
THE REALIZATION OF A BLOCKCHAIN-BASED
E-VOTING SOLUTION WITH A NEW CONSENSUS

ALGORITHM

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Mustafa KARAÇAY

December 2022
İZMİR

ACKNOWLEDGMENTS

I would like to express my deepest and warmest thanks to my supervisor Asst.

Prof. Serap Şahin for her guidance, patience, and invaluable effort she put into making

this thesis possible.

I would also like to thank my family for the strength and great support they have

given me throughout my life.

ABSTRACT

THE REALIZATION OF A BLOCKCHAIN-BASED E-VOTING
SOLUTION WITH A NEW CONSENSUS ALGORITHM

Security and transparency issues in the paper-based voting system and techno-

logical advances popularized e-voting systems. Many academic research and industrial

solutions have recently been proposed, designed, and implemented with a Homomorphic

Cryptography Scheme or HTTPS. However, there is a new popular player in the game

which is called blockchain technology. This study analyzes the requirements of a well-

designed e-voting system and the technology behind the blockchain, and proposes an

e-voting system with a novel consensus algorithm.

Different strategies are designed and implemented to satisfy all requirements.

First, RSA and Paillier Homomorphic Cryptosystem are applied to meet require-

ments such as individual verifiability, secrecy, etc. So that no one can modify the vote;

however, any voter can verify his/her vote during the whole vote period.

Second, different blockchains are used to meet requirements such as eligibility,

privacy, authentication, etc. So that the system detects whether the data is coming from

an eligible or a non-eligible voter. The system ensures that votes and voters can not be

correlated if it is an eligible voter. So, the privacy of eligible voters is always protected.

Third, our blockchains ensure Consensus throughout the voting process. Fully

replicated, distributed, transparent, and secure blockchains ensure that everything is under

control.

Fourth, internal control mechanisms are applied to meet requirements such as non-

reusability, coercion-resistance, etc. So that eligible voters can cast just one vote within

the specified period. The system keeps every sensitive data encrypted so that no one

manipulates the results before the vote ends.

iii

ÖZET

BLOKZİNCİR-TABANLI ELEKTRONİK SEÇİM ÇÖZÜMÜNÜN YENİ
BİR UZLAŞMA ALGORİTMASI İLE GERÇEKLENMESİ

Kağıt bazlı oylama sistemindeki güvenlik ve şeffaflık sorunları, teknolojik geliş-

melerle beraber elektronik oylama sistemlerini popüler hale getirdi. Son zamanlarda, Ho-

momorfik Kriptografi Şeması veya HTTPS ile pek çok akademik araştırmalar ve endüstri-

yel çözümler önerilmiş, tasarlanmış, ve uygulanmıştır. Ancak, artık oyunda blokzin-

cir teknolojisi olarak adlandırılan yeni bir oyuncu daha bulunuyor. Bu çalışmada, iyi

tasarlanmış bir elektronik oylama sisteminin gereksinimleri ve blokzincirin arkasındaki

teknoloji detaylı bir şekilde analiz edilmiştir. Çalışma içerisinde, yeni bir Uzlaşma Algo-

ritması kullanılarak elektronik oylama sistemi önerilmiş ve gerçeklenmiştir.

Elektronik oylama sisteminin tüm gereksinimlerini karşılamak için çeşitli strate-

jiler tasarlanıp, uygulanmıştır.

Bireysel doğrulanabilirlik ve gizlilik gibi gereksinimleri karşılamak için RSA ve

Paillier Homomorfik Kriptosistem uygulanmıştır. Bu sayede, hiç kimse oy verisini değişti-

remez, aynı zamanda, herhangi bir seçmen tüm oylama süreci boyunca kendi oyunun

blokzincirdeki varlığını doğrulayabilir.

Uygunluk, gizlilik, ve kimlik doğrulama gibi gereksinimleri karşılamak için farklı

blokzincirler kullanılmıştır. Bu sayede verilerin uygun veya uygun olmayan bir seçmenden

gelip gelmediğini tespit edilebilir. Oy kullanan kişi uygun bir seçmen ise, oy ve seçmen

arasında herhangi bir ilişki kurulmasına izin vermez. Böylelikle uygun seçmenlerin mahre-

miyeti her zaman korunur.

Uzlaşma Algoritmasını, önerilen sistem için tasarlanan ve gerçeklenen blokzin-

cirler sağlar. Tamamen kopyalanmış, dağıtılmış, transparan, ve güvenli blokzincirler her

şeyin kontrol altında olmasını sağlar.

Yeniden kullanılamazlık ve baskıya karşı direnç gibi gereksinimleri karşılamak

için iç kontrol mekanizmaları uygulanmıştır. Böylece, uygun seçmenler belirtilen süre

içinde yalnızca bir oy kullanabilir. Sistem, tüm hassas verileri şifrelenmiş halde tutar,

böylece oylama bitmeden sonuçları kimse manipüle edemez ve değiştiremez.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . x

CHAPTER 1. INTRODUCTION . 1

1.1. Thesis Goal and Motivation . 3

1.2. Contribution . 3

1.3. Outline . 4

CHAPTER 2. BACKGROUND . 5

2.1. Blockchain: Definition . 5

2.2. Blockchain: Under the Hood . 7

2.3. Types of Blockchains . 9

2.4. Consensus Algorithms . 10

2.5. Types of Consensus Algorithms . 10

2.6. Comparison of Blockchains Together with Consensus Algorithms . 11

2.7. Additional Applied Technologies . 12

CHAPTER 3. DESIGN OF THE SYSTEM . 14

3.1. System Assumptions . 14

3.2. System Requirements . 15

3.3. Proposed Solution and Design . 15

3.3.1. Setup Phase . 18

3.3.2. Registration Phase . 21

3.3.3. Voting Phase . 25

3.3.4. Blockchain Phase . 26

3.3.5. Individual Verifiability During Voting Phase . 33

3.3.6. Counting Phase . 34

3.3.7. Announcement Phase . 36

3.3.8. Individual and Universal Verifiability After Results Announced 37

v

CHAPTER 4. IMPLEMENTATION OF THE SYSTEM . 39

4.1. Installation . 39

4.2. Architecture. 40

4.2.1. main.py . 40

4.2.2. setup phase.py . 63

4.2.3. register phase.py . 65

4.2.4. voting phase.py . 67

4.2.5. counting phase.py . 68

4.2.6. announcement phase.py . 69

4.2.7. dashboard.py . 70

4.3. Simulation of a Vote Event . 71

CHAPTER 5. RELATED WORKS . 73

5.1. Academic Researches . 73

5.2. Current Blockchain-Based E-Voting Systems . 75

CHAPTER 6. DISCUSSION . 77

CHAPTER 7. FUTURE WORK . 81

CHAPTER 8. CONCLUSION . 84

vi

LIST OF FIGURES

Figure Page

2.1. The Total Cryptocurrency Market Cap. 7

2.2. The Structure of Blockchain. 8

2.3. The State Transition Model for Raft Leader Election. 12

3.1. The System Overview. 16

3.2. The EPC Diagram of the Review Process. 17

3.3. The Usage of the System’s RSA Key Pair, and the Voter’s Paillier Key Pair. . 20

3.4. The Consensus with Four Blockchain. 32

3.5. The Comparison of Four Blockchain. 34

4.1. The Interaction Between the Voters and Our Blockchains. 43

vii

LIST OF CODE SNIPPETS

3.1. A Sample Block of EligibleVoterBlockchain 18

3.2. A Sample Block of RegisteredVoterBlockchain 24

3.3. A Sample Block of PrivateKeyBlockchain 25

3.4. A Sample Block of VoteBlockchain . 30

4.1. Instances of Blockchains and Phases . 42

4.2. Calculate Hash of Given Values . 42

4.3. Calculate Merkle Root Hash of Given Block 43

4.4. EligibleVoterBlockchain . 44

4.5. RegisteredVoterBlockchain . 46

4.6. PrivateKeyBlockchain . 48

4.7. VoteBlockchain . 50

4.8. Setting the Start/End Times of Each Phase 52

4.9. Initialize Candidates . 53

4.10. Generate RSA Key Pair Endpoint . 54

4.11. Generate RSA Key Pair Function . 55

4.12. Paillier and RSA Key Generation Class . 55

4.13. Initialize Eligible Voter’s SSN . 56

4.14. Voter Registration . 57

4.15. Vote Attempt . 58

4.16. Individual Verify During Voting Phase . 59

4.17. Count Votes . 60

4.18. Announce the Results . 61

4.19. Individual Verify After Voting Completed 62

4.20. Setup Phase - Initialize Candidates . 64

4.21. Setup Phase - Initialize Eligible Voter’s SSN 64

4.22. Register Phase - Voter Registration . 65

4.23. Voting Phase - Vote Attempt . 67

4.24. Counting Phase - Count Votes . 68

4.25. Announcement Phase - Announce the Results 69

viii

4.26. Dashboard Data . 70

4.27. Simulate of a Vote Event . 71

ix

LIST OF TABLES

Table Page

8.1. An Overview of the System’s Phases in terms of Requirements. 85

x

CHAPTER 1

INTRODUCTION

Voting is the most critical part of democracy, and the current use of paper-based

voting systems has serious transparency, trust, and security issues. This problem is some-

times referred as voter fraud or vote rigging. In some cases, there may be more votes used

than voters in other words duplicate voting, votes may be stolen, voters may be forced

to vote for the other candidate, or identity thieves may vote rather than the eligible voter.

The examples can be extended, but they will not change the result. Classical paper-based

voting systems also cause a huge waste of time, money, and sources.

There is a need, a demand, and a necessity for a secure, reliable, and transparent

voting system. At this point, blockchain technology could be the answer to this problem

domain.

Blockchain technology is changing how organizations do business across all func-

tions and industries. Finance, commerce, and judiciary are some of the areas where

blockchain technology is applied successfully.

In this study, a well-designed blockchain-based e-voting system is examined.

Therefore, when making a comparison with the literature, the key required elements can

be expanded to twelve elements by the study of [28] and they are listed as follows:

i. Inalterability: Once a vote is casted, it can not be modified.

ii. Non-reusability: A voter must have only one valid vote.

iii. Eligibility: Only eligible voters should cast a vote.

iv. Fairness: Unless the voting process ends, the counting process can not be

started.

v. Individual verifiability: Every voter should keep track of whether her own

casted vote is still in the system or not.

vi. Universal verifiability: Everyone can verify the correctness of the whole vot-

ing process and results according to announced system keys and data.

vii. Privacy: Votes can not be correlated with voters with the help of vote anonymi-

zation.

1

viii. Authentication: Checking the credentials of anyone to see whether the prof-

fered identity is consistent or not.

ix. Integrity: While applying some operations on data, protecting the accuracy

and consistency of it.

x. Coercion-resistance: Providing a fake credential for every voter to use in any

possible coercion case.

xi. Receipt-freeness: Attackers can not find any receipt of a voter’s casted vote.

xii. Secrecy: Ensuring that no one can read the message except the intended

receiver.

All these requirements clearly cover the critical points of a well-designed e-voting

system. In addition to these requirements, there may be an uncovered important require-

ment.

To identify this requirement, we need to look at it from the voter’s point of view.

Then, we need to ask following questions.

• How can we trust the entire election process?

• Is the truth of the result guaranteed?

• How secure is this electoral system?

The answer to the first and second questions is to re-process. Not only voters

but also any user should be able to re-process the same phases of the election and check

differences between each other, which are expected to be identical.

The answer to the last question is to perform cyber attacks. Any voting system’s

security level can be determined by performing security tests on it. Making cyber-attacks

on the system by developers/authors or any user would work. Furthermore, the number of

completed tests/cyber-attacks increases the probability of identifying the possible loop-

holes and weaknesses of the system. Many cyber-attacks exist, like Man in the middle,

Brute Force, or DDoS (Distributed Denial of Service); these are the most familiar ones.

These cyber-attacks force the system to make mistakes and naturally expose the problems

and required solution domain [8].

The common point between these answers is that replaying of the election can be

accessible to any user so that each user can observe the election process by themselves

and try to find out insecure parts of the proposed system.

2

In conclusion, the following thirteenth requirement should be covered by the sys-

tem to make the election process more secure, reliable, and transparent.

xiii. Election replay: Any user can re-process the entire election phase and per-

form tests/attacks against the system after the election is fully completed with given elec-

tion data.

With the help of all requirements, including the last explained election replay

capability, the system will be able to get the necessary robustness. In later chapters, the

technical details will be provided.

1.1. Thesis Goal and Motivation

The proposed thesis briefly analyzes the requirements of a voting system and aims

to satisfy each requirement efficiently. The thesis aims to design and implement an e-

voting system that can be considered robust, trusted, secure, and easy to use in real life so

that elections will be more transparent, equal, and fair. Even if the proposed solution is

not used actively in real life, the thesis aims to contribute to Computer Science with the

ideas.

1.2. Contribution

The requirements of a secure e-voting system are briefly analyzed, and even a new

requirement: xiii. Election replay is discovered. The system uses different approaches to

satisfy election replay and accomplish voter privacy.

A unique Authentication-Based Consensus Algorithm is designed and implemented

instead of popular ones using our four blockchains, called EligibleVoterBlockchain, Regis-

teredVoterBlockchain, PrivateKeyBlockchain, and VoteBlockchain. These four blockchain

will be used to make an agreement between nodes in different phases. So that, the system

makes sure that non-eligible voters can not register to the system, non-registered voters

can not vote, only valid votes will be counted, etc. The details of the consensus algorithm

will be introduced in section 3.3.4. Blockchain Phase.

Each of these blockchains can be replicated and distributed under different vir-

tual machines - VMs. Thanks to our blockchains, the system does not require dis-

3

tributed/shared databases, relational/non-relational databases, browser databases, indexed

databases, etc. The traces of data can lead to unacceptable consequences, and the details

of this problem will be discussed in further chapters.

The agility of the system architecture is always considered during the design and

implementation. Paillier encryption is used in the thesis; however, any asymmetric en-

cryption mechanism can be chosen and implemented without breaking anything. The en-

cryption algorithms provide an extra security level, and the system can be re-implemented

according to desired encryption mechanism quickly thanks to the system’s maintainabil-

ity.

1.3. Outline

In Chapter 2, the required background information is introduced. In Chapter 3,

the proposed solution and design of the system are briefly explained. System assumptions

and requirements are listed, and then a detailed life-cycle of the system has introduced.

In Chapter 4, implementation of the system is given with explanations and source code.

The simulation tool is introduced at the end of the chapter. In Chapter 5, related works

are examined and compared with the proposed solution in terms of advantages and dis-

advantages. Both academic research and industrial solutions are explained. In Chapter

6, we discussed the proposed system according to different parameters. In Chapter 7,

the possible improvements are introduced to make the system more robust, secure, and

flexible. In Chapter 8, the conclusion is presented.

4

CHAPTER 2

BACKGROUND

2.1. Blockchain: Definition

What is Blockchain? Blockchain is a technology that keeps any data, and the data is

distributed across the network. Blockchains are shared and immutable so that any partici-

pant can trace the data thanks to the design of blockchains. Blockchains consist of blocks,

and each block points to the next block. Furthermore, each block indirectly contains all

the previous blocks’ data. The sensitive data are stored in encrypted form using cryptog-

raphy. The last block in the blockchain is called the last block, and the first block is called

the genesis block [9].

History of Blockchain: David Chaum proposed a protocol in his thesis ”Computer

Systems Established, Maintained, and Trusted by Mutually Suspicious Groups” in 1982

[13]. David Chaum explains how a distributed computer system can be set up, maintained,

and trusted by mutually suspicious groups.

Leslie Lamport developed the Paxos protocol in 1989 and submitted the paper

”The Part-Time Parliament” in 1990. However, the paper was published in 1998 [27].

Stuart Haber and Scott Stornetta introduced a cryptographically secured chain of

blocks in the study ”How to time-stamp a digital document” in 1991 [22]. The study

describes the hash, digital signature, linking, and distributed trust.

Stuart Haber, Scott Stornetta, and Dave Bayer introduced the hash functions, col-

lisions, and Merkle trees in the study ”Improving the Efficiency and Reliability of Digital

Time-Stamping” in 1992 [7]. The purpose is to digitalize the document using a crypto-

graphic hash function, and the hash function ensures that two different documents’ hash

values can not be the same. And then, the study explains the Merkle trees and the use

cases of Merkle trees.

In 2008, an anonymous person or a group of people known as Satoshi Nakamoto

published a white paper [46]. The paper conceptualized blockchain technology and de-

scribed a peer-to-peer digital payment system. The architecture of the system uses a

5

combination of data structures, cryptography, and decentralization. The revolutionary

part can be considered as this combination and consensus algorithms. Since the paper

describes a payment system, trust between participants is crucial. Satoshi Nakamoto tries

to solve this problem using the Proof of Work Consensus Algorithm. In 2009, Nakamoto

implemented the first blockchain as the public ledger for transactions made using bitcoin.

The idea and system can be considered a game-changer since the system claims there is

no need for a central bank to authorize transactions between participants. Or, there is no

need to pay a fee for sending money from one account to another. Or, there is no need to

expose identity to third-party organizations.

And nowadays, the research related to blockchain technology can be separated

into three different classes [30]. The first class focuses on the fundamentals of blockchains

and aims to increase the security level of blockchain using new techniques, and ideas [4]

[19]. The second class examines the specifically consensus algorithms, and aims to im-

prove existing consensus algorithms with modifications, or propose a unique consensus

algorithm. The application areas of blockchain technology are vast, and these different

areas try to solve different problems. Moreover, these problems create their consensus

solutions. That is why there are too many consensus algorithms [56]. The third class ex-

amines the application areas of blockchain technology. These types of research contribute

to the adaptation and usage of blockchain technology in the real world [41] [31] [33] [24].

The proposed thesis is the combination of these three classes.

The core architecture of blockchain covers the security and transparency of the

proposed system in Nakamoto’s paper. These features, verifiability of the system by the

users, and resistance against cyber attacks gain the investors’ trust. So, investors around

the world paid attention to the cryptocurrency market.

Usage of Blockchain Technology: Blockchains are suitable for logistic services, sup-

ply chain tracking, the digitalization of Art, etc. However, cryptocurrencies are the most

popular application of blockchains.

