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ABSTRACT

BORYLATION OF PETROLEUM CRACKING OLEFIN PRODUCTS

Cracking is a process that long-chain hydrocarbons are broken down into more
valuable fragments called naphtha cracking products. The olefins formed as a result of
this process have various functions such as forming the smallest building blocks of fine
and speciality chemicals. It has been foreseen that borylation processes can be applied as
a conversion method of these products into valuable intermediate structures. In this
context, this thesis describes first time the transition-metal-catalyzed borylation of a
number of petroleum cracking olefin products. Borylation reactions have been
extensively investigated in the literature and have become one of the popular methods for
synthesizing organoboron reagents, which can also be used in the synthesis of functional
materials, pharmaceuticals, and agricultural chemicals.

In the context of this thesis, petroleum cracking olefinic products were converted

into high-value-added organoboron derivatives by metal-catalysed hydroboration and
dehydrogenative borylation methods. For this purpose, the experimental conditions were
optimized using propene and isobutene reagents.
It has been shown in this study that iridium complexes with N-Heterocarbene (NHC)
ligands are highly effective catalysts and therefore anti-Markovnikov hydroboration
products can be produced in excellent yields even at very low catalyst loadings. On the
other hand, alkenyl boron products could be obtained with high yields, which could be
performed in the absence of dehydrogenative borylation reactions, ligand, base, and any
other additives.

The applicability of these methods in internal and terminal alkenes such as
cyclohexene, ethene, decene and styrene has been also demonstrated. Finally, these
products were converted into a number of intermediates by Suzuki-Miyaura cross-
coupling reactions. Thus, in the conversion of alkenes to valuable intermediates, practical
and sustainable applications would be possible by using simple, abundant, and cheap

reagents instead of expensive and dangerous chemicals.



OZET

PETROL KRAKING OLEFIN URUNLERININ BORILASYONU

Kraking, uzun zincirli hidrokarbonlarin nafta pargalama tiriinleri ad1 verilen daha
degerli parcalara ayrildig: siirectir. Bu islem sonucu olusan olefinlerin nitelikli ve 6zel
kimyasallarin en kii¢iik yap1 taglarini olusturmak gibi ¢esitli fonksiyonlari mevcuttur. Bu
iriinlerin nitelikli ara yapilara doniisim yontemi olarak borilasyon islemleri
uygulanabilecegi 6n goriilmistiir. Bu amagla bu tez kapsaminda ilk defa petrolyum olefin
parcalanma triinlerinin borilasyon islemleri gosterilmistir. Olefinlerin borilasyon
yontemleri literatiirde kapsamli bir sekilde arastirilmis ve fonksiyonel materyallerin,
farmasdtiklerin ve tarim kimyasallarinin sentezinde de kullanilabilen organoboron

reaktiflerinin sentezlenmesi i¢in popiiler yontemlerden biri haline gelmistir.

Bu baglamda, petrol olefin par¢alanma iirtinleri, metal katalizli hidroborasyon ve
dehidrojenatif borilasyon yontemleri ile katma degeri yiiksek organoboron tiirevlerine
dontstiiriilmiistiir. Yontemlerin gelistirilmesi iizerine, propen ve izobiiten kullanilarak

cesitli kosullar optimize edilmistir.

N-Heterokarben (NHC) ligandl1 iridyum komplekslerinin olduk¢a etkili katalizor
oldugu ve bu nedenle ¢ok diisiik katalizor yiiklemelerinde dahi miikemmel verimde anti-
Markovnikov hidroborasyon iiriinlerinin edilebilebildigi bu ¢alismada gosterilmistir. Ote
yandan, dehidrojenatif borilasyon reaksiyonlari, ligand, baz ve diger herhangi bir katki
maddesinin yoklugunda gergeklestirilebilmis yiiksek verimle alkenil bor iiriinleri elde

edilebilmistir.

Bu yontemlerin siklohekzen, eten, deken ve stiren gibi i¢ ve ug alkenlere
uygulanabilirligi de gésterilmistir. Son olarak bu iiriinler Suzuki-Miyaura ¢apraz baglama
yontemi ile gesitli ara iiriinlere doniistiiriilerek kullanilabilirlikleri de gosterilmistir. Bu
sekilde alkenlerin nitelikli ara yapilara doniisiimiinde pahali ve tehlikeli kimyasallar
yerine basit, bol ve ucuz reaktifler kullanilarak pratik ve siirdiiriilebilir uygulamalar

mimkiin olacaktir.
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CHAPTER 1

INTRODUCTION

Crude oil is one of the most important natural resources found on Earth. However,
unrefined crude oil has a limited use and thus cracking process is widely used process to
obtain valuable products. In this process, long-chain hydrocarbons are broken down into
light hydrocarbons (Figure 1.1). While some of the naphtha-cracking products have found
various uses, such as building blocks of the most fine and specialty chemicals, and

monomers, >Cs olefinic hydrocarbons have found limited uses.® 2
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Figure 1.1. The main hydrocarbon cracking fractions.

The most practical and sustainable applications of synthetic processes are possible
with the use of simple, abundant, and cheap reagents instead of using costly, insufficient,
and dangerous chemicals. In recent years, some organic syntheses have been developed
using natural gas and petrochemical products such as methane®, ethane*, butadiene®,
ethylene, 2-butene, and other olefins.® ’

Molecules that have at least one carbon-boron bond are classified as
organoborons. These organoboron reagents, such as boronic acids and boronic esters, are
generally used to form carbon-carbon and carbon-heteroatom bonds.®1° Organoborons
can easily be functionalized and used as a building block to obtain pharmaceuticals or

agricultural chemicals (Figure 1.2).1% 12
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Figure 1.2. Derivatizations of olefins to organoborons via dehydrogenative borylation
and hydroboration reactions.

The transition-metal-catalysed borylation reactions are one of the most important
methods for synthesizing organoboron compounds in organic synthesis. Transition metals
have the ability that ensure products to form with high regio-, chemo-, and
stereoselectivities. Intermediates of various biologically active molecules, drugs and
natural compounds can be synthesized via these reactions.” 1316

Transition metal-catalysed borylation of petroleum cracking olefin products is not
a subject that have been studied yet. This thesis is the first study that have focused on this

subject.



CHAPTER 2

LITERATURE WORKS

2.1. Hydroboration Reactions

The hydroboration of alkenes is a practical method for the preparation of
alkylboronates, which are widely used in synthetic chemistry, as C-B bonds can be easily
converted into various functional groups.

In the transition-metal-catalysed hydroboration of terminal alkenes, the control of
regioselectivity is crucial. According to the literature studies, these reactions are
overwhelmingly carried out with anti-Markovnikov regioselectivity to obtain primary
organoboron compounds (Figure 2.1). However, limited studies reported on the
hydroboration of alkyl substituted terminal alkenes with Markovnikov regioselectivity.
This section presents literature studies on the hydroboration of alkenes with various metal
catalysts and two types of Markovnikov additions. Catecholborane (HBcat) and
pinacolborane (HBpin) are the most commonly used reagents in both catalysed and

uncatalyzed hydroboration reactions.
B(OR),

HB(OR), or B(OR), )\
R,/\ HBR, - R,/\/ v R

Metal catalyst

anti-Markovnikov Markovnikov

N J
Y

Alkylboronate esters (Air stable)

Figure 2.1. Transition-metal-catalyzed hydroboration of terminal alkenes.
The hydroboration of alkenes was first developed in 1956 by Brown et al. A

number of trialkylboranes was synthesized with the regioselective addition of diboranes

3



to alkenes at the least hindered carbon atom, in the presence of sodium borohydride and
aluminium chloride.’

In 1985, Noth et al. reported that hydroboration of 5-hexen-2-one with HBcat
using low loadings of Wilkinson's catalyst [Rh(PPhs)sCI] at room temperature could
significantly affect the reactivity and chemoselectivity of the reactions. The catalyst-free
hydroboration reaction offered complementary chemoselectivity. In the catalysed-

reaction, the hydroboration took place by anti-Markovnikov addition (Figure 2.2)*8

without catalyst @: {/\/
L,
BH + —
O, M.‘/
0]
Rh(PPh3)3C1

Figure 2.2. The reaction of 5-hexen-2-one and HBcat.

Marder et al. disclosed the first catalytic hydroboration of a-methylstyrene with
HBcat and Wilkinson’s catalyst at room temperature, and they proposed a reasonable
catalytic cycle (Figure 2.3).1° These reaction pathways comprise hydroboration,
dehydrogenative borylation, and hydrogenation steps and led to the formation of

corresponding products in the yields of 17, 80, and 3 percentages, respectively.

Bcat Bceat
Hydroboration > / . >f

Ph Ph
14 % 3%
o,

[Rh(PPh3);Cl] (2 11.101 %) Dehydrogenative Beat Beat

HBcat ( 1.1 equiv.) Borylation \_ / HBcat

> —
/ THF, 25°C, 1 h
Ph Ph Ph Bcat
VBE (53 %) BBE (27 %)

Hydrogenation

\ Bceat

Ph
3%

Figure 2.3. The first hydroboration of a-methylstyrene.



Similarly, Srebnik et al. reported that the internally symmetrical alkenes undergoe
a highly regioselective hydroboration reactions with HBpin over Wilkinson's catalyst and
(Figure 2.4).2

Bpin
. _C3Hy [Rh(PP5);CI)] (1 mol %) )\/C3H7
SIEG - > Gt
CH,Cly, 25°C,3 h 92 %

Figure 2. 4.

Figure 2.4. Rhodium-catalysed hydroboration of an internal symmetric alkene.

Numerous iron catalysts have been developed that can be used in alkene
hydroboration with HBpin Greenhalgh and Thomas reported that iron-catalysed
hydroboration reactions of 4-phenylbutene in the presence of Grignard reagents gave
highly selective anti-Markovnikov-product (Figure 2.5).2

N 1 N
Ar= 2,6-Et2-C6H3

. FeCl, (1 mol %), 1 (1 mol % /\)\/Bpin
Ph/\/\ + HBpin 2 . 1( 0)~ Ph

EtMgBr (3 mol %)
THF, rt,2 h

Ar” SAr H

1.1 equiv. 90 %

Figure 2.5. Iron-catalysed hydroboration of 4-phenylbutene.

In alkene hydroboration, the control of regioselectivities has been considered to
be main problem. In 2020, Liu and Su reported the iron-catalysed regiodivergent
hydroboration of terminal alkenes without ligands. These reactions yielded both
Markovnikov and anti-Markovnikov products with high regioselectivities. Base, solvents,
and ate form of iron—boron alkoxide intermediates are crucial factors in selectivity

(Figure 2.6).22



a) Fe-catalysed Markovnilov addition

/\)J\ Fe(OTs); (10 mol %) /\>k
PMPO + Bypin, LiO'Bu (0.6 mol %) —  PMPO
NMP (1 mL), 80 °C. 18 h

2 equiv. 1a, 95 %
(1a/2a = 98:2)

Bpin

b) Fe-catalysed anti-Markovnilov addition

/\)L FeBr; (20 mol %) /\)\/
. N Bpin
PMPO + Bypin, LiO'Bu (0.3 mol %) _ PMPO p

MeO'Bu (1 mL), 40°C, 36 h

2a, 67%
(1a/2a = 2:98)

2 equiv.

Figure 2.6. The ligand-free Iron-catalysed hydroboration of alkenes.

An amide-based tridentate ligated iron compound catalysed hydroboration of
styrene in the form of Markovnikov addition? (Figure 2.7a), whereas an N-heterocarbene
(NHC) ligated iron compound led to proceed the hydroboration in anti-Markovnikov

manner (Figure 2.7b).2*

a) Iron-catalysed Markovnikov addition

es’N N
oY S
S

Bn \\\//N -Mes .
Bpin
4
4 (2.5 mol %) )\/ H
R+ HBpin > Ph
neat, rt, 4 h

R =4-Bu-C¢H, 1.25 equiv. 81 %
24:1 rr

b) Iron-catalysed anti-Markovnikov addition

Oy NH :70
K
\ N

Ligand
H

FeCl, (2.5 mol %), Ligand (3 mol %)
NaBHEt; (5 mol %) /K/ Bpin
> Ph

Toluene, 30 °C, 18 h
1.1 equiv. 80
504

rr

ph” X + HBpin

Figure 2.7. Iron-catalysed hydroboration of alkenes in the presence of NHC ligands.



The regioselective Markovnikov hydroboration has also been examined with
different catalysts. For example, the hydroboration of styrene with an NHC-ligated nickel

precatalyst has been successfully performed by the Schomaker group (Figure 2.8).%

Ni
Cl7 1 °Cl
PCY3
3

3 (mol %)
t 0
+ HBpin KOBu ( 6 mol %) -
Toluene, 60 °C, 18 h

Bpin

89 %

Figure 2.8. Nickel-catalysed hydroboration of styrene with Markovnikov type addition.

Another example of a nickel-catalysed reaction was described by Ye and Wang
as follows: hydroboration of terminal aryl and aliphatic alkenes with B2Pinz on the base
selectively yielded anti-Markovnikov products (Figure 2.9).%

Ni(COD), (2 mol %)

, P'Bu; (4 mol %) Bpin
R/\ + Bopin, > R/\/

MeOH, 75 °C, 10 h
R = Aryl, Alkyl 43 % - 94 %

Figure 2.9. Nickel-catalysed hydroboration of alkenes.

