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ABSTRACT

DEVELOPMENT OF NEW CHEMOMETRICS APPROACHES TO
DETERMINE PHYSICAL AND CHEMICAL PROPERTIES OF CRUDE
DISTILLATION UNIT PRODUCTS BASED ON MOLECULAR
SPECTROSCOPY

Crude distillation units are the first processing units of crude oils based on
fractional distillation. The properties of the petroleum products obtained from refinery
units are frequently analyzed to ensure that the off-spec product cannot be obtained and
that the process is working under the desired conditions. This study aims to develop a
method based on multivariate data analysis to determine physical and chemical properties
of petroleum samples as an alternative to time-consuming and conventional analytical
methods.

Fourdifferentpetroleum products obtained from CDU for years were selected and
used in this study, which are heavy and light diesel, heavy and light straight run naphtha.
Four different spectroscopic methods which are UV-Vis, Fluorescence, FT-NIR and
FTIR-ATR spectroscopy, were performed and compared. Multivariate calibration models
were developed using Partial least Squares (PLS) and Genetic Inverse Least Squares
(GILS) algorithms.

For heavy and lightdiesel, predictive performance of three different spectroscopic
methods were compared and for heavy diesel UV-Vis spectroscopy, for light diesel
FT-NIR spectroscopy was selected for most of the parameters. Developed models by
fluorescence analysis of light diesel samples conducted with two different measurement
modes and synchronized fluorescence spectral data has resulted in better models
compared to total fluorescence spectra. Studies with straight run naphtha samples were
obtained from three different refineries and prediction performances were compared. All
obtained model results indicates that developed methodology can be used in routine

operations instead of conventional analytical methods.
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OZET

HAM PETROL UNITELERI URUNLERININ FIZIKSEL VE
KIMYASAL OZELLIKLERININ BELIRLENMESINDE MOLEKULER
SPEKTROSKOPIYE DAYALI YENI KEMOMETRIK
YAKLASIMLARIN GELISTIRILMESI

Karmagik proseslere ait petrol rafinerilerinde ham petrol dncelikli olarak ham
petrol damitma iinitelerinde islenerek fraksiyonel damitmaydntemiyle ayristirilir. islenen
ham petrol farkli kaynaklara ve 06zelliklere sahip olsa bile, elde edilen {iriiniin
Ozelliklerinin belirli standartlara uymasi beklenmektedir. Bu amagla iiriin 6zellikleri
standartanaliz metotlar yardimiyla laboratuvarlardadiizenli olarak takip edilmektedir. Bu
calismada zaman alic1 klasik analiz yontemlerine alternatif olarak petrol {iriinlerinin
fiziksel ve kimyasal 6zelliklerini belirlemek i¢in ¢ok degiskenli veri analizine dayali bir
yOntem gelistirilmesi amaglanmistir.

Calismalar agir dizel, hafif dizel, agir ve hafif nafta olmak iizere dort ana iiriin
grubuyla gergeklestirilmistir. Uriinler direkt olarak rafineri iiretimden elde edilmis olup,
modelleme ¢aligmalar1 dort farkli spektroskopik veri ile gergeklestirilmistir. UV-Vis,
Floresans, FT-NIR ve FTIR-ATR spektroskopik dl¢limleri alinan numunelerde modeller
Kismi En Kii¢iik Kareler (PLS) ve Genetik En Kiigiik Ters Kareler (GILS) algoritmalari
kullanilarak gelistirilmistir.

Dizel numunelerinde ii¢ farkli spektroskopik veriyle gerceklestirilen model
sonuglari karsilastirilmis ve agir dizel numunesi icin UV-Vis spektroskopisi, hafif dizel
icin ise FT-NIR spektroskopisi bir¢ok parametre i¢in en iyi model se¢ilmistir. Hafif
dizellerin floresans analizleri iki farkli modda gergeklestirilmis ve senkronize modda
toplanan verilerle gerceklestirilen modeller toplam floresans moduna gore tahmin basarist
daha yiiksek modellerle sonuglanmistir. Nafta 6rnekleriyle li¢ farkli rafineride ¢alisma
gerceklestirilmis olup, tahmin performanslari karsilastirilmastir.

Secilen tiim model sonuglari, ¢alisma kapsaminda gelistirilen metodolojinin

klasik yontemler yerine kullanilabilecegini gostermektedir.
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CHAPTER 1

INTRODUCTION

Oil refineries have the most complex process in chemical industry. They consist
of many different physical and chemical processes. They are mainly atmospheric and
vacuum distillation units, cracking isomerization, hydrogenation, desulfurization,
aromatization and blending. Many processes are connected to each other, and they work
to be the other’s charge. In case of any malfunction, unit shut down or out of control
processes are affected quickly and serious loses can occur in refinery profitability.
Therefore, production is carried out according to certain specifications. Refineries often
process different types of crude oil that vary in content. Changes in crude oil prices,
capability limits of crude oil tanks, political instabilities of crude oil exporting countries,
regulations in product specifications, make it inevitable for crude oil exchanges or the
blendingof crude oil. Crude oil blendingis one of the mostimportantactions of refineries
to increase profit margin. Variations in the crude oil composition affect the planned
production capacities in order to meet the final product quantities. As each refinery units’
scheme is unique, the structure is very complex. Most refineries are designed to process
crude oil in a certain API and produce products in a certain range. API stands for the
American Petroleum Institute gravity and it is a measure of how heavy or light petroleum
liquid is compared to water.

Nowadays, refineries must respond quickly to changes in crude oil, changes in
final product demands and leads. The required flexibility in refinery planning and in the
complexity of various processes can only be achieved by strictly observing the change of
eachrefinery unitand the flow of output product. The compositionin each product stream
is the shaped according to the composition in crude oil.

Optimization of crude distillation unit process conditions is the most important
parameter in every refinery. Delays in the analysis cause delays in the adjustment of the
process conditions. Failure to take an action immediately in the case of defective
malfunction may lead to decrease in production or even to unit shut down. Profitability
of refinery increases with production of required distillates at maximum efficiency with

minimum cost. To achieve this, strict monitoring of the charge and output of each refinery



unit must be performed. Refineries need to respond quickly to changes in crude oil

compositions or changes leading to end-product demands.

1.1. Standard Analysis

Determination of the physical properties for the intermediate products ofthe crude
oil unit in the refinery that depends on conventional analytical methods is time-
consuming, requiring relatively large sample volume and expensive operations. The
extension of the time from sampling to analysis reporting can result in off-spec products
at the refinery. Each one of these reference analyses is performed separately according to
the appropriate American Society for Testing and Materials (ASTM) or European (EU)
standard methods. As a result, laboratory analysis consists of several laborious steps in
the form of sampling, sample storage, sample preparation, measurement, data verification
and reporting. Among the physical properties routinely monitored are distillation points,
API gravity, flash point, vapor pressure and freezing point. The standards that are used

for references analysis for this study are given in Table 1.1 for each parameter.

Table 1.1. Standard methods for reference analysis
Analysis Standard Methods

EN-ISO-3405; ASTM D86
ASTM D2887 (for heavy diesel only)
API/Density EN-ISO-3675; ASTM 1298
EN-ISO-2719; ASTM D96
IP 170 (for kerosene)
Vapor Pressure IP 394; ASTM 5191

Distillation Points

Flash Point

EN-ISO-3405 is the test method for atmospheric distillation of petroleum product
using a laboratory batch distillation unit to quantitatively determine boiling range
characteristics of such products as light and middle distillates and natural gasolines . The
boiling range gives information on the composition, the properties and the behavior of

the fuel during storage and volatility is the major determinant of the tendency of a



hydrocarbon mixture. Distillation limits are often included in petroleum product
specifications, process refinery and control applications.

ASTM D2887 is the standard test method for boiling range distribution of
petroleum fractions by gas chromatography 2. This method cannotbe used for the analysis
of gasoline samples or gasoline components since itis limited to samples havinga boiling
range greater than 55 °C. This test method is sometimes used to replace conventional
distillation methods (D86). Boiling range distributions obtained by this method are
equivalentto those obtained by true boilingpoint (TBP) distillation, not equivalentto low
efficiency distillation such as EN-ISO-3405.

EN ISO 3675 is the standard test method for determination of density of crude oil
and liquid petroleum products in laboratory3. This method is also called as Hydrometer
method. Density is a fundamental physical property to characterize both light and heavy
fractions of petroleum products. This standard specifies the density of oil and non-oil
products, liquid petroleum products, liquid crude oil under normal conditions, at 15 °C
by using glass hydrometer.

EN ISO 2719 and IP 170 are the test methods for determination of flash point*.
Flash point measures the tendency of the specimen to form a flammable mixture with air
under controlled laboratory conditions. This method gives information about overall
flammability hazard of a material.

IP 394 the test method for determination of air saturated vapor pressure (ASVP)
and calculated dry vapor pressure equivalent (DVPE)>. Vapor pressure is one measure of
the volatility characteristics of fuels used in many differing types of engines with large
variations in operating temperatures. It is used as a classification criterion for the safe
handling and carriage pf petroleum products, feedstocks, and components. Specifications
for volatile petroleum products generally include vapor pressure limits to ensure products
of suitable volatility performance. Fuels having a high vapor pressure may vaporize too
readily in the fuel handling systems, resulting in decreased flow to the engine.

IP 435 is the test method for determination of the freezing point of aviation turbine
fuels by the automatic phase transition method¢. The freezing point of an aviation fuel is
the lowest temperature at which the fuel remains free of solid hydrocarbon crystals that
can restrict the flow of fuel through filters if present in the fuel system of the aircraft. The
temperature of the fuel in the aircraft tank normally falls during flight depending on
aircraft speed, altitude, and flight duration. The freezing point of the fuel must always be

lower than the minimum operational tank temperature.



To determine physical properties of one petroleum product, at least two different
standard analysis method should be performed. Each conventional analytical methods,
explained above, are time-consuming analysis. Especially, determination of distillation
temperature of samplescan take more than one hour. Additionally,those analysis requires
trained personal and high investment cost.

There are several studies in literature which propose alternative methods to
determination of physical parameters of petroleum products. Following section

summarizes some of these studies given in the literature.

1.2. Literature Reviews

Chunget al. 7 have studied with six different petroleum products (LSR, Naphtha
Kerosene, LGO, Gasoline and Diesel), which are obtained over 4 months and suggested
a method for rapid classification of different types of samples by using near-infrared
spectroscopy with reflection probe. Principal component analysis (PCA) combined with
Mahalanobis distance was used for classification and they suggest that with the help of
NIR spectroscopy, identification of petroleum products can be achieved. Using NIR
spectra, Kim and his co-workers studied real-time classification for petroleum products
8, Proposed classification method has been applied to six different petroleum products
which are diesel, gasoline, kerosene, light gas oil, light straight run and naphtha. In the
study, where PCA was used for feature selection and Bayesian classifier was used for
classification, error results were reported as less than 6%.

Kelly and Callis ® were performed an analysis with finished gasoline products.
Since three different hydrocarbon classes, aromatics, olefins and saturates, are several
important parameters, this study aims to perform a fast analysis technique, which can be
used instead of reference methods. Samples were collected over 19 months and NIR
spectra of those samples were collected. Stagewise multilinear regression (MLR) and
Partial Least Square (PLS) was used for statistical analysis. This study shows that NIR
spectroscopy combined with multivariate analysis gives results at least as good as
reference methods for volume percentages of hydrocarbon classes. In other study,
analysis of gasoline samples was also investigated by Fodor and his co-workers '°. In this

work, unlike other studies, FT-IR spectroscopy with ATR accessory was used for



spectroscopic analysis. To be able to achieve compositional variety, a total of 800
gasoline samples were collected from different geographic locations from all over US.
PLS regression analysis were performed for thirteen different parameters by their
respective FTIR spectra. In this article, necessity of baseline correction of FTIR spectra,
separate calibration models for summer- and winter-grade gasoline samples were studied.
The results showed no significant improvement in calibration models built from baseline
corrected FTIR spectra. However, because of different chemical composition for
summer- and winter-grade gasoline, two different models were found to be needed for
gasoline models. Al-Ghouti and his team have been studied to determine the adulteration
of motor gasoline products using FTIR spectroscopy and multivariate calibration !!. Study
aims to quantify three different motor gasoline samples, which were also differ in prices,
by means of density and distillation temperatures using FTIR spectroscopy combined
with PLS regression method. At the end of the study, proposed method suggested for
detecting any adulteration of super leaded motor gasoline from regular leaded motor
gasoline. Another study with gasolines were published by Ozdemir !2, to determine the
octane number of gasoline using NIR spectroscopy and multivariate calibration methods.
Three different genetic calibration techniques were used which are genetic regression
(GR), genetic classical least squares (GCLS) and genetic inverse least squares (GILS).
Calibration models to quantify octane number were built from the set of 60 gasoline
samples. Each genetic algorithm-based method was compared with literature studies.
Study shows that models obtained with genetic algorithms improve the accuracy of ILS
and CLS techniques. For gasoline classification, Balabin and his team '3 compared
different multivariate calibration methods. Nine different methods were used which are
Linear Discriminant Analysis, Quadratic Discriminant Analysis (QDA), regularized
discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA),
partial least squares (PLS), K-nearest neighbor (KNN), support vector machines (SVM),
probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP). From the
calibration models, PNN was found to be the most effective method, however, it is also
mentioned that KNN technique is much easier and gives an adequate result, so KNN was
recommended.

In anotherstudy, Lysaghtetal. 4 aimed to determine the percentaromatic, percent
saturates and freezing point of military aviation fuel. Composition of a set of 33 JP4 fuel

samples was determined at six different laboratories and each analysis was performed



triplicate. Stagewise multiple linear regression and partial least squares regression were
applied to collected NIR spectra and performance of models were compared with ASTM
standards. Although errors of prediction sets found to be less than the reproducibility of
ASTM methods, limitations due to dependency on reference analysis emphasized as the
biggest limitation. Another study with jet fuels was, performed by Westbrook !5, aimed
to use NIR spectroscopy for determination of several physical and chemical properties
which are cloud point, cetane number, selected percent evaporated distillation points,
density, aromatics, heat of combustion and viscosity of Army compression ignition fuels
by the help of PLS regression. Performance of each model was presented for their
prediction ability and best model was found for density with R? 0.89 and for the model
for cetane number has the lowers R2, 0.25. Comparison of near-infrared and mid-infrared
spectroscopy for properties of kerosene samples were performed by Chung and his co-
workers 16, In the study, performed by fifty samples collected over 3 months, comparison
of two different spectroscopic methods were based on the predictive ability of PLS
regression models for distillation temperatures of kerosene atdifferent percent recoveries.
Results showed that, NIR spectroscopy have better calibration performance over Mid-IR
while, Mid-IR provides richer qualitative spectral information with higher resolution
power.

