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ABSTRACT 

 

GEOMETRIC PROPERTIES OF COUPLER-CURVE EQUATION OF 

PLANAR SLIDER-CRANK AND FOUR-BAR LINKAGES 

 

This thesis study focuses on coupler-curve of planar slider-crank and four-bar 

mechanisms. The geometric properties of the coupler-curve equations are investigated. 

The coupler-curve equations of both slider-crank and four bar mechanisms are shown to 

consist of quadratic and linear components. The quadratic components that appear in the 

coupler-curve equations are circles which determine the area the coupler-curve may be 

located. The path generation problem of the slider-crank mechanism is another aspect of 

this thesis. A limited solution to the path generation problem is introduced and tested 

numerically. A method that is a combination of the discovered geometric properties of 

the coupler-curve and numerical approximation methods is introduced. The solution 

approach works for the task of fitting a coupler-curve on a cluster of points and five 

precision points problem. 
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ÖZET 

 

DÜZLEMSEL KRANK-BİYEL VE DÖRT ÇUBUK 

MEKANİZMALARININ BİYEL EĞRİLERİNİN GEOMETRİK 

ÖZELLİKLERİ 

 

Bu tez çalışması, düzlemsel dört-çubuk ve krank-biyel mekanizmalarının biyel 

eğrilerine odaklanmaktadır. Biyel eğrilerinin geometrik özellikleri incelenmiştir. Hem 

krank-biyel hem de dört çubuk mekanizmalarının biyel eğrisi denklemlerinin ikinci 

derece ve doğrusal bileşenlerden oluştuğu gösterilmiştir. Biyel eğrisi denklemlerinde 

görülen ikinci derece bileşenler, biyel eğrisinin bulunabileceği alanın sınırlarını çizen 

çember ifadeleridir. Krank-biyel mekanizmasının yörünge sentezi problemi bu tezin bir 

diğer çalışma konusudur. Yörünge sentezi problemine kısıtlı bir çözüm sunulmuş ve 

sayısal olarak sınanmıştır. Biyel eğrisi denkleminin keşfedilen geometrik özellikleriyle 

sayısal yakınsama yöntemlerinin birleşimi olan bir yöntem sunulmuştur. Çözüm 

yaklaşımı, bir nokta bulutuna biyel eğrisi uydurmaya ve 5 hassasiyet noktası problemine 

çözüm sunmaktadır. 
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CHAPTER 1 

 

INTRODUCTION 

 

Kinematics is the field of theoretical mechanics that focuses on motion geometry 

without relating the motion to any aspect that effects the motion (IFToMM dictionary, 

2014). A mechanism is defined as a set of rigid bodies restricted to move together such 

that motion of one or more rigid bodies or forces and moments on them is transferred to 

other rigid bodies (IFToMM dictionary, 2014). Kinematic analysis is the analysis of the 

motion of a mechanism by means of kinematics only. Kinematic synthesis deals with 

systematic design of mechanisms when the degree-of-freedom of the mechanism is lower 

than the given task-space dimension. The procedure of kinematic synthesis is divided in 

two steps: 1) structural (type and number) synthesis, and 2) dimensional synthesis. Type 

synthesis is the part where the general structure of the mechanism is chosen including the 

type of links and joints that is suitable for the task. Then the number of links and joints 

for each type determined in number synthesis is set to obtain the required workspace that 

meets the demands of the task. Finally, the dimensional synthesis is to determine link 

lengths, inner angles etc. for the mechanism to perform the task (Hartenberg and Denavit, 

1964). 

The coupler link is defined as the link of the mechanism that has no common joint 

with the coordinate frame (IFTOMM Dictionary, 2014, Structure of Machines and 

Mechanisms). The coupler link may also be defined theoretically as a floating plane on 

the coordinate frame (Bottema and Roth, 1979). The trajectory of a chosen point on the 

coupler plane is called the coupler curve and the specified point is called coupler point. 

This thesis study focuses on the coupler-point path equation of planar slider-crank and 4-

bar mechanisms. Next section presents a review of the existing studies on the subject. 

 

1.1. Coupler Curve Analysis in the Literature 

 

Guidance of points or drawing curves via mechanisms have drawn attention of 

many researchers since ancient times. Archimedes (287-212 B.C.) used a simple double-

slider mechanism as an ellipsograph to draw ellipses (Cundy and Rollett, 1961). Watt 
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(1784) mentions that he is prouder of his invention of the approximate straight line tracing 

4-bar linkage than any other mechanical invention he has ever made (Fergusson, 1962). 

Vincent (1836) was the first to study the general 4-bar coupler curve equation (Verstraten, 

2012). In the second half of the 19th century generation of approximate straight lines and 

other curves has attracted the interest of many famous mathematicians, such as Sylvester, 

Chebyshev, Cayley, Kempe, Hart and Roberts. Morley (1919), Koetsier (1983) and 

Verstraten (2012) shed light on the developments in those years. 

Roberts (1869) worked on linkages as tools to draw quartic and cubic curves, 

where one of the linkages he works on describes a slider-crank linkage and the coupler 

curve is a circular quartic with two double points1. He mentions that a 4-bar coupler curve 

has a general degree six, but if it has kite proportions, the curve degenerates to a quartic 

curve. Then, Roberts (1871) worked on point paths of a moving plane where the path, 

which he calls as point directrices, of two of the points on the plane are known. In 

particular, he works on cases where both of the directrices are circles (corresponds to a 

4-bar linkage), one directrix is circle, the other is a straight line (corresponds to a slider-

crank linkage) and both directrices are straight lines (corresponds to a double-slider 

linkage). In case of a 4-bar linkage, he mentions that the coupler curve is a sextic (a sixth 

degree polynomial curve), has circular points for triple points and has three other finite 

double points (trinodal). The curve is said to be tricircular, because the sixth order terms 

are (x2 + y2)3, and the fifth and fourth order terms have the factors (x2 + y2)2 and (x2 + y2), 

respectively (Bottema and Roth, 1979). 

Later, Roberts (1875) focused on the 4-bar coupler curve and proved the famous 

theorem that there are three distinct 4-bar linkages (cognate linkages) which can exactly 

generate the same coupler path. Each pair of cognate linkages share a common fixed 

pivot, whereas all three coupler triangles are similar with each other, as well as the triangle 

formed by the three fixed pivots. The fixed pivots turn out to be singular foci2, and the 

circle through them is called the circle of singular foci (CSF). Roberts also showed that 

the line segment connecting the two fixed pivots of a 4-bar linkage subtends the same 

 
1 An algebraic curve in xy-plane is said to be circular when the highest order terms of its polynomial 

is divisible by x2 + y2. Circularity of a circular curve is the number of times the curve passes through each 

isotropic point. The two roots x + iy and x – iy are said to be the circular points at infinity (or cyclic points, 

or isotropic points). A double point (or a node) of a curve is a point where the curve intersects itself. 
2 A focus of an algebraic curve is a point, where both of the lines connecting the the focus to the 

isotropic points are tangent to the curve. A focus is said to be singular when the isotropic points are on the 

curve, i.e. the curve is circular (Cayley, 1876a; Bottema and Roth, 1979). 
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angle at the double points (or nodes) of the coupler curve as the angle subtended at the 

third fixed pivot, hence all nodes are on CSF. 

Cayley (1876a) provided a simple way to construct the cognates and proved that 

the sum of the angular positions of the three singular foci is equal to the sum of the angular 

positions of the three nodes of the coupler curve. Also he shows that the focal triangle 

and the nodal triangle are circumscribed to a parabola with its focus on the circle of 

singular foci (See fig. 3 of (Blechschmidt and Uicker, 1986) for a nice representation). 

He presented the conditions for which the nodes are coincident with the singular foci, and 

one, two or all three nodes are a cusp. Cayley reported that the equation of a tricircular 

trinodal sextic curve contains 12 constants, whereas when the three nodes lie upon a given 

curve, the number of constants drop down to 9 (which is the number of parameters to 

describe a 4-bar linkage with a coupler triangle: the four coordinates of the fixed pivots, 

the two lengths of the connecting links and the three side lengths of the coupler triangle). 

Cayley provided a similar representation of the coupler curve to that of Roberts (1875): 

 

(QR – QR)2 + (RP – RP)2 = (PQ – PQ)2 (1) 

or 

 

(R2 – P2 – Q2)(R2 – P2 – Q2) = (RR – PP – QQ)2 (2) 

 

where R = 0, R = 0 and PQ – PQ = 0 are circles, P and Q are lines which meet at one 

of the fixed pivots and P and Q are lines which meet at the other fixed pivot. Cayley 

noted that QR – QR = 0 and RP – RP = 0 are circular cubics, each pass through a fixed 

pivot and that the nodes are the common intersections of QR – QR = 0, RP – RP = 0 

and PQ – PQ = 0. Cayley presents an expanded form of Eq. (1) as 

 

( ) ( )

( )

( )

( )

( )

( )

2 22 2 2 2 2 2

2 2 2 2

2
22 2 2 2 2 22

2 2 2 2 2 22 2 2

x y x y x m y x m y

d a d a f h f h

x y m b d fx m y
mpy

b a f a h bb d h

      + + − + − +
      
   − − − − − + − −          

      + + +− + 
= + −          + − − − − −+ − −        

 

 

(3) 
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where a, b, d, f, h, m are link lengths of the 4-bar linkage as shown in Fig. 1 and 

2 2 2 2 2 2 4 4 42 2 2= + + − − −p d f a f b d b d f . 

 

 

Figure 1. 4-bar linkage A0A1B1B0 with coupler point C 

 

The fully expanded form of Eq. (3) results in a polynomial equation with 15 

coefficients. Of course, the 15 coefficients cannot be independent, since the 4-bar linkage 

comprises 9 independent parameters. Cayley (1876b) also presented an alternative form 

of the 4-bar coupler curve. 

Sylvester (1875a, b) invented the plagiograph (or the skew pantigraph) which can 

be used to redraw a curve with a certain scale in a different orientation of any desired 

angle, but also to divide an angle into any number of equal parts. Hart (1875), Roberts 

(1875) and Kempe (1877) made use of the plagiograph in their respective works. Kempe 

(1876) proved that any algebraic curve can be generated by a linkage. The method 

proposed to generate the linkage has four elements: reversor, multiplicator, additor and 

translator. These elements are section of linkages and the method put them together to 

achieve the required trajectory. Kempe concludes that the method would not be practical 

as the linkage will be too complicated to trace the task trajectory perfectly. Kempe (1877) 

also wrote a book about linkages invented to draw approximate and exact straight lines 

(Watt, R. Roberts, Chebyshev, Peucilever-Lipkin, Hart linkages). 

The interest on the analysis of the 4-bar coupler curve equation by mathematicians 

continued with occasionally published papers (Darboux 1879, Hippisley, 1917; Bennett, 

1919; Morley, 1920, 1924). However, the applications arose attention of mechanical 

engineers. Hrones and Nelson (1951) provided a large atlas of 4-bar coupler curves, where 

every page presents different coupler curves of a 4-bar linkage with a specific link length 
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ratio of crank, coupler and rocker links. Artobolevskii (1964) presented a comprehensive 

book on mechanisms which can be used to generate well known planar curves. 

The aforementioned studies are very useful for a designer to design or select a 

linkage via analysis of the coupler curve. For further discussion on how the coupler-curve 

properties can be used for path generation synthesis, first the 4-bar cognate linkages are 

examined in the next subsection.  

 

1.1.1. Cognate Linkages 

 

The proof of the triple generation of the 4-bar coupler-curve is available in the 

literature in several publications (Cayley, 1876a; Hart, 1882; Schmid, 1950; De Jonge, 

1960; Verstraten, 2012). The theorem is mentioned as Roberts-Chebychev Theorem. 

Roberts and Chebychev published their work in very close dates and obtained the same 

result via completely different ways (Hartenberg and Denavit, 1964).   

 

 

Figure 2. 4-bar linkage cognates 

 

The cognates of the 4-bar mechanism are shown in Figure 2. First, the method to 

obtain the cognates is explained and then the proof of the third fixed pivot is given in this 

section. 

Starting from the mechanism 0 1 1 0A A B B  with the coupler triangle 1 1ACB , first two 

parallelograms are formed: 0 1 2A ACA  and 0 1 2B B CB . Then, some link lengths are equal: 

0 1 2A A A C a= = , 0 1 2B B B C h= = , 0 2 1A A AC d= =  and 0 2 1B B BC f= = . Next, 
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two triangles, both similar to the coupler triangle 1 1ACB  are formed as 2 1A D C  and 2 2CD B

, with respective order of corners. In case b ≠ a or b ≠ h, the newly formed triangles have 

their side lengths as: 2 1 /A D ad b= , 1 /DC af b= , 2 /CD dh b=  and 2 2 /D B fh b= . 

Finally, one more parallelogram is formed as 1 2 0DCD D . The point D0 is fixed under these 

conditions and the triangle 0 0 0A D B  is similar to the coupler triangle. The proof is as 

follows: 

Forming the loop closure equations: 
0 1 1 1 1 0 0 0A A AB B B A B+ + = Let g = d/b. Then, 

0 2 1 1 1

= = iA A AC ge A B , 
2 1 0 1

= iA D ge A A  and 
2 1 0 1 0

= = iCD D D ge B B , where ei 

represents rotation by . Adding the vectors to obtain position vector of D0:

0 0 1 1 0 1 1 0 0 0

   = + + =i i i iA D ge A B ge A A ge B B ge A B , which is ige  times the loop 

closure equation. 
0 0 0 0

= iA D ge A B  proves by side-angle-side similarity that the 0 0 0A D B  

triangle is similar to the coupler triangle.  

The cognate linkages are formed with specific link length ratios and some links 

being equal in length. The general degree of freedom of the linkage in Figure 2 can be 

calculated as -1 although the linkage still moves. 

There are three initial moving links in the mechanism to obtain the cognates. The 

remaining links move with the same speed with these three moving links. The binary link 

0 1A A  has the same angular speed with the 2 1A D C  ternary link due to parallelogram 

0 1 2A ACA  and the ternary link has the same angular speed with the binary link 2 0D D  due 

to parallelogram 1 0 2CD D D . Therefore, the three links rotate at the same speed and are 

shown with full lines. Same is valid for the binary link 0 1B B , ternary link 2 2CD B  and 

binary link 1 0D D  and they are shown with dash dotted lines. Finally, same angular speed 

is valid for ternary link 1 1ACB  and binary links 0 2A A  and 0 2B B , all are shown with dashed 

lines. 

If one of the fixed pivots of a 4-bar linkage is taken to infinity, a slider-crank 

linkage is obtained. A slider-crank linkage has two cognates as shown in Figure 7 in 

Chapter 2. 
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1.2. Path Generation Problem in the Literature 

 

The types of kinematic synthesis are based on the type of the task and listed as: 

motion generation, function generation and path generation (Sandor and Erdman, 1984). 

Motion generation is related to moving a rigid body from one position to another. 

Function generation problem is relating a joint variable to another, usually input and 

output joints at displacement, velocity, or acceleration level. Path generation is the type 

of synthesis problem that focuses on the trajectory of a point on the coupler link. 

Nolle (1974a, b), Lee and Russel (2018) provide a detailed review of the path 

generation synthesis methods in the literature. First examples of coupler-curve synthesis 

or path generation are of James Watt and John Fitch (Ananthasuresh and Kota, 1993). 

Watt used coupler-curve for the guidance requirements of his steam engine in 1782. Fitch 

designed crank driven paddles at the stern of a boat in 1788.  