Hydroboration of unactivated alkenes has also been enabled through Cu-B-
mediated processes. Ito and colleagues investigated the Markovnikov type process using
a bulky bisphosphine ligand?’ (Figure 2.10a) and the anti-Markovnikov type process
using Xantphos as the ligand (Figure 2.10b).%8



a) Copper-catalysed Markovnikov addition

Ar,P 2 PAr,
Ar = 2-methylphenyl
CuCl (5 mol %) Bpin

. 2 (5 mol % i
PhM + szlnz ( mo 0) > Ph/\/\ N Ph/\/\/ Bpm
KO'Bu (1.2 equiv.),

1.2 equiv. 82 % 3%
MeOH (2 equiv.)
THF, -10°C, 2 h
a) Copper-catalysed anti-Markovnikov addition
CuCl (5 mol %) Bpin
. o B 1
C4H9/\ + Bypin, Xantphos (5 mol %) . C4H9/\/ pin . C4H9)\
t .
1.2 equiv. KO™Bu (1.2 equiv.) 91 % 7
MeOH (2 equiv.) %

THF, 30 °C, 24 h

Figure 2.10. Copper-catalysed hydroboration with Markovnikov type addition.

In addition, cobalt-catalysed borylation of alkenes with HBpin has been studied
by Chiriket et al. Internal alkenes performed highly regioselective hydroboration by
Markovnikov ~addition over [(terpy)CoCH.SiMes]?® (Figure 2.11a) and anti-
Markovnikov type addition with [(4-pyrr-M&PDI)CoCHjs] catalyst (Figure 2.11b).%°

a) Cobalt-catatalysed Markovnikov addition
Bpin
Ph XX + HBpin _ {(tePY)COCH,SIMes] (T mol%) = )\
1.05 equiv. MTBE (1.0 M), 23 °C, 9 h

83 %

b) Cobaltcatatalysed anti-Markovnikov addition

)\/\ + HBpin [(4_pyrr_MeSPD1)CoCH3] (1 mol %l )\/\/Bpin

(0]
1.05 equiv. neat, 24 °C,3 h 75 %

Figure 2.11. Cobalt-catalysed hydroboration with Markovnikov type addition.



In 2004, the Yamamoto group presented the iridium-catalysed hydroboration of
1-octene. They noticed that terminal hydroboration products are formed by the anti-
Markovnikov addition of HBpin, preferentially from the less hindered side of the alkene
(Figure 2.12).%

[Ir(COD)CI], (1.5 mol %)
dppm (3 mol %)

Bpin
> CsH13/\/

CH,Cl,, 1t, 24 h 89 %

CGH 1 3/\ + HBpll’l

1.2 equiv.

Figure 2.12. Iridium-catalysed hydroboration of 1-octene.

2.2. Dehydrogenative C-H Borylation

Vinyl boronate esters (VBES) have an important role as intermediates in various
transformations or syntheses of targeted alkenes. There has been an increasing interest in
to create effective and facile methods for dehydrogenative borylation (DHB) of alkenes.
The direct borylation of terminal alkenes has been investigated using complexes of

various catalysts with a boron source (Fig 2.13).

HB(OR)
R — or HBR, R _ X Bpin + R __~_Bpinor R _~_H+ R\/\/ Bpin
Metal catalyst
Bpin
N J

Y
by-products

Figure 2.13. Transition-metal-catalysed dehydrogenative borylation of alkenes.

Although valuable practical works were done for their preparation, only a limited
number of atomic and economic strategies were available.32*° There is great interest in
synthesizing VBEs directly from alkenes, because alkenes are inexpensive, and readily
available from the petroleum industry or renewable sources.** This section presents
literature studies on the dehydrogenative borylations of alkenes with various metal

catalysts.



2.2.1. Catalytic Dehydrogenative Borylation (DHB) of Alkenes with

Boranes

According to the literature studies, for a satifactory chemo- and regioselectivity
of the catalytic borylation of alkenes required the use of sensitive boron reagents at low
temperatures. Therefore, boranes such as dioxaborolane, catecholborane (HBcat) and
pinacolborane (HBpin) have attracted enormous interests.

Brown and Lloyd-Jones were the first reported the dehydrogenative borylation of
vinylalkenes with an oxazaborolidene in presence of [Rh(u-Cl)(n>-CH2CHATr),]: as the
catalyst precursor.*? As a result of this research, an equal mixture of vinyl boronic ester
(VBE) and hydrogenation products was obtained, and no hydroboration product was
formed (Fig 2.14a). In the dehydrogenative borylations reactions, due to the strong
reducing reactivity of boranes, it is required to consume half of the substrate as an H»
acceptor or to add a second alkene as an alkene hydroboration using Wilkinson's catalyst
with HBcat and found that VBE's could be produced using an unsaturated H» acceptor.

Marder and Baker's group investigated dehydrogenative borylation of olefins
using Bcat in 1992 (Fig 2.14b). This method involved the addition of a competitive
insertion of alkene to the Rh-B bond instead of the Rh-H bond.** When a-substituted
vinyl alkenes are used as reactants, the reaction favoured the dehydrogenative borylation
rather than hydroboration. VBES were obtained with 76%, and with 15% yields of the

hydroboration and 1,1-diborylalkane products, respectively.®

\ / N / IPr\ =
o 7 Rh\ 1 />‘ Ph
7\ \
g i A cl A Ar B—o
a) Ar/\ . o~ Sn-Pr (0.2 mol%) _ /_/
/\ “, Toluene, 25 °C Ar
Ar:4-MeOC6H4 Ppp 2 o5
RhCI(PPhs); (2 mol% )\/ Beat
b) Ar/g ,  HBcat (PPh3); (2 mol%) o A
THF, 25 °C

76%

Figure 2.14. The first rhodium-catalysed dehydrogenative borylation of vinylalkenes.
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Dehydrogenative borylation of styrene with HBpin was also performed in the
presence of [Rh(COD)CI]2, VBEs were obtained with 94% and alkylboronate ester with
6% vyields by Masuda and colleagues (Fig 2.15a).** Liu and colleagues reported that in
the use of 1,2-azaborinanes as a boron source in the rhodium-catalysed DHB of various

arylalkenes, the reaction yield was up to 87% (Fig 2.15b).*

)

0 Boi
[Rh(COD),Cl], (0.5 mou,)= Ar /\/ pin
Toluene, 25 °C

a) Ar + HBpin

94%

B Bn N

~on N

D) A X 4 [ III [Rh(nbd),C1l, (2.5 mol%) |:j
N _BH DCM, 90 °C 20 h A X BNA

87%

Figure 2.15. Rhodium-catalysed dehydrogenative borylation of styrene.

In 2006, Sabo-Etienne et al. observed that the [RuH2(H2)2(PCys)2] complex
selectively catalysed DHB or hydroboration of the cyclic alkenes, depending on the size
of the ring (Fig 2.16).4¢

Bpin Bpin
RhH,(H,),(PCy3), (2 mol %)
+ HBpin g
THEF, 20-70 °C,4-18 h
n 1.7 equiv. n n
n=1-5
2-10 equiv.

Figure 2.16. Rhodium-catalysed dehydrogenative borylation of cyclic alkenes.

Miura and Murakami reported the first general DHB of aryl and aliphatic alkenes
with wide functional group tolerance. When norbornene was used a hydrogen receptor
and [Rh(COD),]BF4/'Pr-Foxap] as a catalyst, VBE was obtained with 71% yield (Fig
2.17).4

11



[Rh(COD),]BF, (2 mol %)
iPr-Foxap (3 mol %) W
Phw + HBpin » Ph Bpin

Norbornene (1.9 equiv.)
2 equiv. 1.7 equiv. THF, 28 °C,9 h 1%

Figure 2.17. The first rhodium-catalysed dehydrogenative borylation of aryl and
aliphatic alkenes.

Hartwig and colleagues identified that the first DHB reactions of alkenes yielded

products upto 87% yield by irradiation in the presence of CpFe(CO).(Bcat) complex in
benzene (Fig 2.18).%®

c Bcat
c
—
/\/\/ ¢ \CO - Bcat\M + Bcat\/\/\/
hV, 1h 90 %

Figure 2.18. The first iron-catalysed dehydrogenative borylation of alkenes.

The Ge’s group reported DHB of arylalkenes using HBpin and Fe(PMe3)a.
Various monosubstituted and disubstituted vinylarenes were converted to VBES in an

average of 80% yield in the presence of two equivalents of norbornene. No alkylboronate
ester formation was detected in their studies (Fig 2.19).%°

R R
. Fe(PMej), (3-5 mol % )\/B in
Ar& + HBpin e(PMej), (3-5 mol %) > Ar AN p

Norbornene (2 equiv.)
Hexane, 50 °C, 18 h

R =H, alkyl or aryl 1.1 equiv. yields around 80 %

Figure 2.19. Iron-catalysed dehydrogenative borylation of vinylarenes.

2.2.2. Catalytic Dehydrogenative Borylation of Alkenes with Diboranes

In DHB reactions, the requirements of hydrogen acceptors can be eliminated with
the use of Bopin: as the boron source.® According to Marder and colleagues, it has been
observed that trans-[RhCI(CO)(PPhz).] catalysed DHB reactions of alkenes with Bpin;
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requires higher temperatures than reactions with HBpin. The notable point of this reaction
Is the use of acetonitrile as the co-solvent, so the acetonitrile-coordinated boryl alkyl
rhodium structure is formed (Fig 2.20a).%* In 2010, rhodium-catalysed DHB of cyclic
alkenes could be performed in the presence of a bidentate phosphine, leading to VBES in
54-75% yields (Fig 2.20b).%

R R

. trans-[RhCI1(CO)(PPh 3 mol % J\/B in
a) Ar/& +  Bopin, [ (CO)(PPh3),] ( 0) o X P

-
o

Toluene/MeCN (3:1), 80 °C, 1-6 d
1.1 equiv. 86-97 %

[Rh(COD)CI], (1.3 mol %)
Xantphos (2.5 mol %)

THF, 115 °C, 24 h ~ “Bpin

b) .
+  Bypin,

n

1.2 equiv. 54-75 9%
n=0-3

Figure 2.20. Rhodium-catalysed dehydrogenative borylation of vinylarenes and cyclic
alkenes.

Palladium NCN-pincer catalysed dehydrogenative borylation of olefin has first
been reported by Szabo and co-workers. The reagent [bis(trifluoroacetoxy)iodo]benzene
was the oxidant of this reaction. This reaction yields the desired product and an allyl
isomer mixture. The ratio of isomers depends on the size of the cycloalkene ring (Fig
2.21).8

Me,N—— Pld—NMe2

Br
Cat. (5 mol %) X _ Bpin
R/\ + Bypin, > R/\/
PhI(TFA),
_ 0
Excess 20°C, 16 h 51-86 %

mixture of isomers

Figure 2.21. The first palladium-catalysed dehydrogenative borylation of alkenes.

Iwasawa reported the synthesis of VBEs or diborylalkenes from alkenes by using
anionic PSiP pincer palladium complexes. The selectivity of the borylation is depend on
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the ratio of Bopin, to the alkene substrate. In this system, side reactions, such as
hydroboration or hydrogenation, are inhibited (Fig 2.22).%*

OTf

I
Ar,P—pd—PAr,
I N

Si
A
Me

Cat. (2 mol %)
AlEt; (2 mol % Bpin
X 4+ B,pin, 3 ( 0) -~ R/\/
Toluene, 60 °C, 6 h
R =Ph 92 %
Ar= 3,5-(CF3)2C6H3

Figure 2.22. Palladium-catalysed dehydrogenative borylation of alkenes.

Olsson and Szabo found that the borylation of cyclic alkenes with B2pinz in the
presence of [Ir(COD)CI]. is an effective method of producing high added value VBEs.
(Fig 2.23).%°

[Ir(COD)Cl1], (2 mol %)

. B,pin,
+ Bypin, >
Neat, 70 °C, 16 h

pinB
15 equiv. 95 %

Figure 2.23. Iridium catalysed dehydrogenative borylation of cyclic alkenes.

The mechanism of olefin borylation could not be supported by conclusive
evidence in the literature. Subsequent studies suggest that the mechanism involves olefin
insertion into the M—B bond followed by product formation through f—H elimination.
The mechanism of iridium catalysed borylation was proposed by Szabo on the basis of

results obtained from kinetic studies (Fig 2.24).%°

In the proposed mechanism, the iridium complex initially reacts with excess
Bopinz to assure an active triboronate catalyst 1. The migratory insertion of cycloalkene
into the iridium-boron bond produces 2. This complex then undergoes syn-g-H
elimination to give the iridium-coordinated allyl boronate 3. After that, the allylic product
left, and the iridium—hydride complex 4 reacts with the diboronate. So active catalyst is

regenerated and the alkenyl pinacolborane is produced. As a result of the stereochemistry
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of s-H-elimination of hydrogen, an allyl derivative is formed instead of the expected vinyl

boronate.

[I(COD)CI],
B,piny

, [1r](Bpin)s @
HBpin

1

a)

Insertion

B,pin
H
[Ir]JH(Bpin), Bpin
4 [Ir‘]"BpinH
Bpin
2
Dissociation
- H
Bpin Bpin,, B-H elimination
(Bpin),(ir] "
H
3
b) Bpin, |1 Bpin, |1
g . G
(Bpin)zll‘—\m - (Bpin)zlr‘ Nj
H Isomerization H Reinsertion Bpin H
3 4 5

B-H elimination “

Bpin

H
\E> + IH(Bpin), == (Bpin);Ir\{>fH

6

Bpin

Figure 2.24. Iridium-catalysed dehydrogenative borylation mechanism of vinylarenes.

Because of the higher thermodynamic stability of the vinyl boronate then its
isomeric allyl boronate, rearrangement of the initially formed cyclic allyl boronate to the
corresponding vinyl boronate occurs. This isomerization of 3 occurs by dissociation of
the iridium atom from the double bond followed by reassociation from the opposite face
to give complex 4 then corresponding syn-f-H elimination gives the iridium-coordinated
alkenyl boronate 6. After that, the alkenyl boronate product left the iridium-hydride

complex.