Nowadays, digital payment systems are the most known and one of the hot top-

ics in the world. Bitcoin [46], and Ethereum [54] dominate the cryptocurrency mar-

ket. The number of cryptocurrencies differs in many resources. However, the minimum

given number is nearly ten thousand active cryptocurrencies. As explained in the history

of blockchain, the first blockchain was designed and implemented for bitcoin. Cryp-

6

tocurrencies entered people’s lives glamorously. The global crypto market cap reached

$2.9T ($2,904,441,786,523) on 30 November 2021, which is 3.54 times the current vol-

ume. Even if the decrease is tremendous, the current total market cap is nearly $820B

($819,644,611,127) as of 21 November 2022 [12]. The following Figure 2.1 shows the

total cryptocurrency market cap over the past years.

Figure 2.1. The Total Cryptocurrency Market Cap.

Blockchain technology aims to exclude the central authority (i.e., a bank, com-

pany, or government). And, the technology ensures that coin transactions are carried

safely from one peer to another. Once a transaction is completed, the data is inserted into

the blockchain. No one can change the true form of block, and immutable data is stored

in distributed blockchains. Each peer has its own copy of the blockchain, and each new

data consists of the previous data thanks to Merkle root hash. Even if the original aim of

cryptocurrencies was to replace traditional currency, it becomes an investment option.

As we already explained in the introduction of the thesis, blockchain technology

can also be adopted into traditional e-voting systems.

2.2. Blockchain: Under the Hood

The Structure of Blockchain: The blockchain consists of a set of the block, and it is a

version of linked blocks, which means each block inside the blockchain points to the next

block, and a block contains certain data, such as sensitive data related to the transaction,

hash values, timestamp, and possibly a nonce [16].

7

The following Figure 2.2 shows the different parts of the block, and attributes

inside the block [29].

Figure 2.2. The Structure of Blockchain.

A block consists of a header and a body. The body contains sensitive transaction

data, which is generally stored encrypted. The header contains the current block’s hash,

the previous block’s hash, Merkle root hash, a timestamp, and possibly a nonce.

Encryption: Transaction data can be stored in encrypted or non-encrypted form. If the

data is sensitive such as the vote choice of the voter, we should keep it encrypted. The

good thing about blockchain, these technologies are independent, and the architecture can

change drastically. That is why any cryptographic encryption algorithm can be applied as

long as it satisfies the necessary security level.

Hash of Block and Merkle Root Hash: Hash values ensure that if we change even a

single character in any block, then the hash value of that block will be entirely different

from the original one.

The current block’s hash value provides the integrity and immutability of that

block. The previous block’s hash value provides the integrity of the current and previ-

ous block pair’s integrity and immutability. However, we should keep in mind that a

blockchain must be immutable, and all blocks’ integrity must be preserved as a whole,

not just pairs. That is why we need another hash value called Merkle root hash.

8

Merkle root hash can be calculated using the Merkle tree. To calculate Merkle

root hash, the system combines the hash of block pairs and constructs a tree with these

hash values. In the end, the top of the tree represents the Merkle root hash. Moreover, the

last block’s Merkle root hash contains all block’s hash values, and this feature ensures the

whole blockchain’s immutability and integrity.

In other words, if an attacker tries to change data in any block, the attacker must

also change the remaining block’s hash value. Otherwise, the system can easily detects

fraud data and rejects it.

Like encryption, any secure cryptographic hash function can be applied to calcu-

late the above hash values such as SHA-256. While choosing a hash function,

- We must ensure that our hash function is irreversible, which means that the original

value can not be figured out using the hash value.

- We must ensure that a hashed value must be a unique value, which means that we can

not calculate the same hash value using different input data.

SHA stands for Secure Hash Algorithm, and there are a couple of variations, such

as SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512. These algorithms are iterative

and one-way hash functions, which ensures the above constraints. As we explained, any

change in the input data will directly affect the evaluated hash value, and this feature

determines the integrity of the data [38].

A Timestamp: A timestamp value of the transaction time is added into the block so

that the traceability of the block can be provided. The current timestamp value indirectly

supports the hash functions to obtain unique block data.

A Nonce: A nonce value is generally used if the consensus algorithm is proof-based

such as Proof of Work. Nonce value changes the difficulty of the mathematical problem.

Transactions: A transaction represents an interaction between nodes, which means that

the data inside the transaction depend on the blockchain’s design and architecture. If we

consider cryptocurrencies, the transaction represents transferring money/cryptocurrency

from one people/node to another. In voting systems, the transaction represents the voter’s

vote data and contains the voter’s choice.

9

2.3. Types of Blockchains

Permissionless/Public Blockchains: Permissionless blockchains are also known as pub-

lic blockchains because the system allows any user to participate in the blockchain net-

work, and to append a new block into the blockchain.

Permissioned/Private Blockchains: Permissioned blockchains are also known as pri-

vate blockchains because the system restricts specific users to participate in the blockchain

network, and to append a new block into the blockchain. The blockchain is controlled by

a group of node, people, or trusted authority.

Consortium/Hybrid Blockchains: Consortium blockchains are a combination of Per-

missionless and Permissioned blockchains. To append a new block to the blockchain, the

user must prove that he/she is authorized to do such action. The system uses different

Consensus Algorithms to verify each block’s authority. The ultimate goal is to make an

agreement between all participants/nodes that the block is real data/transaction.

2.4. Consensus Algorithms

What is Consensus Algorithm? Blockchain technology needs a consensus algorithm

to find a common agreement between all the participants. The consensus algorithm en-

sures that each recently appended block to the blockchain is the one and only version of

the truth, even if some peers fail. That means the system must be fault tolerant [1] [10].

2.5. Types of Consensus Algorithms

There are mainly three types of consensus algorithms, and most of the resources

only mention the first and second one. However, too many consensus algorithms ex-

ist nowadays. The problem domain causes the variation of consensus algorithms. Each

unique problem requires a unique solution, agreement, or in other words, consensus. The

most popular and known consensus algorithms are as follows: Proof of Work (PoW),

Practical Byzantine Fault Tolerance (PBFT), Proof of Stake (PoS), Delayed Proof of

Work, Delegated Proof of Stake, Proof of Authority, Proof of Weight, Paxos, Raft, etc.

10

Proof-Based Consensus Algorithms: The first main type is Proof-Based Consensus

Algorithms. In this type of consensus algorithm, the nodes in the blockchain are expected

to solve a computationally hard mathematical problem to verify that they are eligible to

add a new block [39]. PoW and PoS are one of the most popular types of proof-based

consensus algorithms.

Voting-Based Consensus Algorithms: The second main type is Voting-Based Consen-

sus Algorithms. In this type of consensus algorithm, it is essential that before adding a

new block to the blockchain, a peer has to broadcast the outcome of mining a new block or

transaction [39]. Raft or Paxos is one of the most popular types of voting-based consensus

algorithms.

Authentication-Based Consensus Algorithms: The third main type is Authentication-

Based Consensus Algorithms. In this type of consensus algorithm, the nodes have to

pass pre-defined authentication mechanisms. Otherwise, the node can not generate a new

block. Proof of Authentication (PoAh) is one of the most popular type of authentication-

based consensus algorithm.

2.6. Comparison of Blockchains Together with Consensus

Algorithms

Consensus Algorithms are designed for different types of Blockchains, and prob-

lem domain specifies the requirements of consensus algorithm [5].

If the system uses a permissionless blockchain, then the central idea behind the

algorithm is to solve a complex (computationally hard) mathematical puzzle. Proof of

Work is one of the most famous examples of a consensus algorithm, which is also used in

Bitcoin. It is designed for permissionless blockchain in this manner. To solve this puzzle,

computers consume a lot of power, time, and emit heat.

If the network is private, then it means permissioned blockchain is used in the

system. Permissioned blockchain does not require solving a complex problem to make

an agreement. If the system does not require solving any complex mathematical prob-

lem, then choosing a voting-based consensus algorithm is obviously a better idea for the

design.

11

Raft is particularly efficient and straightforward compared to Paxos and PBFT.

Moreover, it is largely adopted in distributed systems. Raft is a leader-based algorithm

[23] and Figure 2.3 shows the Raft Consensus Algorithm’s leader election. 1

Figure 2.3. The State Transition Model for Raft Leader Election.

On the other hand, Paxos and its variations do not use leader election, which means

that load balancing between nodes is well-distributed because any node can commit com-

mands [34]. Nevertheless, supporting practical systems takes complicated changes due to

the architecture of Paxos. The safety performance that is achieved with Raft is more or

less equal to Paxos. Raft consensus algorithm can not tolerate malicious nodes and can

tolerate up to 50% nodes of crash fault [25].

2.7. Additional Applied Technologies

Private Cloud: It is an environment that runs on the cloud, and the resources related to

the hardware and software are dedicated exclusively. Only authorized users can access

the private cloud. So the environment is isolated from the other private clouds [26].

Virtual Machine (VM): It is a virtual environment isolated from other resources. Users

can install any operating system on VM. However, VMs does not require physical com-

puters; instead, they need physical host machine. Therefore more than one VM can run

one host machine with different operating systems [52].

1To see a visual simulation of Raft algorithm, check out https://raft.github.io/

12

Verifiable Secret Sharing (VSS): It is a cryptographic protocol; in this protocol, the

dealer distributes part of the secret to n authority. Each authority receives different parts

of the secret so that they can not reconstruct it with their piece. The secret can be recon-

structed using many sufficient pieces [11].

SSL/TLS/HTTPS: They respectively stand for Secure Sockets Layer, Transport Layer

Security, and Hyper Text Transfer Protocol Secure. SSL is the standard technology that

ensures incoming and outgoing internet connections are transferred securely. The data is

encrypted before sending between the server and the client, so an attacker can not read or

modify the data. TLS is the updated version of SSL since TLS considered a more secure

standard. HTTPS is a protocol for users to transfer data between web server and web

browser securely. HTTPS runs over SSL, so an SSL certificate ensures that the data is

sent after encrypted [14].

13

CHAPTER 3

DESIGN OF THE SYSTEM

In this study, an e-voting system is designed while RSA and Paillier Homomorphic

Cryptosystem are applied with blockchain technology using a novel consensus algorithm

based on the requirements in chapter 1. Introduction.

In addition to specified requirements of a voting system, the proposed solution

aims to cover the following topics also:

i. Accessibility: The system should be physically or virtually accessible during

the whole voting process.

ii. Availability: The system should be available during the whole voting process.

iii. Adaptability: The system should be adaptable for different use cases.

The accessibility of the system is vital for people with disabilities and older peo-

ple. That is why the system runs in the VMs, and any voter can vote using a mobile phone

or personal computer anywhere, anytime.

The system is distributed among different VMs and takes backup of each valu-

able data in case of emergencies. If needed, the system can restart itself and continue to

become available.

The system is designed to support the plural voting system, and the results will

be announced according to it. In this type of voting system, the winner is the one that

is mostly chosen regardless of whether it has the majority of votes or not. However, the

system is easily maintainable, and it can be adaptable for other types of voting systems

as well.

3.1. System Assumptions

(1) Admin is a trusted actor, and authorities are honest throughout the whole election

process.

(2) The authority defines an eligible voter list, and the list is shared with the proposed

system in the setup phase.

14

(3) The authority defines candidates, and the list is shared with the proposed system in

the setup phase. In other words, it is defined before the voter registration phase.

(4) The application runs in a private cloud, and virtual machines (VMs) are dedicated

to protecting the system.

(5) TLS/SSL technology secures the internet browser connections and transactions so

any sensitive data transfers from the voter to the system or vice versa through en-

crypted data. HTTPS connection in the URL ensures that the system is certified and

that the certificate will be automatically renewed every 60 days.

(6) The study uses the Hybrid Blockchain type to get maximum advantage from both

Permissionless and Permissioned Blockchains.

(7) A unique Authentication-Based Consensus Algorithm is designed and implemented

using four different blockchains.

(8) Both small-scale such as local/regional elections, and large-scale such as national

elections, are supported thanks to the hybrid blockchain technology.

(9) The proposed solution has its own RSA public-private key pair.

(10) Each voter has one public-private key pair to encrypt and decrypt the vote data.

To accomplish this, Paillier Homomorphic Cryptosystem is used in the proposed

system. However, any asymmetric encryption system ensures the same security

level because the system will perform the same.

(11) The login operation requires Two-Factor Authentication while voting. Username,

password verification, and 6-digit verification code will be used together in the

study.

3.2. System Requirements

As described in chapter 1. Introduction; a well-designed, secure, reliable, and

transparent blockchain-based e-voting system must satisfy the following requirements:

i. Inalterability, ii. Non-reusability, iii. Eligibility, iv. Fairness, v. Individual verifiability,

vi. Universal verifiability, vii. Privacy, viii. Authentication, ix. Integrity, x. Coercion-

resistance, xi. Receipt-freeness, xii. Secrecy, and xiii. Election replay.

15

3.3. Proposed Solution and Design

The system’s process is built by the following steps:

(1) Setup Phase

(2) Registration Phase

(3) Voting Phase

(4) Blockchain Phase

(5) Individual Verifiability During Voting Phase

(6) Counting Phase

(7) Announcement Phase

(8) Individual and Universal Verifiability After Results Announced

A simplified but descriptive system overview is represented in Figure 3.1, and

EPC diagram of a review process in Figure 3.2.

Figure 3.1. The System Overview.

16

Figure 3.2. The EPC Diagram of the Review Process.

17

3.3.1. Setup Phase

This phase can be considered as the beginning of the voting process. All require-

ments and preparations are handled in this phase.

The authority supplies the eligible voter list to the system. This list will be stored

in a blockchain called ’EligibleVoterBlockchain’, and the blockchain can be accessible

via the system itself. The private and sensible data related to voter’s identity will be kept

private.

Code Snippet 3.1. A Sample Block of EligibleVoterBlockchain

class EligibleVoterBlock:

def __init__(self, data=None, prev_block=None,

verify_block_ssn_hash=None, current_block_hash=None,

prev_block_hash=None, merkle_root_hash=None):

self.enc_ssn = data[’enc_ssn’]

self.verify_block_ssn_hash = verify_block_ssn_hash

self.prev_block = prev_block

self.current_block_hash = current_block_hash

self.prev_block_hash = prev_block_hash

self.merkle_root_hash = merkle_root_hash

self.timestamp = data[’timestamp’]

self.is_registered = False

The above code snippet 3.1 shows the attributes inside EligibleVoterBlock class,

and each block in the EligibleVoterBlockchain contains the following attributes.

- a social security number (SSN), enc ssn, the data is kept in encrypted form to satisfy

xii. Secrecy requirement.

- a hashed value of SSN, verify block ssn hash, will be used to verify whether the voter

is eligible to register or not. So the requirement iii. Eligibility is ensured.

- a boolean variable, is registered, to make sure that no one registered twice or more

to the system using the same SSN. Even if the voter has the authority to cast a vote

as an eligible voter, the voter must have only one valid vote in the system. Therefore,

requirement ii. Non-reusability is satisfied.

Since the eligible voter’s SSN is stored in the blockchain, we ensure that the re-

quirement ix. Integrity is satisfied using the advantage of hash values.

18

Like the eligible voter list, candidates are also identified by the authority, and the

list is shared with the proposed system. This data will be used as a ballot option.

And then, the start-end times of all phases are determined. When the registration

phase closes, then the voting phase must start. After the voting phase is completed, then

the counting phase must start. These restrictions increase the chance of satisfying the

requirement iv. Fairness.

Finally, precisely one public-private key pair is generated by the system using

RSA cryptosystem [44]. This key pair is generated for the proposed solution, and the

system’s RSA public key will be used to encrypt voter’s Paillier private key during

3.3.2. Registration Phase. So that no one can decrypt the vote data during the voting

process. The system’s RSA private key will be used to decrypt voter’s Paillier private

key. So that the votes can be decrypted during 3.3.6. Counting Phase using the voter’s

Paillier private keys.

In other words; the system will be able to access voter’s Paillier private key, after

the RSA decryption is completed. Which means that an attacker must access both the

system’s RSA private key and the voter’s Paillier private key to decrypt any vote data. So,

if we securely store the system’s RSA private key, the votes can not be counted even if

the voter’s Paillier private keys are leaked.

The requirement xi. Receipt-freeness is satisfied with the help of encryption of the

voter’s Paillier private key.

In addition to the above usage during 3.3.6. Registration Phase, the system’s RSA

public key will be used during 3.3.1. Setup Phase and 3.3.2. Registration Phase again.

First, to encrypt eligible voter’s SSN during 3.3.1. Setup Phase. Second, to encrypt

voter’s sensitive data such as username, and password during 3.3.2. Registration Phase.

The system’s RSA private key can decrypt these encrypted data; however, the system does

not require a such operation.

The following Figure 3.3 shows the relationship between keys and phases as time-

line. As we can see from the Figure 3.3, the system’s RSA private key should be kept safe

from the setup phase to the counting phase. Otherwise, the eligible voter’s sensitive data

can expose, or the voter’s Paillier key becomes vulnerable to leak.

Below, we will explain how we store the system’s RSA private key. Moreover, we

will discuss why we prefer to use RSA encryption specifically in chapter 6. Discussion.

19

Figure 3.3. The Usage of the System’s RSA Key Pair, and the Voter’s Paillier Key Pair.

The critical question is how the system’s RSA private key should be stored se-

curely. As we discovered above, the system’s RSA private key should not be reachable

before 3.3.6. Counting Phase. We have two options to store the system’s RSA key iso-

lated.

The first option is the time-lock puzzles. Solving the puzzle refers to having the

system’s RSA decryption/private key to read the vote data in our case. Time-lock puzzles

are based on computational power similar to the Proof of Work-PoW Consensus Algo-

rithm and require much time to solve the puzzle; by this way, we expect that we have

required delay time to reach the 3.3.6. Counting Phase. However, time-lock puzzles can

only be solved sequentially. This puzzle tries to make ”CPU time” and ”real time” as

close to each other as possible. However, CPU time can drastically change according

to hardware quality. More computational resources can solve the puzzle more quickly,

which means that vote data can be decrypted during the voting process, which can not be

tolerated [45].

The second option is the trusted agents. The primitive version of this approach

can be that a trusted agent stores data until the desired time t has elapsed, and then shares

the data with the system. A better and improved version uses Verifiable Secret Sharing.