The importance of naphthain the production cycle has been the subject of many
studies found in the literature. Spectroscopic analysis combined with chemometrics
techniques allows rapid and accurate analysis for determination of naphtha composition.
Although there are several studies conducted with naphtha samples obtained from actual
refining process !7-18:56-60_sample collection times are only several months. Several of
studies have been published to determine detailed hydrocarbon composition of naphtha
samples, which are paraffin, naphthenic and aromatic structures !7-58-61_ In industrial
applications, itis crucial to have samples represents whole composition variability related
to process operations suchas crude oil switch, conditions of upstreamprocesses, seasonal
operational strategies, and other process variations 263, To be able to have perfect
database, sampling stage should be extended. Ku and his co-workers !7 proposed a rapid
compositional analysis by Near-Infrared spectroscopy coupled with PLS regression. In
the article where paraffin, naphthenic and aromatic content were investigated, a total of
50 different naphtha samples were collected for 3 months. NIR analysis were performed

by reflectance probe. It is suggested that obtained models shows excellent correlation



with respective reference analysis of parameters. Another comparison for different
spectroscopic methods were also performed by Ku and Chung '8. Six different chemical
composition of naphtha samples were used to compare NIR and Raman spectroscopy.
Quantitative analysis of physical and chemical properties of fifty naphtha samples was
performed by PLS for each spectroscopic technique. Results showed that NIR have better
calibration performance than Raman spectroscopy due to its superior signal-to-noise ratio
and spectral reproducibility.

Breitkreitz and her co-workers have been studied to determine total sulfur content
in diesel fuel by NIR spectroscopy and multivariate calibration !°. By using ninety-seven
different diesel samples, the performance of five different multivariate calibration
approaches which are principal component regression (PCR), Partial least squares
regression PLSR, multiple linear regression (MLR), variable selection based genetic
algorithm (GA) and successive projection algorithm (PA). The results showed that, not
only total sulfur content can be determined by NIR spectroscopy, also all the multivariate
calibration models showed acceptable prediction results. However, GA and SPA was
emphasized as they have the more robust models compared to other calibration
approaches. To determine the main properties of diesel, which are cetane number, cetane
index, density, viscosity, distillation temperatures, total aromatics, polycyclic aromatics
hydrocarbons, Marinovic and his team proposed PLS calibration models with two
different spectroscopic techniques (FT-IR and FT-Raman) 2°. Sample set consistof ninety
commercial diesel fuels and results showed that FT-IR spectroscopy combined with PLS
regression give better quantitative determination of physico-chemical properties of diesel.
Genetic algorithm-based method, GILS, were also used for determination of several
properties of diesel samples with the help of near infrared spectroscopy 2!. A total of 250
diesel samples were used and study shows that, GILS algorithm is able to select and
extract the chemical information which is sought. For boiling point, total aromatic
content, density and viscosity, GILS model results showed successful calibration models.

There are several studies about determination of Biodiesel/diesel blend properties
using spectroscopic techniques combined with PLS regression 2226, In a study in which
NIR spectroscopy used for monitoring biodiesel blends, Oliveira and his team propose a
method based on multivariate control charts 22.Study shows that proposed method
enhance the quality diagnostics of the model and making possible to identify out of
control samples. Another study proposed FTIR spectroscopy combined with PLS



regression methods have been studied by Guerrero et. al 27. In this study, biodiesel
concentration was aimed to quantified in petrodiesel blends and results were reported as
obtained models have good ability for determining the concentration of African palm
biodiesel in petrodiesel-biodiesel blends. Using synchronous fluorescence, simultaneous
determination of quality parameters of biodiesel/diesel blends were also studied by
Insausti and his co-workers 24 by the help PLS multivariate calibration. Study was
performed with 30 different diesel samples which were collected in different gas stations
with biodiesel contents 5% (w/w %) and 7% (w/w %). At the results, it is reported that
fatty acid methyl esters, cetane number, gross heat of combustion and color of
biodiesel/diesel samples can be identified by fluorescence spectroscopy combined with
PLR regression.

Aleme and his team have been proposed two papers which uses distillation curves
and multivariate calibrations for determination of flash point and cetane index 28 and
specific gravity and kinematic viscosity 2° in diesel using distillation curves and
multivariate calibration. Unlike other studies, these studies were performed their
calibration models from the results obtained from ASTM reference methods, not from
spectroscopic data. From five different refineries, a total of 300 diesel samples were
obtained for this study. It was suggested that ASTM D86 method together with PLS
regression is effective to predict all the parameters mentioned above, regardless origin
and type of diesel.

Although infrared spectroscopies (both Mid-IR and Near-IR) are extensively used
for analysis of crude oil and crude oil products, fluoresce spectroscopy is also preferred
because of its inhered advantages. Several studies have used fluorescence analysis of
crude oil and its products and indicated that physical properties of samples, especially
API values, have great impact on fluorescence emissions 3132 . Different modes of
fluorescence spectral analyses such as conventional fluorescence, total fluorescence,
synchronous fluorescence, time-resolved fluorescence was conducted and compared. It
was indicated that synchronous fluorescence mode is resulted in good results for

determination of kerosene present in diesel 5253,



1.3. Spectroscopic Analysis Methods

As in literature reviews, several spectroscopic methods can be used for
determination of quality properties of petroleum products. Four different spectroscopic
analyses were used in this thesis which are UV -Visible Spectroscopy, Fluorescence
spectroscopy, Fourier Transform Near Infrared Spectroscopy and Fourier Transform

Infrared Spectroscopy.

1.3.1. UV-Visible Spectroscopy

UV-Visible spectroscopy is based on the absorption of radiation from ultraviolet
region i.e. 180 nm to visible region i.e.780 nm by the chemical compound. Interaction of
light with molecules occurs at electronic levels. Electromagnetic radiation interacts with
matter and several processes occur which are absorption, transmission, scattering or
reflection. Absorption of light by matter causes transition of electrons to different energy
level, from ground state to an excited state. During this transition, vibrational and
rotational transitions occur as well. This method is widely used in the field o f analytical
chemistry for quantitative analysis since the amount of light which absorbed is linearly

correlated with concentration of sample.

1.3.2. Fluorescence Spectroscopy

Similar to UV-Vis spectroscopy, absorption of electromagnetic radiation caused
by photons exciting a molecule and raising it to an electronic state. In fluorescence
spectroscopy, absorption spectrum of molecules that has fluorescent properties are
obtained. Figure 1.2 shows the Jablonski diagram which explains the fluorescence

phenomenon.
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Figure 1.2. The Jablonski Diagram3°

The main advantage of fluorescence spectroscopy is its high sensitivity of

molecules which have fluorescent properties.

1.3.3. Infrared (IR) Spectroscopy

Infrared spectroscopy has been used for the identification and structural analysis
of chemical compounds. Beside diatomic molecules, all functional groups absorb IR
radiation and frequencies at which functional groups absorb IR radiation is different and
unique. Hence, IR spectroscopy has been used for identification and structural analysis of
chemical compounds. In IR regions, the vibrations of fundamental bonds on different
functional groups remain reasonably independent from the rest of a molecule, while
occupying a different, but repeatable, position in the spectrum. The absorption data for
molecular bonds are linearly proportional to the concentration information of the sample
(Eq 1.1.). It is possible to perform univariate calibration studies by using concentration
information with specific absorption peaks belongingto different functional groups in the
sample. However, multivariate calibration methods are needed in the analysis of

overlapping peaks and combination bands that give information about more than one
bond.

A= eb.c (1.1)
A: Absorbance, € : Molar absorptivity, b: Length of light path, ¢: Concentration

Main advantages of IR spectroscopy are it is a non-destructive technique, it has

good precision, no external calibration needed, low S/N ratio and mechanically simple
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technique. Infrared region in electromagnetic spectrumis divided into three parts which

are Near-IR, Middle-IR, Far-IR as shown in Table 1.2.

Table 1.2. IR Spectral Regions 3!

Region  Wavelength, pm Wavenumber, cm™!

Near 0.78 t0 0.25 12800 to 4000
Middle 2.5t050 4000 to 200
Far 50 to 1000 4000 to 600

1.3.3.1. Fourier Transform Near Infrared Spectroscopy

Near-infrared region in electromagnetic spectrum covers the transition from
visible spectral region to middle infrared spectral range which is 800-2500 nm
(12800-4000 cm™). Functional groups of -CH, -OH, -SH and -NH tent to absorb NIR
radiation and mainly those vibrations are observed. In FT-NIR, spectral features are seen
as a result of overtones and combinations of fundamental mid-infrared bands 3233,

Table 1.3 shows the main overtones and combination bands in the infrared region. 34

Table 1.3. Main overtones and combination bands in the infrared region

Vibrations Wavelength, nm
O-H First Overtone 1400 - 1450
O-H Combinations 1900 - 1975
C-H Second Overtone 1125 -1225
C-H Combinations first overtone 1350 — 1450
C-H First overtone 16251775
C-H Combinations region 1950 —-2450

The NIR region is attractive for petroleum analysis because many of the
absorption bands observed in this region arise from overtones or combinations of carbon-
hydrogen stretching vibrations. Although it is hard to interpret FT-NIR spectra due to
highly overlapping and broad absorption bands, chemometrics have proven its

effectiveness for both quantitative and qualitative analysis in many fields in the literature.
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1.3.3.2. Fourier Transform Infrared Spectroscopy

Starting with the invention of interferometers by Albert Abraham Michelson and
development of Fourier Transform Infrared Spectrometers has revitalized the field of
infrared spectroscopy and overcome the limitation of dispersive spectrometers.

Middle-infrared region has two main regions which are functional group region
(3600 — 1200 cm!) and the fingerprint region (1200-600 cm-). Compared to fingerprint
region, functional group region is easy to interpret. To be able to extract the information

from fingerprint region chemometrics models have been used.

1.4. Aim of the Study

Although there are a number of studies for determination of properties of
petroleum products using multivariate calibration techniques, it is observed that almost
all of these studies performed with finished products or with the samples collected for
only short period of time and with a little bit of changes in the process. Additionally,
conventional analytical methods have important disadvantages, which are requiring long
analyses times and required well-trained personnel. Since all processes are dependent to
each otherinrefinery, longanalysesand reporting times can cause lack of feedback which
needed for decision making.

This study aims to develop new chemometrics approaches to cover the all the
changes in this dynamic process and determine the physical and chemical properties of
products obtained from crude distillation units. Since the percentage and composition of
crude oil blends fed to the atmospheric distillation unit changes every day, the
composition of the distillates also changes. In the refinery where samples are collected
forthis study, compositionofcrudeoil varies, and more than four types of crude oil blends

are processed.
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CHAPTER 2

EXPERIMENTAL

2.1. Standard Analysis

All parameters of petroleum samples were determined in accredited laboratory
located in Tiipras Refineries.

Boiling range distribution of samples were analyzed by two different standard
methods. For heavy diesels, this analysis was ASTM D2887 2, while for other crude oil
unit products, the EN ISO 3405! method was followed. In ASTM D2887, boiling range
distribution is simulated by the use of gas chromatography. A capillary (open tubular) or
nonpolar column is used to elute the hydrocarbon components of the sample in order of
increasing boiling point. The area under the chromatogram is recorded as the column
temperature is raised at a reproducible linear rate. Under the same chromatographic
conditions, a known mixture of hydrocarbons is analyzed and from the calibration curve
obtained, boiling points of sample are assigned. In EN ISO 3405, the distillation is
performed at ambient pressure under conditions that are designed to provide
approximately one theoretical plate fractionation. A 100 mL of sample is distilled under
specified condition. Each sample is assigned to one of four groups. Temperature readings
and volume of condensate are carried out and observations are recorded. At the end of
distillation, the observed vapor temperature can be corrected for barometric pressure. The
test results are expressed as percentevaporated or percentrecovered versus corresponding
temperature as a plot of the distillation curve'.

The API gravity of samples was determined according to EN ISO 36753. The
sample is set so a certain temperature and transferred to the cylinder which approximately
has the same temperature. Temperature equilibrium is expected to be reached and then
the hydrometer scale is read. Read temperature and hydrometer value are converted to
15°C using standard measurement tables.

The flash point temperatures were determined following the procedure described

in EN ISO 29174 In the test method, determination of flash point is performed by

13



Pensky-Martens closed cup method. The portion of a sample is placed into the test cup of
a Pensky-Marten’s apparatus and heated to give a constant temperature increase with
continuous stirring. The lowest temperature in which a directed ignition source though an
opening the test cup lid causes the vapor is recorded as the flash point at the absolute
barometric pressure. Then the obtained temperature is corrected to atmospheric pressure.

In test method of vapor pressure, IP 394, a cooled air-saturated sample of known
volume is injected into a thermostatically controlled evacuated chamber?. After injection
into the chamber, the sample is allowed to reach thermal equilibrium at the test
temperature and the resulting total pressure in the chamber is equivalent to the vapor
pressure of sample. The measured total vapor pressure can be converted to a DVPE by

use of a correlation equation.

2.2. Spectroscopic Analysis

Four different spectroscopic analyses were used in this thesis which are Fourier
Transform Infrared Spectroscopy, Fourier Transform Near Infrared Spectroscopy
UV-Visible Spectroscopy and Fluorescence spectroscopy.

For heavy and light diesel samples, FTIR analysis were carried out at room
temperature with Perkin Elmer FTIR spectroscopy equipped with one-diamond ATR
accessory with a spectral range from 4000 to 600 cm™!  The spectral resolution was
4 cm! for all spectra and 32 scans were accumulated. Near-Infrared spectra of diesel
samples were collected over the 12000 to 4000 cm-! spectral region with a Bruker Matrix
FT-NIR Spectroscopy using 2 mm pathlength quartz cell. The spectral resolution was
2 cm! forall spectra and 8 scans were accumulated. UV-Vis spectra of diesel samples
were recorded in a Perkin Elmer Lambda 25 Spectrometer with a spectral range from 200
to 700 nm using 1-cm pathlength quartz cell. A background spectrum of air was recorded
in with a clean dry cell before analysis.

Both total fluorescencespectra (TFS) and synchronous fluorescence spectra (SFS)
of light diesel samples were recorded on an Agilent Cary Eclipse Fluorescence
Spectroscopy using 1-cm pathlength quartz cell for. For TFS, the excitation range was
320 - 410 nm (10 nm intervals) and the emission range 340-650 nm (10 nm intervals).
For SFS, spectra were recorded with emission from 300-600 nm with initial AA=10 nm

and an increment of 10 nm on each scan for a total of 10 scans at a scan rate of 600
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nm/min. Excitation slit was set to 5 nm while emission slit was 2.5 nm with a scan rate
of 600 nm/min. Samples were passes through 0.45-micron syringe filter before
measurement to get rid of unwanted contamination. A background spectrum of air was
recorded in with a clean dry cell before analysis.

Near-Infrared spectra of all HSRN and LSRN samples obtained from three
different refinery were collected at each refinery quality control laboratory. In Izmit
Refinery, spectral measurements were carried out with a Bruker Matrix FT-NIR
Spectroscopy using 2 mm pathlength quartz cell over the 12000 to 4000 cm™! spectral
region with an air background. In Izmir and Kirikkale refinery, Near-Infrared spectra all
naphtha samples were collected overthe 10000 to 4000 cm-! spectral region with a Perkin
Elmer Spektrum Two N FT-NIR Spectroscopy using 2 mm pathlength quartz cell with an

air background. For each sample, daily spectroscopic measurements were recorded.
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CHAPTER 3

DATA ANALYSIS

3.1. Data Pre-processing Techniques

In industrial applications, controlling sample composition and unwanted
variations due to spectral measurements are almost impossible which resulted in poor
predictive performance in developed calibration models. Depending on the spectral
analysis, random measurement noise, non-linear instrument responses, systematic errors
and unwanted physical or chemical variations are hard to be avoid.

