N
n=0 H2n(η, τ), for n =

0, 1, 2, ...,N, where H2n(η, τ) are even Kampe de Feriet polynomials. Then, the solution to

the problem (6.31) becomes

Uαg,N(x, t) =
(
α2 +

F0

ω

)
− F0

ω
cos(ωt) −

∑N
n=1 2n H2n−1

(
x − rαg (t), t

)
∑N

n=0 H2n
(
x − rαg (t), t

) . (6.33)

Due to the periodic forces, the global wave amplitude has oscillatory behavior.

For N = 2, the Burgers model (6.31) subject to continuous initial condition

U(x, 0) = α2 − 2(x − α1) + 4(x − α1)3

1 + (x − α1)2 + (x − α1)4
,

has solution explicitly
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Uαg,2(x, t) =
(
α2 +

F0

ω

)
− F0

ω
cos(ωt)

− 4(x − rαg (t))3 + 12t(x − rαg (t)
)
+ 2
(
x − rαg (t)

)
(
x − rαg (t)

)4
+ (x − rαg (t))2 + 6t(x − rαg (t))2 + 3t2 + t + 1

. (6.34)

In Fig.6.1, we illustrate the behavior of the solution (6.34) for certain parameters which

controls the boundary propagation to the positive x-direction, i.e the case α2 > F0/ω.

Figure 6.1 Solution (6.34) with α1 = 0, α2 = 2, ω = 6, F0 = 5.

Example 6.2 Now, we study the Burgers model with family of rational type singular ini-

tial data and periodic boundary data with freguency ω > 0 and strength F0 > 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut + UUx =
1
2
Uxx + F0 sin(ωt), s(t) < x < ∞, t > 0,

U(x, 0) = c2 − (2n+1)H2n(x−c1,0)− 2n(2n+1)
D0

H2n−1(x−c1,0)

H2n+1(x−c1)− 2n+1
D0

H2n(x−c1,0)
, n = 0, 1, 2, ..., s(0) < x < ∞,

U(s(t), t) = D0 + ṡ(t), t > 0,

(6.35)

where Hn(x, 0) = xn is the Kampe de Feriet polynomials at t = 0, c1 is shifting in space c2

affects the amplitude which are parametrized by c = (c1, c2), and the parameter D0 > 0.

It is seen that since D0 > 0, the initial data has simple zero at

x = c1 +
2n
D0

, n = 0, 1, 2, ...,
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and pole type singularity at

x = c1 +
2n + 1

D0

, n = 0, 1, 2, ...

For each n = 0, 1, 2, ... we have the same boundary condition imposed at x = s(t). It is

seen that the parameter D0 can be used to control both the place of the initial singularity

and strength of the boundary data.

Therefore, for the parameter c = α, that is c1 = α1, c2 = α2, if the boundary s(t)

is of the form (6.27), then mIBVP (6.35) has solution given in (6.28) where Ψ(η, τ) is

solution for the heat equation with polynomial type initial data and Robin type boundary

condition on the half line

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ψτ =

1
2
Ψηη, 0 < η < ∞, τ > 0,

Ψ(η, 0) = η2n+1 − 2n+1
D0
η2n, 0 < η < ∞,

Ψη(0, τ) + D0Ψ(0, τ) = 0, τ > 0.

(6.36)

It is known that the integral representation of solution to the problem (6.36) is

Ψn(η, τ) =

∫ ∞
0

(e− (η−ξ)2
2τ + e−

(η+ξ)2

2τ√
2πτ

) (
ξ2n+1 − 2n + 1

D0

ξ2n

)
dξ −
∫ τ

0

e−
η2

2(τ−τ′)
√

2π(τ − τ′)Q(τ′)dτ′,

(6.37)

where Q(τ) is found by solving second kind Volterra integral equation

Q(τ) = D0

( ∫ τ
0

Q(τ′)√
2π(τ − τ′)dτ′ − 2

∫ ∞
0

e−
ξ2

2τ√
2πτ

(
ξ2n+1 − 2n + 1

D0

ξ2n

)
dξ
)
. (6.38)

We obtain the solution to the second-kind Volterra integral equation as

Q(τ) = 1.3.5...(2n + 1)τn. (6.39)
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By substituting Q(τ) into solution (6.37) we get