VSS was first introduced by Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch

Awerbuch in 1985 [11]. VSS uses more than one trusted agent to share the RSA private

key parts (decryption key for votes), these authorities are responsible for keeping part of

the decryption key, and when the time is up, they share their key parts with other trusted

20

agents. When one of the agents has the required number of key parts from other agents,

the decryption key can be rebuilt.

Using VSS rather than time-locks is much more suitable for the proposed solu-

tion because the technology is developing and evolving quickly, and the accessibility to

computationally powered hardware is easier than ever.

Therefore, the moment the system’s RSA private key is generated, the system will

use the VSS approach.

Finally, the following algorithms describe the procedures of RSA cryptosystem,

such as key generation, encryption, and decryption [44] [3].

Algorithm 1 RSA - Key Generation
1: Choose two different large prime numbers p and q. Such that p ̸= q

2: Compute the modulus n; n = p · q

3: Calculate ϕ(n), where ϕ is the Euler’s totient function:

ϕ(n) = (p− 1) · (q − 1)

4: Choose an integer e which is the public key such that e is coprime with ϕ(n):

gcd(ϕ(n), e) = 1 ; 1 < e < ϕ(n)

5: Calculate d, which is the private key such that it is the modular multiplicative inverse

of e:

d = e−1modϕ(n)

6: Eventually, the public key is [e, n], and the private key is [d, n]

Algorithm 2 RSA - Encryption

1: For plaintext P, public key [e, n] calculate the Chiphertext C as:

C = P e modn

Algorithm 3 RSA - Decryption

1: Decrypt Chiphertext C, using the private key [d, n]:

P = Cd modn

21

3.3.2. Registration Phase

After the setup phase is completed and the designated start time of the registration

phase is reached, voters can register to the system using any internet-connected device

to vote at further stages. As explained in section 3.1. System Assumptions, TLS/SSL

certificate, and HTTPS connection provide the necessary security. The data transfers in

encrypted form so that an attacker can not read or manipulate the voter’s data.

Since the system already generated the EligibleVoterBlockchain in 3.3.1. Setup

Phase and each block in that blockchain contains the verification hash of the eligible

voter’s SSN, the system can verify whether the user is an eligible voter or not. With the

help of verification hash, which is called verify block ssn hash in the code snippet of

EligibleVoterBlockchain, the requirement iii. Eligibility is satisfied.

The voter enters the SSN, and then the system receives the SSN via HTTPS. Then,

the system calculates the hash value of the given SSN. After that, the system traverses the

EligibleVoterBlockchain from the last node to the genesis node. The system compares

the calculated hash value and verifies the verify block ssn hash value inside the block.

Suppose that there is n number of eligible voters. In that case, the system performs n

iteration at worst case to verify whether the voter is eligible to register or not.

If the hash values are not matched, the system rejects the block; therefore, unau-

thorized users can not register to the system.

If hash values are matched, and SSN is not used to register before, then the system

will ask the voter to fill in an email and a phone number. These data will be used to

cover viii. Authentication requirement of the eligible voters during login. The voter must

specify either email or phone number. In phase 3.3.3. Voting Phase, the system will send

a 6-digit verification code to the specified contact option.

Then, the system asks the voter to fill real username, fake username, and password.

The usernames must be unique. The voter can either create these values or use the auto-

generated data feature of the system. Automatically generated usernames and password

ensure that ordinary computers can not identify your private data using simple brute-force

attacks. That is why the system recommends that the voters should use generated data

instead of manually created. Recent research indicates that users tend to choose familiar,

easy-to-remember, and predictable usernames and passwords [55]. Moreover, this leads to

22

vulnerability to crack usernames and passwords with simple brute force attacks. Beyond

the simple brute-force attacks; a simple and well-designed web scraping application can

easily get your animal’s name, your favorite song’s name, your birthday, your family’s

name and surname, or even your home address within a second, of course if you share it

anywhere online. That could be on any social media platform such as Facebook, Twitter,

or Instagram. Even if General Data Protection Regulation (GDPR) restricts and protects

the user’s data, there are still no certain lines. And finally, we should remember that most

users accept terms of use without reading them, and people give permission to process

their data without notice.

In addition to the above explanations, using two different usernames provides sim-

ple yet excellent agility. The voter can use both real and fake usernames in the voting

phase under different circumstances. Let us assume someone, an attacker, is trying to

force eligible voters to vote for the opposite candidate, then the voter can use the fake

username to get rid of this situation. Not only will this vote not be counted in the count-

ing phase, but also, a voter can re-vote with the real username freely. This approach

provides x. Coercion-resistance against an attacker.

After fake username, real username, and password are generated/created; the voter

has two options to note that data. First, the voter can select to receive these data via email

or SMS. Second, if the voter is more like a skeptical and does not want to keep this data

online, he/she can disable the email and SMS features and note the data himself/herself.

Username-password verification and a 6-digit verification code ensure that Two-

Factor Authentication is satisfied to increase security during the voting phase.

Finally, the system generates Paillier public-private key pair for each registered

voter. Paillier or any asymmetrical cryptosystem can be used as a solution, for instance,

ElGamal, ECC, RSA, or Lattice-based NTRU. If Lattice-based NTRU is preferred, the

built solution becomes resistant to Post-Quantum cryptographic attacks [32] [15].

Voter’s Paillier public key will be used to encrypt vote data in phase 3.3.3. Voting

Phase and it will be stored together with the registered voter data in a blockchain called

’RegisteredVoterBlockchain’. Voter’s Paillier Private key will be used to decrypt vote

data in phase 3.3.6. Counting Phase and it will be stored in a different blockchain called

’PrivateKeyBlockchain’. Each private key will be encrypted with the system’s RSA public

key before adding into PrivateKeyBlockchain. One block will be created for each voter’s

23

Paillier private key, and the system keeps secure these private keys until the voting process

is ended thanks to the extra encryption level with RSA and VSS approach.

Since the eligible voter’s sensitive data is stored in the blockchain, we ensure that

the requirement ix. Integrity is satisfied using the advantage of hash values.

Code Snippet 3.2. A Sample Block of RegisteredVoterBlockchain

class RegisteredVoterBlock:

def __init__(self, data=None, public_key=None, prev_block=None,

verification_hash_fake=None, verification_hash_real=None,

current_block_hash=None, prev_block_hash=None, merkle_root_hash

=None):

self.public_key = public_key

self.fake_username = data[’fake_username’]

self.real_username = data[’real_username’]

self.password = data[’password’]

self.verification_hash_fake = verification_hash_fake

self.verification_hash_real = verification_hash_real

self.email = data[’email’]

self.phone = data[’phone’]

self.location = data[’location’]

self.prev_block = prev_block

self.current_block_hash = current_block_hash

self.prev_block_hash = prev_block_hash

self.merkle_root_hash = merkle_root_hash

self.timestamp = data[’timestamp’]

self.is_voted = False

The above code snippet 3.2 shows the attributes inside RegisteredVoterBlock

class, and each block in the RegisteredVoterBlockchain contains the following attributes:

- a public key of the eligible voter to encrypt vote data, public key, the key is generated

using Paillier Homomorphic Cryptosystem

- a fake username, fake username, the voter can use this username under pressure while

being forced to vote for another candidate

- a real username, real username, the voter can use this username in normal circumstances

- a password, password, the password needs to match with one of the usernames

- a hashed value of combination of fake username and password, verification hash fake,

the system will detect that the voter is casting his/her vote under pressure during voting

phase, the system will reject this vote attempt and it is designed to let the voter use his/her

24

vote with the real username again freely

- a hashed value of combination of real username and password, verification hash real,

the system will detect that the voter is casting his/her vote with free will, the system ac-

cepts the vote attempt and make sure that the same voter can not cast another vote

- an email, email, a personal email address of the voter for Two-FA

- a phone, phone, a personal phone number of the voter for Two-FA

- a boolean variable, is voted, to represent that not only an eligible but also a registered

voter casted his/her vote once. Therefore, requirement ii. Non-reusability is satisfied.

Code Snippet 3.3. A Sample Block of PrivateKeyBlockchain

class PrivateKeyBlock:

def __init__(self, data=None, prev_block=None, current_block_hash=

None, prev_block_hash=None, merkle_root_hash=None):

self.encrypted_private_key = data[’enc_private_key’]

self.prev_block = prev_block

self.current_block_hash = current_block_hash

self.prev_block_hash = prev_block_hash

self.merkle_root_hash = merkle_root_hash

self.timestamp = data[’timestamp’]

self.is_counted = False

The above code snippet 3.3 shows the attributes inside PrivateKeyBlock class,

and each block in the PrivateKeyBlockchain contains following attributes:

- a private key of the eligible voter to decrypt vote data, the key is generated using Paillier

Homomorphic Cryptosystem and encrypted with the system’s RSA public key to satisfy

requirements vii. Privacy and xii. Secrecy, enc private key

- a boolean variable to make sure that no one cast more than one vote with the same key,

is counted

3.3.3. Voting Phase

After the setup and registration phase is completed and the scheduled start time of

the voting phase is reached, voters will cast their vote via any web browser.

The voter selects one of the candidates and then enters the username and password.

The system shows the eligible candidates as ballot options to the voters, and eligible

25

candidates are defined during the setup phase. The voter can use either real username

or fake username under different circumstances so that the system will detect whether

the voting attempt is made under pressure or with free will. HTTPS and SSL provide

sufficient security to transfer data between client and server. After the server, in this case

the proposed solution, receives the data; extra security levels will be used for sensitive

data as explained in early phases.

The given username and password are used to verify that the voter is eligible

and registered voter. At the same time username indicates the voter’s free will. And

then, Two-FA is required. The system asks the 6-digit verification code if the voter is

eligible to vote. If the 6-digit verification code is matched with the system-generated

one, then the vote is evaluated by the system and appended into the blockchain which is

called ’VoteBlockchain’. The details of these processes will be explained in section 3.3.4.

Blockchain Phase.

Two-FA ensures that the requirement viii. Authentication is satisfied.

To satisfy the requirements xi. Receipt-freeness, and xii. Secrecy the vote data is

kept in encrypted form.

Since the vote data is stored in the blockchain, we ensure that the requirement

ix. Integrity is satisfied using the advantage of hash values.

And as a final step, the system generates a hash value and sends this hash value

to the voter’s email or phone number. The preferred authentication method is used by

the system automatically. As explained in section 3.3.2. Registration Phase, each voter

must choose one of the contact options to authenticate his/her vote in the voting phase.

Suppose a voter enters an email address during registration, then the system sends the

vote verification hash value to that registered email address.

v. Individual verifiability requirement will be satisfied using the verification hash

value.

This cycle will be evaluated for each registered voter during 3.3.3. Voting phase.

The requirement vii. Privacy of the voter is always protected, and votes can not be cor-

related with voters. The details of this process will be introduced in 3.3.4. Blockchain

Phase and 3.3.6. Counting Phase.

26

3.3.4. Blockchain Phase

Voting Phase and Blockchain Phase start simultaneously since the vote data trans-

fers from the client (a voter) to the server (the proposed system). In this phase, the same

process in the voting phase will be re-evaluated; however, we will explain the architecture

behind the system taking into account blockchain technology.

After the choice of candidate, username, and password are gathered from voters,

the following sub-phases/steps will be executed.

Login Verification to Vote: As the first step, the system calculates the hash value of re-

ceived username-password pair. And then, the system checks whether username-password

pair is matched with one of the blocks in RegisteredVoterBlockchain or not. The sys-

tem traverses from the last node to the genesis node and checks every block’s verifica-

tion hash real and verification hash fake value. In the worst case scenario, the system

performs n iteration to reach the end of blockchain, suppose there exists n registered

voter. There may be three different situations.

• Case-1, calculated hash value does not match any of the block’s both verifica-

tion hash fake and verification hash real.

If the login credentials are failed, Case−1, then it means that voter did not register

during the registration phase. Therefore, the system rejects the vote.

• Case-2, calculated hash value matches with one of the block’s verification hash fake.

If the voter logged in with fake username, Case−2, then it means that an attacker is

possibly forcing voter to vote for opposite candidate. Therefore, the system rejects

the vote.

• Case-3, calculated hash value matches with one of the block’s verification hash real.

If the voter logged in with real username, Case − 3, then verification of the login

is succeed.

This control mechanism provides an excellent feature to the voter. The voter can

vote with his/her real username password pair again in case of emergencies. So the re-

quirement x. Coercion-resistance is satisfied using fake username and real username ap-

proach.

27

Login Authentication to Vote: As the second step, according to the result of login at-

tempt verification, the system requires extra authentication. If the case is either two or

three, then the system gets the preferred contact information of that voter from the Reg-

isteredVoterBlockchain. Then, the system randomly generates a 6-digit verification code

and sends it via email or SMS. The voter receives the verification code and should enter

it into the system. After that, the system checks that the received 6-digit verification code

is matched with the randomly generated 6-digit code.

If the values do not match, then the voter can generate new 6-digit verification

codes. If the values match, then it means that the vote data is verified, validated, and

authenticated by both the voter and the system.

Vote Encryption: Homomorphic encryption is a type of encryption that allows you to

perform specific types of computations on encrypted data without revealing any informa-

tion about the data itself [17].

To satisfy the requirements, xi. Receipt-freeness and xii. Secrecy the vote data is

kept in encrypted form until the counting phase.

There are two types of homomorphic encryption: Partially Homomorphic En-

cryption and Fully Homomorphic Encryption. The partially homomorphic encryption

schemes support one homomorphic property, which is usually additive or multiplicative

homomorphism, while the fully homomorphic encryption schemes support all the homo-

morphic properties [17].

The Paillier is a partially homomorphic encryption scheme that allows two types

of computation: Addition of two ciphertexts and multiplication of a ciphertext by a plain-

text number. This scheme was invented by Pascal Paillier in 1999 [40].

The Paillier’s scheme can be considered under three main parts; key generation,

encryption, and decryption algorithms. The following algorithms describe these proce-

dures. A well-explained and numerical example of these algorithms can be found in the

following paper: The Homomorphic Other Property of Paillier Cryptosystem [49].

28

Algorithm 4 Paillier - Key Generation
1: Choose randomly different p and q as two large prime numbers with:

gcd(pq, (p− 1)(q − 1) = 1

2: Compute RSA modulus n = pq and calculate Carmichael’s function that can be

computed with:

λ = (p−1)(q−1)
gcd(p−1.q−1)

3: Select random g as generator where g ∈ Z∗
n2 with:

gcd(g
λ mod n2−1

n
, n) = 1

4: Find modular multiplicative inverse with:

µ = (L(gλ mod n2))−1 mod n

The function L is defined as L(u) = u−1
n

Algorithm 5 Paillier - Encryption
1: Let m be a message to be encrypted where m ∈ Zn

2: Select random r where r ∈ Z∗
n

3: Compute ciphertext as: c = gm � rn mod n2

Algorithm 6 Paillier - Decryption
1: Ciphertext c ∈ Z∗

n2

2: Compute message: m = L(cλ mod n2) � µ mod n

After we introduce the basics of Paillier Cryptosystem, as the third step, each vote

data is encrypted using the voter’s Paillier public key. Since the system already knows

verification hash real, the Paillier public key of the voter can be accessible by traversing

the RegisteredVoterBlockchain.

Hashing for Vote Verification: As the fourth step, the vote verification hash value are

calculated by the system, and again this value is sent to the voter’s preferred contact

information. The hash value is generated using the encrypted version of the vote data.

Since the vote data is encrypted using the voter’s Paillier public key, hash values will be

unique for each voter. Moreover, any voter can use this hash value to verify that his/her

vote is in the system.

29

After the vote is encrypted with the voter’s Paillier public key and vote verification

hash is generated by the system, the Merkle root hash will be evaluated using SHA-256

algorithm. Each block in the blockchain includes the hash value of itself, the hash of the

previous block, and Merkle root hash. With this approach, every block actually knows the

data inside all the previous blocks. This makes the blockchain immutable.

Once a vote is inserted into the blockchain an attacker can not change a block

because of the hash values inside that block. This feature satisfies i. Inalterability and

ix. Integrity requirements.

The block is finally ready to append into VoteBlockchain.

Adding New Block: As the final step, according to the result of login attempt veri-

fication, the system either appends vote data into VoteBlockchain or does not append.

Actually, the decision is made by the voter itself, and there are three possible use cases.

In first scenario, a voter may enter an incorrect username and password. In this

case, the system warns the voter about it and expects to re-enter login credentials since it

may be just typing issue. So, a block will not be appended to the VoteBlockchain.

In second scenario, a voter may enter fake username and correct password. In this

case, the system returns a successful message to the voter on purpose. Since an attacker is

still there and possibly watching the voter’s device. In the background, the system rejects

the vote data. So that even if an attacker forces any voter to vote for opposite candidate,

the attacker will not be able to add a new block to the VoteBlockchain. The voter can vote

with the real username later. And, the system appends this free will vote attempt instead

the forced one.

In third scenario, a voter may enter real username and correct password. In this

case, the system appends a new block into the VoteBlockchain.

Code Snippet 3.4. A Sample Block of VoteBlockchain

class VoteBlock:

def __init__(self, data=None, prev_block=None, current_block_hash=

None, prev_block_hash=None, merkle_root_hash=None):

self.enc_choice = data[’enc_choice’]

self.vote_verification_hash = data[’vote_verification_hash’]

self.prev_block = prev_block

self.current_block_hash = current_block_hash

self.prev_block_hash = prev_block_hash

30

self.merkle_root_hash = merkle_root_hash

self.timestamp = data[’timestamp’]

The above code snippet 3.4 shows the attributes inside VoteBlock class, and each

block in the VoteBlockchain contains following attributes:

- a choice data of the voter in encrypted form, the data is encrypted with voter’s Paillier

public key, enc choice

- a hashed value for verification during voting phase, the voter can verify that his/her vote

is added as expected during voting phase, vote verification hash

A Fully Replicated, Distributed, Transparent, and Secure Blockchain: So far, we

have introduced how the system works generally. But more importantly, we must en-

sure that our VoteBlockchain is fully replicated, distributed, transparent, and secure. To

do that, let us examine them one by one.

