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ABSTRACT Regression testing is one of the most expensive processes in testing. Prioritizing test cases
in regression testing is critical for the goal of detecting the faults sooner within a large set of test cases.
We propose a test case prioritization (TCP) technique for regression testing called LoM-Score inspired by
the Law of Minimum (LoM) from biology. This technique calculates the impact probabilities of methods
calculated by change impact analysis with forward slicing and orders test cases according to LoM. However,
this ordering doesn’t consider the possibility that consecutive test cases may be covering the same methods
repeatedly. Thereby, such ordering can delay the time of revealing faults that exist in other methods.
To solve this problem, we enhance the LoM-Score TCP technique with an adaptive approach, namely with a
dissimilarity-based coordinate analysis approach. The dissimilarity-based coordinate analysis uses Jaccard
Similarity for calculating the similarity coefficients between test cases in terms of covered methods and
the enhanced technique called Dissimilarity-LoM-Score (Dis-LoM-Score) applies a penalty with respective
on the ordered test cases. We performed our case study on 10 open-source Java projects from Defects4J,
which is a dataset of real bugs and an infrastructure for controlled experiments provided for software
engineering researchers. Then, we hand-seeded multiple mutants generated by Major, which is a mutation
testing tool. Then we compared our TCP techniques LoM-Score andDis-LoM-Scorewith the four traditional
TCP techniques based on their Average Percentage of Faults Detected (APFD) results.

INDEX TERMS Change impact analysis, regression testing, software testing, test case prioritization.

I. INTRODUCTION
Nowadays software has a tendency to grow too fast and get
excessively complex. This is because of the rapidly chang-
ing requests from users and technological advancements.
For instance, Google has announced that approximately
50% of their code changes every month. In addition, they
have mentioned that they commit 20 code changes per
minute, and they run approximately 1 million test cases
every day [1]. Furthermore, in web-based systems, consid-
ering the number of dependencies and related web services,
the impact that is caused by changes can be drastic, and
web-based systems tend to evolve faster compared to desktop
applications [2], [3]. In such an environment, where codes are
changing frequently, a huge amount of test cases makes the
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regression testing process a difficult task. Therefore, instead
of waiting for the entire regression testing to be completed,
studies have focused on prioritizing test cases in a test suite
to find bugs earlier by giving high priority to test cases that
are like to expose the existing bugs for the software under
test (SUT). In other words, the test case prioritization (TCP)
problem aims to find an execution order of available test cases
in a test suite T tomaximize a selected objective function. The
formal definition of TCP problem [4] is given below:
Given: T, a test suite; PT, the set of permutations of T; and f,

a function from PT to the real numbers.
Problem: Find T ′ ∈ PT such that:

(∀T ′′)(T ′′ ∈ PT ), (T ′′ ̸= T ′)
[
f (T ′) ≥ f (T ′′)

]
.

For the given TCP definition and problem, PT is the set
of all possible permutations (orderings/prioritizations) of test
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suite T, and f is the test case prioritization function that is
applied to any such ordering, that returns a value, which
represents the function’s effectiveness. This function can be
based on the coverage,mutant kill success, or APFD (Average
Percentage of Faults Detected). The T ′ and T ′′ are each
different orderings, where we are trying to find T ′, which
has a higher score based on the applied f function. In this
study, for the function f, we use APFD which is a metric
to evaluate the given test order on how effective the order
is for detecting faults earlier. The details and the formula
for the APFD function are given and further discussed in
Section V-C.
Focusing on changed methods is an effective approach to

prioritize test cases based on the changed methods, or com-
ponents. However, the existing test case prioritization tech-
niques that use change information focus directly on the
changed components, not on the other components that are
dependent on the changed component. There are some com-
ponents that could be affected by its dependent changed com-
ponents, even though the affected component is not changed
at all. Thereby, the changed components may not be affected
by the changes that are made in themselves but might affect
other components indirectly. Briefly, some faults cannot be
detected by the test cases, which are only prioritized based
on the changed methods. For instance, a method might be
changed in order to adapt to a new standardization. However,
its dependent methods are not changed with respect to the
standardization change. Therefore, a fault appears not in
the changed code, but in the unchanged methods. To detect
such faults, dependencies should be checked with respect to
the changed method. This study has focused on prioritizing
test cases based on the changed methods and their affected
methods that might be changed or unchanged.