Ψn(η, τ) = H2n+1(η, τ) − 2n + 1

D0

H2n(η, τ). (6.40)

Since D0 > 0, the heat solution (6.40) has a zero for η > 0, τ > 0, which propagates along

the semiline 0 < η < ∞ during the evolution process and its position can be described by

a continuous function η = χn(τ), satisfying χn(0) = (2n + 1)/D0 and

Ψn(χn(τ), τ) = 0, n = 0, 1, 2, .... (6.41)

Then the corresponding solution to the mIBVP (6.35) becomes

Uαg,n(x, t) = α2 +
F0

ω
− F0

ω
cos(ωt) (6.42)

− (2n + 1)H2n(x − rαg (t), t) − 2n(2n+1)

D0
H2n−1(x − rαg (t), t)

H2n+1(x − rαg (t), t) − 2n+1
D0

H2n(x − rαg (t), t)
,

which has discontinuity of infinite type at points whereΨn(η(x, t), τ(t)) = 0. It follows that

Uαg,n(x, t) has moving singularity for x > s(t), t > 0, whose time-evolution is described by

the function x = Xn(t), where

Xn(t) = χn (t) + rαg (t), t > 0. (6.43)

This relation shows that the distances between singularity curve and moving boundary

can be controlled by the function χn (t) . If χn (t) → 0 as t → ∞, then singularity curve

approaches moving boundary x = s(t).

For n = 1, the Burgers problem has solution explicitly

Uαg,1(x, t) = α2 +
F0

ω
− F0

ω
cos(ωt)

− 3(x − rαg (t))2 − 6
D0

(x − rαg (t)) + 3t

(x − rαg (t))3 − 3
D0

(x − rαg (t))2 + 3t(x − rαg (t)) − 3
D0

t
, (6.44)
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corresponding to the initial condition

U(x, 0) = α2 −
3
(
x − α1 − 2

D0

)
(x − α1)

(
x − α1 − 3

D0

) ,

which is discontinuous at

x = α1 +
3

D0

. (6.45)

For certain paramaters, we illustrate the motion of the moving boundary and the behavior

of solution with moving singularity, see Fig.6.2

Figure 6.2 Solution (6.44) with α1 = 0, α2 = −0.5, ω = 10, F0 = 10, D0 = 1.5.

6.1.2. Burgers equation with space and time-dependent convection

term

Next, we study the following Burgers model defined by equation with space and

time-dependent convection term, initial data U0(x) and homogeneous Dirichlet boundary

178



condition imposed at x = s(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ut +

μ̇(t)
μ(t)U + UUx =

1
2μ(t)Uxx − ((a(t) − b(t)x)U)x , s(t) < x < ∞, t > 0,

U(x, 0) = U0(x), s(0) < x < ∞,
U(s(t), t) = 0, t > 0.

(6.46)

Then the corresponding the characteristic equation is

r̈ +
μ̇(t)
μ(t)

ṙ +
(
ḃ(t) +

μ̇(t)
μ(t)

b(t) − b2(t)
)

r = ȧ(t) − a(t)
[
b(t) − μ̇(t)

μ(t)

]
. (6.47)

According to Proposition 6.1, if the boundary is of the form s(t) ≡ rαg (t) = α1r1(t) +

α2r2(t) + rp(t), then the solution of the mIBVP (6.46) is

Uαg (x, t) =
pαg (t)

μ(t)
− 1

μ(t)r1(t)

Ψη(η
α
g (x, t), τ(t))

Ψ(ηαg (x, t), τ(t))
, (6.48)

where Ψ(η, τ) is solution to the IBVP with homogeneous Neumann BC for the heat equa-

tion.

Example 6.3 Now we consider the Burgers equation in (6.46) with coefficients

μ(t) = 1, a(t) = a0 cosh(Λ0t), a0 ≥ 0, b(t) = −Λ0 tanh(Λ0t), Λ0 > 0,

and family of rational type singular initial condition

U(x, 0) = c2−
(2n + 1)H2n(x − c1, 0) − 2n(2n+1)

D0
H2n−1(x − c1, 0)

H2n+1(x − c1) − 2n+1
D0

H2n(x − c1, 0)
, n = 0, 1, 2, ..., s(0) < x < ∞,

which has simple zero at

x = c1 +
2n
D0

, n = 0, 1, 2, ...,
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and pole type singularity at

x = c1 +
2n + 1

D0

, n = 0, 1, 2, ...