To make our blockchain fully replicated, we need to make multiple copies of our

blockchain. So we must store the exact copy of our blocks locally. So that, we can import

these exact copies in case of emergencies. To do that, the system stores the vote data as

JSON in encrypted form.

To make our blockchain distributed, we need to copy these locally stored data into

other VMs. So that, even if our main VM shuts down because of DDOS attacks, we may

continue to serve with the backup-VMs. To do that, the system broadcasts the encrypted

vote data to backup-VMs.

To make our blockchain transparent, the system shares the Merkle root hash of

the EligibleVoterBlockchain, RegisteredVoterBlockchain, and PrivateKeyBlockchain to

the World Wide Web. In addition to this transparency, the system broadcasts the size of

the blockchain and Merkle root hash of the last block in VoteBlockchain. Everyone can

access these data and make sure that everything is clear and nothing is under-covered,

changed, corrupted, masked, or concealed.

We have already explained the ways and techniques of making our blockchain

secure in many sections. And we will continue to demonstrate it. Let us re-examine these

features again.

We store the block’s hash value together with Merkle root hash, so that we can

ensure the integrity of vote data. These hash values also prove the immutability of the

31

vote data. Actually, the chain between nodes and Merkle root hash ensures the security

of whole VoteBlockchain, not just one specific block.

Each phase is designed according to one simple principle: always ensure voters’

privacy. That is why, we encrypt any sensitive data before inserting it into our blockchains.

The system generates two different key pairs. The first key pair is generated using RSA

for the system itself. The second key pair is generated using Paillier for each registered

voter. The usage of these key are demonstrated in Figure 3.3.

We should remember that replicated and distributed data are directly related to the

security of the blockchain.

Finally, the security of blockchain leads us to talk about the Consensus Algorithm.

The Consensus: The consensus makes sure that only eligible voters can add new block

into the RegisteredVoterBlockchain and PrivateKeyBlockchain. Furthermore, only regis-

tered voters can add a new block into the VoteVBlockchain. Our consensus also makes

sure that the integrity of the data is kept.

As introduced in section 1.2. Contribution, a unique Authentication-Based Con-

sensus Algorithm is applied using our four blockchains. The Figure 3.4 shows the inter-

actions between these four blockchains and the trusted authority. The consensus of the

whole system relies on each other, and each blockchain is created for different purposes.

Figure 3.4. The Consensus with Four Blockchain.

At first, the trusted authority provides the eligible voter’s SSN list to the system.

Our first blockchain, EligibleVoterBlockchain, directly trusts the authority and generates

32

a blockchain that consists of eligible voters’ data. Each block inside the blockchain rep-

resents one eligible voter. The primary attribute will be the hash of the voter’s SSN.

These SSN hash values will be used to validate the block’s authority by our sec-

ond and third blockchains, RegisteredVoterBlockchain and PrivateKeyBlockchain. In

this case, only eligible voters can access and append a new block to our Registered-

VoterBlockchain and PrivateKeyBlockchain. The PrivateKeyBlockchain will be used to

decrypt vote data, so there is no active part in the consensus. On the other hand, Regis-

teredVoterBlockchain contains the verification hash for the real username and the verifi-

cation hash for the fake username.

These real and fake username hash values will be used to validate the block’s

authority by our fourth blockchain, VoteVBlockchain. VoteBlockchain will use the second

and third blockchains for different purposes. Before analyzing their relationship, let us

first understand one small detail.

Right now, we created a chain between our blockchains, and VoteBlockchain in-

directly requires the voter’s eligibility thanks to the other blockchains. VoteBlockchain

directly interacts with the PrivateKeyBlockchain and uses our third blockchain to gen-

erate a keyring. However, this relationship does not affect the consensus part; it only

affects the decryption success of votes. The consensus part continues with the relation

between RegisteredVoterBlockchain and VoteBlockchain. VoteBlockchain uses the Reg-

isteredVoterBlockchain to validate vote data’s authority using the verification hash for the

real username.

In conclusion, the introduced chain relation between the four blockchains ensures

consensus. So, we know the relation between our blockchains which means we can com-

pare them with following Figure 3.5. In addition to the comparison of our blockchains,

Figure 4.1 shows the interaction between the voters and our blockchains.

We will discuss the details of why we prefer to design such a unique consensus

algorithm in chapter 6. Discussion.

3.3.5. Individual Verifiability During Voting Phase

As an e-voting requirement, v. Individual verifiability during the voting process,

voters can verify that their votes exist inside the blockchain. So that the system has

33

Figure 3.5. The Comparison of Four Blockchain.

successfully processed the vote data. To do that, voters can use the calculated hash value

of the vote block. In sub-phase Hashing for Vote Verification, the system calculated the

block’s hash value and the value sent to the voter. This hash value will be used to verify

the vote’s existence in the blockchain.

Simple REST API using HTTPS can easily handle this communication between

the voter and the system. The voter will use hashed value just like an API Key, to attach

this hashed value there exist possible ways;

• Via the apiKey querystring parameter.

• Via the X-Api-Key HTTP header.

• Via the Authorization HTTP header.

The last two option is recommended, so that voter’s hashed value is not visible to

others in logs or via request sniffing [37].

If the hashed value exists in one of the blocks in VoteBlockchain, then the system

will return the necessary information to the voter in JSON format with 200 status code. If

it does not exist in the blockchain, then 404 status code will return with no information.

In conclusion, the requirement v. Individual verifiability is satisfied.

34

3.3.6. Counting Phase

As mentioned in section 3.3.1. Setup Phase, the proposed system ensures that

before the voting process ends, the counting phase can not start and any vote data can

not be decrypted by attacker or the system itself since the system’s RSA private key is

distributed among different trusted authorities using VSS.

All data will be kept in encrypted form, and any decryption operation of vote data

can start only in the counting phase due to iv. Fairness requirement. If the system or an

attacker reads the data during the voting process, it may affect the results of the election

with a high probability.

After the voting process is completed, first, the system will announce the Merkle

root hash of the last block and the total used vote to the World Wide Web. In other words,

the system will broadcast the specified data so that anyone can access these data. Merkle

root hash contains all block’s hash values, and this feature ensures the whole blockchain’s

immutability and integrity. Therefore, requirements i. Inalterability and ix. Integrity are

satisfied.

After that, the system will traverse the blockchain from the last block to the gen-

esis block and announce additional information, such as; total/current vote count, total

accepted/rejected vote count, current block’s hash value, Merkle root hash of the current

block, etc. All these various information provides the security, transparency, and reliabil-

ity of the whole voting process directly or indirectly.

Merkle root hash contains all block’s hash values, and this feature ensures the

whole blockchain’s immutability and integrity.

In registration phase, each voter’s Paillier private key is appended into PrivateKey-

Blockchain after encrypted with the system’s RSA public key and this blockchain ensures

that, even if an attacker some-how manages to append a new block into VoteBlockchain,

the vote data can not be decrypted using any of the PrivateKeyBlockchain block. The

decryption keys are defined during registration phase and the blockchain’s Merkle root

hash is already shared to the World Wide Web. No one can append fraud private key, so

no one can cast a fraud vote, as explained.

To decrypt each block in the VoteBlockchain, the system first accesses the Pri-

vateKeyBlockchain. However, the voter’s Pailler private keys inside each block is kept in

35

encrypted form. To decrypt these private keys, the system collects all RSA decryption key

pieces from trusted authorities and obtains the system’s RSA private key. After that, each

voter’s encrypted Paillier private key is decrypted using the system’s RSA private key.

This decryption is performed for each block, and all Paillier private keys are appended to

the keyring.

In this keyring, all Paillier private keys of the voters are mixed, and there is no

way to match them with voters, and this satisfies the requirement vii. Privacy. Finally,

the system obtains all registered voter’s private keys as one special keyring, and then the

system will be able to decrypt each block in the VoteBlockchain.

We should remember that there are high probably different number of eligible

voter, registered voter, and, valid vote respectively neligible voter, nregistered voter, nvalid vote

neligible voter ≥ nregistered voter ≥ nvalid vote

To count the votes, the system traverses VoteBlockchain from the last node to

the genesis node, and each block will be decrypted using the special keyring. With this

method, the vote data and the voter can not be correlated. If one of the Paillier private

keys in the keyring manages to decrypt the vote data, then the system keeps track of

each candidate’s statistics. After all blocks are decrypted and counted, the results will be

announced to the World Wide Web.

• VoteBlockchain

• Shuffled keyring

We should also specify that the following Merkle root hash values are also shared

with the World Wide Web to make this system more secure and transparent. The integrity

of the blockchain is preserved using Merkle root hash so that the requirement ix. Integrity

is satisfied during the 3.3.1. Setup Phase and 3.3.2. Registration Phase

• Merkle root hash of EligibleVoterBlockchain was already shared to the World Wide

Web after Setup phase.

• Merkle root hash of RegisteredVoterBlockchain was already shared to the World

Wide Web after Registration phase.

• Merkle root hash of PrivateKeyBlockchain was already shared to the World Wide

Web after Registration phase.

36

3.3.7. Announcement Phase

After votes are successfully counted, this phase can start. In this phase, the sys-

tem announces the statistical data to the World Wide Web. The following list shows the

available statistical data.

• Setup phase - number of candidate, number of eligible voter.

• Registration phase - number of voter’s Paillier private key, total number of regis-

ter attempt, number of succeed register attempt, number of failed register attempt

because of the eligibility problem, number of failed register attempt because of the

second time register attempt.

• Voting phase - total number of used vote, number of valid used vote, number of

invalid used vote because of the login with fake username, number of invalid used

vote because of the login with incorrect credentials.

• Counting phase - total decrypted vote count, number of decryption succeed and

valid vote count, number of decryption succeed and invalid vote count, number of

decryption failed vote count.

• Announcement phase - vote results.

3.3.8. Individual and Universal Verifiability After Results

Announced

Before introducing these two new phases, let us re-examine the differences be-

tween v. Individual verifiability, vi. Universal verifiability, and xiii. Election replay.

In individual verifiability, the voter can verify the existence of his/her vote using

the hash value of the vote data. The voter can perform this request either during the

voting phase or after the results are announced. As mentioned in section 3.3.5. Individual

Verifiability During Voting Phase, the voter can verify vote data with the help of HTTP

requests. The detailed process is described in that phase. The only difference between

these two phases is the level of information. Suppose the voter tries to verify the vote

during the voting phase. In that case, the system will inform the voter whether the vote

is appended to the VoteBlockchain successfully or not. If the voter tries to verify the

vote after the results are announced, then the system will inform the voter with all the

37

information inside the block, such as vote time, vote choice, hash Of block, etc. In other

words, the voter can track his/her vote so that the requirement v. Individual verifiability is

satisfied.

In universal verifiability, anyone can verify the correctness of the whole voting

process using system keys and data. In our case, the shuffled keyring and VoteBlockchain

will be shared to the World Wide Web. With these two data, anyone can decrypt the whole

election data without violating the voter’s privacy.

In election replay, in addition to the election verification capability, anyone can

replay the whole election process from beginning to end. After the votes are counted

and the system announces the results, the system will share other necessary data such

as anonymous voters’ Paillier public key, shuffled keyring, VoteBlockchain, different

Merkle root hash values, and so on. Instead of traditional solutions, the vote data in

our VoteBlockchain is cumulative. Each block contains the hash of previous blocks, and

the integrity of the vote data is always preserved. Moreover, we shared the three parts

of the result: the anonymous voters’ Paillier public key, the shuffled keyring, and the

VoteBlockchain. In election replay, the procedure will be like:

1. Traverse the VoteBlockchain and try to decrypt each vote using shuffled keyring.

2. Obtain all non-encrypted anonymous choices.

3. Count the votes.

4. Compare the announced result with locally performed.

5. Iterate through obtained data. (the processing order of choice data is not important)

6. Encrypt choice with any of the voter’s Paillier public key (the processing order of

the voter’s Paillier public key is not important)

7. Append encrypted vote data into VoteBlockchain.

8. Do the same thing for the rest of (choice, Paillier public key) pair.

9. At the end, the VoteBlockchain will be generated again with a high possibly differ-

ent order, but the result will be the same.

10. Do the same procedure from step 1 to step 4.

11. Asynchronously, perform cyber-attacks.

Actually, this simple algorithm exposes a remarkable note. In our system,

everyone is equal, no matter their choice.

In conclusion, the requirements vi. Universal verifiability and xiii. Election replay

are satisfied.

38

CHAPTER 4

IMPLEMENTATION OF THE SYSTEM

In this chapter, the implementation of the proposed system will be examined in

detail. The source code can be found on GitHub [35].

4.1. Installation

Ubuntu 20.04 operating system and Python programming language are chosen to

implement in the system with version 3.8.10, and the following guide is prepared ac-

cording to this specification. The hardware specification of the development environment

is listed below: CPU: Intel(R) Core(TM) i5-10200H CPU @ 2.40GHz, GPU: Nvidia

GeForce GTX 1050 Ti, Memory: 16GB, SODIMM DDR4 Synchroous 2933 MHz.

To clone source-code from GitHub, type the following command in your terminal.

$ cd /home/<username>/Desktop

$ git clone https://github.com/mustafakaracay/blockchain-based-e-voting-system

For a better and clean installation, it is recommended to use virtual environments

while installing the dependencies. Since the dependencies are external Python packages

and the same package’s different version might already be installed in your local system.

To create a virtual environment, use the following command.

$ cd /home/<username>/Desktop/blockchain-based-e-voting-system/

$ python3.8 -m venv venv

Once you create a virtual environment, you need to activate it with the following

command.

$ source venv/bin/activate

The required dependencies are exported into requirements.txt with the exact

version number. The dependencies can be installed with the following command.

$ pip3 install requirements.txt

39

Alternatively, the above commands are combined in the installation.sh script file;

for simplicity, you can directly run this script and complete the installation. To do that,

you need to give the necessary permission to the installation script and run it with the

following command.

$ sudo chmod 777 installation.sh

$ sudo ./installation.sh

4.2. Architecture

In chapter 3.3. Proposed Solution and Design, we described the details of the

voting process and divided it into different phases such as setup phase, register phase, etc.

In this section, we will introduce the source code of the thesis.

Once you cloned the source code from GitHub, the directory tree should look like:

|-- blockchain-based-e-voting-system

| ‘-- simulation-data

| ‘-- dummy-candidates.json

| ‘-- dummy-eligible-voter-info.json

| ‘-- dummy-eligible-voter-ssn.json

| ‘-- dummy-usernames-password.json

| ‘-- dummy-vote.json

| ‘-- postman_collection.json

| |-- announcement_phase.py

| |-- block_eligible_voter.py

| |-- block_private_key.py

| |-- block_registered_voter.py

| |-- block_vote.py

| |-- config.ini

| |-- counting_phase.py

| |-- dashboard.py

| |-- encryption.py

| |-- helper.py

| |-- installation.sh

| |-- main.py

| |-- register_phase.py

| |-- requirements.txt

| |-- setup_phase.py

| |-- voting_phase.py

40

4.2.1. main.py

The implementation of the proposed solution can be started with the main.py file

using the following command.

$ python3.8 main.py

Flask Framework: main.py file is basically a Flask application. Flask is a lightweight

WSGI web application framework, and the details can be found on the official website

[20].

First, the system imports other classes and python packages including Flask.

from flask import Flask, request, jsonify, Response

...

Next, the system creates an instance of the Flask class. This instance is a WSGI

application. The first argument is the name of the application’s module or package.

name is a convenient shortcut so that Flask knows where to look for resources such

as templates and static files.

app = Flask(__name__)

Then, the system binds a function to a URL using route() decorator to tell Flask

what URL should trigger which function.

@app.route(’/setupPhase/setStartEndTime’, methods=[’GET’, ’POST’])

def setup_start_end_time_endpoint():

do_something()

Finally, the system runs the application.

app.run(host=’127.0.0.1’, port=5000, ssl_context=’adhoc’) # HTTPS

app.run(host=’127.0.0.1’, port=5000) # HTTP

Creating a New Instance: First, we created an instance of each blockchain such as El-

igibleVoterBlockchain, RegisteredVoterBlockchain, etc. And then, we created instances

for each phase such as setup phase, register phase, etc.

41

Code Snippet 4.1. Instances of Blockchains and Phases
eligible_voter_blockchain = EligibleVoterBlockchain()

registered_voter_blockchain = RegisteredVoterBlockchain()

private_key_blockchain = PrivateKeyBlockchain()

vote_blockchain = VoteBlockchain()

setup_phase = SetupPhase()

register_phase = RegisterPhase()

voting_phase = VotingPhase()

dashboard_data = Dashboard()

counting_phase = CountingPhase({})

announcement_phase = AnnouncementPhase()

Functions to Calculate Hash: Let us first introduce our hash calculator functions be-

fore our classes and the endpoints. These two functions will be used by each of our class.

Code Snippet 4.2. Calculate Hash of Given Values
def calculate_hash(data, key_attributes=None):

merged_content = ""

if key_attributes is not None and len(key_attributes) > 0:

for key in key_attributes:

value = str(data[key])

merged_content += value

else:

for key in data.keys():

value = str(data[key])

merged_content += value

encoded_content = merged_content.encode(’utf-8’)

hashed_value = hashlib.sha256(encoded_content).hexdigest()

return hashed_value

def calculate hash(data, key attributes = None) function takes the Python

dict as first parameter, and Python list as second parameter. key attributes set to None

by default. If the key attributes is None or empty list, then the system traverses the

whole key-value pair of the given dictionary. This means that, if a given key attributes

value contains some key, then the system evaluates only these key-value pairs to calculate

the hash. The system merges the desired value into a new string, called merged content.

And then, the system encodes the merged string with utf − 8. UTF-8 stands for Unicode

Transformation Format - 8 bits. After that, sha256 hash function is used to calculate

42

the hash value of encoded content. SHA stands for Secure Hash Algorithm. Finally, the

function returns the calculated hash function.

Code Snippet 4.3. Calculate Merkle Root Hash of Given Block
def calculate_merkle_root_hash(new_block_hash, current_merkle_root_hash):

merged_content = current_merkle_root_hash + new_block_hash

encoded_content = merged_content.encode(’utf-8’)

merkle_root_hash = hashlib.sha256(encoded_content).hexdigest()

return merkle_root_hash

def calculate merkle root hash(new block hash, current merkle root hash)

function takes the hash of the new block as first parameter, and Merkle root hash of cur-

rent block as second parameter. The system combines the new block’s hash value and

the current block’s Merkle root hash. And then, encodes the combined string using UTF-

8. After that, the system calculates the hash value of the encoded value using SHA256.

Finally, the function returns the calculated hash function.