Before computers were actively implemented in engineering calculations, 

graphical methods were dominant in path generation problems. Hrones and Nelson (1951) 

published an atlas of 4-bar coupler-curves. Each page in the atlas contained a mechanism 

with specified link length ratios and the coupler link is taken as a line segment, i.e., the 

coupler point is collinear with and in-between the joints of the coupler Several coupler 

points are equally distributed on the coupler line. Then, several coupler curves are drawn 

for each mechanism. The curves in the atlas were made of line segments that connect the 

corresponding coupler point positions for each 5 degrees of crank rotation. As the purpose 

was to find a curve shape like the one required by the task, scalability of 4-bar mechanism 

worked perfectly. Any mechanism with the same set of link length ratios would generate 

a scaled version of the one in the atlas but the shape looks the same. The curves in the 

atlas not only gave an idea about the shape of the path to be achieved by given link length 

ratios but also the timing of the coupler point on the curve for constant crank speed. 

Hain (1967) explains several types of path generation problems. One or more 

well-known geometric shapes (like straight line, circular arc, ellipse, etc.) may partially 

form the path to be followed. Some number of points may be given and desired path is to 

be followed with a prescribed timing. A double point may be defined at a specific position 

or for corresponding crank positions. More points than number of design parameters may 

be given and a curve that approximately fits these design points can be sought. The 
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common solution at that time was to pick a suitable curve from the atlas as a good initial 

guess and try to optimize the design parameters. 

Currently, the most commonly used methods for path generation synthesis of 

mechanisms are based on independent synthesis of the two dyads connecting the coupler 

point to the fixed pivots (Sandor and Erdman, 1984). Sandor and Erdman’s book contains 

graphical solutions for path generation for three positions (with or without prescribed 

timing) and four positions without prescribed timing. The book also contains an analytical 

solution for 4-bar path generation for five precision points. 

Also path generation for finite line positions is also possible (Kiper & Söylemez, 

2019). The problem can be analytically solved for up to 5 homologous positions for a line 

attached to the coupler link of a 4-bar mechanism. 

Some of the recent studies focus on the coupler-curve equation rather than the 

mechanism itself. The mechanisms studied mostly for path generation synthesis are 

planar 4-link mechanisms. 4-bar mechanism coupler-curve equation has degree six, 

whereas the slider-crank mechanism coupler-curve equation has degree four. Simplest 

coupler-curve and coupler-curve equation among four-link mechanisms belong to 

double-slider mechanism. The coupler-curve of a double-slider mechanism requires 7 

design parameters to be fully described (Figure 3). 

 

 

Figure 3. Double-slider mechanism design parameters (Kiper et al., 2016) 
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The double-slider mechanism has a quadratic coupler-curve equation which 

corresponds to an ellipse: 

 

2 2  0AX BXY CY DX EY F+ + + + + =  (4) 

 

where 

 

( )
( ) ( )

( )
( )

( ) ( )

( )

2 2

sin sin sin cos

sin sin
A p q h p q p

     

 

   + +
= + + + + −   

   
 

(5) 

 

( )
( ) ( )

( ) ( )

( )

( )

2

2

sin 2cos sin
2

sin sin cos 2

hp q
B p q

p

    

   

 + + + +
= − + +  

− +    

 (6) 

 

( )
( ) ( )

( )
( )

( ) ( )

( )

2 2

cos sin cos cos

sin sin
C p q p p q h

     

 

   + +
= + + + + +   

   
 (7) 

 

0 02D AX BY= − −  (8) 

 

0 02E BX CY= − −  (9) 

 

( ) ( ) ( )

( )

2

2 2 2 2

0 0 0 0

sin cos

sin

p q p h
F AX BX Y CY p h

 



 + −
= + + − + − 

 
 (10) 

 

The first design problem is fitting an ellipse to a given set of data points and the 

solution to this problem exists in the literature (Fitzgibbon et al., 1999). Second part is to 

find the link lengths of the mechanism to generate the given ellipse equation and this part 

is recently addressed by Kiper et al. (2016). In his study, Kiper et al. point out that the 

coupler-curve equation for double-slider mechanism has 5 independent coefficients and 

that there are infinitely many double-slider linkages that can trace a given ellipse. The 

same path may be generated by any double-slider mechanism with a set of link 

dimensions that can be obtained by choosing two of the linkage parameters arbitrarily. 
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Setting the two sliding axes perpendicular to each other and picking the coupler point on 

the straight line between two revolute joints of the coupler link, the problem is reduced 

to Archimedes trammel. 

However, nature of the coupler-curve equation is not that simple for slider-crank 

and 4-bar mechanisms. The slider-crank mechanism has a quartic equation for coupler-

curve while the 4-bar has a sextic curve (Figure 4). 

 

 

Figure 4. 4-bar mechanism design parameters (Bai & Angeles, 2015) 

 

Bai and Angeles (2015) present the 4-bar coupler-curve equation in the following 

form: 

 

2 2 3 2 2 2 2 2 2 2

1 2 3 4 5

3 2 2 3 2 2

6 7 8 9 10 11 12 13 14 15

( ) ( )( ) ( )( )

0

x y k x k y x y k x k xy k y x y

k x k x y k xy k y k x k xy k y k x k y k

+ + + + + + + +

+ + + + + + + + + + =
 (11) 

 

The slider-crank mechanism has 8 parameters for coupler-curve design and the 4-

bar has 9 parameters. Both mechanisms have been studied in the literature by several 

researchers but still there is no fully analytical solution for the path generation synthesis 

of the slider-crank mechanism for given 8 points of the coupler-curve or for 4-bar 

mechanism for given 9 points of the coupler-curve.  

 

The general form of a planar algebraic curve is given as 
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( ) ,, 0
, 0

n i j

i ji j
f x y A x y

=
= =  (12) 

 

where n is the degree of the curve. In homogeneous coordinates the general 

equation of a plane algebraic curve becomes ( )

,, 0
( , , ) 0

n i j n i j

i ji j
f x y z A x y z − −

=
= = . Here, 

z is the homogeneous coordinate and only two of x, y and z are independent. The 

coordinates of a point in real space is given by (x/z, y/z, 1) where z ≠ 0. For points at 

infinity, z = 0. Circular points, (1, i, 0) and (1, –i, 0) are complex points at infinity and 

called circular points. 

Bleschmidt and Uicker (1986) proposed a method for 4-bar path generation which 

requires three double points to be real and known, based on Roberts’s theorem. If the two 

foci are known, the third can be determined. That is, before determining the mechanism 

and its cognates, one can determine the third fixed pivot for the cognates. The sextic curve 

that is obtained by relations of double points and circle of singular foci is called g(x, y) 

and this sextic equation is combined with the equation of the circle of singular foci to 

obtain the coupler-curve equation. The combination is represented as 

 

2( , ) ( , ) ( ( , )) 0f x y g x y h x y= + =  (13) 

 

where λ is determined by an arbitrary point that the curve passes through. Letting 

(x, y) be the known point,  

 

 
2

( , ) '/ )' ,' ( '= −g x y h x y  (14) 

 

The method to find the double points and the foci is a fifth order rational 

transformation. Two polynomials are determined from this transformation and 25 

intersections of them contain 8 circular points, 10 common ordinary points and 7 potential 

double points. Next, 3 double points, without knowing which the right ones are, need to 

be determined (completely based on trial and error) among these 7 potential ones. Finally, 

the link dimensions are determined in two steps: “exhaustive search”, as mentioned in 

related paper, is determining a proper set of initial guesses for linkage parameters and 

“gradient search” to optimize them. In conclusion, they present an algorithm to find the 
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4-bar coupler-curve equation, if the three nodes, the three singular foci and one ordinary 

point are known. This method can be used to synthesize a 4-bar linkage for given 4 

precision points, 3 of which shall be selected as nodes, and the fixed pivot locations are 

selected. 

Ananthasuresh and Kota (1993) expanded Bleschmidt and Uicker’s method, 

where the form of 4-bar coupler-curve equation is given in a bit different way, still with 

15 coefficients: 

 

            

6 6 4 2 2 4 5 4 3 2 5 4 2 3

1 2 3

3 3 4 2 2 4 2 2 3 3

4 5 6 7 8

2 2 2 2

9 10 11 12 13 14 15 0

( 3 3 ) ( 2 ) ( 2 )

( ) ( ) ( )

0

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + + =

C x y x y x y C x xy x y C y x y x y

C x y xy C x x y C y x y C x C y

C x y C xy C x C y C xy C x C y C

 (15) 

 

The proposed method is to fit the equation of coupler-curve to 15 data points, 

solving set of linear equations for coefficients Ci’s and then to check the curve that the 

equation describes for obvious defects. First mentioned defect is the branching defect. A 

curve having only one loop is a non-Grashoff mechanism. The coupler point follows the 

path described by the equation partially in one branch (configuration of the mechanism) 

and partially in the other. Two partial coverage completely follows the path. The 

branching defect is not an issue for the paths with a single loop. A Grashoff mechanism 

has two disconnected real loops and each loop correspond to one of the configurations of 

the mechanism. The designer must check the loop for having the task points. If all task 

points are in one loop, then neglecting the other, design may be acceptable. If two loops 

both cover some task points, then the mechanism cannot cover all task points 

continuously. This is one type of branching defect. Having more than two disconnected 

loops on the curve (as the equation allows but the coupler-curve cannot have) is another 

type of branching defect. Having any type of these defects, curve must be re-created by 

changing the coefficients via approximate curve fitting methods or simply re-arranging 

the task points suitable to the task. 

After the coupler-curve equation is determined, linkage parameters must be 

specified. The proposed method for this is to overcome the over-determined system of 15 

equations and 9 unknowns by numerical error minimization. The coefficients are 

functions of linkage parameters. The equations to solve for linkage parameters are in the 

form fi(x, y) – Ci(â) = 0 where â is the set of linkage parameters, Ci(â) is the coefficient 
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formulation of the related term and fi(x, y) is the term that coefficient is multiplied with 

in the coupler-curve equation. As the problem is over-determined, the equations will not 

result in zero on the right-hand side but leave some error. Sum of the square of the errors 

must be minimized to achieve the linkage parameters. 

Via graphical or numerical optimization methods some approximate solutions of 

the coupler-curve path generation problem were proposed (Cabrera et al., 2002; Bulatović 

and Djordjevic, 2004; Sancibrian et al., 2004). 

Bai (2015) and Bai and Angeles (2015) addressed the over-determined problem 

by showing that the coefficients of the coupler-curve equation of the 4-bar mechanism 

are related with each other. The work starts with the parameters defined in Figure 4, 

avoiding all constant angles to work on simpler equations. The resulting equation is in 

the form of equation (8), which is the same form as Bleschmidt and Uicker’s (1986). The 

most important note of this work is that it proves the coupler-curve equation is not over-

determined. Although the relation between the coefficients of the coupler-curve equation 

is determined, the solution procedure is so complicated that Bai and Angeles (2015) 

proposed a trial-error based algorithm for parameter optimisation. The length of the 

coupler link, i.e. the constant distance between two moving pivots (l3 in Figure 4), is used 

to define a new parameter r = l3/2. This parameter is a normalization parameter, originally 

the coefficient of the tri-circularity term. Therefore, while working with the normalized 

equation, it is useful to pick the r parameter first. Three normalized coefficients, k1, k2 

and k4 are already independent of l2 and l4. Three pair of coefficients, when subtracted 

from one another, drops the terms with l2 and l4: k3 – k5, k6 – k8 and k7 – k9. Therefore, 6 

equations are obtained for the remaining 6 unknowns. These equations can be solved 

numerically. Then, l2 and l4 are solved linearly from k5 and k6. Finally, remaining 

coefficients of the coupler-curve equation are tested and root mean square (rms) values 

for k10 to k15 are calculated. This procedure is repeated for a range of r values and error 

versus r value is visualized in a plot. The regions of the r value having least error are 

picked to work with higher precision of r in next iteration of the procedure. Before 

explaining the iterative solution process, Bai and Angeles (2015) determine all the 

equations for the proof of determinacy of the coupler-curve equation. All but one equation 

is used in the procedure. The only equation that is not used is that coefficients k10 to k15 

are all linear in 
4

2l , 
2 2

2 4l l , 
4

4l , 
2

2l  and 
2

4l . The equations for these coefficients may be 

rewritten in the form: 



14 

 

 

4 2 2 4 2 2

( ,1) 2 ( ,2) 2 4 ( ,3) 4 ( ,4) 2 ( ,5) 4 ( ,6) 0i i i i i it l t l l t l t l t l t+ + + + + =  for 1, ,6i =  (16) 

 

This equation has only two unknowns. Setting all 6 equations in matrix form, the 

coefficient matrix T of all ti values is obtained. As the number of equations are more than 

the number of unknowns for this system of equations, the determinant of this matrix must 

be zero. This is the last equation for the proof of determinacy. However, as the 

coefficients of the coupler-curve equation from k10 to k15 are already complicated and 

lengthy, setting the determinant of the T matrix equal to zero brings an equation very 

difficult to deal with. Therefore, Bai and Angeles (2015) proposed an iterative method 

depending on the r value. 

Bai’s work is extended to a more analytical approach by Bai et al. (2020) and Wu 

et al. (2021) where the coupler-curve equation for the 4-bar mechanism is obtained with 

different coefficients and hence the pre-assumed parameter was no longer necessary. The 

first step in the solution procedure solves 4 out of 9 design parameters in terms of equation 

coefficients. Then, two more parameters are solved not only in terms of equation 

coefficients but also an unknown design parameter. Next, last three parameters are solved 

via equation coefficients. Finally, the two terms solved in terms of the unknown parameter 

are determined. 

Finally, Bai (2021) presented a new determined system of coefficients that has six 

unknowns only and a univariate degree 9 polynomial equation that is derived from the 

newly formulated determined system. Angeles and Bai (2022) recently summarized their 

findings in a book. 

 

 

1.3. Aim of the Thesis 

 

Bai’s methods offer a solution for known coupler-curve equations. However, 

fitting the equation of the coupler-curve for a given number of design points remains 

unsolved in the literature. In order to achieve this, one first needs to understand the over-

constraint conditions for the coupler-curve equations. This is the first problem addressed 

in Chapters 2 and 3. 
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The coupler-curve equation of the 4-bar mechanism is expressed in polynomial 

form in several studies with different coefficients. The first purpose of this study is to 

investigate the geometric properties of the coupler-curve through its equation. Slider-

crank mechanism is a degenerate case of the 4-bar mechanism, and the double-slider 

mechanism is the degenerate case of the slider-crank mechanism. The double-slider 

mechanism is already worked out by Kiper et.al. (2016). The slider-crank and 4-bar 

mechanism coupler-curves are focus of this study. Ünel proved that any algebraic curve 

with an even degree (degree 2, 4, 6, etc.) may be represented in a form of combination of 

quadratic expressions (Ünel & Wolovich, 1999). Although coupler-curve equations are 

over-constrained, the equations may still be expressed in terms of circles, ellipses or 

maybe even lines. The quadratic and linear components of the coupler-curve equations 

provide solid geometrical properties of the linkages. The location and size of these 

components, as well as the distances between them define some geometric invariants 

(under coordinate transformation) of the coupler-curves. 

When the geometric properties of coupler-curve equations are understood, a path 

generation method can be developed. This is the second problem addressed in this thesis 

and some methods are proposed in Chapter 4.  
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CHAPTER 2 

 

SLIDER-CRANK COUPLER-CURVE EQUATION 

 

A planar slider-crank mechanism can be considered as a degenerate case of a 

planar 4-bar mechanism, where one of the link lengths becomes infinitely large. The 

sextic coupler-curve-equation of the 4-bar degenerates to a quartic equation for the slider-

crank mechanism. 