The corresponding characteristic equation

r̈ − Λ2
0r = 2a0Λ0 sinh(Λ0t), t > 0, (6.49)

has solutions r1(t) = cosh(Λ0t), r2(t) = sinh(Λ0t)/Λ0, and rp(t) = a0 t cosh(Λ0t).

The generalized momentum is found as pαg (t) = α2sech(Λ0t). Therefore, for the

parameter c = α, if s(t) is

s(t) ≡ rαg (t) =
(
α1 + a0t

)
cosh(Λ0t) + α2 sinh(Λ0t)/Λ0, (6.50)

with initial position s(0) = α1 and initial velocity ṡ(0) = α2 + a0, then the solution of

Burgers mIBVP is obtained as

Uαg (x, t) = sech(Λ0t)

⎛⎜⎜⎜⎜⎜⎜⎝α2 −
Ψη
(
ηαg (x, t), t

)
Ψ
(
ηαg (x, t), t

)
⎞⎟⎟⎟⎟⎟⎟⎠ , (6.51)

where ηαg (x, t) = sech(Λ0t)(x−rαg (t)), τ(t) = tanh(Λ0t)/Λ0 with inverse t(τ) = tanh−1(Λ0τ)/Λ0

and Ψ(η, τ) is solution for the heat IBVP with polynomial type initial data and Robin

boundary condition on the half line

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ψτ =

1
2
Ψηη, 0 < η < ∞, 0 < τ < 1/Λ0,

Ψ(η, 0) = η2n+1 − 2n+1
D0
η2n, 0 < η < ∞,

Ψη(0, τ) − α2Ψ(0, τ) = 0, 0 < τ < 1/Λ0.

(6.52)
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The integral representation of solution to the problem (6.52) is

Ψ(η, τ) =

∫ ∞
0

(e− (η−ξ)2
2τ + e−

(η+ξ)2

2τ√
2πτ

) (
ξ2n+1 − 2n + 1

D0

ξ2n

)
dξ−
∫ τ

0

e−
η2

2(τ−τ′)
√

2π(τ − τ′)Q(τ′)dτ′, (6.53)

where Q(τ) is found by solving second kind Volterra integral equation

Q(τ) = α2

(
2

∫ ∞
0

e−
ξ2

2τ√
2πτ

(
ξ2n+1 − 2n + 1

D0

ξ2n

)
dξ −
∫ τ

0

Q(τ′)√
2π(τ − τ′)dτ′

)
. (6.54)

If we choose α2 = −D0, i.e we fix the parameter as α2 < 0, then the solution to the second

kind Volterra integral equation becomes Q(τ) = 1.3.5...(2n + 1)τn. By substituting Q(τ)

into solution (6.53) we obtain

Ψn(η, τ) = H2n+1(η, τ) − 2n + 1

|α2| H2n(η, τ). (6.55)

Therefore the corresponding solution to the Burgers mIBVP is

Uαg,n(x, t) = sech(Λ0t) (6.56)

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝α2 −

(2n + 1)H2n

(
x−rαg (t)

cosh(Λ0t) ,
tanh(Λ0t)
Λ0

)
− 2n(2n+1)

|α2 | H2n−1

(
x−rαg (t)

cosh(Λ0t) ,
tanh(Λ0t)
Λ0

)
H2n+1

( x−rαg (t)
cosh(Λ0t) ,

tanh(Λ0t)
Λ0

)
− 2n+1
|α2 | H2n

( x−rαg (t)
cosh(Λ0t) ,

tanh(Λ0t)
Λ0

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Notice that the parameter α2 controls the initial singularity and velocity of the moving

boundary. So, for large |α2|, the points on the singularity path approach the boundary. And

in the case α2 < 0, at zeros of heat solution (6.55) defined by η = χn(τ), satisfying χn(0) =

(2n + 1)/|α2|, the corresponding Burgers solution (6.56) has time-dependent singularity

described by

Xn(t) = cosh(Λ0t)χn

(
tanh(Λ0t)
Λ0

)
+ rαg (t), t > 0. (6.57)
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For n = 1, we have solution explicitly

Uαg,1(x, t) = α2sech(Λ0t) (6.58)