Dehydrogenative borylation of acyclic olefins also proceeded through a similar

mechanism.>* %6
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In 2008, Miyaura et al. reported that one-step borylation of a vinylic C-H bond
produces cyclic VBEs in the presence of the [Irf(COD)(OMe)]./dtbpy complex (Fig
2.25).%

[Ir(OMe)(COD)],/dtbpy Bpin
| B,pin, or HBpin | + |

O Hexane, 25-80 °C 0] Bpin 0
64 (75:25)

Figure 2.25. Iridium-catalysed dehydrogenative borylation of cyclic vinyl ethers.
According to the report by Ishiyama and co-workers, DHB reactions of
cycloalkene-1-carboxylate derivatives with B2pin; over [Ir(COD)(OMe)]2/AsPhgz catalyst
system, VBES were obtained with yields up to 96% (Fig 2.26).%®

0] O
OR [Ir(OMe)(COD)], (1.5 mol %) OR
o
+ Bopin, AsPh; (6 mol %)
n Octane, 80-120 °C, 3-16 h n Bpin
n=0-3 n=0-3
1.1 equiv. 20-96 %

Figure 2.26. Iridium-catalysed dehydrogenative borylation of cycloalkene-1-carboxylate
derivatives.

The Suzuki-Miyaura cross-coupling reaction is an exceptionally useful cross-
coupling process that has been widely applied in synthetic chemistry, and boronic acids
served as an effective coupling partner. Olson and Szabo showed that allyl silanes and
dienes can be synthesized in one-pot process by borylation of terminal olefins with the
[Ir(COD)CI]. catalyst, followed by Suzuki reaction with an aryl or alkenyl halide (Fig
2.27).5°

The palladium-catalysed Suzuki-Miyaura reaction between alkenyl boronic acids
and free halides were also exemplified by Parkan et al. The method was used in synthesis
of C-glycosylation and is successfully applied in the total synthesis of bergenin with

antioxidant and antilithiatic agent (Fig 2.28).%°
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[Ir(COD)Cl], (2 mol %) R,X, CsCO;,

B,pin : Pd(PPh3), (5 mol % 2
/\ Rl 2P, .~ me\/\ 2l (PPh3), ( 0) . R\/\ "
neat substrate, 80 °C Dioxane/H,0, 50-60 °C

R! = CH,SiMe;, CH(OMe),, COOMe, COMe, OBu
R? = Aryl, Alkenyl, CH=CHSiMe;
X=1,Br

Figure 2.27. One-pot borylation/cross-coupling reactions of terminal olefins.

¢}

HO |

HO™"
OH
l OMe
OBn
COOMe
o o Bpin [Pd(PPhs),Cl,] (5 mol %)
O 1. rBuLi, THF (0] Na,CO; (2 equiv.) [e}
. | ‘ _— | ‘ + BnO Br ——MM = |
Si(tBu), 2.iPrO-Bpin  Si(fBu), .« DME, 60 °C, 12 h Si(fBu), COOMe
o 3.H,0 o ) o
-2 MeO OBn (Yield : 88 %)

OTIPS OTIPS OTIPS

a-glucal pinacol boronate

{

OMe

Bergenin

Figure 2.28. Synthesis of bergenin by Suzuki-Miyaura cross-coupling reaction.
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CHAPTER 3

EXPERIMENTAL

3.1 General Information

CPME was used without any purification. THF and MTBE were dried from
LiAIH4 under nitrogen gas. Dioxane was distilled from benzophenone-ketyl under
nitrogen gas. Acetone was distilled over CaSO4. DCE was distilled over CaH.. Distilled
solvents were stored on a 4A molecular sieve in the dark. Hexane, Cyclohexane, Toluene,
Benzene, Acetonitrile, IPA, NMP and DMF were dried over 4A molecular sieve at least
24 h. Methanol was dried over 3A molecular sieve at least 24 h. Molecular sieves were
activated by keeping at 400 °C for 12 hours prior to use. Purification of synthesized

reagents were performed using column chromatography with 200-400 mesh silica gel.

3.2 Synthesis of Catalyst Complexes

3.2.1 Synthesis of [Ir(COD)CI].

+ 4HCl + 2CH3CHOH2

S LCLAHO ¢ 2 IPA /H,0(3/1)
rCl; X8y
Reflux, 3 h

Figure 3.1. Synthesis of [Ir(COD)CI]2
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IrCl3-XH>O (2.0 g) is added into a 50-mL two-necked, round-bottomed flask
charged with 1-propanol and water mixture (30 mL) with a ratio of 3/1. 1,5-
Cyclooctadiene (4 mL) is dropwise added to the solution. The resulting solution is stirred
in the air for 5 min. Then one neck of the flask is equipped with a water condenser, the
other neck is connected to nitrogen gas. The resulting mixture is refluxed with vigorous
stirring at 90 °C for 3 h, during which yellow-red solid particles are formed. After cooling
the suspension to room temperature, it is concentrated, filtered, and washed with a small
amount of cold methanol to remove unreacted 1,5-Cyclooctadiene, and dried under
vacuum for 24 hours to afford [Ir(COD)CI] (red solid, yield: 1.16 g, 58 %).5!

3.2.2 Synthesis of [Ir(COD)OMe]

It It + 2Na,S0, \Ir Ir’/ + 2NaCl + 2H,0
\ ;N
. / 0 N

TN
/ \Cl/ Reflux, 45 min

M ,’N W‘\ Me /N
v _Cl_ Methanol (30 mL) 0 /
/ '

Figure 3.2. Synthesis of [Ir(COD)OMe]..

An excess of anhydrous Na,COz (1.20 g) is added into a 100-mL two-necked,
round-bottomed flask charged with methanol (30 mL), and [Ir(COD)CI]2 (1.20 g) under
nitrogen atmosphere. The resulting solution is refluxed with vigorous stirring at 60 °C for
45 min without boiling to prevent partial decomposition. Heating is stopped when the
yellow particles turn brown. After cooling the suspension to room temperature, it is
filtered and washed with water (6 x 5 mL) and a small amount of cold methanol under
nitrogen atmosphere to get a yellow precipitate. Finally, it is dried under vacuum for 24
hours and stored in an inert atmosphere to afford [Ir(COD)OMe]2 (yellow solid, yield:
1.13 g, 97 %).5
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3.2.3 Synthesis of N-Hetero Carbene Complexes

3.2.3.1 Preparation of HCI Solution (4 M) in Dioxane

Acetyl chloride (2.84 mL) was added into a 50-mL round bottomed flask
containing dry dioxane (10 mL). MeOH (1.6 mL) was dropwise added to the solution to

obtain 4 M of HCI solution in Dioxane.%?

3.2.3.2 Synthesis of Imidazole Salts

3.2.3.2.1 Method 1

R, Ry R,
N 0 HCOOH /H/
0]
NH, MeOH
R, R, RT, 3d
R,
R, Ry, R, Ry=Me, Me, Me, H R, Ry, R;, Ry=Me, Me, Me, H
Ry, R,, R3, Ry=i-Pr, i-Pr, H, H Ry, Ry, R, Ry=1i-Pr, i-Pr, H, H
R, Ry, Ry, R, =Me, Me, H, H R,, Ry, R;, R, = Me, Me, H, H
R, Ry, R;,R4=Me, H,H, H R;,R,, R;,Ry=Me, H,H, H
R, Ry, R;, Ry =Me, Me, H, Me R, Ry, R;, Ry =Me, Me, H, Me

Figure 3.3. Synthesis of diimine derivatives.

Aniline derivative (16.9 mmol, 2.0 equiv) was added into a 50-mL round-
bottomed flask containing methanol (16.3 mL). The solution was cooled to 0 °C, then a
solution of 40% glyoxal in water (975 pL, 8.45 mmol, 1.0 equiv) and one drop of formic
acid were added. The solution was warmed to ambient temperature and stirred for two or
three days and controlled with TLC. The suspension was filtrated over PTFE, washed
with a small amount of methanol, and diethyl ether to afford N,N'-dimesitylethanediimine

(yellow powder, vyield: 1.72g, 68.8%), N,N'-bis(2,6-diisopropylphenyl)ethane-1,2-
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diimine (yellow powder, yield: 1.91 g, 60%), N,N'-bis(2,6-dimethylphenyl)ethane-1,2-
diimine (yellow powder, yield: 1.42 g, 63.5%), N,N'-bis(o-methylphenyl)ethane-1,2-
diimine  (yellow-orange  powder, vyield: 122 g, 61%), N,N'-bis(2,6-
dimethylphenyl)butane-2,3-diimine (69%).53

H
NaBH4 N
/\/ N /\/
THF / MeOH H
RT, 1h

Figure 3.4. Synthesis of diamine complex.
N,N'-bis(2,6-dimethylphenyl)ethane-1,2-diimine (1.0 mmol) was added into a 25
mL round-bottomed flask containing THF (6 mL) and MeOH (4 mL). The solution was
cooled to 0 °C, then NaBHa (8.0 mmol) was added in a period of 1 hour. The solution was
warmed to ambient temperature and stirred for 1 hour and controlled with TLC. It was
quenched with saturated NH4ClI solution (10.0 mL). Extraction process was applied with
diethyl ether and the solvent dried under reduced pressure to obtain N,N’-bis(2,6-

dimethylphenyl)ethane-1,2-diamine (light yellow solid, yield: g, 96%).%4

R3 Ry R R
R, R R, K YR,
I~ /N Paraformaldehyde
N 4.0 M HCl in 1,4-Dioxane N§/ N
R, R, THF cr
R, R; RT, 3d R, R,

R, Ry, Ry, R, = Me, Me, Me, H R, R,, R3 R, = Me, Me, Me, H
R,, Ry, Ry, Ry =i-Pr, i-Pr, H, H R,, Ry, Ry, Ry=i-Pr, i-Pr, H, H
R;, R,, Ry, R, =Me, Me, H, H R;, R,, Ry, Ry =Me, Me, H, H
R,,R,, Ry, R,=Me, H, H, H R,,R,, Ry, R,=Me, H, H, H
R,, Ry, Ry, Ry = Me, Me, H, Me R,, Ry, Ry, Ry = Me, Me, H, Me

b)

H
N AN N Paraformaldehyde /+ \
H 4.0 M HCl in 1,4-Dioxane N N N
> \/
THF CIr
RT, 3d

Figure 3.5. Synthesis of imidazole salts by method 1.

Paraformaldehyde (119.5 mg, 3.98 mmol, 1.0 equiv) was added into a 50-mL
round-bottomed flask containing solution of 4M Hydrochloric acid in dioxane (1.80 mL,
7.16 mmol, 1.8 equiv) and stirred until the white solid was completely dissolved. THF

(30 mL) and diimine derivative (3.98 mmol, 1.0 equiv) were added slowly. The solution
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was stirred at 40 °C for three days and controlled with TLC. Then the suspension was
cooled to room temperature and the precipitate was collected by filtration over PTFE,
washed with THF and diethyl ether to afford 1,3-bis-(2,4,6-trimethylphenyl)imidazole-3-
ium chloride (off-white powder, vyield: 630.1 mg, 51.8%), 1,3-bis-(2,6-
diisopropylphenyl) imidazole-3-ium chloride (white powder, yield: 812.4 mg, 47%), 1,3-
bis-(2,6-dimethylphenyl)imidazole-3-ium chloride (off-white powder, yield: 452.6 mg,
41%), 1,3-bis-(0-methylphenyl)imidazole-3-ium chloride (brown powder, yield: 623.4 g,
55%), 1,3-bis(2,6-dimethylphenyl)-4,5-dimethyl-1H-imidazol-3-ium chloride (off-white
powder, yield: 272.8 mg, 20%), 1,3-bis(2,6-dimethylphenyl)-4,5-dihydro-1H-imidazol-
3-ium chloride (light brown solid, 64%).%3

3.2.3.2.2 Method 2

a)
Cl / \ K,COj;
+ > pr—
N NH / \
N MeCN
N N
Ar, 12 h \/
b)
a . /_\ K,CO; /_\
p— > p—
N N Toluene N* N
V Ar, 4 h, reflux C]-%/

Figure 3.6. Synthesis of 1-benz1,3-dibenzyl-1H-imidazol-3-ium chloride yl-1H-
imidazole.

Imidazole (340 mg, 5 mmol, 1.0 equiv) and K2CO3z (760 mg, 11 mmol, 2.2 equiv)
was added into a 50-mL two-necked, round-bottomed flask containing MeCN (10 mL)
and stirred at ambient temperature for 1 h. Benzyl chloride (633 mg, 5 mmol, 1.0 equiv)
was added to the solution and stirred under reflux conditions for 12 h. The mixture was
filtered, and dried under reduced pressure to obtain 1-benzyl-1H-imidazole (474.6 mg,
60% yield).