This situation can be overcome in two main steps. One of them is the extending
sampling time to cover changes in crude oil, refinery operations etc. Secondly, choosing
proper preprocessing technique to enhance signal properties and suppress unwanted
variations. Preprocessing methods can be divided into two main categories, which are
spectral derivatives and scatter correction or model-based methods.

Derivative transformations are the oldest technique used to remove the effects of
increased noise and scattering in spectra. The first-order derivative estimates the
difference between two consecutive spectral measurements, while the second-order
derivative is estimated by calculating the difference between two consecutive first-
derived spectral measurements. Model-based methods, unlike derivative transformations,
are able to quantify and separate the different types of chemical and physical variations

in spectra.

3.1.1. Savitzky-Golay Filter

Savitzky-Golay (SG) algorithm is one of the most chosen preprocessing method
to which approximates spectrum by polynomial least-square fitting inside a moving
window 3537 | Selection of window size is crucial while optimizing SG technique since

every parameter interested in the spectra can place in different spectral region. Although
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taking derivative of spectral data increases noise, least square fitting of the SG procedure
canreduce the level of spectralnoise. Using firstderivative of data eliminates the baseline
shift.

Savitzky-Golay Filters are widely used for smoothing and differentiation mainly
in absorption spectroscopy. This preprocessing method is one of the popular choices in
an averaging algorithm that fits least squares polynomial to the data points and then the
value to be averaged is predicted from the polynomial. There are two important
parameters in this transformation. One of them is the window opening and the other is the
degree of derivative and these values are determined by the user 33:36:38-41_ The selection
of window size is critical. Selected window size has strong influence on derivated curve,
hence multivariate analysis. Even though same sample is used, signal bandshapes can
change in different spectral region. Optimal window size for should be found before each
data set obtained from each spectral region before multivariate analysis. Since derivation
of data occur in between selected window size, it is important not to lose spectral
information during this process and to keep meaningful spectral information within the

selected window range.

3.1.2. Multiplicative Scattering Correction

In the 1980s, model-based data preprocessing methods began to take place in the
literature. Multiplicative Signal Correction, MSC, method is a method used in signal
processing. It was first presented by Marten et al in 1983 42, and further studies were
carried out by Geladi et al*3. The purpose of the method is to remove the unwanted
scattering effects in the spectra. MSC basically takes place in two steps:

1. Regression of each spectrum against the mean spectrum.

X; ® a;+ bixy (3.1)

2. The original data set is corrected with the obtained coefficients.

X{nsc = (Xi — a;)/ b (3.2)

where X, is the mean spectrum, X; is the ith spectrum of the collection used for
calculation. By ordinary least squares regression of X; onto X, estimates of @ and b can

be obtained.
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In the original paper, reference spectrum s suggested to be calculated by using
parts which do not contain spectral information in the spectra. However, it is hard to
determine such region in application especially in FT-NIR spectra since signals are highly
overlapping and correlated. Alternatively, most studies use entire spectrum to calculate

average spectrum which is called reference spectrum.

3.1.3. Extended Multiplicative Scattering Correction

By expanding the basic logic in the MSC method, the EMSC method was
proposed in 1991 and is frequently used especially in NIR spectroscopic data 44. Unlike
the MSC method, a quadratic polynomial equation is fitted to the reference spectrum and
a correction vector (reference spectrum) is obtained by establishing a regression between
the referencespectrum andthe prior information. Correctionis performedon the raw data
using the reference spectrum. In the EMSC method, the trend of the data to the

wavenumber axis is also often included in the 2" order polynomial equation. 36:38,

xizai+ bi*xm+ dl*}\+ ei*)@ (33)

XMSC = (x; — (@;+d; * A+ e; % A2))/ b; (3.4)

where X, is the mean spectrum, X; is the it spectrum of the collection used for
calculation and A is the wavelengths or wavenumbers of the spectral range for the
wavelength dependency correction. By applying multiple regression of X; onto X,,, A
and A2, estimates of a, b, d and e can be obtained.

It is emphasized in the literature that it is more selective and effective than a
classical filtering technique in eliminating deviations and unwanted variations caused by
various reasons 3%-40:45, This technique, which is used to separate and measure chemical
and physical deviations, allows better interpretation of spectra and statistically more
robust calibration models. Its use is increasing day by day not only in the NIR region, but
also in Mie scattering in the mid-infrared region, and laser and particle size-based data in

Raman spectroscopy.
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The most important parameter in MSC and EMSC techniques is the correct
reference spectrum calculation. Data which has an absorbance value 2.5 or higher can
store meaningful spectral information. However, since Beer’s rule deviates on those
absorbance values, MSC techniques can be applied to those data and spectral information
can be saved.

In order to prevent this and create a robust reference spectrum, two different
alternatives are presented:

1. Adding predetermined weight coefficients to the wavenumber axis
2. Using iterative search method for optimal weight coefficients

The iteration method works on the theme of assigning low weighting coefficients
to regions where there are very large differences between the spectra. Thus, it is ensured
that the spectral regions containing information about the sample are not affected by the

large differences in the noisy regions.

3.2. Calibration Methods

Calibration methods are used to find the relationship between two different sets
which are output from an instrument, X, and properties of the sample, c. The mathematical
formula that describes this relationship then can be used to predict the interested
properties of the sample. Linear calibration methods can be used then the properties of
sample and instrument response(s) are linearly correlated. These calibration techniques

can be divided into two groups:

1. Univariate Calibration

2. Multivariate Calibration

When the aim is to develop a model for a single property of the sample by using
a single variable, univariate calibration is used. In spectroscopic data, mostly single
variable is chosen as the wavelength of highestabsorbance. If multiple responses are used

to model multiple properties of a sample, it is called multivariate calibration.
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3.2.1. Univariate Calibration

Most common univariate calibration methods are classical univariate calibration
and inverse univariate calibration. Classical univariate calibration is the most common
and simple univariate calibration method and very similar to Beer-Lambert Law. General
formula of classical univariate calibration is given in equation 3.5 while formula of

inverse univariate calibration is given in equation 3.6.

X=cs (3.5)
c=Xx.5 (3.6)

where X is an instrument response, ¢ is the property of sample and s is a scalar that
relates these two variables.

The main difference between classical and inverse univariate calibration is that
classical univariate calibration assumes all the errors in the instrumental responses while
inverse univariate calibration assumes the source of errors are in concentrations.
Considering preparation of sample more likely includes human error considering using
volumetric flasks, sample containers than errors during sample scans considering the
improvements in devices, inverse univariate calibration method is resulted in better
calibration model.

To reflect baseline of the responses, intercept term is used in calibration models.
Using intercept term may significantly increase the predictive performance of developed
calibration model if a constant response is observed. There are two main ways to add

intercept term. One of them is given below.

If x=c.s;

s = (C'.C)~L.C'x (3.7)

where C is a two column matrix in which first columns consist of ones for fitting
the intercept and the second column for the property of the training samples e.g.
concentrations, X is the vector of responses and s is the vector of coefficients relating the

x to C.
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If c=x.5;

s= (X'.X)L.X'.c (3.8)

where ¢ is vector of the property of the training samples e.g. concentrations, X is
the matrix includes two columns in which first columns consist of ones for fitting the
intercept and second one is responses and s is the vector of coefficients relating the ¢
to X.

Second way of adding intercept to model is mean centering the data. Mean
centering is applied by subtracting the mean of properties from each property while mean

of responses are subtracted from each response.

3.2.2. Multivariate Calibration

If the property of interest consists of several chemical compounds each having
different wavelength of absorbance, univariate calibration methods may fail. Using
multiple wavelengths resulted in better calibration models most of the time since
averaging of useful information in absorbance is used. In addition, effect of random
interferences and noises are less when compared to univariate calibration due to same
averaging. Beside these advantages, there are some limitations as well. To be able to
obtain reboots calibration models, the number of variables should be at least the number
of compounds andthe number of experiments should also exceed the number of variables.

Classical least squares calibration, CLS, is the multivariate form of classical
univariate calibration. To obtain a reasonable model from CLS, all properties of the
sample should be used while modelling. Inverse least squares, ILS, similar to inverse
univariate calibration, defines the properties of a sample as a function of response. That
allows to model a single component in a sample without a knowledge of the other
components. However, this method prone to multicollinearity issues which resulted in

overfitting.
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3.2.2.1. Partial Least Squares (PLS)

Partial least squares (PLS) is a soft modeling technique in which the data are
decomposed into new variables which are linear combinations of the original data using
Principal Component Analysis (PCA). These new variables coming from PCA are named
as principal components or factors. This method uses only the advantages of CLS and
ILS methods. There isno need forthe knowledge ofall interfering species like CLS. Also,
since new variables are obtained from PCA and these variables projects the dependent
variables to a new smaller dimensional space, multicollinearity problem is mostly
eliminated. Unlike other methods, PLS accounts noise in both responses and
concentrations.

There are two different PLS algorithms which are called PLS1 and PLS2. Studies
in this thesis PLSI algorithm was used since it has better prediction performance. The
decomposition of the data in PLS1 is given below. Figure 3.2 shows the graphical

representation of equation 3.9 and 3.10. to show matrix size.

X=TP+E (3.9)
c=T.q+f (3.10)

p
X —n|T.aHL‘+n
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Figure 3.1. The size of matrices and vectors used in PLS.
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where X is the matrix of responses obtained from instrument for » number of
training samples at p number of variables (wavelengths or wavenumbers), T is the scores

matrix which is used to develop amodel with ILS algorithm, P is the loading of responses,
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E is the residuals of responses. The number of latent variables is shown as a. Property of
interest is shown as ¢ which is usually the concentrations one of the components of the
training samples, q is the vector of regression coefficients that relates the score matrix T
to concentrationvector ¢. Here, fisthe vector of residuals for anumber of latent variables.

Determination of latent variable is one of the most important aspect in PLS
modelling. Most common way for choosing latent value is using the predicted estimation
sum of squares (PRESS) values. From calculated PRESS values, latent variable is chosen

when PRESS stop decreasing or before the increment in PRESS.

PRESS = ¥ (¢ — ¢)° 3.11)

3.2.2.2. Genetic Inverse Least Squares

Genetic Inverse Least Squares (GILS) is the combination of ILS for calibration
and a genetic algorithm for feature selection. GILS effectively picks and shuffles small
sets of features in an iterative process to obtain better sets where the success criteria is
assigned by cross-validation with ILS. These feature sets are then used for creating new
models without the collinearity problem and potentially with less overfitting issues while
averaging provides even further enhancement in predictive power.

There are five main steps which are initialization of gene population, fitness
assignment of the population, selection of genes to be breed, cross-over and breeding,
lastly the replacement of the genes with the old ones.

To find the best combination of variables and achieve desired computational time
and obtain robust model, there are used defined options which are selection of number of
genes in the population, coefficient threshold for the initialization of new genes, the
number of iterations for breeding and replacement of old genes.

To construct a gene, random number of variables, which are a set of absorbances
at specific wavenumbers, are selected. Obtained gene is subjected to the cross-validation
for the determination of its fitness and coefficient. Leave-one-out cross validation is
applied where a single sample is removed from the whole data and ILS model developed

with rest of them and removed data is predicted. This procedure is repeated for all
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samples. If R? of obtained gene is above defined threshold, it is added to the pool,
otherwise it disposed. New genes are created until the population of gene pool reaches
the user defined number. Those genes are called the parent genes. For each gene in the

pool, fitness values are calculated by the formula below.

Fitness = (3.12)

SECV

X (e &)?

m-2

SECV = (3.13)

where m is the number of samples, ¢; is the property of sample and ¢; is its
prediction.

Selection of parent genes for breeding, roulette wheel method is used. In this
method, each gene has an area which is proportional to their fitness value. Genes are
selected by spinningthe wheeland randomly chosen. The genes with highest fitness value
have a more chance to be selected then genes with lower fitness values since they have
higher portion on the wheel. From the selected genes from wheel, off-spring genes are
created. Parent genes, or first selected genes, are cut from the middle and exchange

variables so a new pair of offspring are formed.

Parent Gene Pair:
G1 = [A300, A4300 # A1450, A2814]
G2 = [As00, A1000, A208 # A2108, A1991, A1993]
Offspring:
NEWGI = [A300, A4300, A2108, A1991, A1993]
NEWG2 = [A14s0, A2814, A500, A1000, A208]

Parent genes are cut off from the # symbol and subjected to cross-over. Then
parent genes are replaced with their offspring. The fitness of offspring is compared the
fittest gene and replaced if offspring fits better. This iteration is repeated until user defined
iteration number is reached. When it is done, whole procedure which starts from
initialization and ends from iteration is called a run. After each run, fittest gene is found

and after completing the number of runs, final model obtained from best genes.
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CHAPTER 4

RESULTS AND DISCUSSION

Studies with each crude distillation unit products were performed separately and
reported in order from heavy product to lightest under different sections.

Studies with diesel samples mostly not separated as light and heavy fractions of
diesel in literature studies. However, in Tiipras Refineries, diesel samples are obtained
from crude distillation units are separated as light and heavy fractions due to the
production parameters. Light diesel samples are obtained right above where heavy diesel
samples are obtained and these samples have lower carbon number hence lower boiling

points then heavy diesel samples.

4.1. Heavy Diesel Samples

Studies conducted with heavy diesel samples were performed in three different
spectroscopic methods which are FTIR-ATR, FT-NIR, and UV-Vis Spectroscopy.
Samples were obtained from one of the crudedistillation unitin TUPRAS Izmit Refinery.

Multivariate calibration studies with heavy diesel samples collected for one year
(from 2018 to 2019). During one year of sample collection time, a total of 23 different
crude oil with different percentages were processed in crude distillation unit. Distillation
temperatures, API gravity and flash point of the samples were analyzed in quality control
laboratory located in Izmit Refinery, according to their respective ASTM methods.
Distillation temperature analysis of heavy diesel samples were analyzed three times a day
while API and flash point analyses were performed once a day.

Each spectroscopic analysis of samples was performed in different laboratories.
To be able to compare the multivariate calibration model performance of heavy diesel
samples, both calibration and validation data sets were kept same for each spectroscopic
analysis.

During one year of sample collection, distillation temperature range of a total of
matched 268 heavy samples were analyzed with both standard analysis method and three

spectroscopic analyses. Since standard method API and flash point analyses were
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performed once a day, only 88 matched sample was analyzed with three spectroscopic
analyses. The distillation temperature ranges from initial boiling point (IBP) to final
boiling point (FBP) along with API gravity and flash point of samples are summarized in
Table 4.1. Graphical representation of Table 4.1 is shown in Figure 4.1.

Table 4.1. Data range, mean, median and standard deviation of physical properties of
heavy diesel samples.