− 3α2Λ0(x − rαg (t))2 + 6Λ0 cosh(Λ0t)(x − rαg (t)) + 3α2 sinh(Λ0t) cosh(Λ0t)

α2Λ0(x − rαg (t))3 + 3Λ0 cosh(Λ0t)(x − rαg (t))2 + 3α2 sinh(Λ0t) cosh(Λ0t)(x − rαg (t)) + 3 cosh2(Λ0t) sinh(Λ0t)
,

which has singularity at x ≡ x1(t), as follows

X1(t) = rαg (t) + 3
√
σ(t) +

Λ0 cosh2(Λ0t) − α2
2 sinh(Λ0t) cosh(Λ0t)

α2
2
Λ0

3
√
σ(t)

− cosh(Λ0t)
α2

, (6.59)

where

σ(t) =

√
sinh3(Λ0t) cosh3(Λ0t)

Λ3
0

+
3 sinh(Λ0t) cosh5(Λ0t)

α4
2
Λ0

− 3 sinh2(Λ0t) cosh4(Λ0t)
α2

2
Λ2

0

− cosh3(Λ0t)
α3

2

.

Here, the parameter Λ0 controls the velocity and the spreading of the singularity curve.

Therefore, by choosing α2 < 0, we investigate the influence of parameters on singularity

curve and moving boundary motion.

In Fig.6.3a and Fig.6.3b, by choosing positive parameter a0 > 0, one can see the

motion of both moving boundary and singularity curve. In Fig.6.3a, they propagates to the

positive direction in space as time increases. However, in Fig.6.3b, one can see that small

changing in a0 changes the direction of the boundary and the spreading of the moving

singularity.

(a)

(b)

Figure 6.3 Solution (6.58) with α1 = c1 = 0, α2 = c2 = −1, Λ0 = 2, and (a) a0 = 0.2.
(b) a0 = 0.1.
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CHAPTER 7

CONCLUSION

We considered the most general one-dimensional generalized diffusion type equa-

tion with time variable coefficients that can be written as a linear combination of gen-

erators of the finite dimensional su(1, 1) and Heisenberg-Weyl Lie algebras. First, we

studied IVP on whole real-line and obtained analytical solution in terms of solutions to

the characteristic equation and the standard heat model by using Wei-Norman Lie alge-

braic approach for finding the evolution operator of the associated diffusion type equa-

tion. We were able to obtain exact form of the evolution operator in terms of two linearly

independent homogeneous solutions and a particular solution of the corresponding clas-

sical equation of motion. Then we discussed an initial-boundary value problems with

Dirichlet, Neumann and Robin BC’s on half-line. Later, we introduced an IBVP for a

generalized diffusion type equation defined on a domain with a time-dependent boundary

s(t) < x < ∞, 0 < t < T.We showed that if the boundary moves according to an associ-

ated classical equation of motion determined by the time-dependent parameters, then we

obtain analytical solution in terms of the heat problem on the half-line. For this, we solved

a non-linear Riccati type dynamical system, that simultaneously determines the solution

of the diffusion type problem and the moving boundary. This allowed us to construct ex-

actly solvable mIBVP’s with Dirichlet, Neumann and Robin BC’s imposed at boundaries

evolving according to an associated Newtonian equation of motion. For each model we

derived integral representations and fundamental solutions, explicitly showing how the

moving boundary affects the evolution process. And we also discussed the mean posi-

tion of the solution distribution, the influence of the moving boundaries and the variable

parameters.

More precisely, the first exactly solvable model that we introduced, can represent

reaction-diffusion processes in a motionless fluid or heat conduction in solids, where usu-

ally convection is not included (Carslaw & Jaeger, 1959). In that case, moving bound-

aries can describe for instance progressive freezing or solute redistribution during the

solidification of liquids in semi-infinite regions. We studied the model with an exponen-
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tially decaying diffusion coefficient and exponentially growing time-varying first-order

reaction, usually a chemical reaction in which the rate of reaction is proportional to the

concentration of the reacting substance. Concrete examples corresponding to different ini-

tial data and homogeneous boundary conditions imposed on the moving boundary were

constructed.

Second, we discussed explicit solutions to a convection-diffusion type model that

can be used to study the transport of some quantity by diffusion and convection processes.

