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ABSTRACT

BOUNDARY FEEDBACK STABILIZATION OF SOME

EVOLUTIONARY PARTIAL DIFFERENTIAL EQUATIONS

The purpose of this study is to control long time behaviour of solutions to some

evolutionary partial differential equations posed on a finite interval by backstepping type

controllers. At first we consider right endpoint feedback controller design problem for

higher-order Schrödinger equation. The second problem is observer design problem,

which has particular importance when measurement across the domain is not available.

In this case, the sought after right endpoint control inputs involve state of the observer

model. However, it is known that classical backstepping strategy fails for designing right

endpoint controllers to higher order evolutionary equations. So regarding these controller

and observer design problems, we modify the backstepping strategy in such a way that,

the zero equilibrium to the associated closed-loop systems become exponentially stable.

From the well-posedness point of view, this modification forces us to obtain a time-space

regularity estimate which also requires to reveal some smoothing properties for some as-

sociated Cauchy problems and an initial-boundary value problem with inhomogeneous

boundary conditions. As a third problem, we introduce a finite dimensional version of

backstepping controller design for stabilizing infinite dimensional dissipative systems.

More precisely, we design a boundary control input involving projection of the state onto

a finite dimensional space, which is still capable of stabilizing zero equilibrium to the

associated closed-loop system. Our approach is based on defining the backstepping trans-

formation and introducing the associated target model in a novel way, which is inspired

from the finite dimensional long time behaviour of dissipative systems. We apply our

strategy in the case of reaction-diffusion equation. However, it serves only as a canonical

example and our strategy can be applied to various kind of dissipative evolutionary PDEs

and system of evolutionary PDEs. We also present several numerical simulations that

support our theoretical results.
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ÖZET

ZAMANA BAĞLI BAZI KISMİ DİFERANSİYEL DENKLEMLERİN

SINIRDAN GERİ BESLEMELİ KARARLILAŞTIRILMASI

Bu çalışmanın amacı zamana bağlı ve sonlu aralıkta tanımlı kısmi diferansiyel

denklemlerin çözümlerinin asimptotik davranışının geri-adım tipi kontrol ediciler ile kon-

trol edilmesi üzerinedir. İlk olarak yüksek mertebeden Schrödinger modeli için, uzaysal

bölgenin sağ bitim noktasından etki eden kontrol edici inşası problemini ele alıyoruz.

İkinci olarak ise, bilhassa uzaysal bölge boyunca ölçüm yapmanın mümkün olmadığı

durumlarda öneme sahip olan gözlemci inşası problemini ele alıyoruz. Bu durumda göz-

lemci modelin çözümünü içeren ve modele sağ bitim noktasından etki eden kontrol edi-

ciler inşa ediyoruz. Geri-adım yönteminin yüksek mertebeden türevler içeren modellerin

kararşılaştırılmasını sağlayan ve modele sağ bitim noktasından etki eden kontrol edici-

lerin inşasında başarısız kaldığı bilinmektedir. Dolayısıyla kontrol ve gözlemci inşası

problemlerine dair geri-adım yöntemini, bu durumun arka planında yer alan sebepleri

kaldırmaya yönelik olarak ve sıfır denge çözümünün üstel kararlı kılacak bir biçimde

güncelliyoruz. İyi konuşlanmışlık analizi açısından bu güncelleme, bir zaman-uzay kes-

tirimi elde edilmesini ve bu da, analiz boyunca karşımıza çıkan çeşitli Cauchy problem-

lerine ve homojen olmayan sınır koşulları içeren bir başlangıç-sınır değer problemine

ilişkin düzgünleştirici etkilerin ortaya çıkarılmasını gerektirmektedir. Üçüncü bir prob-

lem olarak sonsuz boyutlu disipatif sistemleri kararlı kılan, geri-adım tipi sonlu boyutlu

kontrol edici inşası stratejimizi sunuyoruz. Daha kesin bir dille ifade edecek olursak, son-

suz boyutlu disipatif sistemlerin sıfır denge çözümünün kararlılığını, çözümün yalnızca

sonlu boyutlu bir uzaya izdüşümünü içeren sınır tipi geri beslemeli kontrol ediciler ile

sağlıyoruz. Yaklaşımımız, disipatif sistemlerin sonlu boyutlu asimptotik davranışa sahip

oldukları gerçeğinden esinlenilerek özgün bir biçimde sunduğumuz hedef modele ve yine

özgün bir tanımladığımız geri-adım dönüşümüne dayanmaktadır. Reaksiyon-difüzyon

özelinde sunduğumuz stratejimiz, pek çok disipatif modele ve disipatif denklemler sis-

temine de uygulanabilirdir. Teorik çalışmalarımızın yanı sıra, elde ettiğimiz teorik bulgu-

ları doğrulayan pek çok sayısal simülasyon sunuyoruz.

v
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CHAPTER 1

INTRODUCTION

Differential equations are mathematical models which describe several physical

phenomena, underlying the behaviour of the nature from micro world to macro world. It

is a mathematical relation which involves instantaneous rate of changes, so called deriva-

tives, of some order that provides information in mathematical language for an associated

event that occurs in the physical universe. In particular, one may wish to take into ac-

count the effect of spatially instantaneous rate of changes of the dynamic variable as

time evolves. Such type of equations are called evolutionary partial differential equations

(PDE). In order to determine the dynamic variable for all time, one usually needs to have

an information at a certain moment. This information is called initial state, denoted by

u0, and typically that certain time is taken as t = 0, where t represents the temporal vari-

able. Dynamical system is a pair (X, S (t)), which involves all possible evolutions of all

initial states belonging to phase space X. That is, (X, S (t)) involves all of the trajectories

{S (t)u0 | u0 ∈ X, t ≥ 0}, where X is a Banach space endowed with the norm ‖ · ‖X and S (t)

denotes the evolution operator which satisfies certain properties (is given by Definition

2.1 in the next chapter). In particular, there may exist fixed point(s) of the operator S (t).

The trajectory associated to that fixed point is called steady state trajectory.

Since we are not living in a perfect world, there may be some physical events for

which, behaviour of the state may not be as desired as time evolves. Therefore, one may

aim to influence the system, i.e., to control the system, so as to achieve a desired goal.

From mathematical point of view, this corresponds to influence trajectories lying in the

associated dynamical system in a desired way, for instance asymptotically stabilizing the

steady state trajectories. Under the assumption of existence of an evolution operator, we

define the notion of asymptotic stability of a steady state trajectory as follows.

Definition 1.1 Let φ be a steady state trajectory belongs to the dynamical system (X, S (t)).

1



φ is said to be globally asymptotically stable if

lim
t→∞ ‖S (t)u0 − φ‖X = 0

holds for all u0 ∈ X.

A stronger notion of asymptotically stability is exponential stability.

Definition 1.2 Let φ be a steady state trajectory belongs to the dynamical system (X, S (t)).

φ is said to be globally exponentially stable, if there exists a μ > 0 such that

lim
t→∞

(
eμt‖S (t)u0 − φ‖X) = 0

holds for all u0 ∈ X.

In particular, if the above definitions hold only for such u0’s that lie in a neighborhood of

φ ∈ X, then φ is said to be locally asymptotically (or exponentially) stable. Constructing

a control input that stabilizes steady states exponentially is called exponential stabiliza-

tion problem, or in short stabilization problem. Throughout the text, we will abuse the

language and shortly use the word stabilization when we are refering to exponential stabi-

lization. A stronger notion of stabilization problem is rapid stabilization problem, that is

the case if one can construct a controller so that Definition 1.2 holds for a given prescribed

value of μ > 0.

There are many different approaches that have been developed to implement the

control input to the differential model. One common way is to implement through the

region of the evolution or a locally part of the region of the evolution. These are called

internal control and locally supported control, respectively. Due to the physical nature

of the problem, region of the evolution may have spatial bounds. If this is the case, then

one may need to take into account the boundary effects, so called boundary conditions.

In particular, if access to the interior of the region is restricted or is not available, then

boundary may be the only location where one can implement the control input. Such types

of controllers are referred as boundary controllers. Another common type is feedback

controllers where the control action depends on the output of the evolutionary process.
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These are generally prefered for eliminating errors that occur due to experimental process

and steer trajectories to a desired state. Mathematically speaking, a control input that

involves information about the state of the model is called feedback type control. A

differential model under the influence of a non-feedback controller is called open-loop

system, whereas if the controller is feedback type, then it is called closed-loop system.

1.1. Backstepping method

A powerful tool for constructing explicit boundary feedback laws that stabilizes

equilibrium solutions to the evolutionary PDEs posed on a finite interval is backstepping

method (Krstic and Smyshlyaev, 2008). This method was originally proposed for design-

ing stabilizing controllers for system of ordinary differential equations (ODEs) in 1990’s.

In the following section, we give a brief explanation on the strategy by omitting technical

details to understand origin of the word “backstepping” and also to understand how it is

extended to PDEs (for a more technical discussion on this method for ODE systems, see

e.g., (Kokotovic, 1992), (Krstic et. al., 1995)).

1.1.1. “Stepping back” to construct feedback laws for ODE systems

Suppose that we have an n dimensional ODE system with state u = [u1 u2 · · · un]T ,

where each equation is explicit in u′i , for i = 1, . . . , n. Suppose also that for each i with

1 ≤ i ≤ n−1, right hand side of i−th equation only depends on u1, . . . , ui+1 and in addition

right hand side of the last equation involves u1, . . . , un as well as the control input, g,

which is currently unknown. Such special form of ODE system is called strict-feedback

form. At first, assume that we want to stabilize zero solution of the first equation only. For

a moment let us pretend the function u2 involving in the first equation as a controller and

imagine that we design it in the form α1(u1) in such a way that it cancels the terms that

cause instanbilities (indeed one can do this by considering a suitable and known Lyapunov

function). However, in reality, u2 is also related with u1 via the second equation of the
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ODE system, therefore it cannot be taken as α1(u1). For this reason, this defines an error

w2 := u2 − α1(u1) (1.1)

together with we define w1 := u1. Consequently, we deduce (w1,w2)−system,

w′1 = u′1,

w′2 = u′2 − (α1(u1))′,
(1.2)

where the terms on the right hand sides is replaced by considering the original model,

so that the only unknowns of the system (1.2) are w1,w2. Now assume that we want

to stabilize zero state of the (u1, u2)−system. Similar to the previous step, for a moment

consider u3, which is included in the second equation of u model, as a controller. Suppose

it is designed by the formula α2(u1, u2). But in reality, u3 cannot be taken as α2(u1, u2),

because it is related with u1 and u2 via the third equation. Therefore this defines an error

w3 := u3 − α2(u1, u2).

Together with this present step, our new system, i.e. (w1,w2,w3)−system, is as follows:

w′1 = u′1,

w′2 = u′2 − (α1(u1))′,

w′3 = u′3 − (α2(u1, u2))′.

Stepping iteratively back (where the name “backstepping” comes from), we eventually

come to the last equation and obtain an explicit representation for the real controller, g.

Note that this iterative process, at the end, yield another ODE system, where its state

is w = [w1 w2 · · · wn]T . Consequently what we obtain that u−model is transformed to
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w−model

w′1 = u′1,

w′2 = u′2 − (α1(u1))′,

w′3 = u′3 − (α2(u1, u2))′,
...

where the system involves the constructed controllers in each equation and u′i’s are re-

placed by considering the original u−model, so that the only unknowns of w− model are

wj’s. Also the transformation is done via the errors,

w1 = u1,

w2 = u2 − α1(u1),

w3 = u3 − α2(u1, u2),

...

(1.3)

which can be viewed as change of variables. In view of this construction, following two

observations are important on extending the method to PDEs.

(i) u−model as well as w−model can be considered as a semi-discrete form of a PDE,

that is discretized in spatial variable and continuous in temporal variable. From this

point of view, control g acts to the u−model from its boundary since it is included

only in its last equation, whereas the designed controls, αi’s, acting to the w−model

through interior since they are included in each of the equation except the first one.

(ii) We may see the w−model, as a transformation of the u−model by changing the

variables via the system (1.3). Note that (1.3) is in lower triangular form and its

continuous analog can be viewed as a Volterra type integral transformation of sec-

ond kind.
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1.1.2. Stabilizing backstepping controllers for PDEs

Based on the above observations, let us introduce backstepping strategy for PDEs

in three steps.

(i) At first, we propose a target model, that corresonds to w−model mentioned in the

previous section, so that, its zero equilibrium is readily known to be stable. Our

first observation in the previous section suggests us to choose a model that involves

a damping action, acting to the model through the interior of the region of the

evolution. Thus, one trivial candidate for such model is a copy of our original

model which additionally includes a weakly damping term on its main equation

and that the boundary conditions are taken as homogeneous.

(ii) Next, we introduce so called backstepping transformation. Due to our second ob-

servation in the previous section, this is in general defined as a Volterra type integral

transformation of second kind of the form

w(x, t) = u(x, t) −
∫ x

0

k(x, y)u(y, t)dy, (1.4)

where u is the state of our original model, w is the state of our target model and

k is the backstepping kernel which is currently unknown. Our task here is to find

sufficient conditions on the backstepping kernel, so that, (1.4) maps our original

model to the proposed target model in Step (i) pointwise. Once sufficient conditions

on backstepping kernel are obtained and under those conditions its existence is

proved, (1.4) becomes a relation which relates states of these two models. Without

loss of generality, assuming that the control input acts through Dirichlet actuation,

one takes x = L on (1.4) and obtain an explicit representation for the feedback

control input of the form

g(t) =
∫ x

0

k(L, y)u(y, t)dy (1.5)

which acts to the model at x = L.
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(iii) To deduce stabilization to the equilibrium of u−model via the result for w−model,

one needs to obtain an inequality of the form ‖u‖X � ‖w‖X. This requires to prove

that the backstepping transformation is invertible with a bounded inverse on a suit-

able functional space.

In view of this three-step strategy, backstepping method is extended to stabilizing

equilibrium solutions to PDEs in early 2000’s. First extensions are done for various kind

of heat equations (see, e.g., (Bošković et. al., 2001), (Liu, 2003), (Smyshlyaev and

Krstic, 2004)). The method is applied to other evolutionary PDEs with second order

spatial derivatives such as linear Ginzburg-Landau equation (Aamo et. al., 2005), linear

Schrödinger equation (Krstic et. al., 2007), unstable wave equations (Smyshlyaev et. al.,

2010), (Smyshlyaev and Krstic, 2009), Fisher’s equation (Yu et. al., 2014). By 2010’s

it was successfully applied to several higher order evolutionary PDEs that include third

order dispersive terms, where a single control input acting from the one endpoint and two

homogeneous boundary conditions imposed at the other end. Some of them are various

kind of KdV equations (Cerpa and Coron, 2013), (Tang and Krstic, 2013), KdV-Burgers

equations (Özsarı and Arabacı, 2019), linear and nonlinear higher-order Schrödinger

equations (Batal et. al., 2021).

1.1.3. Observer based stabilizing controllers for PDEs

To design feedback type controllers, knowledge of the state at a certain moment

is essential. However, in reality, measurement across the domain may not be available

at any moment due to the physical nature of the problem. If this is the case, then con-

structing feedback type controllers become impossible. Nevertheless, measurement for

the dynamic variable at the boundaries may still be available, say detectable through sen-

sors placed at the boundaries. Utilizing from these partial measurements, one can derive

a state estimator, denoted by û that estimates to the original state u asymptotically. As

we detail in Section 1.3.2, derivation of û is achieved by constructing an abstract model,

called observer model, that assumes û as its state variable. Note that this observer model

also involves unknown functions, called observer gains. These are determined in such a

way that, û approaches to u asymtotically in time. As a summary, our task here consists

of two main steps:
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(i) Construction of an asymptotically convergent observer model: This is done by de-

riving suitable observer gains.

(ii) Stabilization of zero equilibrium of observer model: This is done by constructing

stabilizing boundary controllers.

Combination of these two steps, zero equilibrium to the original plant becomes stable un-

der the influence of the controllers, involving û and which is also used to control observer

model in Step (ii).

It is possible to design observers and observer based controllers for PDEs by ap-

plying the backstepping method separately to achieve the steps (i) and (ii), above. It

was applied to several second order evolutionary PDEs (e.g., (Krstic et. al., 2007),

(Smyshlyaev and Krstic, 2005)) and to third order evolutionary PDEs (e.g., (Batal et.

al., 2021), (Marx and Cerpa, 2018), (Tang and Krstic, 2015)).

1.2. Finite dimensional long time behaviour

Researches in long time behaviour infinite dimensional dissipative systems are

goes back to the pioneering work of (Foias and Prodi, 1967) on 2D Navier-Stokes equa-

tion. They proved that long time behaviour of solutions to 2D Navier-Stokes equations

are determined by their projections onto a finite dimensional subspace provided that the

dimension of the finite dimensional space is sufficiently large.

Definition 1.3 Let X be a Hilbert space and PN be a projection operator PN : X →
span {e1, . . . , eN} where e j is the j−th Fourier basis. Let u and v be two solutions of an

evolutionary PDE with different initial states, u0 and v0, respectively. Then, {e1, . . . , eN}
is said to be a set of determining modes, if

lim
t→∞ ‖PNu(·, t) − PNv(·, t)‖X = 0

implies the following asymptotic behaviour

lim
t→∞ ‖u(·, t) − v(·, t)‖X = 0.
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Here, the operator PN is called determining projection operator.

In the following years, researchers introduced different kind of determining parameters

such as determining nodes, determining volume elements and other kind of determining

interpolant operators, determining functionals (see, e.g., (Cockburn et. al., 1997), (Foias

and Temam, 1984), (Foias and Titi, 1991), (Jones and Titi, 1992a), (Jones and Titi,

1992b), (Jones and Titi, 1993)).

1.2.1. Determining operators as internal feedback controllers

The pioneering study for using determining operators as an internal feedback con-

trollers was performed by (Azouani and Titi, 2014). They studied global stabilization

of zero equilibrium to cubic reaction-diffusion equation posed on a finite interval. They

considered a finite rank interpolant operator based on the local spatial averages of the

form

INϕ =

N∑
k=1

ϕ̄kχJk , ϕ̄k =
1

|Jk|
∫

Jk

ϕ(x)dx,

as an internal feedback controller, where ∪N
k=1

Jk is a uniform disjoint partition of the spa-

tial domain. They proved that for sufficiently large value of N, zero equilibrium to the

associated closed-loop system becomes globally stable. Later, this idea is extended to

stabilize other kind of dissipative PDEs such as various kind of dissipative wave equa-

tions (Kalantarov and Titi, 2016), complex Ginzburg-Landau equation (Kalantarova and

Özsarı, 2017), original Burgers’ equations and Burgers’ equations with nonlocal non-

linearity (Gumus and Kalantarov, 2022), system of equations such as chevron pattern

equations (Kalantarova et. al., 2021). A numerical study that illustrates this strategy

for controlling various kind of dissipative PDEs such as Chafee-Infante equation and

Kuramoto-Sivashinsky is performed in (Lunasin and Titi, 2017).

Remark 1.1 Although it is out of the context of this thesis, we would like to note that the

notion of determining operators as internal feedback controllers also have applications

in other areas such as continuous data assimilation (see (Azouani et. al., 2014)) or in

construction of a determining form that is, roughly speaking, an ODE which embeds the

long time dynamics of an infinite dimensional dynamical system generated by a dissipative

PDE model (see (Foias et. al., 2012) for 2D Navier-Stokes equations, (Jolly et. al., 2015)
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for damped nonlinear Schrödinger equation, (Jolly et. al., 2017) for damped nonlinear

KdV equation).

1.2.2. A short literature on other type of finite dimensional

controllers

Our work on designing finite dimensional boundary controllers in Chapter 5 is

inspired by the theory that lies behind the long time behaviour of infinite dimensional

dissipative systems. However, we would also like to note that stabilizing equilibrium so-

lutions to nonlinear parabolic PDEs by finite dimensional controllers are not restricted by

the above literature. There are also some other pioneering works on 2D Navier-Stokes

equations performed by other techniques (see (Barbu and Triggiani, 2004), (Fursikov,

2001)). The results obtained in these works and the pioneering results on finite dimen-

sional asymptotic behavior of infinite-dimensional disspative systems that generate 2D

Navier-Stokes equations, nonlinear parabolic equations, nonlinear damped wave equa-

tions and related systems of PDEs (see, e.g., (Babin and Vishik, 1992), (Foias et. al.,

2001), (Ladyzhenskaya, 1991)) inspired further investigations on stabilization of 2D

Navier-Stokes equations, nonlinear parabolic equations and some damped wave equations

by internal and boundary finite-dimensional controllers (see (Chebotarev, 2010), (Liu et.

al., 2016), (Munteanu, 2017) and references therein). A number of papers are devoted

to the boundary stabilization of nonlinear parabolic equations by finite-dimensional con-

trollers ( (Barbu, 2013), (Munteanu, 2017), (Munteanu, 2019)). Another recent studies

proposed in (Katz and Fridman, 2021) and (Lhachemi and Prieur, 2022) for heat equa-

tion, which rely on homogenizing the boundary conditions by changing the variables to

transfer the boundary control action into the domain, and then decomposing the main

equation with respect to the Fourier modes. This process eventually corresponds to stabi-

lizing zero equilibrium to an ODE system.
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1.3. Statement ot the problems

In this section, we state our problems and describe our motivation lying behind

those problems.

1.3.1. Right endpoint feedback controller design for linear

higher-order Schrödinger equation

Physical motivation. The higher-order nonlinear Schrödinger equation was first pro-

posed in the studies (Kodama, 1985) and (Kodama and Hasegawa, 1987),s originally in

the form

iut +
1

2
uxx + |u|2u + εi

(
β1uxxx + β2(|u|2u)x + β3u|u|2x

)
= 0, (1.6)

which has been used to describe the evolution of femtosecond pulse propagation in a

nonlinear optical fiber. In this equation the first term represents the evolution, second term

is the group velocity dispersion, third term is self-phase modulation, fourth term is the

higher order linear dispersive term, fifth term is related to self-steepening and sixth term

is related to self-frequency shift due to the stimulated Raman scattering. In the absence of

the last three terms, the model becomes classical nonlinear Schrödinger equation which

describes slowly varying wave envelopes in a dispersive medium. It has applications in

several fields of physics such as plasma physics, solid-state physics, nonlinear optics. It

also describes the propagation of picosecond optical pulse in a mono-mode fiber (Xu et.

al., 2002). However, for the pulses in the femtosecond regime, the nonlinear Schrödinger

equation becomes inadequate and higher order nonlinear and dispersive terms become

crucial. See (Agrawaal, 2013) for a detailed discussion of the higher order effects upon

the propagation of an optical pulse.

From a practical point of view, stabilization of equilibrium may be necessary in

order to prevent any chaotic behaviour during the transmission and propagation of optical

pulses. Our study offers a practical solution to this issue because: (i) the stabilization

is fast, i.e. the absorption effect is exponential and (ii) the control acts only from the

boundary which is desirable when access to medium is limited.
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Mathematical motivation. A well-posed third order evolutionary problem posed on a

finite interval requires two boundary conditions imposed at one endpoint and one bound-

ary condition imposed at the opposite end. Classical backstepping strategy we described

in Section 1.1.2 works very well on third order evolutionary PDEs, if a single boundary

control acts to the system at one endpoint and two homogeneous boundary conditions are

imposed at the other end. Conversely, if a single homogeneous boundary condition is

imposed at one end and control input(s) acting from the opposite end, then the standard

backstepping strategy fails as we will detail this in Chapter 3. This issue was first ad-

dressed in (Cerpa and Coron, 2013) in the case of KdV equation as an open problem and

then treated by (Coron and Lü, 2014). They assumed Dirichlet type homogeneous bound-

ary conditions imposed to the problem at both end and considered a single Neumann type

boundary controller acting from the right endpoint. They proved rapid stabilization of the

zero equilibrium to the closed-loop system under the assumption that, length of the spatial

domain L, does not belong to the following countable set

⎧⎪⎪⎨⎪⎪⎩2π

√
k2 + kl + l2

3
: k, l ∈ Z+

⎫⎪⎪⎬⎪⎪⎭ . (1.7)

Note that this set, referred as set of critical length of intervals, has a particular importance

in the context of mathematical control theory. More precisely, in the absence of con-

troller(s) and if L is critical, then the linear model assumes a nontrivial time independent

solution. This means that not all solutions decay to zero and therefore zero equilibrium is

unstable. Moreover, it can be proved that the linear model with right endpoint controllers

is not exact controllable. That is, there exists an initial state u0 and a final state uT at a

fixed given T > 0 such that, no matter what the right endpoint control input is chosen,

S (T )u0 = uT does not hold (see (Lionel, 1997) for right endpoint Neumann controller

case and (Glass and Guerrero, 2010) for right endpoint Dirichlet controller case). Based

on this situation, it is an important task to study stabilization problem with right endpoint

controllers, in particular in the case of critical length of intervals. Later (Özsarı and Batal,

2019) treated the problem in the case of critical length of intervals and proved exponential

stabilization of zero equilibrium for some decay rate under the right endpoint controllers.
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Problem statement. Let us introduce the linear higher-order Schöringer equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut + iβuxxx + αuxx + iδux = 0, (x, t) ∈ (0, L) × (0,T ),

u(0, t) = u(L, t) = ux(L, t) = 0, t ∈ (0,T ),

u(x, 0) = u0(x), x ∈ (0, L),

(1.8)

where β > 0, α, δ ∈ R. The situation we explained in the case of linear KdV equation also

exists for the linear higher-order Schöringer equation. That is, there exists a set of length

of intervals, given by

N :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩2πβ

√
k2 + kl + l2

3βδ + α2
: k, l ∈ Z+

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (1.9)

for which, the model (1.8) may assume a nontrivial time independent solution (see (Ce-

ballos et. al., 2005), (da Silva and Vasconcellos, 2011)). (e.g.: Take β = 1, α = 2

and δ = 8 with k = 1 and l = 2, we obtain L = π ∈ N . Then the initial state

u0(x) = 3 − e4ix − 2e−2ix does not vary in time and become a time independent solution of

(1.8)). So, we are interested in constructing suitable feedback controllers h0(t) = h0(u(·, t))
and h1(t) = h1(u(·, t)) to make sure that zero equilibrium of the closed loop system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut + iβuxxx + αuxx + iδux = 0, (x, t) ∈ (0, L) × (0,T ),

u(0, t) = 0, u(L, t) = h0(t), ux(L, t) = h1(t), t ∈ (0,T ),

u(x, 0) = u0(x), x ∈ (0, L),

(1.10)

becomes globally exponentially stable on domains either L ∈ N or L � N . More pre-

cisely, we consider the problem below:

Problem 1.1 Given L > 0, construct right endpoint feedback control laws h0(t) = h0(u(·, t))
and h1(t) = h1(u(·, t)) such that, zero equilibrium of the closed-loop system (1.10) is expo-

nentially stable for some decay rate λ > 0.
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1.3.2. Observer based right endpoint controller design for linear

higher-order Schrödinger equation

In this problem, we consider the case where fully measurement on the state of

model (1.10) across the domain is not available. Therefore, constructing feedback type

controllers become impossible. However, we suppose that first and second order bound-

ary traces y1(t) = ux(0, t), y2(t) = uxx(0, t) are known, say detectable through boundary

sensors. In order to deal with the robustness of the state, we introduce an observer model,

which involves the observed boundary measurements as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iût + iβûxxx + αûxx + iδûx − p1(x)(y1(t) − ûx(0, t))

−p2(x)(y2(t) − ûxx(0, t)) = 0, (x, t) ∈ (0, L) × (0,T ),

û(0, t) = 0, û(L, t) = h0(t), ûx(L, t) = h1(t), t ∈ (0,T ),

û(x, 0) = û0(x), x ∈ (0, L).

(1.11)

In this model p1 and p2 are called observer gains, and they are currently unknown. They

are supposed to be obtained in such a way that û → u uniformly and exponentially as

t → ∞. Feedback controllers h0(t) = h0(û(·, t)), h1 = h1(û(·, t)) will be constructed in

such a way that zero equilibrium of the closed loop system (1.11) becomes exponentially

stable. Note that these controllers will also be applied to the original plant (1.10). These

are the steps (i) and (ii), we explained in Section 1.1.3. Combining these steps, we obtain

exponential stabilization of zero equilibrium to our original plant under the controllers

h0(t) = h0(û(·, t)), h1 = h1(û(·, t)).
Now applying the standard backstepping strategy to perform the steps (i) and (ii),

one ends up with similar issues that we mentioned above in Section 1.3.1, due to the

placement of the controllers. These will be detailed in Section 4.1. As in the case of

controller design problem, this issue was first addressed in the case of KdV equation and

then was solved by (Batal and Özsarı, 2019). So for the case of linear higher-order

Schrödinger equation, either L ∈ N or L � N , our aim is to design observer gains and

observer based controllers so that, zero equilibrium of original plant becomes globally

exponentially stable. More precisely, we are interested in the following problem.

14



Problem 1.2 Given L > 0, find observer gains p1, p2, and right endpoint control laws

h0(t) = h0(û(·, t)), h1(t) = h1(û(·, t)) that involve state of the observer model (1.11) such

that, zero equilibrium of the closed-loop system (1.10) is exponentially stable for some

decay rate λ > 0.

1.3.3. Finite-dimensional backstepping type controllers involving

determining operators

Motivation. Theory behind finite-dimensional long time behaviour of infinite dimen-

sional dissipative systems and studies on controlling long time behaviour of various type

of dissipative systems via finite-dimensional internal feedback controllers motivate us to

ask ourselves whether we can construct a stabilizing boundary controllers involving only

finitely many determining parameters. To this end, as a canonical example, we consider

the reaction-diffusion model with cubic nonlinearity

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − νuxx − αu + u3 = 0, (x, t) ∈ (0, L) × (0,T ),

u(0, t) = 0, u(L, t) = h(t), t ∈ (0,T ),

u(x, 0) = u0(x), x ∈ (0, L).

(1.12)

Here ν, α > 0 are given constant values. h(t) = h(u(·, t)) is a soughtafter feedback control

that acts through Dirichlet actuation at x = L and involves only finitely many Fourier sine

modes of u. In the absence of controller and for certain values of ν, α and L, zero equilib-

rium may be either asymptotically stable or unstable. To be more precise, if νλ1 − α ≤ 0,

where λ1 is the first eigenvalue to the Sturm-Liouville operator subject to the Dirichlet

type homogeneous boundary conditions, (1.12) has a unique equilibrium solution and it

is u ≡ 0. For this case, it is asymptotically stable. Conversely, if νλ1 − α < 0, then there

exist at least two nontrivial equilibrium solutions, exactly two of which are asymptotically

stable, and all solutions bifurcate from the zero equilibrium. Therefore u ≡ 0 is no more

stable.

Remark 1.2 Since our problem is to stabilize unstable zero equilibrium to the reaction
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diffusion model (1.13),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − νuxx − αu + u3 = 0, (x, t) ∈ (0, L) × (0,T ),

u(0, t) = u(L, t) = 0, t ∈ (0,T ),

u(x, 0) = u0(x), x ∈ (0, L),

(1.13)

we would like to state a few words on its asymptotic behaviour by refering to the related

literature. First, note that solutions of (1.13) neither blow up in a finite time nor grow up

to infinity as t → ∞, i.e., it converges to some equilibrium solution as t → ∞ (Matano,

1978). Therefore, to study on possible nontrivial equilibrium solutions, one can investi-

gate the following steady state problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−φ′′ − αφ + φ3 = 0, in (0, L),

φ(0) = φ(L) = 0.

(1.14)

For a given ν, α, L, proving existence of a nontrivial solution of (1.14) and finding the

number of them are based on applying phase-portrait ideas. It is proved in (Chafee and

Infante, 1974) that number of solutions of (1.14) are exactly related with the coefficients

ν, α and the eigenvalues of the operator − d2

dx2 subject to the homogeneous Dirichlet type

boundary conditions. (They actually studied the problem with a main equation −φ′′ −
λ f (φ) on (0, π), but the properties that they assume for f (φ) also holds for (αφ − φ3),

which makes our model is a particular case of their model.) More precisely, if

λn <
α

ν
≤ λn+1,

then it was proved that there are exactly (2n + 1) equilirium solutions where one of them

is the trivial one, two of them is asymptotically stable, and the others together with the

trivial one is unstable. In particular, (Sattinger, 1971) showed existence of stable ones,

denoted by φ+1 and φ−1 , by a constructive method so called monotone methods. It is based

on the concept of upper and lower solutions, and comparison theorems for elliptic and
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parabolic PDEs. Briefly speaking, suppose that ϕ and ψ are lower and upper solutions

to steady state model, respectively, and introduce a specially constructed monotone, com-

pact operator T . Consider sequences {T mϕ}∞m=1 and {T mψ}∞m=1, constructed by applying

iteratively T to φ and ψ, respectively. Then he proved if T nϕ ↗ φ and T nψ ↘ φ, then

the limiting function φ is an equilibrium solution and is asymptotically stable for time

dependent problem. One can apply this idea to (1.13) together with (1.14) and conclude

that a sequence initialized by any positive upper solution no matter how close it is to

zero equilibrium and a sequence initialized by any positive lower solution no matter how

large it is, converge to same function, that is φ+1 . Asymptotic stability of φ−1 can be also

characterized in an analogous way. Note that from this analysis, one also reveals that

zero equilibrium is unstable. For a more detailed discussion on this subject we refer the

reader to (Hale, 1998), (Henry, 1981), (Robinson, 2001), in particular for compari-

son theorems and monotone methods (Protter and Weinberger, 1984), (Sattinger, 1973),

(Smoller, 1994).

Problem statement. Based on the above discussion, our aim is to construct a feedback

law of the form

h(t) = h(PNu(·, t)) =
∫ L

0

ξ(y)Γ[PNu](y, t)dy,

with Dirichlet actuation at x = L such that, all solutions are steered asymptotically to

zero. Here, Γ is a linear bounded operator on a certain L2−based functional space, ξ is a

suitable smooth function to be constructed, and PN is the projection operator

PNϕ(x) =

N∑
j=1

e j(x)
(
e j(·), ϕ(·)

)
2
, e j(x) =

√
2

L
sin

( jπx
L

)
.

More precisely, we want to solve the following problem:

Problem 1.3 Let ν, α > 0 be such that νλ1−α < 0. For a given γ > 0, can you find N > 0

and construct a feedback control law h(t) = h(PNu(·, t)) acting from the boundary that

uses only the first N Fourier sine modes of u such that the zero equilibrium to the closed

loop system (1.12) becomes exponentially stable with a prescribed decay rate γ?

Note that the above question, called the rapid stabilization problem, asks if all

solutions decays to zero equilibrium with a prescribed decay rate. Another interesting
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problem is to determine the minimal number of Fourier sine modes of u to gain expo-

nential stabilization of zero equilibrium for some unprescribed and not necessarily large

decay rate. More precisely, we also want to solve the following problem:

Problem 1.4 Let ν, α > 0 be such that νλ1 − α < 0. What is the minimum value of N for

which, zero equilibrium to the closed loop system (1.12) becomes exponentially stable for

some decay rate γ > 0 when the boundary feedback is of the form h(t) = h(PNu(·, t))?

We would like to emphasize that the reaction-diffusion model serves a only a

canonical example but our strategy can be applied to various kind of dissipative PDEs for

stabilizing their zero equilibrium.

1.4. Thesis layout

This thesis consists of six chapters including this chapter. The layout starting from

Chapter 2 is as follows.

In Chapter 2, we give some definitions, introduce some tools, theorems, lemmas

and well-known inequalities that we utilize throughout the thesis.

In Chapter 3, we focus on the controller design problem that we stated by Prob-

lem 1.1. First in Section 3.1, we explain how the standard backstepping strategy works

on an example with a left endpoint controller and detail why it fails in the case of right

endpoint controllers. Then we introduce how we modifty the method. Next, in Section

3.2, we study the stabilization problem in this order: (i) we prove existence of a smooth

backstepping kernel, (ii) we prove exponential decay of solutions to target model, namely

w−model, (iii) we state invertibility of the backstepping transformation. These eventually

yields a positive answer to the Problem 1.1. Note that modification of the backstepping

strategy we introduced in Section 3.1 yields several difficulties from well-posedness point

of view, which is the subject of Section 3.3. Local and global well-posedness require

to obtain some time-space regularity estimate, which also requires to reveal smoothing

properties for associated Cauchy problems and an initial-boundary value problem with

inhomogeneous boundary conditions. A detailed and delicate analysis for these problems

will be carried out via transform methods by applying Fourier transform and Laplace

transform, respectively. Once we derive the global well-posedness result, we summarize
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our well-posedness and stabilization results in Theorem 3.1 at the end of Section Section

3.3. Finally in Section 3.4, we provide a numerical algorithm and present a numerical

experiment that verifies our theoretical decay result.

In Chapter 4, we focus on the observer design problem that we state in Prob-

lem 1.2. Topics in this chapter will be in the same order as in the Chapter 3. However,

stabilization and well-posedness analysis is now carried out through observer model and

so called error model, which is formed by defining its state ũ := u− û and subtracting the

observer model from the original plant. In Section 4.1, we detail our strategy as well as

we obtain candidates for the observer gains p1, p2. In Section 4.2 we prove that for such

observer gains, state of the observer model indeed converges to the state of the original

model exponentially, by proving that ũ(·, t) → 0 uniformly and exponentially in time.

We also construct boundary controllers that stabilizies zero equilibrium to the observer

model. Both analyses are carried out by the backstepping strategy that is the modified

one in the sense that we introduced in Chapter 3. These two results imply stabilization of

the zero equilibrium to the original plant along with the same controllers. Well-posedness

analysis of plant-observer-error system is carried out in Section 4.3. Then, at the end of

the same section, we state our main result of Chapter 4 in Theorem 4.1. Finally, in Sec-

tion 4.4, we provide our numerical algorithm together with an experiment verifying our

theoretical decay result.

Chapter 5 is devoted to the Problem 1.3 and Problem 1.4. We introduce a finite

dimensional version of a backstepping controller design that involves determining pro-

jection operator. That is, now the designed controller involves only finitely many Fourier

sine modes of the state rather that full state. First, we introduce our target model as well

as the backstepping transformation in a novel way for our purposes, and then describe our

motivation behind these choices. Then in Section 5.1, we precisely calculate the sufficient

number of Fourier modes so that, unstable zero equilibrium to the both linear and non-

linear problem becomes stable with a prescribed exponential decay rate. In particular, in

Section 5.1.3, we precisely show that the minimal number of Fourier modes to gain sta-

bilization of zero equilibrium is exactly equal to the instability level of the problem, i.e.,

the number of the unstable Fourier modes. Section 5.2 is devoted to the well-posedness

of the linear and nonlinear models. Finally, in Section 5.3, we present various kind of

numerical simulations for linear and nonlinear models, verifying our theoretical results
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for both Problem 1.3 and Problem 1.4.

In Chapter 6, we state our concluding remarks, some drawbacks regarding the

strategies we performed and state some problems that we are willing to study in the fu-

ture.
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CHAPTER 2

PRELIMINARIES

In this part, we present some definitions, useful inequalities and lemmas that we

utilize throughout the thesis.

As an essential tool for proving existence and uniqueness of the solutions of a

differential system, we briefly present the operator semigroup theory.

Definition 2.1 (C0 semigroup) Let X be a Banach space. A one parameter family S (t),

0 ≤ t < ∞, of bounded linear operators from X into X is a strongly continuous semigroup

of bounded linear operators on X if

(i) S (0) = I,

(ii) S (t + τ) = S (t)S (τ) for every t, τ ≥ 0,

and

(iii) limt↘0 S (t)u = u, for every u ∈ X.

Definition 2.2 (Infinitesimal generator of the C0 semigroup) The infinitesimal genera-

tor A of a C0 semigroup is a linear operator defined by

Au := lim
t↘0

S (t)u − u
t

, (2.1)

with domain D(A), that consists of all u ∈ X for which the limit (2.1) exists.

A characterization of the existence of an intinitesimal generator A, of a C0 semi-

group is due to following lemma which is a corollary of Lumer-Phillips Theorem (see

Theorem 4.3 and Corollary 4.4 of Chapter 1 in (Pazy, 1983)).

Lemma 2.1 ( (Pazy, 1983)) Let A be a densely defined closed linear operator. If both A

and its adjoint A∗ with domain D(A∗) are dissipative, then A is the infinitesimal generator

of a C0 semigroup of contractions on X.
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Lemma 2.1 has a particular importance on proving existence of a unique classical

solution to the following abstract Cauchy problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u′ = Au, t > 0,

u(0) = φ.

(2.2)

That is, u : [0,∞) → X is a classical solution of (2.2), if for every for every φ ∈ D(A), u

is continuous on [0,∞), differentiable on (0,∞), u(t) := S (t)u0 ∈ D(A) for each t > 0 and

u satisfies (2.2).

Remark 2.1 Due to the physical nature of the problem, in general φ ∈ D(A) may not be

true. If this is the case, then one may need to define a solution in a general setting, i.e., in

a more general space. One way to define such solutions is as follows: Let φ ∈ X and I be

the index set. Provided that D(A) is dense in X, let {φn}n∈I ⊂ D(A) be a sequence such that

φn → φ with respect to the metric induced by the norm ‖ · ‖X. In particular, for each initial

state φn, continuous dependence result of a solution can be obtained (e.g., by multipliers)

as

sup
0≤t<∞
‖S (t)φn‖X � ‖φn‖X. (2.3)

Set un(t) := S (t)φn for each t ≥ 0. To show that {un} converges in C([0,∞); X), it is enough

to show that {un} is Cauchy in C([0,∞); X). This follows from the inequality (2.3). Denote

the limiting function as u.