Minimum Maximum Mean Median Standard
(Min) (Max) deviation
IBP, °C 114.6 139.7 129.8 130.7 6.0
T5, °C 180.3 201.0 191.7 192.2 4.0
T10, °C 211.6 230.5 221.8 222.8 4.0
T20, °C 249.5 267.3 257.8 258.4 3.7
T30, °C 272.7 291.9 282.6 283.2 3.5
T40, °C 289.8 311.9 302.2 302.1 3.7
T50, °C 302.1 328.9 319.1 319.8 4.7
T60, °C 315.2 346.5 335.6 337.1 5.9
T70, °C 327.5 363.8 351.4 354.0 6.8
T80, °C 341.0 382.3 368.8 371.9 8.5
T90, °C 357.8 410.5 392.4 396.8 11.5
T95, °C 372.7 436.0 410.8 415.7 13.8
FBP, °C 412.5 503.0 451.9 455.0 17.0
API 30.7 35.3 33.4 33.4 1.0
Flash Point, °C 75.0 94.0 83.2 83.5 4.5
600.0 18.0
16.0
500.0
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[=] A A B=]
S 1 a & 100 5
£300.0 f 2 Q
g ' 8.0 E
£200.0 g £ 60 2
S 40 @
1000 4
= 20
0.0 — 0.0

DA AN WD DR N D NS
\Q;Q' < & T B &0)% QQ)Q' VSQQ\Q
‘i\‘é}\

A Min Max Mean Median Standard deviation

Figure 4.1. Graphical representation of Table 4.1.
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Accordingto the standard deviations, green dots whose y-axis is on the right in
Figure 4.1, the parameters with relatively less variability are T30, T40 and T50 while FBP
has the highest variation. Mean and median values of all parameters are close to each
other which indicates the distribution of dataset can be assumed as normal.

For distillation models, from 268 samples, a total of 178 samples were assigned
as calibration setto train model, atotal of 60 samples were used as independent validation
and remaining 30 samples were used as unknowns to observe prediction performance of
chosen model. For API and flash point models, a total of 66 samples were assigned as a
calibration set while the rest 22 samples were used as independent validation set. Since
the number of samples in API and flash point dataset is less than distillation point dataset,
prediction performance of models was decided to be observed using SEP values and no
unknown set was assigned.

Each data set obtained from spectroscopic analysis were treated with different
data pre-processing method and two different multivariate calibration approach were

performed to preprocessed data, which will explain under spectroscopic analysis results.

4.1.1. FTIR-ATR Spectroscopic Results

Raw FTIR-ATR spectra of a total of 268 heavy diesel samples are shown in
Figure 4.2.
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Figure 4.2. Raw FTIR-ATR Spectra of a total of 268 CDU heavy diesel samples.
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In Figure 4.2., spectral regions 3100-2500 cm™! correspond to C-H stretching
while 1800-1000 cm! correspondto C-H bending vibrations. The absorbances around
3000-2800 cm! raised from C-H stretching vibrations of CH, groups and stretching band
of CHj; groups. The presence of stretching vibrations of C-N groups were indicated in
region located at 1300-1250 cm™! while bending vibrations of methylene groups were
observed at around 1450 cm-!.

Spectral data shown in Figure 4.2 was optimized for three different ASTM
methods which are distillation, API gravity and flash point analyses to determine the best
preprocess technique. From 13 different distillation point parameters, TS50 was selected
for optimization of preprocess since it has the lowest reproducibility values compared to
rest of distillation points. Reproducibility value is definedas “ The difference between two
single and independent results obtained by different operators working in different
laboratories on identical test material would, in the long run, exceed the following values
only one case in twenty” in ASTM standards. Table 4.2 shows the reproducibility value
calculation of distillation parameters from ASTM methods. The letter i next to the

physical parameters states the ith sample used for calculation.

Table 4.2. Reproducibility value calculation for heavy diesel according to ASTM D2887.

Parameters Heavy Diesel
Reproducibility, °C
IBP 0.066 IBP;
= 0.015 (T5: +100)
110 0.015 (T10; +100)
A 0.015 (T20; +100)
T30 0.013 (T30; +100)
T40 — T90 i3
95 <
FBP 11.8

To the spectral data shown in Figure 4.2., three different preprocess techniques
were applied which are SG filter, MSC and EMSC. By systematic varying preprocess
parameters like smoothing, chancing window size, polynomial order, derivative options,
different scattering correction methods, best preprocessing method was determined for

eachmodel development. Besttechniquewas chosen formodel thathas lowest SEP value.
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Best preprocess technique for distillation point models were obtained with a first
order derivate with Savitzky-Golay algorithm using second order polynomial and 11
points window size along with Multiplicative Scattering Correction. For API and Flash
Point, first order derivative with SG algorithm using first order polynomial and 13 points
window size along with Extended Multiplicative Scattering Correction. Additionally,
reduction of wavenumber range from 4000 cm to 3300 cm™! was resulted in models with
higher predictive ability. Figure 4.3 shows FTIR-ATR spectra of heavy diesel samples in

which selected preprocessed technique for distillation point parameters were applied.
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Figure 4.3. FTIR-ATR Spectra of heavy diesel samples treated by first derivative using
first order polynomial and a window size of eleven followed by MSC.

As shown in Figure 4.3, taking firstderivative of spectra emphasize the maximum
absorbances on each spectrum. After determination of preprocessing technique, two
different calibration approach were applied to the data set which and PLS and GILS
algorithm. Table 4.3 shows the calculated standard error of cross-validation (SECV),
standard error of prediction (SEP) and the correlation coefficient of calibration curve, R2,
of each parameter obtained from developed PLS and GILS models. Developed model that
has lowest SEP values for each parameter was highlighted as bold font.
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Table 4.3. Two different multivariate calibration results of heavy diesel samples obtained
from FTIR-ATR along with data range and average reproducibility value

(R, avg)
FTIR- Data Range PLS GILS R

ATR | Min Max Range|l SECV SEP R* LVs |SECV SEP R? avg

IBP°C | 114.6 139.7 25.1 | 1.178 3.101 0.963 7 1.619 2.866 0.938 84
T5,°C | 1803 201.0 20.7 | 1.521 2.474 0.860 6 1.506 2.342 0.886 4.4
T10,°C| 211.6 2305 189 | 0933 2.215 0.943 7 1.277 2263 0910 4.8
T20,°C | 2495 2673 169 | 0518 1977 0.981 9 0.892 1.907 0.951 54
T30,°C | 272.7 2919 192 [ 0.593 1599 0.974 8 0.754 1.536 0.963 5.0
T40,°C| 289.8 3119 221 | 0.637 1.720 0.973 8 0.791 1.636 0.963 43
T50,°C| 302.1 3289 26.8 [ 1.192 1.810 0.940 6 0.850 1.811 0.970 43
T60,°C | 3152 3465 313 [ 1.390 2.164 0.949 6 1.106 1.974 0.968 43
T70,°C| 3275 3638 363 | 1.746 2.488 0.939 6 1.546 2302 0.953 43
T80,°C | 341.0 3823 413 | 1552 3.464 0.970 7 1.711 3.108 0.964 43
T90,°C | 357.8 4105 527 [ 2977 4.706 0.939 6 2.675 4.442 0952 43
T95,°C | 372.7 436.0 633 [ 3.777 5.899 0.931 6 3.601 5.755 0.939 5.0
FBP,°C| 4125 503.0 842 [ 7580 8.702 0.801 5 6.262 8478 0872| 118

API 30.7 353 48 | 0.045 0.194 0.998 7 0.119 0.168 0.987 0.5
Fla(%l P 750 94.0 19.0 | 0.665 1.751 0.980 7 2220 1.784 0.812 6.0

As Table 4.3 indicates, beside of T10 and T50 distillation points and flash point,
GILS models resulted in lowest SEP values which indicates better predictive ability.
Results indicates that genetic algorithm can be selected for quantitative analysis of
petroleum products conducted with FTIR-ATR spectroscopy. Another trend was
observed in SEP values of distillation parameter models. Lower reproducibility value of
standard analysis method has resulted in lower the standard error of prediction value.
Since multivariate calibration models are trained with standard analysis results and
reproducibility value indicated the natureerror found in the analysis, itis accepted to have

better models for parameters that have lowest reproducibility values.
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4.1.2. Near-Infrared Spectroscopic Analysis Results

Raw FT-NIR spectra of a total of 268 heavy diesel samples are shown in

Figure 4.4.
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Figure 4.4. Raw FT-NIR Spectra of a total of 268 CDU heavy diesel samples
(a) full range (b) narrowed range

As shown in Figure 4.4 (a), although the 4500-4000 cm™! spectral range shows
significant spectral variations, it contains no useful spectral information due to the strong
saturation of NIR radiation. Before any further analysis, in addition to spectral range of
4500-4000 cm, 12000-9000 cm™! ranges were also removed from data set since no
infrared absorption was observed between these spectral ranges. Figure 4.4 (b) shows the
narrowed range NIR spectra.

In Figure 4.4 (b), spectral bands between 9000-8000 cm™! corresponds to the
second overtone region, 7500-7000 cm-! corresponds to second combination region and
6200-5300 cm-! corresponds to first overtone region of C-H bands *° The spectral region
found in 4700-4300 cm-! spectral range, corresponds a part of first combination region.
Although noticeable spectral variations in terms of position and intensity of peaks are
observed around major bands, significant baseline shifts were observed in obtained NIR
spectra. To be able to enhance signal properties and eliminate baseline and background

effects, preprocessing techniques were applied to raw FT-NIR spectra.
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By systematic varyingpreprocess parameters were also appliedto FT-NIR spectra
and best preprocess method was chosen for each parameter according to lowest SEP
values. For distillation points, smoothing with third order polynomial fitting and 5 -point
window size following Extended Multiplicative Scatter Correction was chosen. For API
and Flash Point, only EMSC was applied to the narrowed data set. Figure 4.5. shows the
preprocessed FT-NIR spectra of heavy diesel samples.
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Figure 4.5. FT-NIR Spectra of heavy diesel samples treated by smoothingusing first order
polynomial and a window size of 5 followed by EMSC.

As shown in Figure 4.5, baseline variation has been minimized with selected
preprocessed technique. To spectra shown in figure above, two different multivariate
calibration approach were performed, and multivariate calibration results are given in
Table 4.4 with standard error of cross-validation (SECV), standard error of prediction
SEP), the correlation coefficient of calibration curve, R2, along with latent variables for
PLS models. For each parameter, multivariate calibration model with lowest SEP values

was highlighted as bold font.
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Table 4.4. Two different multivariate calibration results of heavy diesel samples obtained
from FT-NIR along with data range and average reproducibility value (R, avg)

Data Range PLS GILS R

FT-NIR
Min Max Range| SECV SEP R? LVs | SECV SEP R? ENEL
IBP,°C| 1146 139.7 25.1 | 1.499 2.622 0.940 13 1.709 2.670 0.926 8.4
T5,°C | 1803 201.0 20.7 | 1.331 1.956 0.891 13 1.390 2224 0.893 4.4
T10,°C| 211.6 2305 189 | 0.884 2.010 0.951 14 1.240 2.189 0912 4.8
T20,°C | 249.5 2673 169 | 0.829 1.797 0.952 13 | 1.129 1.861 00918 54
T30,°C | 272.7 2919 192 | 0.881 1.428 0.936 11 0.788 1.415 0.951 5.0
T40,°C | 289.8 3119 22.1 | 1477 1.610 0.855 11 1.233 1.541 0.903 43
T50,°C | 302.1 3289 26.8 | 0.859 1.550 0.969 12 | 0.841 1.609 0971 43
T60,°C | 3152 3465 313 | 1.440 1.500 0.946 12 | 1.290 1.570 0.958 43
T70,°C | 327.5 3638 363 | 1.009 1.646 0.980 15 1.332 1.778 0.966 43
T80,°C | 341.0 3823 413 | 1.283 2.023 0.979 14 | 1.655 2372 0.967 43
T90,°C | 357.8 4105 52.7 | 1.668 2.948 0.981 17 | 2.702 4.119 0954 43
T95,°C | 372.7 436.0 633 | 2.385 3.704 0.973 14 | 2981 4.432 0.960 5.0
FBP,°C| 4125 503.0 84.2 | 3.833 5.818 0.946 13 4.625 6.955 0.927 11.8
API 30.7 353 48 | 0.068 0.108 0.996 12 | 0.132 0.171 0.984 0.5
Flaosg P, 750 940 19.0 | 1.964 1.889 0.802 8 1.573 2.063 0.887 6.0

To the contrary of multivariate calibration results of FTIR dataset, Table 4.4

indicates that PLS method resulted in lower SEP values compared to GILS models, beside

for T30 and T40 distillation points. Relation between SEP and reproducibility values are

observed in FT-NIR results as well. It is also observed that chosen latent variable values

for FT-NIR PLS models are higher than the FTIR PLS values.
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4.1.3. UV-Vis Spectroscopic Analysis Results

Raw UV-Vis spectra of a total of 268 heavy diesel samples is shown in

Figure 4.6.
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Figure 4.6. Raw UV-Vis Spectra of a total of 268 CDU heavy diesel samples
(a) full range (b) narrowed range

As shown in Figure 4.6 (a), high absorption values between wavenumber from
200 to 385 nm were observed in the spectra due to the saturation. Those wavenumber
regions were removed from the spectra and narrowed range UV -Vis spectra is shown in
Figure 4.6 (b).

Best preprocessingtechnique was also searched for UV -Vis study. For distillation
Savitzky-Golay filtering technique was applied to UV-Vis spectra using a window size
of 9, 34 order polynomial fitting and calculating the 1t derivative following by MSC
which is shown in Figure 4.7. For API and Flash Point, smoothing was applied to

Savitzky-Golay using 13-point window size and first order polynomial fitting followed

by MSC.
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Figure 4.7. Preprocessed UV-Vis Spectra heavy diesel samples.

To the spectra shown in Figure 4.7, two different calibration approaches which
are PLS and GILS are applied and SECV, SEP values along with the correlation
coefficient of calibration curve, R? and selected latent variables of PLS models are given
in Table 4.5. Multivariate calibration model with lowest SEP values for each parameter

is highlighted as bold in the Table.

Table 4.5. Two different multivariate calibration results of heavy diesel samples obtained
from UV-Vis along with data range and average reproducibility value (R, avg)
Data Range PLS GILS R

Min Max Range|SECV SEP R? LVs | SECV SEP R |[aVe

UV-Vis

IBP,°C | 139.7 1146 25.1 |2.040 2.142 0.886 17 | 1716 2.087 0.921 |84
T5,°C |201.0 1803 202 | 1.827 2.075 0.785 17 [1.559 1.761 0.849 |44
T10,°C {2305 211.6 189 |1.783 2300 0.802 17 | 1332 2.022 0.892 (438
T20,°C [ 2673 2495 17.8 |1.659 2.163 0.802 20 | 1353 1990 0.871 (54
T30,°C [ 2919 2727 188 | 1396 1.673 0.849 18 |[1.098 1.657 0908 | 5.0
T40,°C [ 311.9 2898 22.1 |1.645 1.807 0.819 17 (1254 1.820 0.897 | 4.3
T50,°C [ 3289 3021 26.8 | 1544 1810 0.899 19 | 1262 1.743 0.934 | 43
T60,°C | 346.5 3152 313 | 1597 1.623 0.933 19 | 1290 1.570 0.958 |43
T70,°C | 363.8 3275 363 |1.617 1475 0.948 16 |[1.227 1471 0970 |43
T80,°C [ 3823 341.0 413 |1.750 1.600 0.961 16 |1341 1510 0977 (43
T90,°C [ 410.5 3578 527 | 1918 1.678 0.974 17 [1.438 1.667 0986 |4.3
T95,°C [ 436.0 3727 633 |1.810 1.751 0.984 17 | 1313 1.794 0.992 | 5.0
FBP,°C [ 503.0 4125 905 |2.823 2312 0.975 18 |2.145 2.045 0986 [1138

API 353 30.7 4.6 10219 0.349 0.942 18 0.194 0.246 0955 | 0.5
Flash P,

oC 940 750 19.0 [2.612 2214 0.684 11 2279 1981 0.761 | 6.0
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Similar to developed models with FTIR spectra, GILS algorithm has resulted in
lower SEP value for almost all parameters compared to PLS regression. Multivariate
calibration results developed with three different spectroscopic method were compared
and best model for each parameter was selected according to lowest SEP values. Selected
multivariate calibration algorithms and spectroscopic methods are shown

in Table 4.6.