It can be seen also as Fokker-Planck type problem with varying drift and absorbing bound-

ary conditions imposed on a moving boundary. Usually, the drift coefficient controls the

external forces acting on the particles, and the diffusion coefficient affects the fluctuations.

As known, such models are widely used to describe the effect of fluctuations in macro-

scopic systems, but in general, solving them is a difficult task (Ho, 2013). Absorbing

boundary conditions can be used also when chemical reactions on the boundary occur

and due to this molecules are absorbed or chemically changed (Enzo Orlandini). Solution

satisfying the variable parametric FP equation and vanishing on the associated classical

equation of motion is interpreted as probability density.

Lastly, the convection-diffusion-reaction type model includes a convective term

that significantly influences the prescribed moving boundary and the dynamics of the sys-

tem. It can describe again the distribution of temperature or concentration of a substance

that is kept equal to zero for all times on a boundary that changes with time, but in that

case, we have an inhomogeneous and semi-infinite media with an unsteady flow. Here,

the sinusoidal convection term was considered which contributed to the time-oscillating

boundary, together with the boundary, it creates a solution oscillating with respect to time

which is felt in areas close to the boundary. As in previous models, some examples with

different initial data were studied and the dynamic properties were investigated.

Due to the generality of the results presented in this work, we note that the number

of exactly solvable models can be enlarged to include many other interesting cases and ap-

plications in physics, biology, and chemical phenomena. This study is under preparation

for submission to a scientific journal.

Then, we considered a one-dimensional generalized forced Burgers type equation

with variable coefficients. We obtained analytical solution to the IVP on whole real line by

using a Cole-Hopf transform and the Wei-Norman Lie algebraic approach for finding the
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evolution operator of the associated linear diffusion type equation. This allowed us to find

exact solutions to the generalized Burgers equation, explicitly expressed in terms of solu-

tions to a standard Burgers (or heat) model and the characteristic ODE. Using the transla-

tion and Galilean symmetries of the standard Burgers equation, we constructed families of

some particular solutions such as generalized shocks and multi-shocks, triangular and N-

shaped traveling waves corresponding to initial data parameterized by α = (α1, α2) ∈ R2.

By construction, a common property of all generalized nonlinear waves is that during

the evolution process their wave profile or "center" follows the characteristic equation.

Moreover, we showed that for some special choices of the time-variable coefficients and

external terms it is possible to construct smooth and localized in space solutions. In this

sense, positive and localized wave packets of the generalized Burgers model can be seen

as cumulative distributions or probability density functions and for example as nonlinear

analogs of coherent states in quantum mechanics. Here, we introduced also generalized

rational type solutions with pole type singularities following a Newtonian type equation

and we obtained particular solutions whose singularity oscillates with time while propa-

gating along the x−axis. As known propagation of pole singularities corresponds formally

to the motion of one-dimensional particles interacting via two-body potentials (Chood-

novsky, 1977), (Calogero, 1978) and for a recent discussion on Burgers singularities one

can see also (Atılgan Büyükaşık & Bozacı, 2021), and references therein.

In this work, from a large possibility of exactly solvable models, we have tried

to choose some simple examples that are able to reflect certain interesting properties of

the solutions. In all these models we discussed how the main characteristics of the wave

motion such as position, velocity, steepness, width, and dissipation depend on the time-

variable coefficients and how their dynamics can be controlled by the free parameters

of the initial data. Results of this work are published in (Atılgan Büyükaşık & Bozacı,

2021).

Then, we investigated an IBVP for a variable parametric inhomogeneous Burg-

ers equation defined on the half-line 0 < x < ∞ for t0 < t < T and satisfying smooth

Dirichlet boundary condition imposed at x = 0. We determined its solution in terms of

a second-order homogeneous characteristic ODE and a second kind Volterra type inte-

gral equation with a weakly singular kernel. Since the associated ODE and the integral

equations are linear but with time-variable coefficients, they rarely admit exact solutions.
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As an application of our general results, we introduced three exactly solvable Burgers

type models with different time-variable coefficients. The Burgers problems with smooth

time-dependent boundary data and an initial profile with pole type singularity have exact

solutions with moving singularity. For each model we provide the solutions explicitly

and describe the dynamical properties of the singularities depending on the time-variable

coefficients and the given initial and boundary data. The results of this work are published

in (A. Büyükaşık & Bozacı, 2019).