This Chapter investigates the slider-crank mechanism coupler-curve equation and 

presents some geometric properties of the coupler-curve. The coupler-curve equation may 

be expressed in many different forms, but the one best serves the purpose of the study is 

either a polynomial form with desirable coefficients or the form in which the fourth order 

equation is expressed in terms of simpler geometric components such as ellipses, circles 

and lines. Section 2.1 presents the derivation of the form in simpler components and the 

Section 2.2 presents the derivation of the polynomial form. 

 

2.1. Geometric Components of Slider-Crank Coupler-curve Equation 

 

The path generation problem for the slider-crank mechanism must have 8 

independent design parameters. The parameters may be selected as constant link lengths 

and angles. The parameters to start with are given in Figure 5. The vector equations for 

two dyads can be expressed as = + +OP OM MR RP   and = + + +OP OM MQ QR RP  or 

the Cartesian coordinates of coupler point P(X, Y) can be expressed as: 

 

( ) ( )0 cos cosX X a d    = + + − + +  (17) 

 

( ) ( ) ( ) ( )0 cos sin cos cosX X q h b d      = + − + + − + +  (18) 

 

( ) ( )0 sin sinY Y a d    = + + − + +  (19) 

 

( ) ( ) ( ) ( )0 sin cos sin sinY Y q h b d      = + + + + − + +  (20) 
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Figure 5. Slider-crank mechanism design parameters 

 

Rearranging equations (17) and (19) 

 

( ) ( )

( ) ( )

0

0

cos cos

sin sin

X X d a

Y Y d a

    

    

− + + + = +

− + + + = +
 (21) 

 

Taking square of the equations (21) side by side and summing the two equations 

gives a single equation with only φ as motion parameter in the equation 

 

( ) ( )

( ) ( ) ( ) ( )

2 22 2

0 0

0 02 cos sin

a X X Y Y d

d X X Y Y     

= − + − +

+ − + + + − + +  

 (22) 

 

The motion parameter to be eliminated in equations (18) and (20) is q. Multiplying 

equation (18) by sin(β) and equation (20) by cos(β) sets parameter q to be multiplied with 

the same coefficient that can be easily eliminated: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

0 sin sin sin cos

sin cos sin cos

X X h b

d q

    

     

− + − +

+ + + =
 (23) 

 

x 

y 

M 

R Q 

a 

α 

b 

P(X, Y) 

d 

O 

Y 

X 

 

X0 

Y
0
 

h 

 

φ   f 

q 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

0 cos cos cos sin

cos sin sin cos

Y Y h b

d q

    

     

− − − +

+ + + =
 (24) 

 

Right hand side of the equations (23) and (24) are the same. Equating left hand 

sides and rearranging lead to the second equation with only φ as motion parameter: 

 

( ) ( ) ( ) ( ) ( ) ( )0 0sin cos sin sin 0    − − − + + − + =X X Y Y h b d  (25) 

 

Trigonometric conversions should be applied to equations (22) and (25) so that 

the two equations turn into the form Acos(α + φ) + Bsin(α + φ) = C and solved for cosine 

and sine of angle α + φ to substitute into equation cos2(α + φ) + sin2(α + φ) = 1. First, 

equation (22) is handled 

 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2

0 0

0 0

0 0

sin sin cos
2

cos cos sin

X X Y Y d a

X X Y Y
d

X X Y Y

   

   

− + − + − =

 + − − −  
 
+ + − − − −    

 (26) 

 

Then, equation (25) is rearranged as 

 

  ( )   ( )

( ) ( ) ( ) ( )

0 0sin cos

cos sin sin cos

X X Y Y h

b d b

 

     

− − − + =

+ + + −  

 (27) 

 

Equations (26) and (27) are linear in terms of cos( + φ) and sin( + φ): 

 

( )

( )

cos

sin

+    
=    +    

A B E

C D F

 

 
 (28) 

 

where  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( ) ( )

  ( )   ( )

0 0

0 0

2 2 2 2

0 0

0 0

2 cos sin

2 sin cos

sin

cos

sin cos

A d X X Y Y

B d X X Y Y

C b

D d b

E X X Y Y d a

F X X Y Y h

 

 





 

= − − − −  

= − − −  

=

= −  

= − + − + −

= − − − +

 (29) 

 

Solving for cos( + φ) and sin( + φ) using Cramer’s rule: 

 

( ) ( )cos     and   sin
− −

+ = + =
− −

ED FB AF CE

AD BC AD BC
     (30) 

 

Finally, substituting in cos2( + φ) + sin2( + φ) = 1: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2

22 2 2 2 2 2 2 0

ED FB AF CE AD BC

E C D F A B EF AC BD AD BC

− + − = − 

+ + + − + − − =
 (31) 

 

Equation (31) is the coupler-curve equation and is free of motion parameters. The 

equation in open form is as follows: 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( ) ( )

2
2 22 2 2

0 0

2 2 22

0 0 0 0

2 0

0 0

02

0 0

02 2

0

4 sin cos

cos
sinsin

sin
4 cos

sin

coscos

 − + − − +
 

 + − − − + − + −    

 − 
 − −   
  + −     + + − − − 
  − −    +− +  +       −+ −    

f X X Y Y a d

d X X Y Y h X X Y Y

X X
X X bX X

Y Y
d Y Y Y Y

X X d
ha d

bY Y

 











( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

2

0 02

0 0

cos sin cos
4 0

sin cos sin


 
 
 
 
 



 − + − −  
 − =

− − − + −     

X X Y Y d b
d

X X Y Y b

  

  

 (32) 

 

The equation is complicated to be handled term by term. The first term includes 

square of a circle-like expression and gives first two important geometric components 
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which work as boundaries of possible area for the coupler-curve. The term can be 

rearranged as follows: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2 22 2 2 2 2

0 0 0 0

2 2 2 2 2 22

0 0 0 0

2 22 2

0 04

   − + − − − − + − − −
   



   − + − − − − + − − +
   

 + − + −
 

f X X Y Y a d X X Y Y a d

f X X Y Y a d X X Y Y a d

d f X X Y Y

  (33) 

 

The second term includes one of the geometric components that is expected to 

appear in the equation which is the line on which the slider moves. The term multiplying 

the square of the slider axis line expression may be transformed into one of the circles 

obtained from the first term. Then the second term is rearranged as follows: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

2 2 22

0 0 0 0

2 2 2

0 0 02

2
0

222

0 0

4 sin cos

sin
4

cos

4 sin cos

 − − − + − + −    



 − − + − 
  

− − +    − +   

+ + − − − +  

d X X Y Y h X X Y Y

X X X X Y Y
d

Y Y h a d

d a d X X Y Y h

 





 

 (34) 

 

The third term in equation (32) is the most complicated one. This term is product 

of three expressions. First expression needs to be transformed into one of the circles from 

the first term. The second expression is the slider axis line that appears in the second term. 

The last expression can be transformed into linear combination of two lines: the slider 

axis of the mechanism and the slider axis of the cognate of the mechanism. The cognate 

mechanism is shown in Figure 7 in Section 2.2. 
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( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( ) ( )

( )

( )

( )

( ) ( )

( )

2

0 0

02

00

0
2

0

0

2

0 0

2

0 0

2

cos
sinsin

sin
4 cos

sin

coscos2

sin

4 cos

X X X X
bX X

Y YY Y
d Y Y

X X da d
h

bY Yd a d

X X X X

d Y Y Y Y

a d













   − − 
   −   

+ −    + −    
− −    

− −    − +   + +         −+ − + +       



 − −
 
 + − − −
 
 − +
 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

0

0

02

0

0

0

sin

cos

sin

cos

sin
sin

cos
8 cos

sin

cos

X X b

Y Y b dh

X X
h d

Y Y h

X X b
X X

Y Y b dh
d a d Y Y

X X
h d

Y Y h

 

 






 


 






 − + 
    

− − + +     
  

− −   +     
+ − −   

 − + 
 −   

− − + +     
+ + − −  

− −  +    
+ − −   



  (35) 

 

The last term in equation (32) appears to be one of the simplest terms but square 

of the given expression should be calculated in explicit form for upcoming steps to be 

taken. The expression in the last term or the explicit form of its square does not directly 

offer any expression expected to appear in the equation. 

 

( ) ( ) ( )

( ) ( )

( )

( )
( )

( )

( )

( )

( )

( )

( )
( )

( )

2

0 02

0 0

2 2

0 02 2 2

0 02

0 0

0 0

2 2

0

2

c s c
4

s c s

4

2 s

4

X X Y Y d b
d

X X Y Y b

X X c X X s
d bc b s

Y Y s Y Y c
d

X X c X X s
d bc b

Y Y s Y Y c

X X c

d

  

  

 

 

 

 

 

 

  − + − − 
 − 
  − − − + −  

 − − −   
 − +   
 + − + −      

−  
 − − −   

− −    
+ − + −        

−

−

( )

( ) ( )

( )( ) ( )

( ) ( ) ( )

( ) ( )( )( )

2 2 2 2

2 22 2 2 2

0

2 2 2

0 0

2 2

0 0

2 2

0 0

2

2

2

d bc s b s

Y Y s d bc c b s

X X Y Y c s d bc b s

d bc bs s c X X Y Y

d bc bs X X Y Y c s

   

   

   

   

   

  − +
  

  + − − +  
 

 + − − − − 
 

 
  − − − − + −

  
 − − − − −
  

  (36) 
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where c, s, c, and s are abbreviations of cos(), sin(), cos() and sin().  

Substituting all terms in their rearranged form back into coupler-curve equation, 

an equation with 11 terms is obtained. The equation already contains the useful line and 

circle expressions that are expected to appear. Defining them could make things easier 

for the rest of the derivation procedure 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2

1 0 0

2 2 2

2 0 0

1 0 0

2 0 0

sin cos

sin cos

C X X Y Y a d

C X X Y Y a d

L X X Y Y h

L X X Y Y gh

 

   

= − + − − −

= − + − − +

= − − + − −

= − + − − + +

 (37) 

 

where g = d/b. Then, the form of the coupler-curve equation in 11 terms is obtained as 

 

( ) ( )

( ) ( )( ) ( )

( )( ) ( ) ( )

( ) ( )

( )( ) ( )

( )

2 22 2 2 2 2

1 2 0 0 1 2

22 2 2 2 2

1 2 1 2 1 1

2 22 2 2 2 2 2

1 2 0

2 22 2 2 2 2

0

2 2 2 2 2 2

0 0

2

02

4 4

4 4 8

8 4

4

8 2

8

f C C d f X X Y Y d L C

d a d L dC L bL dL d ad d L

bd a d L L d X X c d bc s b s

d Y Y s d bc c b s

d X X Y Y c s d bdc b c b s

s c X X Y
d

   

   

    

 

 + − + − +
 

+ + + − + − +

 + + − − − − +
 

 − − − +
 

− − − − + −

− −
−

( )

( )( )( )
( )

2

0

2 2

0 0

0
Y

d bc bs
X X Y Y c s

 

 

  −
   − =

 + − − −
 

  (38) 

 

The fifth term in equation (38) is partially cancelled out by the third term in the 

equation. The remaining part of the fifth term has 2C  as the common term with the first 

term. Therefore, the first, third and fifth terms result in a shorter expression fully in 

expected geometric components of the equation and therefore will form the first term of 

the final form of the coupler-curve equation 

 

( )2

1 1 2 24−f C bdL L C  (39) 
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The fourth and sixth terms in equation (38) have 
2 2

14d L in common and the rest 

of the terms partially cancel out each other. The two terms result in a simpler expression: 

 

( )2 2 2 2

14d a d L−  (40) 

 

The second term in equation (38) is summation of two terms. First of them and 

the eighth term in equation (38) have ( )
22

04d X X−  in common. Similarly, second part 

of the second term in equation (38) and the ninth term in equation (38) have ( )
22

04d Y Y−  

in common. The link length f appears in the equation as the short form of 

( )2 2 2 cosd b bd + − . Therefore, second, eighth and nineth terms in equation (38) can be 

added up to obtain 

 

( ) ( )

( ) ( )

2 22 2 2 2 2

0

2 22 2 2 2 2

0

4

4

d X X s d bc c b s

d Y Y c d bc s b s

   

   

 − − +
 

 + − − +
 

 (41) 

 

Finally, the last two terms in equation (38) and expression (41) can be added and 

transformed into a much useful form: 
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( ) ( )

( ) ( )

( )( ) ( )

( ) ( )

( )( )( )
( )

( )
( )

( )

2 22 2 2 2 2

0

2 22 2 2 2 2

0

22 2 2

0 0

2 2

0 02

2 2

0 0

22
2

0 2 2 2

2

4

4

8

8

2

4

 − − +
 

 + − − +
 

 − − − − −
 

  − − + −
  + −

 + − − −
 



 −
 − − − −
 + 

d X X s d bc c b s

d Y Y c d bc s b s

d X X Y Y c s d bc b s

s c X X Y Y
d d bc bs

X X Y Y c s

s d bc
X X d bc bs s c X

c b s

d

   

   

   

 

 

 

 

   

 

( )

( )
( )

( ) ( )

( )( ) ( )

( )( )( ) ( )

( ) ( )

( ) ( )

( )( )

2

0

22
2 2

0 02 2 2

2 2 2

0 0

2 2

0 0

22

0

22

02

0 0

2

2

2

4
2

 
 
 
 
  −  + − + − − 

 +  
 

 − − − − −  
 

+ − − − − 
 



 − − − 

 + − − + 

− − −

X

c d bc
Y Y d bc bs s c Y Y

s b s

X X Y Y c s d bc b s

X X Y Y d bc bs c s

X X s d bc c bs

Y Y c d bc s bs
d

X X Y Y c s

 

   

 

   

   

   

   

  ( )

( )( )( ) ( )

( )( )

( )( )

( ) ( )

( ) ( )

2 2 2

2 2

0 0

2

02

0

2

0 02

0 0

2

4

4

+ +

 
 
 
 
 

  − −
  

 + − − − −
 



 − − −
 
 − − − + 



  − − − + 
 
 − − − − +   

d bc b s

X X Y Y d bc bs c s

X X ds bs c bc s
d

Y Y dc bc c bs s

d X X s Y Y c h
d

b X X s Y Y c gh

 

   

    

    

 

   

 (42) 

 

Substituting all expressions (39) to (42) back into equation (38) 

 

( )

( ) ( ) ( )

2

1 1 2 2

22 2 2 2 2 2

1 2 1 1 2

4

8 4 4 0

−

− + + − + + =

f C bdL L C

bd a d L L d a d L d dL bL
 (43) 
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However, this form may be further simplified as 

 

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

2 2

1 1 2 2 1 2

22 2 2 2 2

1 1 2

2 2 3

1 1 2 2 1 2 1 2

2 2 2 4 2 2 2 2 3 4 2

1 1 2 1 2 1

2 2 2 2 2 2

1 1 2 2 1 1 2 2

22 2

1 1 2 2 1 2

4 8

4 4 0

4 8 8

4 4 4 8 4 0

4 4 2 0

4 4 0

− − +

+ − + + =



− − −

+ − + + + =



− + − + =



− + − =

f C bdL L C bd a d L L

d a d L d dL bL

f C bdL L C abd L L bd L L

a d L d L b d L bd L L d L

f C bdL L C d a L abL L b L

f C bdL L C d aL bL

 (44) 

 

Final form of the equation can be expressed in open form as 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

22 2 22
00 0

2

00 0

2

0 0

0 02

0 0

sin sin
4

cos cos

sin sin
4

cos cos

  

  

  

  

   − − + − − −       + − − + − −   
 −    
 − − + + + − − − +          

 − − − +   
+ −   

+ − − − − + +      

X Xf X X Y Y a d

Y YX X X X
bd

Y Y gh Y Y h a d

X X X X b
d a b

Y Y h Y Y b dh

2

0


=
  

 (45) 

 

Equation (45) comprises two circles with radii a – d and a + d and with center  

(X0, Y0) and two lines (slider axes of the two cognates) (see Figure 6). The coupler-curve 

must lie within the area between the two circles.  