In this study, we have proposed a method-level granularity
test case prioritization technique that uses change impact
analysis information. The change impact analysis informa-
tion provides probabilistic information for each method that
exists in the analyzed software. The probabilistic information
represents information on methods being affected by the
changes that are made in the software. Therefore, the higher
probability the method has, the higher chance it is affected
by the methods. The proposed change impact analysis uses
three types of information; call graph of the latest software,
method change information between two consecutive ver-
sions of software, and program slicing information. Among
these three types of information, two of them are dependency-
related information. The call graph information represents
the calling dependencies between methods, which also shows
the information flow between them. In addition, the program
slicing information shows the possible affected statement
with respect to a given data, i.e. slicing criterion. We use
the method parameters for the slicing criteria. Return values
frommethods can also be used as a slicing criterion, however,
it is found that including the return values tend to increase
the false positives in change impact analysis [5]. In the end,

we use call graph, method change, and program slicing infor-
mation in a Markov chain model to calculate the posterior
effects of changed methods and calculate the probability of
being affected for each method in the software. After the
Markov chain calculation and information about the changed
methods, the probabilities of some methods may be increased
or decreased. Two reasons can cause a decrease; the method
is not changed or strongly affected by its dependent methods.
Similar to the reasons for a decrease, two reasons can cause
the probability increase; themethod is changed, or its strongly
dependent methods might be changed. Then, based on the
calculated probabilities, we prioritize the test cases using
two of our proposed test case prioritization techniques LoM-
Score and Dis-LoM-Score, which are inspired by the Law of
Minimum in agronomy and biology.

The main motivation of this study is that a single test case
can cover more than one method, and the covered methods
can be covered with different ratios compared to other test
cases. Best to our knowledge, there isn’t any study on using
numerical change impact analysis results in test case prioriti-
zation. Using numerical change impact analysis values has its
own difficulties. For instance, each test case does not cover
the same amount of methods. Simple approaches such as
calculating themean of numerical values of covered impacted
methods do not treat each test case fairly. Our empirical
studies have shown that, while some test cases only cover
1-2 methods, others in the same project cover more than
100 methods. Using a mean calculation to determine the pri-
ority score of a test case can result in decreasing the priority of
a test case that has a high potential of revealing faults. In this
study, we have proposed an algorithm to determine a generic
number called lom, which represents the number of howmany
impacted methods with the highest impact score that will be
selected for a test case and calculate the average (mean) based
on the lom number and selected impact scores. Furthermore,
to enhance the fault detection rate, we have proposed another
LoM-based approach called Dis-LoM-Score that follows an
Adaptive approach that uses dissimilarity. The LoM approach
can be adopted with another change impact analysis tech-
nique that provides numerical values on methods. We have
used and enhanced our previously proposed change impact
analysis technique for the numerical change impact analysis
results of methods in the software.

Our case study results have shown that both Dis-LoM-
Score and LoM-Score are more reliable TCP approaches
compared to the other state-of-the-art approaches. Further-
more, we have found that the Total-Diff TCP approach [6]
had competitive results with our Dis-LoM-Score and LoM-
Score TCP approaches, but Total-Diff has also performed
under Random TCP for a project in our case study, which
doesn’t make the Total-Diff TCP a robust or reliable TCP
approach.

In this study, we want to answer two research questions
in order to produce a better understanding of solving our
problem.
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RQ1: How can change impact analysis information be
used in test case prioritization and is it effective? There
are various studies on change impact analysis mentioning that
change impact analysis can be used in test case prioritiza-
tion [7], [8], [9]. However, there aren’t any significant studies
on how change impact analysis results can be applied on the
test case prioritization problem. In this study, we investigate
how probabilistic change impact analysis information can be
applied in test case prioritization, and evaluate the effective-
ness by comparing their APFD performances with other state-
of-the-art TCP methods.