Finally, we introduced an IBVP for a generalized Burgers type equation with time

variable coefficients, which was defined on a domain with a time-dependent boundary

s(t) < x < ∞, 0 < t < T. We proved that if the moving boundary s(t) is written as a

linear combination of two linearly independent homogenous and a particular solution of

the corresponding characteristic equation parameterized by the initial position and veloc-

ity, then the problem can be solved analytically in terms of solution to the characteristic

equation and standard heat or Burgers model. We presented the integral representation

of Burgers mIBVP which requires to solve Volterra integral equation of second-kind. To

show general aspects of our results, firstly we considered mIBVP for standard Burgers

equation with oscillatory time-dependent forcing term. For some special choices of initial

and boundary conditions, we discussed the behavior of the solution and the motion of

the boundary. Then, we studied unforced Burgers model with space and time-dependent

convection term and examined the influence of parameters which creates moving singu-

larities in the solution for rational type singular initial data and homogeneous boundary

condition.

One can enlarge the class of exact solutions for the characteristic equation that can

be obtained for the different type of special functions, by the so-called Sturm-Liouville

problem, such as Hermite, Laguerre and Jacobi type orthogonal polynomials, (A. Büyükaşık,

Pashaev & Ulaş-Tigrak, 2009).

We will consider other exactly solvable Burgers type models with variable coeffi-

cients and moving boundaries and discuss the behavior of solution by examining applica-

tion fields.
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APPENDIX A

DIRAC-DELTA DISTRIBUTION

The Dirac-delta function δ(x) is not really a "function". It is a mathematical entity

called a "distribution" which is well defined only when it appears under an integral sign.

It has the following defining properties:

δ(x − a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ i f x = a

0 i f x � a,
(A.1)

with ∫ ∞
−∞

f (x)δ(x − a)dx = f (a). (A.2)

There are many properties of the delta distribution which follow from the definition (A.1).

Some of these are:

1.

∫ ∞
−∞
δ(x − a)dx = 1.

2. δ(x − a) = δ(a − x).

3. δ(ax) =
1

|a|δ(x), a � 0.

4. f (x)δ(x − a) = f (a)δ(x − a).

5.

∫ ∞
−∞
δ(x − y)δ(y − a)dy = δ(x − a).

6.
1

2π

∫ ∞
−∞

eikxdk = δ(x).
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APPENDIX B

EXACT SOLUTIONS TO THE PROBLEMS FOR

DIFFUSION-CONVECTION-REACTION EQUATION

WITH CONSTANTS COEFFICIENTS

In this Appendix, we give the solutions to the IVP and IBVP’s with Dirichlet,

Neumann and Robin type boundary conditions obtained in (Carslaw & Jaeger, 1959),

(Polyanin, 2002) and references there in, for both convection-diffusion equation and

convection-diffusion-reaction equation with constant coefficients.

B.1. Convection-diffusion equation with constant coefficients

Consider the equation

Φt = νΦxx + cΦx. (B.1)

An Initial Value Problem on Whole Real Line

The following IVP for convection-diffusion equation with constant coefficients⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φt = νΦxx + cΦx, x ∈ R, t > 0,

Φ(x, 0) = f (x), x ∈ R,
(B.2)

has solution to the problem (B.2) is

Φ(x, t) =
∫ ∞
−∞

1√
4πνt

exp

[
− (x − ξ + ct)2

4νt

]
f (ξ)dξ. (B.3)

Fundamental solution : When the initial condition is taken Dirac-delta distribution,Φ(x, 0) =

δ(x − x0), then the fundamental solution is

K(x, x0; t) =
1√
4πνt

exp

[
− (x − x0 + ct)2

4νt

]
. (B.4)
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An Initial and Boundary Value Problems on the Half-line

1 ) Dirichlet IBVP : Consider the following IBVP with Dirichlet BC⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Φt = νΦxx + cΦx, 0 < x < ∞, t > 0,

Φ(x, 0) = f (x), 0 < x < ∞,
Φ(0, t) = D(t), t > 0,

(B.5)

where f (x), D(t) are given sufficiently smooth functions in their domains. The solution

to the problem (B.5) is

Φ(x, t) =
1√
4πνt

exp

[
−c2t

4ν

]

×
( ∫ ∞

0

exp

[
−c(x − ξ)

2ν

]
×
(

exp

[
− (x − ξ)2

4νt

]
− exp

[
− (x + ξ)2

4νt

] )
f (ξ)dξ
)

+ ν

∫ t

0

x

4
√
πν(t − t′)3

exp

[
− (x + c(t − t′))2

4ν(t − t′)

]
D(t′)dt′.