The expressions (34) and (35) obtained during the transformation of the equation 

may be obtained differently. Instead of obtaining a circle with radius a + d the same 

expressions might have been converted to include circle with radius |a – d| so that some 

signs in the resulting equation change. Therefore, the coupler-curve equation maybe 

obtained with same components also as: 
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( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

( ) ( )

( ) ( )

( )

22 2

2 1 2 1 1 2

22 2 22
00 0

2

00 0

2

0 0

0 02

0

4 4 0

or

sin sin
4

cos cos

sin si
4

cos

f C bdL L C d aL bL

X Xf X X Y Y a d

Y YX X X X b
d

Y Y h Y Y b dh a d

X X X X
d a b

Y Y h

  

  





− + + =

   − − + − − +      + − − − − +   
 −    
 + − − − − + + − −         

− − − 
+ + 

+ − −  

( )

( ) ( )

2

0

n
0

cosY Y gh

 

 

 +  
=  

− − + +    

 (46) 

 

Circle expression C2 in the first term of coupler-curve equation is multiplied with 

an ellipse expression f 2C1 – 4bdL1L2 that is a combination of the other circle and the two 

slider axes. The two circles are concentric with center at the fixed pivot coordinates       

(X0, Y0). The  angle is the angle between the X-axis of the global coordinate frame and 

the local x-axis, which is along the slider axis of the slider-crank mechanism. The  angle 

is one of the inner angles of coupler triangle as shown in Figure 5, which is also equal to 

the angle between the slider axes of the two cognates. The radii of the two circles give us 

the crank and coupler length values a and d. The distance from the circle center to the 

slider axis of the original mechanism is h and to the slider axis of cognate mechanism is 

gh where g = d/b.  

As a result, the coupler-curve equation is simplified into two terms. The first term 

is the product of an ellipse and a circle, and the second term is the square of a line which 

is a linear combination of two slider axes. Both ellipses and lines formed in equations 

(45) and (46) are shown for a sample mechanism in Figure 6. The circle expression with 

radius a + d in equation (45) is labelled as Circle 1 and the one with radius |a – d| in 

equation (46) is labelled as Circle 2. Ellipse 1 is the ellipse expression multiplied with 

Circle 1 in equation (45) and Ellipse 2 is the multiplier of Circle 2 in equation (46). The 

line formulated as aL1 – bL2 intersects the coupler-curve at the tangent point of Circle 1. 

Similarly, the other linear combination of slider axes aL1 + bL2 intersects the coupler-

curve at the tangent point of Circle 2. These two special points could be useful for path 

generation problems. 
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Figure 6. A slider-crank mechanism, its cognate, coupler-curve and components 

 

The full lines represent the slider axes, L1 and L2. The orange full curve represents 

the coupler-curve. The ellipses are shown in dashed or dotted forms in the figure. The 

ellipses are in the same form (dotted or dashed) with the circle inside their equation. The 

two combination of slider axes, aL1  bL2 are also drawn in the same form of the ellipse 

that exist in the same equation. 

The geometric properties of the ellipses are such that they are similar, and both 

have the same center and orientation. The larger ellipse E2 is simply a scaled version of 

the smaller ellipse E1. The similarity ratio of the two ellipses is the same ratio of radii of 

the circles. The combination of the slider axes forms two lines which intersect the coupler-

curve at two points and these two points are the tangent points of ellipse and circles that 

form the rest of the coupler-curve equation. aL1 + bL2 line intersect the coupler-curve at 

the tangent points of the curve to the E1 and C1 and aL1 – bL2 line at tangents of E2 and 

C2. 
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The radii of the circles C1, C2 (a + d and |a – d|), the distances of the lines L1, L2 

(h and gh) to the center of the circle and the angle between L1 and L2 () can be considered 

as the 5 geometric invariants (under coordinate transformation) of the coupler-curve 

equation of the slider-crank mechanism. 

There are three coordinate transformation parameters in equation (45): 0X , 0Y  

and . When these three coordinate transformation parameters are set to zero, the global 

and local coordinate frames in Figure 5 become coincident but the rest of the geometric 

properties are conserved. For further investigation of the coupler curve geometric 

properties, simplified version of equation (45) is preferred: 

 

( )

( ) ( ) ( )( )
( )

( ) ( ) ( )( )

22 2 2

22 2

2
2

4 sin cos

4 sin cos 0

  + − −     + − +
  − − − + 

 + − − − + = 

f x y a d
x y a d

bd y h x y gh

d a y h b x y gh

 

 

 (47) 

 

There are three points of interest: the common center of circles, the common 

center of ellipses and the intersection of slider axes. The coordinates of these points can 

be calculated parametrically. The common center of circles, the location of fixed pivot, 

is at ( 0X , 0Y ) or the origin for the case in equation (47). The intersection of the slider 

axes can be calculated as: 

 

( )

( )

cos
   ;    

sin





−
= =i i

h gh
x y h  (48) 

 

Finally, for the common center of ellipses, the equation of the ellipse in equation 

(47) is: 

 

( )( ) ( ) ( )( )

( ) ( )( ) ( )

2 2 2 2 2 2

22 2 2

2 cos 4 sin 2 cos

4 sin 4 cos 4 0

b d bd x bd xy b d bd y

bdh x dh d b y d h f a d

  

 

+ − − + + +

+ − + + − − =
 (49) 

 

The equation (49) is in the form 
2 2 0Ax Bxy Cy Dx Ey F+ + + + + =  and the center 

point coordinates are: 
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( )

( )

( )

( )

2 2 2

2 2 2

2 sin2

4

2 cos2

4

e

e

bdhCD BE
x

B AC b d

dh d bAE BD
y

B AC b d





−−
= =

− −

− − −  = =
− −

 (50) 

 

Then, if two vectors from circle center to the ellipse center and to the intersection 

point of slider axes are drawn, these vectors turn out to be perpendicular to each other: 

( )
( )

( )

( )

( )

( )

( )

( )
( )

( )

( )

( )

( ) ( )
( )

( )

( )

( )

2 2

2 2

sin
tan

cos cos

sin

2 cos

cos
tan

2 sin sin

sin cos
tan tan 1

cos sin

i
CI

i

e
CE

e

CI CE

y h

h ghx g

dh d b

b d gy

bdhx

b d

g

g




 








 

 
 

 

= = =
− −

− −  

− −
= = =

−

−

−
= = −

−

  (51) 

 

2.2. An Alternative Representation of the Coupler-Curve Equation 

 

Although the representation of coupler-curve equation in terms of simpler 

geometric components give an idea about possible solutions to the path generation 

problem, a representation in polynomial form is more likely to be used in an 

approximation-based path synthesis method. Therefore, the form obtained in previous 

section should be extended to a polynomial form. Equation (47) is free of the coordinate 

transformation parameters, hence is made of 5 design parameters and easier to convert 

into the polynomial form. . After obtaining the formulation in 5 design parameters, 

coordinate transformation may be applied to obtain a generalized 8 parameter equation. 

The equation (45) without coordinate transformation parameters becomes simplified as 

in equation (49). 

This equation is based on local coordinate frame M(x, y) in Figure 5. The 

simplified version of the figure is given in Figure 7 which also includes the cognate 

mechanism.  
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Figure 7. The slider-crank mechanism with its cognate 

 

Then, the coupler-curve equation is expanded as 

( )

( )( )

( )( )

( )( )

( )( )( )

( ) ( )( ) ( )

( )

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )

( )( ) ( )

( )( )

2
2 2 2

2 2

2 2 2

2 2

2 2

2 22 2 2 2 2

2 2 2 2

2 2

2 2 2

4 sin

4 cos

4 sin

4 cos

4 2

4 sin

4 sin 8 sin cos

4 cos cos

4 sin

4

f x y

bd x y xy

bd x y y

bdh x y x

dh b d x y y

d h f a d a d x y

b d x

bd a d d b a b xy

d d b a a d b y

bdh d a d a x

dh a d d a d b











  

 



+

− +

+

+

− + +

 + − − + + +
 

+

 + + − +
 

 + + − +
 

+ + −

+ + − − ( )( )

( ) ( )
2 22

cos

0

y

f a d a d



+ − + =
 (52) 

 

The expanded version in equation (52) could be written in shorter form as 

 

( ) ( ) ( ) ( )

( ) ( )

2
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

4 4 4

4 4 4 0

A x y B x y xy C x y y D x y x

E x y y F x y Gx Hxy Iy Jx Ky L

+ + + + + + +

+ + + + + + + + + + =
 (53) 

 

x 

y 

O 

V 

W 
θ 

 

a 

h 

q 

b 

Z(x, y) 

d 

 

f V 

W 

d 

a  d 

 

h 

f 

q 
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The 12 equation coefficients are given in terms of 5 design parameters. Only three 

of the coefficients (A, F and L) include the f2 term which can be expressed as 

( )2 2 2 2 cosf b d bd = + − . The coefficients could be simplified by dividing equation 

(52) by b2 and introducing a new variable g = d/b to completely replace parameter b. 

Radius of the circles mentioned in the previous section may also be defined as new 

variables to replace d and a as r1 = d + a and r2 = d – a. Then, the new coefficient set 

defined in new design parameters are given as 

 

( )

( )( )

( )

( ) ( )

( ) ( ) ( )

( )

( )

2

2 2 2 2 2

1 2

2

1 2

2

1 2 1 2

2 2 2

1 2 1 2

1 2

1 2

2 2 2

1 2

1 2

4 1 2

2 2

4

1 2

A g gc

B gs

C gc

D ghs

E gh g c

F g h g gc r r

G r r s

H s r r g c gr r

I r r g c r r g gc

J ghrr s

K ghrr g c

L g gc r r















 

 







= + −

= −

=

=

= − +

= − + − +

= +  

 = + − − 

= + − − −

=

= −

= + −

 (54) 

 

Some of the coefficients are simpler and it is easier to determine the design 

parameters from them. These simple coefficients can be selected as independent 

coefficients and the rest of the coefficients from set (54) can be defined in terms of these 

5 independent coefficients. The selected coefficients are B, C, D, G and J. The remaining 

coefficients are expressed in terms of these 5 independent coefficients as 
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( )

( )

( ) ( ) ( )( ) ( )( )

( )

( ) ( )

( )

( )( )

22

2 2

22

2 2

2
2 2 2 2

2

2 2

22 2
2

2 2

22 2 2 2 2 2

2

1

2 11

4
2

4

1

4

A

D B C G B C B C

C

B C

D B C C
E

B

B C J
F

D

G B C CBJ
H

D B

G B C J B C C
I

B D

J B C C EJ
K

B D

B C J AJ
L

D D

B

= + −

+ +
=

+ −
=

 + −
 = −
 
 

+ − + −
= −

+

+

+

−
= − = −

−

−

=

− + +
+

=  (55) 

 

How the design parameters are defined in terms of the independent coefficients is 

as follows 

 

( )

( )

( )

2 2

1

1 2

1 2

2

1 2

2

tan /

/

/

2 4sin

2 4sin

g B C

B C

h D B

rr J D

r r G
d

r r G J
a

D

b dg







−

= +

= −

= −

=

+
= =

−
= = −

=

 (56) 

 

Substituting the coefficients given as in (55) into the equation (53) result in the 

coupler-curve equation of the slider-crank mechanism in another form: 
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( ) ( ) ( ) ( )

( )
( )

( )

( ) ( )  ( )
( )

( )

( ) ( )

( )

2
2 2 2 2 2 2 2

2 2

2 2 2 2

22

2 2

2 2

2

2

22

22 2 2

2

2
2 2 2 2

2

2

2 2 2

1 4 4

4 4

2 1

4

4 1

4
2

4 4
+

= + + + + +

+ +
+ + + +

  + −  + +
 
 

 + −
 + + −
 
 

 + − + −




+ −



 + −

−




+ −
+ −



 + − + 
+

+

B C

B C

C

x y B x y xy C x y y

D B C C
D x y x x y y

B

B C J
x y

D

G B CBJ
Gx xy

D B

G B C C J B C C
y

B

B

D

J B C C
Jx y

B

B

D G C

B



( ) 2

2

2

0
1 −  =

J

D

C

 (57) 

 

The non-linear equation has 5 independent parameters. The equation becomes 

much more complicated when the coordinate transformation is applied. Therefore, a 

general form still has the same complexity problem. However, the form of the coupler-

curve equation in (57) is be useful for the method explained in Chapter 3. 
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CHAPTER 3 

 

4-BAR COUPLER-CURVE EQUATION 

 

The 4-bar coupler-curve equation is well analysed in the literature. The existing 

studies on the 4-bar coupler-curve is explained in the Chapter 1. The main properties of 

the coupler-curve equation are trinodal, tri-circular and sextic. Sextic simply means that 

the sum of the powers of highest order unknowns in a term is at most six. Trinodal means 

that this curve may at most cross itself (have real double points) three times. Tri-circular 

means that the highest order terms in the equation may be expressed in a single term as 

(x2 + y2)3.  

The coupler-curve equation can be obtained as a combination of different linear 

and quadratic expressions (a line, circle or ellipse). The problem is defined in 9-

parameters (X0, Y0, , a, b, d, a, h, m). In Figure 8, g = d/b. The 4-bar mechanism is shown 

together with its cognates and the links having the same angular velocity are drawn with 

same type of line. 

 

 

Figure 8. 4-bar mechanism design parameters 
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3.1. Coupler-curve Equation Derivation 

 

The coupler point coordinates (X, Y) can be obtained in the following three 

different ways through the three fixed joints: 

 

( ) ( )i i
X iY ae de

    + + +
+ = +  (58) 

 

( ) ( ) ( )i i iiX iY me he be de
       + + + +

+ = + − +  (59) 

 

( ) ( ) ( ) ( )+ + + + + +
+ = + − +

i i i i
X iY gme ghe gae ae

         
 (60) 

 

where |A0D0| = gm. Equations (58)-(60) are dependent as: 

 

ige 
[(59) – (58)] = [(60) – (58)] (61) 

 

Actually, equation (60) represents the loop closure equations. Decomposing 

equations (58)-(60) into their real and imaginary parts, the following 6 equations are 

obtained: 

 

0X X ac dc    + + += + +  (62) 

 

0X X mc hc bc dc       + + + += + + − +  (63) 

 

0X X mgc hgc agc ac         + + + + + += + + − +  (64) 

 

0Y Y as ds    + + += + +  (65) 

 

0Y Y ms hs bs ds       + + + += + + − +  (66) 

 

0Y Y mgs hgs ags as         + + + + + += + + − +  (67) 
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Each of the expressions for the X- or Y-coordinate of the coupler point contains 

two of the three motion parameters: , φ, . Equations (62) and (65) are for dyad A0A1C. 

Similarly, equations (63) and (66) are for dyad B0B1C and equations (64) and (67) are for 

dyad D0D1C. Any group of two out of three dyads can be used to obtain the coupler-curve 

equation. Therefore, there will be three versions of the equation. The three versions of the 

equations are derived in the following sub-sections.  