Definition 2.3 The function u ∈ C([0,∞); X), constructed as in Remark 2.1 with repre-

sentation u(t) := S (t)φ, is called mild solution.

Such type of solutions given in Definition 2.3 solve (2.2) in the sense of distribu-

tions.

Regarding the problem with an interior homogeneous source, say F(u),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u′ = Au + F(u), t > 0,

u(0) = 0.

(2.4)

which can be either linear or nonlinear in u, one can apply Duhamel’s principle and obtain
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the following relation for the associated mild solution:

u(t) =
∫ t

0

S (t − τ)F(u(τ))dτ. (2.5)

Note that this relation involves u implicitly. Therefore, proving existence of a function

that satisfies the relation (2.5) is equivalent to prove existence of possible fixed points of

the operator

Ψ[ϕ] :=

∫ t

0

S (t − τ)F(ϕ(τ))dτ.

A characterization for a unique fixed point of operator Ψ is given by the Banach fixed

point theorem (see Theorem 1 of Section 9.2 in (Evans, 1998)).

Theorem 2.1 (Banach fixed point theorem) Let X be a Banach space and u, v ∈ X. As-

sume Ψ : X → X is a nonlinear mapping and suppose that

‖Ψ[u] − Ψ[v]‖X ≤ γ‖u − v‖X

for some constant 0 < γ < 1, that is Ψ is a strict contraction. Then Ψ has a unique fixed

point.

Throughout well-posedness analyses in each chapter, contraction property of an

operator that appears via the Duhamel’s principle can be achieved only for sufficiently

small values of t. In other words, application of Therem 2.1 provides existence of a

unique mild solution for an associated PDE model only up to a some fixed temporal

value, say Tmax called maximal time of existence. Such solutions are refered as local (in

time) solutions. To extend a local solutions globally, one can apply energy estimates and

multipliers to deduce that ‖u‖X remains finite as t → T−max for any Tmax.

Operator theoretic tools such as operator semigroup theory may become inade-

quate to reveal some further properties (e.g., smoothing properties as we require in Section

3.3.1) of the solution. Therefore, in some cases, one may need to consult transform meth-

ods which yields a more useful solution representation formula for an associated PDE

model. One of them is the Fourier transform, in particular a useful tool for analyzing

Cauchy problems.
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Definition 2.4 (Fourier transform) The Fourier transform F : L1(R) → L∞(R) of a

function f ∈ L1(R) is defined by

(F f )(ξ) :=

∫
R

f (x)e−iξxdx. (2.6)

Remark 2.2 Throughout the thesis, mostly we will deal with L2−functions defined on a

finite interval. Therefore, to be able to apply the Fourier transform (2.6) while performing

the well-posedness analysis, the first thing to do is to extend their domains to R provided

that the extended function is still square integrable. This can be done for instance by con-

sidering a zero extension. Since an L2−function on a finite interval is already integrable,

the extended function belongs to L1(R) ∩ L2(R) and Definition 2.4 is applicable.

A key tool that we utilize while performing well-posedness analyses is Plancherel’s

identity, which also provides that if f ∈ L1(R)∩L2(R), then (F f ) ∈ L2(R) and the Fourier

transform defined on the space L1(R) ∩ L2(R) is a linear isometry into L2(R) up to a mul-

tiplicative constant.

Theorem 2.2 (Plancherel’s identity) Assume f ∈ L1(R) ∩ L2(R). Then (F f ) ∈ L2(R)

and ∫
R

| f (x)|2 dx =
1

2π

∫
R

|(F f )(ξ)|2 dξ. (2.7)

Obtaining a solution representation via the Fourier transform requires to recover

the function f from its Fourier transform (F f ). If f , (F f ) ∈ L1(R), then it can be done

by the following inversion formula

f (x) =
1

2π

∫
R

eixξ(F f )(ξ)dξ. (2.8)

Remark 2.3 In view of Definition 2.4 and Theorem 2.2, we do not know whether (F f )

is integrable or not. Therefore, for a given (F f ), it may not be possible to recover f ∈
L1(R) ∩ L2(R) by using the inversion formula (2.8). To remedy this situation, note that it

is possible to define the Fourier transform of an L2−function which does not necessarily

belong to L1(R). Indeed, since L1(R) ∩ L2(R) is dense in L2(R) and once proving that

the space
{
F f | f ∈ L1(R) ∩ L2(R)

}
is also dense in L2(R), one can show by using density
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arguments and completeness of L2−space that the isometry of L1(R) ∩ L2(R) into L2(R)

can be uniquely extended to an isometry of L2(R) onto L2(R). That is, there exists a unique

surjective continuous linear operator F ∗ from L2(R) onto itself such that, (F ∗ f ) = (F f )

for f ∈ L1(R) ∩ L2(R) and (2.7) holds for f ∈ L2(R) (see Theorem 9.3 in (Rudin, 1987)

for details). Moreover, one can prove that

∥∥∥∥∥∥
∫ γ

−γ
e−iξx f (x)dx − (F ∗ f )

∥∥∥∥∥∥
L2(R)

→ 0,

∥∥∥∥∥∥
∫ γ

−γ
eiξx(F ∗ f )(ξ)dξ − f

∥∥∥∥∥∥
L2(R)

→ 0

as γ → ∞. In view of this setting, one can recover f ∈ L2(R) for a given (F ∗ f ) ∈ L2(R).

Throughout the thesis, we abuse the notation and use ˆ(·) for the Fourier transform

for a general L2−function while we use the representation given in Definition 2.4.

L2−based Sobolev spaces of an integer order m, are induced by the norm

‖ϕ‖Hm(R) :=

⎛⎜⎜⎜⎜⎜⎝ m∑
k=1

‖ϕ(k)‖L2(R)

⎞⎟⎟⎟⎟⎟⎠
1
2

,

where ϕ is a measurable function and (·)(k) denotes the k−th weak derivative. An equiva-

lent representation for this norm can be characterized by virtue of the Fourier transform

in the following way

‖ϕ‖Hm(R) =

(∫
R

(1 + ξ2)m|ϕ̂(ξ)|2dξ
) 1

2

.

This characterization allows us to define Sobolev spaces in any order, m ≥ 0.

In Section 3.3.1 and Section 4.3.1, we will perform well-posedness analysis for

initial-boundary value problems posed on a finite interval with inhomogeneous boundary

condition(s). However, representation formula for a solution obtained by the finite interval

version of the Fourier transform

f̂ (ξ) :=
1

2π

∫ L

0

f (x)e−iξxdx (2.9)

may not be uniformly convergent at the boundary of the spatial domain, i.e., does not be-

come a representation formula for solution. Therefore, in this case, instead of the Fourier
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transform, we obtain a solution representation via the Laplace transform in the variable

t and the associated well-posedness analysis will be carried out by using that representa-

tion.

Definition 2.5 (Laplace transformation) Laplace transformation of a function f is de-

fined by

f̃ (s) :=

∫ ∞

0

e−st f (t)dt. (2.10)

If it is known that the Laplace integral converges for some s0, then s can be chosen in

the right half plane Re(s) > Re(s0), called domain of absolute convergence, and corre-

sponding Laplace transform f̃ (s) becomes bounded in that half plane (see Theorem 3.1

and Theorem 3.2 in (Doetsch, 1974)).

For a given f̃ , f can be recovered by the inverse of the Laplace transformation

uniquely up to a measure zero.

Definition 2.6 (Inverse Laplace transformation) The inverse Laplace transformation of

f̃ is given by the Bromwich integral

f (t) =
1

2πi

∫ r+i∞

r−i∞
est f̃ (s)ds, (2.11)

where r is a real value so that the vertical path (r − i∞, r + i∞) lies in the domain of

absolute convergence.

Throughout well-posedness analysis, we sometimes require that initial and bound-

ary conditions are compatible in the following sense.

Definition 2.7 (Compatibility) Let φ ∈ H3(0, L), ψ ∈ H1(0,T ). We say that the couple

(φ, ψ) satisfies compatibility conditions, if

φ(0) = 0, φ(L) = 0, φ′(L) = ψ(0). (2.12)

Sometimes we require higher compatibility in the following sense.

Definition 2.8 (Higher compatibility) Let φ ∈ H6(0, L), ψ ∈ H2(0,T ). We say that the
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couple (φ, ψ) satisfies higher compatibility conditions, if it satisfies compatibility condi-

tions (2.12) and, also satisfies

(−βw̃′′′0 + iαw̃′′0 − δw̃′0 − rw̃0)(x) = 0, x = 0, L, (2.13)

and

(−βw̃′′′0 + iαw̃′′0 − δw̃′0 − rw̃0)′(L) = ψ′(0). (2.14)

Following inequalities and theorems will be useful while carrying out the energy

estimates and deriving uniform bounds.

Theorem 2.3 (Lebesgue Dominated Convergence Theorem) Let { fn}n∈I be a sequence

of measurable functions on R such that fn → f pointwise almost everywhere. If there

exists a function g ∈ L1(R) such that | fn| ≤ |g| holds for all n ∈ I, then f ∈ L1(R) and

limn→∞
∫
R

fn(x)dx =
∫
R

f (x)dx.

Cauchy-Schwarz inequality: For all u, v ∈ L2(0, L),

∣∣∣∣∣∣
∫ L

0

u(x)v(x)dx

∣∣∣∣∣∣ ≤ ‖u‖L2(0,L)‖v‖L2(0,L).

Young’s inequality with ε: For each a, b > 0 and ε > 0,

ab ≤ εap

p
+

bq

εp/qq
,

where p, q > 0 be such that 1
p +

1
q = 1. In particular, if p = q = 2, then the corresponding

inequality is referred as Cauchy’s inequality with ε.

Poincaré inequality: For all u ∈
{
ϕ ∈ H1(0, L) |ϕ(0) = ϕ(L) = 0 or

∫ L

0
ϕ(x)dx = 0

}
,

‖u‖2L2(0,L)
≤ λ−1

1 ‖u′‖2L2(0,L)
.
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Poincaré type inequality: For all u ∈ H1
0(0, L),

‖u − PNu‖2L2(0,L)
≤ λ−1

N+1‖u′‖2L2(0,L)
, λN+1 = (N + 1)2λ1.

Gagliardo-Nirenberg inequality: Let u ∈ H1
0(0, L), p ≥ 2, α = 1

2
− 1

p . Then

‖u‖Lp(0,L) ≤ c‖u′‖α‖u‖1−α,

where c > 0 depends on p, α and L.

Gronwall’s inequality: Let u(t) and α(t) be nonnegative continuous functions for t ≥ 0

that satisfy the inegral inequality

u(t) ≤ C +
∫ t

0

α(τ)u(τ)dτ, ∀t ≥ 0,

where C ≥ 0. Then

u(t) ≤ Ce
∫ t

0
α(τ)dτ, ∀t ≥ 0.
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CHAPTER 3

CONTROLLER DESIGN FOR HIGHER-ORDER

SCHRÖDINGER EQUATION

In this chapter, our purpose is to design feedback type boundary controllers h0, h1

for the linear higher-order Schrödinger equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut + iβuxxx + αuxx + iδux = 0, (x, t) ∈ (0, L) × (0,T ),

u(0, t) = 0, u(L, t) = h0(t), ux(L, t) = h1(t), t ∈ (0,T ),

u(x, 0) = u0(x), x ∈ (0, L),

(3.1)

which are placed at the right endpoint of the spatial interval. The designed controllers

ensure that the zero equilibrium of the closed-loop system (3.1) become globally expo-

nentially stable either in the case of critical or noncritical length of intervals. As we

detailed in Section 1.3.1, location of the controller(s) has importance on application of

backstepping method to higer-order Schrödinger equation. So in Section 3.1, we explain

how the situation differs from mathematical point of view, if we place the controller(s) at

different endpoints. In Section 3.2 we show stabilization of zero equilibrium under the

designed right endpoint controllers h0, h1, and in Section 3.3 we prove that the closed-loop

system (3.1) under the influence of these controllers, is well-posed in the Hadamard sense.

Finally, in Section 3.4, we present a numerical experiment which verifies our theoretical

results.

The results in this chapter were published in a part of our study (Özsarı and

Yılmaz, 2022).
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3.1. Backstepping method

Three step strategy of backstepping method we described in Section 1.1.2 works

well for third order evolutionary equations, if a single boundary feedback control is lo-

cated at one endpoint of the interval and number of homogeneous boundary conditions

located at opposite endpoint are two. Conversely, if there is a single homogeneous bound-

ary condition imposed at one endpoint and control input(s) acting from the other end, the

situation becomes different from the mathematical point of view as we explain below in

Section 3.1.1 and Section 3.1.2. Without loss of generality, in the first situation control

input acting to the system at left end so we name this case as left endpoint controller,

whereas the latter case is called right endpoint controller(s).

3.1.1. Left endpoint controller design

Let us first consider the case with a single feedback control input g0, acting to the

system through Dirichlet actuation at x = 0 and two boundary conditions imposed at the

other end are homogeneous. To this end, consider the closed-loop system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut + iβuxxx + αuxx + iδux = 0, (x, t) ∈ (0, L) × (0,T ),

u(0, t) = g0(t), u(L, t) = ux(L, t) = 0, t ∈ (0,T ),

u(x, 0) = u0(x), x ∈ (0, L),

(3.2)

and apply the three step backstepping strategy we described in Section 1.1.2.

(i) Consider the so called target model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iwt + iβwxxx + αwxx + iδwx + irw = 0, (x, t) ∈ (0, L) × (0,T ),

w(0, t) = w(L, t) = wx(L, t) = 0, t ∈ (0,T ),

w(x, 0) = w0(x), x ∈ (0, L),

(3.3)

where w0 will be specified below. Observe that the main equation of (3.3) in-
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volves a weakly damping term irw, with r > 0, and the boundary conditions are

homogeneous. Applying multipliers, it is a straightforward task to show that for

w0 ∈ L2(0, L), then solution w of (3.3) satisfies the following decay estimate

‖w(·, t)‖L2(0,L) ≤ e−rt‖w0‖L2(0,L), t ≥ 0. (3.4)

In other words, the zero equilibrium of (3.3) is globally exponentially stable.

(ii) Now consider the backstepping transformation

w(x, t) = u(x, t) −
∫ L

x
k(x, y)u(y, t)dy, x ∈ [0, L]. (3.5)

After some calculations, one can show that if k satisfies the following boundary

value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β
(
kxxx + kyyy

)
− iα

(
kxx − kyy

)
+ δ

(
kx + ky

)
+ rk = 0,

k(x, x) = k(x, L) = 0,

kx(x, x) = r
3β

(L − x),

(3.6)

posed on the triangular region {(x, y) ∈ R2 | x ∈ (0, L), y ∈ (x, L)}, then the transfor-

mation (3.5) maps the plant (3.2) successfully to the target model (3.3), and intial

state of (3.3) is given by

w0(x) := u0(x) −
∫ x

0

k(x, y)u0(y)dy.

Existence of a smooth backstepping kernel k can be established by analyzing the

model (3.6). Moreover, since w(0, t) = 0, we take x = 0 on (3.5) see that control

input is of the form

g0(t) =
∫ L

0

k(L, y)u(y, t)dy. (3.7)

(iii) Finally, one can also prove that the backstepping transformation is invertible on
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L2(0, L) → L2(0, L) with a bounded inverse. This implies existence of a constant

ck > 0 depends on k such that, ‖u(·, t)‖L2(0,L) ≤ ck‖w(·, t)‖L2(0,L). Combining this with

(3.4), one concludes that zero equilibrium of (3.2) is globally exponentially stable

along with the controller (3.7). Moreover, since r > 0 is arbitrary, decay rate of

solutions to zero equilibrium can be made as rapid as desired.

See Figure 3.1 for a graphical illustration of backstepping method.

Linear Plant

State variable u(x, t)

Target

State variable w(x, t)

w(x, t) = u(x, t) − ∫ L

x
k(x, y)u(y, t)dy

Inverse transformation

Figure 3.1. Classical backstepping scheme for controller design.

The backstepping strategy we summerized above works successfully on designing

a left endpoint boundary controller that globally stabilizes zero equilibrium. Details and

related results are published in our study (Batal et. al., 2021). However, if we locate

the control inputs at the right endpoint and consider the same target model (3.3), then the

above approach fails in the second stage as we detail below.

3.1.2. Issues with right endpoint controllers

Let us recall the plant under the influence of right endpoint controllers:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut + iβuxxx + αuxx + iδux = 0, (x, t) ∈ (0, L) × (0,T ),

u(0, t) = 0, u(L, t) = h0(t), ux(L, t) = h1(t), t ∈ (0,T ),

u(x, 0) = u0(x), x ∈ (0, L).

(3.8)

32



Consider the same target model we introduced in (3.3) and consider also the backstepping

transformation

w(x, t) = u(x, t) −
∫ x

0

k(x, y)u(y, t)dy, x ∈ [0, L]. (3.9)

We find that if k satisfies the following boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(kxxx + kyyy) − iα(kxx − kyy) + δ(kx + ky) + rk = 0, (x, y) ∈ Δx,y,

k(x, x) = ky(x, 0) = k(x, 0) = 0, x ∈ [0, L],

kx(x, x) = rx
3β
, x ∈ [0, L],

(3.10)

where Δx,y :=
{
(x, y) ∈ R2 | y ∈ (0, x), x ∈ (0, L)

}
, then the backstepping transformation

(3.9) maps the plant (3.8) to target model (3.3) (see Appendix A.1 for detailed calcula-

tions). To solve (3.10), we change variables as x̄ = x−y, ȳ = y, and write G(x̄, ȳ) = k(x, y).

Then (3.10) transforms into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(3Gx̄x̄ȳ − 3Gx̄ȳȳ +Gȳȳȳ) + iα(Gȳȳ − 2Gx̄ȳ) + δGȳ + rG = 0, (x̄, ȳ) ∈ Δx̄,ȳ,

G(0, ȳ) = Gȳ(x̄, 0) = G(x̄, 0) = 0, x̄ ∈ [0, L],

Gx̄(0, ȳ) =
rȳ
3β
, x̄ ∈ [0, L],

(3.11)

where Δx̄,ȳ :=
{
(x̄, ȳ) ∈ R2 | ȳ ∈ (0, L − x̄), x̄ ∈ (0, L)

}
. Figure 3.2 shows the transformation

of the triangular region Δx,y onto Δx̄,ȳ.

Note that the boundary value problem (3.11) is overdetermined due to the mis-

match between the boundary conditions Gȳ(x̄, 0) = 0 and Gx̄(0, ȳ) =
rȳ
3β

in the sense that

second order mixed derivatives are not compatible:

Gȳx̄(0, 0) = 0, Gx̄ȳ(0, 0) =
r

3β
. (3.12)

This mismatch implies that the boundary value problem (3.11) cannot have a smooth so-
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y

x
L

L

Triangular region Δx,y

x̄ = x − y
ȳ = y

ȳ

x̄
L

L

Triangular region Δx̄,ȳ

Figure 3.2. Triangular regions.

lution. This is crucial since it allows us to go forward and backward between the original

plant and the target model pointwise. Therefore, lack of the smooth solution prevents us

to apply the standard backstepping strategy with right endpoint controllers.

In the next section, we show how we modify the backstepping method so as to

remedy this issue.

3.1.3. Modification of backstepping kernel model and the target

model

Our strategy relies on correcting the imperfect backstepping kernel model (3.11)

in such a way that, the boundary conditions of the corrected version are no more incompat-

ible at the origin of x̄ȳ−plane. Thus, one guarantees existence of a smooth backstepping

kernel.

Observe that if r > 0 is sufficiently small, then the mismatch in (3.12) is also small.

So provided that r > 0 is sufficiently small and dropping one of the boundary conditions

that causes the mismatch, one can hope that solution of the updated backstepping kernel

model will yield a good enough kernel for our purposes. To this end, we disregard the

34



boundary condition Gȳ(x̄, 0) = 0 from (3.11) and introduce the corrected version as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(3G∗x̄x̄ȳ − 3G∗ȳȳx̄ +G∗ȳȳȳ) + iα(G∗ȳȳ − 2G∗ȳx̄) + δG
∗
ȳ + rG∗ = 0, (x, y) ∈ Δx̄,ȳ,

G∗(0, ȳ) = G∗(x̄, 0) = 0, x ∈ [0, L],

G∗x̄(0, ȳ) =
rȳ
3β
, x ∈ [0, L].

(3.13)

Setting k∗(x, y) = G∗(x̄, ȳ), we deduce that k∗ is the sought after solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(k∗xxx + k∗yyy) − iα(k∗xx − k∗yy) + δ(k
∗
x + k∗y) + rk∗ = 0, (x, y) ∈ Δx,y,

k∗(x, x) = k∗(x, 0) = 0, x ∈ [0, L],

k∗x(x, x) = rx
3β
, x ∈ [0, L].

(3.14)

Based on the above discussion, we use the following backstepping transformation

w∗(x, t) = u(x, t) −
∫ x

0

k∗(x, y)u(y, t)dy, (3.15)

with a kernel function k∗ that solves (3.14). Here w∗ denotes the state of the associated

modified target model due to the modification of backstepping kernel model. Indeed

throughout the calculations in (A.5), disregarding the condition yields and extra term

iβky(x, 0)ux(0, t), which is now involved in the main equation of the associated target

model. Note that differentiating both sides of (3.15) with respect to x, evaluating it at

x = 0 and using the boundary condition k∗(x, x) = 0, one can see that ux(0, t) = w∗x(0, t).

Therefore the main equation of the modified target model involves an additional trace

term iβk∗y(x, 0)w∗x(0, t) on its right hand side as we give below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iw∗t + iβw∗xxx + αw∗xx + iδw∗x + irw∗ = iβk∗y(x, 0)w∗x(0, t), (x, t) ∈ (0, L) × (0,T ),

w∗(0, t) = w∗(L, t) = w∗x(L, t) = 0, t ∈ (0,T ),

w∗(x, 0) = w∗0(x) := u0(x) − ∫ x

0
k∗(x, y)u0(y)dy, x ∈ (0, L).

(3.16)
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Graphical illustration of the updated backstepping scheme is given in Figure 3.3.

Linear Plant

State variable u(x, t)

Modified target

with a trace term

State variable w∗(x, t)

w∗(x, t) = u(x, t) − ∫ x

0
k∗(x, y)u(y, t)dy

Inverse transformation

Figure 3.3. Modified backstepping scheme for controller design.

Based on the above strategy, feedback controllers take the following forms:

h0(t) =
∫ L

0

k∗(L, y)u(y, t)dy, h1(t) =
∫ L

0

k∗x(L, y)u(y, t)dy. (3.17)

As we will see in Section 3.2, in the presence of these controllers, trivial equilibrium of

the closed-loop system (3.8) becomes globally exponentially stable. The drawback here

is that one loses rapid stabilization in comparison with the problem using a left endpoint

controller.

Throughout the following sections, for the sake of easy readability of the text,

we drop the superscript notation (·)∗ and simply write k,w but refering to their modified

versions.

3.2. Exponential stabilization of zero equilibrium

Stabilization of the zero equilibrium to the plant (3.8) consists of three steps. First,

we prove existence of a smooth backstepping kernel which is the subject of Section 3.2.1.

Smoothness of the backstepping kernel also implies that, for a given u0 ∈ L2(0, L), asso-

ciated initial state w0 of the modified target model (3.16), defined by

w0(x) := u0(x) +

∫ x

0

k(x, y)w0(y)dy,
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is also in L2(0, L). So, in Section 3.2.2, we prove that if w0 ∈ L2(0, L), then the cor-

responding solution of the target model (3.16) decays exponentially to zero equilibrium

with respect to L2−metric. As a next and final step in Section 3.2.3, we state that the

backstepping transformation is invertible with a bounded inverse on H�(0, L)→ H�(0, L),

� ≥ 0.

3.2.1. Existence of a smooth backstepping kernel

Let us rewrite the main equation of (3.13) as

Gx̄x̄ȳ = DG :=
1

3β

[
β(3Gȳȳx̄ −Gȳȳȳ) − iα(Gȳȳ − 2Gȳx̄) − δGȳ − rG

]
. (3.18)

Integrating (3.18) in the first variable and using boundary condition Gx̄(0, ȳ) =
rȳ
3β

, we

obtain

Gx̄ȳ(x̄, ȳ) =
r

3β
+

∫ x̄

0

[DG](ξ, ȳ)dξ.

Integrating once again in the first variable and using boundary condition G(0, ȳ) = 0 we

get

Gȳ(x̄, ȳ) =
rx̄
3β
+

∫ x̄

0

∫ ω

0

[DG](ξ, t)dξdω.

Finally, integrating in the second variable and using boundary condition G(s, 0) = 0, we

obtain that G solves

G(x̄, ȳ) =
rx̄ȳ
3β
+

∫ ȳ

0

∫ x̄

0

∫ ω

0

[DG](ξ, η)dξdωdη. (3.19)

Thus, solution of the boundary value problem (3.13) can be constructed by applying a

successive approximation method to the integral equation (3.19).

Lemma 3.1 There exists a C∞−function G such that G solves the integral equation (3.19).

Proof Let P be defined by

(P f )(x̄, ȳ) :=

∫ ȳ

0

∫ x̄

0

∫ ω

0

[D f ](ξ, η)dξdωdη. (3.20)
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Then we express (3.19) as

G(x̄, ȳ) =
r

3β
x̄ȳ + PG(x̄, ȳ). (3.21)

Define G0 ≡ 0, G1(x̄, ȳ) = − r
3β

x̄ȳ and Gn+1 = G1 + PGn, n ∈ Z+. Then we have

Gn+1 −Gn = P(Gn −Gn−1), n ∈ Z+. (3.22)

To prove existence of a smooth solution of (3.21), it is enough to show that the sequence

{Gn}n∈Z+ and its partial derivatives of any order are Cauchy with respect to the supremum

norm. To this end, define H0(x̄, ȳ) = x̄ȳ, Hn =
3β

r

(
Gn+1 −Gn

)
. Then by (3.22), Hn+1 =

PHn and for j > i,

G j −Gi =

j−1∑
n=i

(Gn+1 −Gn) =
r

3β

j−1∑
n=i

Hn. (3.23)

We see from (3.23) that the sequence {Gn}n∈Z+ (and its partial derivatives) is Cauchy with

respect to the supremum norm if and only if the series at the right hand side of (3.23) (and

the series formed by Hn’s partial derivatives of any order) is convergent with respect to

the same norm. To this end, let us express P as sum of six operators

P = P1,−1 + P2,−2 + P2,−1 + P1,0 + P2,0 + P2,1,

where

P1,−1 f :=

∫ ȳ

0

∫ x̄

0

∫ ω

0

fȳȳx̄(ξ, η)dξdωdη,

P2,−2 f := −1

3

∫ ȳ

0

∫ x̄

0

∫ ω

0

fȳȳȳ(ξ, η)dξdωdη,

P2,−1 f := − iα
3β

∫ ȳ

0

∫ x̄

0

∫ ω

0

fȳȳ(ξ, η)dξdωdη,
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P1,0 f :=
2iα
3β

∫ ȳ

0

∫ x̄

0

∫ ω

0

fȳx̄(ξ, η)dξdωdη,

P2,0 f := − δ
3β

∫ ȳ

0

∫ x̄

0

∫ ω

0

fȳ(ξ, η)dξdωdη,

P2,1 f := − r
3β

∫ ȳ

0

∫ x̄

0

∫ ω

0

f (ξ, η)dξdωdη.

Then

Hn = PnH0 = (P1,−1 + P2,−2 + P2,−1 + P1,0 + P2,0 + P2,1)nst

=

6n∑
r=1

Rr,nst,
(3.24)

where

Rr,n := Pir,n, jr,n Pir,n−1, jr,n−1
· · · Pir,1, jr,1 , ir,q ∈ {1, 2}, jr,q ∈ {−2,−1, 0, 1},

for 1 ≤ q ≤ n. Observe that for positive integers m and nonnegative integers k,

P1,−1 x̄mȳk = c1,−1 x̄m+1ȳk−1, c1,−1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, k ≤ 0,

k
m + 1

, else,
(3.25)

P2,−2 x̄mȳk = c2,−2 x̄m+2ȳk−2, c2,−2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, k ≤ 1,

− k(k − 1)

3(m + 1)(m + 2)
, else,

(3.26)

P2,−1 x̄mȳk = c2,−1 x̄m+2ȳk−1, c2,−1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, k ≤ 0,

− iαk
3β(m + 1)(m + 2)

, else,
(3.27)

P1,0 x̄mȳk = c1,0 x̄m+1ȳk, c1,0 =
2iα

3β(m + 1)
, (3.28)

P2,0 x̄mȳk = c2,0 x̄m+2ȳk, c2,0 = − δ

3β(m + 1)(m + 2)
, (3.29)

P2,1 x̄mȳk = c2,1 x̄m+2ȳk+1, c2,1 = − r
3β(m + 1)(m + 2)(k + 1)

, (3.30)
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Let σ = σ(r) ≡ ∑n
q=1 jr,q. Then from (3.25)-(3.30), for each n and r,

Rr,nst =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if σ ≤ −1,

Cr,n x̄γȳσ+1, if σ > −1,

(3.31)

where n + 1 ≤ γ ≤ 2n + 1 and Cr,n is a constant which only depends on r and n. Let

M = max{1, α
β
, δ
β
, r
β
}. We claim that for each r and n,

|Cr,n| ≤ Mn

(n + 1)!(σ + 1)!
. (3.32)

Taking m = 1, k = 1 in (3.25)-(3.30), we see that (3.32) holds for n = 1. Suppose it holds

for n = � − 1 and for all r ∈ {1, 2, . . . , 6�−1}. Then for n = � and r∗ ∈ {1, 2, . . . , 6�}, using

(3.25)-(3.31), we get

Rr∗,�st = Pi, jRr,�−1st = Cr,�−1Pi, j x̄γȳσ+1 = Cr,�−1ci, j x̄γ
∗
ȳσ
∗+1

for some i ∈ {1, 2}, j ∈ {−2,−1, 0, 1} and r ∈ {1, 2, . . . , 6�−1}, where γ∗ is either (γ + 1) or

(γ + 2), σ∗ = σ + j. By the induction assumption,

Cr,�−1 ≤ M�−1

�!(σ + 1)!
.

Moreover using (3.25)-(3.30) and the fact that γ ≥ � we see that |ci, j| ≤ M σ+1
�+1

for j =

−1,−2, |ci,0| < M
�+1

, and |ci,1| < M
(σ+2)(�+1)

. Hence for each i ∈ {1, 2} and j ∈ {−2,−1, 0, 1}
we obtain

|Cr∗,�| = |Cr,(�−1)ci, j| ≤ M�

(� + 1)!(σ + j + 1)!
=

M�

(� + 1)!(σ∗ + 1)!
,

which proves that the claim holds for n = � as well. Using (3.24), (3.31), (3.32) and the
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fact that (x̄, ȳ) ∈ Δx̄,ȳ, we obtain

‖Hn‖C(Δx̄,ȳ) ≤
6nMnL3n+2

(n + 1)!
. (3.33)

This shows that
∑∞

n=1 ‖Hn‖C(Δx̄,ȳ) is convergent. On the other hand since Hn is a linear

combination of 6n monomials of the form x̄γȳσ+1 with γ ≤ 2n + 1 and σ ≤ n, any partial

derivative ∂a
x̄∂

b
ȳHn of Hn is absolutely less than

‖∂a
x̄∂

b
ȳHn‖C(Δx̄,ȳ) ≤

(2n + 1)a(n + 1)b6nMnL3n+2−a−b

(n + 1)!
, (3.34)

which shows that
∑∞

n=1 ‖∂a
x̄∂

b
ȳHn‖C(Δx̄,ȳ) is convergent as well. �

3.2.2. Exponential decay of solutions of target model to zero

equilibrium

In this part, we prove that for w0 ∈ L2(0, L) zero equilibrium of the target model

(3.16) is exponentially stable. The proof relies on multipliers and be done formally. How-

ever, calculations can be justified rigorously by using the higher regularity results proved

in Section 3.3.4 and the classical density argument.

Proposition 3.1 Let β > 0, α, δ ∈ R, k be a smooth backstepping kernel that solves (3.6).

Suppose that w0 ∈ L2(0, L). Then for sufficiently small r > 0, zero equilibrium of the

target model (3.16) is expoenentially stable. Moreover for such values of r, it is true that

λ := β

⎛⎜⎜⎜⎜⎜⎝ r
β
−
‖ky(·, 0; r)‖2L2(0,L)

2

⎞⎟⎟⎟⎟⎟⎠ > 0

and solution w of (3.16) satisfies the following decay estimate

‖w(·, t)‖L2(0,L) ≤ ‖w0‖L2(0,L)e−λt, ∀t ≥ 0.
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Proof Let us multiply the main equation of (3.16) in L2(0, L) by 2w

2Im

∫ L

0

iwtwdx + 2Im

∫ L

0

iβwxxxwdx + 2Im

∫ L

0

αwxxwdx + 2Im

∫ L

0

iδwxwdx

+ 2r ‖w(·, t)‖2L2(0,L)
= 2βRe

(
wx(0, t)

∫ L

0

ky(x, 0)w(x, t)dx
)
. (3.35)

The first term at the left hand side of (3.35) can be written as

2Im

∫ L

0

iwtwdx = 2Re

∫ L

0

wtwdx =
d
dt
‖w(·, t)‖2L2(0,L)

. (3.36)

The second term can be integrated by parts in x, and then using boundary conditions we

have

2Im

∫ L

0

iβwxxxwdx = −2Re

∫ L

0

βwxxwxdx = β|wx(0, t)|2. (3.37)

The third term, via integration by parts in x, vanishes

2Im

∫ L

0

αwxxwdx = −2Im

∫ L

0

α|wx|2dx = 0. (3.38)

The fourth term again vanishes since

2Im

∫ L

0

iδwxwdx = δ|w(x, t)|2
∣∣∣∣∣L
0

= 0. (3.39)

Using Cauchy’s inequality and then the Cauchy-Schwarz inequality, the term at the right

hand side of (3.35) can be estimated as

2βRe

∫ L

0

ky(x, 0)wx(0, t)w(x, t)dx ≤2β

⎛⎜⎜⎜⎜⎜⎝1

2
|wx(0, t)|2 +

(∫ L

0

|ky(x, 0)||w(x, t)|dx
)2⎞⎟⎟⎟⎟⎟⎠

≤β|wx(0, t)|2 + β‖ky(·, 0)‖2L2(0,L)
‖w(·, t)‖2L2(0,L)

.

(3.40)
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Combining (3.36)-(3.40), it follows from (3.35) that

d
dt
‖w(·, t)‖2L2(0,L)

+ 2β

⎛⎜⎜⎜⎜⎜⎝ r
β
−
‖ky(·, 0)‖2L2(0,L)

2

⎞⎟⎟⎟⎟⎟⎠ ‖w(·, t)‖2L2(0,L)
≤ 0. (3.41)

Solving this differential inequality, we get

‖w(·, t)‖L2(0,L) ≤ ‖w0‖L2(0,L)e−λt, λ := β

⎛⎜⎜⎜⎜⎜⎝ r
β
−
‖ky(·, 0; r)‖2L2(0,L)

2

⎞⎟⎟⎟⎟⎟⎠ . (3.42)

In order for the inequality (3.42) to be a decay estimate, we need to show that λ remains

positive at least for some values of r > 0. In the remaining part of the proof, we show that

this is true provided that r > 0 is sufficiently small.

To this end, let us denote α̃ =
α

β
, δ̃ =

δ

β
, r̃ =

r
β

and let M = max{1, α̃, δ̃, r̃}.
Differentiating (3.23) with respect to ȳ, taking i = 0 and passing to limit as n → ∞, we

obtain

Gȳ(x̄, ȳ) =
r̃
3

∞∑
n=0

Hn
ȳ (x̄, ȳ). (3.43)

Indeed we can do this because we proved in Lemma 3.1 that the series formed by Hn’s

and formed by their partial derivatives of any order are absolutely convergent. Now let

r̃ < 1, so M is independent of r. Then from (3.34) with a = 0, b = 1, we can write

‖Gȳ‖C∞(Δx̄,ȳ) ≤
r̃cL,α̃,δ̃

3
,

where cL,α̃,δ̃ is a constant depending on L, α̃, δ̃ but independent of r. Using ky(x, 0) =

Gȳ(x̄, 0) we have

‖ky(·, 0)‖2L2(0,L)
≤ L‖ky(·, 0)‖2C∞([0,L]) ≤ L‖Gȳ(·, 0)‖2C∞([0,L]) ≤ L‖Gȳ‖2C∞(Δx̄,ȳ)

≤
Lr̃2c2

L,α̃,δ̃

9
.
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Therefore, we obtain

λ = 2β

⎛⎜⎜⎜⎜⎜⎝r̃ − ‖ky(·, 0)‖2L2(0,L)

2

⎞⎟⎟⎟⎟⎟⎠ = 2βr̃2

⎛⎜⎜⎜⎜⎜⎝1

r̃
−
‖ky(·, 0)‖2L2(0,L)

2r̃2

⎞⎟⎟⎟⎟⎟⎠
≥ 2βr̃2

⎛⎜⎜⎜⎜⎜⎝1

r̃
−

Lc2
L,α̃,δ̃

18

⎞⎟⎟⎟⎟⎟⎠ > 0, (3.44)

provided that r is sufficiently small, which finishes the proof. �

3.2.3. Invertibility of the backstepping transformation

To show that the exponential stabilization result we obtained for the model (3.16)

also holds for the original plant (3.8) along with the feedback controllers (3.17), we need

to show that the backstepping transformation is invertible and its inverse is bounded on

L2(0, L). Below we state this in a more general setting, since it will be useful later in

Chapter 4.

Let η = η(x, y) be a smooth function on Δx,y and Υη : Hl(0, L) → Hl(0, L), l ≥ 0

be the integral operator defined by

(Υηϕ)(x) :=

∫ x

0

η(x, y)ϕ(y)dy.

Lemma 3.2 (I−Υη) is invertible with a bounded inverse on Hl(0, L)→ Hl(0, L) for l ≥ 0.

Moreover, (I − Υη)−1 can be written as (I + Φ), where Φ is a bounded, linear operator

from L2(0, L) into Hl(0, L) for l = 0, 1, 2 and from Hl−2(0, L) into Hl(0, L) for l > 2.

Proof Considering the volume of the thesis, we omit the proof but it can be done in a

similar way to those in (Liu, 2003) and (Özsarı and Batal, 2019). �

Now using the backstepping transformation and the fact that k = k(x, y) is smooth

on Δx,y, we have

‖w0‖L2(0,L) ≤ ‖u0‖L2(0,L) +

∥∥∥∥∥
∫ ·

0

k(·, t)u0(y)dy
∥∥∥∥∥

L2(0,L)

≤
(
1 + ‖k‖L2(Δx,y)

)
‖u0‖L2(0,L).

(3.45)
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Moreover, using the invertibility of the backstepping transformation given by Lemma 3.2

and the decay estimate for solutions to the target model we obtained in Proposition 3.1,

we also have

‖u(·, t)‖L2(0,L) ≤ ‖(I − Υk)
−1‖L2(0,L)→L2(0,L)‖w(·, t)‖L2(0,L)

≤ ‖(I − Υk)
−1‖L2(0,L)→L2(0,L)e−λt‖w0‖L2(0,L).

(3.46)

Combining (3.45) and (3.46), we get

‖u(·, t)‖L2(0,L) ≤ ck‖u0‖L2(0,L)e−λt, ∀t ≥ 0, (3.47)

where ck = ‖(I −Υk)
−1‖L2(0,L)→L2(0,L)

(
1 + ‖k‖L2(Δx,y)

)
is a nonnegative constant that depends

on k and is independent of u0. Hence, if u0 ∈ L2(0, L) and the boundary controllers be

as in (3.17), then zero equilibrium of the closed-loop system (3.8) becomes exponen-

tially stable. Note that (3.47) also provides continuous dependence of u on the initial and

boundary data.

3.3. Well-posedness

In this section we prove that the closed-loop system (3.8) is well-posed in the

Hadamard sense. We perform our analysis through the target model (3.16). First, in

Section 3.3.1, we use operator semigroup theory to prove existence of a unique mild so-

lution. Then, in the same section we obtain some auxiliary estimates, which are essential

throughout the rest of the section. Next in Section 3.3.2, we prove local existence and

uniqueness of the target model (3.16) and in Section 3.3.3 extend the unique local solu-

tion globally. Calculations at these sections can be justified by a density argument and by

a higher regularity result, which we provide in Section 3.3.4. Finally, we use the invert-

ibility result Lemma 3.2 of the backstepping transformation to provide that the results we

obtain for the target model (3.16) is also true for the original plant (3.8).

45



3.3.1. A-priori estimates

Consider the abstract Cauchy problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dw
dt
= Aw, t ∈ (0,T ),

w(0) = w0,

(3.48)

where

Aϕ := −βϕ′′′ + iαϕ′′ − δϕ′ (3.49)

with domain

D(A) =
{
ϕ ∈ H3(0, L) |ϕ(0) = ϕ(L) = ϕ′(L) = 0

}
. (3.50)

Lemma 3.3 A generates a strongly continuous semigroup of contractions on L2(0, L).