Fundamental solution : When we take Dirac-delta initial condition,Φ(x, 0) = δ(x − x0)

and homogeneous boundary data D(t) = 0, then we get fundamental solution

K(x, x0; t) =
1√
4πνt

exp

[
−c2t

4ν
− c(x − x0)

2ν

]
×
(

exp

[
− (x − x0)2

4νt

]
− exp

[
− (x + x0)2

4νt

] )
.

2 ) Neumann IBVP : The IBVP with Neumann boundary condition⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Φt = νΦxx + cΦx, 0 < x < ∞, t > 0,

Φ(x, 0) = f (x), 0 < x < ∞,
Φx(0, t) = g(t), t > 0,

(B.6)

where f (x), g(t) are given sufficiently smooth functions in their domains, has solution

Φ(x, t) =
1√
4πνt

exp

[
−c2t

4ν

]

×
( ∫ ∞

0

exp

[
−c(x − ξ)

2ν

]
×
(

exp

[
− (x − ξ)2

4νt

]
+ exp

[
− (x + ξ)2

4νt

] )
f (ξ)dξ
)

− ν
∫ t

0

1√
πν(t − t′)

exp

[
− (x + c(t − t′))2

4ν(t − t′)

]
g(t′)dt′. (B.7)

Fundamental solution : When we take Dirac-delta initial condition, Φ(x, 0) = δ(x − x0)

and homogeneous boundary data g(t) = 0, then we get fundamental solution

K(x, x0; t) =
1√
4πνt

exp

[
−c2t

4ν
− c(x − x0)

2ν

]
×
(

exp

[
− (x − x0)2

4νt

]
+ exp

[
− (x + x0)2

4νt

] )
.
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3 ) Robin type IBVP : The IBVP with homogeneous Robin type boundary con-

dition ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Φt = νΦxx + cΦx, 0 < x < ∞, t > 0,

Φ(x, 0) = f (x), 0 < x < ∞,
Φx(0, t) − kΦ(0, t) = g(t), t > 0, k ∈ R,

(B.8)

has solution (B.7), where

G(x, ξ, t) =
1√
4πνt

exp

[
−c(x − ξ)

2ν
− c2t

4ν

]

×
(
exp

[
− (x − ξ)2

4νt

]
+ exp

[
− (x + ξ)2

4νt

]
− 2s
∫ ∞

0

exp

[
− (x + ξ + y)2

4νt
− sy
]

dy
)
,

where s = k + c/(2ν).

B.2. Convection-diffusion-reaction equation with constant

coefficients

Now, we give solutions to the IVP and IBVP’s for the convection-diffusion-reaction

equation with constant coefficients of the form

Φt = νΦxx + cΦx + rΦ. (B.9)

An Initial Value Problem on Whole Real Line

The IVP on whole real line⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φt = νΦxx + cΦx + rΦ, x ∈ R, t > 0,

Φ(x, 0) = f (x), x ∈ R,
(B.10)

has solution

Φ(x, t) =
∫ ∞
−∞

1√
4πνt

exp

[
− (x − ξ + ct)2

4νt
+ rt
]

f (ξ)dξ. (B.11)

Fundamental solution : When the initial condition is taken Dirac-delta distribution,Φ(x, 0) =

δ(x − x0), then the fundamental solution is

K(x, x0; t) =
1√
4πνt

exp

[
− (x − x0 + ct)2

4νt
+ rt
]
. (B.12)
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An Initial and Boundary Value Problems on the Half-line

1 ) Dirichlet IBVP : The IBVP with Dirichlet BC⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Φt = νΦxx + cΦx + rΦ, 0 < x < ∞, t > 0,

Φ(x, 0) = f (x), 0 < x < ∞,
Φ(0, t) = D(t), t > 0,

(B.13)

where f (x), D(t) are given sufficiently smooth functions in their domains, has solution

Φ(x, t) =
1√
4πνt

exp

[
−c2t

4ν
+ rt
]

×
( ∫ ∞

0

exp

[
−c(x − ξ)

2ν

]
×
(

exp

[
− (x − ξ)2

4νt

]
− exp

[
− (x + ξ)2

4νt

] )
f (ξ)dξ
)

+ ν

∫ t

0

x

4
√
πν(t − t′)3

exp

[
− (x + c(t − t′))2

4ν(t − t′)
+ r(t − t′)

]
D(t′)dt′.