RQ2: Does using change impact analysis information
solve the problem of similar test cases being ordered
consecutively in test case prioritization? Most test case
prioritization techniques suffer from prioritizing test cases
that are similar, consecutively. This decreases the Average
Percentage Faults Detected (APFD) [4] results of the test case
prioritization techniques. Therefore, these test case prioriti-
zation techniques use ‘‘Additional’’ or Adaptive techniques
as in [4] to increase the APFD results. We want to discover
if using change impact analysis information requires any
‘‘Additional’’ or a Similarity-based approach to enhance its
APFD results.

This paper makes the following main contributions:
(i) Method: We present two novel test case prioritiza-

tion techniques (LoM-Score and Dis-LoM-Score), that use
change impact analysis information and fuse the probabilistic
change impact analysis result for each covered method in
the source code to calculate a test case score that is used
for prioritization. The fusion process of the probabilistic
data for each covered method for each test case is inspired
by the Law of Minimum from agronomy and biology. The
difference between the proposed two test case prioritization
techniques is to include the similarity information in one of
them. Thereby, one of the test case prioritization techniques
would give a higher chance to other test cases that are not
covering the same methods.

The LoM-Score uses the lower quartile information of the
number of covered methods of each test case. The lower
quartile value will be used for determining how many of the
covered methods will be selected to calculate the score of
each test case. We follow this approach to treat each test
case fairly, which is one of our main contributions since
each test case can cover a different number of methods.
Without this approach, the calculated test score is affected
by outliers. Furthermore, with this approach, are also able to
assign numerical values to test cases. For theDis-LoM-Score,
we follow the same approach as LoM-Score, but also include
a similarity analysis to update test scores on every selection
of the test case based on Jaccard similarity.

(ii) Source Codes: We developed two test case priori-
tization methods, which we call LoM-Score and Dis-LoM-
Score. We also made our source codes publicly available1 for
reproducibility.

1https://github.com/ekincanufuktepe/lom-tcp

(iii) Dataset:We shared our dataset that contains:
• Method coverage matrices generated by GZoltar2 [10]
• Projects with hand-seeded mutants.
• Change impact analysis reports from Code Change Snif-
fer [5].

• Test case information used for test case prioritization.
The manuscript is organized as follows. In Section II, the

fundamentals of program slicing, and change impact analy-
sis are explained. In Section III, we provide the details on
the change impact analysis approach that is used in TCP.
In Section IV, the fundamentals of the ‘‘Law of Minimum’’
is given, along with the proposed LoM-Score and Dis-LoM-
Score TCP approaches. In Section V, the case study, and
set up of work are given. In Section VI, we discuss our
findings and results, of our case study, where we also answer
our research questions. In section VII, a summary of related
work on test case prioritization, which is mostly based on
probabilistic graphical models and program slicing. Finally,
section VIII concludes the paper and mentions the future
work of our study.

II. FUNDAMENTALS
A. PROGRAM SLICING
Program slicing is a technique for reducing the number of
statements that are required to be absorbed by the program-
mer [11]. Given a point of ‘‘interest,’’ which is also known as
a statement criterion in a program is described by a variable
and a statement. A program slice gives all the statements that
have contributed to the value of the variable at the point and
eliminates the unnecessary statements.

The first program slicing technique and idea was first
developed by Weiser [12] called Backward slicing, which is
a static analysis-based approach. The ideology of Backward
slicing is to assist developers in order to locate the parts of a
given program that might contain a bug. On the other hand,
in 1990 Horwitz et al. [13] proposed a different program
slicing technique called Forward slicing. Unlike Backward
slicing, Forward slicing focuses on predicting the parts of a
given program that might be affected after a modification or
change has been made.

Since this study uses change impact analysis data to prior-
itize test cases, it concentrates on parts of the program that
could be affected after changes are made to the source codes
of software. Every change that is made to the source code
carries a potential risk of introducing a fault in the software.
Thereby, this study uses Forward slicing to reveal the possible
parts of the source code that might be affected.

B. CHANGE IMPACT ANALYSIS
Change Impact Analysis (CIA) is a field of software
evolution and maintenance, that focuses on detecting the
affected/impacted parts of the code after a change has been
committed to the software. The aim of CIA is to aid software
developers by showing the impacted parts of the code to

2https://github.com/GZoltar/gzoltar
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reduce software maintenance time. In addition, CIA aids
software testers by showing impacted parts of code to be
tested with higher priority. Thereby, the time of revealing
bugs related to the changes is reduced.

