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Abstract

Lake Urmia basin (LUB), in northwestern Iran, is under the influence of extreme deg-

radation due to a number of natural and anthropogenic factors. The existence of the

Lake is critical for the microclimate of the region as well as the quality of human life

and wildlife, which necessitates an up-to-date and holistic analysis of its hydrological

dynamics. In this premise, satellite-based terrestrial water storage (TWS) received

from the Gravity Recovery and Climate Experiment (GRACE) mission was coupled

with hydrometeorological modelling and assessment tools to analyse the hydrological

status of the lake and its basin. As a new gap-filling approach, the Seasonal-Trend

decomposition using Locally estimated scatterplot smoothing (LOESS) (STL) decom-

position technique was proposed in this study to reconstruct the missing TWS data.

Integrating satellite precipitation data with the Catchment Land Surface Model

(CLSM) and WaterGAP model outputs, the hydrological status of the lake was inves-

tigated. The STL-based TWS turned out to concord well with the simulated TWS

from the CLSM indicating the acceptable performance of the proposed technique.

The findings revealed that the LUB had undergone an alarming hydrological situation

from 2003 to 2021 with a total loss of 10 and 7:56km3 from its TWS and groundwa-

ter storage (GWS), respectively. The water level time series also indicated that the

water level of the lake had diminished with an annual rate of �70�21cm=year cor-

responding to a total water level depletion of about 13:35�3:9m during the 2003–

2021 period. The GRACE-derived TWS and GWS also agreed well with the CLSM

simulations. Assessment of the extreme events of the LUB suggested that the basin

suffered from a severe dry event in 2008 resulting in the depletion of its water stor-

age and water level. It was also found that from 2003 onward, a critical hydrological

setting had dominated the LUB with a negative hydrological balance of �0:96km3.
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1 | INTRODUCTION

As one of the largest Middle-Eastern countries, Iran's climate is of arid

to semi-arid type. This generic aridity accompanied by the large-scale

impacts of climate change, population growth, urban development

and the national policy of food self-sufficiency has culminated in the

detriment of its surface and subsurface water bodies by the increased

pressure on the water resources of the country (Forootan

et al., 2014). The climate crisis resulted in severe impacts in most of

its regions and manifested itself in terms of increasing temperatures,

diminishing precipitation and consequently, decreasing availability of

renewable water resources (Hosseini-Moghari et al., 2020). The

increasing population has ramifications for water resources escalating

the need for fresh water in populated centres and agricultural lands

(Forootan et al., 2014). Several water bodies in Iran including wetlands

and lakes have dried out and groundwater aquifers have degraded

dramatically in different parts of the country (Hosseini-Moghari

et al., 2020; Khorrami & Gunduz, 2019; Madani et al., 2016). Less than

10% of Iran's territory benefits from sufficient precipitation, while the

majority of the country (more than 90%) is affected by the associated

side effects of an arid to semi-arid climate, and therefore, is mainly

dependent on groundwater aquifers to meet the required water

demands (Forootan et al., 2014). The overexploitation of groundwater

in recent decades has resulted in the rapid degradation of several

aquifers and groundwater-related surface water bodies throughout

the country. Due to low social awareness regarding the status and

importance of groundwater and groundwater-dependent eosystems,

the diminishing groundwater level is deemed an invisible disaster in

the country (Hosseini-Moghari et al., 2020).

The Lake Urmia basin (LUB) in northwestern Iran is among the

most important basins in the country regarding its hydrological status.

The water level and the associated storage in Lake Urmia (LU) have

been subjected to a severe decline in recent years, which is strongly

related to both anthropogenic and natural forces. To date, several

researchers have investigated the variations of water storage over the

LUB based on numerous approaches and reported the influential fac-

tors responsible from the drying of the Lake including decreased pre-

cipitation, increased temperature and evapotranspiration,

development of new agricultural land, excessive extraction of ground-

water, construction of man-made water diversion structures and

building a causeway across the lake (Banihabib et al., 2015; Farajzadeh

et al., 2014; Fathian et al., 2015; Jalili et al., 2012; Kamran &

Khorrami, 2018; Zeinoddini et al., 2009). Known as one of the biggest

saline lakes in the world, the LU has lost most of its water storage in

recent years. Figure SM1 demonstrates the spatiotemporal evolution

of the desiccation process in the LU from 2003 to 2020. In light of

the unique role that the LU plays in sustaining the microclimate of the

region (Azizpour & Ghaffari, 2021), exact and regular monitoring of its

water storage and detection of the influential parameters in the varia-

tions of the lake water storage bear the utmost importance.

Remote sensing observations provide unique means for the dis-

tant estimation and evaluation of different environmental phenomena,

especially over large scales, for which in-situ data are either

inaccessible or insufficient. One of the recent high-tech achievements

in the field of environmental remote sensing satellites is the Gravity

Recovery and Climate Experiment (GRACE) mission, through which

large-scale variations of the main hydrological compartments can be

estimated. The GRACE mission is the only remote sensing system

capable of measuring water storage changes at all levels beneath and

on the land surface, through which an unprecedented opportunity is

offered to understand and improve the simulation of terrestrial water

storage (TWS) variability (Zaitchik et al., 2008). However, the GRACE-

observed data are associated with missing values, which impede a

comprehensive and uninterrupted analysis of hydrological compo-

nents. Therefore, a reconstruction of GRACE data is vital within the

scope of any GRACE-based analysis. Although the GRACE gap filling

is a relatively new topic, several techniques including data-driven

methods (Li et al., 2020), automatic machine learning (Sun

et al., 2021), deep learning (Sorkhabi et al., 2021; Uz et al., 2022), mul-

tichannel singular spectrum analysis (Wang et al., 2021), Neural Net-

works (Lai et al., 2022; Mo et al., 2022; Zhang, Yao, & He, 2022), and

physically based reconstruction (Zhang, Li, et al., 2022) have so far

been implemented to fill in the gaps of the GRACE/GRACE-Follow-

On (GRACE-FO) estimates. However, the complexity of the used

techniques and the necessity to use auxiliary data to simulate the

missing TWS is still a major challenge associated with these

techniques.