Fundamental solution : When we take Dirac-delta initial condition,Φ(x, 0) = δ(x − x0)

and homogeneous boundary data D(t) = 0, then we get fundamental solution

K(x, x0; t) =
1√
4πνt

exp

[
−c2t

4ν
− c(x − x0)

2ν
+ rt
]
×
(

exp

[
− (x − x0)2

4νt

]
− exp

[
− (x + x0)2

4νt

] )
.

2 ) Neumann IBVP : The IBVP with Neumann boundary condition⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Φt = νΦxx + cΦx + rΦ, 0 < x < ∞, t > 0,

Φ(x, 0) = f (x), 0 < x < ∞,
Φx(0, t) = g(t), t > 0,

(B.14)

has solution

Φ(x, t) =
1√
4πνt

exp

[
−c2t

4ν
+ rt
]

×
( ∫ ∞

0

exp

[
−c(x − ξ)

2ν

]
×
(

exp

[
− (x − ξ)2

4νt

]
+ exp

[
− (x + ξ)2

4νt

] )
f (ξ)dξ
)

− ν
∫ t

0

1√
πν(t − t′)

exp

[
− (x + c(t − t′))2

4ν(t − t′)
+ r(t − t′)

]
g(t′)dt′. (B.15)

Fundamental solution : When we take Dirac-delta initial condition, Φ(x, 0) = δ(x − x0)

and homogeneous boundary data g(t) = 0, then we get fundamental solution

K(x, x0; t) =
1√
4πνt

exp

[
−c2t

4ν
− c(x − x0)

2ν
+ rt
]
×
(

exp

[
− (x − x0)2

4νt

]
+ exp

[
− (x + x0)2

4νt

] )
.
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3 ) Robin type IBVP : The IBVP with homogeneous Robin type BC⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Φt = νΦxx + cΦx + rΦ, 0 < x < ∞, t > 0,

Φ(x, 0) = f (x), 0 < x < ∞,
Φx(0, t) − kΦ(0, t) = g(t), t > 0, k ∈ R,

(B.16)

has solution (B.15), where

G(x, ξ, t) =
1√
4πνt

exp

[
−c(x − ξ)

2ν
− c2t

4ν
+ rt
]

×
(
exp

[
− (x − ξ)2

4νt

]
+ exp

[
− (x + ξ)2

4νt

]
− 2s
∫ ∞

0

exp

[
− (x + ξ + y)2

4νt
− sy
]

dy
)
,

where s = k + c/(2ν).
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APPENDIX C

INITIAL-BOUNDARY VALUE PROBLEM WITH MOVING

BOUNDARY FOR STANDARD HEAT EQUATION

The IBVP with moving boundary defined on semi-infinite time-dependent domain

s(t) < x < ∞, 0 < t < T for the standard heat equation⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Φt =

1
2
Φxx, s(t) < x < ∞, 0 < t < T,

Φ(x, 0) = Φ0(x), s(0) < x < ∞,
Φ(s(t), t) = D(t), 0 < t < T,

(C.1)

has solution of the form

Φ(x, t) = Ψ
(
η(x, t), τ(t)

) × exp
[−α2

(
x − (α1 + α2t)

)] × exp

[
−α

2
2

2
t
]
,

if moving boundary

s(t) = α1 + α2t,

and η(x, t) = x − (α1 + α2t) , τ(t) = t and Ψ is solution of the standard heat equation with

Dirichlet BC imposed at η = 0 on half line⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψτ =
1
2
Ψηη, 0 < η < ∞, 0 < τ < τ(T ).,

Ψ(η, 0) = Φ0(η + α1) eα2η, η > 0,

Ψ(0, τ) = D(τ) exp
[
α2

2 τ/2
]
, 0 < τ < τ(T ),

(C.2)

with α1 = s(0) is the initial position, α2 = ṡ(0) is the initial velocity of the boundary.
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