Table 4.6. Multivariate calibration results of heavy diesel samples along with selected
algorithm and spectroscopic analysis.

Data Range Multivariate Calibration Results
Method | Spectroscopy
Max Min Range | SECV SEP R*> LVs
IBP 139.7 114.6 25.1 1.716  2.087 0.921 - GILS UV-Vis
T5 201.0 180.3 20.2 1.559 1.761 0.849 - GILS UV-Vis

T10 230.5 2116 18.9 0.884 2.010 0951 14 PLS FT-NIR
T20 267.3 2495 17.8 0.829 1.797 0952 13 PLS FT-NIR
T30 2919 2727 18.8 0.788 1.415 0.951 - GILS FT-NIR
T40 3119 289.8 22.1 1.233 1.541 0.903 - GILS FT-NIR
T50 3289 3021 26.8 0.859 1.550 0.969 12 PLS FT-NIR
T60 3465 3152 313 1.440 1.500 0946 12 PLS FT-NIR

T70 363.8 3275 36.3 1.227 1.471 0.970 - GILS UV-Vis
T80 3823 341.0 413 1.341 1.510 0.977 - GILS UV-Vis
T90 4105 357.8 52.7 1.438 1.667 0.986 - GILS UV-Vis
T95 436.0 372.7 63.3 1.810 1.751 0984 17 PLS UV-Vis
FBP | 503.0 4125 90.5 2.145 2.045 0.986 - GILS UV-Vis
API 353 30.7 4.6 0.068 0.108 0.996 12 PLS FT-NIR
FlashP.| 94.0 75.0 19.0 0.665 1.751 0.980 7 PLS FTIR

For lower boiling points, IBP and T5 and higher boiling points starting with T70,
GILS multivariate calibration developed with UV-Vis spectroscopic data have resulted
in better predictive ability models. Rest of distillation points, models developed with
FT-NIR spectral data were selected. FTIR spectral data was only found to havebest model
for Flash Point.

A total of 30 samples which were separated from distillation point data sets and
labelled as unknowns were used to observe predictive ability of developed models. For
each spectroscopic data, selected and highlighted bold models shown in Table 4.3, 4.4
and 4.5 were used. Model performance of each parameter has been evaluated with

reproducibility value of standard methods. Each difference between standard analysis
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value and model prediction value, which will be called residuals from now on, was
compared to calculated reproducibility value. Table 4.7 represents the number of samples

which exceeds reproducibility value.

Table 4.7. Total number of samples which exceeds reproducibility value.

Spectroscopy
Parameters
FTIR FT-NIR UV-Vis

IBP 0 0 0

T5 2 4 1
T10 1 1 1
T20 0 0 1
T30 0 0 0
T40 0 0 1
T50 0 0 0
T60 0 0 1
T70 1 0 0
T80 3 0 0
T90 9 4 1
T95 12 5 1
FBP 5 6 0

The results in Table 4.7 show good alignment with results in Table 4.6. Models
resulted in lowest SEP values also found to be the ones with lowest residuals and mostly
in between reproducibility limits. Obtained results show that shown models in Table 4.6
can be selected as best models. Residual values of 30 unknown samples are shown in
Figure 4.8. In each graph black points shows the difference between actual and model

prediction values. Red lines represent the reproducibility value of standard method.
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Figure 4.8. Residual graphs of 30 unknown samples from selected models for distillation

points.
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Residual graphs shown in Figure 4.8 indicated that combination of selected

multivariate calibration algorithm and spectral analysis technique, in Table 4.5, have

resulted in robust models which can be used instead of standard analysis method. Almost

all residual values are in between reproducibility limits and successful predictions have

been obtained. Standard method results vs selected model prediction values of developed

models are given in Figure 4.9.

1BP GILS Model Prediction, *C
from UV-Vis

T20 PLS Model Prediction, °C
from NIR

T50 PLS Model Prediction, °C
from NIR

145.0
¥ = 0.8874x ~ 14.535 n
R?=10.9208
140.0
135.0 -
130.0 *
2 4
125.0 1 4 -
120.0 .8
,’ m
115.0 - ** # Calibration
m Validation
110.0 ! T
110.0 1200 1300  140.0
IBP Standard Mectot Results, °C
270.0

¥ =0.9515x +12.492
R*=0.9515

265.0

260.0

255.0

250.0 LY
. # Calibration
¥ Validation
245.0 T T
245.0 253.0 201.0 269.0
T20 Standard Metot Results, °C
335.0
vy = 0.0688x +0.9368
330.0 e 0908 .
325.0
320.0
315.0 A
310.0
105.0 . : + Calibration
u Validation
300.0

300.0 308.0 316.0 3240 332.0
T50 Standard Metot Results, °C

T30 GILS Model Prediction, °C TS5 GILS Model Prediction, °C

T60 PLS Model Prediction, °C

from UV-Vis

from NIR

from NIR

vy =0.7828x +41.521
R*=0.8494
198.0 -
193.0
188.0
183.0
# Calibration
.
m Validation
178.0 -
177.0 187.0 197.0
TS5 Standard Metot Results, *°C
292.0
y =0.9096x + 25482
R*=0951 e
288.0
284.0
280.0
2760 | o &)
{’ # Calibration
. B Validation
272.0
270.0 278.0 286.0 294.0
T30 Standard Metot Results, °C
350.0
v =09456x +18.251
3450 R*=0.9456
340.0
3350
330.0
325.0
3200 4
1150 | ¥ + Calibration
® Validation
310.0 T

312.0 320.0 328.0 336.0 344.0 352.0
T60 Standard Metot Results, °C

T40 GILS Model Prediction, °C T10 PLS Model Prediction, °C

T70 GILS Model Prediction, °C

y =09512x + 10.811 *
230017 re=oes12 *4
.
gy
]
225.0 . (n
M L]
z .
5220 0 - *
&
o
2150 | %
f + Calibration
VAl
* m Validation
210.0
210.0 220.0 230.0
T10 Standard Metot Results, °C
314.0
v = 0.8424x 1 47.589
R*- 0.9034
310.0 PA
306.0
&
Z 302.0
=
£
= 298.0
294.0 .4/‘ # Calibraton
M Validation
290.0 T
2880 2960 3040 3120
T40 Standard Metot Results, °C
368.0
¥ =0.9576x + 14.874
364.0 R*=097 B
360.0 *
356.0
, 3520
2
7 348.0 Ao
344.0
=
£340.0 )
336.0 ”
332.0 ,C + Calibration
328.0 | 4¢ m Validation
324.0 T

325.0 3350 3450 3550 365.0

T70 Standard Metot Results, °C

Figure 4.9. Standard analysis vs model prediction results obtained from three different
spectroscopic analysis.
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Figure 4.9. Standard analysis vs model prediction results obtained from three different
spectroscopic analysis (cont’d).

According to Figure 4.9., validation set predictions of lower boiling points, which
are IBP, T5, T10 and T20 are more scattered compared to rest of parameters. Success of
models increases with increasing boiling point temperature when R2 values are
considered. Although FBP has the highest reproducibility value, selected model for this
parameter has resulted in having one of the highest R? value, lowest SEP value and non-
residuals of unknown sample is out of reproducibility value shown in Figure 4.8.
However, as shown in Table 4.2 and 4.3, with FTIR-ATR and FT-NIR spectroscopy,
higher boiling points, especially for FBP, developed models are less successful and has
low prediction ability compared to others. Since higher boiling points of sample indicates
the boiling point temperature of heavier chemical compounds compared to lower boiling
points, models developed with UV-Vis spectroscopy includes and explains more

information of those chemical components.
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4.2. Light Diesel Samples

Studies with light diesel samples were conducted in two parts. Firstly, three
different spectroscopic methods were compared using two different multivariate
calibration approaches. Secondly, analyses performed with fluorescence spectroscopy

were reported.

4.2.1. Spectroscopic Analysis Comparison

In this part, analysis of light diesel samples obtained from crude distillation unit
were performed using three different spectroscopic methods which are FTIR-ATR,
FT-NIR and UV-Vis Spectroscopy. Obtained spectral data were treated with different
data preprocessing techniques and by the help of two different chemometric approach,
best model and spectroscopic method was aimed to be found for physical parameters of
light diesel samples.

Light diesel samples were collected for a year in Tiipras Izmit Refinery. The time
period of heavy diesel and light diesel sample collection time was kept same. Although
the sample collection time of diesel sample fractions are same, the total of analyzed heavy
diesel samples are triple of light diesel samples. Reason of this difference arise from the
fact that distillation temperatures of heavy diesel samples were tracked three times of a
day. Thus, collected and analyzed heavy diesel sample are much more than light diesel
samples. Additionally, each spectral analysis of collected samples are performed in
different laboratories. To be able to compare spectroscopic methods, samples were
matched and data set with a total of consistingof the same samples was obtained. Physical
properties of light diesel samples, distillation temperatures, API gravity and flash point
temperatures, were analyzed and reported in quality control laboratory in Izmit Refinery.
Physical properties of a total of 75 matched light diesel samples are summarized in

Table 4.8. Figure 4.10 shows graphical representation of Table 4.8.
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Table4.8. Datarange, mean, median and standard deviationof physical properties of light
diesel samples.

Minimum Maximum Mean Median Standard
(Min) (Max) deviation
IBP, °C 233.6 247.8 240.6 240.5 3.3
T5, °C 246.2 267.7 259.7 259.7 3.9
T10, °C 258.4 274.0 266.7 266.8 3.1
T20, °C 268.9 281.6 275.0 275.3 2.9
T30, °C 274.9 288.0 280.9 281.0 3.0
T40, °C 279.6 294.2 286.7 287.0 3.4
T50, °C 284.0 299.5 291.1 291.4 3.5
T60, °C 287.9 304.8 296.2 296.4 3.9
T70, °C 291.8 310.4 300.5 300.5 4.1
T80, °C 296.3 317.4 306.3 306.3 4.7
T90, °C 299.2 327.5 313.3 313.5 5.6
T95, °C 307.2 338.0 320.4 320.3 6.6
FBP, °C 312.4 346.4 328.2 328.2 7.3
API 32.0 36.8 35.1 35.2 1.0
Flash Point, °C 107.5 130.0 117.5 117.0 5.1
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Figure 4.10. Graphical representation of Table 4.8.

Standard deviation values shown in last column in Table 4.8 and green dots in
Figure 4.10 indicates that starting with T30, variability of parameter increases with
increasing distillation point. API parameter has the lowest variability. Close mean and

median values indicate that data has normal distribution.



From 75 light diesel samples, a total of 56 samples were assigned as calibration
set to develop model, the rest of 19 samples were used as independent validation set.
Unlike heavy diesel study, due to limited number of matched samples, no unknown set
was separated to evaluate developed model performances. Instead of this, independent
validation set prediction performance was decided to be analyzed. Each data set obtained
from spectroscopic analysis were treated with different data pre-processing method and
two different multivariate calibration approach were performed to preprocessed data,

which will explain under spectroscopic analysis results.

4.2.1.1. FTIR-ATR Spectroscopic Analysis

Raw FTIR-ATR spectra of a total of 75 light diesel samples are shown in

Figure 4.11.
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Figure 4.11. Raw FTIR-ATR Spectra of a total of 75 CDU light diesel samples.

As dieselsample fractions has very similar chemical components, raw FTIR-ATR
spectra of heavy diesel, in Figure 4.2, shows similar characteristics peak positions with
light diesel sample spectra in Figure 4.11. To select best preprocessing method, SG filter,
MSC and EMSC were applied iteratively, and best combination of preprocessing method
was chosen according to SEP values. Reduction of wavenumber range from 4000 cm!

to 3300 cm! was resulted in better models, as heavy diesel study. Only MSC was applied
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to FTIR-ATR spectra for multivariate calibration models. Figure 4.12 shows
preprocessed FTIR-ATR spectra of light diesel samples.
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Figure 4.12. Preprocessed FTIR-ATR Spectra of light diesel samples.

Although applied preprocessing algorithm almost show no difference compared
to raw spectra, differences which can not be seen by naked eyes found to be result in
better models with higher predictive ability. Two different calibration approach were
applied to the data set which and PLS and GILS algorithm. Table 4.9 shows the calculated
standard error of cross-validation (SECV), standard error of prediction (SEP) and the
correlation coefficient of calibration curve, R?, of each parameter obtained from
developed PLS and GILS models. Developed model that has lowest SEP values for each
parameter was highlighted as bold font. Reproducibility values for light diesel samples
are formulized based on respective ASTM analysis and formulations are shown in Table

4.10. Letter i states the it sample for the calculation.
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Table 4.9. Two different multivariate calibration results of light diesel samples obtained
from FTIR-ATR along with data range and average reproducibility value

(R avg)
FTIR- Data Range PLS GILS R
ATR | Min Max Range|l SECV SEP R* LVs |SECV SEP R? avg
IBP°C | 233.6 247.8 142 | 0.120 2.789 0.999 12 | 1.146 2.841 0.949 132
T5,°C | 2462 267.7 215 | 1235 2407 0913 7 | 1.404 2270 0911 7.1
T10,°C | 2584 2740 156 | 0.730 2.019 0953 7 | 0951 2.034 0.940 59
T20,°C | 2689 281.6 127 | 0461 1.634 0977 7 | 0.698 1346 0.960 5.7
T30,°C | 2749 288.0 13.1 | 0501 1.180 0978 7 | 0.432 1.161 0985 4.6
T40,°C | 279.6 2942 146 | 0373 1.118 0990 7 | 0.505 0.902 0.984 4.0
T50,°C | 284.0 2995 155 | 0411 1.062 0989 8 | 0.583 0.765 0.980 3.0
T60,°C | 2879 3048 169 | 0474 1.156 0989 7 | 0.537 0.777 0.988 35
T70,°C | 291.8 3104 186 | 0967 1.008 0956 6 | 0.804 0.866 0.973 38
T80,°C | 2963 3174 21.1 [ 0775 1450 0979 7 | 0950 1339 0.971 42
T90,°C | 2992 3275 283 | 1497 1.661 0942 6 | 1313 1.629 0.959 4.7
T95,°C | 3072 3380 308 | 1.514 2391 0955 6 | 1.729 2412 0.953 75
FBP,°C| 3124 3464 340 | 1.807 2205 0946 6 | 1579 2336 0.961 7.1
API | 320 368 48 [ 0030 0.130 0999 9 | 0.075 0.128 0.996 0.4
Flischp" 107.5 1300 225 | 3.623 4.674 0216 3 | 2032 5268 0.800 8.4

Table 4.10. Reproducibility value calculation for light diesel calculations based on

standard method.