The obtained crude product was added into a 50-mL two-necked, round-bottomed
flask containing toluene (5 mL). Additional benzyl chloride (633 mg, 5 mmol, 1.0 equiv)

was added and stirred at reflux conditions for 4 h. After cooling to room temperature, the
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solution concentrated as yellow oil, washed with diethyl ether (2 x 20 mL), and dried
under reduced pressure to obtain 1,3-dibenzyl-1H-imidazol-3-ium chloride (358 mg, 1.25
mmol, 48% yield).%

3.2.3.3 Synthesis of Ir-NHC Complexes:

3.2.3.3.1 Method 1

R R, R, R Ry Ry
a) 1 >—<_ ! R =R
e —
R; cr Ry Acetone Ry Ry Ir R Ry
R, Ry c y
I

60°C,3h AR
4

R;, Ry, Ry, Ry = Me, Me, Me, H
Ry, Ry, Ry, Ry=i-Pr, i-Pr, H, H
R, Ry, Ry, Ry=Me, Me, H, H

R,, Ry, Ry, Ry = Me, Me, H, Me

R, R,, Ry, R, = Me, Me, Me, H
R,, Ry, Ry, Ry = i-Pr, i-Pr, H, H
R}, Ry, R3, Ry=Me, Me, H, H

R,, Ry, Ry, Ry = Me, Me, H, Me

Acetone .
60°C,3h

1

7

Figure 3.7. Synthesis of Ir-NHC complexes with method 1.
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A mixture of imidazolium chloride salt derivative (0.178 mmol, 2.0 equiv),
[Ir(COD)CI]2 (60 mg, 0.089 mmol, 1.0 equiv) and K2CO3 (74 mg, 0.534 mmol, 6.0 equiv)
was added into a vial, under dry air. Acetone (3.0 mL) was added to the mixture and
stirred at 60 °C for 20 h and controlled with TLC. After reaction completed the solvent
was removed in vacuo and DCM was added (3 mL). The mixture was filtered through a
pad of silica and washed with DCM until the filtrate becomes colourless. The solvent was
removed under reduced pressure to obtain Ir(COD)(IMes)Cl (yellow-orange
microcrystalline solid, yield: 55.4 mg, 48.3%), Ir(COD)(IPr)CI (orange microcrystalline
solid, yield: 69.7 mg, 53.8%), Ir(COD)(IXy)CI (yellow microcrystalline solid, yield: 42.7
mg, 39.1%), Ir(COD)(SIXy)CI (orange microcrystalline solid, yield: 91.1 mg, 84%),
Ir(COD)(IXyM®)CI (orange microcrystalline solid, 62.4 mg, 62%).%
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3.2.3.3.2 Method 2

r-N_N-gr
o 1) Ag,0,DCM, RT, 1 h
R/NVN\ R + > - I'r\
Cr 2) [Ir(COD)C1],, DCM, RT, 4 h ¢ ! M
4
R =0Tol R =0Tol
R =Benzyl R =Benzyl

Figure 3.8. Synthesis of Ir-NHC complexes with method 2.

A mixture of imidazolium chloride salt derivative (0.08 mmol, 2.0 equiv) and
Ag20 (0.04 mmol, 9.5 mg, 1.0 equiv) was added into a vial containing DCM (2 mL) and
stirred at ambient temperature for 1 h shielded from light. Then [Ir(COD)CI]2 (0.04 mmol,
25 mg, 1.0 equiv) was added to the suspension and stirred at ambient temperature for
additional 4 h and controlled with TLC. The mixture was filtered through Celite. The
obtained solid was washed with DCM (2 x 2 mL) and the solvent was removed in vacuo.
The residue was purified by column chromatography on silica gel with DCM to obtain
Ir(COD)(1Bz)CI (yellow solid, yield: 58.7 mg, 76%), Ir(COD)(lo-Tol)Cl (yellow
crystalline solid, yield: 30.0 mg, 60.4%).%

3.2.4 Synthesis of Ir(COD)(Phen)CI

N
/ A THF N
RT, 3 h SN

N \

Figure 3.9. Synthesis of Ir(COD)(Phen)CI.
[Ir(COD)CI]2 (50 mg, 0.074 mmol) and Phenanthroline (27 mg, 0.148 mmol)

were added into 25 mL round-bottomed flask containing THF (5 mL) under nitrogen

atmosphere. The reaction mixture was stirred at ambient temperature for 3 hours. The
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solvent was removed under reduced pressure to obtain Ir(COD)(Phen)CI (dark purple
solid, yield: 76.2 mg, 99%).%

3.3 General Procedure of Borylation Reaction

(0] R; 0
| Pre-catalyst, boron source, ligand/additive‘ \" B/ \I /
Solvent . )l\ \O /\ \O

1a=R;, Ry, Ry = Me, H, H
1b = Ry, Ry, Ry = Me, Me, H
1c¢ =Ry, Ry, Ry=H, H, H

1d = Ry, Ry, Ry =H, Cyh.

1e =Ry, Ry, Ry = CgHyz, H, H
1f=R;, Ry, Ry = Ph, H, H

Figure 3.6. General borylation reaction.

3.3.1 Method with Reactor System (M1)

Figure 3.7. Reactor system used in M1.

In a glovebox system, Bopiny, ligand, base and pre-catalyst were added into a
pyrex insert of reactor. After addition of the solvent, the mixture was stirred magnetically

for 3 minutes at ambient temperature for pre-activation of catalyst. Then the glass insert
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was placed in a 25 mL stainless steel reactor was sealed and taken out of glovebox. Then
the reactor was attached to an olefin tank through a quick disconnect apparatus and
pressurized with propylene or ethylene gas, The reaction mixture was stirred in a
preheated oil bath for 16 h. At the end of the reaction, it was cooled to the ambient
temperature and an internal standard was added. If the reaction conditions included a
base, extraction process was applied with EtOAc or DCM. Calculations for conversion

and yield are performed with an internal standard on GC.

3.3.2 Method Using Sealed Cap in Glovebox (M2)

A 50-mL round-bottomed flask was purged with 6 grade argon and solvent was
added into it. Then, it was cooled to -60 °C with an immersion cooler. A 50-mL three-
necked, round-bottomed flask was purged with argon and cooled to -60 °C with an
immersion cooler and gaseous reactant was liquefied in this flask by continuous argon
flow. Required amount of liquified olefin was transferred to the flask containing cold
solvent using a syringe. Syringe was washed twice with the liquified olefin prior to final
drawing the olefin to achieve required coldness before transfer. The prepared olefin

solution was placed in a box containing molecular sieve stored at -20 °C.

In a glovebox system, HBpin, base and pre-catalyst were added into a 10 mL
thick-wall-sealed cap glass tube. After addition of the solvent, the tube was capped with
a septum and then the mixture was stirred for 3 minutes at ambient temperature for pre-
activation of catalyst. After it was taken out of glovebox, the reaction tube was cooled to
-20 °C with an immersion cooler, the olefin solution was added to the tube at -20 °C, and
finally the septum was removed and the tube was sealed with a teflon lined screw cap
immediately. The reaction mixture was stirred magnetically in a preheated oil bath for 16
h. At the end of the reaction, it was cooled to ambient temperature and an internal standard
was added. If the reaction conditions included a base, an extraction process was applied
with EtOAc or DCM. Calculations for conversion and yield were determined by internal
standard method on GC.
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3.3.3 Method Using Sealed Cap out Glovebox (M3)

Figure 3.8. System used in M3.

B2pin, ligand, base and pre-catalyst were added into a 10 mL thick-wall-sealed
cap glass tube or 4 mL vial, capped with a septum, and purged with 6 grade argon through
a septum. After addition of the solvent, the mixture was stirred for 3 minutes at ambient
temperature for pre-activation of catalyst with argon flow. The reaction tube was cooled
to -20 °C with an immersion cooler. Then, the reactant solution was added to the tube at
-20 °C through the septum by precooled syringe and the tube was sealed with a teflon
lined screw cap immediately promptly. The reaction mixture was stirred magnetically in
a preheated oil bath for 16 h. At the end of the reaction, it was cooled to ambient
temperature and an internal standard was added. Calculations for conversion and yield

were determined by internal standard method on GC.

No cooling process was performed for the reaction systems comprising olefins

that were liquid at ambient temperature.
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3.4. Suzuki Reaction of 2ba with 4-lodoanisole

Pd,(dba),CHC, (3 % mol)

Bpin PPh; (4 equiv.)
K,CO; (2 equiv.) 0
O - O
\ THF (1 mL), H,0 (0.1 mL)
T=80C,t=16h
2ba

3ba

Figure 3.9. Suzuki coupling reaction with 4-lodoanisole.

At the end of the borylation reaction of isobutylene, the glass tube was opened
and charged with charged with Pdz(dba)sCHCIz (7.9 mg, 0.0075 mmol), PPhs (8.0 mg,
0.30 mmol) and K>COs (69.1 mg, 0.50 mmol) under argon atmosphere. THF (1.0 mL),
water (0.1 mL) and 4-lodoanisole (58.5 mg, 0.25 mmol) was added into the mixture. The
tube was sealed, and the reaction mixture was stirred in a preheated oil bath for 16 h.
Analysis was performed on GC/MS.

3.5. Suzuki Reaction of 2ba with 4-Bromoacetophenone

Bpin PACl,(dppf) (3 % mol) 0
0 K;PO, (3 equiv.)
. >
| Br DMF (2 mL) /
T=80C, = 16 h

2ba 4ba

Figure 3.10. Suzuki coupling reaction with 4-Bromoacetophenone.

At the end of the borylation reaction of isobutylene, the glass tube was opened
and charged with PdClI2(dppf) (5.3 mg, 0.0075 mmol) and K3zPOa (162.5 mg, 0.75 mmol).
DMF (2.0 mL), and 4-Bromoacetophenone (52.6 mg, 0.25 mmol) consecutively under
argon atmosphere. The tube was sealed, and the reaction mixture was stirred in a

preheated oil bath for 16 h. Analysis was performed on GC/MS.%
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3.6 Characterization Techniques

3.6.1 GC Method

The samples were analysed by GC (Thermo Scientific TRACE 1300 GC or
Shimadzu GC2010 Plus on a 30 m, 0.25 mm capillary column, 5% dimetylsiloxane, 95%
phenyldimethylsiloxane with a 0.25 pm film thickness and FID detector) and GC/MS (HP
GC/MS 6890/5973N on a HP-5MS, 30 m, 0.25 mm capillary column, 5%
phenylmethoxysiloxane, 95% dimethylpolysiloxane with 0.25 pm film thickness). The
GC program was applied during the analysis: the column temperature was 40 °C at the
start of the program and it was heated at a rate of 10 °C/min up to 300 °C with the split

ratio of 20 to 1, then it was kept at this temperature for 15 min.

3.6.2 Calculation of Reactant and Product Amounts on GC

To calculate the amount of remaining reactant and obtained product, the response
factor ° was determined individually. To determine the RF, a known amount of standard
compound and internal standard were dissolved in DCM and analysed by GC. After the

analysis, the RF of that compound was calculated by using the following equation (3.1).

RE = Internal standard area Compound amount 3.1)
X :
Compound area Internal standard amount

Some amount of sample was taken from the reaction vessel which contains
dodecane or hexadecane as an internal standard. The sample diluted with DCM and
analysed with GC. After the analysis, the amount of compound was calculated by using

the following equation (3.2).
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Internal standard amount
x RF x Compound area

(3.2)

Amount of compound =
Internal standard area

3.6.3 Calculation of Yield on GC

Yield of the product was calculated by using the following equation (3.3). Where
(n, product)r is the mmol of the product calculated after the reaction and (n, reactant); is
the mmol of the reactant at the beginning of the reaction.

_ (n, product)s
Yield% = x 100 (3.3)
(n, reactant);

3.6.4 NMR Method

NMR analyses were recorded by Varian VnmrJ 400 spectrometer in deuterated
chloroform or deuterated DMSO. Chemical shifts are reported in ppm downfield from
MeaSi.

3.7 Spectral Data for the Prepared Compounds

Bis(1,5-cyclooctadiene)diiridium(l) dichloride: *H NMR (400 MHz, CDCls3) &: 4.36 —
4.09 (m, 8H, CHzcod), 2.37 — 2.16 (m, 8H, CHcod), 1.58 — 1.49 (m, 8H, CHzcod); *C
NMR (100 MHz, CDCl3) &: 62.18, 31.75.
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(1,5-Cyclooctadiene)(methoxy)iridium(l) dimer: *H NMR (400 MHz, CDCls) §: 3.56
—3.41 (m, 8H, CHcod), 3.22 (s, 6H, Me), 2.20 (m, 8H, CHzcod), 1.35 (m, 8H, CHzcod);
13C NMR (100 MHz, CDCls) §: 56.34, 31.36.

~‘\ N+ N ,'—
ey s W
1,3-dimesityl-1H-imidazol-3-ium chloride: *H NMR (400 MHz, CDCls) &: 10.95 (s,

1H), 7.61 (s, 1H), 7.26 (s, 1H), 7.01 (s, 2H), 2.33 (s, 3H), 2.17 (s, 6H).; 13C NMR (100
MHz, CDCls) 5: 138.33, 131.92, 129.87, 125.96, 20.72, 19.24.

Ir(COD)(IMes)CI: *H NMR (400 MHz, CDCls) &: 6.99 (br, 2H, HAr), 6.95 (br, 2H,
HAr), 6.93 (s, 2H, NCH), 4.12 (m, J = 4.5, 2.6 Hz, 2H, Hcod), 2.98 - 2.91 (m, J =5.1
Hz, 2H, Hcod), 2.33 (s, 12H, Me), 2.14 (s, 6H, Me), 1.78 — 1.55 (m, 5H, Hcod), 1.38 —
1.16 (m, 7H Hcod).

L XD

iPriPr
1,3-bis(2,6-diisopropylphenyl)-1H-imidazol-3-ium chloride: *H NMR (400 MHz,
CDClg) 8: 9.97 (s, 1H), 8.12 (s, 2H), 7.55 (t, J = 7.8 Hz, 2H), 7.32 (d, J = 7.8 Hz, 4H),
2.41 (dt, J=13.7, 6.8 Hz, 4H), 1.26 (d, J = 6.8 Hz, 12H), 1.21 (d, J = 6.9 Hz, 12H); °C
NMR (101 MHz, CDCls) &: 144.96, 138.33, 132.15, 129.80, 126.80, 124.70, 29.10,
24.73, 23.70.
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i-Pr //—\ i-Pr
N Vs
\\ ,I

. NYN .
a-}’r Ir i-P@

DIy
TN
1
1

4

Ir(COD)(IPr)Cl: 'H NMR (400 MHz, CDCls) &: 7.45 (t, = 7.7 Hz, 2H, HAr), 7.24 (d,
J = 27.5 Hz, 4H, HAr), 6.99 (s, 2H, NCH), 4.23 — 4.10 (m, 2H, Hcod), 3.41 (br, 2H,
CH(CH3)2), 2.89 — 2.84 (m, 2H, Hcod), 2.68 (br, 2H, CH(CH3)2), 1.74 — 1.60 (m, 2H,

Hcod), 1.58 — 1.15 (m, 21H, Hcod + Me), 1.10 (d, J = 6.8 Hz, 12H, CH(CH3)2).