Proof It is clear that D(A) is dense in L2(0, L). Closedness of A can be proved similarly

as in Lemma 5.2 in (Batal et. al., 2021). For the sake of completeness of the proof,

we briefly show how to do it. To this end, let {ϕn}n∈I ⊂ D(A) be such that ϕn → ϕ

and Aϕn → v strongly in L2(0, L), where I is the index set. Once showing that
{
ϕ

( j)
n

}
is

bounded in L2(0, L) for each j = 1, 2, 3, one can extract a subsequence that converges

weakly in L2(0, L). But then, one can also show that its unique weak limit in L2(0, L)

is nothing but the weak derivatives of ϕ up to order three, i.e., ϕ ∈ H3(0, L) and also

Aϕn → Aφ. From uniqueness of the weak limit, the latter implies that Aφ = v. Moreover,

since C1([0, L]) is continuously embedded in H3(0, L), pointwise limits of {ϕn} and
{
ϕ′n

}
exist, and ϕ(0) = ϕ(L) = ϕ′(L) = 0. Hence ϕ ∈ D(A) and A is closed.

Now applying similar arguments to those in (3.36)-(3.39), one can show that A is

dissipative, i.e.,

Re(Aϕ, ϕ)2 = Re

{∫ L

0

(−βϕ′′′ + iαϕ′′ − δϕ′) (x)ϕ(x)dx
}
≤ 0,

and its adjoint A∗ϕ := βϕ′′′ − iαϕ′′ + δϕ′ with domain

D(A∗) =
{
ϕ ∈ H3(0, L) |ϕ(0) = ϕ(L) = ϕ′(0) = 0

}
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is also dissipative, i.e.,

Re(ϕ, A∗ϕ)2 = Re

{∫ L

0

ϕ(x)(βϕ′′′ − iαϕ′′ + δϕ′)(x)dx
}
≤ 0.

As a conclusion of Lemma 2.1, A is the infinitesimal generator of a C0−semigroup of

contractions, {S (t)}t≥0, on L2(0, L). �

In view of Lemma 3.3 and application of operator semigroup theory, we conclude

that if w0 ∈ L2(0, L), then (3.48) has a unique mild solution, which is expressed in the

form

w(t; w0) = S (t)w0

and belongs to the space C([0,T ]; L2(0, L)).

Now let us turn our attention to the target model (3.16). Define the space

YT :=
{
ϕ ∈ X0

T |ϕx ∈ C([0, L]; L2(0,T ))
}

endowed with the norm

‖ϕ‖YT =
(
‖ϕ‖2C([0,T ];L2(0,L))

+ ‖ϕ‖2L2(0,T ;H1(0,L))
+ ‖ϕx‖2C([0,L];L2(0,T ))

) 1
2
.

Let us express (3.16) in the abstract operator theoretic form as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dw
dt
= Aw + F(w), t ∈ (0,T ),

w(0) = w0,

(3.51)

where F(w(·, t)) := −irw(·, t) + iβky(·, 0)wx(0, t). By Duhamel’s principle, solution w of

(3.51), if it exists, satisfies the following implicit relation

w(t; w0) = S (t)w0 +

∫ t

0

S (t − τ)F(w(τ; w0))dτ. (3.52)
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To prove existence of a function w ∈ YT that satisfies (3.52), it suffices to prove that the

operator

Ψ[w0, ϕ(t)] := S (t)w0 +

∫ t

0

S (t − τ)F(ϕ(τ))dτ (3.53)

has a fixed point at least up to for some t = T ′ > 0. In view of Banach fixed point theorem,

it is enough to show that Ψ maps YT into itself and Ψ is strict contraction. To verify these,

as we will see in Section 3.3.2, we need to prove following type of estimates

‖S (t)w0‖YT � ‖w0‖L2(0,L),

∥∥∥∥∥∥
∫ t

0

S (t − s)Fϕ(s)ds

∥∥∥∥∥∥
YT

� ‖ϕ‖YT . (3.54)

To derive these estimates, one needs to show that mappings

t ∈ [0,T ]→ ‖Ψ[w0, ϕ(t)]‖L2(0,L) is continuous in t, (3.55)

t ∈ (0,T )→ ‖Ψ[w0, ϕ(t)]‖H1(0,L) is bounded on L2(0,T ), (3.56)

and the mapping

x ∈ [0, L]→ ‖∂xΨ[w0(x), ϕ]‖L2(0,T ) is continuous in x. (3.57)

In what follows, we consider the following auxiliary model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iqt + iβqxxx + αqxx + iδqx = f , (x, t) ∈ (0, L) × (0,T ),

q(0, t) = q(L, t) = qx(L, t) = 0, t ∈ (0,T ),

q(x, 0) = φ(x), x ∈ (0, L),

(3.58)

where f ∈ L1(0,T ; L2(0, L)) is inhomogeneous source, φ ∈ L2(0, L) and regarding the

q−model, we derive a-priori estimates to prove the validity of (3.55)-(3.57). Considering

the volume of the proofs, we organize the text as follows: In Section 3.3.1.1 we derive

(3.55)-(3.56) and in Section 3.3.1.2 we derive (3.57).
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3.3.1.1. Space-time estimates

In this section, we show that (3.55)-(3.56) hold true by proving the following

lemma.

Lemma 3.4 Let T > 0, φ ∈ L2(0, L) and f ∈ L1(0,T ; L2(0, L)). Then solution q of (3.58)

satisfies

(i) ‖q‖C([0,T ];L2(0,L)) + ‖qx(0, ·)‖L2(0,T ) � ‖φ‖L2(0,L) + ‖ f ‖L1(0,T ;L2(0,L)),

(ii) ‖q‖L2(0,T ;H1(0,L)) � (1 +
√

T )
(
‖φ‖L2(0,L) + ‖ f ‖L1(0,T ;L2(0,L))

)
.

Proof

(i) Multiplying the main equation of (3.58) by 2q, integrating over [0,T ] × [0, L] and

applying similar arguments to those in (3.36)-(3.39), we get

‖q(·, t)‖2L2(0,L)
+ β‖qx(0, ·)‖2L2(0,T )

≤ ‖φ‖2L2(0,L)
+ 2

∫ T

0

∫ L

0

| f (x, t)||q(x, t)|dxdt. (3.59)

Using Cauchy-Schwarz and Cauchy’s inequality with ε > 0, second summand at

the right hand side of (3.59) can be estimated as

2

∫ T

0

∫ L

0

| f (x, t)||q(x, t)|dxdt ≤ ε sup
t∈[0,T ]

‖q(·, t)‖2L2(0,L)
+ cε‖ f ‖2L1(0,T ;L2(0,L))

which, combining by (3.59) yields

‖q(·, t)‖2L2(0,L)
+ (β − ε)‖qx(0, ·)‖2L2(0,T )

≤ ‖φ‖2L2(0,L)
+ cε‖ f ‖2L1(0,T ;L2(0,L))

.

Right hand side is independent of t. So passing to supremum on both sides over

[0,T ] and choosing ε > 0 sufficiently small so that β − ε > 0 finishes proof of (i).

(ii) We multiply the main equation of (3.58) in L2(0, L) by 2xq and take the imaginary
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parts of both sides to get

2Im

∫ L

0

ixqtqdx + 2Im

∫ L

0

iβxqxxxqdx + 2Im

∫ L

0

αxqxxqdx

+ 2Im

∫ L

0

iδxqxqdx = 2Im

∫ L

0

x f (x, t)q(x, t)dx. (3.60)

The first term at the left hand side of (3.60) can be written as

2Im

∫ L

0

ixqtqdx =
d
dt

∫ L

0

x|q|2dx. (3.61)

Integrating the second and third terms by parts and using the boundary conditions,

we have

2Im

∫ L

0

iβxqxxxqdx = 2β

(
−
∫ L

0

qxxqdx −
∫ L

0

xqxxqxdx
)

= 2β

(∫ L

0

|qx|2dx − 1

2

∫ L

0

x
d
dx
|qx|2dx

)

= 2β

(
‖qx(·, t)‖2L2(0,L)

dx +
1

2

∫ L

0

|qx|2dx
)

= 3β‖qx(·, t)‖2L2(0,L)

(3.62)

and

2Im

∫ L

0

αxqxxqdx = 2α

(
−Im

∫ L

0

qxqdx − Im

∫ L

0

x|qx|2dx
)

≥ −ε‖qx(·, t)‖2L2(0,L)
− cα,ε‖q(·, t)‖2L2(0,L)

,

(3.63)

where we used Cauchy’s inequality with ε > 0 on the last line of (3.63). Fourth

term, again via integration by parts give us

2Im

∫ L

0

iδxqxqdx = 2δ

∫ L

0

x
d
dx
|q|2dx = −δ‖q(·, t)‖2L2(0,L)

. (3.64)
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Using Cauchy-Schwarz inequality, the term at the right hand side of (3.60) is

bounded from above as

2

∫ L

0

| f (x, t)||q(x, t)|dx ≤ 2‖q(·, t)‖L2(0,L)‖ f (·, t)‖L2(0,L)). (3.65)

Consequently, combining (3.61)-(3.65), it follows from (3.60) that

d
dt

∫ L

0

x|q|2dx + (3β − ε)‖qx(·, t)‖2L2(0,L)

≤ cα,δ,ε1
‖q(·, t)‖2L2(0,L)

+ 2‖q(·, t)‖L2(0,L)‖ f (·, t)‖L2(0,L). (3.66)

Now we integrate both sides of (3.66) in t over [0,T ] and write

∫ L

0

x|q|2dx + (3β − ε)

∫ T

0

‖qx(·, t)‖2L2(0,L)
dt ≤

∫ L

0

x|φ|2dx

+ cα,δ,ε

∫ T

0

‖q(·, t)‖2L2(0,L)
dt + 2

∫ T

0

‖q(·, t)‖L2(0,L)‖ f (·, t)‖L2(0,L)dt. (3.67)

Using Cauchy’s inequality and then employing our first result in (i), we can estimate

the last term at the right hand side of (3.67) as

2

∫ T

0

‖q(·, t)‖L2(0,L)‖ f (·, t)‖L2(0,L)dt ≤ sup
t∈[0,T ]

‖q(·, t)‖2L2(0,L)
+

(∫ T

0

‖ f (·, t)‖L2(0,L)dt
)2

� ‖φ‖2L2(0,L)
+ ‖ f ‖L1(0,T ;L2(0,L)).

Finally, choosing ε sufficiently small that guarantees 3β − ε > 0 and then applying

Poincaré inequality for the second term on the left hand side of (3.67), we deduce

(ii).

�
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3.3.1.2. Time-space estimates and smoothing properties

In this section, we show that (3.57) holds true by proving that solution q of (3.58)

enjoys the following time-space estimates

sup
x∈[0,L]

‖∂x[S (t)φ](x)‖L2(0,T ) � (1 +
√

T )‖φ‖L2(0,L) (3.68)

and

sup
x∈[0,L]

∥∥∥∥∥∥∂x

[∫ ·

0

S (· − τ) f (x, τ)dτ
]

(x)

∥∥∥∥∥∥
L2(0,T )

� (1 +
√

T )‖ f ‖L1(0,T ;L2(0,L)). (3.69)

The property (3.68) is referred as the sharp Kato smoothing (see, e.g., (Bona et. al.,

2002), (Bona et. al., 2003), (Kato, 1983), (Kenig et. al., 1991a), (Kenig et. al., 1991b)

and references therein, for a detailed discussion).

To derive the estimates (3.68)-(3.69), we apply decompose-and-reunify algorithm

for the q−model (3.58). That is, we decompose the q−model

(i) to a Cauchy problem with zero interior source

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ivt + iβvxxx + αvxx + iδvx = 0, (x, t) ∈ R × (0,T ),

v(x, 0) = φ∗(x), x ∈ R,
(3.70)

where φ∗ is the zero extension of φ on R,

(ii) to a Cauchy problem with zero initial datum, zero interior source and an inhomo-

geneous interior source

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
iyt + iβyxxx + αyxx + iδyx = f ∗, (x, t) ∈ R × (0,T ),

y(x, 0) = 0, x ∈ R,
(3.71)

where f ∗ is zero spatial extension of f on R,
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(iii) and to an initial-boundary value problem with zero initial datum and inhomoge-

neous boundary data as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

izt + iβzxxx + αzxx + iδzx = 0, (x, t) ∈ (0, L) × (0,T ),

z(0, t) = ψ1(t), z(L, t) = ψ2(t), zx(L, t) = ψ3(t), t ∈ (0,T ),

z(x, 0) = 0, x ∈ (0, L),

(3.72)

where ψ1(t) = −v(0, t) − y(0, t), ψ2(t) = −v(L, t) − y(L, t) and ψ3(t) = −vx(L, t) −
yx(L, t).

Then, by reunifying the models (3.70)-(3.72), solution q of (3.58) can be represented as

q(·, t) = (v(·, t) + y(·, t)) ∣∣∣
[0,L]
+ z(·, t)

=

(
S R(t)φ∗ +

∫ t

0

S R(t − τ) f ∗(·, τ)dτ
) ∣∣∣∣∣

[0,L]

+ z(·, t).

It turns out that, in order to obtain the estimates (3.68) and (3.69), we need to prove

similar smoothing properties of the solutions of each of the models (3.70)-(3.72). This is

the subject of the rest of this section.

Lemma 3.5 Let T > 0 and φ∗ ∈ L2(R). Then, solution v of (3.70) satisfies

sup
x∈[0,L]

‖∂xv(x, ·)‖L2(0,T ) � (1 +
√

T )‖φ∗‖L2(0,L). (3.73)

Proof Applying Fourier transform in the spatial variable for the model (3.70), solv-

ing the resulting ODE in v̂ = v̂(·, t) and then recovering v by employing inverse Fourier

transform, we can express v as

v(x, t) = S R(t)φ∗(x) :=

∫ ∞

−∞
eixξeiω(ξ)tφ̂∗(ξ)dξ, (3.74)

where φ̂∗ is the Fourier transform of φ∗ and ω(ξ) := βξ3 − αξ2 − δξ. We pick a smooth
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cut-off function

θ(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, a ≤ ξ ≤ b,

smooth, a − ε < ξ < a or b < ξ < b + ε,

0, ξ ≤ a − ε or ξ ≥ b + ε,

where ε > 0 is arbitrary, |θ| ≤ 1 and, a and b will be chosen below in a suitable manner.

Now, we decompose v as

v(x, t) =
∫ ∞

−∞
eixξeiω(ξ)tθ(ξ)φ̂∗(ξ)dξ +

∫ ∞

−∞
eixξeiω(ξ)t(1 − θ(ξ))φ̂∗(ξ)dξ

=: v1(x, t) + v2(x, t).
(3.75)

Using Cauchy-Schwarz inequality for v1, then Plancherel’s theorem and since θ is a com-

pactly supported function, we get

|∂xv1(x, t)| =
∣∣∣∣∣
∫ ∞

−∞
iξeixξeiω(ξ)tθ(ξ)φ̂∗(ξ)dξ

∣∣∣∣∣
=

(∫ b+ε

a−ε
|iξ|2|θ(ξ)|2dξ

) 1
2
(∫ ∞

−∞
|φ̂∗(ξ)|2dξ

) 1
2

� ‖φ∗‖L2(R),

(3.76)

which implies

‖∂xv1(x, ·)‖2L2(0,T )
� T‖φ∗‖2L2(R)

. (3.77)

Applying similar arguments, we can also get

‖∂ j
t v1(x, ·)‖2L2(0,T )

� T‖φ∗‖2L2(R)
(3.78)

for j = 0, 1, where the constant of the inequality depends on j and θ (estimate (3.78) is

crucial and will be used later at the end of this section).
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Next, let us consider the second term in (3.75) and rewrite it as

v2 =

∫ a

−∞
· +

∫ ∞

b
· =: v2− + v2+. (3.79)

Let us change the variable as

τ = ω−(ξ) = ω(ξ) : (−∞, a]→ (−∞, ω(a)],

τ = ω+(ξ) = ω(ξ) : [b,∞)→ [ω(b),∞).
(3.80)

As we will see below, a suitable choice of the support of the cut-off function, i.e. the

values a and b, ensures that these transformations given by (3.80) are injective, hence

their inverses exist. Let us denote the their inverses as

ξ = ω−1
− (τ) =: ξ−(τ),

ξ = ω−1
+ (τ) =: ξ+(τ),

respectively. Also, the same choices on a and b provide that the differential

dξ =
1

3βξ2∓(τ) − 2αξ∓(τ) − δdτ,

due to the change of variable do not cause a singularity. Depending on the sign of α2+3βδ,

we have three different cases:

(a) Let α2 + 3βδ > 0. Then, any choice a < α−
√
α2+3βδ

3β
and b > α+

√
α2+3βδ

3β
provides that

the mapping is injective and integrals are proper on (−∞, a] ∪ [b,∞).

(b) Let α2 + 3βδ = 0. Then, for any choices of a < α
3β
< b the mapping is injective and

integrals are proper on (−∞, a] ∪ [b,∞).

(c) Let α2 + 3βδ < 0. Then the mapping is injective and integrals are proper for all

choices of a < b.

For each case of (α2 + 3βδ), assume that we choose appropriate values of a and b. Then,
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applying the change of variables (3.80), ∂xv2 becomes

∂xv2(x, t) =∂xv2−(x, t) + ∂xv2+(x, t)

=

∫ ω(a)

−∞
iξ−(τ)eiξ−(τ)xeiτt(1 − θ(ξ−(τ)))

φ̂∗(ξ−(τ))

3βξ2−(τ) − 2αξ−(τ) − δdτ

+

∫ ∞

ω(b)

iξ+(τ)eiξ+(τ)xeiτt(1 − θ(ξ+(τ)))
φ̂∗(ξ+(τ))

3βξ2
+(τ) − 2αξ+(τ) − δdτ.

Let us consider ∂xv2−(x, ·) first. Observe that the function

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
iξ−(τ)eiξ−(τ)x(1 − θ(ξ−(τ)))

φ̂∗(ξ−(τ))

3βξ2−(τ) − 2αξ−(τ) − δ, τ ∈ (−∞, ω(a)],

0, elsewhere,

is the Fourier transform of ∂xv2−(x, ·) with respect to its second component. Thus,

‖∂xv2−(x, ·)‖2L2(0,T )
≤‖∂xv2−(x, ·)‖2L2(R)

=

∫ ∞

−∞
|∂̂xv2−(x, τ)|2dτ

=

∫ ω(a)

−∞

∣∣∣∣∣∣iξ−(τ)eiξ−(τ)x(1 − θ(ξ−(τ)))
φ̂∗(ξ−(τ))

3βξ2−(τ) − 2αξ−(τ) − δ

∣∣∣∣∣∣
2

dτ

≤
∫ ω(a)

−∞
ξ2
−(τ)

φ̂∗(ξ−(τ))|2(
3βξ2−(τ) − 2αξ−(τ) − δ

)2
dτ.

(3.81)

Changing variables back as τ = ω−(ξ), it follows from (3.81) that

‖∂xv2−(x, ·)‖2L2(0,T )
≤

∫ a

−∞
ξ2 |φ̂∗(ξ)|2(

3βξ2 − 2αξ − δ)2

(
3βξ2 − 2αξ − δ

)
dξ

�
∫ a

−∞
ξ2 |φ̂∗(ξ)|2

3βξ2 − 2αξ − δdξ �
∫ a

−∞
|φ̂∗(ξ)|2dξ

≤ ‖φ∗‖2L2(R)
.

(3.82)
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‖∂xv2+(x, ·)‖2L2(0,T )
� ‖φ∗‖2L2(R)

can be shown similarly. Hence

‖∂xv2(x, ·)‖L2(0,T ) � ‖φ∗‖2L2(R)
.

Combining this result with (3.77), we get

‖∂xv(x, ·)‖2L2(0,T )
� (1 +

√
T )‖φ∗‖L2(R). (3.83)

We also have the continuity of the mapping x → ‖∂xv(x, ·)‖L2(0,T ). To show this, let

{xn} ⊂ R be a sequence that converges to x ∈ R. Applying similar arguments to those in

(3.76), we can write

‖v1(x, ·) − v1(xn, ·)‖L2(0,T ) ≤
⎛⎜⎜⎜⎜⎜⎝
∫ T

0

(∫ b+ε

a−ε
|iξ|2

(
eixξ − eixnξ

)
|θ(ξ)|2dξ

)2

dt

⎞⎟⎟⎟⎟⎟⎠
1
2

�
√

T‖φ∗‖L2(R) < ∞.
(3.84)

Furthermore, similar calculations to those in (3.81)-(3.82), we can also write

‖v2(x, ·) − v2(xn, ·)‖L2(0,T )

≤
⎛⎜⎜⎜⎜⎜⎝
∫ ω(a)

−∞

∣∣∣∣∣∣iξ−(τ)
(
eiξ−(τ)x − eiξ−(τ)xn

)
(1 − θ(ξ−(τ)))

φ̂∗(ξ−(τ))

3βξ2−(τ) − 2αξ−(τ) − δ

∣∣∣∣∣∣
2

dτ

⎞⎟⎟⎟⎟⎟⎠
1
2

≤‖φ∗‖L2(R) < ∞.

(3.85)

Combining (3.84) and (3.85), we have ‖v(x, ·) − v(xn, ·)‖L2(0,T ) < ∞. Hence, by the domi-

nated convergence theorem we also have

‖v1(x, ·) − v1(xn, ·)‖L2(0,T ) → 0, as n→ ∞, (3.86)

which yields that the mapping x→ ‖∂xv(x, ·)‖L2(0,T ) is continuous. Note that the right hand
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side of (3.83) is independent of x. So passing to supremum on both sides in x over [0, L]

finishes the proof. �

Lemma 3.6 Let T > 0 and f ∗ ∈ L1(0,T ; L2(R)). Then, solution y of (3.71) satisfies

sup
x∈[0,L]

‖∂xy(x, ·)‖L2(0,T ) � (1 +
√

T )‖ f ∗‖L1(0,T ;L2(0,L)). (3.87)

Proof By Duhamel’s principle, we can represent y as

y(x, t) =
∫ t

0

S R(t − τ) f ∗(x, τ)dτ, (3.88)

where S R is given by (3.74). By differentiating (3.88) with respect to its first component,

we can write

|∂xy(x, t)| =
∣∣∣∣∣∣∂x

[∫ t

0

S (t − τ) f (x, τ)dτ
]∣∣∣∣∣∣

≤
∫ t

0

∣∣∣∂x
[
S (t − τ) f ∗(x, τ)

]∣∣∣ dτ
≤

∫ T

0

∣∣∣∂x
[
S (t − τ) f ∗(x, τ)

]∣∣∣ dτ.
(3.89)

Taking L2−norm of both sides in t ∈ [0,T ] and using the result in Lemma 3.5, we get

‖∂xy(x, ·)‖L2(0,T ) ≤
∥∥∥∥∥∥
∫ T

0

∣∣∣∂x
[
S (· − τ) f ∗(x, τ)

]∣∣∣ dτ
∥∥∥∥∥∥

L2(0,T )

≤
∫ T

0

∥∥∥∂x
[
S (· − τ) f ∗(x, τ)

]∥∥∥
L2(0,T )

dτ

� (1 +
√

T )

∫ T

0

‖ f ∗(·, τ)‖L2(R)dτ = (1 +
√

T )‖ f ∗‖L1(0,T ;L2(R)).

(3.90)

Application of dominated convergence theorem as in (3.84)-(3.86) provides the continuity

of the mapping x → ‖∂xy(x, ·)‖L2(0,T ). Now the last line of (3.90) is independent of x. So

passing to supremum in x over [0, L] finishes the proof. �

Now let us turn our attention to the inhomogeneous boundary value problem (3.72)

with the boundary conditions ψm, m = 1, 2, 3. We prove the following result.
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Lemma 3.7 Let T > 0 and (ψ1, ψ2, ψ3) ∈ H1/3(0,T )×H1/3(0,T )×L2(0,T ). Then, solution

z of (3.72) satisfies

sup
x∈[0,L]

‖∂xz(x, ·)‖L2(0,T ) � ‖ψ1‖H1/3(0,T ) + ‖ψ2‖H1/3(0,T ) + ‖ψ3‖L2(0,T ). (3.91)

Remark 3.1 Note that the boundary conditions imposed to z−model (3.72) are not arbi-

trary functions, and are given by

ψ1(t) = −v(0, t) − y(0, t), ψ2(t) = −v(L, t) − y(L, t), and ψ3(t) = −vx(L, t) − yx(L, t),

i.e., in terms of the solutions of v−model (3.70) and y−model (3.71). Recall that if the

initial state φ∗ of the v−model belongs to L2(R) and the inhomogeneous source f ∗ of

the y−model belongs to L1(0,T ; L2(R)), then vx(L, t) and yx(L, t) make sense in L2(0,T )

by Lemma 3.5 and Lemma 3.6, respectively. On the other hand, our calculations through

(3.127)-(3.132) show that, v(x, ·), y(x, ·) also make sense in H1/3(0,T ) for x = 0 and x = L.

Hence the assumption of Lemma 3.7 is indeed true.

Remark 3.2 A classical approach to investigate initial-boundary value problems with

inhomogeneous boundary data is to apply a change of variable so that, the boundary

effects of the original model take place as an interior source in the transformed model.

For instance, considering the following change

g(x, t) =
(
1 − x

L

)
ψ1(t) +

x
L
ψ2(t) +

(
x − x2

L

)
(−ψ1(t) + ψ2(t) − ψ3(t)) ,

and defining ζ := z − g, one can derive that the ζ−model given below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iζt + iβζxxx + αζxx + iδζx = −igt − αgxx − iδgx, (x, t) ∈ (0, L) × (0,T ),

ζ(0, t) = ζ(L, t) = ζx(L, t) = 0, t ∈ (0,T ),

ζ(x, 0) = −g(x, 0), x ∈ (0, L),

(3.92)
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has homogeneous boundary conditions. Then, analysis for z−model (3.72) can be carried

out via analyzing the ζ−model by applying the arguments in Section 3.3.1.1. To guarantee

that a mild solution for the model (3.92) exists, right hand side of the main equation of

(3.92) needs to belong L1(0,T ; L2(0,T )). That is, regarding the boundary conditions of

the z−model (3.72), it is required that

ψ′1 = −
d
dt

(v(0, t) + y(0, t)) , ψ′2 = −
d
dt

(v(L, t) + y(L, t)) (3.93)

and

ψ′3 = −
d
dt

(vx(L, t) + yx(L, t)) (3.94)

make sense in L1(0,T ). However, we do not have such result. Instead, applying Laplace

transform method makes the Lemma 3.7 true, where by Remark 3.1 its assumptions are

also true, which is necessary for us to deduce the time estimates (3.68) and (3.69).

To establish Lemma 3.7, first we express solution of the z−model in a suitable form

in order to perform the analysis. In view of Remark 3.2, we perform this by applying the

Laplace transformation

f̃ (s) =

∫ ∞

0

e−st f (t)dt, (3.95)

for the z−model (3.72) in the temporal variable. For convenience, we extend the boundary

conditions ψm, m = 1, 2, 3 (still denoted by same notations), from (0,T ) to R, providing

their smoothness, i.e., regarding their extensions, ψm ∈ H1/3(R) for m = 1, 2 and ψ3 ∈
L2(R) holds.

Let us apply the Laplace transform for the model (3.72). Then, we obtain the

following one parameter family of third-order boundary value problems

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
isz̃(x, s) + iβz̃xxx(x, s) + αz̃xx(x, s) + iδz̃x(x, s) = 0, (x, s) ∈ (0, L) × C,
z̃(0, s) = ψ̃1(s), z̃(L, s) = ψ̃2(s), z̃x(L, s) = ψ̃3(s), s ∈ C.

(3.96)

Here s belongs to a suitable set in the complex plane which will be specified below. Using
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the Bromwich integral, z can be represented as

z(x, t) =
1

2πi

∫ r+i∞

r−i∞
estz̃(x, s)ds, (3.97)

where the vertical integration path (r − i∞, r + i∞) in the complex plane belongs to the

region of absolute convergence. That is, r is chosen so that, all possible singularities of

z̃ lie on the left side of the vertical line (r − i∞, r + i∞). Note that for sufficiently large

values of r, the characteristic equation,

s + βλ3 − iαλ2 + δλ = 0, (3.98)

associated to (3.96) has distinct roots. In fact, there exists only finitely many values of s

for which (3.98) assumes double or possibly triple roots (see Appendix B for details). We

can classify these cases depending on the the quantity α2+3βδ. Let λ j = λ j(s), j = 1, 2, 3,

denote the roots of (3.98) and assume that λ2(s) = λ3(s) for some s ∈ C. Then direct

calculations given in Appendix B yield the following cases.

(i) If α2 + 3βδ > 0, then there exists only two possible values of s and these values

belong to the imaginary axis.

(ii) If α2 + 3βδ = 0, then we have one and only one possible value of s and this value

belongs to the imaginary axis. Note that for this value of s, we have λ1(s) = λ2(s) =

λ3(s).

(iii) If α2 + 3βδ < 0, then there exists only two possible values of s and these values are

symmetric with respect to the imaginary axis.

Consequently, for sufficiently large r, it is guaranteed that (3.98) has distinct roots on the

line Re(s) = r, hence solution of (3.96) can be expressed of the form

z̃(x, s) =

3∑
j=1

c j(s)eλ j(s)x, (3.99)
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where the column vector (c1(s), c2(s), c3(s))T is the solution of the linear system

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1

eλ1(s)L eλ2(s)L eλ3(s)L

λ1(s)eλ1(s)L λ2(s)eλ2(s)L λ3(s)eλ3(s)L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c1(s)

c2(s)

c3(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ψ̃1(s)

ψ̃2(s)

ψ̃3(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (3.100)

Applying Cramer’s rule, c j’s can be obtained as c j =
Δ j

Δ
, where Δ is the determinant of the

coefficient matrix in (3.100) and Δ j’s are determinants of the matrices formed by replacing

the j−th column of the coefficient matrix by the column vector (ψ̃1, ψ̃2, ψ̃3)T . Thus z can

be written of the form

z(x, t) =
1

2πi

3∑
j=1

∫ r+i∞

r−i∞
estΔ j(s)

Δ(s)
eλ j(s)xds. (3.101)

For convenience, let us rewrite z = z[ψ1, ψ2, ψ3] as z ≡ ∑3
m=1 zm, where zm solves the same

problem with boundary data ψ j ≡ 0 if j � m, j = 1, 2, 3. Thus zm’s can be expressed as

zm(x, t) =
1

2πi

3∑
j=1

∫ r+i∞

r−i∞
estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds, m = 1, 2, 3. (3.102)

Here Δ j,m’s, m = 1, 2, 3, are obtained from Δ j, where ψ̃ j is replaced by 1 for j = m and

ψ̃ j’s are replaced by 0 for each j � m.

To change the integration path in (3.102) by a more convenient one, one needs to

investigate possible zeros of Δ(s) in the complex plane. These points occur not only due

to the double or possibly triple roots of (3.98), but may also occur due to the eigenvalues

of the operator A defined in (3.49) with domain D(A) defined in (3.50). Recall that the

operator A satisfies

Re(Aϕ, ϕ)2 = Re

{∫ L

0

(−βϕ′′′ + iαϕ′′ − δϕ′)(x)ϕ(x)dx
}
= −β|ϕ

′(0)|2
2

≤ 0.

Thus, all eigenvalues of A lie on the left complex half plane or possibly on the imaginary
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axis. The latter situation occurs only if ϕ′(0) = 0, i.e., the problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−βϕ′′′ + iαϕ′′ − δϕ′ = λϕ, in (0, L),

ϕ(0) = ϕ(L) = ϕ′(0) = ϕ′(L),

(3.103)

has nontrivial solutions for some pure imaginary λ. From the characteristic equation

−βp3 + iαp2 − δp = λ

associated to the eigenvalue problem (3.103) together with the boundary conditions, one

can obtain that the roots pj, j = 1, 2, 3, must be distinct, i.e., ϕ(x) =
∑3

j=1 d1ep j x. Em-

ploying the boundary conditions and after some calculations, one can see that pj’s must

satisfy

ep1L = ep2L = ep3L

(see Proposition 2 in (Glass and Guerrero, 2010) for similar calculations). Therefore, we

have

p2 − p1 =
2kπi

L
,

p3 − p2 =
2lπi

L
,

where without loss of generality, upon relabeling pj’s we can assume that k, l ∈ Z+. Using

also p1 + p2 + p3 =
iα
β

, we get

p1 =
iα
3β
+

2(−2k − l)πi
3L

,

p2 =
iα
3β
+

2(k − l)πi
3L

,

p3 =
iα
3β
+

2(k + 2l)πi
3L

.
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Substituting these into p1 p2 + p1 p3 + p2 p3 =
δ
β

and after some calculations, we obtain

δ

β
= − α

2

3β2
+

4π2(k2 + kl + l2)

3L2

or equivalently

α2 + 3βδ =
4π2β2(k2 + kl + l2)

L2
. (3.104)

Consequently, depending on the value of (α2 + 3βδ) and the interval length L, it is pos-

sible to obtain a nontrivial solution of (3.103). This implies the existence of possible

eigenvalues of the operator A lying on the imaginary axis.

(i) Let α2 + 3βδ > 0. Then, choosing L from the set of critical lengths defined in (1.9)

implies that (3.104) holds, i.e., existence of pure imaginary eigenvalues. Now from

the equation p1 p2 p3 = −λβ and using L = 2πβ
√

k2+kl+l2
α2+3βδ

, one can obtain after some

calculations that

λ =
i

27β2

[
α3 − 3α(α2 + 3βδ) + 2(α2 + 3βδ)3/2H(k, l)

]
(3.105)

where

H(k, l) =
(−2k − l)(k − l)(k + 2l)

2(k2 + kl + l2)
3
2

. (3.106)

It is not difficult to see that −1 < H(k, l) < 1 for k, l ∈ Z+. Thus, from (3.105), we

deduce that Im(λ) ∈
(
Ims+2 , Ims+1

)
, where

s+1 :=
i

27β2

[
α3 − 3α(α2 + 3βδ) + 2(α2 + 3βδ)3/2

]

and

s+2 :=
i

27β2

[
α3 − 3α(α2 + 3βδ) − 2(α2 + 3βδ)3/2

]
.

On the other hand s+1 and s+2 are also the points where (3.96) assumes double root

(see Appendix B for detailed calculations), hence zeros of Δ(s). This fact together

with the location of the possible pure imaginary eigenvalues imply that all pos-

sible singular points of (3.101) belonging to the imaginary axis lie in the closed
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interval
[
Im(s+2 ), Im(s+1 )

]
. Thus, we can deform the vertical integration path of

(3.101) by shifting the parts
{
s | Im(s) > Im(s+1 ) + ρ

}
and

{
s | Im(s) < Im(s+2 ) − ρ

}
to

C+1 :=
(
s+1 + iρ, i∞

)
and C+3 :=

(
−i∞, s+2 − iρ

)
, respectively, with ρ > 0 is fixed and

sufficiently small, whereas we shift the rest of the integration path up to ρ units

from the imaginary axis, by avoiding the points s+1 , s+2 by a quarter-circular arcs to

the upper-right and lower-right, respectively, denoted by C+2 . See Figure 3.4 below.

Re(s)

Im(s)

s+2

s+1

C+3

C+2

C+1

Figure 3.4. Integration path for the case α2 + 3βδ > 0.

With this new setting of integration path, we express (3.102) as

zm(x, t) =
1

2πi

3∑
j=1

∫
C+

1

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C+

2

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C+

3

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds,

(3.107)

for each m = 1, 2, 3. Now we change the variable in the first and the third integral

as s = iω(ξ) = i(βξ3 − αξ2 − δξ). Note that, for α2 + 3βδ > 0, the function ω(ξ) has

one local maximum and one local minimum. After some calculations, we find that
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the larger inverse image of s+1 and the smaller inverse image of s+2 as

ξ+1 :=
α + 2

√
α2 + 3βδ

3β
, ξ+2 :=

α − 2
√
α2 + 3βδ

3β
,

respectively (see Figure 3.5). Thus, the mapping s = iω(ξ) is injective for s ∈ C+1

and s ∈ C+3 , and their inverse images are
(
ξ+1 + η

+
1 ,∞

)
and

(
−∞, ξ+2 − η+2

)
, respec-

tively for η+1 , η
+
2 > 0, that depend on ρ. Consequently, (3.107) becomes

s = iω(ξ)

ξ+2 ξ+1

s+2

s+1

ξ

iIm(s)

Figure 3.5. Plot of transformation s = iω(ξ) when α2 + 3βδ > 0.

zm(x, t) =
1

2πi

3∑
j=1

∫ ∞

ξ+
1
+η+

1

eiω(ξ)t
Δ
†
j,m(ξ)

Δ†(ξ)
eλ
†
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃†m(ξ)dξ

+
1

2πi

3∑
j=1

∫
C+

2

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫ ξ+
2
−η+

2

−∞
eiω(ξ)t

Δ
†
j,m(ξ)

Δ†(ξ)
eλ
†
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃†m(ξ)dξ

=:z+m,1(x, t) + z+m,2(x, t) + z+m,3(x, t),

(3.108)

where † notation stands for the transformed functions in the new variable. Note also

that, with this new variable, we have the following explicit representation for the
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roots of the characteristic equation (3.98):

λ†
1
(ξ) = iξ,

λ†
2
(ξ) =

−i(βξ − α) − √
3β2ξ2 − 2βαξ − α2 − 4βδ

2β
,

λ†
3
(ξ) =

−i(βξ − α) +
√

3β2ξ2 − 2βαξ − α2 − 4βδ

2β
.

(3.109)

(ii) Let α2 + 3βδ = 0. Then (3.104) does not hold for any k, l ∈ Z+, which implies the

eigenvalue problem (3.103) does not have a nontrivial solution for a pure imaginary

eigenvalue. Therefore Re(Aϕ, ϕ)2 < 0 and real parts of the all eigenvalues of the

operator A are strictly negative. On the other hand

s0 =
iα3

27β2

is the point where (3.98) assumes triple root (see Appendix B for details). Thus

the integrand of (3.102) is continuous for all r > 0 and we can shift the contour of

integration onto the imaginary axis, provided that we avoid s0 by a half-circular arc

to the right, denoted by C0
2
, with a radius ρ > 0 (see Figure 3.6 below). Defining

also C0
1

:=
(
s0 + iρ, i∞

)
and C0

3
:=

(
−i∞, s0 − iρ

)
,

Re(s)

Im(s)

C0
2s0

C0
3

C0
1

Figure 3.6. Integration path for the case α2 + 3βδ = 0.
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we can express (3.102) as

zm(x, t) =
1

2πi

3∑
j=1

∫
C0

1

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C0

2

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C0

3

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds.

(3.110)

Now let us consider changing variables as s = iω(ξ) = i(βξ3 − αξ2 − δξ) for the

first and the third integrals. For α2 + 3βδ = 0, note that ω(ξ) is nondecreasing and(
ξ0, s0

)
is the inflection point of ω(ξ), where recall that s = s0 is also the point for

which (3.98) assumes a tripple root. After some calculations, ξ0 can be obtained as

ξ0 =
α

3β
.

See Figure 3.7 for a graphical illustration. Hence for s ∈ C0
1

and s ∈ C0
3
, s = iω(ξ)

s = iω(ξ)

ξ0

s0

ξ

iIm(s)

Figure 3.7. Plot of transformation s = iω(ξ) when α2 + 3βδ = 0.

is injective. Let us denote their inverse images as
(
ξ0 + η0

1
,∞

)
and

(
−∞, ξ0 − η0

2

)
,
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respectively for some η0
1
, η0

2
> 0, that depend on ρ. Thus (3.110) becomes

zm(x, t) =
1

2πi

3∑
j=1

∫ ∞

ξ0+η0
1

eiω(ξ)t
Δ
†
j,m(ξ)

Δ†(ξ)
eλ
†
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃†m(ξ)dξ

+
1

2πi

3∑
j=1

∫
C+

2

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫ ξ0−η0
2

−∞
eiω(ξ)t

Δ
†
j,m(ξ)

Δ†(ξ)
eλ
†
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃∗m(ξ)dξ

=:z0
m,1(x, t) + z0

m,2(x, t) + z0
m,3(x, t),

(3.111)

where λ†j’s now become

λ†
1
(ξ) = iξ,

λ†
2
(ξ) =

−i(βξ − α) +
√

3β
∣∣∣ξ − ξ0

∣∣∣
2β

,

λ†
3
(ξ) =

−i(βξ − α) − √3β
∣∣∣ξ − ξ0

∣∣∣
2β

.

(3.112)

(iii) Let α2 + 3βδ < 0. Then (3.104) does not hold for any k, l ∈ Z+ and all eigenvalues

lie on the left half complex plane. On the other hand, there exits two values of s for

which (3.98) assumes double root. These values, say s−1 and s−2 with Re(s−1 ) > 0 >

Re(s−2 ) which are symmetric with respect to the imaginary axis (see Appendix B),

are also the branch points of the square root function

√
(s − s−

1
)(s − s−

2
),

where we choose the branch cut as
{
s ∈ C | Im(s) = Im(s−1 ),Re(s−2 ) < Re(s) < Re(s−1 )

}
.

Indeed changing variables as s = iIm(s−1 )+r and then performing some calculations,

roots of the characteristic equation (3.98) can be expressed as

λ†j(r) =
1

3β

(
iα − α

2 + 3βδ

Λ j(r)
+ Λ j(r)

)
,
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where

Λ j(r) = −3β

2

3 e
2πi j

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

√
r2 +

4(α2 + 3βδ)

729β4

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

3

, j = 1, 2, 3.