Based on this premise, a new technique is proposed in this study

to bridge the gaps within and between the GRACE and GRACE-FO

observations in a more convenient way. To this end, the Seasonal-

Trend decomposition using Locally estimated scatterplot smoothing

(STL) was applied to reconstruct the missing TWS values from 2003

to 2021 over the LUB. The gap-free GRACE/GRACE-FO data were

then used alongside other remote sensing and modelled data to sys-

tematically investigate the hydrological dynamics of the drying LU to

uncover the variations of its water storage and water level and to

evaluate the anthropogenic and natural parameters responsible from

the lake's desiccation in recent decades.

2 | SITE DESCRIPTION

Lake Urmia (LU) is the largest inland lake in Iran and the Middle East,

and the second-largest hypersaline lake in the world (Vaheddoost &

Aksoy, 2019). It is a Ramsar Site and a UNESCO Biosphere Reserve

and is designated as a national park due to its ecological and natural

features (Hosseini-Moghari et al., 2020). The lake is at an altitude of

1250 m above sea level with a maximum water depth of 16 m. The

LU is divided into two (i.e., northern and southern) parts separated by

a causeway and a 1500 m bridge that allows only limited water

exchange between these two sections. The LU stretches about

140 km in length, from north to south, and 50 km in width, from east

to west, (Azizpour & Ghaffari, 2021). The LUB covers about

51 800 km2 in the northwest region of Iran (Figure 1a) hosting an esti-

mated population of 7 million (10% of Iran's population) (Feizizadeh

et al., 2021). Different land use/cover (LULC) classes such as bare
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land, pasture, agricultural lands, wetlands, orchards, rocks and sedi-

ments are distinguished in the basin (Figure 1b). The LUB is composed

of 68 streams/rivers of which 56 are intermittent streams/rivers con-

tributing to the water inflow into the LUB (Hosseini-Moghari

et al., 2020). The construction of dams on these streams supplying

water to LU, over-exploitation of groundwater for various anthropo-

genic purposes as well as the increased frequency of hydrometeoro-

logical extremes have resulted in the reduced annual water input to

the lake. The bathymetry map of the LU (Figure 1c) indicates that the

depth of the lake ranges from a minimum of 0 m to a maximum of

16 m, which is a clear indication of the shallow character of the lake.

3 | METHODOLOGY

3.1 | Datasets

3.1.1 | GRACE and GRACE-FO observations

The GRACE is a pioneering remote sensing project, which consists of

two co-orbiting satellites to gather the gravitational signals of the

Earth (Khorrami & Gunduz, 2021a). The project was started by launch-

ing the first set of satellites in March 2002. The GRACE-1 (called

GRACE) satellite continued recording the gravity field for 16 years

and terminated its mission in June 2017. After an 11-month delay, the

second mission was started by placing the GRACE-FO in the Earth's

orbit in May 2018 (Khorrami et al., 2021). These two missions have

been providing the public end-users with invaluable data on the

monthly anomalies of Terrestrial Water Storage (TWS) processed by

different centres. The primary data format of the GRACE mission is

Spherical Harmonics (SH) signals that require postprocessing. The lat-

est data format of the mission is called Mass Concentration (Mascon)

blocks, which are post-processed and ready to use. Moreover, the

Mascon solutions are global and not tailored towards a particular

application, and hence, they can be utilized for all scientific topics of

interest (Save et al., 2016). Hence, in this study, the latest release of

the GRACE/GRACE-FO Mascon solutions including CSR, JPL and

GSFC Mascons was utilized. The TWS data can be downloaded from

http://www2.csr.utexas.edu/grace/RL06_Mascons.html (for CSR

data), and https://earth.gsfc.nasa.gov/geo/data/grace-Mascons (for

JPL and GSFC data).

3.1.2 | Global Land Data Assimilation System model

The Global Land Data Assimilation System (GLDAS) is a widely utilized

large-scale hydrological model established by NASA and the National

Centres for Environmental Prediction. Within the framework of this

model, different hydrometeorological variables are simulated by inte-

grating some in-situ and satellite observations at a higher resolution.

The GLDAS utilizes advanced land surface models (LSMs), such as

Community Land Model (CLM), Variable Infiltration Capacity (VIC)

F IGURE 1 The geographic location of Lake Urmia and its basin in NW Iran (a), land use/cover (LULC) (b), and the lake's bathymetry (c).
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model, Noah model, Mosaic model and Catchment land surface model

(CLSM), to simulate the land surface states and fluxes (Hu

et al., 2019). The CLSM is the only model of the GLDAS and also one

of the few global models to simulate ground water storage (GWS)

(Girotto et al., 2021). In this study, the simulated variables of Soil

Moisture Storage (SMS), Snow Water Equivalent (SWE), Surface

Water Storage (SMS) and Evapotranspiration (ET) were received from

the Noah model. The TWS and GWS were extracted from the CLSM

model and were integrated into the analysis. The GLDAS data is

accessible from https://ldas.gsfc.nasa.gov/gldas.