 

3.1.1. Coupler-Curve Equation Using Dyads A0A1C and B0B1C 

 

Equations (58) and (59) have the angle φ in common. Each complex equation will 

be rearranged to eliminate the other motion parameters. Rearranging equation (62) 

 

( ) ( )
2 2

0

2 2 2 2 2 2

0 0 02 2 2

ac X dc X

a c X d c X X dc X X Xdc

    

          

+ + +

+ + + + + + +

= + −

= + + + − −
 (68) 

 

Similarly, rearranging equation (65): 

 

( ) ( )
2 2

0

2 2 2 2 2 2

0 0 0

   

2 2 2

as Y ds Y

a s Y d s Y Y ds Y Y Yds

    

          

+ + +

+ + + + + + +

= + − 

= + + + − −
 (69) 

 

Adding equations (68) and (69) side by side eliminates θ: 

 

( ) ( ) ( ) ( )
2 2 2 2

0 0 0 02 2X X Y Y d a dc X X ds Y Y     + + + +− + − + − = − + −  (70) 

 

Equation (70) has only φ as the motion parameter. Rearranging equation (63): 

 

( ) ( )
2 2

0

2 2 2 2 2 2 2 2 2 2

0

0 0 0 0

   

2 2 2 2 2

2 2 2 2 2

hc X mc bc dc X

h c X m c b c d c X

X mc X bc X dc X X mbc c

mdc c mXc bdc c Xbc Xdc

       

       

        

              

+ + + +

+ + + +

+ + + +

+ + + + + + + +

− = + − + − 

= + + + +

+ − + − −

+ − − + −

 (71) 
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Rearranging equation (66): 

 

( ) ( )
2 2

0

2 2 2 2 2 2 2 2 2 2

0

0 0 0 0

   

2 2 2 2 2

2 2 2 2 2

hs Y ms bs ds Y

h s Y m s b s d s Y

Y ms Y bs Y dc Y Y mbs s

mds s mYs bds s Ybs Yds

       

       

        

              

+ + + +

+ + + +

+ + + +

+ + + + + + + +

− = + − + − 

= + + + +

+ − + − −

+ − − + −

 (72) 

 

Adding equations (71) and (72) side by side eliminates ψ: 

 

( ) ( )

( ) ( )

( ) ( )

2 2 2 2 2 2 2 2

0 0

0 0 0 0

0 0

0 0

2 2 2 2

2 2 2

2 2 2

h X Y m b d X Y

m X X c Y Y s X X Y Y bdc

X X bc Y Y bs mbc

mdc c mds s d X X c Y Y s

  

    

             

+ +

+ + + + + + + +

= + + + + + +

 + − + − − − − 

+ − + − −

 + + + − + − 

 (73) 

 

The only motion parameter left in the equations (70) and (73) is φ. Eliminating 

common motion parameter φ from two equations, a single equation can be obtained 

without any motion parameter. However, the trigonometric functions with φ include other 

constant angles too. Therefore, some trigonometric conversions should be used to obtain 

both equations in the form Acos( + φ) + Bsin( + φ) = C: 

 

c c c s s

s s c c s

c c c s s

         

         

          

+ + + + +

+ + + + +

+ + + + + +

= +

= −

= +

 (74) 

 

Then, equation (73) can be rewritten as: 

 

( ) ( )

( )( ) ( )

( ) ( )( )

2 2
2 2

0 0

0 0

0 0

2

2

X X mc Y Y ms f h

d bc X X mc Y Y ms bs c

X X mc bs d bc Y Y ms s

 

      

      

+ +

+ +

− − + − − + − =

 − − − + − − 

 + − − − + − − − 

 (75) 

 

Equations (70) and (75) are linear in terms of c  + + and s  + + : 
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cA B E

sC D F

  

  

+ +

+ +

    
=    

    
 (76) 

 

where 

 

( )

( )

( )( ) ( )

( ) ( )( )

( ) ( )

( ) ( )

0

0

0 0

0 0

2 2 2 2

0 0

2 2 2 2

0 0

2

2

2

2

A d X X

B d Y Y

C d bc X X mc bs Y Y ms

D bs X X mc d bc Y Y ms

E X X Y Y d a

F X X mc Y Y ms f h

   

   

 

= −

= −

 = − − − + − − 

 = − − − + − − − 

= − + − + −

= − − + − − + −

 (77) 

 

Then, solving for cosine and sine of the angle α + β + φ 

 

ED BF AF EC
AD BC c s     + + + +

− −
 = − = =

 
 (78) 

 

Finally, substituting cosine and sine terms into 
2 2 1c s     + + + ++ = :  

 

( ) ( ) ( )
2 2 2

ED BF AF EC AD BC− + − = −  (79) 

 

Equation (79) is the same form obtained by Roberts (1875). The E and F terms in 

equation (79) are similar to the circle terms obtained for the slider-crank mechanism. 

Therefore, their squares are easier to deal with. Rearranging the equation (79): 

 

( ) ( ) ( ) ( )
22 2 2 2 2 2 2E C D F A B EF AC BD AD BC+ + + − + = −  (80) 

 

Open form of equation (80): 



39 
 

( )

( )
( )

( )

( )

( )
( )

( )

( )

( )

( )

( )

( )

2
22

2
020 2

202 02 2

0 02 2

2 2 02 20

2 0 02
00

22

0 0

2 2 2 2

2

X X mcX X
X X mc X X

f Y Y d Y Y ms
Y YY Y ms

d a f h

X X X X
X X mcX X

d Y Y Y Y ms

d a f h













 − − −      − − −     + − + + − −
     + −+ − −    + −  + −
    

− −
 − − −   
  − + − + − −
  
 + −  + −
    

( )

( )( )
( )

( )( )

( )( )

( )( ) ( )( )

( ) ( )( ) ( )( )

0 0

0 0

0 0

2

0 0 0 0
2

0 0 0 0

4

mc
d bc

Y Y Y Y ms

X X Y Y ms
bs

X X mc Y Y

bs X X X X mc Y Y Y Y ms
d

d bc X X Y Y ms X X mc Y Y













  

  

  −
   −
  + − − −  
  − − −
  +
  − − − −  

  − − − − + − − −  =
  + − − − − − − − −  

 (81) 

 

First and second terms in the equation are rearranged to obtain circle terms: 

 

( ) ( )

( )

( ) ( )

( )

( )

( )

( )

( ) ( )

( )

( ) ( )

( )

( )

( ) ( ) ( )

22 2 2 2

00 0 0 02

2 2 2

0

2 2 2

0 0 02

2 2 22 2

00 0

22 22 2

0 0 0 08

X X mcX X Y Y X X Y Y
f

a d a d Y Y ms

X X mc X X mc X X
d

Y YY Y ms h f Y Y ms h f

d f X X Y Y X X mc Y Y m





 

 



     − −− + − − + −
    
    − − − + + − −     

     − − − − −
     +
     + −+ − − − − + − − − +     

 + − + − − − + − −
  ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )
( )( )

( )( )

( )( )

( )( )

( )

2

22
0 000

2 2
0 0

0 0

2 2
0 0

0 0

0
2

2

2 2

4

s

X X X X mcX X mcX X
d bc

Y Y Y Y msY Y Y Y ms
d

X X Y Y msd a h f
bs

d d a Y Y X X mcf f h

bs X X X
d


















 
  

    − − −  − −−
    − 
    + − − − + − + − −    −  
      − − −− − − −       +
  + −    − − − −+ −      

− −
=

( ) ( )( )

( ) ( )( ) ( )( )

2

0 0 0

0 0 0 0

X mc Y Y Y Y ms

d bc X X Y Y ms X X mc Y Y

 

  

  − − + − − −  
  + − − − − − − − −  

 (82) 

 

Some of the expressions in the equation are the expected circles and lines. 

Defining them will help in rearranging the equation: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )( ) ( )( )

( )( ) ( )( )

2 2 2

1 0 0

2 2 2

2 0 0

2 2 2

1 0 0

2 2 2

2 0 0

2 2

0 0

2 2

0 0

0 0 0 0

0 0 0 0

A

A

B

B

A

B

AB

AB

C X X Y Y d a

C X X Y Y d a

C X X mc Y Y ms f h

C X X mc Y Y ms f h

P X X Y Y

P X X mc Y Y ms

C X X X X mc Y Y Y Y ms

L X X Y Y ms X X mc Y Y

 

 

 

 

 

= − + − − −

= − + − − +

= − − + − − − −

= − − + − − − +

= − + −

= − − + − −

= − − − + − − −

= − − − − − − −

 (83) 

 

CA1 and CA2 are the two circles centered at A0 with radii d – a and d + a. Similarly, 

CB1 and CB2 are the two circles centered at B0 with radii f – h and f + h. PA and PB represent 

points at A0 and B0. CAB is the circle with center at the midpoint of A0B0 and passing 

through A0 and B0. LAB is the line through A0 and B0. Substituting equation (83) into 

equation (82): 

 

( ) ( ) ( )

( )

2 2 2 2

1 2 1 2

1 1

22

8

2 2 2

4

A A B B B A A B

A B AB AB

AB AB

f C C P d C C P d f P P

d C a d a C h f h d bc C bs L

d bs C d bc L

 

 

+ +

− + − + − − +          

= − + −  

 (84) 

 

The third term in equation (84) is the result of obtaining circles in first two terms 

in equation (82). Half of the third term in equation (84) result from the conversion of the 

first term in equation (80) and other half result from the second term in equation (81). 

The term on the right hand side of equation (84) is the circle of singular foci, i.e. the circle 

that pass through the three center points A0, B0 and D0. 

Noticing that d – bc = fc and bs = fs in triangle A1B1C, the two circle 

expressions in equation (84) can be expressed with different parameters: 

 

( ) ( )

( ) ( )

1  :   

:   

AB AB AB AB

SF AB AB AB AB

C d bc C bs L f c C s L

C bs C d bc L f s C c L

   

   

− + = +

− + − = − +
 (85) 
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Substituting the two circles in equation (85) into equation (84), an equation 

without the link length b and the angle α is obtained:  

 

( ) ( )

2 2 2 2

1 2 1 2

2 2 2

1 1 1

8

2 2 2 4

A A B B B A A B

A B SF

f C C P d C C P d f P P

df C a d a C h f h C d f C

+ +

− + − + − =      

 (86) 

 

The design parameters in equation (86) are X0, Y0, β, a, d, f, , h, m. Half of the 

third term and square of the circle of singular foci can be united as follows: 

 

( ) ( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 22 22

0 0 0 0

2

0 0 0 0

0 0 0 0

2 22 2

0 0 0 0

2 22 2

0 0 0 0

22

0 0

A B SFP P C X X Y Y X X mc Y Y ms

s X X X X mc Y Y Y Y ms

c X X Y Y ms X X mc Y Y

X X X X mc X X Y Y ms

Y Y X X mc Y Y Y Y ms

s X X X X mc

 

  

  

 

 



  − = − + − − − + − −
    

  − − − − + − − −  −
  + − − − − − − −  

− − − + − − −

+ − − − + − − −

− − − −

=

( ) ( ) ( )

( )( )( )( )

( ) ( ) ( ) ( )

( )( )( )( )

( )( )

( )( )

( )( )

( )( )

2 222

0 0

2

0 0 0 0

2 22 22 2

0 0 0 0

2

0 0 0 0

0 0 0 0

0 0 0 0

2

2

2

s Y Y Y Y ms

s X X Y Y X X mc Y Y ms

c X X Y Y ms c X X mc Y Y

c X X Y Y X X mc Y Y ms

X X X X mc X X Y Y ms
s c

Y Y Y Y ms X X mc Y Y

  

  

   

  

 

 

 







− − − −


− − − − − − −

 − − − − − − − −

 + − − − − − −


   − − − − − −
   +
   + − − − − − − −   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )( )( )

( )( )

2 22 22

0 0 0 0

2 22 22

0 0 0 0

2 22 22

0 0 0 0

2 22 22

0 0 0 0

2

0 0 0 0

2

0 0 0

2

2

X X X X mc s X X X X mc

X X Y Y ms c X X Y Y ms

Y Y X X mc c X X mc Y Y

Y Y Y Y ms s Y Y Y Y ms

s X X Y Y X X mc Y Y ms

c X X Y Y X X m

  

  

  

  

  

















 
 
 



− − − − − − −

+ − − − − − − −

+ − − − − − − −

= + − − − − − − −

− − − − − − −

+ − − − −( )( )

( )( )

( )( )

( )( )

( )( )

0

0 0 0 0

0 0 0 0

2

c Y Y ms

X X X X mc X X Y Y ms
s c

Y Y Y Y ms X X mc Y Y

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 − −
 
    − − − − − −
    +
    + − − − − − − −    
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( ) ( ) ( ) ( )

( )( )( )( )

( ) ( ) ( ) ( )

( )( )( )( )

( )( )

( )( )

( )( )

( )( )

2 22 22 2

0 0 0 0

2

0 0 0 0

2 22 22 2

0 0 0 0

2

0 0 0 0

0 0 0 0

0 0 0 0

2

2

2

c X X X X mc c Y Y Y Y ms

c X X Y Y X X mc Y Y ms

s X X Y Y ms s Y Y X X mc

s X X Y Y X X mc Y Y ms

X X X X mc X X Y Y ms
s c

Y Y Y Y ms X X mc Y Y

   

  

   

  

 

 

 

− − − + − − −

+ − − − − − −

= + − − − + − − −

− − − − − − −

   − − − − − −
  +
  + − − − − − − −   

( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( )

( )( )

( )( )

2
2

0 0 0 0

2
2

0 0 0 0

0 0 0 0

0 0 0 0

2

          

c X X X X mc Y Y Y Y ms

s X X Y Y ms Y Y X X mc

X X X X mc X X Y Y ms
s c

Y Y Y Y ms X X mc Y Y

  

  

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 

 

 
 

 − − − + − − −  
 
 

 = + − − − − − − −  
 

   − − − − − − 
   + 
   + − − − − − − −     

( )( ) ( )( )

( )( ) ( )( )

2

0 0 0 0

0 0 0 0

 
c X X X X mc Y Y Y Y ms

s X X Y Y ms Y Y X X mc

  

  

  − − − + − − −   
=  

 + − − − + − − −   

 (87) 

 

Therefore, the coupler-curve equation can be expressed with 5 terms which 

consist of the components defined in equations (83) and (85): 

 

( ) ( )

2 2 2 2

1 2 1 2

2 2 2

1 1 1 1

4

2 2 2 4 0

A A B B B A A B

A B

f C C P d C C P d f P P

df C a d a C h f h C d f C

+ +

− + − + − + =      

 (88) 

 

A similar procedure may be applied to the two other couple of dyads. The coupler-

curve equation to be obtained in the end should be at the same format with different 

components and coefficients. Some of the components should be common among the 

different versions of the coupler-curve equation. 

 

3.1.2. Coupler-Curve Equation Using Dyads B0B1C and D0D1C  

 

Equations (59) and (60) have the angle ψ in common. φ should be eliminated from 

equations (63) and (66), however the trigonometric functions are more complicated than 
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the ones in Section 3.1.1. Equations (59) and (60) should be rearranged to obtain a set of 

equations in the form Acos( + φ) + Bsin( + φ) = C. Rearranging equation (63): 

 

( )0X X mc hc dc b c ds s        + + += + + + − −  (89) 

 

Rearranging equation (66): 

 

( )0Y Y ms hs ds c dc b s        + + += + + + + −  (90) 

 

Equations (89) and (90) are linear in terms of sine and cosine of β + φ:  

 

0

0

c X X mc hcdc b ds

s Y Y ms hsds dc b

     

     

+ +

+ +

− − −− −     
=     − − −−     

 (91) 

 

Solving for cβ+φ and sβ+φ then substituting into c2
β+φ + s2

β+φ =1: 

 

( ) ( )

( ) ( )

2 2
2 2

0 0

0 02 2+ +

− − + − − + −

= − − + − −

X X mc Y Y ms h f

hc X X mc hs Y Y ms

 

     

 (92) 

 

The same procedure is required for the scalar components of equation (60). 