Now Re(s−1 ) and Re(s−2 ) are the zeros of the square root above.

In conclusion, what distinguishes this case from the previous cases is that, we have

now a zero of Δ(s) that lies on the right half complex plane which is the right end-

point of the branch cut. Therefore, to deform the integration path, we first shift the

vertical integration line to the left until we meet s−1 . Then we deform a part of the

path near s−1 by a half-circular arc to the right with a radius ρ > 0. Next we de-

form the rest of the integration path as, first by horizontal line segments to the left

starting from the end points of the arc through the imaginary axis and second con-

tinuing from the imaginary axis in the vertical direction towards (+i∞) and (−i∞),

respectively. See Figure 3.8 for the path deformation described here

Re(s)

Im(s)

Re(s−1 )

s−2

C−
5

C−4

C−3
C−2

C−1

Figure 3.8. Integration path for the case α2 + 3βδ < 0.
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Consequently, we can write (3.102) as

zm(x, t) =
1

2πi

3∑
j=1

∫
C−

1

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C−

2
∪C−

3
∪C−

4

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C−

5

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds.

(3.113)

Now let us apply change of variable s = iω(ξ) = i(βξ3 − αξ2 − δξ) for the first

and third integrals. Note that for α2 + 3βδ < 0, this mapping is strictly increasing

s = iω(ξ) is injective. The inverse image of Im(s−1 ) under the transformation ω(ξ)

is the point

ξ− =
α

3β
.

So the inverse images of C−1 and C−
5

are
(
ξ− + η−1 ,∞

)
and

(
−∞, ξ− − η−2

)
, respec-

tively, for some η−1 , η
−
2 > 0 that depend on ρ. See Figure 3.9.

s = iω(ξ)

ξ−

s−1

ξ

iIm(s)

Figure 3.9. Plot of transformation s = iω(ξ) when α2 + 3βδ < 0.
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Thus (3.113) becomes

zm(x, t) =
1

2πi

3∑
j=1

∫ ∞

ξ−+η−
1

eiω(ξ)t
Δ
†
j,m(ξ)

Δ†(ξ)
eλ
†
j (ξ)x(3β2ξ2 − 2αξ − δ)ψ̃†m(ξ)dξ

+
1

2πi

3∑
j=1

∫
C−

2
∪C−

3
∪C−

4

estΔ j,m(s)

Δ(s)
eλ j(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫ ξ−−η−
2

−∞
eiω(ξ)t

Δ
†
j,m(ξ)

Δ†(ξ)
eλ
†
j (ξ)x(3β2ξ2 − 2αξ − δ)ψ̃†m(ξ)dξ

=:z−m,1(x, t) + z−m,2(x, t) + z−m,3(x, t),

(3.114)

where λ†j’s are given by (3.109).

In what follows, we provide estimates for zm for each m, m = 1, 2, 3, respectively.

Note that for each solution representation (3.108), (3.111) and (3.114) associated to the

different cases of (α2+3βδ), second integrals are bounded on the corresponding integration

paths. Therefore, to obtain desired norm estimates for each zm, it is enough to study the

first and third integrals on their representations (3.108), (3.111) and (3.114), respectively.

For the sake of simplicity of the text, we denote those integrals as

Im(x, t) =
1

2πi

3∑
j=1

∫ ∞

γ1

eiω(ξ)t
Δ
†
j,m(ξ)

Δ†(ξ)
eλ
†
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃†m(ξ)dξ (3.115)

and

Jm(x, t) =
1

2πi

3∑
j=1

∫ γ2

−∞
eiω(ξ)t

Δ
†
j,m(ξ)

Δ†(ξ)
eλ
†
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃†m(ξ)dξ, (3.116)

where γ1 ∈
{
ξ+1 + η

+
1 , ξ

0 + η0
1
, ξ− + η−1

}
and γ2 ∈

{
ξ+2 + η

+
2 , ξ

0 + η0
2
, ξ− + η−2

}
.

Proof Let us start with the case m = 1 and let us first obtain large ξ asymptotic be-
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haviours of the ratios

∣∣∣∣∣Δ†j,1(ξ)

Δ†(ξ)

∣∣∣∣∣. Using the relation λ†
1
+ λ†

2
+ λ†

3
= iα

β
, we have

Δ†(ξ) = e
iαL
β

(
e−λ

†
1
(ξ)L(λ†

3
(s) − λ†

2
(ξ))

−e−λ
†
2
(ξ)L(λ†

3
(ξ) − λ†

1
(ξ)) + e−λ

†
3
(ξ)L(λ†

2
(ξ) − λ†

1
(ξ))

)
(3.117)

and

Δ
†
1,1(ξ) = e

iαL
β e−λ

†
1
(ξ)L

(
λ†

3
(ξ) − λ†

2
(ξ)

)
,

Δ
†
2,1(ξ) = e

iαL
β e−λ

†
2
(ξ)L

(
λ†

1
(ξ) − λ†

3
(ξ)

)
,

Δ
†
3,1(ξ) = e

iαL
β e−λ

†
3
(ξ)L

(
λ†

2
(ξ) − λ†

1
(ξ)

)
.

(3.118)

Using the roots of the characteristic equation (3.109) in the variable ξ, we obtain the

following large ξ asymptotics

∣∣∣∣∣∣∣
Δ
†
j,1(ξ)

Δ†(ξ)

∣∣∣∣∣∣∣ ∼
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
−

√
3ξL
2 , j = 1,

1, j = 2,

e−
√

3ξL, j = 3.

(3.119)

To show that the mapping x ∈ [0, L] → ‖∂xI1(x, ·)‖L2(0,T ) is continuous, let {xn} ⊂ [0, L]

be a sequence such that xn → x as n → ∞. Let us differentiate I1 with respect to its first

component and write

∂xI1(x, t) − ∂xI1(xn, t)

=
1

2πi

3∑
j=1

∫ ∞

γ1

eiω(ξ)tλ†j(ξ)
(
eλ
†
j (ξ)x − eλ

†
j (ξ)xn

) Δ†j,1(ξ)

Δ†(ξ)
ψ̃†

1
(ξ)dξ. (3.120)

Taking L2−norm in the second component and changing variables as μ = βξ3 − αξ2 − δξ
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to get

‖∂xI1(x, ·) − ∂xI1(xn, ·)‖2L2(0,T )

=

∥∥∥∥∥∥∥
3∑

j=1

1

2π

∫ ∞

γ1

eiω(ξ)tλ†j(ξ)
(
eλ
†
j (ξ)x − eλ

†
j (ξ)xn

) Δ†j,1(ξ)

Δ†(ξ)
(3βξ2 − 2αξ − δ)ψ̃†

1
(ξ)dξ

∥∥∥∥∥∥∥
2

L2(0,T )

�
3∑

j=1

∥∥∥∥∥∥∥
∫ ∞

ω(γ1)

eiμtλ†j(θ(μ))
(
eλ
†
j (θ(μ))x − eλ

†
j (θ(μ))xn

) Δ†j,1(θ(μ))

Δ†(θ(μ))
ψ̃†

1
(θ(μ))dμ

∥∥∥∥∥∥∥
2

L2(0,T )

,

(3.121)

where θ(μ) is the real solution of μ = βξ3 −αξ2 − δξ for γ1 < ξ < ∞ (recall that it exists as

μ = βξ3 − αξ2 − δξ is injective on its respective domain for each case of (α2 + 3βδ). See

Figure 3.5, Figure 3.7 and Figure 3.9.) Observe that the function

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
λ†j(θ(μ))

(
eλ
†
j (θ(μ))x − eλ

†
j (θ(μ))xn

) Δ†j,1(θ(μ))

Δ†(θ(μ))
ψ̃†

1
(θ(μ)), μ ∈ (ω(γ1),∞),

0, elsewhere,

is the Fourier transform of the function given by the integral on the last line of (3.121).

Therefore, using Plancherel’s theorem, we can write

‖∂xI1(x, ·) − ∂xI1(xn, t)‖2L2(0,T )
�

3∑
j=1

∫ ∞

ω(γ1)

∣∣∣∣∣∣∣λ†j(θ(μ))
(
eλ
†
j (θ(μ))x − eλ

†
j (θ(μ))xn

)2 Δ
†
j,1(θ(μ))

Δ†(θ(μ))
ψ̃†

1
(θ(μ))

∣∣∣∣∣∣∣
2

dμ (3.122)

for all x ∈ [0, L]. Changing variables back to ξ, we get

‖∂xI1(x, ·) − ∂xI1(xn, ·)‖2L2(0,T )
�

3∑
j=1

∫ ∞

γ1

|λ†j(ξ)|2
(
eλ
†
j (ξ)x − eλ

†
j (ξ)xn

)2
∣∣∣∣∣∣∣
Δ
†
j,1(ξ)

Δ†(ξ)

∣∣∣∣∣∣∣
2

(3βξ2 − 2αξ − δ) ∣∣∣ψ̃†
1
(ξ)

∣∣∣2 dξ. (3.123)
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Using (3.109) and (3.119), one can obtain the following asymptotic behaviours in ξ

|λ†j(ξ)|2
(
eλ
†
j (ξ)x − eλ

†
j (ξ)xn

)2
∣∣∣∣∣∣∣
Δ
†
j,1(ξ)

Δ†(ξ)

∣∣∣∣∣∣∣
2

�

|λ†j(ξ)|2 sup
x∈[0,L]

(
e2Re(λ†j (ξ))x

) ∣∣∣∣∣∣∣
Δ
†
j,1(ξ)

Δ†(ξ)

∣∣∣∣∣∣∣
2

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ2e−
√

3ξL, j = 1,

ξ2, j = 2,

ξ2e−
√

3ξL, j = 3.

(3.124)

Then, following from (3.123), we can write

‖∂xI1(x, ·) − ∂xI1(xn, ·)‖2L2(0,T )
�

∫ ∞

γ1

ξ2(3βξ2 − 2αξ − δ) ∣∣∣ψ̃†
1
(ξ)

∣∣∣2 dξ. (3.125)

Changing variables back to μ via the relation μ = βξ3 − αξ2 − δξ, we conclude

‖∂xI1(x, ·) − ∂xI1(xn, ·)‖2L2(0,T )
�
∫ ∞

γ1

ξ2(3βξ2 − 2αξ − δ) ∣∣∣ψ̃†
1
(ξ)

∣∣∣2 dξ

�
∫ ∞

ω(γ1)

(1 + μ2)
1
3

∣∣∣∣∣
∫ ∞

0

e−iμτψ1(τ)dτ
∣∣∣∣∣2 dμ

�‖ψ1‖2H1/3(0,T )
< ∞.

(3.126)

Hence, by the dominated convergence theorem

‖∂xI1(x, ·) − ∂xI1(xn, ·)‖2L2(0,T )
→ 0 as n→ ∞,

i.e., the mapping x ∈ [0, L]→ ‖∂xI1(x, ·)‖L2(0,T ) is continuous and

sup
x∈[0,L]

‖∂xI1(x, ·)‖L2(0,T ) � ‖ψ1‖2H1/3(0,T )

holds. Applying similar arguments yield the same result for J1, hence for z1 = z[ψ1, 0, 0].
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Regarding the solutions z2 = z[0, ψ2, 0] and z3 = z[0, 0, ψ3], we have

Δ
†
1,2(ξ) = λ†

2
(ξ)eλ

†
2
(ξ)L − λ†

3
(ξ)eλ

†
3
(ξ)L,

Δ
†
2,2(ξ) = λ†

3
(ξ)eλ

†
3
(ξ)L − λ†

1
(ξ)eλ

†
1
(ξ)L,

Δ
†
3,2(ξ) = λ†

1
(ξ)eλ

†
1
(ξ)L − λ†

2
(ξ)eλ

†
2
(ξ)L,

with large ξ asymptotics

∣∣∣∣∣∣∣
Δ
†
j,2(ξ)

Δ†(ξ)

∣∣∣∣∣∣∣ ∼
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, j = 1,

1, j = 2,

e−
√

3ξL
2 , j = 3,

and

Δ
†
1,3(ξ) = eλ

†
3
(ξ)L − eλ

†
2
(ξ)L,

Δ
†
2,3(ξ) = eλ

†
1
(ξ)L − eλ

†
3
(ξ)L,

Δ
†
3,3(ξ) = eλ

†
2
(ξ)L − eλ

†
1
(ξ)L,

with large ξ asymptotics

∣∣∣∣∣∣∣
Δ
†
j,3(ξ)

Δ†(ξ)

∣∣∣∣∣∣∣ ∼
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ−1, j = 1,

ξ−1, j = 2,

ξ−1e
−

√
3ξL
2 , j = 3,

respectively. Considering these changes and using similar arguments to those in (3.120)-

(3.125), one can also obtain the continuity of the mappings x ∈ [0, L]→ ‖∂xz2(x, ·)‖L2(0,T )

and x ∈ [0, L]→ ‖∂xz3(x, ·)‖L2(0,T ) with the time estimates

sup
x∈[0,L]

‖∂xy2(x, ·)‖L2(0,T ) � ‖ψ2‖2H1/3(0,T )
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and

sup
x∈[0,L]

‖∂xy3(x, ·)‖L2(0,T ) � ‖ψ3‖2L2(0,T )
,

respectively. �

Recall that the boundary conditions of the problem (3.72) are given by ψ1(t) =

−v(0, t) − y(0, t), ψ2(t) = −v(L, t) − y(L, t) and ψ3(t) = −vx(L, t) − yx(L, t). So to fulfill the

main purpose of this section, i.e., the validity of the estimates (3.68) and (3.69), we need

to show that these trace terms are uniformly bounded by ‖φ‖L2(0,L) and ‖ f ‖L1(0,T ;L2(0,L)), re-

spectively, on their respective norms. First, note that Lemma 3.5 and Lemma 3.6 directly

imply

‖∂xv(L, t)‖L2(0,T ) � (1 +
√

T )‖φ‖L2(0,L) (3.127)

and

‖∂xy(L, t)‖L2(0,T ) � (1 +
√

T )‖ f ‖L1(0,T ;L2(0,L)), (3.128)

respectively. Regarding the Dirichlet type boundary conditions, applying interpolation

argument for (3.78), we can write

‖v1(x, ·)‖H1/3(0,T ) � ‖φ∗‖L2(R), (3.129)

where recall that v := v1 + v2 is defined in (3.75) and v2 := v2− + v2+ is defined in (3.79).

Applying similar argument to those in (3.80)-(3.81), we can obtain that

‖v2−(x, ·)‖2H1/3(0,T )
≤‖v2−(x, ·)‖2H1/3(R)

=

∫ ∞

−∞
(1 + τ2)

1
3 |v̂2−(x, τ)|2dτ

≤
∫ ω(a)

−∞
(1 + τ2)

1
3 | |φ̂∗(ξ−(τ))|2
|3βξ2−(τ) − 2αξ−(τ) − δ|2 dτ.
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Changing variables as τ = ω−(ξ), it follows that

‖v2−(x, ·)‖2H1/3(0,T )
≤

∫ a

−∞

(
1 + ω2(ξ)

) 1
3 |φ̂∗(ξ)|2
|3βξ2 − 2αξ − δ|2 (3βξ2 − 2αξ − δ)dξ

�
∫ a

−∞

(
1 + ξ6

) 1
3 |φ̂∗(ξ)|2

3βξ2 − 2αξ − δdξ

�
∫ a

−∞
|φ̂∗(ξ)|2dξ ≤ ‖φ∗‖2L2(R)

.

(3.130)

‖v2+(x, ·)‖2H1/3(0,T )
� ‖φ∗‖2L2(R)

can be shown similarly. Combining this together with (3.129)

and (3.130), we deduce

‖v(x, ·)‖H1/3(0,T ) � ‖φ∗‖L2(R).

Continuity of the mapping x → ‖v(x, ·)‖H1/3(0,T ) can be shown by the dominated conver-

gence theorem. Hence we get

‖v(0, ·)‖H1/3(0,T ) � ‖φ∗‖L2(R) and ‖v(L, ·)‖H1/3(0,T ) � ‖φ∗‖L2(R). (3.131)

Regarding the solution y of (3.71), similar arguments also yield that x → ‖y(x, ·)‖H1/3(0,T )

is continuous and,

‖y(0, ·)‖H1/3(0,T ) � ‖ f ∗‖L1(0,T ;L2(R)) and ‖y(L, ·)‖H1/3(0,T ) � ‖ f ∗‖L1(0,T ;L2(R)), (3.132)

hold.

As a conclusion, using smoothing properties for the Cauchy problem (3.70) ob-

tained in Lemma 3.5, for the inhomogeneous initial-boundary value problem obtained in
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Lemma 3.6, together with trace results given by (3.131) and (3.132), we conclude that

sup
x∈[0,L]

‖∂xq(x, ·)‖L2(0,T ) ≤ sup
x∈[0,L]

∥∥∥∂x
[
S (·)φ∗(x)

]∥∥∥
L2(0,T )

+ sup
x∈[0,L]

∥∥∥∥∥∥∂x

[∫ ·

0

S R(· − τ) f ∗(x, τ)dτ
]∥∥∥∥∥∥

L2(0,T )

+ sup
x∈[0,L]

‖∂xz(x, ·)‖L2(0,T )

�(1 +
√

T )
(
‖φ∗‖L2(R) + ‖ f ∗‖L1(0,T ;L2(R))

)
+ ‖ψ1‖H1/3(0,T ) + ‖ψ2‖H1/3(0,T ) + ‖ψ3‖L2(0,T )

�(1 +
√

T )
(
‖φ∗‖L2(R) + ‖ f ∗‖L1(0,T ;L2(R))

)
.

Hence we obtain the following lemma, which summarizes the main results proved in this

section.

Lemma 3.8 Let T > 0, φ ∈ L2(0, L) and f ∈ L1(0,T ; L2(0, L)). Then the semigroup

{S (t)}t≥0 generated by the operator A given by (3.49) with domain (3.50) enjoys the fol-

lowing estimates

sup
x∈[0,L]

‖∂x[S (·)φ(x)]‖L2(0,T ) � (1 +
√

T )‖φ‖L2(0,L) (3.133)

and

sup
x∈[0,L]

∥∥∥∥∥∥∂x

[∫ ·

0

S (· − τ) f (x, τ)dτ
]∥∥∥∥∥∥

L2(0,T )

� (1 +
√

T )‖ f ‖L1(0,T ;L2(0,L)), (3.134)

respectively.

3.3.2. Local well-posedness

With the help of the estimates we derived in Section 3.3.1, now we prove existence

of a unique solution w of the target model (3.16) which is local in time. In view of what

we presented through (3.51)-(3.53), it suffices to prove existence of a fixed point of the
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operator

Ψ[w0, ϕ(t)] := S (t)w0 +

∫ t

0

S (t − τ)F(ϕ(τ))dτ (3.135)

defined on YT . This will be shown by applying Banach fixed point theorem below in

Proposition 3.2.

Proposition 3.2 Let T ′ > 0 and w0 ∈ L2(0, L). Then, there exists T ∈ (0,T ′) which is

independent of size of w0 such that (3.16) possesses a unique local solution w ∈ YT .

Proof Let us first show that Ψ maps YT into itself. To see this, first we can write from

(3.135) that

‖Ψ[w0, ϕ]‖YT ≤ ‖S (t)w0‖YT +

∥∥∥∥∥∥
∫ t

0

S (t − τ)Fϕ(τ)dτ

∥∥∥∥∥∥
YT

. (3.136)

Using the results in Lemma 3.4 and Lemma 3.8, the first term at the right hand side of

(3.136) can be estimated as

‖S (t)w0‖YT � (1 +
√

T )‖w0‖L2(0,L), (3.137)

and the second term at the right hand side of (3.136) can be estimated as

∥∥∥∥∥∥
∫ t

0

S (t − s)Fϕ(s)ds

∥∥∥∥∥∥
YT

�(1 +
√

T )‖ − rϕ + βky(·, 0)ϕx(0, ·)‖L1(0,T ;L2(0,L))

≤√T (1 +
√

T )
(
r‖ϕ‖L2(0,T ;L2(0,L))

+β‖ky(·, 0)‖L2(0,L)‖ϕx(0, ·)‖L2(0,T )

)
,

(3.138)

where we applied Cauchy-Schwarz inequality on the last line. Note that, ∂xϕ(0, ·) makes

sense in L2(0,T ) since ϕ ∈ YT . Therefore, it follows from (3.138) that

∥∥∥∥∥∥
∫ t

0

S (t − s)Fz(s)ds

∥∥∥∥∥∥
YT

≤ cβ,r
√

T (1 +
√

T )
(
1 + ‖ky(·, 0)‖L2(0,L)

)
‖ϕ‖YT . (3.139)

Combining (3.137) and (3.139), we see that Ψ maps YT into itself.

To see that Ψ is a strict contraction on YT , let ϕ1, ϕ2 ∈ YT and define w1 := Ψϕ1,
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w2 := Ψϕ2. Using the similar arguments as in (3.136)-(3.139), we can write

‖w2 − w1‖YT = ‖Ψϕ2 − Ψϕ1‖YT

≤ cβ,r
√

T (1 +
√

T )(1 + ‖k(·, 0)‖L2(0,L))‖ϕ2 − ϕ1‖YT .

In order for the map Ψ to be a strict contraction on YT , we choose T ∈ (0,T ′) such that

0 <
√

T (1 +
√

T ) <
(
cβ,r

(
1 + ‖k(·, 0)‖L2(0,L)

))−1
,

which is independent of the size of the initial datum. Now Banach fixed point theorem

guarantees that the operator (3.135) has a unique fixed point, i.e., for a given w0 ∈ L2(0, L)

and for some T ∈ (0,T ′), there exists a unique w ∈ YT such that w(t; w0) = Ψ[w0,w(t; w0)]

holds for all t ∈ [0,T ]. �

3.3.3. Global well-posedness

Proposition 3.2 given in the previous section provides an existence of a maximal

time, say Tmax with Tmax < T ′, so that unique solution exists in YT for all T < Tmax. In

order to show that w extends globally, i.e. Tmax can be taken arbitrarily large, it suffices to

prove that ‖w‖YT < ∞ as T → T−max. We prove this below in Proposition 3.3.

Proposition 3.3 Let w0 ∈ L2(0, L). Then solution w of (3.16) extends as a global solution

in YT .

Proof Multiplying the main equation of (3.16) by 2w in L2(0, L) and following the

arguments in (3.35)-(3.39), we can write

d
dt
‖w(·, t)‖2L2(0,L)

+ β|wx(0, t)|2 + 2r ‖w(·, t)‖2L2(0,L)

= 2βRe

∫ L

0

ky(x, 0)wx(0, t)w(x, t)dx. (3.140)

81



By using Cauchy’s inequality with ε > 0, right hand side of (3.140) can be estimated as

2βRe

∫ L

0

ky(x, 0)wx(0, t)w(x, t)dx ≤ β

2ε

∫ L

0

|ky(x, 0)|2|w(x, t)|2dx + 2εβL|wx(0, t)|2.

Choosing ε = 1
4L and then integrating both sides in the second component over (0, t),

(3.140) becomes

2‖w(·, t)‖2L2(0,L)
+ β

∫ t

0

|wx(0, τ)|2dτ

≤ 2‖w0‖2L2(0,L)
+ 4(βL‖ky(·, 0)‖2C∞([0,L]) − r)

∫ t

0

‖w(·, τ)‖2L2(0,L)
dτ. (3.141)

Define E(t) := 2‖w(·, t)‖2L2(0,L)
+ β

∫ t

0
|wx(0, τ)|2dτ. Then, from (3.141),

E(t) ≤ 2‖w0‖2L2(0,L)
+ 4

∣∣∣βL‖ky(·, 0)‖2C∞([0,L]) − r
∣∣∣ ∫ t

0

E(τ)dτ.

Applying Gronwall’s inequality, we obtain

E(t) = 2‖w(·, t)‖2L2(0,L)
+ β

∫ t

0

|wx(0, τ)|2dτ ≤ 2‖w0‖2L2(0,L)
e4

∣∣∣∣βL‖ky(·,0)‖2C∞([0,L])
−r

∣∣∣∣t, (3.142)

for all t ∈ [0,T ]. Passing to supremum on [0,T ] and then letting T → T−max, we get

lim
T→Tmax

‖w‖C([0,T ];L2(0,L)) ≤ ‖w0‖L2(0,L)e
2
∣∣∣∣βL‖ky(·,0)‖2C∞([0,L])

−r
∣∣∣∣Tmax < ∞. (3.143)

Using

sup
0≤t≤T
‖w(·, t)‖2L2(0,L)

≥ 1

T
‖w‖2L2(0,T ;L2(0,L))

(3.144)

and then letting T → T−max, we also get

lim
T→T−max

‖w‖L2(0,T ;L2(0,L)) ≤
√

Tmax‖w0‖L2(0,L)e
2
∣∣∣∣βL‖ky(·,0)‖2C∞([0,L])

−r
∣∣∣∣Tmax . (3.145)
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Next, we multiply the main equation by 2xw, integrate over (0, t) × (0, L) and

applying the arguments (3.60)-(3.64)

∫ L

0

x|w(x, t)|2dx + 3β

∫ t

0

∫ L

0

|wx(x, τ)|2dxdτ + 2r
∫ L

0

x|w(x, t)|2dx

=

∫ L

0

x|w0(x)|2dx + δ
∫ t

0

∫ L

0

|w(x, τ)|2dxdτ

+ 2β

∫ t

0

∫ L

0

xky(x, 0)wx(0, τ)w(x, τ)dxdτ.

(3.146)

Using Cauchy-Schwarz inequality, the last term at the right hand side of (3.146) can be

estimated as

2β

∫ t

0

∫ L

0

xky(x, 0)(x)wx(0, τ)y(x, τ)dxdτ

≤2βL
∫ t

0

∫ L

0

|ky(x, 0)||wx(0, τ)||w(x, τ)|dxdτ

≤βL2‖ky(·, 0)‖2C∞([0,L])

∫ t

0

|wx(0, τ)|2dτ + βL
∫ t

0

∫ L

0

|w(x, τ)|2dxdτ.

(3.147)

Dropping the first and third terms at the left hand side of (3.146), and using the estimate

(3.147), it follows that

‖wx‖2L2(0,t;L2(0,L))

≤ L
3β
‖w0‖2L2(0,L)

+
βL + δ

3β

∫ t

0

∫ L

0

|w(x, τ)|2dxdτ +
L2‖ky(·, 0)‖2C∞([0,L])

3

∫ t

0

|yx(0, τ)|2dτ

≤ L
3β
‖w0‖2L2(0,L)

+

⎛⎜⎜⎜⎜⎜⎝βL + δ
6β

+
L2‖ky(·, 0)‖2C∞([0,L])

3β

⎞⎟⎟⎟⎟⎟⎠
∫ t

0

E(τ)dτ.

Passing to limit T → Tmax− and using (3.142), we get

lim
T→Tmax

‖wx‖L2(0,T ;L2(0,L)) ≤
√

L
3β
‖w0‖L2(0,L)

+

⎛⎜⎜⎜⎜⎜⎜⎝
√
βL + δ

6β
+

L‖ky(·, 0)‖C∞([0,L])√
3β

⎞⎟⎟⎟⎟⎟⎟⎠ √
2Tmax‖w0‖L2(0,L)e

2
∣∣∣∣βL‖ky(·,0)‖2C∞([0,L])

−r
∣∣∣∣Tmax . (3.148)
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Combining the limits (3.145) and (3.148), we deduce that

lim
T→T−max

‖w‖L2(0,T ;H1(0,L)) ≤
√

L
3β
‖w0‖L2(0,L) +

⎛⎜⎜⎜⎜⎜⎜⎝1 +
√
βL + δ

6β
+

L‖ky(·, 0)‖C∞([0,L])√
3β

⎞⎟⎟⎟⎟⎟⎟⎠
× √

2Tmax‖w0‖L2(0,L)e
2
∣∣∣∣βL‖ky(·,0)‖2C∞([0,L])

−r
∣∣∣∣Tmax < ∞. (3.149)

As a last step, recall from Proposition 3.2 that w is the unique fixed point of the

operator (3.135). So it satisfies

w(·, t) = S (t)w0 +

∫ t

0

S (t − τ)F(w(·, τ))dτ

for some t ∈ (0,T ′). From Lemma 3.8, we can write

sup
x∈[0,L]

‖∂xw(x, ·)‖L2(0,T ) ≤ sup
x∈[0,L]

∥∥∥∥∥S (·)w0 +

∫ ·

0

S (· − τ)[Fw](τ)dτ
∥∥∥∥∥

L2(0,T )

� (1 +
√

T )

(
‖w0‖L2(0,L) +

∫ T

0

‖[Fw](·, t)‖L2(0,L)dt
)
.

(3.150)

Using the definition of Fw, right hand side of (3.150) can be estimated as

∫ T

0

‖[Fw](·, t)‖L2(0,L)dt ≤r
∫ T

0

‖w(·, t)‖L2(0,L)dt + β‖k(·, 0)‖L2(0,L)

∫ T

0

|wx(0, t)|dt

≤ r
2

∫ T

0

√
E(t)dt +

√
Tβ‖k(·, 0)‖L2(0,L)

√
E(t)

≤
(Tr

2
+

√
Tβ‖k(·, 0)‖L2(0,L)

)
× √2‖w0‖L2(0,L)e

2
∣∣∣∣βL‖ky(·,0)‖2C∞([0,L])

−r
∣∣∣∣T .

(3.151)

Finally using (3.150)-(3.151)

lim
T→T−max

‖wx‖C([0,L];L2(0,T )) � (1 +
√

Tmax)‖w0‖L2(0,L) + (1 +
√

Tmax)

×
(Tmaxr

2
+

√
Tmaxβ‖k(·, 0)‖L2(0,L)

) √
2‖w0‖L2(0,L)e

2
∣∣∣∣βL‖ky(·,0)‖2C∞([0,L])

−r
∣∣∣∣Tmax < ∞.
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This completes the proof. �

3.3.4. Higher regularity

In this section, we prove that if w0 ∈ D(A), where the operator A and its domain

D(A) are defined by (3.49) and (3.50), respectively, then the global solution w of (3.16)

enjoys higher regularity.

Proposition 3.4 Let w0 ∈ D(A). Then the global solution w ∈ Y0
T of (3.16) also belongs

to X3
T .

Proof Assume v solves the linear model below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ivt + iβvxxx + αvxx + iδvx + irv = iβky(x, 0)vx(0, t), (x, t) ∈ (0, L) × (0,T ),

v(0, t) = v(L, t) = vx(L, t) = 0, t ∈ (0,T ),

v(x, 0) = v0(x), x ∈ (0, L),

(3.152)

where v0 is set as v0 := −βw′′′0 + iαw′′0 − δw′0 − rw0 + βky(·, 0)w′0(0). Assume also that

v0 ∈ L2(0, L). Then from Proposition 3.2 and Proposition 3.3, v ∈ Y0
T . Set w(x, t) :=

w0(x) +
∫ t

0
v(x, τ)dτ. Then, w satisfies the initial condition

w(x, 0) = w0(x) (3.153)

and noting that w0 ∈ D(A), w also satisfies the homogeneous boundary conditions

w(0, t) = w0(0) +

∫ t

0

v(0, τ)dτ = w0(x) + w(0, t) − w(0, 0) = 0,

w(L, t) = w0(L) +

∫ t

0

v(L, τ)dτ = w0(L) + w(L, t) − w(L, 0) = 0,

wx(L, t) = w′0(L) +

∫ t

0

vx(L, τ)dτ = w′0(L) + wx(L, t) − wx(L, 0) = 0.

(3.154)

Moreover from w(x, t) = w0(x) +
∫ t

0
v(x, τ)dτ, we see that w satisfies the main equation of
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(3.16)

(iwt + iβwxxx + αwxx + iδwx + irw) (x, t) − iβky(x, 0)wx(0, t))

=iv(x, t) + iβw′′′0 (x) + αw′′0 (x) + iδw′0(x) + irw0(x) − iβky(x, 0)w′0(0)

+

∫ t

0

(
(iβvxxx + αvxx + iδvx + irv)(x, τ) − iβky(x, 0)vx(0, t)

)
dτ

=iv(x, t) + iβw′′′0 (x) + αw′′0 (x) + iδw′0(x) + irw0(x) − iβky(x, 0)w′0(0)

−
∫ t

0

ivt(x, τ)dτ

=iv(x, t) + iβw′′′0 (x) + αw′′0 (x) + iδw′0(x) + irw0(x) − iβky(x, 0)w′0(0)

− iv(x, t) + iv(x, 0) = 0.

(3.155)

Thus w, defined by w(x, t) = w0(x) +
∫ t

0
v(x, τ)dτ, solves the model (3.16). Now from the

main equation, we have

iβwxxx(x, t) = (−iv − αwxx − iδwx − irw)(x, t) + iβky(x, 0)wx(0, t). (3.156)

Since wx(L, t) = 0, we can write wx(0, t) = −
∫ L

0
wxx(x, t)dx. Using this and taking

L2−norms of both sides of (3.156) on (0, L), we get

β2‖wxxx(·, t)‖2L2(0,L)
≤ ‖v(·, t)‖2L2(0,L)

+
(
α2 + β2‖ky(·, 0)‖2L2(0,L)

)
‖wxx(·, t)‖2L2(0,L)

+ δ2‖wx(·, t)‖2L2(0,L)
+ r2‖w(·, t)‖2L2(0,L)

. (3.157)

Applying Gagliardo-Nirenberg interpolation inequality and then Cauchy’s inequality with

ε > 0 to the second term at the right hand side of

‖wxx(·, t)‖2L2(0,L)
≤ ‖wxxx(·, t)‖

4
3

L2(0,L)
‖w(·, t)‖ 2

3

L2(0,L)

≤ ε‖wxxx(·, t)‖2L2(0,L)
+ cε‖w(·, t)‖2L2(0,L)

.
(3.158)
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Similarly, the third term can be estimated as

‖wx(·, t)‖2L2(0,L)
≤ ‖yxxx(·, t)‖

2
3

L2(0,L)
‖y(·, t)‖ 4

3

L2(0,L)

≤ ε‖wxxx(·, t)‖2L2(0,L)
+ cε‖w(·, t)‖2L2(0,L)

.
(3.159)

Employing the estimates (3.158)-(3.159) on (3.157) and choosing ε > 0 sufficiently small,

we can write

‖wxxx(·, t)‖2L2(0,L)
� ‖v(·, t)‖2L2(0,L)

+ ‖w(·, t)‖2L2(0,L)
. (3.160)

Passing to supremum in t over [0,T ] and using the fact that the right hand side of (3.160)

belongs to C([0,T ], L2(0, L)), we get w ∈ C([0,T ]; H3(0, L)).

Next, we differentiate the main equation of (3.156) in the first component and

taking L2−norms of both sides on (0, L), we get

β2‖wxxxx(·, t)‖2L2(0,L)
≤ ‖vx(·, t)‖2L2(0,L)

+ α2‖wxxx(·, t)‖2L2(0,L)

+
(
δ2 + β2‖kyx(·, 0)‖2L2(0,L)

)
‖wxx(·, t)‖2L2(0,L)

+ r2‖wx(·, t)‖2L2(0,L)
. (3.161)

Applying Gagliardo–Nirenberg interpolation inequality, Cauchy’s inequality with ε > 0

and Poincaré inequality, the second term at the right hand side of (3.161) can be estimated

as

‖wxxx(·, t)‖2L2(0,L)
≤ ‖wxxxx(·, t)‖

3
2

L2(0,L)
‖w(·, t)‖ 1

2

L2(0,L)

≤ ε‖wxxxx(·, t)‖2L2(0,L)
+ cε‖w(·, t)‖2L2(0,L)

≤ ε‖wxxxx(·, t)‖2L2(0,L)
+ cε,L‖wx(·, t)‖2L2(0,L)

.

(3.162)

Similarly, the third term of (3.161) can be estimated as

‖wxx(·, t)‖2L2(0,L)
≤ ‖wxxxx(·, t)‖L2(0,L)‖w(·, t)‖L2(0,L)

≤ ε‖wxxxx(·, t)‖2L2(0,L)
+ cε‖w(·, t)‖2L2(0,L)

≤ ε‖wxxxx(·, t)‖2L2(0,L)
+ cε,L‖wx(·, t)‖2L2(0,L)

.

(3.163)
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Using (3.162)-(3.163) on (3.161) and choosing ε > 0 sufficiently small, we get

‖wxxxx(·, t)‖2L2(0,L)
� ‖vx(·, t)‖2L2(0,L)

+ ‖wx(·, t)‖2L2(0,L)
. (3.164)

Right hand side belongs to L2(0,T ), so taking L2−norms of both sides in the second

component yields w ∈ L2(0,T ; H4(0, L)). Hence w ∈ X3
T . �

Global well-posedness and higher regularity results of the original plant (3.8) fol-

lows from the calculations similar to those in (3.45)-(3.47) which relies on the invertibiliy

of the backstepping transformation on Hl(0, L) → Hl(0, L) and smoothness of the back-

stepping kernel. Hence we have the following well-posedness and exponential stabiliza-

tion result.

Theorem 3.1 Let T, L, β > 0, α, δ ∈ R, u0 ∈ L2(0, L). Assume that the right endpoint

feedback controllers are given by

h0(t) =
∫ L

0

k(L, y; r)u(y, t)dy, h1(t) =
∫ L

0

kx(L, y; r)u(y, t)dy, (3.165)

where k be a smooth backstepping kernel solving (3.14). Then, we have the following:

(i) (Well-posedness) (3.8) possesses a unique solution u ∈ Y0
T .

(ii) (Higher regularity) If u0 ∈ H3(0, L) be such that w0 = (I − Υk)u0 ∈ D(A), then the

unique solution in (i) also enjoys u ∈ X3
T .

(iii) (Stabilization) There exists r > 0 such that

λ = β

⎛⎜⎜⎜⎜⎜⎝ r
β
−
‖ky(·, 0; r)‖2L2(0,L)

2

⎞⎟⎟⎟⎟⎟⎠ > 0.

For such r, zero equilibrium of the closed-loop system (3.8) under the influence of

the controllers (3.165) is exponentially stable. Moreover solution u of the closed-

loop system satisfies the following decay estimate

‖u(·, t)‖L2(0,L) ≤ ck‖u0‖L2(0,L)e−λt, ∀t ≥ 0,
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where ck is a nonnegative constant which depends on k and independent of u0.

Remark 3.3 The reason why we in particular mention L > 0 in the statement of above

theorem is that, stabilization result (as well as the well-posedness) holds for any choice

of L > 0, i.e., the zero equilibrium to the closed-loop system is exponentially stable either

in the case of set of critical length of intervals or in the case of noncritical ones.

3.4. Numerical simulations

In this part, we present our numerical algorithm and simulations verifying our

theoretical stabilization result. Let us first describe our numerical algorithm in three steps.

We first obtain an approximation for the backstepping kernel k by solving the integral

equation (3.19). Then we solve the modified target equation (3.16) numerically. As a

third and final step, we use the invertibility of the backstepping transformation and end

up with a numerical approximation to the original plant. Details are given in the below.

Step i. We solve the integral equation

G j+1(x̄, ȳ) =
r

3β
x̄ȳ +

∫ ȳ

0

∫ x̄

0

∫ ω

0

[DG j](ξ, η)dξdωdη, j = 1, 2, . . . ,

iteratively, where (DG) is given by (3.18) and the iteration is initialized with

G1(x̄, ȳ) =
r

3β
x̄ȳ.

Notice that, since the iteration starts with a polynomial, the result of the each step

yields again a polynomial. Thus, here, we utilize that summation and multiplication

with a scalar of polynomials, their differentiation and integration can be carried out

easily by simple algebraic operations. To perform these operations computationally,
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we express a given n−th degree polynomial with complex coefficients, say

P(x̄, ȳ) =α0,0 + α1,0 x̄ + α0,1ȳ + α2,0 x̄2 + α1,1 x̄ȳ + α0,2ȳ2 + · · ·
+ αn,0 x̄n + αn−1,1 x̄n−1ȳ + αn−2,2 x̄n−2ȳ2 + · · · + α0,nȳn,

(3.166)

in a more convenient form as

[P] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0,0 α0,1 · · · α0,n−1 α0,n

α1,0 α1,1 · · · α1,n−1

...
...

...

αn−1,0 αn−1,1 0
αn,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.167)

Once we introduce this matrix representation [P] of P in our algorithm, then it is

easy to perform summation and scalar multiplication. Moreover, using the elemen-

tary row and column operations, one can perform the differentiation and integration

operations. For instance multiplying the j−th row of [P] by j− 1, writing the result

to the ( j− 1)−th row and repeating this process for each j, j = 2, 3, . . . , n+ 1 yields

the matrix representation, [Px̄], of Px̄(x̄, ȳ). Similarly, multiplying the j−th row of

[P] by 1/ j, writing the result to the ( j + 1)−th row, repeating this process for each

j, j = 1, 2, . . . , n + 1 and filling the first row by a zero vector yields
[∫ x̄

0
Pdx̄

]
. Dif-

ferentiation and integration with respect to ȳ can be done by performing analogous

column operations.