NNN

N1,N2-bis(2,6-dimethylphenyl)ethane-1,2-diimine: *H NMR (400 MHz, CDCls) &:
8.12 (s, 2H), 7.10 (d, J = 7.7 Hz, 4H), 7.01 (t, J = 8.2, 6.7 Hz, 2H), 2.19 (s, 12H).

TN N
L XD
1,3-bis(2,6-dimethylphenyl)-1H-imidazol-3-ium chloride: *H NMR (400 MHz,

CDCl3) 8: 11.13 (s, 1H), 7.60 (s, 2H), 7.34 (t, 2H), 7.20 (d, J = 7.6 Hz, 2H), 2.21 (s,
12H).

S A,
CL T XS

a’ T
] 4
)
7

Ir(COD)(IXy)Cl: *H NMR (400 MHz, CDCls) &: 7.28 (t, J = 7.6 Hz, 2H), 7.22 — 7.12
(m, 4H), 6.98 (s, 2H), 4.17 — 4.06 (m, 2H, CHcod), 2.97 — 2.88 (m, 2H, CHcod), 2.38 (s,
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6H), 2.19 (s, 6H), 1.65 (m, J = 28.2, 15.6, 9.5 Hz, 4H, CHacod), 1.37 — 1.19 (m, 4H,
CHacod).

Fodpt

N2,N3-bis(2,6-dimethylphenyl)butane-2,3-diimine: *H NMR (400 MHz, CDCls) §:
7.06 (d, J=7.7 Hz, 4H), 7.06 — 6.80 (m, 2H), 2.02 (d, J = 0.8 Hz, 18H).

1,3-bis(2,6-dimethylphenyl)-4,5-dimethyl-1H-imidazol-3-ium chloride: *H NMR
(400 MHz, CDCls) 6: 10.76 (s, 1H), 7.41 —7.30 (m, 2H), 7.22 (d, J = 7.6 Hz, 4H), 2.14
(s, 10H), 2.05 (s, 5H).

g

RN

T
] /2
1
7

Ir(COD)(IXyM®)Cl: 'H NMR (400 MHz, CDCls) &: 7.28 (t, J = 7.5 Hz, 2H), 7.17 (dd, J
= 14.6, 7.4 Hz, 4H), 4.05 — 3.98 (m, 2H), 3.03 — 2.95 (m, 2H), 2.33 (s, 6H), 2.07 (s, 6H),
1.82 (s, 6H), 1.62 — 1.51 (m, 4H), 1.29 — 1.16 (m, 4H).

K

N1,N2-bis(2,6-dimethylphenyl)ethane-1,2-diamine: *H NMR (400 MHz, CDCls) &:
7.00 (d, J =7.6 Hz, 4H), 6.83 (t, 2H), 3.20 (s, 4H), 2.30 (s, 12H).
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CLY X2
1,3-bis(2,6-dimethylphenyl)-4,5-dihydro-1H-imidazol-3-ium chloride: *H NMR

(400 MHz, CDCls) §: 9.39 (s, 1H), 7.25 (dd, J = 8.8, 6.4 Hz, 2H), 7.14 (d, J = 7.6 Hz,
4H), 4.61 (s,4H), 2.44 (s, 12H).

Ir(COD)(SIXy)Cl: *H NMR (400 MHz, CDCl3) §: 7.42 — 6.91 (m, 2H), 7.15 (dd, J =
12.5, 7.1 Hz, 4H), 4.26 — 4.01 (m, 2H), 3.93 (s, 4H), 3.25 — 2.98 (m, 2H), 2.59 (s, 6H),
2.38 (s, 6H), 1.66 — 1.53 (m, 4H), 1.36 — 1.17 (m, 4H).

g

N1,N2-di-o-tolylethane-1,2-diimine: *H NMR (400 MHz, CDCls) &: 8.30 (s, 2H,
CHN), 7.37 — 7.12 (m, 6H, arom), 7.00 (dd, J = 7.6, 1.4 Hz, 2H, arom), 2.39 (s, 6H,
CHy).

N/*:\N
CL XD
1,3-di-o-tolyl-1H-imidazol-3-ium chloride: *H NMR (400 MHz, DMSO-dg) 8: 9.93 (s,
1H), 8.34 (s, 2H), 7.65 (d, J = 4.4 Hz, 2H), 7.50 (d, J = 24.1 Hz, 6H), 2.30 (s, 6H).
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Ir(COD)(lo-Tol)Cl: *H NMR (400 MHz, CDCl3) 8: 8.08 (s, 2H), 7.47 (m, J = 16.7, 14.8,
7.2,1.9 Hz, 6H), 7.09 (s, 2H), 4.30 — 4.18 (m, 2H), 2.57 — 2.48 (m, 2H), 2.23 (s, 6H), 1.72
- 1.51 (m, 4H), 1.49 — 1.09 (m, 4H).

/ T \

N\/N
1-benzyl-1H-imidazole: *H NMR (400 MHz, CDCls) &: 7.54 (s, 1H, HAr), 7.40 — 7.29
(m, 3H, HAr), 7.18 — 7.11 (m, 2H, HAr), 7.09 (t, J = 1.0 Hz, 1H, Himi), 6.90 (t, J = 1.3
Hz, 1H, Himi), 5.12 (s, 2H, CH2).

Qﬁﬂ
N-%/N

Cl

1,3-dibenzyl-1H-imidazol-3-ium chloride: *H NMR (400 MHz, CDCls) &: 10.92 (s,
1H), 7.41 (dd, J = 6.6, 2.8 Hz, 4H), 7.41 (dd, J = 6.6, 2.9 Hz, 6H), 7.22 (d, J = 1.5 Hz,
2H), 5.50 (s, 4H).

=

Ir

a” i \\
I, 7
I
4

Ir(COD)(IBZ)Cl: 'H NMR (400 MHz, CDCls) &: 7.39 — 7.27 (m, 10H, HAT), 6.65 (s,
2H, C=CHN), 5.76 (d, J = 14.8 Hz, 2H, ArCH:N), 5.59 (d, J = 14.8 Hz, 2H, ArCH:N),
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4.64 (dd, J = 5.2, 2.3 Hz, 2H, Hcod), 2.99 — 2.90 (m, 2H, Hcod), 2.26 — 2.05 (m, 4H,
Hcod), 1.75 - 1.66 (m, 2H, Hcod), 1.59 — 1.49 (m, 4H, Hcod).

Ir(COD)(Phen)Cl: *H NMR (400 MHz, CDCls) &: 8.65 (dd, J = 5.3, 1.3 Hz, 2H), 8.50
(dd, J=8.1, 1.3 Hz, 2H), 7.93 (s, 2H), 7.79 (dd, J = 8.1, 5.3 Hz, 2H), 3.93 — 3.88 (m, 4H),
2.48 — 2.40 (m, 4H), 1.98 — 1.57 (m, 4H).

(E)-4,4,5,5-tetramethyl-2-(prop-1-en-1-yl)-1,3,2-dioxaborolane: MS (El, m/z): 168
(10), 154 (4), 153 (38), 152 (8), 111 (20), 110 (8), 109 (6), 95 (5), 85 (24), 83 (13), 82
(81), 70 (5), 69 (100), 68 (39), 67 (22), 59 (15), 58 (7), 57 (10), 56 (7), 55 (8).

2ab

(2)-4,4,5,5-tetramethyl-2-(prop-1-en-1-yl)-1,3,2-dioxaborolane: MS (El, m/z): 168
(6), 153 (24), 152 (6), 111 (12), 110 (8), 109 (4), 97 (3), 95 (4), 85 (22), 83 (14), 82 (71),
70 (4), 69 (100), 68 (38), 67 (20), 59 (27), 58 (7), 57 (10), 55 (10), 53 (3).
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2ac

4,4,55-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane: MS (EIl, m/z): 168 (14),
154 (5), 153 (68), 152 (17), 111 (33), 110 (12), 109 (6), 95 (8), 85 (33), 83 (12), 82 (100),
81 (5), 69 (92), 68 (31), 67 (36), 59 (36), 58 (12), 57 (16), 55 (14), 53 (5).

4,4,5,5-tetramethyl-2-propyl-1,3,2-dioxaborolane: MS (El, m/z): 156 (7), 155 (81),
154 (16), 127 (7), 113 (18), 112 (7), 100 (4), 87 (11), 86 (7), 85 (44), 84 (67), 83 (19), 71
(100), 70 (40), 69 (32), 59 (49), 58 (27), 57 (18), 56 (7), 55 (18).

ey

0 0
AN
B~

PN

2ae

2-isopropyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: MS (EIl, m/z): 170 (6), 155 (56),
154 (13), 113 (10), 112 (23), 111 (8), 86 (7), 85 (75), 84 (100), 83 (60), 71 (67), 70 (68),
69 (40), 59 (62), 58 (19), 57 (22), 56 (30), 55 (30), 53 (8), 45 (7).
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2af

2,2'-(propane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane): MS (El, m/z):
294 (4), 279 (8), 237 (7), 236 (5), 194 (8), 193 (5), 179 (11), 178 (5), 153 (6), 113 (4),
101 (5), 85 (15), 84 (100), 83 (49), 80 (4), 69 (21), 67 (10), 59 (10), 57 (7), 55 (23).

2ba

4,4,5,5-tetramethyl-2-(2-methylprop-1-en-1-yl)-1,3,2-dioxaborolane: MS (El, m/z):
167 (21), 166 (5), 139 (8), 125 (29), 124 (17), 123 (4), 109 (5), 101 (7), 97 (8), 96 (24),
85 (13), 84 (5), 83 (100), 82 (36), 81 (10), 69 (3), 67 (5), 59 (13), 57 (7), 55 (10).

st

2bb

2-(tert-butyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: MS (El, m/z): 167 (22), 125
(79), 124 (39), 123 (18), 109 (22), 97 (30), 96 (18), 85 (36), 84 (10), 83 (63), 82 (28), 81
(34), 69 (22), 67 (13), 59 (34), 58 (13), 57 (22), 56 (23), 55 (100), 54 (9).
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2bc

2-isobutyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: *H NMR (400 MHz, CDCls) &:
1.82 (dt, J = 15.7, 6.8 Hz, 1H), 1.21 (s, 12H), 0.89 (d, J = 6.6 Hz, 6H), 0.70 (d, J = 7.2
Hz, 2H), 3C NMR (101 MHz, CDCls) 8: 82.75, 25.17, 24.81, 24.77, "B NMR (128 MHz,
CDCl3) §: 34.06; MS (El, m/z): 169 (51), 168 (12), 129 (86), 128 (20), 127 (13), 125 (9),
113 (18), 101 (18), 98 (16), 87 (56), 86 (19), 85 (100), 84 (43), 83 (49), 69 (47), 59 (50),
58 (23), 57 (84), 56 (33), 55 (28).

2bd

2,2'-(2-methylpropane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane):  MS
(El, m/z): 251 (17), 250 (15), 207 (8), 166 (26), 151 (7), 127 (35), 126 (9), 123 (10), 109
(10), 108 (7), 101 (7), 95 (7), 84 (16), 83 (100), 82 (7), 81 (16), 69 (16), 67 (8), 57 (7), 55
(32).

)

o—

2ca

4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane: MS (El, m/z): 139 (22), 138 (8), 112
(10), 111 (6), 110 (4), 97 (11), 96 (7), 95 (7), 87 (6), 85 (18), 81 (3), 69 (12), 68 (100), 67
(10), 59 (22), 58 (12), 57 (10), 55 (48), 54 (13), 53 (3).
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2ch

2-ethyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 142 (6), 141 (83), 140 (24), 99 (14),
98 (10), 97 (3), 86 (3), 85 (35), 84 (3), 83 (13), 70 (31), 69 (8), 67 (2), 59 (58), 58 (39),
57 (100), 56 (31), 55 (13), 53 (2), 45 (2).

0
|
(™
2da

2-(cyclohex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: MS (El, m/z): 123
(32), 122 (49), 109 (58), 108 (40), 107 (32), 101 (10), 93 (10), 85 (85), 84 (100), 83 (15),
81 (32), 80 (42), 79 (29), 78 (13), 69 (21), 67 (33), 59 (18), 57 (12), 55 (23), 53 (11).

2db

2-(cyclohex-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: MS (El, m/z): 123
(23), 122 (18), 109 (14), 108 (16), 107 (18), 101 (10), 85 (72), 84 (100), 83 (23), 81 (34),
80 (35), 79 (24), 78 (10), 77 (6), 69 (23), 67 (26), 59 (9), 57 (11), 55 (20), 53 (8).
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2dc

2-(cyclohex-3-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: MS (El, m/z): 123
(20), 122 (11), 108 (7), 107 (10), 101 (8), 86 (8), 85 (100), 84 (40), 83 (13), 81 (15), 80
(36), 79 (20), 78 (11), 69 (17), 67 (15), 66 (6), 59 (12), 57 (12), 55 (17), 53 (6).

2dd

2-cyclohexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: MS (EI, m/z): 195 (20), 129
(21), 125 (9), 124 (100), 111 (17), 110 (33), 109 (29), 87 (22), 86 (10), 84 (16), 83 (31),
82 (48), 81 (27), 69 (90), 68 (13), 67 (15), 59 (24), 57 (14), 55 (32).