Rearranging equation (64): 

 

( )0 1X X mgc hgc a gc c ags s          + + + + +− − − = − +  (93) 

 

Rearranging equation (67): 

 

( )0 1Y Y mgs hgs ags c a gc s          + + + + +− − − = − + −  (94) 

 

Equations (93) and (94) are linear in terms of θ: 
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( )

( )
0

0

1

1

c X X mgc hgca gc ags

s Y Y mgs hgsags a gc

       

       

+ + + +

+ + + +

− − −−     
=     

− − −− −     
 (95) 

 

Solving for cβ+θ and sβ+θ then substituting into c2
β+θ + s2

β+θ =1: 

 

( ) ( )

( ) ( )

2 2
2 2 2 2

0 0

0 02 2

X X mgc Y Y mgs h g a t

hgc X X mgc hgs Y Y mgs

   

         

+ +

+ + + + + +

− − + − − + −

= − − + − −
 (96) 

 

where t = f/b. The only motion parameter left in equations (92) and (96) is ψ. To eliminate 

ψ, we first use the trigonometric equations below. 

 

     + + + + + + + + + += + = −c c c s s s s c c s                     (97) 

 

Then, equation (92) can be rewritten as: 

 

( ) ( )

( ) ( )

( ) ( )

2 2
2 2

0 0

0 0

0 0

2 2

2 2

X X mc Y Y ms h f

h X X mc c h Y Y ms s c

h X X mc s h Y Y ms c s

 

      

      

+ +

+ +

− − + − − + −

 = − − − − − 

 + − − + − − 

 (98) 

 

Equations (96) and (98) are linear in terms of cα+β+ψ and sα+β+ψ: 

 

cA B E

sC D F

  

  

+ +

+ +

    
=    

    

 (99) 

 

where 
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( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0 0

0 0

2 2 2 2 2 2

0 0

2 2 2 2

0 0

2

2

2

2

A hg X X mgc

B hg Y Y mgs

C h X X mc c Y Y ms s

D h X X mc s Y Y ms c

E X X mgc Y Y mgs h g a t

F X X mc Y Y ms h f

 

 

   

   

   

 

+

+

+ +

= − −

= − −

 = − − − − − 

 = − − + − − 

= − − + − − + −

= − − + − − + −

 (100) 

 

Then, solving for  c  + + and s  + + : 

 

ED BF AF EC
AD BC c s     + + + +

− −
 = − = =

 
 (101) 

 

and substituting into c2
α+β+ψ + s2

α+β+ψ = 1: 

 

( ) ( ) ( )
2 2 2

ED BF AF EC AD BC− + − = −  (102) 

 

Once again, the equation is in the same form of Roberts’s (1875). The right-hand 

side of the equation still gives the circle of singular foci. Expanding the left-hand side: 

 

( ) ( ) ( ) ( )
22 2 2 2 2 2 2E C D F A B EF AC BD AD BC+ + + − + = −  (103) 

 

In open form: 
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( ) ( ) ( )

( )

( ) ( ) ( )

( )

2 22 2

00 0

22 2 2 2

0

2 22 2

00 02

22 2

0

2

0

2

0

2 2 2 2

2

X X mcX X mgc Y Y mgs

h g a t Y Y ms

X X mgcX X mc Y Y ms
g

h f Y Y mgs

X X

mgc

g Y Y

mgs

h g a t

   



  

 

 

 

+ +

+

+

+

+

   − −− − + − −   
  + − + − −   

   − −− − + − −   +
  + − + − −   

 − 
  

−  


− − 
+ 

− 
 + −

( )( )

( )( )

( )( )

( )( )

( )

2

0
0 0

0 0
2

0

0 0

2 2 0 0

0

2 24

X X X X mc X X mgc
cmc

Y Y ms Y Y mgs

Y Y
X X mc Y Y mgs

ms s
Y Y ms X X mgc

h f

X X mgc X X
s

h g

  



  

  

 

  

 



+

+

+

+

+

  −    − − − −      −      + − − − −     
−      − − − −+     −        − − − − −     + −  

− − −

=

( )

( )( )

( )( )

( )( )

2

0

0 0

0 0

0 0

mc

Y Y mgs Y Y ms

X X mgc Y Y ms
c

Y Y mgs X X mc



  

  



  

+

+

+

  −
  
  + − − − −  
  − − − −
  +
  − − − − −  

 (104) 

 

Rearranging the equation: 
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( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

2 2

0 0 2

2 2 0

0 0 2

2 2 0

2 2

0 0

2 22

0 0

2 2

X X mgc X X mgc

X X mc
Y Y mgs Y Y mgs

Y Y ms
at hg at hg

X X mc X X mc

X
g Y Y ms Y Y ms

f h f h

   



   



 

 

+ +

+ +

   − − − −
     − −
     + − − + − −
     

+ − −     + − + +      

   − − − −
   

−
   

+ + − − + − −
   
   

+ − + +      

( )

( )

( )

( )

( )

( )

2

0

2

0

2 2

0 02 2

2 2

0 0

2 2

0 0

2 2

0 0

2 2 2 2 2

8

2

X mgc

Y Y mgs

X X mgc X X mc
h g

Y Y mgs Y Y ms

X X X X

mgc mc

g Y Y Y Y

mgs ms

h g a t h

 

 

  

  

  

  

+

+

+

+

+

+

 −
 
 
+ − − 

   − − − −
   +
   
+ − − + − −   

 − −   
    

− −    
 

− − −    
+ +    

− −    
 + − + − 

( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

0 0

0 0

0 0

2 0 0

0 0

0 0
2 2

0

4

X X mc X X mgc
c

Y Y ms Y Y mgs

X X mc Y Y mgs
s

Y Y ms X X mgc
f

X X mgc X X mc
s

Y Y mgs Y Y ms
h g

X X mgc
c

  



  

  



  

  



  



+

+

+

+

+

+

    − − − −    
    + − − − −    
    − − − −        − − − − −     

 − − − −
 
 + − − − − 

=
− −

+
( )( )

( )( )

2

0

0 0

Y Y ms

Y Y mgs X X mc

  

  

+

+

 
 
 
 
  − −
  
  − − − − −  

 (105) 

 

In order to shorten the equation as in the previous section, let 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

2 2 2

1 0 0

2 2 2

2 0 0

2 2 2

1 0 0

2 2 2

2 0 0

2 2

0 0

2 2

0 0

0 0

D

D

B

B

B

D

BD

C X X mgc Y Y mgs at hg

C X X mgc Y Y mgs at hg

C X X mc Y Y ms f h

C X X mc Y Y ms f h

P X X mc Y Y ms

P X X mgc Y Y mgs

C X X mgc X X mc

   

   

 

 

 

   

 

+ +

+ +

+ +

+

= − − + − − − −

= − − + − − − +

= − − + − − − −

= − − + − − − +

= − − + − −

= − − + − −

= − − − −( ) ( )( )

( )( ) ( )( )

0 0

0 0 0 0BD

Y Y mgs Y Y ms

L X X mgc Y Y ms Y Y mgs X X mc

   

     

+

+ +

+ − − − −

= − − − − − − − − −

 (106) 



48 
 

Short form of the equation becomes: 

 

( ) ( ) ( )

( )

2 2 2

1 2 1 2

1 1

22 2

8

2 2 2

4

D D B B B D B D

D B BD BD

BD BD

C C P g C C P h g P P

g C at hg at C f h f c C s L

h g s C c L

 

 

+ +

− + − + − +      

= +

 (107) 

 

Half of the third term and the circle of singular foci on the right-hand side can be 

combined as: 

 

( ) ( )
2 2 2

2− + = + =B D BD BD BD BDP P s C c L c C s L C     (108) 

 

Final form of the coupler-curve equation becomes: 

 

( ) ( )

2 2 2 4 2

1 2 1 2

2 4 2 2

1 1 2 2

4 4 16

8 2 2 16 0

D D B B B D B D

D B

h C C P h g C C P h g P P

h g C at hg at C f h f C h g C

+ +

− + − + − + =      

 (109) 

 

The design parameters used in equation (109) are X0, Y0, β, h, f, g, at, m, α, which 

is a different set of parameters than the parameters in equation (88).  

 

3.1.3.  Coupler-Curve Equation Using Dyads A0A1C and D0D1C 

 

Equations (58) and (60) have the angle θ in common. φ should be eliminated from 

equations (63) and (66). Rearranging equation (62): 

 

( ) ( )
2 2

0

2 2 2 2 2 2

0 0 0

   

2 2 2

dc X ac X

d c X a c X X ac X X Xac

    

        

+ + +

+ + + + +

= + − 

= + + + − −
 (110) 

 

Rearranging equation (65): 

 

( ) ( )
2 2

0

2 2 2 2 2 2

0 0 0

   

2 2 2

ds Y as Y

d s Y a s Y Y as Y Y Yas

    

        

+ + +

+ + + + +

= + − 

= + + + − −
 (111) 
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Adding equations (110) and (111) side by side eliminates φ: 

 

( ) ( ) ( ) ( )
2 2 2 2

0 0 0 02 2X X Y Y a d ac X X as Y Y   + +− + − + − = − − − −  (112) 

 

ψ should be eliminated from equations (64) and (67). Rearranging equation (64): 

 

( ) ( )

( )

( )( )

2 2

0

22 2 2 2 2 2 2 2

0

2

0

   

2 2

hgc X X mgc agc ac

h g c X X mgc a g c a c

a gc c a X X mgc gc c

         

         

           

+ + + + + +

+ + + + + +

+ + + + + + +

= − − + − 

= − − + +

− + − − −

 (113) 

 

Rearranging equation (67): 

 

( ) ( )

( )

( )( )

2 2

0

22 2 2 2 2 2 2 2

0

2

0

   

2 2

hgs Y Y mgs ags as

h g s Y Y mgs a g s a s

a gs s a Y Y mgs gs s

         

         

           

+ + + + + +

+ + + + + +

+ + + + + + +

= − − + − 

= − − + +

− + − − −

 (114) 

 

Adding equations (113) and (114) side by side eliminates ψ: 

 

( ) ( )

( )( )

( )( )

2 22 2 2 2

0 0

0

0

2

2

+ +

+ + + +

+ + + +

= − − + − − +

+ − − −

+ − − −

h g X X mgc Y Y mgs a t

a X X mgc gc c

a Y Y mgs gs s

   

      

      

 (115) 

 

The only motion parameter left in the equations (112) and (115) is θ. To eliminate 

this, the following trigonometric equations are used: 

 

     + + + + + + + + + += + = −c c c s s s s c c s                     (116) 

 

Then, equation (115) can be rewritten as: 
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( )( ) ( )

( ) ( )( )

( ) ( )

0 0

0 0

2 2 2 2 2 2

0 0

2

2

a X X mgc c g Y Y mgs s c

a X X mgc s Y Y mgs c g s

X X mgc Y Y mgs a t h g

        

        

   

+ + + +

+ + + +

+ +

 − − − − − − 

 + − − + − − − 

= − − + − − + −

 (117) 

 

Equation (112) can be rearranged as 

 

( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

0 0

0 0 0 02 2

X X Y Y a d

a X X c Y Y s c a X X s Y Y c s         + + + +

− + − + − =

− − − − − − + −      

 (118) 

 

Equations (117) and (118) are linear in terms of cα+β+θ and sα+β+θ: 

 

cA B E

sC D F

  

  

+ +

+ +

    
=    

    

 (119) 

 

where 

 

( ) ( )

( ) ( )

( )( ) ( )

( ) ( )( )

( ) ( )

( ) ( )

0 0

0 0

0 0

0 0

2 2 2 2

0 0

2 2 2 2 2 2

0 0

2

2

2

2

A a X X c Y Y s

B a X X s Y Y c

C a X X mgc c g Y Y mgs s

D a X X mgc s Y Y mgs c g

E X X Y Y a d

F X X mgc Y Y mgs a t h g

 

 

     

     

   

+ +

+ +

+ +

= − − − −  

= − − + −  

 = − − − − − − 

 = − − + − − − 

= − + − + −

= − − + − − + −

 (120) 

 

Then, solving for cosine and sine of the angle α + β + θ: 

 

ED BF AF EC
AD BC c s     + + + +

− −
 = − = =

 
 (121) 

 

and substituting into  cα+β+θ + sα+β+θ =1: 

 

( ) ( ) ( )
2 2 2

ED BF AF EC AD BC− + − = −  (122) 
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Equation (122) is obtained in Roberts’s (1875) form. For the further operations, 

the equation is rewritten as: 

 

( ) ( ) ( ) ( )
22 2 2 2 2 2 2E C D F A B EF AC BD AD BC+ + + − + = −  (123) 

 

or, in open form: 

 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( )

( )

22
2 2

00 02 2

22 2

0

2 22 2

00 02

22 2 2 2
0

2

0
2

0

22

0 0

2 2

4

4

8

X X mgcX X Y Y
a t

a d Y Y mgs

X XX X mgc Y Y mgs
a

Y Ya t h g

X X

X X mgc

a t Y Y Y Y

a d mgs

 

 

   

 

 

+

+

+ +

+

+

 − − − + −   
  + − + − −   

   −− − + − −
  +
   + −+ −   

− 
  − −  

 − + − − 
  +

+ −  −  

( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

( )

0 0

0 0
2

0 0

2 2 2 2 0 0

0 0

0 0
4 2

0 0

0

16

X X X X mgc
c

Y Y Y Y mgs

X X Y Y mgs
s

Y Y X X mgc
a t h g

X X X X mgc
s

Y Y Y Y mgs
a t

X X Y Y mgs
c

Y Y

 



 

 



 

 



 

 



+

+

+

+

+

+

+

    − − −    
    + − − −    
    − − −        − − − −    + − 

 − − −
 −
 + − − − 

=
− − −

+
− − ( )

2

0X X mgc +

 
 
 
 
  
  
  − −  

 (124) 

 

Rearranging the equation to obtain two circles for each center point: 
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( ) ( )

( )

( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

22 2 2 2

00 0 0 02

2 2 2

0

2 2

0 0
2

2 2 0

0 0 2

02 2

2 24

X X mgcX X Y Y X X Y Y
t

d a d a Y Y mgs

X X mgc X X mgc

X X
Y Y mgs Y Y mgs

Y Y
at hg at hg

a t

 

 

   

   

+

+

+ +

+ +

     − −− + − − + −
    
    − − − + + − −     

   − − − −
     −     + + − − + − −
     + −    

− − − +      

( ) ( ) ( ) ( )

( )

( )

( )

( ) ( )

( )

( )( )

( )( )

2 22 2

0 0 0 0

2

0

2
0 0

0

2 2
0 0

0 0

2

2

2

2

2

X X Y Y X X mgc Y Y mgs

X X

X X X X mgcmgcX X
c

Y Y Y Y mgsY Y Y Y
t

mgsd a

at hgd a d

hg at hg

   

  



 

 

+ +

++

+

+

  − + − − − + − −
    

 − 
    − − −  −−       

 + − − − + − −   
−   +  

− − −   
   

− −+ −    
 + − 

( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

0 0

0 0

2

0 0

0 0
2 2

0 0

0 0

4

X X Y Y mgs
s

Y Y X X mgc

X X X X mgc
s

Y Y Y Y mgs
a t

X X Y Y mgs
c

Y Y X X mgc

 



 

 



 

 



 

+

+

+

+

+

+

 
 
 

 
  − − −
  
  − − − −  

  − − −
  −
  + − − −  =
  − − −
  +
  − − − −  

 (125) 

 

Let 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )( ) ( )( )

( )

2 2 2

1 0 0

2 2 2

1 0 0

2 2 2

1 0 0

2 2 2

2 0 0

2 2

0 0

2 2

0 0

0 0 0 0

0

A

B

D

D

A

B

AD

AD

C X X Y Y d a

C X X Y Y d a

C X X mgc Y Y mgs at hg

C X X mgc Y Y mgs at hg

P X X Y Y

P X X mgc Y Y mgs

C X X X X mgc Y Y Y Y mgs

L X X Y Y

   

   

   

   

+ +

+ +

+ +

+ +

= − + − − −

= − + − − +

= − − + − − − −

= − − + − − − +

= − + −

= − − + − −

= − − − + − − −

= − −( ) ( )( )0 0 0mgs Y Y X X mgc   + +− − − − −

 (126) 

 

Then 
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( ) ( ) ( )

( )

2 2 2

1 2 1 2

1 1

22 2

4

2 2 2

4

A A D D D A A D

A D AD AD

AD AD

t C C P C C P a t P P

t C d a d C hg at hg c C s L

a t s C c L

 

 

+ +

− + − + − +      

= − +

 (127) 

 

Finally, the circle of singular foci is united with half of the third term in equation 

(127) to obtain: 

 

( ) ( )
2 2 2

3A D AD AD AD ADP P s C c L c C s L C   − + = − =  (128) 

 

Final form of the coupler-curve equation is obtained as: 

 

( ) ( ) ( )

2 2 2

1 2 1 2

2 2 2

1 1 3

4

2 2 2 4 0

A A D D D A A D

A D AD AD

t C C P C C P a t P P

t C d a d C hg at hg c C s L a t C 

+ +

− + − + − − + =      

 (129) 

 

 

3.2. Graphical Representation of Equation Components 

 

The components obtained in the coupler-curve equation are points, circles and 

lines. Six of the circles, CA1, CA2, CB1, CB2, CD1 and CD2 are centered at the fixed pivots 

A0, B0 and D0. Each fixed pivot has two circles (Figure 9). The circle at A0 with smaller 

radius is CA1 and the one with larger radius is CA2 and so on. These circles can be called 

boundary circles because the coupler-curve must lie within the area bounded by them. 