3.1.3 | WaterGAP model

The WaterGAP is one of the pioneering hydrological modelling mis-

sions developed with the primary motivation of quantifying large-

scale (regional to global) water resources by concentrating on the

anthropogenic impacts to evaluate water stress (Khorrami, Ali,

et al., 2022). The model utilizes water use models to simulate the vol-

ume of water consumption in different sectors (Portmann, 2017). The

grid-wise water simulations of the WaterGAP agree well with the

global data (Alcamo et al., 2003). In this study, the total water con-

sumption from the surface and subsurface water resources was

extracted from 0.5-degree resolution WaterGAP model outputs. The

WaterGAP model data is accessible at https://www.uni-frankfurt.de/

45218093/Global_Water_Modeling.

3.1.4 | Climate Hazards Group Infrared
Precipitation with Station data

Climate Hazards Group Infrared Precipitation with Station data

(CHIRPS) dataset is a relatively new quasi-global, high-resolution,

daily/monthly precipitation dataset. Being known as one of the most

accurate gridded precipitation datasets, CHIRPS is often used as an

alternative source of precipitation measurements, especially where

sufficient measurements are not accessible (Paca et al., 2020). The

CHIRPS monthly precipitation data with a resolution of 0.05� can be

downloaded from http://chg.geog.ucsb.edu/data/chirps/.

3.1.5 | In-situ observations

The long-term observations of the water level of the LU were

received from the portal of the Lake Urmia Research Plan (LURP) and

can be downloaded from https://b2n.ir/y26109.

3.2 | Drought metrics

In this study, global drought indices including the Standardized

Precipitation-Evapotranspiration Index (SPEI) and Self-calibrating

Palmer Drought Severity Index (scPDSI) were utilized to evaluate

hydrometeorological extremes over the LUB. The scPDSI and SPEI are

water balance-based drought indices. scPDSI is a revised form of

PDSI, through which historical precipitation and temperature data are

integrated into the soil characteristics to assess extreme incidents

(Briffa et al., 2009). SPEI, on the other hand, is a multiscale indicator

calculated based on the deviation of precipitation and evapotranspira-

tion records (Beguería et al., 2010). The integration of evapotranspira-

tion into the calculation process is the unique aspect of the SPEI,

through which the evaporative demand is applied to better describe

the global hydrometeorological extremes (Beguería et al., 2010). The

monthly scPDSI and SPEI were downloaded from (https://www.uea.

ac.uk/web/groups-and-centres/climatic-research-unit/data) and

(https://digital.csic.es/handle/10261/268088), respectively. The char-

acteristics of the data used in this study are given in detail in Table 1.

3.3 | Methods

In this study, the STL technique was utilized to reconstruct the miss-

ing TWS values of the GRACE/GRACE-FO missions. The seamless

TWS data were then integrated with model outputs to estimate GWS.

The GRACE-based TWS and GWS were then compared with model-

based TWS and GWS. The lake's water level data were then associ-

ated with the variations of the GRACE-derived TWS. The hydrologic

dynamics of the lake were then investigated in term of anthropogenic

and natural processes by the integrated analysis of the satellite- and

model-based observations. The overall schematic flow of the research

analysis is given in Figure 2.

3.3.1 | STL-based GRACE gap filling

The TWS data received from the GRACE and the GRACE-FO missions

suffer from periodic intra-gaps (within the GRACE mission) and con-

tinuous inter-gaps (between the two missions) (Flechtner et al., 2014;

Yi & Sneeuw, 2021). These missing values hinder better monitoring of

water resources. Therefore, it is a must to fill in the missing data for

an accurate assessment of hydrological cycle components. Overall,

there are 36 missing months in GRACE data from 2002 to 2021

(Figure SM2). The TWS observations manifest seasonal variations

with a long-term trend. This common facet of the GRACE-observed

TWS was addressed and the gaps of the GRACE/GRACE-FO observa-

tions were filled in based on Seasonal-Trend decomposition using

Locally estimated scatterplot smoothing (LOESS) (STL) to have a com-

plete set of the GRACE/GRACE-FO data. In this premise, a simple

additive decomposition model is executed in the R programming envi-

ronment to fill in the missing data. The STL model decomposes the

data into trend, seasonal and residual components.

TWSt ¼ TtþStþRt, ð1Þ

where TWSt is the terrestrial water storage at time t; T, S and

R denote the trend component, the seasonal component, and the

4 of 16 KHORRAMI ET AL.
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remainder component, respectively (Cleveland et al., 1990). The miss-

ing data were filled in using the trend from the decomposition of

TWS, then added the average monthly and residual values of that

month to calculate the missing months.

3.3.2 | Disintegration of TWS

TWS is a vertically integrated hydrological variable that encompasses

the water storage anomalies of the soil moisture (SMS), snow water

(SWE), groundwater (GWS) and surface water (SWS) (Khorrami &

Gunduz, 2021b). The variations of groundwater storage can be

extracted through the GRACE isolation process. Equations (2) and (3)

describe the structure of TWS and the extraction of GWS,

respectively.