\/\/\/\/\/ ~o
2ea

2-(dec-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: MS (El, m/z): 153 (100),
152 (28), 111 (45), 110 (43), 109 (32), 101 (40), 97 (28), 96 (51), 95 (55), 85 (93), 84
(78), 83 (86), 82 (54), 81 (53), 69 (76), 68 (64), 67 (52), 59 (31), 57 (57), 55 (91).
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2eb

2-decyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: MS (El, m/z): 253 (18), 129 (99),
128 (27), 127 (17), 111 (18), 101 (22), 97 (48), 96 (13), 87 (54), 86 (21), 85 (100), 84
(32), 83 (42), 71 (18), 70 (12), 69 (45), 59 (41), 57 (4), 56 (14), 55 (38).

3ba

1-methoxy-4-(2-methylprop-1-en-1-yl)benzene: MS (El, m/z): 163 (15), 162 (100),
161 (13), 148 (11), 147 (80), 146 (6), 132 (8), 131 (16), 129 (9), 121 (20), 119 (9), 117
(13), 115 (19), 104 (5), 103 (12), 91 (35), 77 (15), 65 (7), 63 (6), 51 (6).

4ba

1-(4-(2-methylprop-1-en-1-yl)phenyl)ethan-1-one: MS (El, m/z): 174 (18), 160 (13),
159 (100), 132 (3), 131 (21), 129 (20), 128 (5), 116 (14), 115 (15), 105 (3), 103 (3), 91
(19), 90 (6), 89 (7), 77 (5), 63 (4), 65 (3), 51 (3), 43 (11), 39 (4).
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CHAPTER 4

RESULTS AND DISCUSSION

In this study, optimization studies for borylation of petroleum cracking products
were examined. Experiments were performed with abovementioned methods and
different combinations of boron source, pre-catalyst, ligand, and solvent under thermal

conditions.
4.1 Borylation of Propene

The first trials were performed to determine whether some of the literature
works® 70 (Table 4.1, entries 1 and 2) can be applicable for the borylation of propene.
Some modifications were made to accommodate the natural properties of propene and
thus, M1 was applied. Each individual product was determined with its standard sample

by using GC.

Table 4.1. First trials for the borylation of propene and its variations.

Pre-catalyst
B,pin, (0.5 mmol)

P Ligand / Additive Bpin + /ﬁ Bpin

Cyclohexane (10 mL) Bpin
1a T=80°C,t=16h 2aa 2ab
5 bar (5 mmol)
Bpin Bpin
/\/Bpin +
)\ + )\/ Bpin
2ad 2ae 2af
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Yield%*®

Entry Pre-catalyst ,l\_(;%?tr;\?e/b
2aa  2ab 2ac 2ad 2ae 2af Total
1 [Ir(COD)CI]. - 91 14 13 31 3 37 189
2 [Ir(COD)CI]. DBU 0 15 7 9 5 6 92
3 [Ir(COD)CI]: TMP 2 19 27 1 6 0 55
4 [Ir(COD)CI]; Jgtlgh 2 0 23 61 3 0 89
5 [Ir(COD)OMe]. - 109 16 27 23 0 4 179

6 [Ir(COD)OMe], DBU 49 8 12 14 1 5 89

7 [Ir(COD)OMe]; TMP 22 5 42 71 2 2 144

8  [N(COD)OMel: /&' 20 4 35 82 3 0 144
¢ [ICOD)OMel, ' 13 3 49 57 1 0 123
10°¢  [IfCOD)OMel: e 0 0 30 5 1 0 82

a) Determined by GC technique using dodecane as the internal standard.
b) 5% mol DBU, 10 % mol TMP, 1 equivalent of KO'Bu used.

c) Benzene was used as a solvent.

d) H20 (0.5 mmol) was used as an additive.

Resulting from these trials, it was evident that when [Ir(COD)CI]2 or
[Ir(COD)OMe]. complexes can used without requirement of any additive in the reaction
medium, in these reactions, alkenylboron 2aa was predominantly obtained. However,
addition of DBU, TMP or KO'Bu, either caused a decrease in the yield of 2aa and/or led
to promote formation of other borylated products. Specifically, having a base in reaction
medium resulted in mainly hydroboration of propene, producing 2ad mainly (Table 4.1,
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entries 4, 8 and 9). The presence of water was detrimental for the reaction and decreased
the amount of 2ac; however, it did not affect the selectivity (Table 4.1, entry 10). When
benzene was used as a solvent, in addition to the borylative and hydroboration products,

borylated benzene products were also observed to form (Table 4.1, entries 9 and 10).

Table 4.2. Effects of temperature on the borylation of propene.

[Ir(COD)OMel, (5 % Ir)

Bpin
B,pin, (0.5 mmol) p
/\ S g /\/Bpln + /ﬁ /&

Cyclohexane (10 mL) Bpin
1a t=16 h
2aa 2ab
5 bar (5 mmol)
Bpin Bpin
Bpin
Py + )\ + )\/ Bpin
2ad 2ae 2af
Yield%?
Entry T (°C)
2aa 2ab 2ac 2ad 2ae 2af Total

1 80 109 16 27 23 0 4 179
2 100 120 20 28 19 0 0 187
3 120 93 18 23 19 0 0 153

a) Determined by GC technique using dodecane as the internal standard.
The optimum reaction temperature is determined to be 100 °C. At this reaction
temperature, 2aa formation was in the highest possible yield (Table 4.2).

Table 4.3. Effect of amount of reactant on the borylation of propene.

[I((COD)OMe], (5 % Ir)

. Bpin
/\ B,pin, (0.5 mmol) /\/ Bpin + /ﬁ /§

Cyclohexane (10 mL) Bpin
1a T=100°C,t=16 h 2aa 2ab
Bpin Bpin
/\/ Bpin
)\ + )\/ Bpin
2ad 2ae 2af
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Yield%o?

Entry Propene Amount
2aa 2ab 2ac 2ad 2ae 2af Total
1 2 bar (2 mmol) 82 15 19 24 0 6 146
2 5 bar (5 mmol) 120 20 28 19 0 0 187
3 10 bar (10 mmol) 102 18 25 12 0 3 160

a) Determined by GC technique using dodecane as the internal standard.

To determine the optimum amount of reactant used, the propene amount was

varied (Table 4.3). The amount of propene charged was maintained with the pressure of

the reactor before the experiment started. The weight of propene charged was calculated

by ideal gas equation ignoring the solubility in cyclohexane initially.

Table 4.4. Effect of solvents on the borylation of propene.

[I((COD)OMel, (5 % Ir) .
B,pin, (0.5 mmol) N Bpin

A e Y *
Solvent (10 mL) Bpin
1a T=100°C, =16 h 2aa 2ab 2ac
5 bar, 5 mmol
Bpin Bpin
Bpin
/\/ + )\ + )\/ Bpln
2ad 2ae 2af
Yield%o?
Entry Solvent
2aa 2ab  2ac  2ad 2ae 2af Total
1 Cyclohexane 120 20 28 19 0 0 187
2 1,4-Dioxane 113 19 18 21 1 6 178
3° 1,4-Dioxane 47 7 7 16 0 1 78

(cont. on the next page)
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(Con. of. Table 4.4)

4 THF 72 13 25 12 0 4 126
5 MTBE 55 10 23 16 0 3 107
6 DMF 45 8 10 6 0 2 71

a) Determined by GC technique using dodecane as the internal standard.
b) Experiment was done with M2 (microwave method).

Even tough generally nonpolar solvents are preferred for Ir-catalysed borylation
reactions, some polar solvent were used in the reaction. However, the use of polar solvents
led to decrease of the yield of the desired product (Table 4.4). Only 1,4-dioxane produced
a comparable result with cyclohexane. Since 1,4-dioxane has microwave-active
properties, an experiment was also performed via microwave heating under M2
conditions (Table 4.4, entry 3). However, the microwave heating showed no beneficial
effect for the method.

Table 4.5. Effect of ligands and additives on the borylation of propene.

[Ir(COD)OMe], (5 % Ir)
B,pin, (0.5 mmol)

. . Bpin
PN Ligand / Additive N Prin * /\ +
Cyclohexane (10 mL) Bpin
1a T=100 °C, t=16 h 2aa 2ab 2ac
5 bar, 5 mmol
Bpin Bpin
Bpin 4
/\/ )\ + )\/ Bpin
2ad 2ae 2af
Yield%?
Entry Ligand/Additive

2aa 2ab  2ac 2ad 2ae 2af Total

1 - 120 20 28 19 0 0 187
2b PPhs 106 19 53 14 0 2 191
3P AsPhs 104 18 28 19 0 8 177

(cont. on the next page)
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(Con. of. Table 4.5)

4° DPPE 100 20 26 10 0 7 163
5¢ DPPB 60 11 28 16 0 6 121
6¢ 2-Norbornene 56 10 16 10 4 0 96
7° Cyclohexanone 32 6 18 8 0 2 66

a) Determined by GC technique using dodecane as the internal standard.
b) 10% ligand was used.

c) 5% ligand was used.

d) 2 equivalent of 2-Norbornene was used.

e) 5 equivalent of cyclohexanone was used.

Phosphines are generally the preferred choice of ligands in the transition-metal-
mediated processes. Thus, the activity of ligands combined with [Ir(COD)OMe]. was
investigated. Using simple monodentate ligand, PPhs, increased the total formation of
borylated products. However, the selectivity of the method was somewhat diminished and
the formation of 2ac was enhanced (Table 4.5, entry 2). Similarly, the ligand AsPhs
resulted in a decrease of borylated yields (Table 4.5, entry 3). Using bidentate ligands
instead of monodentate ligands also resulted with lower yields (Table 4.5, entries 4 and
5).

Significant amount of hydroboration product 2ad is usually exist among the
borylation products. It has been shown that using sacrificial alkene can reduce the
hydroboration product.*” %° To eliminate 2ad, 2-norbornene and cyclohexanone were
used sacrificial alkene, but these attempts led to inferior results (Table 4.5, entries 6 and
7).

Table 4.6. Effect of different iridium complexes on the borylation of propene.

Ir Complex (5 % Ir)

/\ B,pin, (0.5 mmol) - /\/ Bpin + /\ . /Bp<
2ac

Cyclohexane (10 mL) Bpin
1a T=100°C,t=16 h
5 bar, 5 mmol

2aa 2ab

Bpin Bpin
Py Bpin
)\ + )\/ Bpin
2ad 2ae 2af
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Yields %62

Entry Pre-catalyst
2aa 2ab 2ac 2ad 2ae 2af Total
1 [Ir(COD)OMe]:2 120 20 28 19 0 O 187
2 Ir(COD)(IMes)ClI 120 23 17 26 0 6 192
3P Ir(COD)(IBz(iPr)3)ClI 107 20 18 32 1 5 183

4° Ir(COD)(IBz(CF3)P™"™“hcl 105 19 21 23 0 6 174

5 IrCl3.xH20 68 9 5 38 6 35 161

a) Determined by GC technique using dodecane as the internal standard.

S e
b) J c) J

A number of N-hetero carben (NHC) ligated iridium complexes (Ir-NHC)
complexes were also tested for their activities (Table 4.6).”*"> A comparable result was
obtained with Ir(COD)(IMes)CI, and somewhat lower yields could be obtained with
benzyl-substituted Ir-NHC complexes (Table 4.6, entry 2-4). However, the catalytic
activity of IrCls was insufficient (Table 4.6, entry 5).

Table 4.7. Effect of different rhodium complexes on the borylation of propene.

Rh Complex (5 % Rh)

B,pin, (0.5 mmol) Bpin
/\ /\/ Bpin + A

Cyclohexane (10 mL) Bpin
1a T=100 °C, t=16 h 2aa 2ab
5 bar, 5 mmol
Bpin Bpin
Py Bpin
)\ + )\/ Bpin
2ad 2ae 2af
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Yield%o?

Entry Pre-catalyst
2aa 2ab 2ac 2ad 2ae 2af Total
1 RhCl3.xH20 46 8 1 16 1 7 79
2d Rh(COD),BF4 82 15 5 51 3 45 201
3 Rh(PPhz)sCl 59 10 3 40 2 15 129
4 RhCp*Cl> 88 16 7 29 1 11 152
5P [Rh(COD)OH], 73 11 3 81 1 26 195
6 [Rh(COD)CI]» 59 7 2 39 1 12 120
70c [Rh(COD)CI]: 102 16 9 58 2 20 207
ghc [Rh(COD)OMe]» 56 89 3 83 1 39 189
9 [Rh(COD)OMe]: 48 8 3 92 1 26 178

10°  Rh(COD)(IBz(iPr)Cl 49 17 1 55 5 91 218

11 Rh(COD)(IMes)Cl 29 5 2 26 1 112 175

a) Determined by GC technique using dodecane as the internal standard.
b) Reaction temperature is 80 °C
c) 5% TMP used as additive.

ipr ipr
—| I -
B F4 m jﬂ
N_ N
iPr \r iPr
- Rh ~
CIJ
7
e)

In addition to Ir complexes, other metal complexes can also be used in borylation

A\

d)

reactions. Because of its Ir-like nature, Rh complexes was also tested in the reaction.
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Experiment with RhClz did not give an effective result (Table 4.7, entry 1). When
Rh(COD).BF4 was used as the catalyst, even though there was a significant increase in
the total yield, there was no selective formation of the borylated product (Table 4.7, entry
2). The reaction with Wilkinson’s catalyst resulted in lower yield (Table 4.7, entry 3).
Changing catalyst to RhCp*Cl> did not improve selectivity or yield (Table 4.7, entry 4).

Optimization studies were also proceeded with rhodium catalysts containing
functional groups with different electronic effects. Results obtained with [Rh(COD)OH]>
was not so selective (Table 4.7, entry 5). Even though [Rh(COD)CI]2 gave a similar result,
the addition of TMP caused a significant increase in the yield of 2aa (Table 4.7, entries 6
and 7). The catalytic activity of [Rh(COD)OMe]. was insufficient with or without TMP
(Table 4.7, entries 8 and 9).

N-heterocarben (NHC) ligated rhodium complexes (Rh-NHC) complexes directed
to the diborylation products (Table 4.7, entries 10 and 11).