Parameters Light Diesel
Reproducibility, °C
IBP 0.055 IBPi
TS 0.03 T5i
T10 0.022 T10i
T20 0.0208 T20i
T30 0.0165 T30i
T40 0.014 T40i
T50 3.0
T60 0.0117 T60i
T70 0.0125 T70i
T80 0.0136 T80i
T90 0.015 T90i
T95 0.04105 (T95i — 140)
FBP 7.1
API 0.6+(0.037 (API;i-60))
Flash Point 0.071 x Flash Pi
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Bold values in Table 4.9 indicates that genetic algorithm was resulted in lower
SEP values for middle point in distillation curve, TS5, T20-90 and flash point analysis.
For upper and lower limits, IBP and FBP and API values PLS algorithm was found to
have lowest SEP values which indicates better predictive ability. Selection of multivariate
calibration method for FTIR-ATR spectra shows similarity to heavy diesel study.
However, reproducibility values for light diesel analysis were found higher than heavy
diesel samples. Main reason is the difference in standard analysis methods. Distillation
temperatures of heavy diesel samples are found by ASTM D2887 in which GC is used
while distillation analyses of light diesel samples are obtained by ASTM D86.

4.2.1.2. FT-NIR Spectroscopic Analysis Results

Raw FT-NIR spectraof atotal of 75 light diesel samples are shown in Figure 4.13.
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Figure 4.13. Raw FT-NIR Spectra of a total of 75 light diesel samples.

Similar to all FT-NIR spectra reported in this thesis, high absorbance values due
to saturation were observed in wavenumbers between 4500 cm! and 4000 cm!. These
wavenumbers were removed from dataset as well as 12000-9000 cm-!.To enhance signal

properties and reduce the effect of baseline shift, three different preprocessing method
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were applied to this data set as well. EMSC method with smoothing with third order
polynomial fittingand 9-point window size was selected to tread FT-NIR spectra for light

diesel calibration study. Preprocessed spectra are shown in Figure 4.14.
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Figure 4.14. Preprocessed FT-NIR spectra of light diesel samples.

Two different calibration approaches, PLS and GILS, were also applied to spectra
shown in Figure 4.14. Multivariate calibration results are given in Table 4.11 with
standard error of cross-validation (SECV), standard error of prediction (SEP) and the
correlation coefficient of calibration curve, R2, along with latent variables for PLS
models. For each parameter, multivariate calibration model with lowest SEP values was
highlighted as bold font.

For most of the parameters, PLS algorithm was chosen similar to heavy diesel
FT-NIR study. However, GILS was found to have low SEP values for several distillation
points, unlike to heavy diesel study results shown in Table 4.3. As indicated in other

multivariate calibration results, SEP values gets higher with high reproducibility values.
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Table 4.11. Two different multivariate calibration results of light diesel samples obtained
from FT-NIR along with data range and average reproducibility value (R, avg)

Data Range PLS GILS R

FT-NIR
Min Max Range| SECV SEP R? LVs | SECV SEP R? avg
IBP,°C | 233.6 2478 142 | 2.529 2860 0418 5 1.968 2942 0.741 | 132
T5,°C | 2462 267.7 21.5 | 1455 2412 0.880 11 | 3.004 1.894 0.642| 7.1
T10,°C | 2584 274.0 15.6 | 0.308 1.571 0.992 14 | 0.884 1.385 0.946| 59
T20,°C | 2689 281.6 12.7 | 1.004 1.042 0.904 8 0991 0.834 0919 | 5.7
T30,°C | 2749 288.0 13.1 | 0.307 0.939 0.992 13 | 0.816 0956 0947 4.6
T40,°C| 279.6 2942 146 | 0355 0.719 0.992 12 | 0.815 0.837 0956 4.0
T50,°C | 284.0 299.5 155 | 0.376 1.061 0.991 13 | 1.015 1.179 0940 3.0
T60,°C | 287.9 304.8 169 | 0.357 1.020 0.994 12 ] 0.799 1.007 0.971| 3.5
T70,°C| 291.8 3104 18.6 | 0.365 1.335 0994 13 | 1359 1.432 0915| 338
T80,°C | 2963 3174 21.1 | 0.450 1.055 0.993 12 | 1.192 1.553 0951 42
T90,°C| 299.2 3275 283 | 0.659 1.683 0.988 12 [ 1497 1771 0946 | 4.7
T95,°C| 307.2 338.0 30.8 | 0.746 2.086 0989 12 [ 2.132 2.685 0907| 7.5
FBP,°C| 3124 3464 34.0 [ 0943 2539 0986 13 | 2.103 2.760 0937| 7.1
API 320 368 48 | 0.057 0.096 0997 12 | 0.109 0.100 0.990| 0.4
FlaosélP., 107.5 130.0 225 | 3.481 4.806 0.400 5 2712 4.681 0.684 | 8.4

4.2.1.3. UV-Vis Spectroscopic Analysis Results

Raw UV-Vis spectra of light diesel samples is shown in Figure 4.15.

Figure 4.15. Raw UV-Vis Spectra of a total of 75 CDU light diesel samples.
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Figure 4.15 shows high absorption values that can not be used for calibration
studies between wavenumbers from 200 to 385 nm. Those wavenumbers were removed
before treatment with any preprocessing technique. After reduction of those
wavenumbers, best preprocessing technique was selected by same iterative method as
other studies and first derivative with third order polynomial fitting and 9 -point window
size following MSC was chosen. UV-Vis spectra treated with selected preprocessing

technique was shown in Figure 4.16.
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Figure 4.16. Preprocessed UV-Vis Spectra of light diesel samples.

To spectral data shown in Figure 4.16, two different calibration approaches were
applied as well. Table 4.12. shows obtained multivariate calibration model results along
with and the correlation coefficient of calibration curve, R2, selected latent variables and

reproducibility values.
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Table 4.12. Multivariate calibration results of light diesel samples obtained from UV -Vis

along with data range and average reproducibility value (R, avg)

. Data Range PLS GILS R
UV-Vis
Min Max Range| SECV SEP R? LVs | SECV SEP R? ENEL
IBP,°C | 233.6 247.8 142 | 1.799 4.579 0.722 12 | 2.069 2431 0.711| 132
T5,°C | 2462 267.7 21.5 | 1.153 3301 0.909 15 1.796 2.557 0.826| 7.1
T10,°C | 2584 2740 156 | 1.991 2.067 0.511 7 1216 1969 0.860| 59
T20,°C | 2689 281.6 12.7 | 1.790 1.659 0.581 7 1.282 2.533 0821 5.7
T30,°C | 2749 288.0 13.1 | 1.839 1.954 0.645 6 1.562 2360 0.754| 4.6
T40,°C | 279.6 2942 146 | 2.192 2.530 0.644 5 1.944 2761 0.733| 4.0
T50,°C | 284.0 2995 155 [ 2.142 2310 0.658 6 1.868 2918 0.754| 3.0
T60,°C | 287.9 3048 169 | 2453 3.073 0.673 5 2.102 2419 0771 3.5
T70,°C | 291.8 3104 18.6 | 1.747 2957 0.824 6 1.809 2.424 0.817| 3.8
T80,°C | 296.3 3174 21.1 | 2.368 3473 0.752 4 1958 3.427 0.836| 4.2
T90,°C | 299.2 3275 283 [ 2.825 3.648 0.744 6 2.743 2.708 0.763 | 4.7
T95,°C | 307.2 338.0 308 | 2.610 4.124 0.816 7 2.521 3.860 0.833| 7.5
FBP,°C| 3124 3464 340 | 5.013 4.801 0.530 4 3.117 5049 0822 7.1
API 320 368 48 | 0.624 0.464 0.678 9 0.381 0.558 0906 | 04
FlaosgP., 107.5 130.0 225 | 4.100 5.642 0.347 8 2418 4.622 0810 84

Selected multivariate techniques for UV-Vis data are found to be similar to

FTIR-ATR study. For most of the parameters, GILS method has resulted in lower SEP

values compared to PLS models. However, for API, PLS was selected while for flash

point GILS results are found to have lower SEP values.

After development of different multivariate calibration models using different

spectral data, all models for each parameter were compared and best model for selected

parameter was chosen according to SEP values. Table 4.13 shows selected multivariate

calibration method and spectroscopic measurements for each parameter.
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Table 4.13. Multivariate calibration results of heavy diesel samples along with selected
algorithm and spectroscopic analysis.

Data Range Multivariate Calibration Results
Method | Spectroscopy
Max  Min Range | SECV SEP R*> LVs
IBP,°C | 233.6 247.8 142 2.069 2431 0.711 - | GILS UV-Vis
T5,°C | 2462 267.7 21.5 3.004 1.894 0.642 - GILS FT-NIR
T10,°C | 2584 274.0 15.6 0.884 1.385 0.946 - | GILS FT-NIR
T20,°C | 268.9 281.6 12.7 0.991 0.834 0.919 - | GILS FT-NIR

T30,°C | 2749 288.0 13.1 0.307 0.939 0992 13 PLS FT-NIR
T40,°C | 279.6 2942 14.6 0.355 0.719 0.992 12 PLS FT-NIR

T50,°C | 2840 2995 155 | 0583 0765 0980 - | GILS FTIR
T60,°C | 287.9 3048 169 | 0537 0777 0988 - | GILS FTIR
T70,°C | 2918 3104 186 | 0804 0866 0973 - | GILS FTIR
T80,°C | 2963 3174 211 | 0450 1055 0993 12| PLS | FT-NIR
T90,°C | 2992 3275 283 | 1313 1629 0959 - | GILS FTIR
T95.°C | 3072 3380 308 | 0746 2086 0989 12| PLS | FI-NIR
FBP,°C | 3124 3464 340 | 1807 2205 0946 6 | PLS FTIR
APL | 320 368 48 | 0057 0096 0997 12| PLS | FT-NIR
Flaf(}; Pol1075 1300 225 | 2418 4622 0810 - | GILS | UV-Vis

Results shown in Table 4.13 shows some similarity to Table 4.5, in which
multivariate calibration results of heavy diesel samples are shown. First of all, for both
sample groups, GILS applied to UV-Vis data and PLS applied to FT-NIR data has
resulted in better models for IBP and API, respectively. On the other hand, for the rest of
the parameters no same combination was selected. Since light diesel and heavy diesel
samples are very similar composition to each other, selection of different methods and
spectroscopic analysis are not expected. Main reason of this difference can be because of
difference in standard method analysis. Standard analysis of distillation point analysis of
heavy diesel samplesis ASTM D2887 which analyzed ana give results in weight percent
while standard analyses of light diesel samples are reported in volumetric percent. This
difference also can be seen in different reproducibility values as well as initial boiling
point temperatures. As light diesel samples have lower number of hydrocarbon chains
compared to heavy diesel, it is expected that initial boiling point temperature of light
diesel should be lower than heavy diesel. However, as can be seen in Table 4.4 and Table
4.13 in data range section, IBP value of light diesel is higher than heavy diesel. This
difference also because of difference in ASTM methods. Standard method results vs

selected model prediction values of developed models are given in Figure 4.17.
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Figure 4.17. Standard analysis vs model prediction results obtained from three different
spectroscopic analysis.
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Figure 4.17. Standard analysis vs model prediction results obtained from three different
spectroscopic analysis. (cont’d)

Although the lowest temperature in T5 parameter increases the dynamic range of
calibration model and increases the R? value shown in Figure 4.17, lowest R? was
obtained from the developed model for T5. Additionally, calibration graph of T5 shows
nonlinear behavior in low temperatures. Most scattered graphs and as a result less

successful models were obtained for IBP, TS and flash point parameters.

4.2.2. Fluorescence Analysis

In this section, studies thathave been conducted with light diesel samples obtained
from crude distillation unit in Izmit Refinery.

A total of 116 light diesel samples obtained from crude distillation unit were
collected over a year. Distillation temperatures, API gravity and flash point of samples
were analyzed in quality control laboratory in izmit Refinery accordingto theirrespective
ASTM methods. Summary of primary analysis results of collected samples is shown in

Table 4.14.
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Table 4.14. Data range, mean, median and standard deviation of physical properties of
light diesel samples.

Min Max Mean Median Stdev

IBP, °C 191.4 2236 2050 204.5 6.8
T5,°C 2173 2422  228.1 227.5 54
T10,°C 227.2 2509 2382 237.8 5.1
T30,°C 246.8 2672  257.7 2579 43
T50,°C 257.7 280.7  271.0 271.1 4.5
T70,°C 262.1 2934 2825 282.7 5.5
T90,°C 279.2 3133 299.1 299.5 6.9
T95,°C 281.5 3263  308.0 308.2 8.5
FBP, °C 291.6 338.1 3184 317.9 9.6
API, at 60F 34.0 39.1 373 37.7 1.2
Flash Point, °C 81.0 104.0 91.1 91.0 4.8

Table 4.14 indicates that properties of samples have changed during the year.
Standard deviation of each parameter shows that lower (such as initial boiling point, IBP
and T5) and higher cut point (T95 and FBP) of light diesel samples are the most changed
parameters. Mean and median values show the data set has a symmetrical distribution.

Fluorescence analysis of diesel samples were carried out in two different mode
which are total fluorescence and synchronous fluorescence modes.

In total fluorescence mode, emission spectrum at different excitation wavelengths
were recorded. Since diesel samples have complex hydrocarbon molecules, emission
spectra can change while changing the excitation wavelength. In synchronous
fluorescence mode, both the emission and excitation wavelengths are scanned
simultaneously. Emission and excitation wavelength are chosen at the beginning of the
measurement along with wavelength difference which specifies increment number of
wavelength after each scan.

As stated in the literature lighter petroleum oils exhibit more intense emission then
the heavier oils because of quenching process.3!->2 The reason of that samples has the
highest and lowest API values were selected to be shown. The TFS results of these two
samples are depicted in Figure 4.18 and 4.19.
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Figure 4.19. Total Fluorescence Spectra of light diesel sample with lowest API value
(a) 3D topographical diagram (b) contour map.

Although studies in literature states that lighter crude oil with higher API values
exhibit stronger fluorescence emissions than heavier crude oils with lower API values,
Figure 4.18 and 4.19 show the opposite. It is also stated that fluorescence emission of
sample is not only depend on API grade, but also depend on fluorescent aromatic
compounds. As shown in also Figure 4.18 and 4.19, fluorescence intensity of light diesel
sample with lowest API (Figure 4.19.a.) is higher than the sample with highest API
(Figure 4.19.b.) Contour maps shown in Figure 4.18.b and 4.19b indicates the red-shift in
emission maximum. The emission maximum of Figure 4.18b is located in 408 nm While

emission maximum of Figure 4.19.b. is located around 420 nm because of enhanced

energy transfer.
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Figure 4.21. Synchronous Fluorescence Spectra of light diesel sample with lowest API
value (a) 3D topographical diagram (b) contour map.

The trend of a net increase in fluorescence intensity for heavier product observed
in total fluorescence spectra is also observed in synchronous fluorescence shown in
Figure 4.20 and Figure 4.21. Unlike total fluorescence, synchronous fluorescence spectra
show better defined shoulders which might contain valuable information that will be
discussed in multivariate calibration section. This phenomenon is also stated in literature
as in synchronous mode sample spectra does not present the artifacts due to Rayleigh and
Raman scattering. Similar to total fluorescence,red shiftin the emission is observed upon
going from lighter to heaver product.

Both data sets, total fluorescence spectra and synchronous spectra, were arranged
into matrix characterized by samples as columns and fluorescence intensities as rows to
proceed with multivariate calibration process.