TWS¼GWSþSWEþSMSþSWS, ð2Þ

GWS¼TWS� SWEþSMSþSWS½ �: ð3Þ

3.3.3 | Mann-Kendall trend test

The Mann-Kendall (MK) technique (Kendall, 1975; Mann, 1945) was

utilized to unearth the trend of the time series. The MK is a non-

parametric statistical test, for which no distribution of the input

TABLE 1 Specifications of the
datasets used in the study. Mission Data type

Resolution
Temporal Spatial

GRACE/GRACE-FO Satellite Monthly (2003–2021) CSR: 0.25� � 0.25�

JPL: 0.5� � 0.5�

GSFC: 0.5� � 0.5�

GLDAS Model Noah: Monthly CLSM: Daily 0.25� � 0.25�

(2003–2021)

WaterGAP Model Monthly (2003–2015) 0.5� � 0.5�

CHIRPS Satellite Monthly (2003–2021) 0.05� � 0.05�

Drought metrics Model Monthly (2003–2021) 0.05� � 0.05�

Lake water level In situ Monthly (2003–2021) –

F IGURE 2 Schematic flow of the
analysis.
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variables is required (Alhaji et al., 2018). Therefore, it is commonly uti-

lized for trend analysis of the time series of hydro-meteorological vari-

ables (Tabari et al., 2011). The basic formulas of the MK technique are

given in the Supplementary Material.

3.4 | Results

3.4.1 | STL gap-filling performance

The missing TWS values were filled in based on the STL technique in

this study, which are then verified by the values obtained in the CLSM

dataset. Today, the CLSM is the only global model, which makes use

of the GRACE estimates in its sophisticated data assimilation process

to generate hydrological fluxes (Kumar et al., 2016). As a result, spa-

tiotemporally downscaled and gap-less values of TWS were simulated,

which has culminated in improved estimates of hydrological compo-

nents (Kumar et al., 2016). Therefore, the TWS results obtained from

the STL method were validated against the CLSM-derived TWS over

the LUB. Figure SM3 illustrates the performance accuracy of the pro-

posed method in terms of the correlation between the missing values

filled in with the STL technique and those derived from the CLSM.

The results reveal that the used STL technique is successful in recon-

structing the missing TWS values of the GRACE mission. According to

the Taylor diagram, the correlation between the STL-based TWS and

CLSM-TWS is 0.88, 0.89 and 0.91 for the JPL, GSFC and CSR data,

respectively. The good performance of the proposed STL-based gap-

filling approach is also verified by comparing it to the findings of previ-

ous studies. Soltani and Azari (2022) applied the Group method of

data Handling (GMDH) machine learning technique to model TWS

values over the LUB. According to Soltani and Azari (2022), the

GMDH was considered a successful GRACE gap-filling technique that

yields very good results in simulating the missing TWS values over the

LUB with the best correlation of 0.73.

3.5 | Variations of TWS

Temporal variations of TWS over the LUB were drawn based on the

basin-average TWS on the monthly scale (Figure 3). The variations of

TWS over the LUB reveal that there is a high level of agreement

between different GRACE solutions and the CLSM-TWS. The monthly

variations (Figure 3a) of TWS manifest a strong association between

CLSM and CSR, JPL and GSFC with a correlation of 0.91, 0.94 and

F IGURE 3 The multiyear (2003–2021) monthly (a) and mean-monthly (b) variations of terrestrial water storage (TWS) over Lake Urmia
basin (LUB).
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0.94, respectively. The climatology (mean monthly) variations

(Figure 3b), on the other hand, show higher agreement between the

GRACE and CLSM with a correlation of 0.99 (for the CSR), and 0.98

(for the JPL and GSFC). The monthly time series reveals that the CSR-

TWS fluctuates between 9:96km3 (in May 2003) and �20:15km3

(in October 2021). The JPL-TWS fluctuates between 9:23km3 (in May

2003) and �18:76km3 (in October 2021), and the GSFC-TWS fluctu-

ates between 9:72km3 (in May 2003) to �16:80km3 (in October

2021). The CLSM, on the other hand, shows TWS variations ranging

from 7:50km3 (in May 2004) to �7:90km3 (in October 2021).

The mean monthly time series indicate that excluding March,

April and May, during which positive TWS occurs over the basin, the

variations of TWS are negative during the remaining months. The

results indicate that in April the LUB experiences a maximum water

storage surplus of 2:40km3 (CSR), 0:66km3 (JPL), 1:60km3 (GSFC)

and 1:02km3 (CLSM). While the maximum storage loss turns out to

occur during autumntime with the maximum depletion of �8:40km3

(CSR), �10:16km3 (JPL), �9:90km3 (GSFC) and �6:0km3 (CLSM) in

October. The autumntime trough observed in the variations of TWS

can be ascribed to the impacts of excessive water use for agriculture

during the cultivation season (summertime). The variation pattern of

TWS is in complete agreement with the findings of Humphrey et al.

(2016), who reported the springtime and autumntime variations of the

peak and trough values of TWS for the northern hemisphere of the

world.

The spatial associations of the TWS derived from the GRACE

solutions and the CLSM simulations are given in Figure SM4, accord-

ing to which, the central and southern parts of the basin show a

higher correlation with the CLSM while the northern parts manifest

lower correlations. The correlation ranges from 0.79 to 0.94, and the

RMSE ranges from 36 to 198 mm. It also suggests that the spatial dis-

tribution of the correlation and RMSE values are almost identical for

the JPL- and CSR-derived TWS while the GSFC-TWS showcases a

somehow different spatial pattern of correlation and RMSE compared

to the JPL and CSR solutions.