Blockchains: And then, we can introduce our classes before the endpoints. All of

these classes represent a unique blockchain. We identified the relationships between these

blockchains in Figure 3.4. And, we compared our blockchains in Figure 3.5. In below

Figure 4.1, we will introduce the interactions between the voter and our blockchains.

Figure 4.1. The Interaction Between the Voters and Our Blockchains.

43

An eligible voter can append a new block into the RegisteredVoterBlockchain

using his/her sensitive data such as fake username, real username, password, etc.

An eligible voter can append a new block into the PrivateKeyBlockchain using

his/her Paillier private key.

A registered voter can append a new block into the VoteBlockchain using his/her

vote choice.

A registered voter can send HTTP POST request to VoteBlockchain to verify

his/her vote’s existence in the VoteBlockchain using his/her verification hash of vote data.

They have a common def init (self) function to initialize last block to a

None value.

def get merkle root hash(self) and def get last block hash(self) func-

tions are also common and performs exactly the same. single leading underscore, ,

represents that these functions are private for that class, and they can not be accessible

from the outside of that class.

Since these classes are used to create unique blockchains, they all have their own

def insert(self, < params >) function. The function parameters differ from one class

(or blockchain) to another.

Code Snippet 4.4. EligibleVoterBlockchain
class EligibleVoterBlockchain:

def __init__(self):

self.last_block = None

def _get_merkle_root_hash(self):

merkle_root_hash = self.last_block.merkle_root_hash

return merkle_root_hash

def _get_last_block_hash(self):

last_block_hash = self.last_block.current_block_hash

return last_block_hash

def verify_register_attempt(self, ssn):

register_data = {’ssn’: ssn}

hashed_ssn = calculate_hash(register_data, [’ssn’])

Traverse from last node to genesis node and check that calculated

hash value is matched or not

current_block = self.last_block

while current_block:

44

if hashed_ssn == current_block.verify_block_ssn_hash:

return current_block # Hashed value of SSN matched

current_block = current_block.prev_block

return None # Hashed value of SSN did not match

def insert(self, ssn, encrypted_ssn):

non_encrypted_data = {’ssn’: ssn}

register_data = {’encryptedSsn’: encrypted_ssn, ’timestamp’: int(time.

time() * 1000)}

verify_block_ssn_hash = calculate_hash(non_encrypted_data, [’ssn’])

current_block_hash = calculate_hash(register_data, None)

if self.last_block:

prev_block_hash = self._get_last_block_hash()

prev_block_merkle_root_hash = self._get_merkle_root_hash()

merkle_root_hash = calculate_merkle_root_hash(current_block_hash,

prev_block_merkle_root_hash)

new_node = EligibleVoterBlock(register_data, None,

verify_block_ssn_hash, current_block_hash, prev_block_hash,

merkle_root_hash)

new_node.prev_block = self.last_block

self.last_block = new_node

else: # self.last_block == None

prev_block_hash = None # since this is the first and only block

merkle_root_hash = current_block_hash

new_node = EligibleVoterBlock(register_data, None,

verify_block_ssn_hash, current_block_hash, prev_block_hash,

merkle_root_hash)

self.last_block = new_node

def deactivate_register_attempt(self, block):

block.is_registered = True

class EligibleV oterBlockchain will be used during the setup phase. As ex-

plained in the system assumptions section, an eligible voter list is defined by the authority,

and the list is shared with the proposed system in the setup phase. In this class, the system

creates a new blockchain for the SSN of eligible voters.

45

def insert(self, ssn, encrypted ssn) function will be used to append a new

block into the EligibleVoterBlockchain. The details of each block in the EligibleVoterBlock-

chain are shown in the code snippet 3.1. This function takes the SSN, and encrypted form

of the SSN as function parameters.

def verify register attempt(self, ssn) function will be used during Regis-

ter Phase to check whether the given SSN is inside the EligibleVoterBlockchain or not.

To do that, the system calculates the hash value of the given SSN and assigns it to the

hashed ssn variable. And then, the system traverses the EligibleVoterBlockchain from

the last node to the genesis node, and compare’s the current block’s verify block ssn hash

value with the calculated hashed ssn value. If the values are matched then the system un-

derstands that a voter is eligible to register to the system. To traverse a blockchain the sys-

tem just follows the link of the prev block. The function either returns the current block

(hashes matched) or returns the None value (hashed did not match).

def deactivate register attempt(self, block) function will be used during

Register Phase. Any voter can register to the system only once. This boolean flag is

stored separately for each block in the EligibleVoterBlockchain, and the system automat-

ically set this flag to True, when a voter successfully registered to the system.

Code Snippet 4.5. RegisteredVoterBlockchain
class RegisteredVoterBlockchain:

def __init__(self):

self.last_block = None

def _get_merkle_root_hash(self):

merkle_root_hash = self.last_block.merkle_root_hash

return merkle_root_hash

def _get_last_block_hash(self):

last_block_hash = self.last_block.current_block_hash

return last_block_hash

def verify_login_attempt(self, login_data):

hashed_data = calculate_hash(login_data, [’username’, ’password’])

Traverse from last node to genesis node and check that calculated

hash value is matched or not

current_block = self.last_block

while current_block:

if hashed_data == current_block.verification_hash_fake:

46

return current_block, 2 # Login attempt with fake username

elif hashed_data == current_block.verification_hash_real:

return current_block, 1 # Login attempt with real username

current_block = current_block.prev_block

return current_block, 0

def insert(self, data):

verification_hash_fake = calculate_hash(data, [’fakeUsername’, ’

password’])

verification_hash_real = calculate_hash(data, [’realUsername’, ’

password’])

data[’timestamp’] = int(time.time() * 1000)

current_block_hash = calculate_hash(data, None)

if self.last_block:

prev_block_hash = self._get_last_block_hash()

prev_block_merkle_root_hash = self._get_merkle_root_hash()

merkle_root_hash = calculate_merkle_root_hash(current_block_hash,

prev_block_merkle_root_hash)

new_node = RegisteredVoterBlock(data, data[’publicKey’], None,

verification_hash_fake, verification_hash_real,

current_block_hash, prev_block_hash, merkle_root_hash)

new_node.prev_block = self.last_block

self.last_block = new_node

else: # self.last_block == None

prev_block_hash = None # since this is the first and only block

merkle_root_hash = current_block_hash

new_node = RegisteredVoterBlock(data, data[’publicKey’], None,

verification_hash_fake, verification_hash_real,

current_block_hash, prev_block_hash, merkle_root_hash)

self.last_block = new_node

class RegisteredV oterBlockchain will be used during the voting phase. In this

class, the system creates a new blockchain for eligible voters, and the only way of adding

a new block to the RegisteredVoterBlockchain is that the voter has to be eligible to register

and complete the Register Phase successfully. In this case, we can call this blockchain as

RegisteredVoterBlockchain.

47

def insert(self, data) function will be used to append a new block into the

RegisteredVoterBlockchain. The details of each block in the RegisteredVoterBlockchain

are shown in the code snippet 3.2. This function takes the voter’s data as function pa-

rameter, dict data contains the voter’s Paillier public key of the voter together with the

voter’s sensitive data such as fakeUsername, realUsername, password, etc. The sensitive

data is always transferred and stored in encrypted form.

def verify login attempt(self, login data) function will be used during Vo-

ting Phase to check whether the given username-password pair is inside the Registered-

VoterBlockchain or not. There are three different use cases in the return process. To detect

each case, the system calculates the hash value of the given username and password and

assigns it to the hashed login data variable. And then, the system traverses the Regis-

teredVoterBlockchain from the last node to the genesis node, and compare’s the current

block’s verification hash fake and verification hash real values with the calculated

hashed login data value. To traverse a blockchain the system just follows the link of the

prev block.

Code Snippet 4.6. PrivateKeyBlockchain
class PrivateKeyBlockchain:

def __init__(self):

self.last_block = None

def _get_merkle_root_hash(self):

merkle_root_hash = self.last_block.merkle_root_hash

return merkle_root_hash

def _get_last_block_hash(self):

last_block_hash = self.last_block.current_block_hash

return last_block_hash

def insert(self, data):

data[’timestamp’] = int(time.time() * 1000)

current_block_hash = calculate_hash(data, None)

if self.last_block:

prev_block_hash = self._get_last_block_hash()

prev_block_merkle_root_hash = self._get_merkle_root_hash()

merkle_root_hash = calculate_merkle_root_hash(current_block_hash,

prev_block_merkle_root_hash)

new_node = PrivateKeyBlock(data, None, current_block_hash,

48

prev_block_hash, merkle_root_hash)

new_node.prev_block = self.last_block

self.last_block = new_node

else: # self.last_block == None

prev_block_hash = None # since this is the first and only block

merkle_root_hash = current_block_hash

new_node = PrivateKeyBlock(data, None, current_block_hash,

prev_block_hash, merkle_root_hash)

self.last_block = new_node

def generate_keyring(self):

voters_priv_keyring = phe.paillier.PaillierPrivateKeyring()

current_block = self.last_block

while (current_block):

update dashboard data for number of voter’s Paillier private key

Dashboard.increase_dashboard_data("numberOfVoterPrivateKey")

voters_priv_keyring.add(current_block.private_key)

current_block = current_block.prev_block

shuffle the keyring to protect voter’s privacy

random.shuffle(voters_priv_keyring)

return voters_priv_keyring

class PrivateKeyBlockchain will be used during the counting phase. In this

class, the system creates a new blockchain for Paillier private keys of the registered voters.

def insert(self, data) function will be used to append a new block into the

PrivateKeyBlockchain. The details of each block in the PrivateKeyBlockchain are shown

in the code snippet 3.3. This function takes the Paillier private key of the voter as function

parameter.

def generate keyring(self) function will be used to generate a keyring with

all registered voters’ Paillier private keys. This means that, only the valid votes can be

decrypted with this keyring. To generate such a keyring, the system traverses the Pri-

vateKeyBlockchain from the last node to the genesis node, gets the voter’s Paillier private

key of the voter, and then adds that private key to the keyring. After the system reaches

49

the genesis block, all Paillier private keys are added to the keyring. However, we should

remember that sequential traverse may create security problems. To solve this issue, the

system shuffles the keyring, so that voters’ Paillier private keys inside the keyring are now

totally mixed. The system ensures that votes and voters can not be correlated so that no

one can violate voters’ privacy. Therefore, the requirement vii. Privacy is satisfied.

Code Snippet 4.7. VoteBlockchain
class VoteBlockchain:

def __init__(self):

self.last_block = None

def _get_merkle_root_hash(self):

merkle_root_hash = self.last_block.merkle_root_hash

return merkle_root_hash

def _get_last_block_hash(self):

last_block_hash = self.last_block.current_block_hash

return last_block_hash

def insert(self, data):

data[’timestamp’] = int(time.time() * 1000)

current_block_hash = calculate_hash(data, None) # hash of (ssn+

timestamp)

if self.last_block:

prev_block_hash = self._get_last_block_hash()

prev_block_merkle_root_hash = self._get_merkle_root_hash()

merkle_root_hash = calculate_merkle_root_hash(current_block_hash,

prev_block_merkle_root_hash)

new_node = VoteBlock(data, None, current_block_hash,

prev_block_hash, merkle_root_hash)

new_node.prev_block = self.last_block

self.last_block = new_node

else: # self.last_block == None

prev_block_hash = None # since this is the first and only block

merkle_root_hash = current_block_hash

new_node = VoteBlock(data, None, current_block_hash,

prev_block_hash, merkle_root_hash)

self.last_block = new_node

50

def individual_verify_voting_phase(self, received_verify_hash):

current_block = self.last_block

while (current_block):

if current_block.verification_hash == received_verify_hash:

return True # received verification hash matched with one

of the block’s hash value

current_block = current_block.prev_block

return False # received verification hash did not match with any of

the block’s hash value

def individual_verify_announcement_phase(self, received_verify_hash):

current_block = self.last_block

while (current_block):

if current_block.verification_hash == received_verify_hash:

return current_block # received verification hash matched

with one of the block’s hash value

current_block = current_block.prev_block

return None # received verification hash did not match with any of

the block’s hash value

def get_last_block(self):

return self.last_block

class V oteBlockchain will be used during the voting phase, and counting phase.

In this class, the system creates a new block for each valid vote attempt. The conditions

for adding a new block to the VoteBlockchain will be explained in later sections.

def insert(self, data) function will be used to append a new block into the

VoteBlockchain. The details of each block in the VoteBlockchain are shown in the code

snippet 3.4. This function takes the vote data as function parameter, dict data contains

the voter’s choice in encrypted form.

def individual verify voting phase(self, received verify hash) function

will be used during the voting phase to verify whether the voters’ vote data is added

into VoteBlockchain successfully or not. To do that the system uses a special hash value

which is generated after the voter successfully votes. The system traverses the Vote-

Blockchain from the last node to the genesis node and compares the received hash value,

receivedverifyhash, with the current block’s verificationhash value. If any of the

51

block’s hash value matches with the received hash value, then the system returns True.

Otherwise, it returns False.

def individual verify announcement phase(self, received verify hash)

function will be used during the announcement phase to verify whether the voters’ vote

data is counted successfully or not. To do that the system uses a special hash value

which is generated after the voter successfully votes. The system traverses the Vote-

Blockchain from the last node to the genesis node and compares the received hash value,

receivedverifyhash, with the current block’s verificationhash value. If any of the

block’s hash value matches with the received hash value, then the system returns matched

current block. Otherwise, it returns None.

def get last block(self) function will be used during the counting phase to get

the last block of the VoleBlockchain.

Endpoints: Now, we can introduce the Flask endpoints. Each endpoint is created using

the route decorator, and they can accept either POST or GET requests regarding the use

case. If the endpoint accepts both HTTP methods, then it means that GET request is

implemented for the simulation of the system with given dummy data. The simulation

tool is different than the requirement xiii. Election replay, and we will introduce the

simulation tool at the end of this part.

Code Snippet 4.8. Setting the Start/End Times of Each Phase
@app.route(’/setupPhase/setStartEndTime’, methods=[’GET’, ’POST’])

def setup_start_end_time_endpoint():

try:

if request.method == ’POST’:

data = request.get_json()

setup_phase.set_setup_time(data[’setup_start_time’], data[’

setup_end_time’])

setup_phase.set_register_time(data[’register_start_time’], data[’

register_end_time’])

setup_phase.set_vote_time(data[’vote_start_time’], data[’

vote_end_time’])

else: # request.method == ’GET’

setup_phase.set_setup_time(config_data[’SETUP_START_TIME’],

config_data[’SETUP_END_TIME’])

setup_phase.set_register_time(config_data[’REGISTER_START_TIME’],

config_data[’REGISTER_END_TIME’])

52

setup_phase.set_vote_time(config_data[’VOTE_START_TIME’],

config_data[’VOTE_END_TIME’])

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

error_message, error_code = Helper.text_parser(str(error))

response = {"error_description": error_message}

return jsonify(response), error_code

response = {"description": "Start/End time of Setup, Register, Voting Phase

successfully initialized."}

return jsonify(response), 200

′/setupPhase/setStartEndT ime′ endpoint sets the start time and end time of

setup phase, register phase, and voting phase. Expected JSON for this endpoint is shown

below.

{

"setup_start_time": 0,

"setup_end_time": 9999999999999,

"register_start_time": 0,

"register_end_time": 9999999999999,

"vote_start_time": 0,

"vote_end_time": 9999999999999

}

Code Snippet 4.9. Initialize Candidates
@app.route(’/setupPhase/initCandidates’, methods=[’GET’, ’POST’])

def setup_candidates_endpoint():

try:

setup_start_time, setup_end_time = setup_phase.get_setup_time()

if Helper.is_time_interval_valid(setup_start_time, setup_end_time):

if request.method == ’POST’:

data = request.get_json()

else: # request.method == ’GET’

path = config_data[’CANDIDATE_DATA_PATH’]

with open(path, "r") as fp:

data = json.load(fp)

setup_phase.init_candidates(data)

else:

update dashboard data for number of unauthorized requests

53

Dashboard.increase_dashboard_data("numberOfUnauthorizedRequests")

response = {"description": "The current time is not a valid time to

initialize candidates."}

return jsonify(response), 403

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

error_message, error_code = Helper.text_parser(str(error))

response = {"error_description": error_message}

return jsonify(response), error_code

response = {"description": "Candidates successfully initialized."}

return jsonify(response), 200

′/setupPhase/initCandidates′ endpoint initializes the eligible candidates. This

endpoint expects a list of JSON, and one sample expected JSON is shown below.

{

"option": 1,

"name": "Mustafa",

"surname": "Karacay"

}

Code Snippet 4.10. Generate RSA Key Pair Endpoint
@app.route(’/setupPhase/generateKey’, methods=[’GET’])

def setup_generate_key_endpoint():

try:

setup_start_time, setup_end_time = setup_phase.get_setup_time()

if Helper.is_time_interval_valid(setup_start_time, setup_end_time):

setup_phase.generate_rsa_key(config_data[’RSA_KEY_SIZE’])

else:

update dashboard data for number of unauthorized requests

Dashboard.increase_dashboard_data("numberOfUnauthorizedRequests")

response = {"description": "The current time is not a valid time to

generate RSA key-pair."}

return jsonify(response), 403

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

error_message, error_code = Helper.text_parser(str(error))

response = {"error_description": error_message}

54

return jsonify(response), error_code

response = {"description": "The system’s RSA public and private key

successfully generated."}

return jsonify(response), 200

′/setupPhase/generateKey′ endpoint generates RSA public-private key pair,

and these keys will be used by the system itself. This endpoint only accepts GET requests,

and there is no query parameter for that. The endpoint calls the def generate rsa key

(self, key size) function, and details of this function is given below

Code Snippet 4.11. Generate RSA Key Pair Function
def generate_rsa_key(self):

rsa_pub_key, rsa_priv_key = Encryption().generate_rsa_public_private_key(

key_size)

self.rsa_public_key = rsa_pub_key

self.rsa_private_key = rsa_priv_key

return rsa_pub_key, rsa_priv_key

def generate rsa key(self, key size) function generates RSA public and pri-

vate key pair and initialize the self.rsa public key and self.rsa private key values us-

ing generated key pair. To do that, the function uses classEncryption as a helper. The

following code snippet shows the class Encryption.