Step ii. Let us consider the uniform discretization of [0, L] with the set of M node points

{xm}Mm=1, M > 3, where xm = (m − 1)hx and hx =
L

M−1
is the the uniform spatial grid

spacing. Let us introduce the following finite dimensional vector space

XM :=
{
w = [w1 · · ·wM]T ∈ CM

}
,
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where each w ∈ XM satisfies

w1(t) = wM(t) = 0, (3.168)

wM−2(t) − 4wM−1(t) + 3wM(t)
2hx

= 0, (3.169)

for t > 0. Here, wm(t) is an approximation to w(x, t) at the point x = xm and,

(3.168) and (3.169) correspond to Dirichlet and Neumann type boundary condi-

tions, respectively. Consider the standard forward and backward difference oper-

ators Δ+ : XM → XM and Δ− : XM → XM, respectively and let us introduce the

following finite difference operators on XM:

Δ :=
1

2
(Δ+ + Δ−) , Δ2 := Δ+Δ−, Δ3 := Δ+Δ+Δ−. (3.170)

Next assume N be a positive integer, T be the final time and consider the nodal

points in time axis tn = (n − 1)k, where n = 1, . . . ,N is time index and ht =
T

N−1

is the time step size. Let wn = [wn
1 · · ·wn

m]T be an approximation of the solution

at the n-th time step where wn
m is an approximation to w(x, t) at the point (xm, tn).

Discretizing (3.16) in space by using the finite difference operators (3.170) and in

time by using Crank–Nicolson time stepping, we end up with the discrete problem:

Given wn ∈ XM, find wn+1 ∈ XM such that

(
IM +

ht

2
A − βht

2
KM

y Γ
1,M
0

)
wn+1 = Fwn, n = 1, 2, . . . ,N. (3.171)

Here IM is the identity matrix on XM, A is defined as

A := βΔ3 − iαΔ2 + δΔ + rIM, (3.172)

KM
y is an M × M diagonal matrix, where each element on the diagonal consists of

the elements of the form ky(xm, 0), m = 1, . . . ,M, and ky(x, 0) is obtained exactly in

the previous step, Γ1,M
0

is a discrete counterpart of the trace operator Γ1
0 and given
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by an M × M matrix

Γ1,M
0
=

1

2hx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 4 −1 0 · · · 0

−3 4 −1 0 · · · 0
...

...
...

...
. . .

...

−3 4 −1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.173)

and

F := IM − ht

2
A +

βht

2
KM

y Γ
1,M
0
.

Note that the nonzero elements in the matrix Γ1,M
0

given in (3.173) are due to the

one–sided second order finite difference approximation to the first order derivative

at the point x = 0.

Step iii. In this final step, we find the inverse image, u, of w under the backstepping trans-

formation: Given w, we find u by using succession method. More precisely, we

set v := Υku, therefore we obtain u = v + w and substitute u by (v + w) on the

backstepping transformation

w(x, t) = u(x, t) −
∫ x

0

k(x, y)u(y, t)dy

to get

v(x, t) =
∫ x

0

k(x, y)w(y, t)dy +
∫ x

0

k(x, y)v(y, t)dy.

Now given w obtained numerically in the previous step, we solve this equation

successively for v. Using the numerical results for w and v on u = v + w, we obtain

an approximation for u.

Let us present a numerical simulation that verifies our exponential decay results.

We take M = 1001 spatial nodes, N = 5001 time steps. The iteration for the backstepping

kernel is performed j = 27 times so that the error is around

max
(x̄,ȳ)∈Δx̄,ȳ

∣∣∣G j+1 −G j
∣∣∣ ∼ 10−14.

92



We consider the following model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut + iuxxx + 2uxx + 8iux = 0, (x, t) ∈ (0, π) × (0,T ),

u(0, t) = 0, u(π, t) = h0(t), ux(π, t) = h1(t), t ∈ (0,T ),

u(x, 0) = 3 − e4ix − 2e−2ix, x ∈ (0, L).

(3.174)

Note that the interval length π belongs to set of critical length of intervals and in the ab-

sence of controllers, i.e. h0(t) ≡ h1(t) ≡ 0, the initial state u(x, 0) = 3 − e4ix − 2e−2ix does

not vary in time, i.e., u(x, t) = 3 − e4ix − 2e−2ix is the time independent solution. Let us

choose r = 0.05, which yields a positive exponent value λ, defined in Theorem 3.1. Fol-

lowing figures show the behaviour of the solution and the evolution of its L2(0, L)−norm

in time.

Figure 3.10. Numerical simulations in the presence of controllers. Left: Time evolution

of |u(x, t)|. Right: Time evolution of ‖u(·, t)‖L2(0,L).
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CHAPTER 4

OBSERVER DESIGN FOR HIGHER-ORDER

SCHRÖDINGER EQUATION

Designing feedback type controllers requires the measurement of the state at each

point of the spatial domain. In this chapter, we consider the case where fully measurement

of the state of model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut + iβuxxx + αuxx + iδux = 0, (x, t) ∈ (0, L) × (0,T ),

u(0, t) = 0, u(L, t) = h0(t), ux(L, t) = h1(t), t ∈ (0,T ),

u(x, 0) = u0(x), x ∈ (0, L),

(4.1)

across the domain at any instant, in particular for t = 0, is not available. Therefore, in this

case, it is not possible to construct a feedback type controller. However, we assume that

first and second order boundary traces y1(t) = ux(0, t) and y2(t) = uxx(0, t), are known,

say detectable through boundary sensors. Our purpose is to construct an observer model

involving y1, y2, so that its state is used to construct boundary controllers h0, h1. Note

that these controllers are imposed at the right endpoint of the spatial domain. So the

issue related with right endpoint controllers that we discussed in Section 3.1.2 exists here

as well. So in Section 4.1, we apply similar modification on the classical backstepping

strategy that we proposed in Section 3.1.3, in order to overcome this issue and introduce

our scheme. In Section 4.2 and Section 4.3 we study stabilization of zero equilibrium

and well-posedness of (4.1), respectively. Finally, in Section 4.4, we present a numerical

simulation that verifies our theoretical exponential decay result.

The results in this chapter were published in a part of our study (Özsarı and

Yılmaz, 2022).
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4.1. Observer design by the backstepping strategy

Let us recall the observer model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iût + iβûxxx + αûxx + iδûx − p1(x)(y1(t) − ûx(0, t))

−p2(x)(y2(t) − ûxx(0, t)) = 0, (x, t) ∈ (0, L) × (0,T ),

û(0, t) = 0, û(L, t) = h0(t), ûx(L, t) = h1(t), t ∈ (0,T ),

û(x, 0) = û0(x), x ∈ (0, L),

(4.2)

where p1, p2 are called observer gains and h0, h1 are controllers which are currently un-

known. Our first purpose is to obtain observer gains which ensures that u(·, t)− û(·, t)→ 0

as t → ∞ uniformly. To this end, let us first define the state error ũ := u− û, and introduce

the error model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iũt + iβũxxx + αũxx + iδũx + p1(x)ũx(0, t)

+p2(x)ũxx(0, t) = 0, (x, t) ∈ (0, L) × (0,T ),

ũ(0, t) = ũ(L, t) = ũx(L, t) = 0, t ∈ (0,T ),

ũ(x, 0) = ũ0(x), x ∈ (0, L).

(4.3)

So, it suffices to find p1, p2, which ensures that all solutions of (4.3) decays exponentially

to zero. This can be done by treating p1 and p2 as control inputs and suitably construct

them via the backstepping technique. However, the issue we addressed in Section 3.1.2,

which is related with the position of the controllers still exists. More precisely, let us

consider the backstepping transformation

ũ(x, t) = w̃(x, t) −
∫ x

0

�(x, y)w̃(y, t)dy, (4.4)
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and the target error model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iw̃t + iβw̃xxx + αw̃xx + iδw̃x + irw̃ = 0, (x, t) ∈ (0, L) × (0,T ),

w̃(0, t) = w̃(L, t) = w̃x(L, t) = 0, t ∈ (0,T ),

w̃(x, 0) = w̃0(x), x ∈ (0, L).

(4.5)

Note that thanks to the weakly damping term irw̃ in the main equation of (4.5) and homo-

geneous boundary conditions, it is easy task to show that all solutions decay exponentially

to zero. Now if the backstepping kernel � satisfies the following boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(�xxx + �yyy) − iα(�xx − �yy) + δ(�x + �y) − r� = 0, (x, y) ∈ Δx,y,

�(x, x) = �(L, y) = �x(L, y) = 0, x ∈ [0, L],

�x(x, x) = r
3β

(L − x), x ∈ [0, L],

(4.6)

where Δx,y =
{
(x, y) ∈ R2 | y ∈ (0, x), x ∈ (0, L)

}
together with the observer gains p1(x) =

iβ�y(x, 0) − α�(x, 0) and p2(x) = −iβ�(x, 0), then the transformation (4.4) maps the error

model (4.3) to the target error model (4.5) (see Appendix A.2 for detailed calculations).

Changing variables as x̄ = L− x, ȳ = x− y and defining H(x̄, ȳ) ≡ �(x, y), one can see that

the resulting boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(Hx̄x̄x̄ + Hȳȳȳ) − iα(Hx̄x̄ − Hȳȳ) + δ(Hx̄ + Hȳ) − rH = 0, (x, y) ∈ Δx,y,

H(x̄, x̄) = H(x̄, 0) = Hx̄(0, ȳ) = 0, x ∈ [0, L],

Hx̄(x̄, x̄) = rx̄
3β
, x ∈ [0, L],

(4.7)

where Δx,y =
{
(x̄, ȳ) ∈ R2 | ȳ ∈ (0, L − x̄), x̄ ∈ (0, L)

}
, is overdetermined in the sense that

there is a mismatch between the boundary conditions:

0 = Hx̄ȳ(0, 0) � Hȳx̄(0, 0) =
r

3β
.
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This implies that, there does not exist a smooth function that solves (4.7). Following a

similar approach as in Section 3.1.3, we shall consider disregarding one boundary condi-

tion, here �x(L, y) = 0, and take r > 0 sufficiently small. Then, the corrected version of

the backstepping kernel model (4.10) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(�∗xxx + �
∗
yyy) − iα(�∗xx − �yy) + δ(�

∗
x + �

∗
y) − r�∗ = 0, (x, y) ∈ Δx,y,

�∗(x, x) = �∗(L, y) = 0, x ∈ [0, L],

�∗x(x, x) = r
3β

(L − x), x ∈ [0, L].

(4.8)

Now if we use the backstepping transformation, calling it �∗−transformation,

ũ(x, t) = w̃∗(x, t) −
∫ x

0

�∗(x, y)w̃∗(y, t)dy, (4.9)

where �∗ solves the modified model (4.8), then the corresponding target error model for

(4.3) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iw̃∗t + iβw̃∗xxx + αw̃∗xx + iδw̃∗x + irw̃∗ = 0, (x, t) ∈ (0, L) × (0,T ),

w̃∗(0, t) = w̃∗(L, t) = 0, w̃∗x(L, t) =
∫ L

0
�∗x(L, y)w̃∗(y, t)dy, t ∈ (0,T ),

w̃∗(x, 0) = w̃∗0(x), x ∈ (0, L).

(4.10)

Notice that the inhomogeneous Neumann type boundary condition in (4.10) is occured

due to disregarding the condition �x(L, y) = 0. Nevertheless, we prove in Proposition 4.1

and Proposition 4.2 that, we still have the exponential decay of solutions of (4.10) pro-

vided that r is sufficiently small. Once we show a smooth backstepping kernel �∗ and

invertibility of backstepping transformation, we deduce that all solutions of error model

(4.3) decay to zero exponentially in time, i.e., state of the observer model approaches to

the state of the original plant exponentially in time. These are proved in Section 4.2.1.

Next, we also apply backstepping strategy to construct boundary controllers h0,

h1 to gain exponential stabilization of zero equilibrium of the observer (4.2). Due to the

same issues regarding the right endpoint controllers, we use the modified backstepping
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transformation

ŵ∗(x, t) = û(x, t) −
∫ x

0

k∗(x, y)û(y, t)dy, (4.11)

which we call k∗−transformation, where k∗ solves the modified backstepping kernel model

(3.14) we introduce in Section 3.1.3. Recall that this modification yields a trace term, that

shows up in the main equation of associated target model. Therefore the modified target

observer model also involves a trace term on its main equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iŵ∗t + iβŵ∗xxx + αŵ∗xx + iδŵ∗x + irŵ∗ = iβk∗y(x, 0)ŵ∗x(0, t)

+[(I − Υk∗)p1](x)w̃∗x(0, t) + [(I − Υk∗)p2](x)w̃∗xx(0, t), (x, t) ∈ (0, L) × (0,T ),

ŵ∗(0, t) = ŵ∗(L, t) = ŵ∗x(L, t) = 0, t ∈ (0,T ),

ŵ∗(x, 0) = ŵ∗0(x) := û0(x) − ∫ x

0
k∗(x, y)û(y, t)dy, x ∈ (0, L).

(4.12)

Nevertheless, assuming that r > 0 is sufficiently small, we prove that zero equilibrium

of (4.12) is exponentially stable. By invertibility of k∗−transformation with a bounded

inverse, we deduce exponential stabilization of zero equilibrium of observer model (4.2).

These will be proved in Section 4.2.2.

See Figure 4.1 for a graphical illustration of the observer design problem by mod-

ified backstepping strategy.

Throughout the following sections, we drop the superscript notation (·)∗ and sim-

ply write k, p, w̃, ŵ but refering to their modified versions in the above sense.

4.2. Exponential stabilization of zero equilibrium

In this part, we obtain exponential decay of solutions for the plant–observer–error

system. This is done by first obtaining decay estimates for solutions of the target error

model (4.10) and then for the target observer model (4.12). Bounded invertibility of

�−transformation and k−transformation, respectively, yield that the same decay results are

also true for error (4.3) and observer models (4.2). Consequently, we obtain exponential

stability of zero equilibrium of the original plant (4.1) along with the output feedback
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Plant

State variable u(x, t)

Observer

State variable û(x, t)

Error

State variable ũ(x, t)

ũ
:=

u
−û

Modified target error

with a Neumann BC

State variable w̃∗(x, t)

�∗− transformation

Inverse transformation

Modified target observer

with a trace term

State variable ŵ∗(x, t)

k∗−transformation

Inverse transformaton

Figure 4.1. Modified backstepping scheme for observer design.

controllers

h0(t) =
∫ L

0

k(L, y)û(y, t)dy, h1(t) =
∫ L

0

kx(L, y)û(y, t)dy, (4.13)

where k solves (3.14).

4.2.1. Error model

Our first task is to show that backstepping kernel � is a smooth function. To this

end, consider changing variables as ξ = L − y and η = L − x on (4.8). Then Δx,y maps to
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the same triangular region and the function P = P(ξ, η) defined by P(ξ, η) ≡ �(x, y) solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(Pξξξ + Pηηη) − iα(Pξξ − Pηη) + δ(Pξ + Pη) − rP = 0,

P(ξ, ξ) = P(ξ, 0) = 0,

Pξ(ξ, ξ) = − rξ
3β
.

Observe that this model is exactly the same model given we obtained in (3.14), except

that r is replaced by (−r). Therefore, we find out that solution k of (3.14) is related with

solution � of (4.8) via

�(x, y) = P(ξ, η) = k(ξ, η;−r) = k(L − y, L − x;−r). (4.14)

Therefore, existence of smooth kernel � = �(x, y) is guaranteed by smoothness of k which

is proved in Lemma 3.1. By Lemma 3.2, this also implies that �−transform is invertible

on Hl(0, L), l ≥ 0, with a bounded inverse. Hence, exponential decay of the solutions of

error model (4.3) directly follows from exponential decay of the solutions of target error

model (4.10).

Proposition 4.1 Let β > 0, α, δ ∈ R and � be a smooth backstepping kernel that solves

(4.8). Then for sufficiently small r > 0, it is true that

μ = β

⎛⎜⎜⎜⎜⎜⎝ r
β
−
‖�x(L, ·; r)‖2L2(0,L)

2

⎞⎟⎟⎟⎟⎟⎠ > 0. (4.15)

Moreover, solution w̃ of (4.10) satisfies the decay estimate

‖w̃(·, t)‖L2(0,L) ≤ ‖w̃0‖L2(0,L)e−μt, ∀t ≥ 0. (4.16)

Proof Multiplying the main equation of (4.10) by 2w̃ in L2(0, L) and applying similar

100



arguments to those in (3.35)-(3.39), we get

d
dt
‖w̃(·, t)‖2L2(0,L)

+ 2r‖w̃(·, t)‖2L2(0,L)
+ β|w̃x(0, t)|2

= β|w̃x(L, t)|2 = β
∣∣∣∣∣∣
∫ L

0

�x(L, y)w̃(y, t)dy

∣∣∣∣∣∣
2

. (4.17)

Dropping the last term on the left hand side and applying Cauchy-Schwarz inequality for

the term at the right hand side, it follows that

d
dt
‖w̃(·, t)‖2L2(0,L)

+ 2β

⎛⎜⎜⎜⎜⎜⎝ r
β
−
‖�x(L, ·)‖2L2(0,L)

2

⎞⎟⎟⎟⎟⎟⎠ ‖w̃(·, t)‖2L2(0,L)
≤ 0. (4.18)

Recall from (4.14) that �x(L, y) = kx(L − y, 0;−r), so have

‖�x(L, y)‖L2(0,L) = ‖kx(L − y, 0;−r)‖L2(0,L) = ‖kx(y, 0;−r)‖L2(0,L).

One can also obtain the estimates (3.33) and (3.34) in the proof of Lemma 3.1 by replacing

r with (−r). Hence, we can apply the ideas to those given by (3.43)-(3.44) in the proof of

Proposition 3.1 and conclude that, sufficiently small r > 0 guarantees that μ defined by

(4.15) remains positive. �

Following proposition that provides decay estimates for the solutions of target

error model in H3 level as well as for the traces, w̃x(0, t) and w̃xx(0, t). The latter has

particular importance later in the proof of the stabilization of observer model.

Proposition 4.2 Assume the assumption hypothesis of Proposition 4.1 hold. Then solu-

tion w̃ of (4.10) also satisfies

|w̃xx(0, t)| + |w̃x(0, t)| + ‖w̃(·, t)‖H3(0,L) � ‖w̃0‖H3(0,L)e−μt, ∀t ≥ 0. (4.19)

Proof We differentiate the main equation of (4.10) with respect to t, multiply by 2w̃t in
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L2(0, L) and following similar arguments to those in (4.17)-(4.18), we can write

d
dt
‖w̃t(·, t)‖2L2(0,L)

+ 2β

⎛⎜⎜⎜⎜⎜⎝ r
β
−
‖�x(L, ·)‖2L2(0,L)

2

⎞⎟⎟⎟⎟⎟⎠ ‖w̃t(·, t)‖2L2(0,L)
≤ 0,

which implies

‖w̃t(·, t)‖L2(0,L) ≤ ‖w̃t(·, 0)‖L2(0,L)e−μt. (4.20)

Choosing r > 0 sufficiently small provides that μ > 0, hence (4.20) becomes a decay

estimate. In particular, from the main equation of (4.10) together with (4.20), we can

write

‖w̃t(·, t)‖L2(0,L) ≤ ‖w̃t(·, 0)‖L2(0,L)e−μt

= ‖ − βw̃′′′0 + iαw̃′′0 − δw̃′0 − rw̃0‖L2(0,L)e−μt

� ‖w̃0‖H3(0,L)e−μt.

(4.21)

On the other hand, again from the main equation of (4.10), we can also write

β‖w̃xxx(·, t)‖2L2(0,L)
≤ α‖w̃xx(·, t)‖2L2(0,L)

+ δ‖w̃x(·, t)‖2L2(0,L)

+ r‖w̃(·, t)‖2L2(0,L)
+ ‖w̃t(·, t)‖2L2(0,L)

. (4.22)

Applying Gagliardo–Nirenberg interpolation inequality and then Young’s inequality with

ε > 0, the first term at the right hand side of (4.22) can be estimated as

α‖w̃xx(·, t)‖2L2(0,L)
≤ cα‖w̃xxx(·, t)‖

4
3

L2(0,L)
‖w̃(·, t)‖ 2

3

L2(0,L)

≤ ε‖w̃xxx(·, t)‖2L2(0,L)
+ cα,ε‖w̃(·, t)‖2L2(0,L)

.
(4.23)

Similarly, the second term at the right hand side of (4.22) can be estimated as

δ‖w̃x(·, t)‖2L2(0,L)
≤ cδ‖w̃xxx(·, t)‖

3
2

L2(0,L)
‖w(·, t)‖ 4

3

L2(0,L)

≤ ε‖w̃xxx(·, t)‖2L2(0,L)
+ cδ,ε‖w(·, t)‖2L2(0,L)

.
(4.24)
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Combining (4.23)-(4.24) with (4.22), and then choosing ε > 0 sufficiently small, we can

write

‖w̃(·, t)‖2H3(0,L)
� ‖w̃(·, t)‖2L2(0,L)

+ ‖w̃t(·, t)‖2L2(0,L)
.

Using (4.21) and Proposition 4.1, it follows that

‖w̃(·, t)‖H3(0,L) � ‖w̃0‖H3(0,L)e−μt. (4.25)

To estimate the trace terms in (4.19), we multiply the main equation of (4.10) by

2(L − x)w̃xx in L2(0, L) and consider only the imaginary terms to get

2Re

∫ L

0

w̃tw̃xx(L − x)dx + 2βRe

∫ L

0

w̃xxxw̃xx(L − x)dx

+ 2αIm

∫ L

0

w̃xxw̃xx(L − x)dx + 2δRe

∫ L

0

w̃xw̃xx(L − x)dx

+ 2rRe

∫ L

0

w̃w̃xx(L − x)dx = 0. (4.26)

Using integration by parts, the second term can be rewritten as

2βRe

∫ L

0

w̃xxxw̃xx(L − x)dx = β
∫ L

0

d
dx
|w̃xx|2(L − x)dx

= β
(
−L|w̃xx(0, t)|2 + ‖w̃xx(·, t)‖2L2(0,L)

)
.

The third term vanishes since it is pure real. Again by integration by parts, the fourth term

can be expressed as

2δRe

∫ L

0

w̃xw̃xx(L − x)dx = δ
∫ L

0

d
dx
|w̃x|2(L − x)dx

= δ
(
−L|w̃x(0, t)|2 + ‖w̃x(·, t)‖2L2(0,L)

)
.
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Therefore, (4.26) becomes

L(β|w̃xx(0, t)|2 + δ|w̃x(0, t)|2) =2Re

∫ L

0

w̃tw̃xx(L − x)dx + β‖w̃xx(·, t)‖2L2(0,L)

+ δ‖w̃x(·, t)‖2L2(0,L)
+ 2rRe

∫ L

0

w̃w̃xx(L − x)dx.

Applying Cauchy-Schwarz inequality and then Cauchy’s inequality on the first and last

terms at the right hand side, using (4.21) and (4.25), we get

|w̃xx(0, t)|2 + |w̃x(0, t)|2 � ‖w̃t(·, t)‖2L2(0,L)
+ ‖w̃(·, t)‖2H3(0,L)

� e−μt‖w̃0‖H3(0,L).

Combining this result with (4.25) finishes the proof. �

Using �−transformation and the fact that kernel � = �(x, y) is smooth on Δx,y, we

can write

‖ũ(·, t)‖Hm(0,L) ≤
(
1 + ‖�‖H3(Δx,y)

)
‖w̃(·, t)‖Hm(0,L), m = 0, 3. (4.27)

Moreover, due to the invertbility of �−transformation on Hm(0, L) → Hm(0, L), we can

also write

‖w̃0‖Hm(0,L) ≤ ‖(I − Υ�)−1‖Hm(0,L)→Hm(0,L)‖ũ0‖Hm(0,L), m = 0, 3. (4.28)

Combining (4.27)-(4.28), together with Proposition 4.1 and Proposition 4.2 we conclude

‖ũ(·, t)‖ ≤ c�,1‖ũ0‖L2(0,L)e−μt, ∀t ≥ 0, (4.29)

and

‖ũ(·, t)‖H3(0,L) ≤ c�,2‖ũ0‖H3(0,L)e−μt, ∀t ≥ 0, (4.30)
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where

c�,1 =
(
1 + ‖�‖L2(Δx,y)

)
‖(I − Υ�)−1‖L2(0,L)→L2(0,L),

c�,2 =
(
1 + ‖�‖H3(Δx,y)

)
‖(I − Υ�)−1‖H3(0,L)→H3(0,L)

are positive constants which are independent of ũ0. In other words, ‖u(·, t)−û(·, t)‖Hm(0,L) →
0, for m = 0 and m = 3 exponentially in time.

4.2.2. Observer model

In this section, our task is to show that zero equilibrium of observer model (4.2)

under the influence of controllers

h0(t) =
∫ L

0

k(L, y)û(y, t)dy, h1(t) =
∫ L

0

kx(L, y)û(y, t)dy

is exponentially stable. As usual, we obtain this first by studying the associated target

model given by (4.12).

Proposition 4.3 Let β > 0, α, δ ∈ R and k, � be the smooth backstepping kernels solving

(3.14), (4.8), respectively. Then for sufficiently small r, ε > 0, it is true that

ν := β

⎛⎜⎜⎜⎜⎜⎝ r
β
−
‖ky(·, 0; r)‖2L2(0,L)

2
− ε

(∥∥∥(I − Υk)p1

∥∥∥2

L2(0,L)
+
∥∥∥(I − Υk)p2

∥∥∥2

L2(0,L)

)⎞⎟⎟⎟⎟⎟⎠ > 0, (4.31)

where p1(x) = −iβpy(x, 0) + αp(x, 0), p2(x) = iβp(x, 0). Moreover, solution ŵ of (4.12)

satisfies the decay estimate

‖ŵ(·, t)‖L2(0,L) � e−νt
(
‖ŵ0‖L2(0,L) + ‖w̃0‖H3(0,L)

)
, ∀t ≥ 0. (4.32)

Proof Multiplying the main equation of (4.12) by 2ŵ in L2(0, L) and following the
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arguments to those given by (3.36)-(3.39), we obtain

d
dt
‖ŵ(·, t)‖2L2(0,L)

+ β|ŵx(0, t)|2 + 2r‖ŵ(·, t)‖2L2(0,L)

=2βRe

∫ L

0

ky(x, 0)ŵx(0, t)ŵ(x, t)dx

+ 2Im

∫ L

0

(I − Υk)p1(x)w̃x(0, t)ŵ(x, t)dx

+ 2Im

∫ L

0

(I − Υk)p2(x)w̃xx(0, t)ŵ(x, t)dx.

(4.33)

Using Cauchy’s inequality and then Cauchy-Schwarz inequality, the first term at the right

hand side of (4.33) can be estimated as

2βRe

∫ L

0

ky(x, 0)ŵx(0, t)ŵ(x, t)dx ≤ β|ŵx(0, t)|2 + β‖ky(·, 0)‖2L2(0,L)
‖ŵ(·, t)‖2L2(0,L)

.

Applying Cauchy-Schwarz inequality and Young’s inequality with ε > 0 to the second

and third terms at the right hand side of (4.33), we get

∣∣∣∣∣∣2Im

∫ L

0

(I − Υk)p1(x)w̃x(0, t)ŵ(x, t)dx

∣∣∣∣∣∣
≤ 2εβ

∥∥∥(I − Υk)p1

∥∥∥2

L2(0,L)
‖ŵ(·, t)‖2L2(0,L)

+
1

2εβ
|w̃x(0, t)|2

and

∣∣∣∣∣∣2Im

∫ L

0

(I − Υk)p2(x)w̃x(0, t)ŵ(x, t)dx

∣∣∣∣∣∣
≤ 2εβ

∥∥∥(I − Υk)p2

∥∥∥2

L2(0,L)
‖ŵ(·, t)‖2L2(0,L)

+
1

2εβ
|w̃xx(0, t)|2.

Using these estimates in (4.33), we obtain that

d
dt
‖ŵ(·, t)‖2L2(0,L)

+ 2βν‖ŵ(·, t)‖2L2(0,L)
≤ 1

2εβ

(
|w̃x(0, t)|2 + |w̃xx(0, t)|2

)
, (4.34)
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where ν is given by (4.31). From Proposition 3.1, we know that

(
r
β
− ‖ky(·,0)‖2

L2(0,L)

2

)
remains

positive for sufficiently small r > 0. Therefore, choosing ε sufficiently small, we are able

to guarantee that ν also remains positive. Now applying Proposition 4.2 for the trace terms

at the right hand side of (4.34), we get

d
dt
‖ŵ(·, t)‖2L2(0,L)

+ 2ν‖ŵ(·, t)‖2L2(0,L)
� ‖w̃0‖2H3(0,L)

e−2μt.

Since ‖�x(L, ·)‖L2(0,L) = ‖ky(·, 0)‖L2(0,L) and comparing ν with μ given by (4.15), observe

that μ > ν. Thus, integrating the above inequality in t over [0,T ], we finally obtain

‖ŵ(·, t)‖L2(0,L) � e−νt
(
‖ŵ0‖L2(0,L) + ‖w̃0‖H3(0,L)

)
= e−νt

(
‖ŵ0‖L2(0,L) + ‖w0 − ŵ0‖H3(0,L)

)
, ∀t ≥ 0,

(4.35)

which completes the proof. �

Using the invertibility of the k−transformation on L2(0, L), we can write

‖û(·, t)‖2 ≤ ‖(I + Υk)
−1‖L2(0,L)→L2(0,L)‖ŵ‖L2(0,L). (4.36)

Since k = k(x, y) is smooth on Δx,y and �−transformation is inverible with a bounded

inverse on H3(0, L), we can also write

‖ŵ0‖L2(0,L) ≤
(
1 + ‖�‖C(Δx,y)

)
‖û0‖L2(0,L) (4.37)

and

‖w0 − ŵ0‖H3(0,L) ≤ ‖ (I + Υ�)−1 ‖H3(0,L)→H3(0,L)‖u0 − û0‖H3(0,L). (4.38)

Combining (4.36)-(4.38), it follows from (4.35) that

‖û(·, t)‖L2(0,L) � e−νt
(
ck‖û0‖L2(0,L) + ck,�‖u0 − û0‖H3(0,L)

)
(4.39)
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where

ck =
(
1 + ‖�‖C(Δx,y)

)
‖(I + Υk)

−1‖L2(0,L)→L2(0,L)

ck,� = ‖(I + Υ�)−1‖H3(0,L)→H3(0,L)‖(I + Υk)
−1‖L2(0,L)→L2(0,L)

are nonnegative constants that are independent of the initial u0, û0.

To derive exponential stabilization of zero equilibrium to original plant (4.1), re-

call that u is given via the relation u := û+ ũ. Thus, combining the decay estimates (4.29)

and (4.39), we conclude that

‖u(·, t)‖L2(0,L) = ‖(û + ũ)(·, t)‖L2(0,L)

≤ ‖û(·, t)‖L2(0,L) + ‖ũ(·, t)‖L2(0,L)

�
(
ck‖û0‖L2(0,L) + ck,�‖u0 − û0‖H3(0,L)

)
e−νt + c�‖u0 − û0‖L2(0,L)e−μt

for all t ≥ 0.

4.3. Well-posedness

In this section, our task is to show that plant-observer-error system is well-posed.

Analysis is carried out through the associated target models. Notice that, in order to

guarantee that the boundary traces ŵx(0, t), ŵxx(0, t) make sense, one requires that ŵ is

continuously differentiable up to order two. Since C2([0, L]) is continuously embedded in

H3(0, L), then it suffices to prove existence existence of a solution ŵ of the target observer

model (4.12) in X3
T . But then, this requires that the source term

f (x, t) := [(I − Υk)p1](x)w̃x(0, t) + [(I − Υk)p2](x)w̃xx(0, t)

involving in the main equation of (4.12) belongs to W1,1(0,T ; L2(0, L)), i.e., w̃xt(0, t) and

w̃xxt(0, t) make sense in L1(0,T ), which also requires that solution w̃ of the target error

model (4.5) exists in H6(0, L) level. In view of these observations, in Section 4.3.1 we

prove existence of a unique solution of the target error model in X6
T space and in Section
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4.3.2 we prove existence of a unique solution of the target observer model in X3
T space.

Then, using the invertibility of the associated backstepping transformations, we conclude

well-posedness of the error and observer models, respectively, hence the original plant.

4.3.1. Error model

For a moment, let us consider the model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iw̃t + iβw̃xxx + αw̃xx + iδw̃x + irw̃ = 0, (x, t) ∈ (0, L) × (0,T ),

w̃(0, t) = w̃(L, t) = 0, w̃x(L, t) = ψ(t), t ∈ (0,T ),

w̃(x, 0) = w̃0(x), x ∈ (0, L).

(4.40)

Note that the original target error model (4.10) is the closed-loop version of (4.40) with

the inhomogeneous Neumann type boundary condition

ψ(w̃(t)) =
∫ L

0

�x(L, y)w̃(y, t)dy.

Our task here is first to obtain a-priori estimates for the model (4.40), then apply fixed

point argument to show that same results also hold for (4.10).

To this end, let us first define ζ(·, t) := ertw̃(·, t) with initial and boundary data

ζ(·, 0) := φ(·) = w̃0(·), ζx(L, t) := g(t) = ψ(t)ert.

Then, ζ solves the following model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iζt + iβζxxx + αζxx + iδζx = 0, (x, t) ∈ (0, L) × (0,T ),

ζ(0, t) = ζ(L, t) = 0, ζx(L, t) = g(t), t ∈ (0,T ),

ζ(x, 0) = φ(x), x ∈ (0, L).

(4.41)
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So the results we obtain below for ζ−model also be hold for (4.40). Let us denote solution

of (4.41) as ζ = ζ[φ, g] in terms of initial and boundary data. Regarding the solution

ζ = ζ[φ, 0] of (4.41), we already derived in Section 3.3.1 that, an application of operator

semigroup theory together with Lemma 3.4 yields that if φ0 ∈ L2(0, L), then there exists a

unique mild solution ζ = ζ[φ, 0] ∈ X0
T . Therefore, it is enough to show that ζ = ζ[0, g] ∈

X0
T , which is now our task. Observe that the model (4.41) is a particular case of the

z−model given by (3.72) with ψ1 = ψ2 = 0 and ψ3 = g, that we analyzed in Section

3.3.1.2. Let us consider zero extension of g from (0,T ) to R, which we still denote by the

same notation. Then, in view of our work we performed in Section 3.3.1.2, we express

solution ζ = ζ[0, g] as follows

ζ(x, t) =
1

2πi

3∑
j=1

∫
C

estΔ j(s)

Δ(s)
eλ j(s)xg̃(s)ds, (4.42)

where C is chosen as C+, C0 or C− by considering the sign of the quantity α2 + 3βδ,

namely α2 + 3βδ > 0, α2 + 3βδ = 0 or α2 + 3βδ < 0, respectively, and Δ and Δ j’s are

the determinants that arise due to the application of Cramer’s rule for the following linear

system ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1

eλ1(s)L eλ2(s)L eλ3(s)L

λ1(s)eλ1(s)L λ2(s)eλ2(s)L λ3(s)eλ3(s)L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c1(s)

c2(s)

c3(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

g̃(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.43)

Proceeding similarly to those in (3.108)-(3.114), we conclude that it is enough to study

the improper parts of (4.42), which are, after changing variables as s = iω(ξ) = i(βξ3 −
αξ2 − δξ), given by

I(x, t) =
1

2πi

3∑
j=1

∫ ∞

γ1

eiω(ξ)t
Δ∗j(ξ)

Δ∗(ξ)
eλ
∗
j(ξ)x(3βξ2 − 2αξ − δ)g̃∗(ξ)dξ (4.44)

and

J(x, t) =
1

2πi

3∑
j=1

∫ γ2

−∞
eiω(ξ)t

Δ∗j(ξ)

Δ∗(ξ)
eλ
∗
j(ξ)x(3βξ2 − 2αξ − δ)g̃∗(ξ)dξ. (4.45)

Lemma 4.1 Let T > 0 and g ∈ L2(0,T ). Then, solution ζ = ζ[0, g] of (4.41) belongs to
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the space X0
T and satisfies

‖ζ‖C([0,T ];L2(0,L)) + ‖ζ‖L2(0,T ;H1(0,L)) � ‖g‖L2(0,T ).

Proof Recall from the proof of Lemma 3.7 that, we have

Δ†(ξ) = e
iαL
β

(
e−λ

†
1
(ξ)L(λ†

3
(s) − λ†

2
(ξ))

−e−λ
†
2
(ξ)L(λ†

3
(ξ) − λ†

1
(ξ)) + e−λ

†
3
(ξ)L(λ†

2
(ξ) − λ†

1
(ξ))

)
(4.46)

and

Δ
†
1
(ξ) = eλ

†
3
(ξ)L − eλ

†
2
(ξ)L,

Δ
†
2
(ξ) = eλ

†
1
(ξ)L − eλ

†
3
(ξ)L,

Δ
†
3
(ξ) = eλ

†
2
(ξ)L − eλ

†
1
(ξ)L,

with large ξ asymptotics

∣∣∣∣∣∣∣
Δ
†
j(ξ)

Δ†(ξ)

∣∣∣∣∣∣∣ ∼
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ−1, j = 1,

ξ−1, j = 2,

ξ−1e−
√

3ξL
2 , j = 3.

(4.47)

We take L2−norm of I with respect to its first component and apply Lemma 2.5 in (Bona

et. al., 2003) to get

‖I(·, t)‖2L2(0,L)
�

3∑
j=1

∫ ∞

γ1

(
eLRe(λ†j (ξ)) + 1

)2
∣∣∣∣∣∣∣
Δ
†
j(ξ)

Δ†(ξ)

∣∣∣∣∣∣∣
2 ∣∣∣3βξ2 − 2αξ − δ∣∣∣2 ∣∣∣g̃†(ξ)∣∣∣2 dξ. (4.48)

Using the asymptotic behaviors (4.47) as ξ → ∞, we can write

(
eLRe(λ†j (ξ)) + 1

)2
∣∣∣∣∣∣∣
Δ
†
j(ξ)

Δ†(ξ)

∣∣∣∣∣∣∣
2

∼ ξ−2, j = 1, 2, 3. (4.49)
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Consequently, the integral on (4.48) is equivalent to

∫ ∞

γ1

1

ξ2

∣∣∣3βξ2 − 2αξ − δ∣∣∣2 ∣∣∣g̃†(ξ)∣∣∣2 dξ

for each j = 1, 2, 3. Changing variables as μ = βξ3 − αξ2 − δξ

‖I(·, t)‖2L2(0,L)
�

∫ ∞

ω(γ1)

∣∣∣3βξ2(μ) − 2αξ(μ) − δ∣∣∣
ξ2(μ)

∣∣∣∣∣
∫ ∞

0

e−iμτg(τ)dτ
∣∣∣∣∣2 dμ

�
∫ ∞

ω(γ1)

|ĝ(μ)|2 dμ

≤ ‖g‖2L2(R)
= ‖g‖2L2(0,T )

,

where ξ(μ) is the invese of the change of variable (indeed μ = βξ3−αξ2−δξ is injective on

ξ ∈ (ω(γ1),∞) for each case of (α2+3βδ), thanks to our work throughout (3.105)-(3.114)).

Passing to supremum in t over [0,T ], we obtain

‖I‖C([0,T ];L2(0,L)) � ‖g‖L2(0,T ). (4.50)

Next, we differentiate I with respect to its first component, take L2−norm on (0,T ) and

change variables as μ = βξ3 − αξ2 − δξ to get

‖∂xI(x, ·)‖2L2(0,T )

=

∥∥∥∥∥∥∥
3∑

j=1

1

2π

∫ ∞

γ1

eiω(ξ)tλ†j(ξ)e
λ†j (ξ)x
Δ
†
j(ξ)

Δ†(ξ)
(3βξ2 − 2αξ − δ)g̃†(ξ)dξ

∥∥∥∥∥∥∥
2

L2(0,T )

�
3∑

j=1

∥∥∥∥∥∥∥
∫ ∞

ω(γ1)

eiμtλ†j(θ(μ))eλ
†
j (θ(μ))x

Δ
†
j(θ(μ))

Δ†(θ(μ))
g̃†(θ(μ))dμ

∥∥∥∥∥∥∥
2

L2(0,T )

,

(4.51)

where θ(μ) is the real solution of μ = βξ3 − αξ2 − δξ for γ1 < ξ < ∞. Observe that the

function ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
λ†j(θ(μ))eλ

†
j (θ(μ))x

Δ
†
j(θ(μ))

Δ†(θ(μ))
g̃†(θ(μ)), μ ∈ (ω(γ1),∞),

0, elsewhere,
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is the Fourier transform of the function given by the integral. So, using the Plancherel’s

theorem, we can write

‖∂xI1(x, ·)‖2L2(0,T )
�

3∑
j=1

∫ ∞

ω(γ1)

∣∣∣∣∣∣∣λ†j(θ(μ))eλ
†
j (θ(μ))x

Δ
†
j(θ(μ))

Δ†(θ(μ))
g̃†(θ(μ))

∣∣∣∣∣∣∣
2

dμ (4.52)

for all x ∈ [0, L]. It follows that

‖∂xI1‖2L2(0,L;L2(0,T ))
≤ sup

x∈[0,L]

‖∂xI1(x, ·)‖2L2(0,T )

�
3∑

j=1

∫ ∞

γ1

|λ†j(ξ)|2 sup
x∈[0,L]

(
e2Re(λ†j (ξ))x

) ∣∣∣∣∣∣∣
Δ
†
j(ξ)

Δ†(ξ)

∣∣∣∣∣∣∣
2

× (3βξ2 − 2αξ − δ) ∣∣∣g̃†(ξ)∣∣∣2 dξ.