3.6 | Variations of GWS

The variations of groundwater storage of the basin were extracted

based on Equation 3 by integrating the hydrological components from

the GLDAS-Noah model into the GRACE-TWS. The basin-wise varia-

tions of GWS based on the GRACE solutions and the CLSM model are

given in Figure 4. According to the monthly variations of GWS

(Figure 4a), the CSR, JPL and GSFC-derived GWS are in good agree-

ment with the CLSM-derived GWS over the LUB. The temporal

F IGURE 4 The multiyear (2003–2021) monthly (a) and mean-monthly (b) variations of groundwater storage (GWS) over the Lake Urmia
basin (LUB).
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correlation is 0.73, 0.76 and 0.79 for the CSR, JPL and GSFC, respec-

tively. The mean monthly variations (Figure 4b), on the other hand,

reveal that for the GWS variations, the association between the

GRACE-GWS and CLSM-GWS is lower than that for the monthly vari-

ations. The temporal correlation of the climatology values is 0.70,

0.61 and 0.79 for the CSR, JPL and GSFC, respectively. Although the

model-integrated disintegration of TWS may yield extra uncertainties

of the extracted GWS (Sahour et al., 2020), a very high agreement

between the GRACE-derived GWS and in-situ groundwater level of

the LUB was reported from 2003 to 2019 (Saemian et al., 2020). This

relatively low agreement between the GRACE-derived and CLSM-

simulated GWS can be ascribed to the climatic setting of the study

area. Shamsudduha and Taylor (2020) reported that the GWS uncer-

tainty is generally higher for aquifer systems located in arid regions.

Furthermore, the model-based simulation of GWS suffers from errors

propagated from the uncertainty in the model computation and the

data (Tangdamrongsub et al., 2018).

The monthly time series of GWS imply that the CSR-GWS fluctu-

ates between 5:71km3 (in May 2003) and �14:90km3 (in October

2021). The JPL-GWS fluctuates between 5:10km3 (in June 2005) and

�16:12km3 (in October 2021), the GSFC-GWS fluctuates between

5:46km3 (in May 2003) and �12:62km3 (in October 2021), and the

CLSM-GWS fluctuates between 5:70km3 (in May 2004) and

�6:50km3 (in October 2021). The mean monthly time series of GWS

also indicate that except for April and May, during which there is a

trivial increase in the groundwater storage of the basin detected only

by the CLSM, the GRACE-derived GWS fluctuates negatively

throughout the year from January to December. The variations of

GWS (based on JPL) range from �1:64km3 (in June) to �7:82km3

(in November). The results indicate that in June the LUB experiences

maximum groundwater storage of �0:74km3 (CSR), �1:64km3 (JPL),

�1:41km3 (GSFC), and �0:55km3 (CLSM). While the maximum stor-

age loss turns out to occur during autumntime with the maximum

depletion of �5:90km3 (CSR), �7:82km3 (JPL), �6:70km3 (GSFC),

and �4:15km3 (CLSM) in November. Similar to the TWS variations,

the autumntime maximum GWS depletion of the basin can be associ-

ated with the impacts of excessive water use for agriculture during

the cultivation season (summertime).

The spatial distribution of the correlation and RMSE values of the

variations of GWS based on the GRACE solution and the CLSM model

is illustrated in Figure SM5. The variations in the correlation and

RMSE on a spatial domain suggest the same pattern for all the GRACE

solutions over the LUB. The correlation between the GRACE-GWS

and CLSM-GWS is the least in the western parts of the basin, which

increases towards the east where it reaches 0.86. The distribution

pattern for the RMSE of the GWS manifests an identical pattern for

the CSR and GSFC and a different pattern for the JPL. The RMSE

ranges from 36 to 192 mm.

3.7 | Trend analysis results

The MK-based estimated trend results are given in Table 2. The

results demonstrate a decreasing trend for the TWS and GWS over

the LUB. Overall, the estimated annual trends of TWS and GWS using

the GRACE solutions and the CLSM simulations over the LUB are

close to each other. The TWS variations based on the GRACE JPL,

CSR and GSFC suggest a diminishing trend at a rate of �0.59, �0.46,

and �0:53km3=year, respectively, which account for �11:20, �8:74

and �10:07km3 of total storage loss from 2003 to 2021. In the mean-

time, the CLSM-derived TWS manifests decreasing trend of

�0:51km3=year, which is equal to �9:69km3 of total loss during the

same period. The results also indicate that the LUB has suffered from

an annual GWS loss of �0:47, �0:33, �0:40 and �0:53km3=year for

the JPL, CSR, GSFC and CLSM, respectively, which account for the

total groundwater depletion of �8:87, �6:22, �7:60 and �10:10km3,

respectively. Overall and taking the mean values of the GRACE solu-

tions into account, it can be stated that the LUB has lost about 10 and

7:56km3 of its TWS and GWS during the last 19 years from 2003 to

2021. Tourian et al., 2015 and Hosseini-Moghari et al. (2020) reported

an estimated TWS loss of �8:0km3 (based on GRACE) and �9:9km3

(based on the WaterGAP model) from 2002 to 2014 and 2003 to

2013, respectively. In another study, the total GWS loss of the basin

from 2002 to 2020 was estimated to be about �7:34km3 (Soltani &

Azari, 2022), which is comparable to our findings.