Two different calibration approaches were performed which are Genetic Inverse
Least squares (GILS) and Partial Least Squares (PLS) Regression. From 116 samples, a
total of 86 were assigned as calibration set to develop model and the rest of 71 samples

were used as independent validation set to observed prediction ability of the model. After
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developing PLS and GILS models for each data set, standard error of cross-validation
(SECV), standard error of prediction (SEP) and the correlation coefficient of calibration
curve, R?, of each parameter were calculated and compared. Table4.15 show multivariate
calibration results obtained from total fluorescencespectra while Table 4.1 6 shows results

obtained from synchronous fluorescence spectra of light diesel samples.

Table 4.15. Multivariate calibration results of total fluorescence spectra of light diesel
samples.

Multivariate Calibration Results
TFS Data Range

Mode PLS GILS
Min Max Range| SECV SEP R? LVs [ SECV SEP R?

R (Avg)

IBP,°C 1914 2236 28.7 | 3.078 4.797 0.782 8 2.191 4.635 0.893 11.3
T5,°C 2173 2422 249 | 2.017 2.509 0.871 13 1.653 2771 0918 6.9
T10,°C 2272 2509 23.7 | 1.491 2.289 0.920 14 1351 2474 0937 53
T30,°C 246.8 2672 204 | 0577 1364 0.983 20 1.335 1.520 0916 4.2
T50,°C  257.7 2807 23.0 | 0.716 1.208 0.976 17 1.031 1351 0.952 3.0
T70,°C 262.1 2934 313 | 0.898 1.694 0.974 17 1.324 1962 0946 3.5
T90,°C 2792 3133 34.1 | 0.748 1.434 0.988 17 1.079 1.559 0976 4.4
T9S5,°C 2815 3263 448 | 1.139 1949 0.982 16 1.296 1.738 0.977 6.7
FBP,°C 291.6 3381 465 | 0463 0.901 0.998 19 | 0942 1.159 0.990 7.1

API 340 391 49 |[0.161 0.332 0982 17 | 0244 0355 0.961 33

Flash ¢, 0 1040 230 | 1.174 1751 0941 17 | 1833 1862 0863| 66
Point, °C

Table 4.16. Multivariate calibration results of synchronous fluorescence spectra of light
diesel samples.

Multivariate Calibration Results
SFS Data Range
Mode PLS GILS

Min Max Range| SECV SEP R? LVs [ SECV SEP R?

R (Avg)

IBP,°C 1914 2236 28.7 |3.931 4.007 0.674 8 3.142 4168 0.796 | 113
TS5,°C 2173 2422 249 | 1.762 2.614 0.893 13 1.643 2.386 0.910 6.9
T10,°C 2272 2509 237 | 1.672 1.918 0.900 13 1440 2.021 0928 53
T30,°C 246.8 2672 204 | 0950 1.332 0.953 16 | 1.175 1.169 0.931 42
T50,°C  257.7 2807 23.0 | 0.853 1.220 0.966 17 1.183 1208 0.936 3.0
T70,°C 262.1 2934 313 | 0.860 1.667 0.967 15 1.019 1.719 0.956 3.5
T90,°C 2792 3133 34.1 | 0.888 1.462 0.984 15 1.210 1.495 0.970 4.4
T95,°C 281.5 3263 448 | 1482 1.655 0.967 12 | 1.387 1.652 0.972 6.7
FBP,°C 291.6 3381 465 | 1.545 1.063 0974 12 1.233 1519 0.984 7.1

API 340 391 49 [0.169 0.298 0.982 17 | 0.251 0.333 0.961 33

F.laSh 81.0 1040 23.0 | 1.627 2.221 0.893 15 1.731 2394 0.885 6.6
Point, °C
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For both total fluorescence and synchronous measurements, almost for all of the
parameters, PLS multivariate calibration results resulted in lower standard error of
prediction values than GILS results. When both calibration and prediction standard errors
were analyzed separately, highest prediction errors were observed in parameters have
higherreproducibility values. Itis an expected outcome as developed models highly based
on primary analysis results.

When calibration results of two different fluorescence mode were compared,
models developed from synchronous fluorescence spectra has resulted in lower
calibration and prediction errors. This mightbe the results of better-defined contours with
shoulders shown in Figure 4.20 and Figure 4.21. Standard method results vs selected

model prediction values of developed models are given in Figure 4.22.
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Figure 4.22. Standard analysis vs model prediction results obtained from two different
measurement mode of fluorescence spectroscopy.
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Figure 4.22. Standard analysis vs model prediction results obtained from two different
measurement mode of fluorescence spectroscopy (cont'd).

Figure 4.22 shows the actual versus model prediction graphs of selected
measurement mode and multivariate calibration algorithm for all parameters. Developed
model of IBP are observed to have lowest R2 value which can be explained by
reproducibility value of IBP. However, although the reproducibility value of FBP is high
and close to reproducibility value of T5, TFS mode measurement combined with PLS

model has resulted in best calibration models of all distillation temperatures considering

R2 and SEP values.

4.3. Straight Run Naphtha Samples

In this section, studies that have been conducted with heavy straight run naphtha
(HSRN) and light straight run naphtha (LSRN) samples obtained from three different
crude distillation units belonging to three different refineries which are izmit Refinery,
Izmir Refinery and Kirikkale Refinery. Naphtha is colorless, volatile, and flammable

liquid obtained by distillation of crude oil in atmospheric distillation column. It is an
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important light distillate and used as feedstock in petroleum and petrochemical industry
such as in gasoline blending and monomer synthesis for the polymers.

Two different types of naphtha are obtained in the process regarding as cut point
temperatures: the first type having five to six carbon containing hydrocarbonsis called
Light Straight Run Naphtha (LSRN), the second type called Heavy Straight Run Naphtha
(HSRN) could have six to ten carbon atoms in the molecular structure. LSRN can be used
as a feedstock for isomerization unit while HSRN can be used as a feedstock for
platformer unit. Both two units are designed to increase octane number of the gasoline.

HSRN and LSRN samples were collected daily from three different crude oil units
in three different refineries. Distillation temperatures, API gravity and vapor pressure of
the samples were analyzed in quality control laboratory located in each refinery,
according to their respective ASTM methods.

In izmit refinery, a total of 301 HSRN samples and a total of 276 LSRN samples
were collected between May 2018 and July 2021. In Izmir refinery, a total of 281 HSRN
samples and a total of 256 LSRN samples and were collected between August 2019 and
September 2021. Lastly, in Kirikkale refinery, and a total of 231 HSRN samples and a
total of 232 LSRN samples were collected between April 2019 and September 2021. The
distillation temperatures ranges atdifferentrecovery level (from initial boiling point (IBP)
to final boiling point (FBP)) along with API gravity and vapor pressure are summarized
in Table 4.8. Distillation temperatures was obtained using ASTM D86 method, while
API values were measured EN ISO 2719 and vapor pressure values were obtained using
IP 394 method.

As shown in Table 4.17, although the name of samples is the same for each
refinery, the physical properties of samples differ from each other. When the distillation
curves were investigated, although HSRN samples of izmir refinery has the lowest initial
boiling point, final boiling point of HSRN samples is not much different from other
refineries. The HSRN samples produced by Izmir refinery contain a wider variety of
chemical structures than other refineries when considering the difference between the
initial boilingpointand final boiling point. Considering standard deviation of each sample
groups, there is less production variation in Kirikkale refinery. Distillation temperatures
of HSRN samples are expected to be higher than LSRN samples, since they obtain
hydrocarbons with a higher carbon number. However, in Izmir refinery, final boiling
point of LSRN samples is higher than HSRN samples. The reason of that is the design of

naphtha splitter in CDU have been designed differently in izmir refinery in accordance
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with the production. It is also known that, in Izmit and Izmit refinery, number of different
crude oil which are processed in crude distillation units higher than Kirikkale Refinery.
Because of this reason, physical properties of samples produced in Kirikkale refinery do

not change as much as other refineries.
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Table 4.17. Data range, average and standard deviation of physical parameters of all refinery’s naphtha samples.

9

Standard
Min Max Mean (Siglilgggﬂ Min Max Mean (Slzzlil:t?;?] Min Max Mean deviation

IBP, °C 81 107.6  93.5 4.9 353 655 458 3.9 84.4 102.5 93.2 3.3
T5,°C 93.1 112 101.8 3.2 66.4 87 76.1 3.5 96.1 110.3 102.9 2.4
T10,°C 96.5 113.4 103.9 2.9 77.5 945 84.1 3.1 99.6 112.4 105.2 2.2
T30,°C é 103.7 117.2 109.9 2.5 § 89 1155 97.5 4.1 é 106.2 119 111.7 2.2
T50,°C % 111.2 1241 117.2 2.6 EJ 95.7 132 107.2 5.4 E, 113.5 128.1 120.5 2.5
T70,°C ‘é 119.4 135.1 126.6 3.4 ‘é‘ 101.8 147.7 116.1 6.6 % 122.8 142.4 132.6 3.3
T90,°C N 130.9 150.5 139.5 4.3 o 110 171.7 126.6 7.9 £ 136.5 160.6 148.9 3.9
T95,°C 135.8 157.1 144.6 4.7 113.8 184.5 130.7 8.7 M 141.8 167.6 155.6 4.1
FBP,°C 1444 1723 1553 5.2 124.6 206.3 140.5 10 151.6 183.1 167.5 4.1

API 554 61.8 59.3 1.1 56.3 66.7 63.2 1.4 56.2 60.2 584 0.8
IBP, °C 259 37.5 33 2.1 30.8 439 375 2.6 22 355 29.7 1.6
T5,°C 33.4 46.7 42 2 43.6 62.2 55.7 3.6 30 442  36.8 1.8
T10,°C 36 48.4 439 1.9 50.8 68.5 62.3 3.2 40 46.1 38.7 2.8
T30,°C 41.1 53.1 482 2.1 - 69.7 86.8 80 3 é 35,5 503 438 1.5
T50,°C g 452 609 534 2.7 % 89.8 106.2 98.6 3.3 Cﬁ 40.1 552 49.1 1.5
T70,°C f 49.2 70.4 61 3.4 f 108.5 126.2 117.3 4.1 % 45.8 61.3 554 1.7
T90,°C g 59.8 86.8 73.3 4.5 g 130 161.7 141.1 6.9 % 57.1 684 63.7 1.2
T95,°C 64.6 97.8 79.5 6 = 138 178.7 1514 8.3 \Z 62 70.9  65.8 1.2
FBP,°C 67.9 1157 919 7.4 148.6 195.3 167.7 9.8 66.1 80.7 70.8 2.4

API 79.2 86.7 82.7 1.4 63 73.1  67.8 1.2 81.4 89.7 85.8 0.9
V.P., °C 69.5 106.9 80.9 5.5 329 66.1 443 5.4 82.6 1229 97.7 5.3
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4.3.1. FT-NIR Spectroscopic Analysis Results

Figure 4.23, 4.24 and 4.25 shows raw FT-NIR spectra of Izmit, izmir and
Kirikkale refinery, respectively, in each figure, spectra on the left side belongs to HSRN
samples while on the right side belongs to LSRN samples.
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Figure 4.23. FT-NIR spectra HSRN(a) and LSRN(b) samples belongs to izmit Refinery.
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Figure 4.24. FT-NIR spectra HSRN(a) and LSRN(b) samples belongs to izmir Refinery.
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Figure 4.25. FT-NIR spectra HSRN(a) and LSRN(b) samples belongs to Izmir Refinery.

When FT-NIR samples of naphtha samples were investigated, some differences
were observed as shown in Figure 4.23, 4.24 and 4.25. Firstly, in Figure 4.24, which
belongs to samples in izmit refinery, although 4500-4000 cm-! spectral range shows
significant spectral variations, it contains no useful spectral information due to the strong
saturation of NIR radiation. However, in Figure 4.24 and 4.25, no such strong saturation
was observed. The main reason of the difference is that two different brands of
spectroscopy were used in this study which are Bruker and Perkin Elmer. Due to strong
saturation, spectral range of 4500-4000 cm-! were removed from data set belongs to Izmit
refinery. Also, 12000-9000 cm-! ranges were also removed from the same data set since
no infrared absorption was observed between these spectral ranges.

In addition, in each obtained spectrum, significant baseline shifts were observed.
However, effect of baseline shifts was also differing from refinery to refinery. Baseline
shift is observed more in refineries, where product composition changes more. That is
why, among the sample measurements, the least baseline shift problem is seen in the
sample measurements obtained from Kirikkale refinery. Extended Multiplicative Scatter
Correction (EMSC) pre-processingmethod was applied to each data setto enhance signal
properties and suppress unwanted variations before multivariate calibration and shown in

Figure 4.26,4.27 and 4.28.
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Figure 4.26. EMSC corrected FT-NIR spectra HSRN(a) and LSRN(b) samples belongs
to Izmit Refinery
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Figure 4.27. EMSC corrected FT-NIR spectra HSRN(a) and LSRN(b) samples belongs
to Izmir Refinery
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To EMSC corrected spectral data shown in Figure 4.26, 4.27 and 4.28 two
differentcalibration approached were performed whichare Genetic Inverse Least squares
(GILS) and Partial Least Squares (PLS) Regression.

From 301 HSRN samples belongs to Izmit Refinery, a total of 230 samples were
assigned as calibration set to develop model and the rest of 71 samples were used as
independent validation set to observed prediction ability of the model. From 276 LSRN
samples belongs to izmit Refinery, a total of 210 samples were assigned as calibration set
to develop model and the rest of 66 samples were used as independent validation set to
observed prediction ability of the model

From 281 HSRN samples belongs to Izmir Refinery, a total of 210 samples were
assigned as calibration set to develop model and the rest of 71 samples were used as
independent validation set to observed prediction ability of the model. From 256 LSRN
samples, a total of 192 samples were assigned as calibration set to develop model and the
rest of 64 samples were used as independent validation set to observed prediction ability
of the model

From 231 HSRN samples belongs to Kirikkale Refinery, a total of 175 samples
were assigned as calibration set to develop model and the rest of 56 samples were used as
independent validation set to observed prediction ability of the model. From 232 LSRN
samples a total of 175 samples were assigned as calibration set to develop model and the
rest of 57 samples were used as independent validation set to observed prediction ability
of the model.

After developing PLS and GILS models for each data set, standard error of cross-
validation (SECV) and standard error of prediction (SEP) values of each parameter were
calculated and compared. For each parameter, best multivariate calibration method was
chosen according to lowest SECV and SEP values. Calculated standard error of
calibration and standard error of validation parameters along with name of the standard
method and reproducibility values for final selected models for EMSC pre-processed
FT-NIR spectra for HSRN and LSRN samples of each refinery is given in Table 4.18.
Calculated reproducibility values for straight run naphtha based on standard method are
given in Table 4.19. Letter i in Table 4.19 represents ith sample for calculation. In Table

4.18, parameters those with LV means PLS models were selected.
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Table 4.18. Multivariate Calibration results along with name of the standard method and number of latent variables.