4.2 Borylation of Isobutene

Propene contains a double bond with a single methyl substituent and has many
open positions for dehydrogenative borylation or hydroboration. Because of these
properties of propene, the selectivity of borylation was not ideal for this procedure and
several by-products formed. To reduce the number of by-products, a more sterically

hindered reactant was used. For this, the preferred choice was isobutene.

To achieve more controllable conditions for reactant amount, a suitable method
to prepare reactant solution was established. If the reaction conditions included an air
sensitive reagent; such as [Ir(COD)OMe]., HBpin, KO'Bu; M2 was the method of choice.

Other reactions were carried out under the conditions of M3 method.

o1



Table 4.8. First trials for the borylation of isobutene and its variations.

Ir-complex (5% Ir)
B,pin, (1 equiv, 0.2 mmol)
Bpin Bpin Bpin

)J\ KOtBu (10%)

’ + .+

Cyclohexane (2 mL) )l/\ )J\/ Bpin /L + /E/ Bpin
T=100 °C, t= 16h

1b 2ba 2bb 2be 2bd

10 equiv, 2.0 mmol

Yield%o?
Entry Pre-catalyst Additive
2ba  2bb 2bc 2bd Total
1 [Ir(COD)OMe]: - 47 1 19 7 74
2 [If(COD)CI]2 - 66 2 23 21 112
3 [Ir(COD)CI]2 KO'Bu 45 1 25 4 75
4 Ir(COD)(IMes)ClI - 3% 1 32 3 68
5 Ir(COD)(IMes)CI KO'Bu 14 0 39 4 57
6 Ir(COD)(IMes)ClI KO'Bu 2 0 58 2 62

a) Determined by GC technique using dodecane as the internal standard.
b) 0.4 mmol HBpin was used instead of 0.2 mmol Bypin, while using the same amount of Ir-
complex. Thus, Iridium amount in the reaction became 2.5 %.

The first trial for borylation reaction for isobutene was done under the conditions
optimized for the borylation of propene (Table 4.8, entry 1). Under this condition, the
main product was the corresponding terminal dehydrogenative borylation molecule and
the hydroboration and diborylated molecules were the by-products of the reaction as
determined by GC/MS and NMR analyses.

Changing the pre-catalyst from [Ir(COD)OMe]: to [Ir(COD)CI]2 resulted in 40%
increase in the yield of 2ba (Table 4.8, entry 2). Using Ir(COD)(IMes)Cl caused to
decrease 2ba formation and increase the formation of 2bb (Table 4.11, entry 4). This can
be explained by higher hydrogen transfer activity of Ir(COD)(IMes)CI. Similar results

were also obtained when KO'Bu was used as an additive (Table 4.8, entries 3 and 5).
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It was observed that Ir(COD)(IMes)Cl and KO'Bu led to the formation of
hydroboration product 2bb selectively, when HBpin was used as the boron source (Table
4.8, entry 6).

Table 4.9. Effect of solvent on borylation of isobutene.
[Ir(COD)Cl], (5% Ir) Bpin Bpin Bpin
)I\ B,pin, (1 equiv, 0.2 mmol) | |
> + Lo+
Solvent (2 mL) Bpin + Bpin
T=100 °C, t= 16h
1b 2ba 2bb 2bc 2bd

10 equiv, 2.0 mmol

Yield%?
Entry Solvent
2ba 2bb 2bc 2bd Total
1 Cyclohexane 66 2 23 21 112
2 Toluene 104 5 27 28 164
3 DCE 104 6 26 17 153
4 Benzene 98 4 27 25 154
5 MTBE 94 6 23 8 131
6 CPME 86 3 23 5 117
7 Acetone 28 0 16 0 44
8 IPA 27 1 6 0 34
9 NMP 10 2 9 0 21
10 MeCN 3 4 38 1 46
11 THF 38 1 75 3 117

a) Determined by GC technique using dodecane as the internal standard.
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Similar to the effects of solvent in borylation of propene, non-polar solvents
afforded higher amount of dehydrogenative borylation products (Table 4.9, entries 2-4).
Polar solvents resulted in lower production of 2ba. Specifically, MeCN and THF
provided a higher yield of 2bb. With toluene and DCE solvents, with which the highest
yields of dehydrogenative borylation product 2ba could be achieved, the effect of pre-
catalyst and additive were also investigated (Tables 4.10 and 4.11).

Table 4.10. Effect of pre-catalyst and additive on borylation of isobutene using toluene
or DCE solvents.

Pre-catalyst (5% Ir)
B,pin, (1 equiv, 0.2 mmol . . .
2piny (1 eq ) Bpin Bpin Bpin

)J\ Additive
» | + Boin |
Toluene / DCE (2 mL) )j\/ pin + Bpin
2ba 2bb 2be 2bd

T=100 °C, t= 16h
1b

10 equiv, 2.0 mmol

Yield%o?

Entry  Solvent Pre-catalyst Additive
2ba  2bb 2bc 2bd Total

1° Toluene [Ir(COD)CI]; Acetone 92 23 3 2 120

2b Toluene [Ir(COD)CI]. IPA 75 20 2 2 99
Benzal-
b
3 Toluene [Ir(COD)CI]. dehyde 13 27 0 12 52
4 Toluene  Ir(COD)(IMes)ClI - 34 33 1 1 69
5 Toluene  Ir(COD)(Phen)Cl - 14 20 2 1 37

6° Toluene  Ir(COD)(Phen)Cl HBpin 11 14 4 2 31

7° DCE [Ir(COD)CI] MeCN 100 6 28 14 148

(cont. on the next page)

54



(Con. of. Table 4.10)

8v DCE Ir(COD)(IMes)CI Acetone 101 5 24 10 140

9 DCE [IrCp*Cl3] - 2 0 0 0 12

a) Determined by GC technique using dodecane as the internal standard.
b) 2 equiv. additive was used
c) 5% additive was used.

When using toluene as the solvent, acetone and benzaldehyde were used as
sacrificial reagents to reduce the formation of hydroboration products. Also, IPA was
used as a hydrogen atom source to enhance the production of 2bb. These trials resulted
in lower activity of iridium complex (Table 4.10, entries 1-3). Ir(COD)(IMes)CI and
Ir(COD)(Phen)ClI resulted in lower yields (Table 4.10, entries 4-9). When using DCE as
a solvent, the use of MeCN and acetone for the promotion of the yield of 2bb failed. Also,
[IrCp*Cl2]2 resulted in a decreased yield (Table 4.10, entries 7-9). Optimization studies
continued with using DCE as the solvent, because of the by-products detected which were

formed by borylation of toluene.

Table 4.11. Effect of temperature on borylation of isobutene.

[Ir(COD)CI], (5% Ir) Bpin Bpin Bpin
B,pin, (1 equiv, 0.2 mmol)
- | + Bpin + |
DCE (2 mL) + Bpin
t=16h
1b 2ba 2bb 2bc 2bd
10 equiv, 2.0 mmol
Yield%o?
Entry T (°C)

2ba 2bb 2bc 2bd Total

1 50 78 3 35 4 120

2 70 107 3 28 4 142

(cont. on the next page)
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(Con. of. Table 4.11)

3 70 91 4 30 34 159
4 100 104 6 26 17 153
5¢ 120 90 6 20 11 127

a) Determined by GC technique using dodecane as the internal standard.
b) 0.4 mmol B2pin, was used.
c) Reaction time was 6 hours.

The reaction at lower temperature of 70 °C resulted in similar outcome.
Decreasing reaction temperature to 50 °C or increasing to 120 °C showed negative impact
(Table 4.11).

Table 4.12. Effects of ligands on borylation of isobutene.

[Ir(COD)Cl], (5% Ir)
B,pin, (1 equiv, 0.2 mmol) Bpin Bpin Bpin

Ligand (10%)

> | + Bpin + |

DCE (2 mL) + Bpin
T=70°C, t= 16h

1b 2ba 2bb 2be 2bd

10 equiv, 2.0 mmol

Yield%o?

No Ligand (%)
2ba 2bb 2bc 2bd Total

1 P(Ph(CFs))s 0 0 0 0 0
2 P(Ph(CFs)y)s 0 0 0 0 0
3 PPhs 0 0 0 0 0
4 AsPh; 0 0 0 0 0

a) Determined by GC technique using dodecane as the internal standard.
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Effects of ligands were investigated at 70 °C, in these trials both ligands with
electron donating ability and electron withdrawing ability caused activity of iridium

complex to disappear (Table 4.12).

Table 4.13. Effect of pre-catalyst amount on borylation of isobutene.

[I(COD)CI],

Bpin Bpin Bpin
B,pin, (1 equiv, 0.2 mmol)
> | + Bpin + |
DCE (2 mL) + Bpin
t=16h
1b 2ba 2bb 2bc 2bd
10 equiv, 2.0 mmol
Yield%?

Pre-catalyst
Amount (1r%)

Entry T (°C)
2ba 2bb  2bc 2bd Total

1 70 5.0 107 3 28 4 142
2 70 2.5 95 1 27 3 126
3 100 5.0 104 6 26 17 153
4 100 2.5 107 2 19 2 130
5 100 1.0 69 4 11 2 86

a) Determined by GC technique using dodecane as the internal standard.

The price of the pre-catalyst covers the significant amount of the process
expenses. Because of that, trials to decrease the amount of pre-catalyst were carried out.
At 70 °C, decrease on products was observed. However, at 100 °C, slight increase on 2ba
was detected. Decreasing the amount of the catalyst some more did not accomplish any
advancement (Table 4.13).
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Table 4.14. Effect of solvent amount on borylation of isobutene.

[Ir(COD)CI], Bpin Bpin Bpin

B,pin, (1 equiv, 0.2 mmol)
- | + Bpin * |
DCE + Bpin
2bb 2be 2bd

t=16h
1b 2ba
10 equiv, 2.0 mmol

Yield%o?

Pre-catalyst DCE

Entry T (°C) Amount Amount
(Ir%) (ML) 2pa 20b 2bc 2bd 'O
1 70 5.0 3.0 104 3 23 3 133
2 70 5.0 2.0 107 3 28 4 142
3 70 5.0 1.0 96 3 24 22 145
4 100 2.5 3.0 97 5 18 3 123
5 100 2.5 2.0 107 2 19 2 130
6 100 2.5 1.0 116 6 28 15 165
7 100 2.5 0.6 110 6 31 19 166

a) Determined by GC technique using dodecane as the internal standard.

Because of the similar results with 5% Ir at 70 °C, and 2.5% Ir at 100 °C, the trials
to find out the effect of solvent amount were performed on both conditions. Changing the
solvent amount at 70 °C, did not yield any improvement (Table 4.14, entries 1-3). The
optimal amount of solvent at 100 °C was established as 1.0 mL (Table 4.14, entries 4-
7).
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Table 4.15. Effect of isobutene and B2pin, amount on borylation of isobutene.

[Ir(COD)Cl], (2.5% Ir) Bpin Bpin Bpin

B,pin,
>
)J\ DCE (1 mL) )/\ )J\/ Bpin )/\ )/\/ Bpin

T=100 °C, t= 16h

1b
Bapin: Yield%o?
Entry  Amount Isobutene Amount
(mmol) 2ba  2bb  2bc 2bd Total
1 0.1 10 equiv 65 3 18 1 87
2 0.2 3.3 equiv 87 5 21 12 125
3 0.2 5 equiv 90 5 21 9 125
4 0.2 8.3 equiv 104 4 20 3 131
5 0.2 10 equiv 116§ 28 15 165
6 0.2 15 equiv 110 6 27 13 156
7 0.3 10 equiv 93 5 20 8 126
8 0.4 10 equiv 77 4 19 21 121

a) Determined by GC technique using dodecane as the internal standard.

Effect of reactant amount was also investigated. It was observed that it is possible
to increase the amount of isobutene to 15 equivalent (3 mmol), but lowering it yielded
inferior results. Also, similar changes of B2pin. had no effect on the reaction positively
(Table 4.15).
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Table 4.16. Effect of time on borylation of isobutene.

[Ir(COD)CI], (2.5% Ir) Bpin Bpin Bpin

B,pin, (1 equiv, 0.2 mmol) . .
)J\ beEamD )l/\ )}\/ Bein )/\ * )l/\/ Bpin
T=100 °C
1b 2ba 2bb 2bc 2bd
10 equiv, 2.0 mmol
Yield%o?
Entry t (h)
2ba 2bb 2bc 2bd  Total

1 2 75 18 5 15 113

2 3 83 22 6 15 126

3 5 93 25 6 19 143

4 9 100 26 6 21 153

5 16 116 6 28 15 165

a) Determined by GC technique using dodecane as the internal standard.

In the last part of the optimization of dehydrogenative borylation of isobutene,
effect of reaction period was examined. It was observed that significant amount of
borylation was occurred in the first two hours of reaction. The reaction further continued
till 16 hours with a slowed rate and after 16 hours (Table 4.16), it was observed that Bopin»

has completely consumed.

4.3 Hydroboration of Isobutene

In aforementioned dehydroborylation studies, it was observed that,
Ir(COD)(IMes)Cl as a pre-catalyst improved the relative formation of the corresponding
hydroboration product. THF and MeCN were the solvents that favoured the formation of

the hydroboration product. To achieve selective formation of hydroboration product,
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initial studies were performed using these reagents. HBpin was used as the boron source

instead of Boping, because HBpin can also act as a hydrogen atom source.

Table 4.17. Effects of solvent on hydroboration of isobutene

Ir(COD)(IMes)CI (2.5%) Bpin Bpin Bpin

)J\ HBpin (1 equiv, 0.4 mmol) )J\/
Bpin
Solvent (2 mL) P Bpin

T=100°C,t=16h

1b
S equiv, 2.0 mmol

Yield%o?
Entry Solvent
2ba 2bb  2bc 2bd Total
1 MeCN 0 0 54 0 54
2 THF 3 0 86 1 90
3P THF 4 0 62 3 69

a) Determined by GC technique using dodecane as the internal standard.
b) 0.05 % Ir(COD)(IMes)CI was used.