Code Snippet 4.12. Paillier and RSA Key Generation Class
import phe

import rsa

class Encryption:

def __init__(self):

pass

def generate_paillier_public_private_key(self, key_size):

pub_key, priv_key = phe.paillier.generate_paillier_keypair(None,

key_size)

return pub_key, priv_key

def generate_rsa_public_private_key(self, key_size):

pub_key, priv_key = rsa.newkeys(key_size)

return pub_key, priv_key

55

The related function uses rsa, and phe python packages to generate the RSA key

pair, and Paillier key pair respectively. The key sizes can be configured using config.ini

file. The default values are 4096 bits for RSA, and 3072 bits for Paillier encryption in the

configuration file.

Code Snippet 4.13. Initialize Eligible Voter’s SSN
@app.route(’/setupPhase/initEligibleVotersSsn’, methods=[’GET’, ’POST’])

def setup_eligible_voters_ssn_endpoint():

try:

setup_start_time, setup_end_time = setup_phase.get_setup_time()

if Helper.is_time_interval_valid(setup_start_time, setup_end_time):

if request.method == ’POST’:

data = request.get_json()

else: # request.method == ’GET’

path = config_data[’ELIGIBLE_VOTER_SSN_DATA_PATH’]

with open(path, "r") as fp:

data = json.load(fp)

setup_phase.init_eligible_voters_ssn(eligible_voter_blockchain,

data)

else:

update dashboard data for number of unauthorized requests

Dashboard.increase_dashboard_data("numberOfUnauthorizedRequests")

response = {"description": "The current time is not a valid time to

initialize eligible voter’s SSN."}

return jsonify(response), 403

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

error_message, error_code = Helper.text_parser(str(error))

response = {"error_description": error_message}

return jsonify(response), error_code

response = {"description": "Eligible voters’ SSN successfully initialized."

}

return jsonify(response), 200

′/setupPhase/initEligibleV otersSsn′ endpoint initializes the SSN of eligible

voters. At the end of this request, a new block will be added to the EligibleVoterBlockchain.

Expected JSON for this endpoint is shown below.

56

{

"ssn_list": [

"67984846863",

"52200070095",

"92201740257",

...

]

}

Code Snippet 4.14. Voter Registration
@app.route(’/registerPhase/initEligibleVotersInfo’, methods=[’GET’, ’POST’])

def register_eligible_voters_info_endpoint():

try:

reg_start_time, reg_end_time = setup_phase.get_register_time()

if Helper.is_time_interval_valid(reg_start_time, reg_end_time):

if request.method == ’POST’:

data = request.get_json()

else:

path = config_data[’ELIGIBLE_VOTER_INFO_DATA_PATH’]

with open(path, "r") as fp:

data = json.load(fp)

register_phase.init_eligible_voter_info(eligible_voter_blockchain,

registered_voter_blockchain, private_key_blockchain, data,

config_data[’PAILLIER_KEY_SIZE’])

else:

update dashboard data for number of unauthorized requests

Dashboard.increase_dashboard_data("numberOfUnauthorizedRequests")

response = {"description": "The current time is not a valid time to

register."}

return jsonify(response), 403

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

error_message, error_code = Helper.text_parser(str(error))

response = {"error_description": error_message}

return jsonify(response), error_code

response = {"description": "Eligible voter(s) successfully registered to

the system."}

return jsonify(response), 200

57

′/registerPhase/initEligibleV otersInfo′ endpoint initialized the sensitive reg-

ister data of the eligible voter. At the end of this request, a new block will be added to the

RegisteredVoterBlockchain if the conditions are satisfied. This endpoint expects a list of

JSON, and one sample expected JSON is shown below.

{

"ssn": 67984846863,

"fakeUsername": "TommieHampton",

"realUsername": "TomHampton",

"password": "601a73!46+8a5c.5",

"email": "tommiehampton@mantro.com",

"phone": "+90(890)455-3255"

}

Code Snippet 4.15. Vote Attempt
@app.route(’/votingPhase/voteAttempt’, methods=[’GET’, ’POST’])

def vote_attempt_endpoint():

try:

vote_start_time, vote_end_time = setup_phase.get_vote_time()

if Helper.is_time_interval_valid(vote_start_time, vote_end_time):

if request.method == ’POST’:

a_data = request.get_json()

data = [a_data]

else: # request.method == ’GET’

path = config_data[’VOTE_DATA_PATH’]

with open(path, "r") as fp:

data = json.load(fp)

voting_phase.init_vote_attempt(registered_voter_blockchain,

vote_blockchain, data)

else:

update dashboard data for number of unauthorized requests

Dashboard.increase_dashboard_data("numberOfUnauthorizedRequests")

response = {"description": "The current time is not a valid time to

vote."}

return jsonify(response), 403

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

error_message, error_code = Helper.text_parser(str(error))

response = {"error_description": error_message}

return jsonify(response), error_code

58

response = {"description": "Vote successfully added to VoteBlockchain."}

return jsonify(response), 200

′/votingPhase/voteAttempt′ endpoint initializes the sensitive vote data of the

registered voter. At the end of this request, a new block will be added to the Vote-

Blockchain if the conditions are satisfied. Expected JSON for this endpoint is shown

below.

{

"choice": 1,

"username": "TomHampton",

"password": "601a73!46+8a5c.5"

}

Code Snippet 4.16. Individual Verify During Voting Phase
@app.route(’/votingPhase/individualVerify’, methods=[’GET’, ’POST’])

def individual_verify_during_voting_endpoint():

try:

vote_start_time, vote_end_time = setup_phase.get_vote_time()

if Helper.is_time_interval_valid(vote_start_time, vote_end_time):

if request.method == ’POST’:

data = request.get_json()

else: # request.method == ’GET’

data = {"verificationHash": "dummyHash"}

verification_hash = data[’verificationHash’]

isVoteExist = vote_blockchain.individual_verify_voting_phase(

verification_hash)

if isVoteExist is True:

response = {"description": "Your vote is added to blockchain

successfully, and no one can change this truth."}

return jsonify(response), 200

else:

response = {"description": "Verification hash could not find in

blockchain, make sure that value entered correctly."}

return jsonify(response), 200

else:

update dashboard data for number of unauthorized requests

Dashboard.increase_dashboard_data("numberOfUnauthorizedRequests")

response = {"description": "The current time is not a valid time to

verify vote data."}

59

return jsonify(response), 403

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

error_message, error_code = Helper.text_parser(str(error))

response = {"error_description": error_message}

return jsonify(response), error_code

′/votingPhase/individualV erify′ endpoint checks whether the voter’s vote data

is added into the VoteBlockchain successfully or not. Expected JSON for this endpoint is

shown below.

{

"verificationHash":

"ca957bba2ce8d0fec42c227bebeae064316c36c33e41dfbf921704dfe0a967f3"

}

Code Snippet 4.17. Count Votes
@app.route(’/countingPhase/countVotes’, methods=[’GET’])

def count_votes_endpoint():

try:

voting end time can be considered as counting phase start time

counting phase must start after voting phase is completed

counting_padding_time = 1000 * 60 * 3 # 3 min just for in case

counting_start_time = int(setup_phase.get_vote_end_time())

counting_end_time = 9999999999999

if Helper.is_time_interval_valid(counting_start_time +

counting_padding_time, counting_end_time):

we are going to use below set() for checking vote choice is for

an eligible candidate or not

candidate_set = set()

get eligible candidate from setup phase

candidates_dict = setup_phase.get_candidates_dict()

initialized_candidate_votes_count = {}

iterate through keys in the eligible candidate dict

for k in candidates_dict.keys():

candidate_set.add(k)

set the total vote of ’candidate_x’ to zero.

initialized_candidate_votes_count[str(k)] = 0

set the total fraud vote to zero

60

initialized_candidate_votes_count[’fraudData’] = 0

set the total invalid candidate vote to zero

initialized_candidate_votes_count[’invalidCandidate’] = 0

we already created an object of ’class CountingPhase’ in main

body, and on the above code block we initialized the vote

counts properly. Now, we just need to update it using

init_vote_results function.

counting_phase.init_vote_results(initialized_candidate_votes_count)

generate keyring with all registered voters’ Paillier private key

counting_phase.generate_voters_keyring(private_key_blockchain)

counting_phase.count_votes(vote_blockchain, candidate_set)

else:

update dashboard data for number of unauthorized requests

Dashboard.increase_dashboard_data("numberOfUnauthorizedRequests")

response = {"description": "The current time is not a valid time to

count votes."}

return jsonify(response), 403

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

error_message, error_code = Helper.text_parser(str(error))

response = {"error_description": error_message}

return jsonify(response), error_code

response = {"description": "All votes in the blockchain counted

successfully."}

return jsonify(response), 200

′/countingPhase/countV otes′ endpoint counts the votes using VoteBlockchain

and PrivateKeyBlockchain. This endpoint only accepts GET requests, and there is no

query parameter for that.

Code Snippet 4.18. Announce the Results
@app.route(’/announcementPhase/announceResults’, methods=[’GET’])

def announce_results_endpoint():

try:

vote counting end time can be considered as announcement phase start

time

announcement phase must start after counting phase is completed

isCountingCompleted = counting_phase.get_is_vote_counting_completed()

61

if isCountingCompleted is True:

dashboard_data = Dashboard.get_dashboard_data()

vote_results = counting_phase.get_vote_results()

announcement_phase.init_dashboard_data(dashboard_data)

announcement_phase.init_vote_results(vote_results)

announcement_phase.plurality_voting_counting()

else:

update dashboard data for number of unauthorized requests

Dashboard.increase_dashboard_data("numberOfUnauthorizedRequests")

response = {"description": "The current time is not a valid time to

announce the results."}

return jsonify(response), 403

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

error_message, error_code = Helper.text_parser(str(error))

response = {"error_description": error_message}

return jsonify(response), error_code

response = {"description": "All votes in the blockchain counted

successfully."}

return jsonify(response), 200

′/announcementPhase/announceResults′ endpoint announces the results to

the public in other words World Wide Web. This endpoint only accepts GET requests,

and there is no query parameter for that.

Code Snippet 4.19. Individual Verify After Voting Completed
@app.route(’/announcementPhase/individualVerify’, methods=[’GET’, ’POST’])

def individual_verify_after_voting_completed_endpoint():

try:

result announcement end time can be considered as start time of

individual verify phase

is_results_announced = announcement_phase.get_is_results_announced()

if is_results_announced is True:

if request.method == ’POST’:

data = request.get_json()

else: # request.method == ’GET’

data = {"verificationHash": "dummyHash"}

62

verification_hash = data[’verificationHash’]

vote_block = vote_blockchain.individual_verify_announcement_phase(

verification_hash)

if vote_block is not None:

decrypt vote data

keyring = counting_phase.get_voters_keyring()

decrypted_choice = keyring.decrypt(vote_block.enc_choice)

response = {’description’: "Your vote is counted successfully,

and no one can change this truth.", ’choice’:

decrypted_choice}

return jsonify(response), 200

else:

response = {"description": "Verification hash could not find in

the blockchain, please make sure that value entered

correctly."}

return jsonify(response), 200

else:

update dashboard data for number of unauthorized requests

Dashboard.increase_dashboard_data("numberOfUnauthorizedRequests")

response = {"description": "The current time is not a valid time to

verify vote data."}

return jsonify(response), 403

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

error_message, error_code = Helper.text_parser(str(error))

response = {"error_description": error_message}

return jsonify(response), error_code

′/announcementPhase/individualV erify′ endpoint checks whether the voter’s

vote data is counted successfully or not. Expected JSON for this endpoint is shown below.

{

"verificationHash":

"ca957bba2ce8d0fec42c227bebeae064316c36c33e41dfbf921704dfe0a967f3"

}

63

4.2.2. setup phase.py

Let us examine the two important functions of setup phase.py since the rest of

the functions are simple getter-setter functions.

Code Snippet 4.20. Setup Phase - Initialize Candidates
def init_candidates(self, data):

check that candidates are finalized or not

if self.is_candidates_finalized is False:

try:

for a_data in data:

initialize candidate

self.candidates_dict[a_data[’option’]] = a_data[’name’] + " " +

a_data[’surname’]

update dashboard data for number of candidates

Dashboard.increase_dashboard_data("numberOfCandidate")

self.is_candidates_finalized = True

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

raise Exception(str(error))

else: # candidates are already set, so do nothing

update dashboard data for number of unauthorized requests

Dashboard.increase_dashboard_data("numberOfUnauthorizedRequests")

403 status code used for ’Forbidden’ The system understood the client

’s request; however, it refuses to response on purpose.

raise Exception("Candidates are already set and finalized, no-one can

modify./403")

This function receives the eligible candidate data as a list of JSON and iterates

through this list. At each iteration, an eligible candidate is added into the self.candidates

dict as key-value pair.

Code Snippet 4.21. Setup Phase - Initialize Eligible Voter’s SSN
def init_eligible_voters_ssn(self, eligible_voter_blockchain, data):

check that eligible voters are finalized or not

if self.is_eligible_voters_ssn_finalized is False:

try:

for ssn in data[’ssn_list’]:

64

add encrypted SSN into EligibleVoterBlockchain

encoded_ssn = ssn.encode(’utf-8’)

encrypted_ssn = rsa.encrypt(encoded_ssn, self.

rsa_public_key)

eligible_voter_blockchain.insert(ssn, encrypted_ssn)

update dashboard data for number of eligible voters

Dashboard.increase_dashboard_data("numberOfEligibleVoter")

self.is_eligible_voters_ssn_finalized = True

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

raise Exception(str(error))

else: # eligible voters ssn are already set, so do nothing

update dashboard data for number of unauthorized requests

Dashboard.increase_dashboard_data("numberOfUnauthorizedRequests")

403 status code used for ’Forbidden’ The system understood the

client’s request; however, it refuses to response on purpose.

raise Exception("SSN of eligible voters are already set and

finalized, no-one can modify./403")

This function receives the eligible voters’ data as JSON, and iterates through the

JSON’s inner list. At each iteration, encodes and encrypt the SSN, and then the data will

be inserted into the EligibleVoterBlockchain.

4.2.3. register phase.py

The one and only function of register phase.py file is shown below.

Code Snippet 4.22. Register Phase - Voter Registration
def init_eligible_voter_info(self, eligible_voter_blockchain,

registered_voter_blockchain, private_key_blockchain, data, key_size):

try:

for a_data in data:

update dashboard data for number of register attempt

Dashboard.increase_dashboard_data("totalNumberOfRegisterAttempt")

ssn = str(a_data[’ssn’])

ssn_matched_block = eligible_voter_blockchain.

verify_register_attempt(ssn)

65

if ssn_matched_block is not None:

isVoterRegistered = ssn_matched_block.is_registered

if isVoterRegistered is False:

create Paillier public, private key pair for that voter

public_key, private_key = Encryption().

generate_paillier_public_private_key(key_size)

create new block for the voter’s Paillier private key to

PrivateKeyBlockchain

priv_data = {’privateKey’: private_key}

private_key_blockchain.insert(priv_data)

create new block for registered voter to

RegisteredVoterBlockchain

a_data[’publicKey’] = public_key

registered_voter_blockchain.insert(a_data)

update dashboard data for number of succeed register

attempt

Dashboard.increase_dashboard_data("

numberOfSucceedRegisterAttempt")

update is_registered boolean value in the

EligibleVoterBlockchain

eligible_voter_blockchain.deactivate_register_attempt(

ssn_matched_block)

else:

update dashboard data for number of failed register

attempt bacuse of the SSN matched but voter is already

registered.

Dashboard.increase_dashboard_data("

numberOfFailedRegisterAttemptCase2")

print("Voter is already registered to the system. SSN: " +

str(a_data[’ssn’]))

else:

update dashboard data for number of failed register attempt

bacuse of the SSN did not match.

Dashboard.increase_dashboard_data("

numberOfFailedRegisterAttemptCase1")

print("Eligible voter’s SSN did not match. SSN: " + str(a_data[

’ssn’]))

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

raise Exception(str(error))

66

4.2.4. voting phase.py

The one and only function of voting phase.py file is shown below.

Code Snippet 4.23. Voting Phase - Vote Attempt
def init_vote_attempt(self, registered_voter_blockchain, vote_blockchain, data):

try:

each iteration represent one vote attempt.

for a_data in data:

update dashboard data for total number of vote

Dashboard.increase_dashboard_data("totalNumberOfVoteUsed")

1-check that login attempt is valid or not

registered_voter_block, login_attempt_enum =

registered_voter_blockchain.verify_login_attempt(a_data)

login attempt with realUsername - password detected

if login_attempt_enum == 1:

2-encrypt the vote data (choice)

voter_pub_key = registered_voter_block.public_key

enc_choice = voter_pub_key.encrypt(int(a_data[’choice’]))

a_data[’encryptedChoice’] = enc_choice

3-append verification_hash_real to a_data

a_data[’verificationHashReal’] = registered_voter_block.

verification_hash_real

4-remove sensitive data from a_data

a_data.pop("choice")

a_data.pop("username")

a_data.pop("password")

5-add timestamp

a_data[’timestamp’] = int(time.time() * 1000)

6-add vote data to vote_blockchain

vote_blockchain.insert(a_data)

update dashboard data for number of valid vote used

Dashboard.increase_dashboard_data("numberOfValidVoteUsed")

login attempt with fakeUsername - password detected

elif login_attempt_enum == 2:

update dashboard data for number of invalid vote because of

the fakeUsername

67

Dashboard.increase_dashboard_data("numberOfInvalidVoteCase2")

print("Login attempt with fakeUsername detected. Block did not

appended into VoteBlockchain")

login attempt failed because login credentials did not match

else:

update dashboard data for number of invalid vote because of

the username password credential

Dashboard.increase_dashboard_data("numberOfInvalidVoteCase3")

print("Username password credential failed. Block did not

appended into VoteBlockchain")

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

raise Exception(str(error))

4.2.5. counting phase.py

The one important function of counting phase.py file is shown below since the

rest of the functions are simple getter-setter functions.