Parameters SECV SEP R* LV SECV SEP R LV SECV SEP R LV
IBP, °C 0966 1482 0962 - 1.834 2688 0711 - 0708 1295  0.959 12
T5,°C 0.553 0787 0972 - 1204 1.658 0868 - 0405 0799  0.977 -
T10,°C 0462 0.625 0976 - 0571 0.832 0964 - 0268  0.688  0.988 .
T30,°C | Z 0315 0507 0985 - | Z 0292 0461 0995 - é 0278  0.531  0.986 -
TS0,°C | & 0268 0511 0990 - | & 0276 0467 0997 - | T 0219 0480 0993 -
T70,°C | Z 0330 0808 0991 - | = 0361 0538 0997 - | F 0207 0519 0996 -
T90,°C | .8 0457 0967 0989 - | .S 0428 0741 0997 - | E 0387 0.637 0.990 -
T95,°C 0.605 1293 0984 - 0550 0910 0995 - | 2 0573 0785 0979 -
FBP,°C 1.134 1968 0951 - 1.764 3.031 0949 - 1258 1507  0.895 .
API 0.075 0.135 0996 - 0.146 0312 0988 - 0.082  0.131 0988 -
IBP, °C 0.642 0810 0905 11 0.660 1.051 0938 - 0.791 0942  0.722 i
T5,°C 0293 0458 0980 - 0.788  1.084 0945 11 0263 0468 0977 -
T10,°C 0256 0368 0983 - 0591 0730 0967 11 0.173 0336  0.988 .
T30,°C 0230 0353 0988 - 0383 0686 0985 - | £ 0122 0252 0994 .
T50,°C g 0239 0391 0993 - é 0341 0665 0990 - | % 0158 0397 0992 -
T70,°C | = 0262 0422 0995 - | £ 0302 0643 0995 - | = 0146 0390 0.993 -
T90,°C | £ 0485 0903 0989 - | E 0773 1463 0989 - | E 0158 0326 0983 .
T95,°C | T 0721 1261 098 - | T 0955 1950 0989 - | 3 0211 0411 0972 -
FBP,°C 0.821 2176 0987 17 2451 3519 0933 - 1117 1661  0.761 -
API 0.124 0.185 0992 - 0.060 0.183 0997 - 0.104 0212 0.989 -
V.P.,°C 0.570 0.896 0990 - 1.036 1.834 0964 - 0.972 1448  0.967 -




Table 4.19. Reproducibility value calculation for naphtha calculations based on standard

method.
Straight Run Naphtha
Parameters
Reproducibility, °C

IBP 4.7

TS 2.5+2.8(0.43((T10i - IBPi) /10) +0.24)
T10 1.9+2.8(0.43((T20i - T5i)/15) +0.24)
T20 1.9+2.8 (0.43 ((T30i-T10i)/15)+0.24)
T30 1.8+2.8(0.43((T40i- T20i)/20) +0.24)
T40 1.84+2.8(0.43((T50i- T30i)/20) +0.24)
T50 1.9+2.8(0.43((T60i- T40i)/20) +0.24)
T60 1.9+2.8(0.43((T70i- T50i)/20) +0.24)
T70 2.1+2.8(0.43((T80i- T60i)/20) +0.24)
T80 2.1+2.8(0.43((T90i- T70i)/20) +0.24)
T90 2.8+2.8(0.43((T95i- T80i)/15) +0.24)
T95 3.6+2.8(0.43((FBPi - T90i)/8) +0.24)
FBP 7.1

API 0.5

Vapor P. 0.01014(Vapor P.i+160)

As shown in Table 4.18, for mostof the parameters, GILS models have been found
as the bestmodel. When three refineries were compared, for almostall parameters, lowest
error values were found in samples whichbelongs to izmitrefinery. This can be explained
by the sample collection times. Measurements in izmit refinery have been performed
daily for three years, which is a year longer than other refineries. Since extending
sampling time results in more sample variation in data set, more robust models are
obtained in Izmit refinery samples than other refineries. Highest SEP values are observed
in IBP and FBP. This can be explained by reproducibility values of standard methods.
Reproducibility values of IBP and FBP are higher than other parameters hence these
models give the highest standard errors.

After developing multivariate calibration models for HSRN and LSRN samples
for each refinery, models were uploaded to each laboratory and performance of model
predictions has started to be observed. Predictions were made with new samples produced
in refineries daily. Developed model performances with blind unknown samples are
presented in the graphs below. For each sample group, two different graphs are presented.

Graphs on the left side represent the laboratory results for given parameters. Orange
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points represent reference values obtained from standard method while blue points

representmodel predictions. Graphs on the right side shows the difference between actual

and model prediction values. Red lines represent the reproducibility value of standard

method. Model performance of given parameters have been evaluated with

reproducibility value of standard methods.

Considering the multitude of graphics, the results are presentedunder the headings

in order to avoid confusion.

4.3.1.1. izmit Refinery — Sample Predictions

In Izmit refinery, predictions of developed multivariate calibration models for

HSRN and LSRN samples had been observed for 87 days and results are shown in Figure
4.29 for HSRN samples and in Figure 4.30 for LSRN samples.
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Figure 4.29. Model predictions of HSRN samples belongs to Izmit Refinery.
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Figure 4.29. Model predictions of HSRN samples belongs to Izmit Refinery (cont’d).
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Figure 4.30. Model predictions of LSRN samples belongs to izmit Refinery.
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Figure 4.30. Model predictions of LSRN samples belonging to Izmit Refinery (cont’d).

In HSRN sample predictions, except for a few samples, it was observed that the
difference between the laboratory result and the model estimates never exceeded the
laboratory reproducibility value, which is shown as a red line on the left side. When the
results are examined closely, it was observed that high erroneous results were obtained in
distillation temperature and API predictions on the same days which are day 43 and day
46. and unusual spectra, compared to other samples, was observed for both days which
indicated that a human error was made during the spectroscopic measurements.

When all parameters were examined in LSRN sample predictions, successful

predictions have been obtained for all 87 days.
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4.3.1.2. izmir Refinery —Sample Predictions

In izmir refinery, predictions of developed multivariate calibration models for
HSRN and LSRN samples had been observed for 76 days and results are shown in Figure
4.31 for HSRN samples and in Figure 4.32 for LSRN samples.
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Figure 4.31. Model predictions of HSRN samples belongs to Izmir Refinery.
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Figure 4.31. Model predictions of HSRN samples belongs to Izmir Refinery (cont’d).
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Figure 4.32. Model predictions of LSRN samples belongs to izmir Refinery.
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Figure 4.32. Model predictions of LSRN samples belongs to izmir Refinery (cont’d).

In HSRN sample predictions, except for final boiling point predictions, successful

predictions were obtained when difference between reference analysis and model

predictions compared to reproducibility value. However, in initial boiling point, it has

been observed that systematic errors are obtained, and the results always give positive or

negative errors. The model is not completely reliable because the errors do not come in a

normal distribution. When final boiling point predictions were observed, high error in

some days was observed. Considering high SEP values shown in Table 4.18 for izmir

HSRN multivariate calibration results, low prediction ability for this parameter can be

explained.

Similar to HSRN samples, predictions of FBP of LSRN samples also have higher

residuals than reproducibility values. Until day 54, reference values and predictions of

vapor pressure are notalways compatible with each other, and their difference is obtained
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more than the reproducibility value. This situation had been studied closely. First, sample
spectra were examined, and no significant difference was observed. It was expected since
if the wrong spectrum was taken that day, we should have seen high error values on other
days as well. Another possibility was that dynamic range of developed models did not
cover this range. When max and min values of vapor pressure in Table 4.1 8it can be seen
that reference values were obtained between these values. The other possibility is that
unsuccessful multivariate calibration models have been installed. The models were
revised by adding samples with high deviation, but these values still gave a high cross
validation error in the model. Lastly, laboratory reference analysis was check. Before
performing the vapor pressure analysis, the sample bottle needs to be cooled in cooling
cabinet for a few hours. It was noticed that on some days the analysis took place without
cooling the sample sufficiently. Starting from day 54, before performing laboratory
analysis, it was ensured that the sample bottle was cold and as can be seen in the last

graph in Figure 4.32, successful predictions had been obtained since then.

4.3.1.3. Kirikkale Refinery —Sample Predictions

In Kirikkale refinery, predictionsof developed multivariate calibration models for
HSRN and LSRN samples had been observed for 60 days and results are shown in Figure
4.33 for HSRN samples and in Figure 4.34 for LSRN samples.
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Figure 4.33. Model predictions of HSRN samples belongs to Kirikkale Refinery.

77



T10
o114
e 110
3
106
%102
< 8
= Reference + Prediction
94
N LR PP R D PSS DRSS PR
@@@@@@@@@@@@@@@@@@@@
122 T30
" 118 . e
[ ] e .
S 114 2 ., wy w " B°° PP s
= it . . . ey
S0 ! Tt gn : LU
]
;3105
102 = Reference + Prediction
98
NokoA & 8 @ o P AR R PRSP
B o B SENEY
0000@@@@@@@@@@@@@@@@
135
T50
p 130 e
L]
A . .
g 125 . PR L P . '
2 n. . (] LT 1 +s a &
S0 " DO JTa et wagnta SEan " ¥y
T 115 L
2 5
<10 = Reference + Prediction
106
S O R S S S I U S
@@& P P P P P P P P P P P P P P P P P
144
] R T70
9140 ] " . e
- . L] b.l .
groo wnfooy D : Lu,
= " L] " PN T an "
S .s . . LT
Ema *
<124 ;
» Reference + Pradiction
120

I I I I L I B i A I B I
@@@@@@@@@@@@@@@@@@@@

165

160

-

Actual Values, °C

140
= Reference * Prediction -

G R
o o

135
S D 2 2 A P P e ok A
mmrj\mé\é\

A
P RO\
OT T TGP P P P P P 0P P B B P P P

<
172 T95 .

='1so .l.! gt . . . o=
>155 an® LI . y + ot ny PRy oo
z . CRRAFIRS | B
Tis2 . .
B - .
144 ' Reference « Prediction
140
MR A S DL P o AR R R R g H P
PP -
000@@@@@@@@@@@@&@@@@

205
FBP
195 Lot

5 185

. .

3
a

" (1] v
L e LI
Tat
]

Actual Values, °C
o @
&

145
135

=Reference + Prediction

D e b P

A caic
P o o AT OO
R e s e e e e e e s e s e e e

@@.9&«?&

20.0
15.0
10.0
5.0
0.0
-5.0
-10.0
-15.0
-20.0

Residuals

T10

SRR I -] LA w P RSP

®
@@@@@@@@@@@@@@@@@@@@

20.0
15.0
10.0
5.0
0.0
-5.0
-10.0
-15.0
-20.0

Residuals

Qrs‘ 00‘\ o

20.0
15.0
10.0
5.0
0.0
-5.0
-10.0
-15.0
-20.0

Residuals

Nk A8 oV
@@@@@@@@@@@@@@@@@@@@

-5.0
-10.0
-15.0
-20.0

Residuals
o
o

T30

RS I L I S A S I R
@@@@@@@@@@@@@@@@@

T50

S R I L oA R © & &

T70

0 et iesvensvaa Ly

® U N LI

ANk A D8 o
@@@@@@@@@@@@@@@@@@@@

20.0

15.0
00
®5.0
=]
T00

T90

8,% sts%;4 & 2

s, *sa.e

R N I S S A S R S

@@@@@@@@@@@@@@@@@@@@

200
15.0
100
5.0
0.0
-5.0

Residuals

o
=]

-15.0
-20.0

T95

PP L LN sseves *%oel

op A LR &» &

2 2 q)

Nk AR b
@@@@@@@@@@@@@@@@@@@@

15.0

5.0

FBP

-5.0

Residuals

-15.0

-25.0

o A

L I

» LR
@@@@@@@@@@@@@@@@@@@@

Figure 4.33. Model predictions of HSRN samples belongs to Kirikkale Refinery (cont’d).
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Figure 4.34. Model predictions of LSRN samples belongs to Kirikkale Refinery.
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Figure 4.34. Model predictions of LSRN samples belongs to Kirikkale Refinery (cont’d)

In HSRN samples, successful predictions had been obtained until day 36. Except

for T5 and API, residuals between reference values and predictions were started to

increase day by day. While the IBP model started to give result in lower values, the other
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parameter model results were systematically reported always higher than the reference
values. When the same trend is observed in LSRN samples, it was assumed that the
product composition has changed due to different crude oil is started to be processed.
However, planning instructions were reviewed, and it was found that no new crude oil
was processed at the refinery. Sample spectra was also observed and PCA analysis was
performed. It was observed that sample spectra of those days were grouped in a different
place on the PCA score graph. This proved that these sample spectra were
compositionally different. Reason of compositional change was investigated, and it was
realized that the solvent, which is used in cell cleaning between sample measurements,
has run out and a new one has not been placed. It is also known that, beside naphtha
samples, also spectra of kerosenesamplesare collected in the same FT-NIR spectroscopy.
Since the cell cannot be cleaned sufficiently, the kerosene sample remains inside, and the
model results report high values because the kerosene sample is a heavier product than
naphtha. when the solvent bottle is replaced with a new one, successful predictions began
to be obtained again.

As a result of successful model predictions, laboratory reference analyzes were
reduced in each refinery and reporting with model results began. Physical properties of
HSRN and LSRN samples which are produced daily in crude distillation units are now

reported using developed multivariate calibration models.
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CHAPTER 5

CONCLUSION

In this thesis, a new methodology to determine physical and chemical properties
of petroleum products obtained from actual refining process crude distillation units using
different spectroscopic methods along with chemometrics were developed.

Three different spectral analyses were conducted and developed multivariate
calibration models were compared for heavy and light diesel samples, separately. Having
a more complex chemical compositionresulted in successful calibration models thathave
high predictive ability for most of the quality parameters of UV-Vis spectroscopy for
heavy diesel samples. However, when same comparison was performed with light diesel
samples, vibrational spectroscopy, FT-NIR and FTIR-ATR, was found to have low
prediction errors. In both cases, GILS algorithm showed better predictive ability
compared to PLS algorithm for low distillation temperatures and FT-NIR spectral data
were selected to develop API gravity.

Fluorescence spectroscopyhad beenused in two different modes for measurement
of light diesel samples obtained from crude distillation unit. It was observed that
fluorescence intensity of samples with lower API grade show high fluorescence intensity
in both measurement mode. Since there is no information about chemical composition of
samples, it can be only assumed that samples with low API value have more fluorescent
aromatic compounds. Synchronous fluorescence spectra showed more sharped and
detailed information of light diesel samples. Multivariate calibration results were both
compared as well as fluorescence measurement modes. PLS multivariate calibration
results forboth spectral analysis modes have resulted in lower standard error o f prediction
for most of the parameters. It was also concluded that better calibration models obtained
from synchronous fluorescence spectra.

Studies that have been conducted with heavy straight run naphtha (HSRN) and
light straight run naphtha (LSRN) samples obtained from three different crudedistillation
units belonging to three different refineries which are Izmit Refinery, Izmir Refinery and

Kirikkale Refinery have been also presented. Spectroscopic measurements and laboratory
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analysis were carried out in refineries where naphtha products are produced. A total of
six different data sets were obtained from two different naphtha and 3 different refineries.
Two different multivariate calibration approached were applied to EMSC corrected
FT-NIR spectra of six different data set and best model for each parameter was chosen
according to lower SECV and SEP values. Each developed model was used to predict
features of new samples produced in refineries. These predictions, made with blind
unknown samples, were followed daily at each refinery and prediction performance of
multivariate calibration models were observed. In every refinery, successful model
predictions were obtained for HSRN and LSRN samples.

The successful results obtained from the developed models were found suitable
foruse as an alternative method to routine analyzes in Tiipras refinery laboratories. While
reporting with model results, it is important to monitor whether there is a significant
change in the type of crude oil processed in the crude oil distillation unit, the dynamic
ranges of the parameters and the operational conditions. Important operational changes
may cause the model prediction success to decrease, the models should be revised and

the change in the product should be introduced to the new models.
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