Each center point has two boundary circles and the area between the two circles is where 

the coupler-curve may be located. The area where the coupler-curve may exist is limited 

to the intersection of circular disks with centers at the fixed pivot (Figure 10). 

Each of the circle and line expressions that appear in the coupler-curve equation, 

and the distances between these objects can be considered as the geometric invariants 

(under coordinate transformation) for the coupler-curve equation. Three different 

versions of the coupler-curve equation are derived for each cognate, and an independent 

set of geometric invariants can be chosen for each version of the equation. For instance, 

for the equation derived using fixed pivots A0 and B0, the radii a + d and |a – d| of the pair 

of circles concentric at A0, the radii f + h and |f – h| of the pair of circles concentric at B0, 
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the distance m = |A0B0| between the circle centers and the angle  that appears in the linear 

combination of the CAB and LAB constitute a set of 6 independent geometric invariants. 

 

 

Figure 9. Graphical representation of components of the coupler-curve of a 4-bar 

mechanism 
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The boundary circles may be tangent to the coupler-curve. The tangency is 

guaranteed under certain conditions. Recall that Figure 8 shows the 4-bar mechanism and 

its cognates. When built as in Figure 8, the mechanism is over-constrained but still moves 

due to special link length ratios. Figure 8 shows 2 cranks. The mechanism is called crank-

rocker, double-crank or double-rocker, depending on the motion of the rotating links. 

Each of the two concentric boundary circles with center at a fixed pivot must have a 

tangent point with the coupler-curve if one of the two rotating links (as in Figure 8) is a 

crank. A crank must match the rotation of another rotating link at another fixed pivot. The 

link with the same rotational speed is drawn with the same type of line in Figure 8. 

Therefore, one crank guarantees 4 tangent points to the coupler-curve. A crank-rocker 

type mechanism is guaranteed to have 4 tangent points when a double-crank mechanism 

is guaranteed to have each of the 6 circles to have a tangent point to the coupler-curve. A 

double-rocker type mechanism is not guaranteed to have tangent points. 
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Figure 10. A 4-bar mechanism’s center points, boundary circles and coupler-curve 
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There are three circles that pass through a pair of fixed pivots with centers at 

midpoints of the pivots: CAB, CBD and CAD. Each circle is named with subscripts of pivots 

it passes through, such as CAB passes through A0 and B0. There are three lines that pass 

through a pair of fixed pivots: LAB, LBD and LAD. The linear combination of these three 

circles and lines appears within alternative forms of the coupler-curve equation. These 

linear combinations have special forms. The coupler triangle is similar to the triangle of 

the three fixed pivots. The linear combination of CAB and LAB connecting A0 and B0 have 

the coefficients as sine and cosine of the inner angle  at D0. CSF = –sCAB + cLAB is the 

circle of singular foci. Such a circle is the geometric locus of points P, such that       

A0PB0 = . The other linear combination that appears in the coupler-curve equation is 

C1 = cCAB + sLAB. C1 is the geometric locus of points Q, such that A0QB0 = 2 – . 

Similar discussion is valid for pair of pivots B0-D0 and angle  for CSF = –sCBD + cLBD 

and C2 = cCBD + sLBD. Similarly, a third alternative form of CSF and a circle C3 are 

associated with fixed pivots A0-D0. The circle of singular foci, CSF, is of course an 

important circle, because it passes through all three fixed pivots and nodes of the coupler-

curve, if there are any (Roberts, 1875). Whether the circles C1, C2 and C3 have any 

significance is yet to be investigated. A general formulation about these circles is 

presented in Section 4.3. 

 

3.3. On the Circle of Singular Foci of 4-Bar Linkages 

 

Let = +X xi y j  be the position vector of a point X on an xy-plane and 

= +A AA x i y j , = +B BB x i y j  be position vectors two specific points A and B. 

( )1 , 0F x y AX BX=  =  represents a curve, where the points on it are such that 

the angle between AX  and BX  is zero, i.e. X , A  and B  are collinear. In other words, 

F1(x, y) = 0 is the geometric locus of points lying on the AB line. 

( )2 , 0F x y AX BX=  =  represents a curve, where AX  and BX  are perpendicular 

to each other, i.e. AXB = 90. The geometric locus of such points is a circle with center 

at the midpoint M of AB and passes through A and B. The radius r2 of the circle is the half 

of |AB|: 
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2 2

2
2 2 2

− −   
= = = +   

   

B A B Ax x y yAB
r AM  (130) 

 

Let ( ) ( ) ( ) ( ) ( )3 2 1, sin , cos , 0= − =F x y F x y F x y   such that 

 

 
( )

( )

( )

( )
1

2

, sin

, cos

F x y AX BX

F x y AX BX






= =


 (131) 

 

This represents a curve, for which the angle between AX  and BX  is . The 

geometric locus of such points is a circle passing through A and B, and for any point C on 

the circle, ACB = . C are on the same side of line AB as the center O3 of the circle for 

 < 90, but for  > 90, C and O3 are on opposite sides of AB (Figure 11). For  = 90, 

F3(x, y) = 0 coincides with F2(x, y) = 0. Also, AO3B = 2 and AO3M = . Triangle 

AO3M is a right triangle. Radius of F3(x, y) = 0 is r3 = |AO3| = r2/sin. 

Let ( ) ( ) ( ) ( ) ( )4 2 1, cos , sin , 0= + =F x y F x y F x y   such that 

 

( )

( )

( )

( )

( )

( )
1

2

, cos sin

, sin cos

/ 2

/ 2

F x y AX BX

F x y AX BX

 

 





+ 
= − = =

+ 
 (132) 

 

F4(x, y) = 0 is a circle passing through A and B, and for any point E on the circle, 

AEB =  =  −  − 2 = 2 – . For the center O4 of the circle, AO4B = 2 =  – 2  

and AO4M =  – . Radius of F4(x, y) = 0 is r4 = |AO4| = r2/cos. Also, O3AO4 = /2. 
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Figure 11. Circles subtending a line segment AB with angles  and  = /2 –  

  

If the points A and B are the fixed pivots of a 4-bar mechanism, F3(x, y) = 0 is the 

circle of singular foci, whereas F4(x, y) = 0 is a circle, which is somehow related to the 

circle of singular foci.  
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CHAPTER 4 

 

PATH GENERATION ALGORITHMS FOR THE SLIDER-

CRANK MECHANISM 

 

This Chapter presents two set of formulations for design. The first one is based on 

a design methodology for given 3 points and either the fixed pivot location, or velocity 

direction at two of the points. The slider translation direction is assumed to be known or 

selected in this method. The second method is a numerical method which makes use of 

the first method as initial guess. In this method, also the fixed pivot location and slider 

translation direction are assumed to be known or selected. The second method can be 

employed for 5-point precision synthesis or a least square approximation problem for 

more than 5 points. 

 

4.1. Synthesis Method Based on Geometric Invariants of the Coupler-

Curve 

 

Coupler-curve equation has two tangent points to the inner and outer tangent 

circles C1 and C2. These two points, say (x1, y1) and (x2, y2), are where the linear 

combination of slider axes, aL1 ± bL2 is also coincident. Therefore, the closest and farthest 

points to the origin may be taken as two special points. This method makes use of these 

two special points. 

The design problem can be defined by three design points, given fixed pivot 

location and slider translation direction. The rest of the parameters can be computed. If 

the closest and furthest of three points are assumed to be the two special points that are 

the closest and the furthest of the curve to the fixed pivot, then the distances of the two 

special points to the fixed pivot give smaller and larger radii, r1 and r2. Hence the design 

parameters a and d can be found. This type design method is Blechschmidt and Uicker’s 

(1986) method. Instead of selecting some of the points to be nodes as in Blechschmidt 

and Uicker (1986), here some points are selected as closest and furthest points to a fixed 

pivot. 
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Another approach to define the problem is defining the coupler-point path itself. 

Given the desired curve, one may select three design points, two of which are assumed to 

be the closest and the furthest points to the fixed pivot. The fixed pivot location is 

determined as the intersection of two lines perpendicular to the tangents to the curve at 

the two special points, because the two circles in Figure 6 are tangent to the coupler-curve 

at these points. The tangents to the curve define the velocity vector orientations at special 

points. Still, the orientation of the slider axes is to be chosen. 

Then, these two tangent points must also satisfy the associated combination of the 

slider axes, aL1 ± bL2 (see Figure 6). Having determined a and d, two more equations for 

the two special points can be formed in three unknowns. 

 

( ) ( )

( ) ( )

1 1 1 1 1 1 1

2 2 2 2 2 2 2

0

0

   

   

− + − + = → − + = −

− − + − = → − + =

a y h bs x bc y dh s x c y b rh ay

a y h bs x bc y dh s x c y b r h ay
 (133) 

 

b and h can be solved linearly in terms of the determined tangent point coordinates 

(x1, y1) and (x2, y2), the circle radii, (r1 and r2 determined from these coordinates) and 

design parameters a and d: 

 

1 1 1 1 1 11

2 2 2 2 2 22

   

   

− −−    
= →  =    − −    

s x c y r s x c y rayb

s x c y r s x c y rayh
 (134) 

 

b and h can be solved using Cramer’s rule: 

 

( )

( )

2 2

1 2 2 11 1

2 2 2

1 21 1 1
2

s c

xy

s c

ay r

a r y r yay r
b

s V c V

s x c y ay

a s V c y ys x c y ay
h

s V c V

 

 

  

 

+−
= =

 −

−

− +− −
= =

 −

 (135) 

 

where 2 1 1 2= −cV y r y r , 2 1 1 2= −sV x r x r  and 1 2 2 1= +xyV x y x y . 

Rewriting slider axes in terms of known parameters and the only unknown α: 



62 
 

( )

( )

1 2

1

1 2 2 1

1 2

2

2

2

xy

xy

s c

d s V c y y
L s x c y

r y r y

a s V c y y
L y

s V c V

 

 

 

 

− +
= − +

+

−
= +

−

 (136) 

 

Finally, the coupler-curve equation is obtained with b and h eliminated, α is the 

only unknown and all other parameters are known. This form is a little complicated and 

too long to be expressed here. The only unknown α can be determined by picking an 

arbitrary point on the given curve. When tangent of the half angle substitution is used, the 

equation has degree 4, which can be analytically solved. Hence, there are 4 solutions for 

α, but two of them are separated by 180° to the other two. Having determined the angle 

α, and the mechanism is obtained. Figure 12 presents the flow diagram of this method. 

 

 

Figure 12. Flow diagram for geometric invariant-based method for slider crank 

mechanism 
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The method is numerically applied to an existing mechanism with link lengths      

a = 10, b = 18, d = 12, h = 7 units and α = 30. The closest and furthest points on the 

coupler-curve from origin (where the fixed pivot of the mechanism is originally located) 

are measured approximately as (–0.3, 2.0) and (18.2, 12.4) respectively. The distance of 

the two points to the origin are 2.022 and 22.023, respectively. The link lengths a and d 

are calculated as 12.023 and 10 units, but which one is smaller or larger cannot be 

determined at this point. Intermediate variables are calculated as Vs = 58.85, Vc = –7.98 

and Vxy = 32.68. Depending on whether a or d is the larger one, there are two different set 

of roots for α. In total, four set of parameters are calculated for four α values. The third 

point on the coupler-curve is required for further calculations. A random point is 

measured as (12.62, 6.51). One set of result for d > a case is b = 18.3, h = 4.84 and α = 

35.95 (Approximation #1). The other set is b = 12.7, h = –3.25 and α = 76.59 

(Approximation #2). One set of results for the a > d case is b = 16.55, h = –4.25 and α = 

76.65 (Approximation #3). The other set is b = 19.77, h = –12.7 and α = 115.88 

(Approximation #4). Resultant coupler-curves are given in Figure 13 together with the 

coupler-curve from which the measurements are taken. Approximation #1 appears to be 

the closest solution. 

 

 

Figure 13. Graph based approximation method example 
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As r1 may be d – a or a – d depending on which link is longer, there are two 

possible expressions for final step where the angle α is solved. As the equation of the 

coupler-curve is non-linear in terms of α, multiple number of solutions are expected. 

Numerical examples typically result in 4 roots, 2 of which give the same mechanism with 

the other two as an angle α increased by π and related link lengths are multiplied with –

1. The final step proceeds using bisection method as the upper and lower limits of angle 

α is 0 to 2π. However, during application the α value is scanned for the whole range to 

determine the approximate location of the roots and bisection search is focused on these 

limited zones. 

The generated curves must pass through two special points and the third point. 

The generated curves satisfy the three design (or precision in this case) points either in 

open configuration or the cross-configuration of the mechanism. The cross-configuration 

curves of the numerical example solution are not drawn in Figure 13 to keep the graph 

clearer. The coupler curve equation defines curves of both configurations but the given 

design points being satisfied by one configuration only is never guaranteed. This is called 

branching problem. 

 

4.2. 5-Parameter Design Problem 

 

The 5-parameter coupler-curve equation of slider-crank linkage is expressed in 

equation (57) in Chapter 2. This section explains the complexity of the problem. Solution 

of an equation with 5 independent parameters/coefficients means looking for solutions in 

a 5-dimensional space.  

 

4.2.1. Five Coefficients of the Polynomial Form 

 

Equation (57) is problematic because of the denominators. The function becomes 

undefined if the denominator of any term in the equation approaches zero. In addition, 

partial derivatives of rational expressions in the coupler-curve equation are required in 

root finding, which is harder to obtain and hence prone to errors with terms in the 

denominator. Multiplying equation (57) by B2D2 to get rid of the denominators: 
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 (137) 

 

This equation is expected to be useful in root finding formulation, as none of the 

independent variables are in any trigonometric function. The required formulas for five 

precision points are given below:   
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 (138) 

 

Numerical tests with this approach always resulted in trivial solutions as all terms 

in the equation has either B or D as a multiplier, therefore a modified approach is 

generated and presented in the forthcoming sub-sections.  
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4.2.2. Design for 5 Precision Points  

 

This section establishes a method for path generation problems where the task is 

given to match 5 precision points. The maximum number of precision points is limited to 

the number of design parameters. This number is maximum 8 for the slider-crank linkage. 