To measure the effectiveness of a proposed CIA technique,
two metrics are used [14]; Recall and Precision. Both of
these metrics are used for providing an understanding and
measuring relevance based on the estimations. The recall
is a metric that provides an understanding of the success
of successful estimations. On the other hand, precision is
the fraction of the estimated impacted components that are
relevant. The equation for Precision is given in Equation (1)
and the equation for Recall is given in Equation (2) In terms
of software maintenance and CIA, the Recall metric is more
important than the Precision [15] because the cost of missing
an impacted would be more expensive, than checking all the
methods if they are impacted or not.

Precision =
true positive

true positive+ false positive
(1)

Recall =
true positive

true positive+ false negative
(2)

III. CHANGE IMPACT ANALYSIS USING FORWARD
SLICING AND MARKOV CHAINS
For change impact analysis we used Code Change Sniffer [5],
which uses Markov chains to calculate the probabilistic val-
ues for each method being impacted by changes. In this
section, we will give brief information on how Code Change
Sniffer [5] works, by dividing it into four important steps;

1) Call graph information extraction
2) Changed method information extraction
3) Forward slicing implementation
4) Change impact analysis with Markov chains.

A. CALL GRAPH INFORMATION EXTRACTION
To extract the call graph information of a given open-source
project, we first receive the final version or the last com-
mit of the project for change impact analysis and test case
prioritization. The reason for selecting the final version of
the analyzed project is to extract the current and up-to-date
information about the project. The call graph is generated by
an open-source tool called java-callgraph,3 which is available
on GitHub. The tool allows static and dynamic call graph
generation of a given open-source Java project. Since this
study has focused on a static approach, we have used the
static call graph generation feature. In addition, the tool has
been slightly modified to store the generated call graph in a
Map data structure, where keys are the source nodes (caller
methods) and the value is a list of destination nodes (callee
methods). Otherwise, java-callgraph only provides a printed
output of a call graph.

3Java Call graph - https://github.com/gousiosg/java-callgraph

B. CHANGED METHOD INFORMATION EXTRACTION
Extracting the information of changed methods plays an
important role in this study. Without the change information,
the change impact analysis cannot be performed. In order to
extract such knowledge, we require two versions of projects,
which are the previous and the current versions. Thereby,
we can find which methods are changed. However, finding
which methods are changed is not a sufficient amount of
information for the change impact analysis process. In order
to quantify and calculate the probability of a method being
impacted, we need to numerically represent changes as well.

Code Change Sniffer [5] and previous studies [16], [17],
[18] have numerically represented the amount of change
based on the number of changed bytecode instructions in a
method/class and the total number of bytecode instructions
in a method/class. Code Change Sniffer works in a method-
level granularity, therefore, our proposed TCP algorithm is
also based on method-level information. To find the changed
methods and the amount of change for each method, we have
used an open-source Java-based tool called reJ.4 reJ is a
Graphical User Interface (GUI)-based tool that receives two
different versions of the same open-source Java project. The
differences between projects are visually shown in bytecodes
for each class. Themotivation behindworking at the bytecode
level is, even if there is no change in high-level language
source code, some software or projects will just change the
Java versions. These changes can lead to instruction-level
changes, even if the source code is not changed. However,
such a change can lead to an impact on the software. Fur-
thermore, high-level source code diff algorithms might only
look into textual differences. For instance, if statement x =
x + 1 has been changed to x ++, a high-level diff algorithm
(such as GitHub), will show this as a change. However, at an
instruction level, this will not be considered a change.