Code Snippet 4.24. Counting Phase - Count Votes
def count_votes(self, vote_blockchain, candidate_set):

try:

keyring = self.get_voters_keyring()

except Exception as error:

update dashboard data for number of internal error

Dashboard.increase_dashboard_data("numberOfInternalError")

raise Exception("The system could not load the voters’ Paillier private

key/403")

get the last block of VoteBlockchain

last_block = vote_blockchain.get_last_block()

traverse from last node to genesis node until block points to None

while (last_block):

update dashboard data for number of total decrypted vote

Dashboard.increase_dashboard_data("totalDecryptedVoteCount")

try:

decrypted_vote_choice = keyring.decrypt(last_block.enc_choice)

except Exception as error:

an exception has been catched, none of the registered voter’s

68

Paillier private key manages to decrypt vote data. so, update

dashboard data for number of decryption failed vote data

Dashboard.increase_dashboard_data("numberOfDecryptionFailedVote")

self.vote_results[’fraudData’] += 1

last_block = last_block.prev_block

continue

voter’s chosen candidate is not an eligible candidate.

if decrypted_vote_choice not in candidate_set:

update dashboard data for number of decrypted and invalid vote

Dashboard.increase_dashboard_data("

numberOfDecryptionSucceedAndInvalidVote")

self.vote_results[’invalidCandidate’] += 1

else:

update dashboard data for number of decrypted and valid vote

Dashboard.increase_dashboard_data("

numberOfDecryptionSucceedAndValidVote")

self.vote_results[str(decrypted_vote_choice)] += 1

last_block = last_block.prev_block

update vote counting completed flag, so that announcement phase can start

self.is_vote_counting_completed = True

4.2.6. announcement phase.py

classAnnouncementPhase in the announcement phase.py is shown below.

Code Snippet 4.25. Announcement Phase - Announce the Results
class AnnouncementPhase:

def __init__(self, vote_results=None, dashboard_data=None):

self.dashboard_data = dashboard_data

self.vote_results = vote_results

self.is_results_announced = False

def init_dashboard_data(self, dashboard_data):

self.dashboard_data = dashboard_data

def init_vote_results(self, vote_results):

self.vote_results = vote_results

def plurality_voting_counting(self):

69

winner_candidate_option = "0" # as key

winner_candidate_vote_count = 0 # as value

for key, value in self.vote_results.items():

if key == "numberOfUnauthorizedRequests" or key == "

numberOfInternalError":

continue

if value > winner_candidate_vote_count:

winner_candidate_option = key

winner_candidate_vote_count = value

self.is_results_announced = True

return winner_candidate_option, winner_candidate_vote_count

def get_is_results_announced(self):

return self.is_results_announced

4.2.7. dashboard.py

The following code snippet shows the classDashboard.

Code Snippet 4.26. Dashboard Data
class Dashboard:

dashboard_data = {

’setupPhase’: {

’numberOfCandidate’: 0,

’numberOfEligibleVoter’: 0

},

’registerPhase’: {

’numberOfVoterPrivateKey’: 0,

’totalNumberOfRegisterAttempt’: 0,

’numberOfSucceedRegisterAttempt’: 0,

’numberOfFailedRegisterAttemptCase1’: 0,

’numberOfFailedRegisterAttemptCase2’: 0,

’avgTransactionTimeToRegisterVoter’: 0

},

’votingPhase’: {

’totalNumberOfVoteUsed’: 0,

’numberOfValidVoteUsed’: 0,

’numberOfInvalidVoteCase1’: 0,

’numberOfInvalidVoteCase2’: 0,

’numberOfInvalidVoteCase3’: 0,

’avgTransactionTimeToEncryptVoteData’: 0,

70

’avgTransactionTimeToVote’: 0

},

’countingPhase’: {

’totalDecryptedVoteCount’: 0,

’numberOfDecryptionSucceedAndValidVote’: 0,

’numberOfDecryptionSucceedAndInvalidVote’: 0,

’numberOfDecryptionFailedVote’: 0,

’avgTransactionTimeToDecryptVoteData’: 0

},

’announcementPhase’: {

’vote_results’: {}

},

’systemData’: {

’numberOfUnauthorizedRequests’: 0,

’numberOfInternalError’: 0

}

}

4.3. Simulation of a Vote Event

The introduced endpoints that accept GET HTTP requests are implemented to

manage a simulation of a vote event for simplicity. The following endpoint triggers all

the necessary endpoints and simulates the life cycle of a sample vote event. The simula-

tion tool uses pre-defined dummy data to simulate each election phase. Dummy data

stored under the cloned GitHub repository as JSON files, blockchain-based-e-voting-

system/simulation-data/dummy-data-name.json

Code Snippet 4.27. Simulate of a Vote Event
@app.route(’/simulate/newVotingLifecycle’, methods=[’GET’])

def simulate_new_voting():

global config_data

try:

config_data = Helper.get_config("config.ini")

except Exception as err:

sys.exit(0)

base_url = "http://" + config_data["IP"] + ":" + str(config_data["PORT"])

init_endpoints = [

’/setupPhase/setStartEndTime’,

’/setupPhase/initCandidates’,

’/setupPhase/generateKey’,

71

’/setupPhase/initEligibleVotersSsn’,

’/registerPhase/initEligibleVotersInfo’,

’/votingPhase/voteAttempt’,

’/votingPhase/individualVerify’,

’/countingPhase/countVotes’,

’/announcementPhase/announceResults’,

’/announcementPhase/individualVerify’

]

try:

for init_endpoint in init_endpoints:

url = base_url + init_endpoint

req = requests.get(url=url)

except Exception as error:

error_message, error_code = Helper.text_parser(str(error))

response = {"error_description": error_message}

return jsonify(response), error_code

response = {"description": "New voting event is simulated successfully"}

return jsonify(response), 200

In this case, you just need to trigger this special ′/simulate/newV otingLifecycle′

endpoint. The straightest way to do that open a terminal and run the following command.

$ python3

Right now, we can execute python codes in the terminal. Type the following code

piece into the python terminal.

>>> url = "http://127.0.0.1:5000/simulate/newVotingLifecycle"

>>> req = requests.get(url=url)

In addition to those .json dummy data files, postman collection.json file is also

exported using Postman. This file contains the sample request for each endpoint sepa-

rately including ′/simulate/newV otingLifecycle′ endpoint. You can directly import it

into Postman and use the GUI to trigger the simulation tool/feature.

In addition to the election simulation tool, the system ensures the xiii. Election

replay requirement thanks to the architectural design of the proposed solution. The user

can replay formal/official elections using shared data such as anonymous voters’ Paillier

public key, shuffled keyring, and VoteBlockchain. One is a helper tool; the other is a

system requirement.

72

CHAPTER 5

RELATED WORKS

5.1. Academic Researches

To solve any problem, we first need to understand what the requirements of the

solution are. We can only propose a solution after we have identified the requirements.

Identifying the requirements for a well-designed and secure e-voting system is naturally

one of the most critical steps for our proposed thesis as well. The following paper ”EDU-

VOTING: An Educational Homomorphic e-Voting System” [28] is the source of the re-

quirement list of this thesis. Since that paper already identifies the requirements and fully

covers them in detail. The selected paper has a very similar design with the our solution

and the study has been published in the recent history. In addition to these reasons, other

factors are listed as follows concerning common points.

• Paillier Homomorphic Cryptosystem is used for encryption.

In both studies, Paillier is preferred. This encryption mechanism provides for all votes

to be kept in encrypted form until the voting process is complete. The way in which the

data is kept in encrypted form is chosen to preserve manipulation of the current election

results, and of course the security issues.

• VSS is used to distribute private key between authorities.

To make the system more secure and reliable, the key is distributed between authorities in

both study. The proposed system distributes the system’s RSA private key. However the

read vote data, an attacker need to access voter’s Paillier private key as well.

• Mixing the data approach is applied.

In the selected work, extra features exist, like shuffling the votes to protect the user’s

privacy. The question here is, why do we need to mix the votes? Suppose an attacker

somehow decrypts the vote data and accesses the database activities. In that case, the

attacker can detect which decrypted data belongs to which user by comparing the vote

time value and the login operation’s database activity log. This issue does not occur with

73

the proposed solution since different blockchains are used, and no log file is kept for

traversing. However, the proposed thesis also uses shuffling for a similar reason. Voter’s

Paillier private keys are added into a keyring, and then the system shuffles the keyring

before sharing it with the World Wide Web.

• All requirements are covered with different but similar approaches.

Using blockchain technology provides extra features to the proposed solution. And these

features are used to cover identified requirements in new ways. In addition to these simi-

larities, the proposed solution directly publishes all necessary information/data, including

public-private key pairs, hash algorithms, blockchains itself, etc. to the World Wide Web

after the election is completed to cover requirement xiii. Election replay.

The main difference between the two studies are as follows:

• Blockchain-based technology is not used in the background.

The selected paper offers an e-voting system without using blockchain technology. The

proposed solution uses various blockchains, Merkle root hash usage, extra encryption

layer, etc. And these features provide an extra security level, immutability, and trans-

parency to the system.

The following paper ”A Survey on Feasibility and Suitability of Blockchain Tech-

niques for the E- Voting Systems” [51] is selected as the second related work because a

well-designed and secure e-voting system is clearly held without blockchain technology

in the first related work. However, this paper analyzes the feasibility and suitability of us-

ing blockchain technology together with e-voting systems, regarding both technical and

non-technical aspects.

Below major challenges of the e-voting system are taken from the selected survey:

• Secure digital identity management: All the voters should sign up before the elec-

tion and their information should be kept private in a format that is digitally proces-

sable in any database.

• Anonymous vote-casting: Voters should be able to choose any candidate or non

anonymously. The votes should be kept anonymous during the whole process.

• Individualized ballot processes: Representation of vote data in web application or

databases is still subject to argument. As a straightforward approach, a clear text

message would be the worst idea in terms of voter anonymity. On the other hand,

74

a hashed token can solve the anonymity problem and provide integrity. Yet such a

solution is not non-repodiable.

• Ballot casting verifiability by (and only by) the voter: For the sake of trust of the

voters, vote data should be accessible to and verifiable by the voters themselves.

With this feature, the system can prevent/detect possible suspicious situations if

any [51].

These technical challenges can be considered as a subset of the first related work’s

requirements. In the proposed solution, first related work’s requirements are preferred

because they perfectly identify and cover the use case of e-voting.

The second related work indicates the reasons why we need blockchain technol-

ogy for e-voting systems. The paper also gives a feasibility flowchart that explains when

blockchain technology is suitable and useful for different use cases. There are various use

cases that are explained and analyzed in detail in the paper.

Since this research is a survey, it aims to analyze the feasibility and suitability of

a blockchain-based e-voting system. The authors do not specify a concrete system design

and architecture.

The feasibility analysis includes the following topics: Blockchain Fundamentals,

Social Aspects, Financial Aspects, Security, and Reliability, Comparison with Alterna-

tives and SWOT Analysis. Traditional Elections, Naive e-voting Systems, and Blockchain-

based e-voting are compared with respect to strengths, weaknesses, opportunities, and

threats. This data is valuable for the proposed solution because the data is used for de-

signing the architecture.

5.2. Current Blockchain-Based E-Voting Systems

A couple of projects use blockchain technology under the hood and let people vote

transparently. These projects are listed below:

• Follow My Vote [21]

• Voatz [53]

• Polyas [42]

• Polys [43]

• Agora [2]

75

All these projects use different consensus algorithms, cryptography mechanisms,

etc. However, all of them suffer from scalability issues. The details of consensus algo-

rithms and scalability issues will be discussed in the following chapter 6. Discussion.

76

CHAPTER 6

DISCUSSION

As mentioned in 3.3.1 Setup Phase, the system prefers RSA encryption. After the

RSA public-private key pair is generated for the system itself, the system will use its own

RSA public key to encrypt eligible voters’ sensitive data, such as SSN. Furthermore, we

need to ensure that no one can read or edit this data. The system’s RSA private key is

the only way to decrypt this data. As explained earlier, the system uses VSS to distribute

the system’s RSA private key between trusted authorities. So our key has to be generated

using asymmetric encryption such as RSA. Symmetric encryption such as AES, is not

suitable for the proposed solution’s use case. It is also important to note that small key

sizes are one of the main reasons for choosing RSA over other asymmetric encryption

mechanisms [6] [18].

In chapter 5. Related Works, we described a potential weakness related to voter

privacy. Instead of traditional databases, blockchains are used to store any data. That is

why the system protects itself automatically. However, there may still be insecure parts,

such as the creation order of RegisteredVoterBlockchain and PrivateKeyBlockchain. An

attacker may create a relationship between the vote data and the registered voter. That is

why the system shuffles the voters’ Paillier private key in the keyring.

As explained in chapter 2. Background, there are three different blockchain types.

And, both Public and Private Blockchains have their own advantages and disadvantages.

The proposed thesis prefers to use a hybrid approach. Since the system will work under

the cloud and be accessible to anyone, we may assume it is a permissionless blockchain.

On the other hand, the system uses a unique proof-based authentication as a consensus

algorithm. It restricts access to the blockchain for several reasons, so we may assume that

a part of our system is permissioned. Therefore, the thesis is designed to take advantage

of both blockchain types.

The introduced consensus algorithm takes advantage of both blockchain types as

well. To ensure consensus, we do not need to consume huge amounts of electricity, we

do not need to solve a complex problem, or we do not need to wait a long time to validate

77

a block. Since a consensus algorithm that is proper for the problem domain can increase

the performance of the blockchain.

The Figure 3.4 and Figure 3.5 shows the details of our blockchains.

In the system, the blockchains are chained to each other. Each blockchain relies on

the other, and that makes the system fully reliable and secure. DDOS attacks are easy to

detect thanks to the chain between blockchains and proof-based authentication using hash

values. Hash of the username-password pair will be used to detect whether the request is

coming from a real voter or an automated script.

In section 3.3. Proposed Solution and Design, we reviewed the overall processes

clearly. The system uses different blockchains instead of the shared database.

• to store eligible voter list in 3.3.1. Setup Phase, EligibleVoterBlockchain

• to verify the voter’s eligibility to register in 3.3.2. Registration Phase, Registered-

VoterBlockchain

• to verify the voter’s eligibility to vote in 3.3.3. Voting Phase, RegisteredVoterBlock-

chain

• to store Paillier public key of voter in 3.3.2. Registration Phase, RegisteredVoter-

Blockchain

• to store Paillier private key of voter in 3.3.2. Registration Phase, PrivateKey-

Blockchain

The proposed thesis ensures that nothing is changed and nothing will change dur-

ing the whole election thanks to the most basic feature, immutable, of blockchain. Let us

examine the list one by one:

EligibleVoterBlockchain: This blockchain stores the unique identifiers of eligible vot-

ers. The voters must verify their eligibility. Since the data is stored in blockchain and

finalized version of Merkle root hash is shared to the World Wide Web, no one can add

ineligible voters to our blockchain.

In 3.3.2. Registration Phase, the users had to register to the system and then had to

create real username, fake username, and password. While registering a new account, the

system uses EligibleVoterBlockchain to verify the user’s eligibility. When a new possible

voter tries to register and types the SSN, the system will calculate the hash of SSN and

ask this value to EligibleVoterBlockchain. The system will traverse from the last block to

78

the genesis block and check whether hashes are matched or not. If one of the hash values

is matched, then it means that possible voter is actually an eligible voter, and he/she can

create real username, fake username, and password.

RegisteredVoterBlockchain: This blockchain stores the hash values of username pass-

word pairs and can use to detect that if a voter is eligible to vote or not. The Paillier public

keys of voters are stored in this blockchain.

In section 3.3.3. Voting Phase, after the vote and encryption process is completed,

the user has to log in to the system. The system uses RegisteredVoterBlockchain to do

that. Instead of asking shared database, the verification is handled by blockchain, just like

in the Registration Phase.

PrivateKeyBlockchain: This blockchain stores the voter’s Paillier private key and can

use to generate a shuffled keyring. The keyring will be used to decrypt each vote data. If

the decryption process fails, then the system understands that the vote data is encrypted

by an ineligible voter, and this makes it fraud data. So, the choice will not be evaluated

during the counting phase.

VoteBlockchain: This blockchain stores the encrypted choice of the voter and the hash

value of the vote data. Vote data’s hash value will be used during 3.3.5. Individual

Verifiability During Voting Phase. Before adding a new block into the VoteBlockchain,

the system verifies the voter’s eligibility by using hash value of username-password. So

that the system can easily detect DDOS attacks and rejects the vote data. Therefore, we

ensure that our blockchain will not become garbage.

Besides technical aspects, accessibility and availability is also an important topic.

The system will be available and accessible during the voting for anyone; personal mo-

bile phone or computer can be used to register, vote, and check/verify the results. The

proposed system is reachable to older people or people with disabilities, unlike kiosk ma-

chines or classic paper-based elections. We live in the age of technology, so they should

be able to vote from anywhere.

Thanks to the advantage of the hybrid approach, a large-scale election is supported

as explained in section 3.1. System Assumptions. The voters can access the proposed

system using any browser with a proper internet connection. In these types of elections,

different countries can choose different voting systems. The proposed system is designed

79

for the plurality voting system. In this type of voting system, the winner is the one that is

mostly chosen regardless of whether it has the majority of votes or not [50].

There are many different voting systems in the world, like First Past the Post,

Single Transferable Vote, Additional Member System, Two-Round System, etc. First

Past the Post is the name for the electoral system used to elect Members of Parliament,

and it is used in the United States, India, etc. [50]. To adopt this system for various voting

systems, the only thing to be updated is the setup phase. The remaining parts are about

the system’s security, expressly or implicitly.

In addition, this system can also be used for a referendum which is a vote on a

question. A referendum can be started by a citizen or by the government. Let us clar-

ify this feature with an example; Lawmakers can use this system to vote for a law. Or

university students can vote on a list of specific questions at the same time. The candi-

dates/choices will be simple ’Yes’ and ’No’ instead of candidates. However, a national

election is chosen in this study, and the system is designed and implemented according to

it.

80

CHAPTER 7

FUTURE WORK

To improve the efficiency and reliability of the system following options can be

integrated into the current system:

• Better authentication methods can be used as Two-FA rather than email or SMS

code verification, such as QR-Code, fingerprint, face recognition, etc.