3.8 | Water level variations and their associations
with TWS

The variations in the lake's water level (Figure 5) were derived using

the in-situ data. Like the TWS, the water level variations also reveal a

descending trend from 2003 to 2021 with a rate of

�70�21cm=year. The annual depletion rate of the lake's water level

from 2002 to 2014 was �34�1cm=year (Tourian et al., 2015). The

LU water level manifests a slightly increasing trend in 2016, and from

2019 to 2020, which is due to the increased precipitation and the

water inflow from the reservoirs under the restoration program

(Saemian et al., 2020). The time series on a monthly and mean

monthly scale demonstrate a strong association between the varia-

tions of TWS and those of water level. The best correlation of 0:81

was observed for the JPL-TWS and water level. The correlation

between the water level and CSR-, GSFC- and CLSM-derived TWS is

0:71, 0:74 and 0:75, respectively. The correlation result is comparable

with the correlation of 0.83 reported by Radman et al. (2022) for the

TWS and water level of the LU from 2002 to 2019.

The long-term mean monthly variations (Figure 5b) indicate an

ascending trend for the water level from January to May when it reaches

its maximum level (1272:05m). The water level diminishes from May to

October with the minimum value of 1271:42m recorded in October.

From October to December, a slightly increasing trend is seen in the

variations in water level. The temporal correlation between the LU

water level and TWS on the mean monthly scale is 0:94, 0:91,0:88

and 0:89 for the JPL, CSR, GSFC and CLSM, respectively.

The lake water volume was estimated considering the area–vol-

ume–elevation (AVE) relationship. The variations of the lake's TWS and

water volume are given in Figure SM6. The results indicate that from

2003 to 2015 there has been a descending trend in the variations of
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the lake volume, during which the volume of the lake decreased from

14.03 km3 in 2003 to 2.0 km3 in 2015 meaning that the LU has lost

about 86% of its volume in this period. This is in accordance with the

findings of Darehshouri et al. (2023). There is a slight increase in the

lake volume from 2019 to 2020 mainly due to the restoration mea-

sures. The results also suggest that, on average, there is a high associa-

tion between lake volume and TWS with a correlation of 0.76.

3.9 | Parameters affecting the desiccation process

3.9.1 | Hydrometeorological extremes

For investigating the hydrometeorological situation of the LUB, two

drought metrics (scPDSI and 12-month SPEI) were used. The basin-

average variations of the scPDSI and SPEI-12 (Figure 6) demonstrate

that several drought incidents have been felt in the LUB from 2003 to

2021. The first and most severe event was between 2008 and 2009.

The major drought in the year 2008 was also distinguished by Sae-

mian et al. (2020). The scPDSI-based results suggest moderate

droughts in 2010–2011, 2014 and 2017 while SPEI-12 shows

drought events in 2010–2011, 2017 and 2021. The moderately dry

periods in 2010 and 2017 were also reported by Mirgol et al. (2021).

The impact of the experienced droughts on the variations of

TWS, GWS and the lake's water level was also investigated. It is

apparent that especially in 2008, the drought affected the water stor-

age of the basin when a sharp decrease in the variations of TWS and

GWS was observed. The indices also indicate a wet period in 2019–

2020 with positive values, which are in agreement with the increasing

trend of the TWS and GWS at the same time. However, a trivial

TABLE 2 Multiyear (2003–2021)
basin-average annual trends of terrestrial
water storage (TWS) and groundwater
storage (GWS).

GRACE-JPL GRACE-CSR GRACE-GSFC CLSM

TWS Trend (mm/year) �11.50 ± 0.52 �8.82 ± 0.52 �10.22 ± 0.52 �9.75

Trend (km3/year) �0.59 ± 0.03 �0.46 ± 0.03 �0.53 ± 0.03 �0.51

Total loss (km3) �11.20 ± 0.51 �8.74 ± 0.51 �10.07 ± 0.51 �9.69

GWS Trend (mm/year) �9.10 ± 0.68 �6.32 ± 0.68 �7.72 ± 0.68 �10.20

Trend (km3/year) �0.47 ± 0.03 �0.33 ± 0.03 �0.40 ± 0.03 �0.53

Total loss (km3) �8.87 ± 0.67 �6.22 ± 0.67 �7.60 ± 0.67 �10.10

F IGURE 5 Multiyear (2003–2021) monthly (a), mean-monthly, and (b) associations between terrestrial water storage (TWS), and sea level
variations.
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association between the scPDSI and SPEI with the variations in water

level is seen (Figure 6b). But from the overall viewpoint and based on

the variations of drought indices, the decreasing trend of the water

table from 2008 can be associated with the unfavourable climatic

conditions of the area since the climatic situation of the basin seems

critical from 2008 onward.

The hydrological status of the basin was further characterized

based on the temporal time series of the anomalies of the TWS, precip-

itation (P) and storage deficit (SD) of the soil (Figure 7). The storage def-

icit (SD) is the amount of storable water in the soil layer that can be

held before achieving maximum storage and was calculated according

to Khorrami, Fistikoglu, and Gunduz (2022). The hydrological status

(Figure 7) of the LUB illustrates the relationship between the TWS with

the SD and P over the LUB where the increases in precipitation are

responsible for the increase in the TWS, while the storage deficit is

decreasing. It is interpreted such that there is a high inundation potenti-

ality at the intersection points of these variables on the graph

(Idowu, 2021). During the dry periods, the vertical gap between these

variables extremely increases especially for the prolonged gap between

the SD and TWS. In this premise, it can be inferred that in May 2003,

March 2005, March 2006 and April 2007, the LUB has been suscepti-

ble to flood events. From 2008 onward, on the other hand, the basin

has experienced harsh hydrological conditions.