It is also important to mention that the tool reJ only pro-
vides visual change data (by lines) at the class level with-
out any numerical values. However, this study follows a
method-level granularity approach. For this reason, we have
extended the reJ tool that extracts change information in
method-level granularity with numerical information that
represents the ratio of change for each method between the
0.0-1.0 range. A method that has a ratio of change value that
is equal to 0 represents that there are no changes made to the
method. On the other hand, if a method has a ratio of change
equal to 1, then this method is newly implemented and did not
exist in the previous project version. Therefore, if a method
has a ratio of change greater than 0 and less than 1, then the
method exists both in the previous and current versions and
has been changed. The changes include adding, removing,
and editing statements on the bytecode. To calculate the ratio
of change we use Equation (3). In Equation (3), the roc(mi) is
the function that calculates the ratio of change for method mi

4reJ - http://rejava.sourceforge.net/
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that exist in the project.

roc (mi) =
# of changed bytecode instructions
# of total bytecode instructions

(3)

C. FORWARD SLICING IMPLEMENTATION
Program slicing has been used in several graphical models of
programs such as control-flow graphs (CFG) [12], program-
dependence graphs (PDG) [19], system-dependence graphs
(SDG) [13]. This study has used CFGs to run the forward
slicing technique, and in order to generate CFGs from Java
source code we have used Soot5 [20], [21]. Soot is a very
popular framework among program slicing tools, for gener-
ating CFGs and applying program slicing techniques to them.

There are very few program slicing tools written for
Java programming language. Jayaraman et al. [22] proposed
a Java program slicer for Eclipse, which is called Kaveri.6

It provides two static program slicing techniques, Back-
ward and Forward slicing. Furthermore, for better under-
standing, it provides a visual output of the calculated slices.
Venkatesh et al. [23] used and improved the Java program
slicing tools Kaveri and Indus7 in order to compute and
visualize concurrent Java programs. On the other hand, there
is another alternative open-source Java-based program slicing
tool called WALA.8 WALA does not only provide static
analysis features for Java but also for JavaScript language
as well. The basic static analysis features of WALA are;
context-sensitive tabulation-based slicing, pointer analysis,
call graph, and system-dependence graph construction, etc.
However, in this study, we haven’t used any of the existing
program slicer tools, because they are not maintained any-
more or did not support new versions of Java. Therefore,
we have implemented the forward slicing technique in order
to make it compatible with the libraries and Java versions that
we have used in this study.

D. CHANGE IMPACT ANALYSIS WITH MARKOV CHAINS
Code Change Sniffer [5] is a change impact analysis tool
that uses the Markov chain to calculate the probabilities of
impacted methods in the software. The probabilistic informa-
tion is computed by analyzing the software with static analy-
sis. The diff information between two commits (or versions)
is used as an initial vector, while the transition matrix is filled
with probabilistic information acquired from forward slicing.
In the following paragraphs of this section, we provide a small
running example of how Code Change Sniffer works.

The probabilistic information obtained from forward slic-
ing is encoded into the Markov chain’s edges along with
the change information based on the type of the model,
namely, call graph (CG) and effect graph (EG). However,
it is important to mention that we used call graphs in this
study to analyze the impacts. On the other hand, the initial

5Soot Framework - https://github.com/Sable/soot
6Kaveri - http://indus.projects.cs.ksu.edu/projects/kaveri.shtml
7Indus - http://indus.projects.cs.ksu.edu/
8WALA - http://wala.sourceforge.net/

vector is encoded with change information, which applies to
both models. Starting with encoding the edges, we construct
a transition matrix, which is similar to an adjacency matrix.

The forward slicing technique is applied to the method
parameters, assuming the change impact will propagate from
the caller to the callee method through parameters. Since the
method parameters are defined in the first statements of the
Control-flow graph (CFG), the forward slicing starts from the
first statement to the last statements (leaf/sink nodes). After
the sliced CFG is obtained, we calculate the probability of
the impacted method. The impact probability is calculated
by dividing the remaining statements in CFG after forward
slicing by the total number of statements that exist in the
CFG before slicing. We that each method has its own CFG,
which is consisted of statements. Thereby, let CFGmi be a set
of statements of method mi and let stmmik be the statements
in the CFG, where k is the statement id of method mi. Then,
in Equation 4, let pCFGmi be the parameter-based sliced CFG
of CFGmi , which is also a subset of CFGmi . The calculation
of change probability for parameter-based forward slicing
is given in Equation 5. For methods that do not have any
parameters, the probability of change is set to 0.