(4.53)

Using representations for λ†j’s given by (3.109) and (4.47), one can obtain the following

asymptotic behaviors in ξ

|λ†j(ξ)|2 sup
x∈[0,L]

(
e2Re(λ†j (ξ))x

) ∣∣∣∣∣∣∣
Δ
†
j(ξ)

Δ†(ξ)

∣∣∣∣∣∣∣
2

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, j = 1,

1, j = 2,

e−
√

3ξL, j = 3.

(4.54)

Then, by (4.54) in (4.53), and changing variables back as μ = βξ3 − αξ2 − δξ, we get

‖∂xI1‖2L2(0,L;L2(0,T ))
≤ sup

x∈[0,L]

‖∂xI1(x, ·)‖2L2(0,T )

�
∫ ∞

γ1

(3βξ2 − 2αξ − δ)|g̃†(ξ)|2dξ

�
∫ ∞

ω(γ1)

∣∣∣∣∣
∫ ∞

0

e−iμτg(τ)dτ
∣∣∣∣∣2 dμ

�‖g‖2L2(R+)
= ‖g‖2L2(0,T )

.

(4.55)

Changing the integration order on ‖∂xI1‖2L2(0,L;L2(0,T ))
and using Poincaré inequality, we
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conclude

‖I‖L2(0,T ;H1(0,L)) � ‖g‖L2(0,T ).

Applyying similar procedure yields the same result for J. This completes the proof. �

Solutions of the models (4.40) and (4.41), and the associated initial and boundary

conditions are related via the relations

w̃(·, t) = ζ(·, t)e−rt, ψ(t) = g(t)e−rt, w̃0 = φ.

Consequently, estimations we obtained for ζ = ζ[φ, g] also holds true for the solution w̃

of the model (4.40). Hence, we have the following lemma.

Lemma 4.2 Let w̃0 ∈ L2(0, L) and g ∈ L2(0,T ). Then solution w̃ of (4.40) belongs to the

space X0
T .

Recall that the trace terms w̃x(0, t), w̃xx(0, t), are involved in the main equation

of target observer model. To guarantee that these terms make sense and the fact that

C2([0, L]) is continuously embedded in H3(0, L), if suffices the prove well-posedness of

the model (4.40) in H3(0, L) level.

Lemma 4.3 Let w̃0 ∈ H3(0, L), ψ ∈ H1(0,T ) and suppose that (w0, ψ) satisfy the compat-

ibility conditions (2.12). Then w̃ ∈ X3
T and w̃t ∈ X0

T .

Proof Let ṽ solves the linear model below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iṽt + iβṽxxx + αṽxx + iδṽx + irṽ = 0, (x, t) ∈ (0, L) × (0,T ),

ṽ(0, t) = ṽ(L, t) = 0, ṽx(L, t) = ψ′(t), t ∈ (0,T ),

ṽ(x, 0) = ṽ0(x), x ∈ (0, L),

(4.56)

where we set ṽ0 := −βw̃′′′0 + iαw̃′′0 − δw̃′0 − rw̃0 ∈ L2(0, L). According to Lemma 4.2,

following estimate is true

‖ṽ‖X0
T
� ‖ṽ0‖L2(0,L) + ‖ψ′‖L2(0,T ).
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Set w̃(x, t) := w̃0(x) +
∫ t

0
ṽ(x, τ)dτ. Then, w̃ satisfies the initial condition

w̃(x, 0) = w̃0(x).

Considering the compatibility conditions (2.12) and the relation w̃t(·, t) = ṽ(·, t), w̃ also

satisfies the boundary conditions

w̃(0, t) = w̃0(0) +

∫ t

0

ṽ(0, τ)dτ = w̃0(0) + w̃(0, t) − w̃(0, 0) = 0,

w̃(L, t) = w̃0(L) +

∫ t

0

ṽ(L, τ)dτ = w̃0(L) + w̃(L, t) − w̃(L, 0) = 0,

w̃x(L, t) = w̃′0(L) +

∫ t

0

ṽx(L, τ)dτ = w̃′0(L) + w̃x(L, t) − w̃x(L, 0) = ψ(t).

Moreover, from the main equation of (4.56), we see that w̃ satisfies the main equation of

(iw̃t + iβw̃xxx + αw̃xx + iδw̃x + irw̃) (x, t)

=iṽ(x, t) +
∫ t

0

(iβṽxxx + αṽxx + iδṽx + irṽ)(x, τ)dτ

+ iβw̃′′′0 (x) + αw̃′′0 (x) + iδw̃′0(x) + irw̃0(x)

=iṽ(x, t) −
∫ t

0

iṽt(x, τ)dτ + iβw̃′′′0 (x) + αw̃′′0 (x) + iδw̃′0(x) + irw̃0(x)

=iṽ(x, 0) + iβw̃′′′0 (x) + αw̃′′0 (x) + iδw̃′0(x) + irw̃0(x) = 0.

Thus w defined by w(x, t) = w0(x)+
∫ t

0
ṽ(x, τ)dτ, solves the model (4.40). Applying same

arguments to those given by (3.156)-(3.164), one can show that w̃ ∈ C([0,T ]; H3(0, L))

and w̃ ∈ L2(0,T ; H4(0, L)), hence w̃ ∈ X3
T . �

The above analysis, regarding the open-loop version of (4.10), implicitly defines

a continuous data-to-solution map

Γ : (w̃0, ψ) ∈ H3(0, L) × H1(0,T )→ w̃ ∈ QT , (4.57)

where QT :=
{
ϕ ∈ X3

T |ϕt ∈ X0
T

}
equipped with the norm

(
‖ϕ‖X3

T
+ ‖ϕt‖X0

T

)
. However, notice
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that the original boundary condition of the target error model is of feedback type, of the

form

ψ(w̃) := w̃x(L, t) =
∫ L

0

�x(L, y)w̃(y, t)dy.

Therefore, one needs to show that the mapping Γ has a fixed point, that is, for a given w̃0,

one needs to show the existence of a w̃ so that Γ[w̃0, ψ(w̃)] = w̃ holds. To this end, first

notice that for any w̃∗ ∈ QT and since � is smooth, we have

‖ψ(w̃∗)‖H1(0,T ) =

∥∥∥∥∥∥
∫ L

0

�x(L, y)w̃∗(y, ·)dy

∥∥∥∥∥∥
H1(0,T )

≤ √T‖�x(L, ·)‖L2(0,L)

(
‖w̃∗‖X0

T
+ ‖w̃∗t ‖X0

T

)
< ∞,

(4.58)

so ψ(w̃∗) ∈ H1(0,T ). Let w̃1, w̃2 ∈ QT . Using the result in Lemma 4.3 and the estimate in

(4.58), we get

‖Γ[w̃0, ψ(w̃1)] − Γ[w̃0, ψ(w̃2)]‖Q̃T
≤ C‖ψ(w̃1) − ψ(w̃2)‖H1(0,T )

≤ C
√

T‖w̃1 − w̃2‖QT .
(4.59)

If we choose T > 0 sufficiently small, then the constant at the right hand side becomes

lesser than one. Consequently, for such T , we can guarantee that the mapping Γ becomes

contraction. Hence, thanks to Banach fixed point theorem, this yields the unique local

solution, w̃, of (4.10). Note that exponential decay results we proved in Proposition 4.1

and Proposition 4.2 implies that local solution remains uniformly bounded in time. This

implies that the local solution is global in time. Finally, using the �−transformation given

by (4.9) and its invertibility on H3(0, L) which is proved in Lemma 3.2, we conclude the

well-posedness of the error model (4.3).

Proposition 4.4 Let T, L > 0, ũ0 ∈ H3(0, L), p1(x) = iβ�y(x, 0) − α�(x, 0) and p2(x) =

−iβ�(x, 0). Assume that the couple (w̃0, ψ(w̃)) satisfies the compatibility conditions (2.12),

where w̃0 is defined as w̃0 := (I − Υ�)−1ũ0, ψ(w̃)(t) =
∫ L

0
�x(L, y)w̃(y, t)dy and w̃ solves

(4.10). Then the global solution ũ belongs to the space X3
T .
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4.3.2. Observer model

Let us consider the target observer model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iŵt + iβŵxxx + αŵxx + iδŵx + irŵ = iβky(x, 0)ŵx(0, t)

+ f (x, t), (x, t) ∈ (0, L) × (0,T ),

ŵ(0, t) = ŵ(L, t) = ŵx(L, t) = 0, t ∈ (0,T ),

ŵ(x, 0) = ŵ0(x) := û0(x) − ∫ x

0
k(x, y)û(y, t)dy, x ∈ (0, L),

(4.60)

where f (x, t) := [(I−Υk)p1](x)w̃x(0, t)+[(I−Υk)p2](x)w̃xx(0, t). Let us denote the solution

as ŵ = ŵ[ŵ0, f ]. Notice that this model (4.60) with f ≡ 0 is exactly the same model as

(3.16), that we studied its well-posedness in Chapter 3. So from Proposition 3.3, we know

that ŵ0 ∈ L2(0, L) guarantees the existence of a unique solution ŵ[ŵ0, 0] in the space X0
T .

This leads to a one parameter family of bounded evolution operators W(·), defined on

L2(0, L) and maps into X0
T such that, ŵ can be expressed as ŵ[ŵ0, 0] = W(t)ŵ0 for all

t ≥ 0.

Now let us consider ŵ[0, f ], i.e., solution of the model (4.60) in the presence of an

interior source f and with a zero initial state. Application of Duhamel’s principle yields

following representation

ŵ[0, f (·, t)] =
∫ t

0

W(t − τ) f (·, τ)dτ. (4.61)

Recall that k = k(x, y), p1(x) = −iβpy(x, 0) + αp(x, 0) and p2(x) = iβp(x, 0) are smooth

functions on their respective domains. Moreover, if w̃0 ∈ H3(0, L), then by Proposition

4.2, we have wx(0, t),wxx(0, t) ∈ L1(0,T ). Consequently f ∈ L1(0,T ; H∞(0, L)). Now

taking L2−norm of both sides of (4.61) in the first component, we get

‖ŵ[0, f (·, t)]‖L2(0,L) ≤
∫ t

0

‖W(t − τ) f (·, τ)‖L2(0,L) dτ

�
∫ t

0

‖ f (·, τ)‖L2(0,L)dτ ≤ ‖ f ‖L1(0,T ;L2(0,L)).

(4.62)
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Passing to supremum on both sides in t over [0,T ] implies

‖ŵ[0, f (·, t)]‖C([0,T ];L2(0,L)) ≤ ‖ f ‖L1(0,T ;L2(0,L)) < ∞.

Since f is smooth in its first component and using same arguments in (4.62), we also get

‖∂xŵ[0, f (·, t)]‖L2(0,L) ≤
∫ t

0

∥∥∥∂x
[
W(t − τ) f (·, τ)

]∥∥∥
L2(0,L)

dτ

≤
∫ t

0

‖ f (·, τ)‖L2(0,L)dτ ≤ ‖ f ‖L1(0,T ;L2(0,L)).

(4.63)

Combining (4.62)-(4.63) and integrating both sides in t over [0,T ] yields

‖ŵ[0, f ]‖L2(0,T ;H1(0,L)) ≤
√

T‖ f ‖L1(0,T ;L2(0,L)),

i.e., ŵ[0, f ] ∈ X0
T . Together with ŵ[ŵ0, 0] ∈ X0

T , we have ŵ = ŵ[ŵ0, f ] ∈ X0
T .

Finally, using the k−transformation given by (4.11) and its invertibility on L2(0, L)

which we stated in Lemma 3.2, observer model (4.2) along with the controllers h0(û), h1(û),

is also well-posed in X0
T . Under the assumption of hypothesis of Proposition 4.4, we have

the following proposition.

Proposition 4.5 Let T, L > 0, û0 ∈ L2(0, L). Suppose that the observer gains are given

by p1(x) = iβ�y(x, 0) − α�(x, 0), p2(x) = −iβ�(x, 0), where � is a smooth solution of (4.8).

Suppose also that the right endpoint boundary controllers are given by

h0(t) =
∫ L

0

k(L, y)û(y, t)dy, h1(t) =
∫ L

0

kx(L, y)û(y, t)dy,

where k is a smooth solution of (3.14). Then the global solution û belongs to X0
T .

Notice that well-posedness result we stated above in Proposition 4.5 is not suffi-

cient to guarantee that ŵx(0, t), ŵxx(0, t) make sense and one needs to prove a regularity

result in a higher level. As we explained at the beginning of this section, it suffices to

prove a regularity result in H3(0, L) level. But then, this requires that f (x, t) := [(I −
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Υk)p1](x)w̃x(0, t)+ [(I−Υk)p2](x)w̃xx(0, t) ∈ W1,1(0,T ), i.e., w̃xt(0, t), w̃xxt(0, t) ∈ L1(0,T ).

However, hypotheses of Proposition 4.4 does not guarantee that this remains true. Instead,

one needs to prove a regularity result for the target error model (4.10) in H6(0, L) level.

This requires that initial and boundary data are compatible in a higher sense.

Proposition 4.6 Assume w̃0 ∈ H6(0, L), ψ ∈ H2(0, L), where assume that the couple

(w̃0, ψ) satisfies the higher compatibility conditions (2.13)-(2.14). Then solution w̃ of

(4.40) belongs to the space X6
T .

Remark 4.1 Proposition 4.6 provides the higher regularity result for the open loop model

(4.40), i.e., the Neumann boundary condition is defined as w̃x(L, t) = ψ(t). However, recall

that the original boundary condition of target error model (4.10) is of the form

ψ(w̃)(t) =
∫ L

0

�x(L, y)w̃(y, t)dy, (4.64)

which is feedback type. So applying a similar fixed point argument to those that we per-

formed through made in (4.57)-(4.59), one can also show that results for the Proposition

4.6 also holds for the target error model (4.10).

Proof Let ỹ solves the below linear model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iỹt + iβỹxxx + αỹxx + iδỹx + irỹ = 0, (x, t) ∈ (0, L) × (0,T ),

ỹ(0, t) = ỹ(L, t) = 0, ỹx(L, t) = ψ′′(t), t ∈ (0,T ),

ỹ(x, 0) = ỹ0(x) := −βṽ′′′0 + iα̃̃v′′0 − δṽ′0 − rṽ0, x ∈ (0, L),

(4.65)

where ṽ0 is the initial datum of the model (4.56) given by ṽ0 := −βw̃′′′0 + iαw̃′′0 −δw̃′0− rw̃0.

Suppose that ỹ0 ∈ L2(0, L), then ṽ0 ∈ H3(0, L) which also implies w̃0 ∈ H6(0, L). Assume

that ψ′′ ∈ L2(0,T ). Then, by Lemma 4.2, ỹ ∈ X0
T and the estimate

‖ỹ‖X0
T
� ‖ỹ0‖L2(0,L) + ‖ψ′′‖L2(0,T )

holds true. Define ṽ(x, t) = ṽ0(x) +
∫ t

0
ỹ(x, τ)dτ. Recall also the relation w̃(x, t) = w̃0(x) +
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∫ t

0
ṽ(x, τ)dτ we set in the proof of Lemma 4.3. Therefore, w̃ and ỹ are related via the

relation

w̃(x, t) := w̃0(x) + tṽ0(x) +

∫ t

0

∫ τ

0

ỹ(x, s)dsdτ. (4.66)

Taking t = 0 on (4.66), we see that w̃ satisfies the initial condition w̃(x, 0) = w̃0(x).

Moreover for x = 0 and due to the boundary condition ỹ(0, t) = 0

w̃(0, t) = w̃0(0) + tṽ0(0) +

∫ t

0

∫ τ

0

ỹ(0, s)dsdτ

= w̃0(0) + tṽ0(0) = 0,

if and only if w̃0(0) = 0 and v0(0) = (−βw̃′′′0 + iαw̃′′0 − δw̃′0 − rw̃0)(0) = 0. Similarly for

x = L

w̃(L, t) = w̃0(L) + tṽ0(L) +

∫ t

0

∫ τ

0

ỹ(L, s)dsdτ

= w̃0(L) + tṽ0(L) = 0

if and only if w̃0(L) = 0 and ṽ0(L) = (−βw̃′′′0 + iαw̃′′0 − δw̃′0 − rw̃0)(L) = 0. Differentiating

both sides of (4.66) with respect to x, taking x = L and using the boundary condition

ỹx(L, t) = ψ′′(t), we write

w̃x(L, t) = w̃′0(L) + tṽ′0(L) +

∫ t

0

∫ τ

0

ỹx(L, s)dsdτ

= w̃′0(L) + tṽ′0(L) +

∫ t

0

(
ψ′(τ) − ψ′(0)

)
dτ

= w̃′0(L) + tṽ′0(L) + ψ(t) − ψ(0) − tψ′(0),

where (·)′ denotes ordinary derivative with respect to the associated independent variable.

w̃x(L, t) = ψ(t) holds if and only if w̃′0(L) = ψ(0) and ṽ′0(L) = (−βw̃′′′0 + iαw̃′′0 − δw̃′0 −
rw̃0)′(L) = ψ′(0). Consequently, w̃ defined by (4.66) satisfies the boundary conditions of

(4.10), provided that the couple (w̃0, ψ) satisfies higher compatibility conditions (2.13)-

120



(2.14). Moreover, w̃ also satisfies the main equation of (4.10). Indeed, we have

(iw̃t + iβw̃xxx + αw̃xx + iδw̃x + irw̃) (x, t) − iβky(x, 0)w̃x(0, t))

=iṽ0(x) +

∫ t

0

iỹ(x, s)ds +
(
iβw̃′′′0 (x) + αw̃′′0 (x) + iδw̃′0(x) + irw̃0(x)

)
+ t

(
iβṽ′′′0 (x) + αṽ′′0 (x) + iδṽ′0(x) + irṽ0(x)

)
+

∫ t

0

∫ τ

0

(iβỹxxx(x, s) + αỹxx(x, s) + iδỹx(x, s) + irỹ(x, s)) dsdτ

=iṽ0(x) +

∫ t

0

iỹ(x, s)ds − iṽ0(x) − itỹ0(x) +

∫ t

0

∫ τ

0

(−iỹs(x, s))dsdτ

=

∫ t

0

iỹ(x, s)ds − itỹ0(x) +

∫ t

0

(−iỹ(x, τ) + iỹ(x, 0)) dτ = 0.

Hence, we conclude that w̃ defined by (4.66) solves the model (4.10).

Now leaving w̃xxx on the main equation of the w̃−model (4.40), using w̃t = ṽ and

applying similar arguments in (3.156)-(3.159) and in (3.162)-(3.163), we can write

‖w̃xxx(·, t)‖L2(0,L) � ‖ṽ(·, t)‖L2(0,L) + ‖w̃(·, t)‖L2(0,L) (4.67)

and

‖w̃xxxx(·, t)‖L2(0,L) � ‖ṽx(·, t)‖L2(0,L) + ‖w̃x(·, t)‖L2(0,L). (4.68)

Notice that ỹ0 ∈ L2(0, L) implies ṽ0 ∈ H3(0, L). Moreover, assume that ψ′ ∈ H1(0,T ). If

(ṽ0, ψ
′) ∈ H3(0, L) × H1(0,T ) satisfying compatibility conditions (2.12), then by Lemma

4.3, the function ṽ that solves (4.56) with initial and boundary data (ṽ0, ψ
′) ∈ H3(0, L) ×

H1(0,T ) belongs to the space X3
T . Similarly, again by the Lemma 4.3, we also have w̃ ∈ X3

T

if w̃0 ∈ H3(0, L) (which follows from ṽ0 ∈ H3(0, L)) and ψ ∈ H1(0,T ). Consequently,

from the estimates (4.67) and (4.68), we obtain w̃xxx ∈ C([0,T ]; H3(0, L)) and w̃xxx ∈
L2(0,T ; H4(0, L)). Moreover, by Lemma 4.3, assumptions of Proposition 4.6 also imply

that w̃ ∈ X3
T . Combining these results, we deduce that w̃ ∈ X6

T . Note that the assumptions

ψ′ ∈ H1(0,T ) and ψ ∈ H1(0,T ) imply ψ ∈ H2(0,T ). �

Assumptions of Proposition 4.6 make sure that ‖ f (·, t)‖L2(0,L) ∈ W1,1(0,T ). So

under those assumptions, now we can prove the following proposition.
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Proposition 4.7 Let ŵ0 ∈ D(A) and assumption hypothesis of Proposition 4.6 hold. Then

ŵ ∈ X3
T .

Proof Proof can be done by following similar arguments to those in the proof of Propo-

sition 3.4 (or Lemma 4.3). Let us introduce a new variable v̂ = ŵt that solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iv̂t + iβv̂xxx + αv̂xx + iδv̂x + irv̂ = iβky(x, 0)v̂x(0, t)

+ ft(x, t), (x, t) ∈ (0, L) × (0,T ),

v̂(0, t) = v̂(L, t) = v̂x(L, t) = 0, t ∈ (0,T ),

v̂(x, 0) = v̂0(x), x ∈ (0, L),

(4.69)

where v̂0 := −βŵ′′′0 + iαŵ′′0 − δŵ′0 − irŵ0 + βky(·, 0)ŵ0(0, 0) − i f (·, 0) ∈ L2(0, L) and

f (x, t) :=
[
(I − Υk)p1

]
(x)w̃x(0, t)+

[
(I − Υk)p2

]
(x)w̃xx(0, t). Well-posedness of this model

is studied in Section 4.3.2 and if ˜̂v0 ∈ L2(0, L) and ft ∈ L1(0,T ; L2(0, L)) then v̂ ∈ X0
T . Set

ŵ(x, t) := ŵ0(x) +
∫ t

0
ˆ̂v(x, τ)dτ. Applying the arguments (3.153)-(3.155), one can show

that if ŵ0 ∈ D(A), then ŵ solves the target observer model (4.12) with the initial condition

ŵ0. Now from its main equation, we write

iβŵxxx(x, t) = (−iv̂ − αŵxx − iδŵx − irŵ)(x, t) + iβky(x, 0)ŵx(0, t) + f (x, t). (4.70)

Using ŵx(0, t) = −
∫ L

0
ŵxx(x, t)dx and taking L2−norms of both side in x, we get

β2‖ŵxxx(·, t)‖2L2(0,L)
≤ ‖v̂(·, t)‖2L2(0,L)

+
(
α2 + β2‖ky(·, 0)‖2L2(0,L)

)
‖ŵxx(·, t)‖2L2(0,L)

+ δ2‖ŵx(·, t)‖22 + r2‖ŵ(·, t)‖2L2(0,L)
+ ‖ f (·, t)‖2L2(0,L)

.

Applying similar arguments to those in (3.158)-(3.160), we can write

‖ŵxxx(·, t)‖22 � ‖v̂(·, t)‖22 + ‖ŵ(·, t)‖22 + ‖ f (·, t)‖22.

Notice that v̂, ŵ ∈ C([0,T ]; L2(0, L)) and from Proposition 4.2, supremum of w̃x(0, t), w̃xx(0, t)
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exist. So passing to supremum in t over [0,T ] on both sides, we get ŵ ∈ C([0,T ]; H3(0, L)).

Next, we differentiate both sides of (4.70) with respect to x and applying the ar-

guments (3.161)-(3.164), we obtain

‖ŵxxxx(·, t)‖22 � ‖v̂x(·, t)‖22 + ‖ŵ(·, t)‖22 + ‖ fx(·, t)‖22. (4.71)

Notice that v̂, ŵ ∈ L2(0,T ; H1(0, L)), so the first two terms on the right hand side of (4.71)

make sense in L2(0,T ). From the estimate in Proposition 4.2, we can also deduce that

w̃x(0, t), w̃xx(0, t) ∈ L2(0,T ). Hence, right hand side of (4.71) belongs to L2(0,T ), which

implies ŵ ∈ L2(0,T ; H4(0, L)). Combining this with previous result, we conclude ŵ ∈ X3
T .

�

Well-posedness results for the observer model (4.2) and the error model (4.3) fol-

low from the invertibility of the k−transformation on H3(0, L) and �−transformation on

H6(0, L), respectively, which is given by Lemma 3.2. Now states of the plant-observer-

error models are related via the relation u := û + ũ. So combining the well-posedness

results regarding the observer and error models, we obtain well-posedness of the original

plant in X3
T level.

The theorem below summarizes the well-posedness and stabilization results of the

plant-observer-error system.

Theorem 4.1 Let T, L, β > 0, α, δ ∈ R. Suppose that the right endpoint controllers are

given by

h0(t) =
∫ L

0

k(L, y; r)û(y, t)dy, h1(t) =
∫ L

0

kx(L, y; r)û(y, t)dy, (4.72)

and observer gains are given by p1(x) = iβ�y(x, 0)−α�(x, 0) and p2(x) = −iβ�(x, 0) where

k and � are smooth solutions of (3.14) and (4.8), respectively.

(i) (Well-posedness) Suppose û0 ∈ H3(0, L) be such that ŵ0 := (I −Υk)û0 ∈ D(A). Sup-

pose also ũ0 ∈ H6(0, L) be such that w̃0, given implicitly by relation ũ0 = (I −Υ�)w̃0

and ψ(w̃(·, t)) = ∫ L

0
�x(L, y)w̃(y, t)dy satisfy the higher compatibility conditions.

Then plant-observer-error system has a unique solution (u, û, ũ) ∈ X3
T × X3

T × X6
T .
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(ii) (Stabilization) There exists r > 0 sufficiently small so that the zero equilibrium to

the plant (3.8) under the influence of the controllers (4.72) is exponentially stable.

Moreover, for such r, there exists μ and ν given by (4.15) and (4.31) and satisfying

μ > ν > 0 such that the decay estimates

‖u(·, t)‖L2(0,L) �
(
ck‖û0‖L2(0,L) + ck,�‖u0 − û0‖H3(0,L)

)
e−νt + c�,1‖u0 − û0‖L2(0,L)e−μt,

‖û(·, t)‖L2(0,L) �e−νt
(
ck‖û0‖L2(0,L) + ck,�‖u0 − û0‖L2(0,L)

)
,

‖(u − û)(·, t)‖L2(0,L) �c�,1‖u0 − û0‖L2(0,L)e−μt,

‖(u − û)(·, t)‖H3(0,L) �c�,2‖u0 − û0‖H3(0,L)e−μt,

hold true for all t ≥ 0, where u0 := û0 + ũ0 and ck, ck,�, c�,1, c�,2 are nonnegative

constants that are independent of u0, û0, ũ0.

4.4. Numerical simulations

In this part, we present our numerical algorithm and simulations verifying our

theoretical stabilization result.

We introduce our algorithm in five steps. First we obtain an approximation for

the backstepping kernel �. This allows us to get an approximation for observer gains

p1 and p2, which are included in the main equation of error and observer models. In

the second and third steps, we obtain a numerical solution for the error model (4.3) and

target observer model (4.12), respectively. Next, as the fourth step, we follow the same

arguments to those we presented in Step (iii) of Section 3.4 to use the invertibility of the

backstepping transformation (4.9) to get a numerical approximation for the solution of

the observer model. At the fifth and the last step, we deduce numerical solution of the

original plant u, using the relation u = û + ũ. Let us now give the steps in details.

Step i. Recall that � solving (4.8) and k solving (3.14) are related via the relation �(x, y) =

k(L − y, L − x;−r). Changing variables as x̄ = x − y, ȳ = y, we transform k−model

to G−model (3.13). Therefore we have

G(ξ, η;−r) = G(L − ȳ, L − x̄ − ȳ;−r) = k(L − y, L − x;−r) = �(x, y),
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where ξ = L − ȳ, η = L − x̄ − ȳ. So, to get an approximation for � = �(x, y), it is

enough to get an approximation for G = G(ξ, η). But this was already done in Step

(i) of Section 3.4. Thus, applying the same procedure by replacing r with −r, we

obtain G(ξ, η;−r), therefore �(x, y). Using the approximation for �(x, y), we also

obtain an approximation for the observer gains p1(x) = −iβ�y(x, 0) + α�(x, 0) and

p2(x) = iβ�(x, 0).

Step ii. To solve (4.3), we apply the same discretization procedure as we introduced in the

second step of Section 3.4. Note that the additional trace terms, ũx(0, t), ũxx(0, t),

included in the main equation of (4.3) are approximated by the following one sided

second order finite differences

ũx(0, t) ≈ −3ũ0(t) + 4ũ1(t) − ũ2(t)
2hx

,

ũxx(0, t) ≈ 2ũ0(t) − 5ũ1(t) + 4ũ2(t) − ũ3(t)
h2

x
.

(4.73)

Step iii. To solve (4.12) numerically, we apply the same discretization procedure in Step

(ii) of Section 3.4. Note that the previous step, in particular, allows us to ob-

tain an approximation for the trace terms ũx(0, t), ũxx(0, t). Notice also that, using

�−transformation we can write w̃x(0, t) = ũx(0, t) and w̃xx(0, t) = ũxx(0, t). So these

approximations can be implemented as known inputs in the discretization scheme.

Discrete counterpart ΥM
k , of Υk included in the main equation of (4.12), can be

obtained by applying a suitable numerical integration technique, for instance com-

posite trapezoidal rule, as follows

ΥM
k = hx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

1
2
k(x2, x1) 1

2
k(x2, x2) · · · 0 0

...
...

. . .
...

...

1
2
k(xM−1, x1) k(xM−1, x2) · · · 1

2
k(xM−1, xM−1) 0

1
2
k(xM, x1) k(xM, x2) · · · k(xM, xM−1) 1

2
k(xM, xM)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Step iv. Next we use same procedure in Step (iii) of Section 3.4 to get an approximation for

inverse image û, of ŵ.
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Step v. Finally we get a numerical approximation for u via the relation u = û + ũ.

Now we present a numerical experiment that verifies exponential decay of solu-

tions of plant-observer-error system. We used M = 1001 spatial nodes, N = 5001 time

steps. The iteration for G, so to obtain an approximation for k and �, is performed up

several times so that the error is max
(x̄,ȳ)∈Δx̄,ȳ

|G j+1 −G j| ∼ 10−14 level. Consider the model

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
iut + iuxxx + 2uxx + 8iux = 0, (x, t) ∈ (0, π) × (0,T ),

u(0, t) = 0, u(π, t) = h0(t), ux(π, t) = h1(t), t ∈ (0,T ).

Note that the interval length π belongs to set of critical lengths of intervals. Therefore,

in the absence of controllers, the model may assume a time independent solution. Let us

initialize the error model as ũ(x, 0) = 3 − e4ix − 2e−2ix and observer model as û(x, 0) ≡ 0.

We take r = 0.05. This choice yields positive vales μ > ν > 0 where μ and ν are defined

in (4.15) and (4.31), respectively.

The figure below on the left present the behaviour of the solution of the original

plant in time. On the right we present time evolution of L2−norms of each of the states of

plant-observer-error system.

Figure 4.2. Numerical simulations in the presence of controllers. Left: Time evolu-

tion of |u(x, t)|. Right: Time evolution of ‖u(·, t)‖L2(0,L), ‖û(·, t)‖L2(0,L) and

‖ũ(·, t)‖L2(0,L).
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CHAPTER 5

FINITE DIMENSIONAL BACKSTEPPING CONTROLLER

DESIGN FOR INFINITE DIMENSIONAL DISSIPATIVE

SYSTEMS

In this chapter, we introduce finite dimensional version of classical backstepping

strategy for stabilizing zero equilibrium to dissipative systems. More precisely, the bound-

ary controller that we construct by the backstepping method now involves a projection of

the state u, onto a finite dimensional space. As a canonical example, we study stabiliza-

tion of zero equilibrium to the nonlinear reaction diffusion equation. However, our strat-

egy is applicable also to other evolutionary equations and system of equations which has

finite dimensional long time behaviour such as complex Ginzburg-Landau equation, var-

ious kind of dissipative wave equations, or system of dissipative PDEs such as Fitzhugh-

Nagumo system, phase-field systems.

To this end, let us consider the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − νuxx − αu + u3 = 0, (x, t) ∈ (0, L) × (0,T ),

u(0, t) = 0, u(L, t) = h(t), t ∈ (0,T ),

u(x, 0) = u0(x), x ∈ (0, L).

(5.1)

Here ν, α > 0 are given constants and h(t) = h(u(·, t)) is a soughtafter feedback control

that acts through Dirichlet actuation at x = L and involves only finitely many Fourier

sine modes of u. In the absence of control input and for certain values of ν, α and L,

zero equilibrium solution may be either asymptotically stable or unstable. To be more

precise, if νλ1 − α > 0, (5.1) has a unique equilibrium solution u ≡ 0. For this case, it is

exponentially stable. Conversely, if νλ1 − α < 0, then there exist at least two nontrivial

stationary solutions, exactly two of which are asymptotically stable, and all solutions

bifurcate from the zero equilibrium. So for this case, u ≡ 0 is no more stable. Our aim is
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to construct a feedback law of the form

h(t) = h(PNu(·, t)) =
∫ L

0

ξ(y)Γ[PNu](y, t)dy,

such that all solutions are steered asymptotically to zero. Here, Γ is a linear bounded

operator on a certain L2−based functional space, ξ is a suitable smooth function to be

constructed, and PN is the projection operator

PNϕ(x) =

N∑
j=1

e j(x)
(
e j(·), ϕ(·)

)
2
, e j(x) =

√
2

L
sin

( jπx
L

)
.

Remark 5.1 The above model considers Dirichlet actuation at the right endpoint of the

spatial interval. We can also consider a controller which acts to the model from the

left endpoint, or a Neumann type controller which acts either from left or from right. No

matter the choice is, our strategy we introduce below still works. Note that if one considers

a Neumann actuation, then one should consider a change in the boundary condition of

the associated target model from Dirichlet type to Neumann type.

Let us now describe our strategy. We first consider the following linearized model

of (5.1) around zero solution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − νuxx − αu = 0, (x, t) ∈ (0, L) × (0,T ),

u(0, t) = 0, u(L, t) = h(t), t ∈ (0,T ),

u(x, 0) = u0(x), x ∈ (0, L),

(5.2)

and apply the backstepping method in order to stabilize zero equilibrium of (5.2). Once

we construct finite dimensional feedback control for our purposes, we use it for stabi-

lizing the zero equilibrium of the nonlinear model (5.1). To design a finite dimensional

controller via the backstepping method, we use the same three step strategy we explained

in Section 3.1. However, there is a novel change in the choice of associated target model,

where its choice relies on finite dimensionality of the asymptotic in time behaviour of dis-

sipative models. Indeed, aiming to convert the boundary feedback actuation to an interior
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damping, motivates us to suggest the following nontrivial choice target model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt − νwxx − αw + μPNw = 0, (x, t) ∈ (0, L) × (0,T ),

w(0, t) = w(L, t) = 0, t ∈ (0,T ),

w(x, 0) = w0(x), x ∈ (0, L),

(5.3)

which is a suitable one for our purposes. Recall that dissipative dynamical systems pos-

sess finite dimensional long time dynamics, since such systems possess a finite number

of determining modes. Therefore, (5.3) is indeed a suitable choice, since the additional

damping term μPNw involving in its main equation is capable of preventing large fluctu-

ations or uncontrolled growth of the solution for large N due to the term −αw. In fact, as

we show in Proposition 5.1 that for a given μ > α − νλ1, if N is sufficiently large, then all

solutions can be steered to zero with respect to L2 and H1 metric.

Now let us define the backstepping transformation as

u(x, t) = w(x, t) +
∫ x

0

k(x, y)PNw(y, t)dy. (5.4)

After some calculations, which we detail in Section 5.1.1, we see that the linear plant

(5.2) maps to linear target (5.3), if k satisfies the following boundary value problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ν(kxx − kyy) + μk = 0, (x, y) ∈ Δx,y,

k(x, 0) = 0, k(x, x) = −μx
2ν
, x ∈ [0, L],

(5.5)

where Δx,y :=
{
(x, y) ∈ R2 | x ∈ (0, L), y ∈ (0, x)

}
. Notice that compared to the previous

applications of backstepping method in Chapter 3 and Chapter 4, now the backstepping

transformation (5.4) involves a projection operator inside the integral term. This is be-

cause, once we show the existence of a backstepping kernel k and then by taking x = L

on (5.4), we are allowed to express the control input as

h(t) =
∫ L

0

k(L, y)PNw(y, t)dy (5.6)
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which involves finitely many sine modes of w.

Finally, proving invertibility of the backstepping with a bounded inverse on a suit-

able space, allows us to conclude exponential decay of solutions of original linear plant

(5.2). Moreover derivation of the inverse backstepping operator also allows us to replace

w by u via the inverse relation, which makes the control input (5.6) of feedback type. A

crucial part in this step is that, one needs to make a delicate proof of invertibility and

obtain an explicit inverse relation so that the control input needs not only to be feedback

type but also needs to involve finitely many Fourier sine modes of u. More precisely, one

needs to find an inverse relation, which relates not only w to u but actually PNw to PNu, so

that the controller (5.6) depends on the projection PNu. We experienced that usual meth-

ods for proving bounded invertibility of the standard backstepping transformation fails in

the current finite dimensional case and one needs to give a new proof of such result. This

is the second novelity of our proposed strategy and is proved in Lemma 5.2.

Remark 5.2 Unlike the way we defined in Chapter 3, now state of the target model, w, is

given in the backstepping transformation (5.4) implicitly. This is due to overcome some

mathematical difficulties that occurs during calculations, when we map the linear plant

(5.2) to the linear target (5.3).

Once we gain the exponential stabilization of zero equilibrium to the linear closed-

loop system (5.2), then we turn our attention to nonlinear plant (5.1) and study exponential

stabilization of the associated zero equilibrium. This is done by using the same backstep-

ping transformation (5.4) along with the controller (5.6). Hence, it is enough to study the

associated nonlinear target model to the nonlinear plant.

Remark 5.3 In the nonlinear case, our stabilization is only in local manner, that is, we

have a smallness assumption on the initial datum for stabilizing the zero equilibrium. This

is because the backstepping transformation turns the original nonlinear plant into the

target model in which the monotone structure of the nonlinear term, u3, is disrupted. So

applying multipliers to derive L2−based norm estimates yields Bernoulli type differential

inequalities which forces us to put a smallness assumption on the initial datum. Note that

smallness condition for stabilization of nonlinear evolutionary equations via backstepping

controllers is common, see for instance (Cerpa and Coron, 2013). On the other hand, it

is not a necessary assumption for local existence of solutions.
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5.1. Exponential stabilization of zero equilibrium

In this section, we construct a boundary feedback controller which involves finitely

many Fourier sine modes of the state that exponentially stabilizes zero equilibrium of the

linear plant and nonlinear plant. We do this in the following order: First, in Section 5.1.1,

we state existence of a smooth kernel and prove that the backstepping transform is invert-

ible. Next, in Section 5.1.2, we prove exponential decay of solutions to the linear and

nonlinear target model in L2 and in H1 level. In Section 5.1.3, we also derive the minimal

number of Fourier modes that provides exponential decay of solutions. Invertibility of the

backstepping transformation provides that the same result also hold for linear and non-

linear original plants along with the boundary controller that involves only finitely many

Fourier modes of u.

5.1.1. Smooth backstepping kernel and invertibility of the

backstepping transformation

We want to find sufficient conditions for the backstepping kernel so that the back-

stepping transformation becomes a mapping between the target model and the linearized

plant. To this end, we differentiate (5.4) with respect to t, use the main equation in (5.2)

and linearity of PN to get

ut(x, t) = wt(x, t) +
∫ x

0

k(x, y)(PNu)t(y, t)dy

= wt(x, t) +
∫ x

0

k(x, y)(PNut)(y, t)dy

= wt(x, t) +
∫ x

0

k(x, y)
(
νPN∂

2
yw + αPNw − μPNw

)
(y, t)dy.

(5.7)

PN projects onto the span of the first N eigenfunctions of the operator − d2

dy2 subject to

homogeneous Dirichlet boundary conditions. Therefore, PN and d2

dy2 commute and we can

write

ut(x, t) = wt(x, t) +
∫ x

0

k(x, y)
(
ν∂2

y(PNw) + αPNw − μPNw
)

(y, t)dy.
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Integrating bu parts, we get

ut(x, t) =wt(x, t) + ν
(
k(x, x)(PNw(x, t))x − k(x, 0)(PNw(y, t))y

∣∣∣∣
y=0

−ky(x, x)PNw(x, t)
)

+

∫ x

0

(
νkyy + (α − μ)k

)
(x, y)PNw(y, t)dy.

(5.8)

Next, we differentiate (5.4) with respect to x twice to get

−νuxx(x, t) = − νwxx(x, t) − ν
∫ x

0

kxx(x, y)PNw(y, t)dy − νkx(x, x)PNw(x, t)

− ν d
dx

k(x, x)PNw(x, t) − νk(x, x)(PNw(x, t))x.

(5.9)

Adding (5.8) and (5.9) side by side, together with

−αu(x, t) = −αw(x, t) − α
∫ x

0

k(x, y)PNw(y, t)dy, (5.10)

we obtain

0 = − μPNw(x, t) −
∫ x

0

(
ν(kxx − kyy) + μk

)
(x, y)PNw(y, t)dy

− ν
(
kx(x, x) + ky(x, x) +

d
dx

k(x, x)

)
PNw(x, t) − νk(x, 0)(PNw(y, t))y

∣∣∣∣
y=0
.