3.9.2 | Anthropogenic forces

Human intervention is another effective parameter of the desiccation

of the LU. It is stated that about 89% of the total water consumption

in the LUB appertains to the agricultural sector while the remaining

11% of the water is used by the industry and domestic sectors

(Wurtsbaugh & Sima, 2022). To investigate the impacts of the anthro-

pogenic forces on the variations of water storage and the lake's water

level, the total water use (TWU) in the LUB was extracted from the

WaterGAP hydrology model from 2003 to 2015. TWU accounts for

water consumption from both surface and subsurface resources. The

variations of TWU and its association with TWS and GWS (Figure 8)

suggest that there is a high correlation between them over the LUB.

The correlation between the TWU and TWS and GWS is �0:61 and

�0:51, respectively. It is found that TWU agrees with TWS and GWS

within a temporal lag of three and 4months, respectively.

From the water balance perspective, it is expressed that the varia-

tions of TWS over endorheic basins are mainly affected by the varia-

tions of P and ET (Yang et al., 2021). TWS in such basins is subjected

to huge losses on account of anthropogenic drivers such as agricul-

tural irrigation, dam construction, and groundwater extraction,

through which water storage is lost by ET to the atmosphere (Pan

et al., 2017). To quantify the human-induced water storage loss, the

TWS changes (TWSC) and ET from GRACE were compared to the

model-based ET and TWS. TWSC is calculated as the temporal deriva-

tive of TWSA from the GRACE products. The TWSC for each month

is estimated as the differential of two consecutive months of TWSA

at the beginning of a month (see Khorrami et al., 2023). The net water

flux is expressed in terms of the differences between P and ET (P-ET)

(Yang et al., 2021), which represents the TWS of the basin. The tem-

poral variations of TWS changes (Figure 9a) suggest that there is a

high agreement between the GRACE-TWS and P-ET over the LUB

with a correlation of 0:78. Tourian et al. (2015) and Saemian et al.

F IGURE 6 Multiyear (2003–2021) monthly associations of drought metrics with terrestrial water storage (TWS), groundwater storage (GWS)
(a) and the lake's water level (b).
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F IGURE 7 Hydrological status of the Lake Urmia basin (LUB).

F IGURE 8 Temporal illustration of the water abstraction impacts on the variations of terrestrial water storage (TWS) and groundwater
storage (GWS) over the Lake Urmia basin (LUB).

F IGURE 9 Variations in terrestrial water storage change (TWSC), P�ETð ÞGLDAS (a), and ET-GRACE, ET-GLDAS, and P (b) from 2003 to 2021.
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(2020) reported a correlation of 0:73, and 0:86 for the GRACE and P-

ET associations over the LUB, respectively. Figure 9b, on the other

hand, illustrates the variations of P and ET over the LUB. The varia-

tions of the GRACE-ET are in good harmony with those of the

GLDAS-ET (R=0.70). It is also found that ET affects the variations of

TWS adversely with a correlation of �0:82 suggesting the harsh

impacts of the anthropogenic forces on the water storage changes in

the LUB. According to Feizizadeh et al. (2022), a substantial increase

is seen in the area of croplands and agricultural areas from 2005 to

2015, which contributed to the desiccation of the LU through increas-

ing the water demand and extraction from the nearby aquifers for

farmland irrigation.

3.10 | Spatial assessment

The thematic maps of the mean annual values of the hydrological

parameters (Figure 10) were drawn to better illustrate the situation of

the LUB from the viewpoint of the spatial variability of the parame-

ters. The spatial variations of TWS and GWS show the same pattern

with the least decreasing water storage over the northern parts while

it diminishes more towards the east and south of the basin. It indi-

cates that the LUB has lost at most an estimated mean volume of

6:50 and 5:90km3 of its TWS and GWS, respectively, through the last

19 years from 2003 to 2021. The maximum loss of water storage of

the basin over its southern parts corresponds exactly with the

F IGURE 10 Spatial distribution of the
mean annual terrestrial water storage (a),
groundwater storage (b),
evapotranspiration (c), precipitation (d),
and total water use (e).
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desiccation pattern of the LU (Figure 1) where the southern parts of

the LU have been affected the most by the desiccation process than

the northern parts. The mean annual variations of P also suggest that

the central LUB, especially the LU area, receives the least water from

precipitation, which varies between 13 to 17km3 annually. While the

elevated areas receive the maximum precipitation reaching 53km3 of

the annual P. Variations of the annual ET demonstrate more water

loss from the areas around the lake. The ET variability indicates that

the LUB loses at most 25km3 of its water storage from ET each year.

Overall, it is found that the ET exceeds P in the LUB. While the annual

amount of precipitation is 20:54km3, it loses about 21:50km3

through evapotranspiration suggesting the existence of a negative

hydrological balance of �0:96km3 over the LUB, which is an alarming

dry condition during the study period. The negative balance between

P and ET was also reported by Barideh and Nasimi (2022) who esti-

mated a negative balance of �0:67km3 for the time period of 2009

to 2020 with the mean annual ET and P of 15:92 and 15:24km3,

respectively. The spatial variability of TWU over the LUB also implies

that water consumption mostly occurs around the LU, which corre-

sponds to the agricultural and residential areas. It reveals that on aver-

age, the LUB has lost about 1:38km3 of its annual storage through

water consumption from 2003 to 2015.