As mentioned earlier, three of these parameters may be considered as coordinate 

transformation parameters and can be considered separately. This separation divides the 

design methodology study into two sections: design for 5 parameters with all coordinate 

transformation parameters set to zero and for 8 parameters as the most general case. The 

most general case is left as a future study. 

The method presented in Section 4.2.1 has divergence/trivial solution problems. 

In this section, instead of selecting the free design parameters among the polynomial 

coefficients, some Euclidean invariants are selected as independent parameters. The 

coefficients of the equation (53) are composed of 5 design parameters: g, h, r1, r2 and α. 

By taking the partial derivatives of the equations with respect to these 5 parameters: 
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 (139) 

 

Equation (53) is rewritten in terms of design parameters as 
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Taking derivative with respect to g: 
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Derivative with respect to h: 
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Derivative with respect to r1: 
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Derivative with respect to r2: 
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Derivative with respect to α: 
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The derivative expressions form a Jacobian matrix J  when applied to five 

precision points. Formulations for the Newton-Raphson root finding method is derived 

as: 

 

( ) ( ) ( )
1

1 1       
−

+ +− = −  = −k k k k k kJ x x x x x J x      k = 0, 1, … (146) 

 

where 
1, 2, =   

T

k k k k k kx g h r r  is the array of design parameters at the kth iteration 

step. Now, a proper set of initial values is needed. The root is sought in a 5-dimensional 

space. The geometric invariants-based method presented in Section 4.1 is helpful at this 

point. By selecting the closest and furthest points to the fixed pivot among the given 5 

points, and assuming that they will be the closest and furthest points on the coupler-path, 

an initial set of values for the tangent circle radii, r1 and r2, can be determined. Then, b 

and h are derived in terms of angle α. Finally, having three more candidates (a total of 

five points) for third point, each point gives four solutions for angle α hence four sets of 

solution for five design parameters is obtained for each candidate of third point. For five 

precision points, 12 sets of initial values are tested, and some converge to a solution after 
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applying the iterations in equation (146). Below is a numerical example to demonstrate 

the method. Five points are selected randomly at the beginning. 

 

Table 1. 5 Precision points for numerical problem 

i xi yi 
2 2+i ix y  

1 5 3 5.830952 

2 0 7 7 

3 3 12 12.36932 

4 10 12 15.6205 

5 13 6.5 14.53444 

 

The closest point to the origin is point #1 and furthest is point #4. The other three 

precision points are used to generate 12 sets of initial values for the problem (Table 2). 

 

Table 2. Set of initial values for 5 precision point example 

Initial 

value set 

Design 

point # 

Initial Values 

g0 h0 a0 d0 α0 

1 2 -0.03867 119.3731 10.725726 4.894774 111.592 

2 2 -0.12671 81.99904 4.8947737 10.72573 117.7511 

3 2 -0.03867 119.3731 10.725726 4.894774 111.592 

4 2 -0.12671 81.99904 4.8947737 10.72573 117.7511 

5 3 -0.09414 -29.9345 10.725726 4.894774 2.957009 

6 3 0.08032 -129.73 4.8947737 10.72573 138.6699 

7 3 -0.09414 -29.9345 10.725726 4.894774 2.957009 

8 3 0.08032 -129.73 4.8947737 10.72573 138.6699 

9 5 -0.11845 4.694095 10.725726 4.894774 45.27215 

10 5 0.089177 -116.507 4.8947737 10.72573 139.5692 

11 5 -0.11845 4.694095 10.725726 4.894774 45.27215 

12 5 0.089177 -116.507 4.8947737 10.72573 139.5692 

 

The iteration results are listed in Table 3 in the same order with Table 2. 
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Table 3. Convergence results of 5 precision point example 

Initial 

value set 

Design 

point # 
Converge? 

Final Values 

g h r1 r2 α 

1 2  #NUMERR -126.738 1.3E+10 1.06E+10 20178.41 

2 2 3.691E-27 -2.04706 0.644698 15.66279 3.328551 -24900.3 

3 2  #NUMERR -126.738 1.3E+10 1.06E+10 20178.41 

4 2 1.721E-27 -2.04706 0.644698 15.66279 3.328551 -24900.3 

5 3 1.589E-22 2.047057 0.644698 -3.32855 -15.6628 12690840 

6 3 1.106E-22 0.058094 -180.745 5.756558 15.65056 142.9712 

7 3 1.589E-22 2.047057 0.644698 -3.32855 -15.6628 12690840 

8 3 1.106E-22 0.058094 -180.745 5.756558 15.65056 142.9712 

9 5  28.97718 210.412 -6.5E+09 4.41E+08 -1320.2 

10 5 1.251E-25 0.058094 -180.745 5.756558 15.65056 142.9712 

11 5  28.97718 210.412 -6.5E+09 4.41E+08 -1320.2 

12 5 1.251E-25 0.058094 -180.745 5.756558 15.65056 142.9712 

 

 

Table 4. Link Length Parameter Results for 5 precision points example 

Initial 

value 

set 

Design 

point # 
Convergence? a b d h α 

1 2 #NUMERR 1.2E+09 #NUMERR 1.18E+10 -126.738 18.4096 

2 2 3.691E-27 6.16712 19.43819 9.495672 0.644698 119.6769 

3 2 #NUMERR 1.2E+09 #NUMERR 1.18E+10 -126.738 18.4096 

4 2 1.721E-27 6.16712 19.43819 9.495672 0.644698 119.6769 

5 3 1.589E-22 6.16712 -19.4382 -9.49567 0.644698 119.6769 

6 3 1.106E-22 4.946999 0.621816 10.70356 -180.745 142.9712 

7 3 1.589E-22 6.16712 -19.4382 -9.49567 0.644698 119.6769 

8 3 1.106E-22 4.946999 0.621816 10.70356 -180.745 142.9712 

9 5 #NUMERR 3.48E+09 -8.8E+10 -3E+09 210.412 119.7985 

10 5 1.251E-25 4.946999 0.621816 10.70356 -180.745 142.9712 

11 5 #NUMERR 3.48E+09 -8.8E+10 -3E+09 210.412 119.7985 

12 5 1.251E-25 4.946999 0.621816 10.70356 -180.745 142.9712 

 

The converge column in Table 3 is the result of the sum of the squares of coupler-

curve equation at precision points with final values of design parameters. Although a total 

of 8 convergence results appears in Table 3, some set of parameters are practically the 

same. Initial value set #2, #4, #5 and #7 resulted in the same mechanism. Likewise, #6, 

#8, #10 and #12 are the same.  Therefore, only two distinct mechanisms are obtained for 

solution. 
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4.2.3. Least Squares Approximation for 5 Parameter Design 

 

The root finding formulation in Section 4.2.2 may also be used for least squares 

approximation for n many design points, n being larger than the number of design 

parameters, 5.  

The methodology of least squares approximation is formulated as: 

 

( ) ( ) ( ) ( )
1

1 1     
−

+ +

 
− = −  = −  

 

T T

k k k k k kJ x x x x x J J J x    k = 0, 1, … (147) 

 

The sample mechanism in Section 4.1 is used once more to demonstrate the 

method. Recall that the mechanism link lengths are a = 10, b = 18, d = 12, h = 7 units and 

α = 30. The design points are picked on the coupler-curve based on crank angle (θ in 

Figure 7). 8 design points are listed in Table 5. The design points are also shown 

graphically in Figure 14. 

 

Table 5. List of design points 

θ xi yi 
2 2+i ix y  

45 17.48698 13.02999 21.80769 

90 11.24695 14.18403 18.10195 

135 3.344845 13.02999 13.45246 

180 -2.75906 9.56916 9.958978 

225 -5.28055 4.794599 7.132491 

270 -2.25102 1.786981 2.874087 

315 8.861582 4.794599 10.07551 

360 17.24094 9.56916 19.71849 
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Figure 14. Coupler-curve of sample mechanism and design points 

 

Next step is to determine the points with minimum and maximum distances to the 

origin, where pivot point of the crank is assumed to be located. The last column is for the 

distances of points to the origin, called r. Minimum and maximum distance points 

correspond to 270 and 45 crank angles, respectively. The distances of these points are 

approximate values for r1 and r2 parameters. Therefore, approximate values for a and d 

are calculated as in graph-based method in Section 3.2. Intermediate variables are 

calculated as Vs = 99.34856, Vc = -1.5206 and Vxy = 1.918184. Both a > d and a < d cases 

offer two roots for the coupler-curve equation; hence 4 set of parameters are to be 

calculated. The calculation may be done by picking any of the remaining 6 design points. 

Each design point results in a different set of variables. Results are presented in Table 6. 

The table shows a and d parameters separately. The two parameters are intentionally left 

in Table 6 to show how other parameters are obtained. Iterations use r1 and r2 parameters. 

Least square approximation is applied 24 times with initial set of values given in 

Table 6. Convergence of the trials are listed in the last column. 4 set of initial values are 

set for each design point and at least one set of values from each design points converged 

to the original mechanism. A total of 10 set of initial values led to convergence in this 

case study. The link lengths/angles are listed in Table 7. 

Note that the solution always approximates to one of the cognates not the other. 

The reason behind this is that the coupler curve equation is formed of the design 

parameters of that mechanism. When the coupler-curve equation is rewritten in terms of 

link lengths of the other cognate, the solution will always converge to that cognate. 
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Table 6. Set of parameters to start with the iterations 

# θ g0 h0 a0 d0 α0 Convergence 

1 90 0.80091 8.16473 9.46680 12.34089 27.32186 Yes 

2 90 1.58376 -1.80711 9.46680 12.34089 109.99036 No 

3 90 0.76051 4.76070 12.34089 9.46680 48.80758 No 

4 90 0.58043 -8.23646 12.34089 9.46680 143.53524 No 

5 135 1.20049 4.30968 9.46680 12.34089 44.21821 Yes 

6 135 0.52663 -13.69507 9.46680 12.34089 161.02112 No 

7 135 0.88492 2.85928 12.34089 9.46680 61.65058 No 

8 135 0.03310 -174.41606 12.34089 9.46680 177.22116 No 

9 180 0.22003 33.79133 9.46680 12.34089 6.58225 No 

10 180 0.60815 11.43361 9.46680 12.34089 20.14991 Yes 

11 180 0.31914 16.98514 12.34089 9.46680 17.78453 Yes 

12 180 0.40144 -13.31160 12.34089 9.46680 155.38920 No 

13 225 0.59504 11.72515 9.46680 12.34089 19.67592 Yes 

14 225 0.63097 10.95295 9.46680 12.34089 20.97858 Yes 

15 225 0.09055 63.33089 12.34089 9.46680 4.33187 No 

16 225 0.59421 7.65187 12.34089 9.46680 35.69000 Yes 

17 315 0.50265 14.18097 9.46680 12.34089 16.37408 Yes 

18 315 1.60582 1.38450 9.46680 12.34089 70.46085 No 

19 315 0.90634 2.50864 12.34089 9.46680 64.45064 No 

20 315 0.93011 2.09086 12.34089 9.46680 67.95801 No 

21 360 0.47516 15.08544 9.46680 12.34089 15.40353 Yes 

22 360 1.63382 1.11066 9.46680 12.34089 73.69044 No 

23 360 0.58979 7.74229 12.34089 9.46680 35.37460 Yes 

24 360 0.99647 0.09931 12.34089 9.46680 86.65923 No 
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Table 7. Link lengths/angles for least squares approximation solution for 5 parameters. 

# g h r1 r2 α 

1 0.666667 7 -22 -2 30° 

2 0.666667 7 -22 -2 30° 

3 0.666667 7 2 22 30° 

4 0.666667 7 2 22 30° 

5 Diverged 

6 0.666667 7 2 22 30° 

7 0.666667 7 -22 -2 30° 

8 0.666667 7 2 22 30° 

9 0.666667 7 2 22 30° 

10 0.666667 7 2 22 30° 

11 Diverged 

12 0.666667 7 2 22 30° 

13 Diverged 

14 0.666667 7 2 22 30° 

15 0.666667 7 2 22 30° 

16 Diverged 

17 0.666667 7 22 2 30° 

18 0.666667 7 2 22 30° 

19 Diverged 

20 0.666667 7 2 22 30° 

21 -0.66667 7 2 22 210° 

22 Diverged 

23 Diverged 

24 0.666667 7 2 22 30° 
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CHAPTER 5 

 

CONCLUSIONS 

 

This thesis investigates the geometric properties of planar slider-crank and 4-bar 

mechanisms. Also, methodologies for path generation problem using the coupler-curve 

geometric properties are introduced. 

The slider-crank coupler-curve equation is quartic and is shown to be composed 

of two circle and two-line components. The two circles are limiting the area where the 

coupler-curve may be located. The two lines are slider axes of the slider-crank mechanism 

and the cognate mechanism. The coupler-curve equation is expressed with two terms. The 

first term is one of the circles multiplied with an ellipse that is a linear combination of the 

other circle and multiplication of two slider axes. The second term of the coupler-curve 

equation is square of linear combination of slider axes. This provides a novel 

representation of the slider-crank mechanism coupler curve in the form of Ellipse × Circle 

+ Line2 which results in a set of independent Euclidean invariants of the coupler-curve. 

The two circles in the slider-crank coupler-curve equation are guaranteed to have 

a tangent point each with the coupler-curve when the crank link can make a full rotation. 

That specific point on the coupler-curve satisfies both the coupler-curve equation and the 

circle equation. This leads to the second term in the equation to be equal to zero. The 

closest and furthest points on the coupler-curve meeting certain conditions inspired the 

path generation method introduced in Chapter 4. The method can be used to design a 

slider-crank mechanism for 5 precision points on the coupler-curve or more design points 

for an approximate design.  

The slider-crank synthesis methods are demonstrated with numerical examples. 

For the first case study, a desired coupler curve is given, a fixed pivot location and slider 

direction is chosen, and closest and furthest points of the curve to the fixed pivot are 

determined. A third point on the curve is also used to determine all link lengths, hence a 

solution for three precision points is obtained. Then the method for 5 precision points is 

demonstrated with randomly chosen 5 points. This example results in two distinct 

solutions. Finally, least square approximation is applied for 8 design points as a case 

study. The design points are not random, but taken from an existing slider-crank 
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mechanism, the solution converged to the original mechanism from several sets of initial 

values. 

A future study for this approach might be keeping the fixed pivot location and 

slider orientation as unknown and design for all 8 constructional parameters of a slider-

crank mechanism. In practice, the fixed pivot may be located in a limited area. The slider 

orientation can be any angle between 0 and 180. Therefore, an algorithm may be formed 

that the area for possible location of fixed pivot is divided into a mesh and for each point 

on the mesh, the slider orientation parameter might have a limited number of values and 

the rest of the parameters are determined through the method introduced. This results in 

several mechanisms and hence coupler curves, and the one that gives best solution 

depending on design criteria can be chosen.  

The 4-bar mechanism coupler-curve equation is a sextic and shown to be 

composed of circle and line expressions. The forms that already exist in the literature for 

more than a century are taken further and geometric components are obtained. These 

geometric components can be used to define some Euclidean invariant of the curve. A 4-

bar mechanism has three cognates, and three coupler-curve equations can be written for 

each cognate. The coupler-curve equation is obtained from all three cognates in terms of 

limiting circles, similar to the slider-crank case and additional special circle and lines 

formed by fixed pivot locations. 

The discovered properties of the coupler curve of the 4-bar mechanism may be 

helpful in a synthesis method similar to the ones introduced for the slider-crank 

mechanism. If the fixed pivot locations are selected, the radii of the tangent circles, hence 

4 link lengths might be determined. Finally, an additional point would give the inner angle 

of the coupler link. The detail of this method is left as a future study. 
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