Ordinary username-password pairs do not provide a sufficient security level. Au-

thentication Technology, one of the most developed areas in the recent period, has great

capabilities and various techniques to authenticate user. Instead of emal/SMS code ver-

ification, we may consider fingerprint, iris, or face recognition: Bio-metric technologies

offer more reliable and efficient ways. As an alternative, QR-Code can provide more

simple and effective way for authentication.

Since the main objective is not the authentication technology in this thesis, it will

be enough to know that the system’s security can be improved using these new techniques,

and vulnerability to fake vote risks can be minimized.

• Different emergency protocols can be applied when the voter attempts to login with

fake username, or when the system detect an anomaly using gesture recognition

such as capture a photo, start a video record, start a voice record, share the location

of the voter, etc.

As explained in the previous sections, the system is capable of detecting whether

a vote is cast with free will or under pressure. If the voter login with a fake username, we

can design an emergency protocol for such cases.

The listed recognition technologies in the first paragraph can also be used for

different purposes. Let us consider the face recognition used in the proposed system as

Two-Factor Authentication. Nowadays, gesture recognition is another popular research

area, and this cool feature can be integrated into the proposed system. Assume that the

voter accepted the terms of use and that the system can access the device’s location,

camera, and audio. When the voter performs a vote attempt if the system detects that the

81

voter looks nervous, frightened, or anxious using Gesture Recognition Algorithms. Then,

the camera will immediately capture a photo, start a video record, or start a voice record

to catch any valuable evidence against the attacker. Since the system receives the vote

data from the voter via HTTPS connection, the system can access the IP address of the

voter’s device, and the system can share this IP address together with the exact location to

the proper authority, such as The General Directorate of Security. These data can directly

transfer into the proposed system, and can trigger the related emergency protocol easily.

• Two-Factor Authentication can be expanded to N-Factor Authentication using dif-

ferent methods.

As explained in the previous paragraphs, there are different types of recognition

algorithms. Except from these options, the system can increase the performance and

security level using the voter’s expected location, Geolocation, during the voting phase.

The voter has to provide some information to register to the system, such as fake

username, real username, password, contact information, etc. in the setup phase. Assume

that there is another field called vote geolocation. The voter can specify two different

state/city/town and this data will be used for the n-th authentication method. The system

will check the IP address of the request. And then check whether the request is coming

from the specified location or not. If the location does not match, the system will not

append a new block for this vote attempt. The first obvious advantage of such a system is

that the system can protect the voter’s login data against Brute-Force attacks. The second

remarkable advantage of this feature is that the system can detect DDOS attacks easily

and skips these malicious vote-casting requests.

• The encryption mechanisms can be reconsidered regarding the possible Quantum

cyber-attacks.

Along with classical security issues, there is also an upcoming quantum computer

problem for most cryptosystems considering many ongoing researches on the field [47].

As mentioned before, cryptosystems such as Paillier, RSA, and ElGamal are vulnerable to

quantum attacks such as Shor’s algorithm that makes it possible to execute prime number

factorization, and, find discrete logarithms in polynomial time using a quantum computer

[48].

82

Since security is obviously essential for an election, it is best if the idea is rein-

forced by using post-quantum (quantum-resistant) cryptosystems. For example, lattice-

based cryptography algorithms such as NTRU and GGH are relatively strong against

quantum attacks [47] [36] [15].

83

CHAPTER 8

CONCLUSION

In this thesis, the requirements of an e-voting system such as inalterability, non-

reusability, eligibility, fairness, etc. are clearly introduced and deeply analyzed. Af-

ter that, the depth of the functionality of the proposed solution is discussed based on:

RSA and Paillier Homomorphic Cryptosystem for encryption-decryption operations and

blockchain technology. However, any asymmetric encryption mechanism can be pre-

ferred instead of Paillier. The details of vote encryption are introduced in 3.3.4. Blockchain

Phase.

Blockchain technology is adopted to the proposed e-voting system with the help

of Proof of Authentication Consensus Algorithm. Different consensus algorithms are

well-suited for different use cases. These use cases are directly related to the type of

network which can be either public or private network. This triangle (type of network

- type of consensus algorithm - type of blockchain) should always be considered as a

whole, and the system architecture should be designed for that. The reason why Proof of

Authentication Consensus Algorithm was preferred for this system is briefly discussed in

the thesis.

Event-driven Process Chain notation is used to model processes, analyze them,

and identify potential improvements for the system. The EPC notation expresses the

business processes through events and activities and is presented with Figure 3.2. In

addition to this notation, each process is explained in detail in section 3.3. Proposed

Solution and Design.

The details of how the system satisfies the requirement xiii. Election replay are

introduced in 3.3.8. Individual and Universal Verifiability After Results Announced.

In the proposed thesis, a novel and unique consensus algorithm is designed and

implemented considering the voter’s privacy and the system’s security. The details of our

consensus algorithm are introduced in 3.3.4. Blockchain Phase.

As we identified in chapter 7. Future Work, Post-Quantum cryptography is gaining

popularity, and Quantum computers are becoming accessible daily. So, we may consider

84

preferring lattice-based cryptography algorithms. Since asymmetrical cryptosystems such

as RSA, ElGamal, or ECC are vulnerable to Post-Quantum cryptographic attacks.

In chapter 6. Discussion, advantages of using a private network, different types of

consensus algorithms, and performance criteria are discussed.

The following table indicates the relationship between the satisfied requirements

and the system phases.

Table 8.1. An Overview of the System’s Phases in terms of Requirements.

i.
In

al
te

ra
bi

lit
y

ii.
N

on
-r

eu
sa

bi
lit

y

iii
.E

lig
ib

ili
ty

iv
.F

ai
rn

es
s

v.
In

di
vi

du
al

ve
ri

fia
bi

lit
y

vi
.U

ni
ve

rs
al

ve
ri

fia
bi

lit
y

vi
i.

Pr
iv

ac
y

vi
ii.

A
ut

he
nt

ic
at

io
n

ix
.I

nt
eg

ri
ty

x.
C

oe
rc

io
n-

re
si

st
an

ce

xi
.R

ec
ei

pt
-f

re
en

es
s

xi
i.

Se
cr

ec
y

xi
ii.

E
le

ct
io

n
re

pl
ay

Setup Phase + + + + + +

Registration Phase + + + + + + +

Voting Phase + + + + + +

Blockchain Phase + + + + +

Individual Verifiability
During Voting Phase

+

Counting Phase + + + +

Announcement Phase +

Individual and Universal
Verifiability After
Results Announced

+ + +

These requirements are the indicators of the security, reliability, transparency, and

privacy of the system. The table shows which requirements are covered in each step.

In conclusion to this study, a well-designed, secure, transparent, and reliable vot-

ing system, such as: inalterable, non-reusable, eligible, fair, etc., can be designed with the

help of blockchain technology.

85

REFERENCES

[1] Academy Binance. What is a blockchain consensus algorithm?

https://academy.binance.com/en/articles/what-is-a-blockchain-consensus-algorithm.

Accessed: 2022-11-09.

[2] Agora Vote. Bringing voting systems into the digital age. https://www.agora.vote/.

Accessed: 2022-11-09.

[3] Al-Kaabi, S. and S. Brahim Belhaouari (2019, 05). Methods toward enhancing rsa

algorithm : A survey. International Journal of Network Security Its Applications 11,

53–70.

[4] Al-Saqqa, S. and S. Almajali (2020, 09). Blockchain technology consensus

algorithms and applications: A survey. International Journal of Interactive Mobile

Technologies (iJIM) 14.

[5] Bach, L. M., B. Mihaljevic, and M. Zagar (2018, May). Comparative analysis of

blockchain consensus algorithms. In 2018 41st International Convention on

Information and Communication Technology, Electronics and Microelectronics

(MIPRO), pp. 1545–1550.

[6] Barker, E. (2020, May). Recommendation for key management: Part 1 - general.

[7] Bayer, D., S. Haber, and W. S. Stornetta (1993). Improving the efficiency and

reliability of digital time-stamping. In R. Capocelli, A. De Santis, and U. Vaccaro

(Eds.), Sequences II, New York, NY, pp. 329–334. Springer New York.

[8] Bendovschi, A. (2015). Cyber-attacks – trends, patterns and security

countermeasures. Procedia Economics and Finance 28, 24–31. 7th International

Conference On Financial Criminology 2015, 7th ICFC 2015, 13-14 April

2015,Wadham College, Oxford University, United Kingdom.

[9] Bitcoin Community. Genesis block. https://en.bitcoin.it/wiki/Genesis block.

Accessed: 2022-11-28.

86

https://academy.binance.com/en/articles/what-is-a-blockchain-consensus-algorithm
https://www.agora.vote/
https://en.bitcoin.it/wiki/Genesis_block

[10] Chaudhry, N. and M. M. Yousaf (2018, Dec). Consensus algorithms in blockchain:

Comparative analysis, challenges and opportunities. In 2018 12th International

Conference on Open Source Systems and Technologies (ICOSST), pp. 54–63.

[11] Chor, B., S. Goldwasser, S. Micali, and B. Awerbuch (1985, Oct). Verifiable secret

sharing and achieving simultaneity in the presence of faults. In 26th Annual

Symposium on Foundations of Computer Science (sfcs 1985), pp. 383–395.

[12] CoinMarketCap. Total cryptocurrency market cap.

https://coinmarketcap.com/charts/. Accessed: 2022-11-26.

[13] David Chaum. Computer systems established, maintained, and trusted by mutually

suspicious groups.

nakamotoinstitute.org/literature/computer-systems-by-mutually-suspicious-groups/.

Accessed: 2022-11-28.

[14] Digicert. Ssl/tls/https.

https://www.websecurity.digicert.com/security-topics/what-is-ssl-tls-https. Accessed:

2023-01-20.

[15] Ding, J. and J.-P. Tillich (2020, 01). Post-Quantum Cryptography 11th

International Conference, PQCrypto 2020, Paris, France, April 15–17, 2020,

Proceedings: 11th International Conference, PQCrypto 2020, Paris, France, April

15–17, 2020, Proceedings.

[16] Dylan Yaga, Peter Mell, N. R. K. S. (2018, October). Blockchain technology

overview.

[17] El Makkaoui, K., A. Ezzati, and A. Beni-Hssane (2016). Securely adapt a paillier

encryption scheme to protect the data confidentiality in the cloud environment. In

Proceedings of the International Conference on Big Data and Advanced Wireless

Technologies, BDAW ’16, New York, NY, USA. Association for Computing

Machinery.

[18] Federal Office for Information Security (BSI) (2022, January). Cryptographic

mechanisms: Recommendations and key lengths.

87

https://coinmarketcap.com/charts/
nakamotoinstitute.org/literature/computer-systems-by-mutually-suspicious-groups/
https://www.websecurity.digicert.com/security-topics/what-is-ssl-tls-https

[19] Feng, Q., D. He, S. Zeadally, M. K. Khan, and N. Kumar (2019). A survey on

privacy protection in blockchain system. Journal of Network and Computer

Applications 126, 45–58.

[20] Flask. Flask user guide. https://flask.palletsprojects.com/en/2.2.x/#user-s-guide.

Accessed: 2022-11-26.

[21] Follow My Vote. Secure decentralized application development.

https://followmyvote.com/. Accessed: 2022-11-09.

[22] Haber, S. and W. S. Stornetta (2004). How to time-stamp a digital document.

Journal of Cryptology 3, 99–111.

[23] Howard, H., M. Schwarzkopf, A. Madhavapeddy, and J. Crowcroft (2015, jan).

Raft refloated: Do we have consensus? SIGOPS Oper. Syst. Rev. 49(1), 12–21.

[24] Hu, V. (2021, December). Blockchain for access control systems.

[25] Huang, D., X. Ma, and S. Zhang (2020, Jan). Performance analysis of the raft

consensus algorithm for private blockchains. IEEE Transactions on Systems, Man,

and Cybernetics: Systems 50(1), 172–181.

[26] IBM. Private cloud. https://www.ibm.com/topics/private-cloud. Accessed:

2023-01-20.

[27] Lamport, L. (1998, may). The part-time parliament. ACM Trans. Comput.

Syst. 16(2), 133–169.

[28] Leyla Tekin, Hüseyin Özgür, B. S. A. K. P. E. and S. Şahin (2018, 05).

Edu-voting: An educational homomorphic e-voting system. International Conference

on Advanced Technologies, Computer Engineering and Science (ICATCES’18).

[29] Liang, Y.-C. (2020, 01). Blockchain for Dynamic Spectrum Management, pp.

121–146.

[30] Lin, I.-C. and T.-C. Liao (2017, 09). A survey of blockchain security issues and

challenges. International Journal of Network Security 19, 653–659.

[31] Lu, Y. (2018). Blockchain: A survey on functions, applications and open issues.

88

https://flask.palletsprojects.com/en/2.2.x/#user-s-guide
https://followmyvote.com/
https://www.ibm.com/topics/private-cloud

[32] Micciancio, D. and O. Regev (2009). Lattice-based Cryptography, pp. 147–191.

Berlin, Heidelberg: Springer Berlin Heidelberg.

[33] Morabito, V. (2017, 01). Business Innovation Through Blockchain.

[34] Moraru, I., D. G. Andersen, and M. Kaminsky (2013). There is more consensus in

egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, SOSP ’13, New York, NY, USA, pp. 358–372.

Association for Computing Machinery.

[35] Mustafa Karaçay. Blockchain based e-voting system.

https://github.com/mustafakaracay/blockchain-based-e-voting-system. Accessed:

2023-01-20.

[36] Nejatollahi, H., N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and R. Cammarota

(2019, jan). Post-quantum lattice-based cryptography implementations: A survey.

ACM Comput. Surv. 51(6).

[37] NewsAPI. Queryparameter. https://newsapi.org/docs/authentication. Accessed:

2023-01-20.

[38] NIST (2015, August). Secure hash standard (shs).

[39] Pahlajani, S., A. Kshirsagar, and V. Pachghare (2019, April). Survey on private

blockchain consensus algorithms. In 2019 1st International Conference on

Innovations in Information and Communication Technology (ICIICT), pp. 1–6.

[40] Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity

classes. In Proceedings of the 17th International Conference on Theory and

Application of Cryptographic Techniques, EUROCRYPT’99, Berlin, Heidelberg, pp.

223–238. Springer-Verlag.

[41] Pilkington, M. (2016). Chapter 11: Blockchain technology: principles and

applications. In Research Handbook on Digital Transformations, Cheltenham, UK.

Edward Elgar Publishing.

[42] Polyas. Online elections, nominations, and voting. https://polyas.com/. Accessed:

2022-11-09.

89

https://github.com/mustafakaracay/blockchain-based-e-voting-system
https://newsapi.org/docs/authentication
https://polyas.com/

[43] Polys. Blockchain-based online voting. https://polys.me/. Accessed: 2022-11-09.

[44] Rivest, Ronald L. (Belmont, M. S. A. C. M. A. L. M. A. M. (1983, September).

Cryptographic communications system and method.

[45] Rivest, R. L., A. Shamir, and D. A. Wagner (1996). Time-lock puzzles and

timed-release crypto. Technical report, USA.

[46] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

https://bitcoin.org/bitcoin.pdf. Accessed: 2022-11-26.

[47] ScienceDaily. Quantum computers news.

https://www.sciencedaily.com/news/computers math/quantum computers/. Accessed:

2022-11-26.

[48] Shor, P. W. (1997, oct). Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5),

1484–1509.

[49] Sridokmai, T. and S. Prakancharoen (2015, Nov). The homomorphic other property

of paillier cryptosystem. In 2015 International Conference on Science and

Technology (TICST), pp. 356–359.

[50] The Electoral Reform Society. Types of voting system.

www.electoral-reform.org.uk/voting-systems/types-of-voting-system. Accessed:

2022-11-09.

[51] Umut Can Çabuk, Eylül Adıgüzel, E. K. (2018, 03). A survey on feasibility and

suitability of blockchain techniques for the e-voting systems. International Journal of

Advanced Research in Computer and Communication Engineering (IJARCCE).

[52] VMware. Virtual machine.

https://www.vmware.com/topics/glossary/content/virtual-machine.html. Accessed:

2023-01-20.

[53] Voatz. Voatz secure and convenient voting anywhere. https://voatz.com/.

Accessed: 2022-11-09.

90

https://polys.me/
https://bitcoin.org/bitcoin.pdf
https://www.sciencedaily.com/news/computers_math/quantum_computers/
www.electoral-reform.org.uk/voting-systems/types-of-voting-system
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://voatz.com/

[54] Wood, D. D. (2014). Ethereum: A secure decentralised generalised transaction

ledger.

[55] Yıldırım, M. and I. Mackie (2019, 12). Encouraging users to improve password

security and memorability. International Journal of Information Security 18.

[56] Zheng, Z., S. Xie, H. Dai, X. Chen, and H. Wang (2017, June). An overview of

blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE

International Congress on Big Data (BigData Congress), pp. 557–564.

91

	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER INTRODUCTION
	Thesis Goal and Motivation
	Contribution
	Outline

	CHAPTER BACKGROUND
	Blockchain: Definition
	Blockchain: Under the Hood
	Types of Blockchains
	Consensus Algorithms
	Types of Consensus Algorithms
	Comparison of Blockchains Together with Consensus Algorithms
	Additional Applied Technologies

	CHAPTER DESIGN OF THE SYSTEM
	System Assumptions
	System Requirements
	Proposed Solution and Design
	Setup Phase
	Registration Phase
	Voting Phase
	Blockchain Phase
	Individual Verifiability During Voting Phase
	Counting Phase
	Announcement Phase
	Individual and Universal Verifiability After Results Announced

	CHAPTER IMPLEMENTATION OF THE SYSTEM
	Installation
	Architecture
	main.py
	setup_phase.py
	register_phase.py
	voting_phase.py
	counting_phase.py
	announcement_phase.py
	dashboard.py

	Simulation of a Vote Event

	CHAPTER RELATED WORKS
	Academic Researches
	Current Blockchain-Based E-Voting Systems

	CHAPTER DISCUSSION
	CHAPTER FUTURE WORK
	CHAPTER CONCLUSION