(5.11)

Forcing k(x, 0) = 0, we see that the last term in (5.11) vanishes. Using the relation

d
dxk(x, x) = kx(x, x) + ky(x, x), we get

(
2ν d

dxk(x, x) + μ
)

PNw(x, t) = 0, which implies

d
dx

k(x, x) = − μ
2ν
. (5.12)

Integrating both sides of this equality over (0, x) and using k(x, 0) = 0, we obtain

k(x, x) = −μx
2ν
. (5.13)
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Hence, considering the term inside the integral on (5.11) together with the conditions

(5.12) and (5.13), we see that if k satisfies the following boundary value problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ν(kxx − kyy) + μk = 0, (x, y) ∈ Δx,y,

k(x, 0) = 0, k(x, x) = −μx
2ν
, x ∈ [0, L],

(5.14)

on the triangular region Δx,y =
{
(x, y) ∈ R2 : x ∈ (0, L), y ∈ (0, x)

}
, then the backstepping

transformation (5.4) successfully maps the linear plant (5.2) to the associated target model

(5.3).

Existence of a solution to a model similar to (5.14) is studied at Section 4 in

(Krstic and Smyshlyaev, 2008), which is based on method of successive approximations.

So applying similar arguments to those, one can show that the series

−μy
2ν

∞∑
m=0

(
− μ

4ν

)m (x2 − y2)m

m!(m + 1)!
(5.15)

and its partial derivatives of arbitrary order are uniformly and absolutely convergent on

the closure of Δx,y, and (5.15) solves (5.14). Thus, we can consider k as in the form (5.15).

Lemma 5.1 There exists a smooth function k that solves (5.14) and given by (5.15).

Remark 5.4 Thanks to existence of a backstepping kernel, we take x = L on the back-

stepping transformation (5.4) and using w(L, t) = 0 to obtain that control input h has the

form

h(t) =
∫ L

0

k(L, y)PNw(y, t)dy. (5.16)

Below we obtain a representation for the inverse of the backstepping transformation. So

replacing this representation by w, we will see that (5.16) can be written as a feedback.

Our next task is to prove the invertibility of the backstepping transformation with

a bounded inverse on Hl(0, L), for l = 0 and l = 1. Let Υk : Hl(0, L) → Hl(0, L) be

the integral operator defined by (Υkψ)(x) :=
∫ x

0
k(x, y)ψ(y)dy. We have the following

invertibility result.
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Lemma 5.2 Let N ≥ 1, then I + ΥkPN : Hl(0, L) → Hl(0, L), l = 0, 1 is invertible with a

bounded inverse. Moreover (I+ΥkPN)−1 can be written as I−ΦN, where ΦN : L2(0, L)→
Hl(0, L) is a linear bounded operator and iteratively given by the relation

Φ1ϕ ≡ 1

1 + β1

ΥkP1ϕ, β1 = (e1,Υke1)2,

ΦNϕ ≡ (I − ΦN−1)[ΥkPNϕ] − ((I − ΦN−1)[ΥkPNϕ], eN)2

1 + ((I − ΦN−1)[ΥkeN], eN)2

(I − ΦN−1)[ΥkeN],

(5.17)

for N ≥ 2.

Proof We write the backstepping transformation in operator form as ϕ = (I + ΥkPN)ψ.

Set v := ΥkPNψ. Then, we have ψ = ϕ−v and we get v = ΥkPN(ϕ−v). Given ψ ∈ Hl(0, L),

we have (I+ΥkPN)ψ ∈ Hl(0, L). Therefore, we have the inclusion R(I+ΥkPN) ⊂ Hl(0, L).

We will prove the invertibility with induction on N.

(i) First we consider the case N = 1. We can write

v = ΥkP1(ϕ − v) = (ϕ̂1 − v̂1)Υke1,

where ϕ̂1 and v̂1 are the first Fourier sine modes of ϕ and of v, respectively. Now,

we look for a solution in the form v = α1Υke1. Such solution can be constructed by

finding α1 that satisfies

α1Υke1 = (ϕ̂1 − α1β1)Υke1,

where β1 =
∫ L

0
e1(s)[Υke1](s)ds. This is the case if we choose

α1(1 + β1) = ϕ̂1.

Therefore, if β1 � −1, then we can choose α1 =
ϕ̂1

1+β1
. Then we can write v as

v =
ϕ̂1

1 + β1

Υke1 =
1

1 + β1

Υ1PNϕ,
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and therefore ψ as

ψ = ϕ − v = ϕ − 1

1 + β1

Υ1PNϕ.

We remark that the condition β1 � −1 can always be guaranteed by slightly mod-

ifying μ if necessary. This follows from the explicit solution representation of

k = k(x, y; μ) given in (5.15) and the definition of β1. So this shows surjectivity

of I +ΥkP1. Note that we in particular have v ∈ Hl(0, L) (indeed better than this) so

that ψ = ϕ − v ∈ Hl(0, L).

Now we set

Φ1ϕ ≡ 1

1 + β1

ΥkP1ϕ.

It is easy to verify that (I−Φ1) is both a right inverse and a left inverse for (I+ΥkP1)

and moreover Φ1 : L2(0, L) → Hl(0, L) is a linear bounded operator. Therefore,

(I + ΥkP1)−1 exists and is given by (I + ΥkP1)−1ϕ = (I − Φ1)ϕ.

(ii) We assume that there exists some K ≥ 1 such that the statement of the lemma holds

true for N = K.

(iii) Now, we claim that the statement of the lemma must also be true for N = K + 1.

Replacing N by (K + 1) we have

v = ΥkPK+1(ϕ − v)

= ΥkPK+1ϕ − ΥkPKv − ΥkEK+1v,
(5.18)

where we used PK+1 = PK+EK+1 with EK+1 being the projection onto the (K+1)−th

Fourier sine mode. Rearranging the terms, we get

(I + ΥkPK)v = ΥkPK+1ϕ − v̂K+1ΥkeK+1,

where v̂K+1 is the (K + 1)−th Fourier sine mode of v. By using the induction as-

sumption in Step (ii), we obtain

v = (I − ΦK)[ΥkPK+1ϕ] − v̂K+1(I − ΦK)[ΥkeK+1].
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Multiplying the both sides of the above equation with eK+1 in L2(0, L), we get

v̂K+1 =
((I − ΦK)[ΥkPK+1ϕ], eK+1)2

1 + ((I − ΦK)[ΥkeK+1], eK+1)2

.

Note that v̂K+1 is well-defined provided the denominator does not vanish above,

but this can always be guaranteed by slightly modifying the parameter μ in the

backstepping kernel model if necessary. Therefore, we find

v = (I − ΦK)[ΥkPK+1ϕ]

− ((I − ΦK)[ΥkPK+1ϕ], eK+1)2

1 + ((I − ΦK)[ΥkeK+1], eK+1)2

(I − ΦK)[ΥkeK+1]. (5.19)

Denote the right hand side of (5.19) by ΦK+1ϕ. Then, using the relation ψ = ϕ − v,

we can explicitly write ψ as

ψ = ϕ − ΦK+1ϕ.

This shows the surjectivity of (I + ΥkPK+1) and it has a right inverse given by (I −
ΦK+1). Moreover, for given ϕ, v is uniquely determined, and therefore the right

inverse is unique. This implies the right inverse is also a left inverse, (I + ΥkPK+1)

is invertible and we have

ψ = (I + ΥkPK+1)−1ϕ = ϕ − v = (I − ΦK+1)ϕ.

It is easy to check that ΦK+1 : L2(0, L) → Hl(0, L) is a linear bounded operator.

This follows from the definition of ΦK+1 together with the induction assumption in

Step (ii).

�

Remark 5.5 Observe that the operator ΦN defined by the iteration (5.17) is a projection

operator, i.e., ΦNϕ = ΦN PNϕ. So using this property and replacing w in the control input

h(t) =
∫ L

0
k(x, L)PNw(y, t)dy with the inverse relation w = (I −ΦN)u, we see that h can be
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expressed as

h(t) =
∫ L

0

k(L, y)PNw(y, t)dy =
∫ L

0

k(L, y)PN (I − ΦN) u(y, t)dy

=

∫ L

0

k(L, y)PN (I − ΦN PN) u(y, t)dy

=

∫ L

0

k(L, y)ΓN[PNu](y, t)dy,

where ΓN := I − PNΦN : Hl(0, L) → Hl(0, L) is a bounded operator. Hence, the control

input is not only of feedback type but also is calculated by using only finitely many Fourier

sine modes of the state. Consequently we comment that, the way we construct the inverse

backstepping operator is crucial for our purposes, since it allows us to write the control

input involving finitely many Fourier modes of u.

Remark 5.6 From computational point of view, we will see in Section 5.3 that defining

ΦN’s iteratively as in (5.17) also allows us to construct their numerical approximations

easily.

5.1.2. Stabilization of zero equilibrium

In this part, we prove stabilization of zero equilibrium to the linear and nonlinear

plants, both in L2 and in H1 level. We carry out the proofs through the associated target

models, and then conclude the same results for original plants, by using the invertibility

of the backstepping transformation with a bounded inverse.

5.1.2.1. Linear target model

Regarding the linear target model, we have following exponential decay result.

Proposition 5.1 Let ν, α > 0, w0 ∈ Hl(0, L), where l = 0 or l = 1, α − νλ1 ≥ 0. For a
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given μ > α − νλ1, suppose that N is chosen such that

N > max

{
μ

2νλ1

− 1,
μ

μ + νλ1 − α − 1

}
. (5.20)

Then solution w of (5.3) satisfies the decay estimate

‖w(·, t)‖Hl(0,L) ≤ e−γt‖w0‖Hl(0,L), ∀t ≥ 0,

where γ is given by

γ = νλ1 − α + μ
(
1 − 1

N + 1

)
> 0. (5.21)

Remark 5.7 If one uses all Fourier sine modes (N = ∞), then the main equation of the

target model takes the form

wt − νwxx − αw + μw = 0. (5.22)

Using standard multipliers, one can see that ‖w(·, t)‖Hl(0,L) = O(e−(νλ1−α+μ)t), t ≥ 0. Hence,

the condition μ > α − νλ1 is necessary for solutions to decay. Therefore, this condition,

which also appears in the above proposition is a natural assumption.

Proof Let us multiply the main equation of (5.3) by 2w in L2(0, L), apply integration

by parts for the second term and get

d
dt
‖w(·, t)‖2L2(0,L)

+ 2ν‖wx(·, t)‖2L2(0,L)

− 2α‖w(·, t)‖2L2(0,L)
+ 2μ

∫ L

0

w(x, t)PNw(x, t)dx = 0. (5.23)

Using the Cauchy-Schwarz inequality and Cauchy’s inequality with ε1 > 0, we see that
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the last term on the left hand side of (5.23) is bounded from below as

2μ

∫ L

0

w(x, t)PNw(x, t)dx

= − 2μ

∫ L

0

w(x, t) (w − PNw) (x, t)dx + 2μ‖w(·, t)‖2L2(0,L)

≥ − 2μ‖w(·, t)‖L2(0,L)‖ (w − PNw) (·, t)‖L2(0,L) + 2μ‖w(·, t)‖2L2(0,L)

≥(2μ − ε1μ)‖w(·, t)‖2L2(0,L)
− μ

ε1

‖ (w − PNw) (·, t)‖2L2(0,L)
.

(5.24)

Using this bound in (5.23), we get

d
dt
‖w(·, t)‖2L2(0,L)

+ 2ν‖wx(·, t)‖2L2(0,L)
− 2α‖w(·, t)‖2L2(0,L)

+ (2μ − με1)‖w(·, t)‖2L2(0,L)
− μ

ε1

‖ (w − PNw) (·, t)‖2L2(0,L)
≤ 0.

Employing the Poincaré type inequality for the last term on the left hand side, we obtain

d
dt
‖w(·, t)‖2L2(0,L)

+ 2

(
ν − μ

2ε1λ1(N + 1)2

)
‖wx(·, t)‖2L2(0,L)

+ (2μ − με1 − 2α)‖w(·, t)‖2L2(0,L)
≤ 0. (5.25)

Given μ and then chosen N specified below, there exists ε1 > 0 such that

ν − μ

2ε1λ1(N + 1)2
> 0 (5.26)

holds. Therefore, for such choice of ε1, we can apply the Poincaré inequality for the

second term on the left hand side of (5.25) to get

d
dt
‖w(·, t)‖2L2(0,L)

+ 2

[
νλ1 − α + μ

(
1 − ε1

2
− 1

2ε1(N + 1)2

)]
‖w(·, t)‖2L2(0,L)

≤ 0. (5.27)

To maximize the damping effect, therefore the exponential decay rate, we maximize the
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inner parenthesis in the second term with respect to ε1. For this purpose, we consider this

term as a function of ε1 and see that maximum occurs if ε1 =
1

N+1
. Note that (5.26) with

the specific choice ε1 =
1

N+1
holds, provided that

N >
μ

2νλ1

− 1. (5.28)

Therefore, under condition (5.28) on N, we get

d
dt
‖w(·, t)‖2L2(0,L)

+ 2γ‖w(·, t)‖2L2(0,L)
≤ 0, (5.29)

where γ is given by (5.21). In order to obtain a decay result, we must have γ > 0 which

imposes the condition

N >
μ

μ + νλ1 − α − 1. (5.30)

Finally, integrating (5.29), we deduce the following exponential decay result

‖w(·, t)‖L2(0,L) ≤ e−γt‖w0‖L2(0,L), ∀t ≥ 0, (5.31)

under the assumption (5.20).

Next, we show exponential decay of solutions of (5.3) in H1(0, L). We multiply

the main equation of (5.3) by −2wxx in L2(0, L), integrate the third term by parts and

obtain

d
dt
‖wx(·, t)‖2L2(0,L)

+ 2ν‖wxx(·, t)‖2L2(0,L)

− 2α‖wx(·, t)‖2L2(0,L)
− 2μ

∫ L

0

wxx(x, t)PNw(x, t)dx = 0. (5.32)

Applying the Cauchy-Schwarz inequality and then Cauchy’s inequality with ε2 > 0, the
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last term at the left hand side of (5.32) can be bounded from below as

− 2μ

∫ L

0

wxx(x, t)PNw(x, t)dx

=2μ

∫ L

0

wxx(x, t)(w − PNw)(x, t)dx − 2μ

∫ L

0

wxx(x, t)w(x, t)dx

≥ − 2μ‖wxx(·, t)‖L2(0,L)‖(w − PNw)(·, t)‖L2(0,L) + 2μ‖wx(·, t)‖2L2(0,L)

≥ − με2‖wxx(·, t)‖2L2(0,L)
− μ

ε2

‖(w − PNw)(·, t)‖2L2(0,L)
+ 2μ‖wx(·, t)‖2L2(0,L)

.

(5.33)

Next we use the Poincaré type inequality to get

− 2μ

∫ L

0

wxx(x, t)PNw(x, t)dx ≥ −με2‖wxx(·, t)‖2L2(0,L)

+

(
2μ − μ

ε2λ1(N + 1)2

)
‖wx(·, t)‖2L2(0,L)

. (5.34)

Combining the above estimate with (5.32), we obtain

d
dt
‖wx(·, t)‖2L2(0,L)

+ 2
(
ν − με2

2

)
‖wxx(·, t)‖2L2(0,L)

+ 2

(
μ − α − μ

2ε2λ1(N + 1)2

)
‖wx(·, t)‖2L2(0,L)

≤ 0. (5.35)

Now for a given μ, we can find ε2 such that

ν − με2

2
> 0. (5.36)

For this choice of ε2, we apply the Poincaré inequality to the second term at the left hand

side of (5.35) and get

d
dt
‖wx(·, t)‖2L2(0,L)

+ 2

[
νλ1 − α + μ

(
1 − ε2λ1

2
− 1

2ε2λ1(N + 1)2

)]
‖wx(·, t)‖2L2(0,L)

≤ 0.

(5.37)

Observe that the inner parenthesis, therefore the exponential decay rate, is maximized for
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the choice ε2 =
1

λ1(N+1)
. Using this choice we rewrite (5.37) and get

d
dt
‖wx(·, t)‖2L2(0,L)

+ 2γ‖wx(·, t)‖2L2(0,L)
≤ 0, (5.38)

where γ is given by (5.21). Note that letting ε2 =
1

λ1(N+1)
in (5.36) yields the same con-

dition (5.28) on N as we obtained in the L2−decay case. Finally, combining (5.38) with

(5.29) and using definition of H1−space, we obtain the following decay result

‖w(·, t)‖H1(0,L) ≤ e−γt‖w0‖H1(0,L), ∀t ≥ 0,

under condition (5.20) on N. �

Now we show that exponential decay results in Hl(0, L) for linear target model is

also true for linear plant. To this end, we first use smoothness of the backstepping kernel

k, definition of the projection operator PN and Proposition 5.1 to get

‖u(·, t)‖Hl(0,L) ≤
(
1 + ‖k‖L2(Δx,y)

)
‖w(·, t)‖Hl(0,L)

≤
(
1 + ‖k‖L2(Δx,y)

)
e−γt‖w0‖Hl(0,L).

(5.39)

Next, by the Lemma 5.2, backstepping transformation is invertible with a bounded inverse

and we can also write

‖w0‖Hl(0,L) ≤ ‖I + ΦN‖Hl(0,L)→Hl(0,L)‖u0‖Hl(0,L). (5.40)

Combining (5.39)-(5.40)

‖u(·, t)‖Hl(0,L) ≤ cke−γt‖u0‖Hl(0,L),

where

ck =
(
1 + ‖k‖L2(Δx,y)

)
‖I + ΦN‖Hl(0,L)→Hl(0,L) (5.41)

142



is a nonnegative constant independent of the initial datum.

Hence, we proved the following exponential stabilization of zero equilibrium to

the linear plant (5.2).

Proposition 5.2 Let ν, α > 0, α − νλ1 ≥ 0, and u0 ∈ Hl(0, L), where l = 0 or l = 1.

Assume that the feedback controller is given by

h(t) =
∫ L

0

k(L, y; μ)Γ[PNu](y, t)dy, (5.42)

where k is a smooth solution of (5.14), Γ[PNu] := (I − PNΦN)[PNu] and ΦN : Hl(0, L)→
L2(0, L) is a linear bounded operator. For μ > α − νλ1, if N satisfies

N > max

{
μ

2νλ1

− 1,
μ

μ + νλ1 − α − 1

}
,

then zero equilibrium to the closed-loop system (5.2) is exponentially stable. Moreover

all solutions satisfies the exponential decay estimate

‖u(·, t)‖Hl(0,L) � cke−γt‖u0‖Hl(0,L), t ≥ 0,

where ck is a nonnegative constant independent of initial datum and γ is given by (5.21).

Remark 5.8 In the above proposition, the decay rate γ can be made as large as desired

by choosing μ large enough. So this result is actually rapid stabilization of the zero

equilibrium. Ofcourse, to gain a rapid decay by increasing the value of μ, one requires a

stronger control effort. This will be illustrated as a numerical example in Section 5.3.

5.1.2.2. Nonlinear target model

If we apply backstepping transformation to the nonlinear plant (5.1), there exists

an extra term in the main equation of the associated nonlinear target model, due to the

term u3 involving in the main equation of (5.1). Let us denote this extra term as Fw
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derive a representation for this term. Applying the arguments in (5.7)-(5.10), we get

−u3 = − μPNw(x, t) − Fw −
∫ x

0

(
ν(kxx − kyy) + μk

)
(x, y)PNw(y, t)dy

−
∫ x

0

k(x, y)PN(Fw)(y, t)dy − ν
(
kx(x, x) + ky(x, x) +

d
dx

k(x, x)

)
PNw(x, t)

− νk(x, 0)(PNw(y, t))y

∣∣∣∣
y=0
.

(5.43)

In order to guarantee that (5.43) holds where k satisfies (5.14), we must have

u3 = (I + ΥkPN)Fw.

Using the invertibility of the backstepping transformation, we see that Fw can be explic-

itly expressed as

Fw = (I − ΦN)
[
((I + ΥkPN)w)3

]
, (5.44)

where ΦN is defined by (5.17) in Lemma 5.2. Hence the target model corresponding to

the nonlinear plant is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt − νwxx − αw + μPNw + Fw = 0, (x, t) ∈ (0, L) × (0,T ),

w(0, t) = 0, w(L, t) = 0, t ∈ (0,T ),

w(x, 0) = w0(x), x ∈ (0, L),

(5.45)

where Fw is given by (5.44).

Proposition 5.3 Let ν, α > 0, α − νλ1 ≥ 0, w0 ∈ Hl(0, L), l = 0 or l = 1, where ‖w0‖Hl(0,L)

is sufficiently small. For a given μ > α − νλ1, if N satisfies (5.20), then solution w of

(5.45) has the decay estimate

‖w(·, t)‖Hl(0,L) � e−
(
γ− ε3λ1

2

)
t‖w0‖Hl(0,L), ∀t ≥ 0, (5.46)

where γ is given by (5.21) and ε3 > 0 satisfies 2ν − ε3 − μ

λ1(N+1)
> 0.
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Proof Multiplying the main equation of (5.45) by 2w in L2(0, L) and applying the ar-

guments (5.23)-(5.25) by chooisng ε1 =
1

N+1
we get

d
dt
‖w(·, t)‖2 + 2

(
ν − μ

2λ1(N + 1)

)
‖wx(·, t)‖2 + (2μ − μ

N + 1
− 2α)‖w(·, t)‖2

= −2

∫ L

0

(I − ΦN)
[
((I + ΥkPN)w(x, t))3

]
w(x, t)dx. (5.47)

Applying the Cauchy-Schwarz inequality and using that inverse backstepping transfor-

mation, I − ΦN , is bounded on L2(0, L), right hand side of (5.47) can be estimated as

− 2

∫ L

0

(I − ΦN)
[
((I + ΥkPN)w(x, t))3

]
w(x, t)dx

≤2
∥∥∥∥(I − ΦN)

[
((I + ΥkPN)w)3

]
(·, t)

∥∥∥∥
L2(0,L)

‖w(·, t)‖L2(0,L)

≤2
∥∥∥((I + ΥkPN)w)3(·, t)∥∥∥

L2(0,L)
‖w(·, t)‖L2(0,L).

(5.48)

Now we apply the Gagliardo-Nirenberg inequality for the first multiplicant in the last line

of (5.48) and use the boundedness of the backstepping transformation on L2(0, L), to get

∥∥∥((I + ΥkPN)w)3 (·, t)∥∥∥
L2(0,L)

=‖(I + ΥkPN)w‖3L6(0,L)

≤cL‖∂x((I + ΥkPN)w)(·, t)‖L2(0,L)

× ‖(I + ΥkPN)w(·, t)‖2L2(0,L)

≤ck,L‖wx(·, t)‖L2(0,L)‖w(·, t)‖2L2(0,L)
.

(5.49)

Combining this estimate with (5.48) then applying Cauchy’s inequality with ε3 > 0, we

get

−2

∫ L

0

(I − ΦN)
[
((I + ΥkPN)w(x, t))3

]
w(x, t)dx ≤ ck,L‖wx(·, t)‖L2(0,L)‖w(·, t)‖3L2(0,L)

≤ ε3‖wx(·, t)‖2 + ck,L,ε3
‖w(·, t)‖6.

145



Therefore, it follows from (5.47) that

d
dt
‖w(·, t)‖2L2(0,L)

+ 2

(
ν − ε3

2
− μ

2λ1(N + 1)

)
‖wx(·, t)‖2L2(0,L)

+

(
2μ − μ

N + 1
− 2α

)
‖w(·, t)‖2L2(0,L)

≤ ck,L,ε3
‖w(·, t)‖6L2(0,L)

. (5.50)

Observe that given μ and choosing N in a suitable manner specified below, one can find

ε3 > 0 such that the second term at the left hand side can be made nonnegative, i.e., the

following inequality holds

ν − μ

2λ1(N + 1)
≥ ε3

2
> 0.

This yields a condition N > μ

2νλ1
− 1, which is the same one as (5.28) in the linear case.

Assuming that this condition is being satisfied and therefore applying the Poincaré in-

equality, we end up with

d
dt
‖w(·, t)‖2L2(0,L)

+ 2
(
γ − ε3λ1

2

)
‖w(·, t)‖2L2(0,L)

≤ ck,L,ε3
‖w(·, t)‖6L2(0,L)

, (5.51)

where γ > 0 is given by (5.21). Now if μ is sufficiently large that satisfies μ > νλ1 −
α ≥ 0 and N satisfies (5.30), then (5.51) implies L2−decay of the solutions exponentially

provided that ‖w0‖L2(0,L) is small enough. This follows from Lemma 5.3 below.

Next, we prove exponential decay of solutions of (5.45) in H1(0, L) level. To this

end, we take the L2−inner product of the main equation of (5.45) by −2wxx and proceed

as in (5.33)-(5.35) by choosing ε2 =
1

λ1(N+1)
and get

d
dt
‖wx(·, t)‖2 + 2

(
ν − μ

2λ1(N + 1)

)
‖wxx(·, t)‖2L2(0,L)

+ 2

(
μ − α − μ

2(N + 1)

)
‖wx(·, t)‖2L2(0,L)

≤ 2

∫ L

0

(I − ΦN)
[
((I + ΥkPN)w(x, t))3

]
wxx(x, t)dx. (5.52)

We apply Cauchy-Schwarz inequality and using that I − ΦN is a bounded operator on
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L2(0, L), right hand side of (5.52) can be estimated as

2

∫ L

0

(I − ΦN)
[
((I + ΥkPN)w(x, t))3

]
wxx(x, t)dx

≤ 2ck

∥∥∥((I + ΥkPN)w)3(·, t)∥∥∥
L2(0,L)

‖wxx(·, t)‖L2(0,L). (5.53)

Applying the arguments in (5.49) for the first multiplicant on the right hand side of (5.53),

then Poincaré inequality and Cauchy’s inequality with ε3 > 0, we can bound the right hand

side of (5.53) by

2
∥∥∥((I + ΥkPN)w)3(·, t)∥∥∥

L2(0,L)
‖wxx(·, t)‖L2(0,L)

≤
(
ck,L‖wx(·, t)‖L2(0,L)‖w(·, t)‖2L2(0,L)

)
‖wxx(·, t)‖L2(0,L)

≤ck,L‖wx(·, t)‖3L2(0,L)
‖wxx(·, t)‖L2(0,L)

≤ck,L,ε3
‖wx(·, t)‖6L2(0,L)

+ ε3‖wxx(·, t)‖2L2(0,L)
.

(5.54)

Combining (5.53)-(5.54), it follows from (5.52) that

d
dt
‖wx(·, t)‖2L2(0,L)

+ 2

(
ν − ε3

2
− μ

2λ1(N + 1)

)
‖wxx(·, t)‖2L2(0,L)

+ 2

(
μ − α − μ

2(N + 1)

)
‖wx(·, t)‖2L2(0,L)

≤ ck,L,ε3
‖wx(·, t)‖6L2(0,L)

. (5.55)

Given μ and choosing N in a suitable way, one can find ε3 > 0 such that

ν − μ

2λ1(N + 1)
≥ ε3

2
> 0,

which yields the same condition (5.28) on N. So assuming that (5.28) holds, we can apply

the Poincaré inequality and get

d
dt
‖wx(·, t)‖2L2(0,L)

+ 2
(
γ − ε3λ1

2

)
‖wx(·, t)‖2L2(0,L)

≤ ck,L,ε3
‖wx(·, t)‖6L2(0,L)

, (5.56)
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where γ > 0 is given by (5.21). If μ > νλ1 − α, then (5.56) combined with (5.51) yields

H1−decay of solutions. This follows from Lemma 5.3 below. �

Lemma 5.3 Let y = y(t) > 0 satisfy

d
dt

y(t) + (2γ − ε3λ1) y(t) − c3y3(t) ≤ 0, ∀t ≥ 0, (5.57)

where γ is given by (5.21), c3 > 0 and ε3 > 0 be such that 2ν − ε3 − μ

λ1(N+1)
> 0. If y(0) is

sufficiently small and μ is sufficiently large, so that γ > ε3λ1

2
, then y(t) ∼ O

(
e−(2γ−ε3λ1)t

)
.

Proof (5.57) is a Bernoulli type differential inequality. Solving this inequality directly

yields

y2(t) ≤
((

1

y2(0)
− c3

2γ − ε3λ1

)
e(4γ−2ε4λ1)t +

c3

2γ − ε4λ1

)−1

. (5.58)

Under the assumption y(0) ≤
√

2γ−ε3λ1

c3
, it follows from the above inequality that

y(t) � y(0)e−(2γ−ε3λ1)t, ∀t ≥ 0,

which completes the proof. �

To turn back to the original nonlinear plant, we apply the same arguments to those

in (5.39)-(5.40) and obtain

‖u(·, t)‖Hl(0,L) � cke−γ
′t‖u0‖Hl(0,L),

where ck > 0 is given by (5.41), γ′ = γ− ε3λ1

2
, provided that ‖u0‖Hl(0,L) is sufficiently small.

As the stabilization of linear problem, here the decay rate γ′ can be made arbitrarily large

by choosing μ as large enough. Consequently, we have the following rapid stabilization

result for the nonlinear closed-loop model.

Proposition 5.4 Let ν, α > 0, α − νλ1 ≥ 0. Let u0 ∈ Hl(0, L), where l = 0 or l = 1 and

suppose that ‖u0‖Hl(0,L) is sufficiently small. Assume that the feedback controller is given

by

h(t) =
∫ L

0

k(L, y; μ)Γ[PNu](y, t)dy,
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where k is a smooth solution of (5.14), Γ[PNu] := (I − PNΦN)[PNu] and ΦN : Hl(0, L)→
L2(0, L) is a linear bounded operator. For prescibed μ > α − νλ1, if N satisfies

N > max

{
μ

2νλ1

− 1,
μ

μ + νλ1 − α − 1

}
,

then zero equilibrium to the closed-loop system (5.2) is exponentially stable. Moreover,

for any γ′ with 0 < γ′ < γ, following exponential decay estimate holds

‖u(·, t)‖Hl(0,L) � cke−γ
′t‖u0‖Hl(0,L), ∀t ≥ 0,

where ck is a nonnegative constant independent of initial datum and γ, given by (5.21)

can be made arbitrarily large by choosing μ large enough.

5.1.3. Minimal number of Fourier modes for exponential decay

In the previous section, we focused on the rapid stabilization problem with finite

dimensional boundary feedback controllers. That is, for given problem parameters ν, α, L

and prescribed exponential decay rate, we sought to answer whether we are able to sta-

bilize the zero equilibrium for some N > 0. One can also be interested in determining

the minimal number of Fourier sine modes of u to gain exponential stabilization of zero

equilibrium for some unprescribed and not necessarily arbitrarily large decay rate. To

answer the latter question, suppose that the instability level of the model is N. That is, we

suppose that the problem parameters ν, α, L be such that

λN ≤ α
ν
< λN+1. (5.59)

Suppose also that the control input involves M Fourier sine modes of u:

h(t) =
∫ L

0

k(L, y)Γ[PMu](y, t)dy. (5.60)
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So our aim is to find minimal value of M. Recall that the norm estimates we performed

on the previous section to gain L2−decay is true under the assumptions (5.26) and (5.27),

that is we require that

μ < 2ε1νλ1(M + 1)2

and

μ >
α − νλ1

1 − ε1

2
− 1

2ε1(M + 1)2

.

To guarantee that such μ exists, we must have

α − νλ1

1 − ε1

2
− 1

2ε1(M + 1)2

< 2ε1νλ1(M + 1)2. (5.61)

From the inequality (5.61), we can write

α

ν
< λ1(M + 1)2(2ε1 − ε2

1) = λM+1(2ε1 − ε2
1). (5.62)

Recall that our previous choice on ε1 is to maximize the damping effect. However, now

our choice is to ensure the inequality (5.61), therefore (5.62) to be hold. Therefore, we

choose ε1 = 1, which maximizes the right hand side of (5.62), and (5.62) becomes

α

ν
< λM+1(2ε1 − ε2

1)
∣∣∣∣
ε1=1
= λM+1.

Similarly, throughout the calculations that we gain H1−decay of solutions, we

assumed (5.36) and (5.37), that is we assumed

μ <
2ν

ε2

and

μ >
α − νλ1

1 − ε2λ1

2
− 1

2ε2λ1(M + 1)2

.
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Such μ exists if
α − νλ1

1 − ε2λ1

2
− 1

2ε2λ1(M + 1)2

<
2ν

ε2

(5.63)

or equivalently
α

ν
<

2

ε2

− 1

ε2
2
λ1(M + 1)2

=
2

ε2

− 1

ε2
2
λM+1

(5.64)

holds. Right hand side of (5.64) is maximized for ε2 =
1

λM+1
. Therefore, for such value of

ε2, we get
α

ν
<

2

ε2

− 1

ε2
2
λM+1

∣∣∣∣
ε2=λ

−1
M+1

= λM+1.

Based on the above discussion, we see that M must be chosen such that

α

ν
< λM+1 (5.65)

in both cases. However, we assumed that the instability level of the model is N, that is

we assumed that (5.59) holds. Hence the minimum value for M that (5.65) holds true is

N. Note that taking M = N and, choosing ε1 = 1 in the L2−decay case and ε2 = λ
−1
M+1 in

H1−decay case, exponential decay rate of solutions to the linear target model becomes

ρ = νλ1 − α + μ
2

(
1 − 1

(N + 1)2

)
> 0 (5.66)

where μ obeys

2(α − νλ1)

(
1 − 1

(N + 1)2

)−1

< μ < 2νλN+1. (5.67)

Assumptions on the stabilization of zero equilibrium to the nonlinear model are

same as the linear case. Therefore, the above work is also valid for the nonlinear target

model, provided that the initial datum ‖w0‖Hl(0,L) is sufficiently small and exponential

decay rate is given by

ρ′ := ρ − ε3λ1

2

where ε3 > 0 satisfying 2ν − ε3 − μ

λ1(N+1)
> 0.

Now we use the same invertibility arguments (5.39)-(5.40) to turn back to the

original plant and obtain the following result.
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Proposition 5.5 Let ν, α, L > 0 be such that

λ∗j = νλ j − α ≤ 0, j = 1, . . . ,N,

λ∗N+1 = νλN+1 − α > 0,

i.e., the instability level is N. Suppose that u0 ∈ Hl(0, L), l = 0, 1 and in addition, if the

model is nonlinear suppose that ‖u0‖Hl(0,L) is sufficiently small. Then, it suffices to employ

a controller, h(t) = h(PNu(·, t)) of the form (5.42), that involves only first N Fourier sine

modes to achieve exponential stabilization of zero equilibrium.

5.2. Well-posedness

In this part, we prove well-posedness of the linearized model (5.2) in Section 5.2.1

and then well-posedness of the nonlinear model (5.1) in Section 5.2.2.

5.2.1. Linear model

Well-posedness of the linear target model (5.3) can be proved rigorously by the

Galerkin-Faedo method. At first one constructs an approximate weak solution in terms of

the finitely many basis functions of H1
0(0, L), which yields a system of ODEs. Existence

of a solution to that system follows from theory of ODEs. Next, using multiplier method,

one obtains uniform bounds for solutions to the approximate finite dimensional system.

With the help of these uniform bounds and compactness arguments, one can extract a

subsequence of the sequence of approximate solutions to the finite dimensional system

so that, it converges to the solution of the original model. Using the arguments (5.39)-

(5.40) this result is also true for the linear plant (5.2) This procedure is rather standard

and considering the volume of the thesis, we skip the proof and only state our result.

Proposition 5.6 Let T, ν, α > 0. Suppose that u0 ∈ H1(0, L). Then (5.2) admits a unique
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weak solution such that

u ∈ L∞(0,T ; H1(0, L)) ∩ L2(0,T ; H2(0, L) ∩ H1(0, L))

and

ut ∈ L2(0,T ; L2(0, L)).

5.2.2. Nonlinear model

Now we consider the nonlinear target model (5.45). We perform the well-posedness

analysis by using fixed point arguments combined with operator semigroup theory.

Remark 5.9 Well-posedness analysis of the nonlinear target model can be also carried

out by the Galerkin-Faedo procedure combined with compactness arguments. However,

due to the nonlinear term

Fw = (I − ΦN)
[
((I + ΥkPN)w)3

]

in the main equation, the uniform bounds that we need can be achieved under a smallness

assumption on the initial datum ‖w0‖H1(0,L). However, if we apply fixed point argument, we

do not need to suppose such smallness assumption at least for the existence and unique-

ness of local solution. Therefore, we prefer to perform the well-posedness analysis via the

fixed point argument.

In order to apply fixed point argument, we need a priori estimates for the linear

nonhomogeneous model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qt − νqxx − αq + μPNq = f (x, t), (x, t) ∈ (0, L) × (0,T ),

q(0, t) = q(L, t) = 0, t ∈ (0,T ),

q(x, 0) = q0(x), x ∈ (0, L).

(5.68)
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To this end, let us multiply the main equation of (5.68) by 2q in L2(0, L) and integrate by

parts to get

d
dt
‖q(·, t)‖2 + 2ν‖qx(·, t)‖2 − 2α‖q(·, t)‖2+

2μ

∫ L

0

q(x, t)PNq(x, t)dx ≤ 2

∫ L

0

| f (x, t)||q(x, t)|dx. (5.69)

Integrating over [0, t], we infer existence of nonnegative constants Ci, i = 1, 2, 3 that

depend on ν, α, μ such that

‖q(·, t)‖2 +
∫ t

0

‖qx(·, s)‖2ds ≤C1

∫ t

0

‖q(·, s)‖2ds +C2‖q0‖2

+C3

∫ t

0

‖q(·, s)‖‖ f (·, s)‖ds

≤C1T sup
t∈[0,T ]

‖q(·, t)‖2 +C2‖q0‖2

+ ε sup
t∈[0,T ]

‖q(·, t)‖2 +Cε‖ f ‖2L1(0,T ;L2(0,T ))
,

(5.70)

where the last inequality follows from Cauchy’s inequality with ε > 0. Then, taking

supremum with respect to t on [0,T ], and for sufficiently small and fixed T and ε, we get

‖q‖X0
T
≤ cT (‖q0‖ + ‖ f ‖L1(0,T ;L2(0,L))), (5.71)

where cT depends on ν, α, μ, ε,T and is uniformly bounded in T .

Next, we prove a linear nonhomogeneous estimate in X1
T . We multiply the main

equation by −2qxx in L2(0, L) and get

d
dt
‖qx(·, t)‖2 + 2ν‖qxx(·, t)‖2 − 2α‖qx(·, t)‖2

− 2μ

∫ L

0

qxx(x, t)PNq(x, t)dx ≤ 2

∫ L

0

| f (x, t)||qxx(x, t)|dx.
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Using similar arguments, we obtain

‖q‖X1
T
≤ cT (‖q0‖H1(0,L) + ‖ f ‖L1(0,T ;L2(0,L))) (5.72)

for sufficiently small T . We proved the following lemma.

Lemma 5.4 Let q0 ∈ Hl(0, L) where l = 0 or l = 1 and f ∈ L1(0,T ; L2(0, L)). Then, there

exists a T > 0 such that solution q of (5.68) belongs to space Xl
T and following regularity

estimate holds

‖q‖Xl
T
≤ cT (‖q0‖Hl(0,L) + ‖ f ‖L1(0,T ;L2(0,L))),

where CT > 0 depends on ν, α, μ, ε,T.

Now let us go on with the nonlinear target model (5.45) and express it in the

abstract operator theoretic form as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dw
dt
= Aw + F(w), t ∈ (0,T ),

w(0) = w0,

(5.73)

where F(w) is given by (5.44) and the operator A is defined as Aϕ := νϕ′′ + αϕ − μPNϕ

with domain D(A) :=
{
ϕ ∈ H2(0, L) |ϕ(0) = ϕ(L) = 0

}
. An application of operator semi-

group theory as we performed in details in Section 3.3.1 implies that A is the infinitesimal

generator of a C0−semigroup of contractions, {S (t)}t≥0, on L2(0, L). Now application of

Duhamel’s principle yields that solution w of (5.73), if exists, satisfies the following im-

plicit relation

w(t; w0) = S (t)w0 +

∫ t

0

S (t − τ)F(w(τ; w0))dτ. (5.74)

In order to prove existence of a function w that satisfies the relation (5.74), we need to

show that the mapping

Ψ[w0, z(t)] := S (t)w0 +

∫ t

0

S (t − τ)F(z(τ))dτ, (5.75)

has a fixed point in Xl
T . This will be proved by Banach fixed point theorem.
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To this end, we use the estimates obtained in Lemma 5.4 and then the boundedness

of the operator (I + ΦN) on L2(0, L) which we obtained in Lemma 5.2, to get

‖Ψz‖Xl
T
≤

∥∥∥∥∥∥S (t)w0 +

∫ t

0

S (t − τ)Fz(τ)dτ

∥∥∥∥∥∥
Xl

T

≤ cT ‖w0‖Hl(0,L) + cT

∫ T

0

∥∥∥(I − ΦN)[((I + ΥkPN)z)3(·, t)]∥∥∥
L2(0,L)

dt

≤ cT ‖w0‖Hl(0,L) + cT,k

∫ T

0

∥∥∥((I + ΥkPN)z)3(·, t)∥∥∥
L2(0,L)

dt.

(5.76)

Using the arguments in (5.49), we can bound the second term on the right hand side of

(5.76) as

∫ T

0

∥∥∥((I + ΥkPN)z)3(·, t)∥∥∥ dt ≤
∫ T

0

(
ck,L‖zx(·, t)‖‖z(·, t)‖2

)
dt

≤ck,L

√
T‖z‖2C([0,T ];L2(0,L))

‖zx‖L2(0,T ;L2(0,L))

≤ck,L

√
T‖z‖3Xl

T
.