CFG(mi) = {stmmik : 0 < k ≤ |CFGmi |,mi ∈ M}

where pCFGmi ⊆ CFGmi (4)

P(mi) =
|pCFGmi |
|CFGmi |

(5)

Another property of the Markov chain is that summation
of the outgoing edge probabilities of a node should be equal
to 1. Therefore, the probability summation of each row in
the transition matrix should be equal to 1. However, a row
summation could be less than or greater than 1 depending on
the probabilities obtained from forward slicing. For instance,
on the left side of Fig. 1, let us assume that we encode
the Markov chain model with probabilistic information with
forward slicing and change information.We can see that some
of the nodes’ summation of outgoing edges are less than 1
or greater than 1. To satisfy the properties of the Markov
chain, we weight each node’s outgoing edges, by dividing
the summation of outgoing edges by each outgoing edge of
that node. On the right-hand side of Fig. 1, we obtain the
updated Markov chain after weighting the edges. Further-
more, assume that the filled methods (m0, m1, m2, m3, m4)
are the changed methods.

FIGURE 1. Markov chain model construction with weighted edges.
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After the weighting process is completed, we construct the
transition matrix of the Markov chain model below. Accord-
ing to the graph model in Fig. 1, there is no outgoing edge
from methods m2, m3, and m4. Therefore, in the transition
matrix, we would expect to have the entire row filled with 0s.
However, we have a single 1 that is placed to itself such as
m2 → m2, m3 → m3, m4 → m4. According to the Markov
chain’s properties, the summation of the columns for each
row should be equal to 1. Thereby, for a row where the sum
of column values is equal to 0, we set the mi → mi edge
probability to 1. If the method mi is not changed, setting the
probability will not affect the overall impact calculation, since
it will be multiplied with 0.

m0 m1 m2 m3 m4


m0 0 1 0 0 0
m1 0 0 0 0.21 0.79

T = m2 0 0 1 0 0
m3 0 0 0 1 0
m4 0 0 0 0 1

To calculate the impact vector, in other words, the vector
that contains the probabilities of predicted methods that will
change, an initial vector should bemultiplied by the transition
matrix. We encode the initial vector with change information
we have collected from diff calculations. The change infor-
mation represents the likelihood of a method that could affect
itself by the changes that are made to the current method.
Therefore, as the amount of change increases the probability
of being affected by changes will be higher. In Fig. 1, let’s
assume the filled nodes (methods) m0, m1, m2 and m3 in the
Markov chain are the changed methods with given probabil-
ities; m0 = 0.5, m1 = 0.71, m2 = 0.78 and m3 = 0.33.
The four given change probabilities are encoded into the
initial vector below. Previously, to satisfy the properties of
the Markov chain in the transition matrix, we weight the
edges of each node’s outgoing edges. Similarly, we also need
to weight the initial vector values as well. According to the
Markov chain’s properties, the summation of the probabilities
in the initial vector should be equal to 1, where the sum of the
probabilities in our initial vector is greater than 1.

I = [0.5 0.71 0.78 0.33 0] (6)

We weight the initial vector by dividing each value in the
vector by the summation of the probabilities in the vector.
Thereby, we have updated our initial vector I to Iw, which is
given below.

Iw = [0.216 0.306 0.336 0.142 0] (7)

Finally, we obtain the final forms of our initial vector and
transition matrix, and by using the final forms of the initial
vector and transition matrix, we calculate the impact vector
in Equation (8), which is predicted to be changed methods.
Since our initial vector and transition matrix is weighted,

we expect to calculate the impact vector, where the summa-
tion of its probabilities is equal to 1.

Iw · T = [0 0.216 0.336 0.206 0.242] (8)

Based on the Markov chain model in Fig. 1 and calcula-
tion in Equation (8), the probabilities of the methods being
affected by the changes are calculated as m0 = 0.0, m1 =

0.216, m2 = 0.336, m3 = 0.206, and m4 = 0.242. With
respect to the probabilities, m2 is the method that has the
highest likelihood of being affected by the changes.