4 | DISCUSSION

4.1 | Pros and cons of the STL gap filling

There are several techniques suggested for reconstructing the missing

values of the GRACE mission. The STL-based gap-filling approach pro-

posed in this study takes the benefit of the seasonal variations of the

GRACE-observed TWS. Seasonality is a general aspect of the global

TWS variations, and the STL works based on the decomposition of

the temporal variations of TWS to come up with the missing data. STL

is in fact a filtering technique for the decomposition of time-series

datasets. It is simple and at the same time robust. In this study, the

STL-derived TWS values correlated well with the existing model-

based TWS values over the LUB, whose feasibility can be further veri-

fied by comparing to the findings of Soltani and Azari (2022) that

reported a correlation of 0.73 for the simulated TWS using GMDH

machine learning technique. The simplicity of the STL paves the way

for the fast computation and analysis of very large time series data

(Cleveland et al., 1990). The main merit of the new proposed STL-

based gap-filling technique over the previously tested methods lies in

its ability to give accurate predictions of the GRACE gaps more

straightforwardly and conveniently compared to other techniques.

However, the main handicap of the STL technique is that it can be

applied to a temporal domain rather than spatial data.

4.2 | Performance of the drought metrics

To investigate the experienced drought incidents and their association

with the water storage and the lake's water level variations over the

LUB, two traditional drought indicators of scPDSI and SPEI are used

in this study. Although the Standardized Precipitation Index (SPI) is

overwhelmingly utilized through the majority of drought evaluation

studies, the authors ignored using it over the LUB because it was sug-

gested that SPEI outperforms SPI in the LUB (Mirgol et al., 2021). It

can be justified based on the fact that the LUB is more affected by

increasing temperature and ET impacts rather than precipitation var-

iations themselves (Mirgol et al., 2021). Thus, SPEI and scPDSI, for

which ET are included in the calculation process (Khorrami &

Gündüz, 2022; van der Schrier et al., 2013), can yield better results

compared to SPI. Since the traditional drought indices rely mainly on

the accumulation of precipitation deficits, they are lame to capture

the hydrological condition of a region and the extent of drought

influence on subsurface hydrology (Thomas et al., 2014). From this

perspective, the low association between the time series of scPDSI

and SPEI and TWS and GWS over the LUB can be justified. Further-

more, the meteorological droughts, identified by scPDSI, and SPEI,

are different from the water storage (TWS and GWS) in timing due

to the inherent lags within the hydrologic system (Thomas

et al., 2014).

4.3 | Uncertainties involved

In the current study, several uncertainty sources were engaged in the

analysis. To get rid of the uncertainty induced by the GRACE data

processing errors, the modern Mascon solution data was applied

instead, which is proven to be superior to the alternative spherical

harmonics data (Aryal & Zhu, 2020). However, there are also uncer-

tainties associated with the Mascon solutions on account of the used

diverse background models as well as data processing approaches

(Kumar et al., 2021). The other source of the uncertainties of the

results is the simulation errors of the global models such as Noah and

CLSM. One solution to diminish the uncertainties ascribed to hydro-

logical model outputs is to use the ensemble mean of several models

(Cao et al., 2015). Thus, the Noah and CLSM-derived parameters

emerged to reduce the uncertainty of the results.

5 | CONCLUSIONS AND
RECOMMENDATIONS

Lake Urmia is among the most critical water bodies of Iran playing a

predominant role in the stability of the microclimate of the northwest-

ern regions of the country. Unfortunately, long-term impacts of both

natural and man-made forces have contributed to the loss of its

hydrological balance resulting in the damage of the lake and its sur-

rounding societies as well. The desiccation of the lake has triggered

the exposure of more salt in time, which is likely to be dispersed

throughout the region via potential storms. Since the economy of the

inhabitants of the NW of Iran is mainly based on agriculture, it is

believed that the continuation of the current drying process will jeop-

ardize the lives of millions of people in the country with its cata-

strophic socio-economic side effects.
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Within the scope of the current study, several remote sensing

data including the GRACE/GRACE-FO satellite estimates, hydrologi-

cal and climatic model outputs as well as in-situ observations were

jointly used to evaluate the recent hydrological dynamics of the

LU. Because the GRACE data have missing data months, the STL-

based gap-filling approach was proposed as a new method to recon-

struct the GRACE-derived TWS for the missed months. The findings

cast light on the high feasibility of the proposed technique in pre-

dicting the missing TWS values of the GRACE missions. However,

since it is performed for the temporal data, the authors aim at

improving the proposed STL method for filling in the spatial gaps

as well.

The findings of this study ascribe the dissipation of the LU to

both natural and anthropogenic forces suggesting that both climate

crisis and human intervention are involved in the desiccation process

of the LU while stressing the dominant impact of evaporation of the

water storage of the region on the drying of the lake. It was found

that the excessive water loss through the evaporation process during

the last decades has culminated in an alarming negative hydrological

balance over the LUB, which exacerbates the drying process. There-

fore, any countermeasures implemented by the local authorities

should take this hydrological status into account to achieve more

effective outcomes.
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