The hydroboration product 2bb was obtained with a moderate yield and with a
high selectivity when MeCN was used as the solvent. Significantly higher yield of 2bb
was produced in THF solvent (Table 4.17, entries 1 and 2). Thus, THF became the
preferred solvent for hydroboration of isobutene. When the Ir(COD)(IMes)CIl amount
reduced to 0.05%, there was a decrease on the yield to a moderate level (Table 4.17, entry
3).

Table 4.18. Effect of temperature on hydroboration of isobutene in the presence of
0.05% of Ir(COD)(IMes)CI.

Ir(COD)(IMes)Cl (0.05%) Bpin Bpin Bpin

HBpin (1 equiv, 0.4 mrnol)
THF (2 mL) Bpin * Bpin

T=100°C,t=16h

1b
5 equiv, 2.0 mmol
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Yield%o?

Entry T (°C)
2ba 2bb 2bc 2bd Total

1 80 2 0 56 3 61
2 100 4 0 62 3 69
3 100 0 0 6 0 6

4 120 3 0 60 2 65

a) Determined by GC technique using dodecane as the internal standard.
b) 5% KOH was used as additive.

It was determined that the reaction the temperature of 100 °C is optimal for the
formation of 2bb (Table 4.18, entry 2). The presence of KOH base almost completely
destroyed catalytic activity of the iridium complex (Table 4.18, entry 3). There was
apparent decrease in the yield when the reaction is performed at lower temperature (Table

4.18, entry 1) and application of higher temperature was useless (Table 4.18, entry 120).

Table 4.19. Effect of pre-catalyst on hydroboration of isobutene in the presence of
0.05% iridium.

Pre-catalyst (0.05%) Bpin Bpin Bpin

HBpin (1 equiv, 0.4 mmol) )J\/
Bpin
THF (2 mL) P Bpin

T=100°C,t=16h

1b
5 equiv, 2.0 mmol

Yield%?
Entry Pre-catalyst
2ba 2bb  2bc 2bd Total
1 Ir(COD)(IMes)Cl 4 0 62 3 69
2 Ir(COD)(IPr)CI 2 0 42 1 45

(cont. on the next page)
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(Con. of. Table 4.19)

3 Ir(COD)(IBz)CI 5 2 59 7 73
4° Ir(COD)(IBz(iPr)s)ClI 2 0 37 1 40
5 Ir(COD)(loTol)Cl 3 0 46 1 50
6 Ir(COD)(IXy)CI 4 0 84 2 90
7 Ir(COD)(IXyMe)Cl 5 3 73 6 87
8 Ir(COD)(SIXy)CI 4 0 105 1 109

a) Determined by GC technique using dodecane as the internal standard.
b) 2.5% pre-catalyst was used.

Effect of various NHC ligated pre-catalyst complexes was investigated with
varying steric and electronic properties. 2,6-Diisopropyl substituted NHC ligated iridium
complex afforded lower yield of 2bb, indicating that increased steric factors had negative
effect for the method. (Table 4.19, entry 2). A comparable result was obtained with an
alkyl substituted NHC ligated complex (Table 4.19, entry 3). Similarly, increased steric
factors with 2,4,6-triisopropyl benzene attached alkyl substituted NHC ligated complex,
decreased the yield of the experiment (Table 4.19, entry 4). Mono- and di-methyl
substituted Ir-NHC complexes was also tested and found that Ir(COD)(IXy)CI gave
improved results (Table 4.19, entries 5-6). To enhance the yield, modifications on
Ir(COD)(IXy)Cl was established. The catalyst system, with the NHC ligand having
methyl groups on the imidazole ring, gave an unfavourable result (Table 4.19, entry 7).
However, the best result could be acquired with saturated NHC ligated complex,
Ir(COD)(S1Xy)CI with significant increase on the amount of 2bb (Table 4.19, entry 8).

Table 4.20. Effect of Ir(COD)(S1Xy)CI amount on hydroboration of isobutene.

Ir(COD)(SIXy)Cl Bpin Bpin

Bpin
HBpin (1 equiv, 0.4 mmol)
> | + Bbi + |
THF (2 mL) pin + Bpin
ba 2bb 2bce 2bd

T=100°C,t=16h
1b 2
5 equiv, 2.0 mmol
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Yield%?
Entry Ir(COD)(SIXy)CI (%0)

2bc  2bb 2ba 2bd Total

1 0.01 3 0 107 1 111
2P 0.01 3 0 73 1 77
3¢ 0.01 3 1 60 1 65
4 0.005 2 0 31 0 33
5 0.001 0 0 3 0 3

a) Determined by GC technique using dodecane as the internal standard.
b) Experiment temperature is 80 C.
¢) Experiment time is 6 hours.

Experiments with a lower amount of Ir(COD)(SIXy)CIl were also performed.
Experiment with 0.01% pre-catalyst had no significant influence on the yield (Table 20,
entry 1). When the reaction temperature decreased to 80 °C, the reaction was resulted
with a lower yield (Table 20, entry 2). Also, decreasing the reaction time to 6 hours
resulted with an inferior yield (Table 20, entry 3). Lowering the pre-catalyst loading

further more decreased the yield significantly (Table 4.20, entries 4 and 5).

Table 4.21. Effect of isobutene amount on hydroboration of isobutene while using
0.01% Ir(COD)(SIXy)CI.

Ir(COD)(SIXy)CI (0.01%) Bpin Bpin Bpin

HBpin (1 equiv, 0.4 mmol) )J\/
v | + B iIl + |
THF (2 mL) P + Bpin
2ba 2bb 2bc 2bd

T=100°C,t=16h
1b

64



Yield%o?

Entry Isobutene Amount
2ba  2bb 2bc 2bd Total

1 2.5 equiv 3 0 85 1 89
2 5 equiv 4 0 107 1 112
3 7.5 equiv 0 0 6 0 6

a) Determined by GC technique using dodecane as the internal standard.

In the last part of the optimization of hydroboration of isobutene, the effect of
isobutene amount was examined (Table 4.21). Particularly the use of higher amount of
isobutene was highly detrimal (Table 4.21, entry 3).

4.4 Proposed Catalytic Cycles

In the catalytic cycle of dehydrogenative borylation of isobutene, firstly
transmetallation phase takes place with Ir (1) pre-catalyst and B2pinz, and active catalyst
A that is tris-boryl Ir* complex form. The reactant 1b coordinates to the metal center of
Iridium complex (B). Then, insertion phase takes place, with oxidative addition of vinylic
C-Hbond to A, complex C is formed. D is produced as a result of B-hydrogen elimination
of C, and dissociation of D produces Ir-hydride complex E and product 2ba. Lastly,

oxidative addition of Bopinz replenishs active complex A and forms HBpin (Figure 4.1).

In the catalytic cycle of hydroboration of isobutene, similarly transmetallation
phase takes place with Ir (I) pre-catalyst and HBpin, and active catalyst F that is bis-boryl
hydride Ir 3 complex forms. The coordination of reactant 1b forms iridium complex G.
In the insertion step, H is formed from oxidative addition of vinylic C-H bond. In the
dissociation step, product 2bb and iridium complex I is formed. Oxidative addition of
HBpin replenishs the active complex F and completes the catalytic cycle (Figure 4.2).
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[Ir(COD)Cl],

B,pin,
Transmetallation
HBpin or H, [1r)"(Bpin) )k
A 1b

B,pin, or HBpi

IR i) -
[Ir]I”H(Bpin)z [Ir] (Bpln)3/k

E B

Bpin

/[ Dissociation Insertion

2ba

Bpin

(Bpin)zH[Ir]i[ pinB--)
(Bpm)zl—l[lr]V J\

B-H elimination

Figure 4.1. Proposed mechanism for dehydrogenative borylation of isobutene.

[Ir(COD)Cl],

HBpi
Transmetallation
[1r]™MH(Bpin), )J\
F 1b
HBpinJ
I .
[Ir] (Bpln) (Bpin)zH[Ir]Hl'
1

G

)inin Dissociation Insertion
1nB---
2bb P

(Bpin)[Ir] Hl

H

Figure 4.2. Proposed mechanism for hydroboration of isobutene.
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4.5 Substrate Scope of Borylation Reactions

The scope of the hydroboration and dehydrogenative borylation methods on
several internal and terminal alkenes was investigated. The optimal conditions for the
borylation of propene, as determined, involve the use of [Ir(COD)OMe]., cyclohexane
solvent, 100 °C of reaction temperature, and 16 hours of reaction period. The optimal
conditions for the hydroboration of isobutene includes the combination of HBpin and
Ir(COD)(SIXy)Cl in THF as the solvent, 100 °C of reaction temperature, and 16 hours of
reaction period. Also, the optimal dehydrogenative borylation of isobutene condition
includes the combination of Bopinz and [Ir(COD)CI]. in DCE, and same reaction time

and temperature as above.

[Ir(COD)OMe], (2.5 % Ir)
B,pin, (1 equiv, 0.2 mmol)
/ > /\ Bpin + /\
DCE (1 mL)
T=100C,t=16h
1c 2ca 2¢cb

Bpin

Figure 4.3. Borylation of ethene.

The M1 method was employed for the borylation of the simplest olefin, ethene.
The It was determined that the major product of the process was found to be
hydroboration product instead of dehydrogenative borylation product with a ratio of
2ca:2cb is 4:5.

. Bpin Bpin
a) [Ir.(COD)Cl].z 2.5%1Ir) Bpin Bpin
Bypin, (1 equiv, 0.2 mmol)
DCE (1.0 mL) * + *
100 °C, 16 h
10 equiv 53,6 % 7.0 % 5.6 % 26.6 %
1d 2da 2db 2de 2dd
Bpin Bpin
b) Ir(COD)(SIXy)CI (0.05 % Ir) Bpin Bpin
HBpin (1 equiv, 0.2 mmol)
THF (2.0 mL) * + +
100 °C, 16 h
2 equiv
1d 2da 2db 2dc 2dd
2.2 : 1.3 : 1.0 : 10.0

Figure 4.4. Borylation of cyclohexene.
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Both dehydrogenative borylation and hydroboration methods were also applied
on cyclohexane. The borylation reaction yielded three isomers of dehydroborylative
producs; corresponding alkenylboron 2da as the major product, allylboron 2db, and
homoallylboron 2dr and hydroboration product 2dd. On the other hand, the hydroboration
condition led the formation 2dd as the major product. When the hydroboration condition
Is applied, the expected product 2dd was produced dominantly the ratio of products are
as follows; 2.2:1.3:1:10.

[I(COD)CI], (2.5 % Ir)

. . Bpin
a) . /\ Bopin, (1 equiv, 0.2 mm()l'l /\/ Bpin P Bpin
81417 DCE (1 mL) CgHyy CsHyy
CgHyy
100 °C, 16 h
10 equiv 4.7 % 17.9 % 2.0%
le 2ea 2eb 2ec
Ir(COD)(SIXy)Cl (0.001 % Ir) Bo
HBpin (1 equiv, 0.2 mmol) : - pmn
b) PN . _ Bpin Bpin
= + +
CeHy ™ TN THF (2.0 mL C8H17/\/ C8H17/\/
(2.0 mL) CsHyy
100 °C, 16 h
2 equiv
le 2ea 2¢eb 2ec

DHB product : HB products =10 : 1

Figure 4.5. Borylation of 1-decene.

The reaction of 1-decene under the dehydrogenative borylation condition led to
unexpected results. The yield of the desired product, 2ea, is lower than hydroboration
products 2eb, 2ec. When the hydroboration condition is applied, the expected anti-
Markovnikov addition hydroboration product is obtained with a high regioselectivity
(10:1).

/Bpin Bpin
Ir(COD)(SIXy)Cl1 (0.01 % Ir) ’
HBpin (1 equiv, 0.2 mmol) 7 X
> +
THF (2 mL)
100 °C, 16 h
2 equiv
1f 2fa 2fb
3:1

Figure 4.6. Borylation of styrene.
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Hydroboration reaction of styrene was carried out under optimum condition, but

no selective product was obtained (3:1).

4.6 Suzuki-Miyaura Coupling Reactions with Borylated Isobutene

a) Bpin
\
2ba
b) Bpin

(0]
A
2ba

Pd,(dba),CHCI; (3% mol)
PPh; (4 equiv)
K4PO4 (2 equiv) o o)

/ \

THF (1 mL), H,0 (0.1 mL)

T=80C,t=16h
3ba

PdCl,(dppf) (3% mol) (0)
K3P04 (3 equiv)
DMF 2mL) /
T=80C,t=16h

4ba

Figure 4.7. Suzuki-Miyaura coupling reaction of 2ba.

The Suzuki-Miyaura coupling reaction was applied to 2ba with a palladium

catalyst in the presence of base and the formation of coupling reaction products, 3ba and

4ba, was detected by GC/MS analysis. The reaction was performed with one-pot method,

no purification was applied to borylated isobutene product before the coupling reaction.
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CHAPTER 5

CONCLUSION

In this thesis, metal catalysed borylation reaction strategies have been developed
for the conversion of petroleum cracking olefinic products to high-added-value
organoboron derivatives. These strategies, including hydroboration and dehydrogenative
borylation reactions, can be applied to internal or external alkene derivatives. The
selectivity of products can be enhanced with a number of substituent groups attached to
alkene. Dehydrogenative borylation of petroleum cracking vinylic products was achieved
with good yields. Additionally, hydroboration of these products was formed with high
regioselectivity and high turn-over-number using N-hetero carbene ligated iridium
complexes. The applicability of the method was investigated on various olefins. In accord
to this study, further research will be carried out on petroleum cracking olefins to widen

the scope of the method.
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