(5.77)

Combining (5.76)-(5.77), we get

‖Ψz‖Xl
T
≤ cT

(
‖w0‖Hl(0,L) +

√
T‖z‖3Xl

T

)
, (5.78)

where cT is uniformly bounded in T , and it also depends on parameters ν, α, μ, k, L, which

are fixed throughout.

To prove local existence, it is enough to show that the mapping (5.74) has a fixed

point for some T > 0. Let BT
R :=

{
z ∈ Xl

T | ‖z‖Xl
T
≤ R

}
, where R = 2cT ‖w0‖Hl(0,L). Then,

‖Ψz‖Xl
T
≤ R

2
+ cT

√
TR3.

Let us choose T > 0 small enough that 2cT
√

TR2 < 1 holds. This yields ‖Ψz‖Xl
T
< R, i.e.,

Ψ maps BT
R onto itself for sufficiently small T > 0.

Next, we show that Ψ is a contraction on BT
R for sufficiently small T . Let z1, z2 ∈
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BT
R . Then

‖Ψz1 − Ψz2‖Xl
T
=

∥∥∥∥∥∥
∫ t

0

S (· − s) (Fz1 − Fz2) ds

∥∥∥∥∥∥
Xl

T

≤cT

∫ T

0

‖Fz1 − Fz2‖L2(0,L) dt

=cT

∫ T

0

∥∥∥∥(I − ΦN)
[
((I + ΥkPN)z1)3 − ((I + ΥkPN)z2)3

]∥∥∥∥
L2(0,L)

dt

≤cT

∫ T

0

∥∥∥((I + ΥkPN)z1)3 − ((I + ΥkPN)z2)3
∥∥∥

L2(0,L)
dt

≤cT

∫ T

0

∥∥∥∥((I + ΥkPN)(z1 − z2))
(
((I + ΥkPN)z1)2

+ ((I + ΥkPN)z2)2
)∥∥∥∥

L2(0,L)
dt

≤cT

∫ T

0

(
‖(I + ΥkPN)z1‖2∞ + ‖(I + ΥkPN)z2‖2∞

)
× ‖(I + ΥkPN)(z1 − z2)‖L2(0,L)dt

≤cT

∫ T

0

(
‖∂xz1‖L2(0,L)‖z1‖L2(0,L) + ‖∂xz2‖L2(0,L)‖z2‖L2(0,L)

)
‖z1 − z2‖L2(0,L)dt

≤cT

√
T (‖z1‖2Xl

T
+ ‖z2‖2Xl

T
)‖z1 − z2‖Xl

T
,

(5.79)

where we used Gagliardo-Nirenberg’s inequality, boundedness of the backstepping trans-

formation on L2(0, L) as well as boundedness of its inverse. Now for sufficiently small

T > 0 which also guarantees that cT T
1
2 R2 < 1

2
, Ψ becomes a contraction on a closed ball

BT
R . This yields a unique local solution in BT

R .

To show that the local solution is unique in Xl
T , let us suppose there are two solu-

tions z1 = Ψz1 and z2 = Ψz2. Then, applying the above arguments and choosing T smaller

if necessary, we obtain

‖z1 − z2‖Xl
T
= ‖Ψz1 − Ψz2‖Xl

T
≤ 2cT T

1
2 R‖z1 − z2‖Xl

T
≤ 1

2
‖z2 − z1‖Xl

T
,

which is possible only if z1 ≡ z2.

Finally, using the exponential decay results we stated in Proposition 5.3, the local

solution remains uniformly bounded in Xl
T which implies that the local solution extends
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globally.

We finish this part by summarizing our well-posedness and stabilization results

regarding the linear and nonlinear closed-loop systems.

Theorem 5.1 (Linear model) Let T, ν, α > 0, u0 ∈ H1(0, L). Assume that the feedback

controller is given by

h(t) =
∫ L

0

k(L, y; μ)Γ[PNu](y, t), (5.80)

where k is a smooth solution of (5.14), Γ[PNu] := (I − PNΦN)[PNu] and ΦN : Hl(0, L)→
L2(0, L) is a linear bounded operator defined by the relation (5.17). Then we have the

following:

(i) (Well-posedness) The problem (5.2) has a unique weak solution u such that

u ∈ L∞(0,T ; H1(0, L)) ∩ L2(0,T ; H2(0, L) ∩ H1(0, L))

and

ut ∈ L2(0,T ; L2(0, L)).

(ii) (Stabilization) Let u0 ∈ Hl(0, L), l = 0 or l = 1. For prescribed μ > α − νλ1, if N

satisfies

N > max

{
μ

2νλ1

− 1,
μ

μ + νλ1 − α − 1

}
,

then zero equilibrium to the closed-loop system (5.2) becomes exponentially stable

in Hl(0, L), respectively. Moreover, all solutions satisfies the exponential decay

estimate

‖u(·, t)‖Hl(0,L) � cke−γt‖u0‖Hl(0,L), ∀t ≥ 0,

where ck > 0 depends on the kernel k, independent of initial datum and γ, given by

(5.21), can be made as large as desired by choosing μ large enough.

Theorem 5.2 (Nonlinear model) Let ν, α > 0, u0 ∈ Hl(0, L) where l = 0 or l = 1.

Assume that the feedback controller is given by

h(t) =
∫ L

0

k(L, y; μ)Γ[PNu](y, t), (5.81)
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where k is a smooth solution of (5.14), Γ[PNu] := (I − PNΦN)[PNu] and ΦN : Hl(0, L)→
L2(0, L) is a linear bounded operator defined by the relation (5.17). Then we have the

following:

(i) (Local well-posedness) The problem (5.2) has a unique local solution u ∈ Xl
T .

(ii) (Global well-posedness and stabilization) Suppose that ‖u0‖Hl(0,L) is sufficiently small.

For prescribed μ > α − νλ1, if N satisfies

N > max

{
μ

2νλ1

− 1,
μ

μ + νλ1 − α − 1

}
,

then the local solution in Xl
T extends globally and zero equilibrium to the closed-

loop system (5.2) becomes exponentially stable. Moreover, for any γ′ with 0 < γ′ <

γ, global solution has the following exponential decay estimate

‖u(·, t)‖Hl(0,L) � cke−γ
′t‖u0‖Hl(0,L), ∀t ≥ 0,

where ck > 0 depends on k, independent of initial datum and γ, given by (5.21), can

be made as large as desired by choosing μ large enough.

5.3. Numerical simulations

In this part, we present our numerical algorithm and and some experiments veri-

fying our theoretical exponential decay results.

Although our algorithm is based on the same three steps, which we followed in

Section 3.4, there are some differences in details, especially on derivation of the inverse

backstepping transformation. Also, unlike to the cases in Section 3.4 and Section 4.4, now

one of the models we consider is nonlinear. So, we would like to present our algorithm in

details.

Step i. Initial datum of the target model is given implicitly by u0 = (I + ΥkPN)w0. To find

an explicit approximation for w0, and therefore to initialize the target model, we
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need to find an approximation for the inverse of the backstepping transformation.

Recall that w0 can be expressed explicitly as w0 = u0 − ΦNu0, where ΦNu0 is given

via the iteration

ΦNu0 ≡ (I − ΦN−1)[ΥkPNu0]

− ((I − ΦN−1)[ΥkPNu0], eN)2

1 + ((I − ΦN−1)[ΥkeN], eN)2

(I − ΦN−1)[ΥkeN] (5.82)

for N = 2, 3, . . . with

Φ1u0 ≡ 1

1 + β1

ΥkP1u0, β1 = (e1,Υke1)2. (5.83)

(5.82)-(5.83) includes the operators Υk and PN . So at first, we need to express their

discrete counterparts. To this end, let Nx > 1 be a positive integer, 1 ≤ j ≤ i ≤ Nx,

and (xi, y j) be distinct points of the triangular region Δx,y, where

δx =
L

Nx − 1
, xi = (i − 1)δx, y j = ( j − 1)δx.

We derive k approximately by setting

kM(xi, y j) =
−μyi

2ν

M∑
m=0

(
− μ

4ν

)m (x2
i − y2

j)
m

m!(m + 1)!
,

where M is an appropriate value in the sense that max
1≤ j≤i≤Nx

∣∣∣kM+1(xi, y j) − kM(xi, y j)
∣∣∣

is lesser than a tolerance value. Using kM and applying composite trapezoidal rule

for the integration, discrete counterpart Υh
k , of Υk can be expressed by an Nx dimen-

sional square matrix as
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Υh
k = δx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

1
2
kM(x2, x1) 1

2
kM(x2, x2) · · · 0 0

...
...

. . .
...

...

1
2
kM(xNx−1, x1) kM(xNx−1, x2) · · · 1

2
kM(xNx−1, xNx−1) 0

1
2
kM(xNx , x1) kM(xNx , x2) · · · kM(xNx , xNx−1) 1

2
kM(xNx , xNx)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Discrete counterpart Ph
N , of the operator PN can also be expressed by an Nx dimen-

sional matrix Ph
N = δxWWT , where

W =
√

2

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin
(
πx1

L

)
sin

(
2πx1

L

)
· · · sin

(
Nπx1

L

)
sin

(
πx2

L

)
sin

(
2πx2

L

)
· · · sin

(
Nπx2

L

)
...

...
...

sin
(
πxNx

L

)
sin

(
2πxNx

L

)
· · · sin

(
NπxNx

L

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Next, we obtain ΦNu0 via the iteration (5.82)-(5.83). To perform this, observe that

one requires information related with ΦN−1. More precisely, one explicitly needs

to know ΦN−1[ΥkPNu0] and ΦN−1[ΥkeN] to derive ΦNu0. Let us show this situation

schematically as follows:

ΦN−1[ΥkPNu0]

ΦN−1[ΥkeN]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→ ΦNu0. (5.84)

It describes that the left end part of the arrow is required as an input to derive

the right end part of the arrow. However, the inputs on the left end part of the

above scheme, ΦN−1[ΥkPNu0] and ΦN−1[ΥkeN], are unknowns as well, since they

depend on ΦN−2 due to iteration (5.82). In other words, considering (5.82) for

N − 1 and replacing u0 with ΥkPNu0, we can see that we explicitly need to know

ΦN−2[(ΥkPN−1)(ΥkPN)u0] and ΦN−2[ΥkeN−1]. Similarly, replacing u0 with ΥkeN , on

explicitly needs to have ΦN−2[(ΥkPN−1)(ΥkeN)] and ΦN−2[ΥkeN−1]. In view of these
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new unknowns, we enlarge the scheme (5.84) as follows:

ΦN−2[(ΥkPN−1)(ΥkPN)u0]

ΦN−2[ΥkeN−1]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→ΦN−1[ΥkPNu0]

ΦN−2[(ΥkPN−1)(ΥeN)]

ΦN−2[ΥkeN−1]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→ΦN−1[ΥkeN]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
→ ΦNu0. (5.85)

The functions lying at the most left end of scheme (5.85) are still unknown since

they depend on ΦN−3. In order to see what we need to determine them, we need

to go back one more step. After some calculations and considering the required

ingredients, the scheme (5.85) is enlarged as the following one:

ΦN−3[(ΥkPN−2)(ΥkPN−1)(ΥkPN)u0]

ΦN−3[ΥkeN−2]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→ ΦN−2[(ΥkPN−1)(ΥkPN)u0]

ΦN−3[(ΥkPN−2)[ΥkeN−1]]

ΦN−3[ΥkeN−2]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→ ΦN−2[ΥkeN−1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
→ ΦN−1[ΥkPNu0]

ΦN−3[(ΥkPN−2)(ΥkPN−1)[(ΥkeN)]]

ΦN−3[ΥkeN−2]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→ ΦN−2[(ΥkPN−1)(ΥeN)]

ΦN−3[(ΥkPN−2)[ΥkeN−1]]

ΦN−3[ΥkeN−2]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→ ΦN−2[ΥkeN−1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
→ ΦN−1[ΥkeN]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→ ΦNu0.

Each backward step to determine Φ j gives rise to a new unknown including Φ j−1,

j = 3, . . . ,N. Therefore, in order to understand what total information is required to

derive ΦNu0, we need to go backward step by step until we hit Φ2, since it depends

on Φ1, which is already known and defined as (5.83). Stepping back in this manner,

one can conclude that to derive ΦNu0 explicitly, we need

(ΥkP1)[Υke2]

(ΥkP1)(ΥkP2)[Υke3]

...

(ΥkP1)(ΥkP2) · · · (ΥkPN−1)[ΥkeN]
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and

(ΥkP1)(ΥkP2) · · · (ΥkPN−1)(ΥkPN)u0

as inputs. Once we obtain Φh
Nu0, where Φh

N represents the discrete counterpart of

ΦN obtained by using discrete operators Υh
k , Ph

j , j = 1, . . . ,N defined above and

u0 = [u0(x1) · · · u0(Nx)]
T , we write

w0 = u0 +Φ
h
Nu0,

and obtain an approximation, w0, for a numerical approximation w0, to the initial

datum w0 of the target model.

Step ii. Let us first consider the linear target model (5.3). Define the finite dimensional

space Xh :=
{
ϕ = [ϕ1 · · · ϕNx]

T ∈ RNx |ϕ1 = ϕNx = 0
}

and the operator A : Xh →
Xh,

A := −νΔ − αINx + μPh
N ,

where Δ is the Nx dimensional tridiagonal matrix obtained by applying central dif-

ference approximation to the second order derivative and INx is the Nx dimensional

identity matrix.

Let Nt denotes the number of time steps, T is the final time and δt =
T

Nt−1
. Let

wn = [wn
1 · · · wn

Nx
]T ∈ Xh be an approximation of the solution w at n−th time level.

Using Crank-Nicolson time stepping, which yields unconditionally numerical sta-

ble results in time, we end up with the following fully discrete problem for the linear

target model (5.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Given wn ∈ Xh, find wn+1 ∈ Xh such that(
INx +

δt
2

A
)

wn+1 = Bn
l , n = 0, 1, . . . ,Nt,

(5.86)
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where

Bn
l :=

(
INx −

δt

2
A
)

wn. (5.87)

(5.86)-(5.87) is linear in wn+1, hence can be solved directly.

Nonlinear case. Recall that the nonlinear target model (5.45) involves an additional

term

Fw = (I − ΦN)
[
((I + ΥkPN)w)3

]
on the left hand side of the main equation. Applying the same discretization proce-

dure as in the linear case, we obtain the following fully discrete system of equations

for the nonlinear target model (5.45)

(
INx +

δt

2
A
)

wn+1 +
δt

2

(
INx + Υ

h
kPh

N

)−1
[((

INx + Υ
h
kPh

N

)
wn+1

)3
]
= Bn

l + Bn
nl, (5.88)

where Bn
l is given by (5.87) and

Bn
nl = −

δt

2

(
INx + Υ

h
kPh

N

)−1
[((

INx + Υ
h
kPh

N

)
wn

)3
]
.

Observe that (5.88) is nonlinear in the unknown wn+1. To linearize this, let wn,p be

an approximation to the unknown wn+1 and consider performing the iteration

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
wn,p+1 = wn,p + dw, p = 0, 1, 2, . . . ,

wn,0 = wn,

(5.89)

to obtain a better approximation wn,p+1, until max
1≤i≤Nx

|dw| is small enough. To deter-

mine dw in each iteration, we replace wn+1 by (wn,p + dw) for the linear term and

by wn,p for the nonlinear term on (5.88), and then write

(
INx +

δt

2
A
)

(wn,p + dw) +
δt

2

(
INx + Υ

h
kPh

N

)−1
[((

INx + Υ
h
kPh

N

)
(wn,p)

)3
]

= Bn
l + Bn

nl. (5.90)
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Rearranging (5.90) with respect to dw, we get

(
INx +

δt

2
A
)

dw = Bn
l + Bn

nl −
(
INx +

δt

2
A
)

wn,p

− δt

2

(
INx + Υ

h
kPh

N

)−1
[((

INx + Υ
h
kPh

N

)
wn,p

)3
]
, (5.91)

which is now linear in dw. Hence for given wn,p, (5.91) can be solved directly

to obtain dw. Once max
1≤i≤Nx

|dw| is small enough, we stop the iteration (5.89) and set

wn+1 := wn,p+dw. Note that inverse backstepping operators involving in the second

and forth terms on the right hand side of (5.91) are evaluated via the procedure we

introduced in Step (i) in each time iteration.

Step iii. Once we obtain approximate solutions for the linear and nonlinear target models,

we substitute them into the discrete backstepping transformation

un =
(
INx + Υ

h
kPh

N

)
wn, 1 ≤ n ≤ Nt, (5.92)

to get the corresponding approximate solutions for the linear and nonlinear plant,

respectively.

Below we give several numerical simulations that verify our theoretical stabi-

lization results for both linear and nonlinear models. Results are obtained by taking

Nx = 1000 spatial nodes and Nt = 1000 time steps. The value M for the partial sum of

the series representation of k is chosen such that max
1≤ j≤i≤Nx

|kM+1(xi, y j) − kM(xi, y j)| ∼ 10−12.

Experiment 1 - Stabilization with a single Fourier mode. Consider the linear problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − uxx − 2u = 0, (x, t) ∈ (0, π) × (0,T ),

u(0, t) = 0, u(π, t) = h(t), t ∈ (0,T ),

u(x, 0) = x(π − x), x ∈ (0, π).

(5.93)
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Observe that ν = 1, α = 2, and λ1 < 2 < λ2 where λ j = j2, j = 1, 2. So, in the absence

of control, the instability level of (5.93) is one and solution grows up in time (see Figure

5.1).

Figure 5.1. Uncontrolled approximate solution of the linear model (5.93).

As the instablity level is one, we should be able to stabilize the zero solution by

a controller involving only a single Fourier mode. So let us take N = 1. Then, in order

to fulfill the condition (5.67), μ belongs to
(

8
3
, 8

)
. Let us choose μ = 3. See Figure 5.2

for the numerical simulation of the stabilized model and for time evolution of L2−norm

of the corresponding solution.

Figure 5.2. Simulations for the stabilized linear model (5.93). Left: 3d plot. Right:

Time evolution of L2−norm.
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Experiment 2 - Stabilization of a linear model that assumes a stationary solution.

Let us consider another linear model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − uxx − u = 0, x ∈ (0, 2π) × (0,T ),

u(0, t) = 0, u(2π, t) = h(t), t ∈ (0,T ),

u(x, 0) = sin x, x ∈ (0, 2π).

(5.94)

In this model, note that α = 1 is the second eigenvalue of − d2

dx2 on (0, 2π) subject to homo-

geneous Dirichlet type boundary condition. Therefore, if h(t) = 0, then the corresponding

eigenfunction, sin x, is a nontrivial stationary solution of (5.94). This shows that zero

equilibrium is not asymptotically stable.

To stabilize it, let us choose μ = 1.3 (indeed we can choose higher) which satisfies

μ > α − νλ1 =
3
4
. Then, we see that choosing N = 2 fulfills the criteria

N = 2 > max

{
μ

2νλ1

− 1,
μ

μ + νλ1 − α − 1

}
= max

{
16

10
,

15

11

}
.

See Figure 5.3 for the numerical simulation of the stabilized model and for time evolution

of L2−norm of the corresponding solution.

Figure 5.3. Simulations for the stabilized linear model (5.94). Left: 3d plot. Right:

Time evolution of L2−norm.
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Experiment 3 - Rapid stabilization of a nonlinear model. As a final simulation, let

us consider the following nonlinear model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − uxx − 15u + u3 = 0, x ∈ (0, 1) × (0,T ),

u(0, t) = 0, u(1, t) = h(t), t ∈ (0,T ),

u(x, 0) = sin(2πx) − 2 sin(3πx), x ∈ (0, 1).

(5.95)

Note that α−νλ1 = 15−π2 > 0. Therefore, if there is no control input acting on the model,

then the given initial state evolves into a nontrivial equilibrium in time (see Figure 5.4).

Figure 5.4. Simulations for uncontrolled model (5.95). Left: 3d plot. Right: Time

evolution of L2−norm.

Let us take μ = 8 > α− νλ1 = 15− π2. Then choosing N = 2 fulfills the condition

N = 2 > max

{
μ

2νλ1

− 1,
μ

μ + νλ1 − α − 1

}
= max

{
4

π2
− 1,

8

π2 − 7
− 1

}
,

and ε3, stated in Proposition 5.3, be such that 0 < ε3 < 2 − 8
3π2 . See Figure 5.5 for the

numerical simulations of the stabilized model.
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Figure 5.5. Simulations for the stabilized nonlinear model (5.95). Left: 3d plot. Right:

Time evolution of L2−norm.

To observe the effect of μ on the decay rate of L2−norm of u, let us now increase

the value of μ by μ = 10 and by μ = 15, and compare the associated simulations with the

results we obtained by the previous choice μ = 8. Note that, N = 2 still fulfills the criteria

(5.20) for both choices of μ so that, the associated control inputs involve same amount of

Fourier sine mode.

Figure 5.6. Time evolution of control inputs obtained by various values of μ that in-

volve N = 2 Fourier modes (left) and L2−norms of the associated approx-

imate solutions (right).

On the left of Figure 5.6, we observe that higher values of μ result in greater

control effort in the early times of the evolution. In response to this, decay rates of the

corresponding L2−norms of u decay more rapidly in time.
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CHAPTER 6

CONCLUSION

In this thesis, we studied various kind of stabilization problems of some evolu-

tionary PDEs by controlling the models from the boundary of the region of the evolution.

Control inputs were constructed by employing an analog of backstepping method. How-

ever, the standard way is not directly applicable to the models we considered so that, we

modified the method for the sake of our purposes. However, from the well-posedness

point of view, these modifications come along with some difficulties and mathematical

challanges.

In Chapter 3, we considered linear higher-order Schrödinger equation posed on a

finite interval, where there is a single boundary condition imposed at the left endpoint and

control inputs acting from the opposite end. We faced that applying standard backstep-

ping strategy yields an overdetermined backstepping kernel model, which cannot possess

a smooth solution. Due to the fact that smoothness of the backstepping kernel is crucial,

we modify the method by correcting the backstepping kernel model so that, the corrected

model possesses a smooth solution. On the other hand, this is not the case if one considers

a single controller acting from the left endpoint and one can obtain rapid stabilization of

zero equilibrium. So the drawback in the case of right endpoint controllers is, one loses

rapid stabilization of the zero equilibrium. Nevertheless, we still achieved exponential

decay of the solutions in L2−norm with a certain decay rate either the length of the inter-

val belongs to the set of critical length of intervals or not. This is in particular important

because, in the critical length of interval case, the problem is not exact controllable from

right endpoint neither in the case of Dirichlet actuation nor in the case of Neumann actua-

tion. From the well-posedness point of view, due to the modification of the backstepping

method, one needs to obtain time-space regularity estimates which also requires to re-

veal smoothing properties for associated Cauchy problems and an initial-boundary value

problem with inhomogeneous boundary conditions.

In Chapter 4, we considered the case where the state of the model is not fully

measurable at any moment and assumed partial measurements, first order and second
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order boundary measurements were available. This allowed us to design an observer

model so that its state were used in the boundary stabilizers. The control input were placed

at the right endpoint of the domain. Therefore, the issues related with right endpoint

controllers that occurs in Chapter 3 still remains. To overcome this situation, we used

a similar modification on the backstepping strategy. In particular, this process yielded

a target error model which has inhomogeneous Neumann type boundary condition of

feedback type. Well-posedness of this model was carried out by similar techniques we

applied in Chapter 3 combined with fixed point arguments. From the stabilization point

of view, we still success on gaining exponential stabilization of zero equilibrium either

in the case of critical length of interval or noncritical one. The drawback is that, we lose

rapid stabilization of the zero equilibrium compared to the left endpoint controller case.

In the above problems, the controllers involve full state of the solution. Contrary

in Chapter 5, we introduced a machinery for constructing controllers that involve finitely

many Fourier modes of the solution. That is, the controller contains only the projection

of the state onto a finite-dimensional space. This corresponds the influence the asymp-

totic behaviour of the trajectories in the inifite dimenisonal dynamical system by finite

dimensional effects through the boundary of the region of the evolution. Our motiva-

tion rely on the fact that infinite dimensional dynamical systems generated by dissipative

models has finite dimensional asymptotic behaviour in time and such systems possesses

finitely many determining parameters. We combined this idea with backstepping strat-

egy and considered nonlinear reaction-diffusion equation as a canonical example. We

precisely calculate the number of Fourier modes in order the gain rapid stabilization of

zero equilibrium. In addition, we find the minimal number of Fourier modes that guar-

antees exponential stabilization of zero equilibrium with a certain exponential decay rate.

Our result is meaningful: We find that the sufficient number of Fourier modes is exactly

same as the instability level of the problem. We want to underline that, this is the first

result in the literature that stabilizes zero equilibrium to infinite dimensional dissipative

systems by finite dimensional backstepping type controllers. The drawback here is, re-

garding the nonlinear model, we have a smallness assumption on the initial condition,

that corresponds to local rapid stabilization of zero equilibrium. Note that this is common

for stabilization of nonlinear PDEs via backstepping controllers since backstepping trans-

formation turns the original nonlinear plant into a target model in which the monotonic
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structure of the nonlinear term is disrupted.

Apart from the theoretical findings, we derived numerical simulations verifying

our theoretical stabilization results.

Since we succeeded in proving exponential stabilization of zero equilibrium to

nonlinear reaction-diffusion model by finite dimensional feedback controllers, our further

plan is to apply our strategy to various kind of dissipative models such as Ginzburg-

Landau equation, dissipative wave equations and various kind of dissipative systems such

as Fitzhugh-Nagumo system, original Burger’s equations, phase-field system. In partic-

ular, regarding the nonlinear models, our aim is also to gain global stabilization of zero

equilibrium by finding a way to remove smallness assumption on the initial data.
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APPENDIX A

DEDUCTION OF BACKSTEPPING KERNEL MODELS

A.1. Kernel model (3.10)

In this section, we present the details of the calculations that gives the backstep-

ping kernel model (3.10). Differentiating both sides of (3.9) with respect to t we get

iwt(x, t) =iut(x, t) −
∫ x

0

ik(x, y)ut(y, t)dy

=iut(x, t) +
∫ x

0

k(x, y)(iβuyyy + αuyy + iδuy)(y, t)dy

=iut(x, t)

+ iβ
(
k(x, y)uyy(y, t) − ky(x, y)uy(y, t) + kyy(x, y)u(y, t)

∣∣∣∣∣∣
x

0

−
∫ x

0

kyyy(x, y)u(y, t)dy
)

+ α

(
k(x, y)uy(y, t) − ky(x, y)u(y, t)

∣∣∣∣∣∣
x

0

+

∫ x

0

kyy(x, y)u(y, t)dy
)

+ iδ
(
k(x, y)u(y, t)

∣∣∣∣∣∣
x

0

−
∫ x

0

ky(x, y)u(y, t)dy
)
.

Using the boundary condition u(0, t) = 0, rearrenging the last expression in terms of

u(x, t), ux(x, t), uxx(x, t), ux(0, t) and uxx(0, t), we obtain

iwt(x, t) =iut(x, t) +
∫ x

0

(
−iβkyyy + αkyy − iδky

)
(x, y)u(y, t)dy

+
(
iβkyy(x, x) − αky(x, x) + iδk(x, x)

)
u(x, t)

+
(
−iβky(x, x) + αk(x, x)

)
ux(x, t) + iβk(x, x)uxx(x, t)

+
(
iβky(x, 0) − αk(x, 0)

)
ux(0, t) − iβk(x, 0)uxx(0, t).

(A.1)
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Next we differentiate both sides of (3.9) with respect to x up to the order three and multiply

the results by iδ, α and iβ respectively to obtain

iδwx(x, t) = iδux(x, t) − iδ
∂

∂x

∫ x

0

k(x, y)u(y, t)dy

= iδux(x, t) −
∫ x

0

iδkx(x, y)u(y, t)dy − iδk(x, x)u(x, t),
(A.2)

αwxx(x, t) =αuxx(x, t) − α ∂

∂x

∫ x

0

kx(x, y)u(y, t)dy − α ∂

∂x
(k(x, x)u(x, t))

=αuxx(x, t) −
∫ x

0

αkxx(x, y)u(y, t)dy + α
(
−kx(x, x) − d

dx
k(x, x)

)
u(x, t)

− αk(x, x)ux(x, t)

(A.3)

and

iβwxxx(x, t) =iβuxxx(x, t) − iβ
∂

∂x

∫ x

0

kxx(x, y)u(y, t)dy

− iβ
∂

∂x

((
kx(x, x) +

d
dx

k(x, x)

)
u(x, t) + k(x, x)ux(x, t)

)

=iβuxxx(x, t) −
∫ x

0

iβkxxx(x, y)u(y, t)dy

+ iβ
(
−kxx(x, x) − d

dx
kx(x, x) − d2

dx2
k(x, x)

)
u(x, t)

+ iβ
(
−kx(x, x) − 2

d
dx

k(x, x)

)
ux(x, t) − iβk(x, x)uxx(x, t).

(A.4)

Adding (A.1)-(A.4) side by side together with

irw(x, t) = iru(x, t) − ir
∫ x

0

k(x, y)u(y, t)dy,
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and then using the main equation of the linear plant, we obtain

iwt + iβwxxx + αwxx + iδwx + irw

=

∫ x

0

(
−iβ(kxxx + kyyy) − α(kxx − kyy) − iδ(kx + ky) − irk

)
(x, y)u(y, t)dy

+

(
iβ

(
kyy(x, x) − kxx(x, x) − d

dx
kx(x, x) − d2

dx2
k(x, x)

)

+α

(
−ky(x, x) − kx(x, x) − d

dx
k(x, x)

)
+ ir

)
u(x, t)

− iβ
(
ky(x, x) + kx(x, x) + 2

d
dx

k(x, x)

)
ux(x, t)

+
(
iβky(x, 0) − αk(x, 0)

)
ux(0, t) − iβk(x, 0)uxx(0, t).

(A.5)

We set

k(x, 0) = 0 and ky(x, 0) = 0 (A.6)

so the last line of (A.5) vanishes. Using the relation d
dxk(x, x) = kx(x, x) + ky(x, x), we see

that the fifth line of (A.5) vanishes if d
dxk(x, x) = 0. Thanks to k(x, 0) = 0, this implies

that

k(x, x) = 0. (A.7)

Next, we differentiate d
dxk(x, x) = kx(x, x)+ ky(x, x) with respect to x and use d

dxk(x, x) = 0

to obtain kyy(x, x) = −2kxy(x, x) − kxx(x, x). Using this result, we deduce that third and

forth lines of (A.5) vanishes if d
dxkx(x, x) = r

3β
holds. Note that ky(x, 0) = 0 ⇒ kx(x, 0) =

0⇒ kx(0, 0) = 0, thus integrating both sides of d
dxkx(x, x) = r

3β
over (0, x), we get

kx(x, x) =
rx
3β
. (A.8)

Consequently, under the assumptions (A.6)-(A.8) and if

β(kxxx + kyyy) − iα(kxx − kyy) + δ(kx + ky) + rk = 0, (x, y) ∈ Δx,y,
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right hand side of (A.5) vanishes and we obtain that

iwt + iβwxxx + αwxx + iδwx + irw = 0.

Note also that taking x = 0 in the backstepping transformation implies w(0, t) = u(0, t) = 0

and, taking x = L implies

w(L, t) = u(L, t) −
∫ L

0

k(L, y)u(y, t)dy = 0

and

wx(L, t) = ux(L, t) −
∫ L

0

kx(L, y)u(y, t)dy − k(0, 0)u(0, t) = 0.

So the boundary conditions of (3.3) are being satisfied without any extra conditions on k.

As a conclusion, linear plant (3.8) is mapped to target model (3.3), if k solves the

boundary value problem (3.10).
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A.2. Kernel model (4.6)

In this section, we present the details of the calculations that gives the backstep-

ping kernel model (4.6). Differentiating (4.4) with respect to t, we get

iũt(x, t) =iw̃t(x, t) −
∫ x

0

i�(x, y)w̃t(y, t)dy

=iw̃t(x, t) +
∫ x

0

�(x, y)(iβw̃yyy + αw̃yy + iδw̃y + irw̃)(y, t)dy

=iw̃t(x, t)

+ iβ
(
�(x, y)w̃yy(y, t) − �y(x, y)w̃y(y, t) + �yy(x, y)w̃(y, t)

∣∣∣∣∣∣
x

0

−
∫ x

0

�yyy(x, y)w̃(y, t)dy
)

+ α

(
�(x, y)w̃y(y, t) − �y(x, y)w̃(y, t)

∣∣∣∣∣∣
x

0

+

∫ x

0

�yy(x, y)w̃(y, t)dy
)

+ iδ
(
�(x, y)w̃(y, t)

∣∣∣∣∣∣
x

0

−
∫ x

0

�y(x, y)w̃(y, t)dy
)

+ ir
∫ L

0

�(x, y)w̃(y, t)dy.

Using the boundary condition w(0, t) = 0 and rearranging the last expression in terms of

w̃(x, t),w̃x(x, t), w̃xx(x, t), w̃x(0, t) and w̃xx(0, t), we obtain

iũt(x, t) =iw̃t(x, t) +
∫ x

0

(
−iβ�yyy + α�yy − iδ�y + ir�

)
(x, y)w̃(y, t)dy

+
(
iβ�yy(x, x) − α�y(x, x) + iδ�(x, x)

)
w̃(x, t)

+
(
−iβ�y(x, x) + α�(x, x)

)
w̃x(x, t) + iβ�(x, x)w̃xx(x, t)

+
(
iβ�y(x, 0) − α�(x, 0)

)
w̃x(0, t) − iβ�(x, 0)w̃xx(0, t).

(A.9)
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Next we differentiate (4.4) up to order three and multiply the results by iδ, α and iβ

respectively to obtain

iδũx(x, t) = iδw̃x(x, t) − iδ
∂

∂x

∫ x

0

�(x, y)w̃(y, t)dy

= iδw̃x(x, t) −
∫ x

0

iδ�x(x, y)w̃(y, t)dy − iδ�(x, x)w̃(x, t),
(A.10)

αũxx(x, t) =αw̃xx(x, t) − α ∂

∂x

∫ x

0

�x(x, y)w̃(y, t)dy − α ∂

∂x
(�(x, x)w̃(x, t))

=αw̃xx(x, t) −
∫ x

0

α�xx(x, y)w̃(y, t)dy

+ α

(
−�x(x, x) − d

dx
�(x, x)

)
w̃(x, t) − α�(x, x)w̃x(x, t)

(A.11)

and

iβũxxx(x, t) =iβw̃xxx(x, t) − iβ
∂

∂x

∫ x

0

�xx(x, y)w̃(y, t)dy

− iβ
∂

∂x

((
�x(x, x) +

d
dx
�(x, x)

)
w̃(x, t) + �(x, x)w̃x(x, t)

)

=iβw̃xxx(x, t) −
∫ x

0

iβ�xxx(x, y)w̃(y, t)dy

+ iβ
(
−�xx(x, x) − d

dx
�x(x, x) − d2

dx2
�(x, x)

)
w̃(x, t)

+ iβ
(
−�x(x, x) − 2

d
dx
�(x, x)

)
w̃x(x, t) − iβ�(x, x)w̃xx(x, t).

(A.12)

From (A.10) and (A.11) we also have

p1(x)ũx(0, t) = p1(x)w̃x(0, t) (A.13)

and

p2(x)ũxx(0, t) = p2(x)(w̃xx(0, t) − �(0, 0)w̃x(0, t)). (A.14)
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Adding (A.9)-(A.14) side by side we obtain

iũt + iβũxxx + αũxx + iδũx + p1(x)ũx(0, t) + p2(x)ũxx(0, t)

=iw̃t + iβw̃xxx + αw̃xx + iδw̃x (A.15)

+

∫ x

0

(
−iβ(�xxx + �yyy) − α(�xx − �yy) − iδ(�x + �y) + ir�

)
(x, y)w̃(y, t)dy (A.16)

=

(
iβ

(
�yy(x, x) − �xx(x, x) − d

dx
�x(x, x) − d2

dx2
�(x, x)

)

+α

(
−�y(x, x) − �x(x, x) − d

dx
�(x, x)

))
w̃(x, t) (A.17)

− iβ
(
�y(x, x) + �x(x, x) + 2

d
dx
�(x, x)

)
w̃x(x, t) (A.18)

+
(
iβ�y(x, 0) − α�(x, 0) + p1(x) − �(0, 0)p2(x)

)
w̃x(0, t) (A.19)

+ (−iβ�(x, 0) + p2(x))w̃xx(0, t). (A.20)

Note that, taking x = L on (4.4) and using the boundary condition ũ(L, t) = 0, we must

have �(L, y) = 0 in order to ensure w̃(L, t) = 0. On the other hand, using the relation

d
dx�(x, x) = �x(x, x) + �y(x, x), we get from (A.18) that

d
dx
�(x, x) = 0, (A.21)

which, thanks to �(L, y) = 0 implies

�(x, x) = 0.

Next, we differentiate d
dx�(x, x) = �x(x, x)+ �y(x, x) with respect to x and use d

dx�(x, x) = 0

to obtain �yy(x, x) = −2�xy(x, x) − �xx(x, x). Using this result in (A.17), we deduce that

d
dx
�x(x, x) = − r

3β
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which, due to the implications �(L, y) = 0 ⇒ �y(L, y) = 0 ⇒ �y(L, L) = 0 ⇒ �x(L, L) = 0,

is equivalent to

�x(x, x) =
r

3β
(L − x).

On the other hand we obtain from (A.19)-(A.20) that

p1(x) = −iβ�y(x, 0) + α�(x, 0),

p2(x) = iβ�(x, 0).
(A.22)

Note that for x = 0 in (4.4), we have ũ(0, t) = w̃(0, t) = 0. For x = L and thanks to

�(L, y) = 0, we have ũ(L, t) = w̃(L, t) = 0. Also for x = L on (A.10), we see that

w̃x(L, t) = 0 holds if �x(L, y) = 0.

As a conclusion, the error model (4.3) is mapped to the target error model (4.5),

if � solves the boundary value problem (4.6) together with the observer gains defined as

(A.22).
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APPENDIX B

INVESTIGATION OF ZEROS OF THE CHARACTERISTIC

EQUATION (3.98)

In this part, we show that the characteristic equation

s + βλ3 + iαλ2 + δλ = 0 (B.1)

has double or possibly triple roots only for finitely many values of s in the complex plane.

Locations of those values of s are directly related with the sign of the quantity (α2 + 3βδ).

To this end, let us denote the roots of (B.1) by λ j = λ j(s), j = 1, 2, 3, and assume

that two roots, say λ2(s) and λ3(s) are equal for some s ∈ C. Then, for such possible

values of s, λ1(s) and λ2(s) satisfy

λ1(s) + 2λ2(s) =
iα
β
, (B.2)

2λ1(s)λ2(s) + λ2
2(s) =

δ

β
, (B.3)

λ1(s)λ2
2(s) = − s

β
. (B.4)

Let us express the roots as λ1 = a + ib and λ2 = λ3 = c + id, where a, b, c, d are real

valued functions of s. For simplicity, in the rest of this part, we drop s dependence of the

functions. Now from the real and imaginary parts of (B.2)-(B.3), we have

a + 2c = 0, (B.5)

b + 2d =
α

β
, (B.6)

2ac − 2bd + c2 − d2 =
δ

β
, (B.7)

ad + bc + cd = 0. (B.8)
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Using (B.5) in (B.8), we get c(b − d) = 0. So we have two cases.

(i) Let b = d. By (B.6), b = d = α
3β

. Substituting these into (B.7) yields

c(2a + c) =
α2 + 3βδ

3β2
.

Using (B.5), we get

a2 = −4(α2 + 3βδ)

9β2
, c2 = −α

2 + 3βδ

9β2
.

Now α2 + 3βδ > 0 yields a contradiction. α2 + 3βδ = 0 implies λ1 = λ2 = λ3 =
iα
3β

.

For this case, we see from (B.4) that the only possible value for s is

s = s0 :=
iα3

27β2
.

Now let α2 + 3βδ < 0. Then we have

a1,2 = ∓2
√−(α2 + 3βδ)

3β
, c1,2 = ±

√−(α2 + 3βδ)

3β
.

Note that using (B.5) and b = d, we obtain from (B.4) there are two possible values

of s, denoted by s−1 and s−2 , which are given by

Re
(
s−1
)
=

2

27β2
(−α2 − 3βδ)3/2, Re

(
s−2
)
= − 2

27β2
(−α2 − 3βδ)3/2

and

Im
(
s−1
)
= Im

(
s−2
)
= − α

27β2
(2α2 + 9βδ).

(ii) Let c = 0. Then, by (B.5), a = 0. Using this, direct calculation from (B.6)-(B.7)

yields

b1,2 =
α ∓ 2

√
α2 + 3βδ

3β
, d1,2 =

α ± √
α2 + 3βδ

3β
.
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Observe that α2 + 3βδ < 0 yields a contradiction and α2 + 3βδ = 0 ends up with the

triple root case investigated in (i). Now let α2 + 3βδ > 0. From (B.4), we see that

there are two possible values of s, denoted by s+1 and s+2 , given by

s = s+1 :=
i

27β2

(
α3 − 3α(α2 + 3βδ) + 2(α2 + 3βδ)3/2

)

and

s = s+2 :=
i

27β2

(
α3 − 3α(α2 + 3βδ) − 2(α2 + 3βδ)3/2

)
.
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