IV. USING THE LAW OF MINIMUM (LoM) PRINCIPLES
WITH CHANGE IMPACT ANALYSIS INFORMATION FOR
TEST CASE PRIORITIZATION
In this section, we first explain what the Law of Minimum
is that has inspired our novel TCP approaches: LoM-Score
and Dis-LoM-Score. Then, we provide the details on how
we have applied the Law of Minimum principles in using
change impact analysis for test case prioritization, which
are the proposed test case prioritization approaches in this
study. The first proposed test case prioritization is we propose
is called LoM-Score, which calculates a score for each test
case based on the Law of Minimum principles and change
impact analysis information. Then, we explain our second
proposed test case prioritization approach that is called Dis-
LoM-Score (Dissimilarity Law of Minimum Score), which
is similar to the LoM-Score TCP approach but takes into
account the similarity of test cases based on the coverage
while calculating the test case scores. In Figure 2, we provide
the pipeline and architecture of the LoM-Score andDis-LoM-
Score TCP approaches we proposed.

A. THE LAW OF MINIMUM
The ‘‘Law of the Minimum’’ (LoM) aka. ‘‘Liebig’s Law of
the Minimum’’ is originally a concept that is used in biology,
agricultural science, and nature. Examples of the LoM can
be widely seen in the growth and development of plants and
animals, and are determined by the availability of that essen-
tial nutrient, which is present in the smallest amount. There
are various other examples of the ‘‘Law of the Minimum’’ as
well. For instance, if one growth factor/nutrient is deficient,
plant growth is limited, even if all other vital factors/nutrients
(macronutrients) are adequate. A plant could also use other
non-vital factors/nutrients (micronutrients), however, these
factors/nutrients are does not have a vital effect on a plant’s
growth. Another simple example of the ‘‘Law of the Mini-
mum’’ is, an elephant herd manages its speed based on the
slowest elephant in the herd. In other words, the ideology of
the ‘‘Law of the Minimum’’ basically means, ‘‘A chain is only
as strong as its weakest link.’’

B. LoM-SCORE TEST CASE PRIORITIZATION
As we mentioned in Section IV-A, there are vital factors/
nutrients (macronutrients), and there are other non-vital fac-
tors/nutrients (micronutrients) in the LoM principles. How-
ever, macronutrients play a key role in plant growth, and on
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FIGURE 2. The pipeline architecture of the LoM-Score and Dis-LoM-Score TCP approaches.

the other hand, micronutrients do not have an effect on plant
growth. Therefore, we can consider the macronutrients as the

data that are within the interquartile range, while themicronu-
trients are the data outside the interquartile range and outliers.
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We also recall that based on the LoM principles, a plant’s
growth is based on the minimum macronutrient among the
other macronutrients, which indicates the lower quartile of
the interquartile range. In other words, the minimum value of
the interquartile range.

In the context of test case prioritization and change impact
analysis, the number covered and impacted methods by a
test case corresponds to the available nutrients in the plant.
We determine the number of covered impacted methods
that are greater than 0, which were calculated based on the
change impact analysis. After we calculate the total number
of covered impacted methods for each test case we find the
lower quartile (aka. first quartile, and Q1), which we will
be referring to as the lom (aka. LoM-Score). The lom is the
median/middle value of the first half of the rank-ordered
dataset, which is the same Equation (9) used for calculating
the lower quartile value (Q1). In Equation (9), n is the size of
the rank-ordered dataset. In Figure 3, we provide an example
of how the lower quartile Q1 (lom) is calculated. In Figure 3,
assume that there are 10 test cases, along with the number
of methods they cover in ascending order. We first split the
list of the number of covered methods by each test case by
half. To calculate the lom (lower quartile Q1) score, we find
the median of the lower half, which is 2. Therefore, the lom
score is calculated as 2.

lom =
(
n+ 1
4

)th
term (9)

FIGURE 3. Example on finding the lower quartile Q1 (aka. lom).

Once the lom is calculated, this determines how many of
the impacted methods will be selected to calculate the test
case score. The selection process will pick lom number of the
highest impact probability values that are covered for each
test case. Scenarios where the number of covered methods by
the test case is lower than lom, will add the value 0 until it
reaches the size of lom. Once every test case has selected the
highest impact probabilities and reached the set size of lom,
we calculate the mean of the selected impact probabilities for
each test case to assign a test case score. After the scores
for each test case are calculated, the test cases are sorted
in descending order, which is the prioritized test case. Test
cases that share the same test scores are selected randomly.
In Algorithm 1, we provide a detailed algorithm on how the
LoM-Score TCP works.

Algorithm 1 LoM-Score Test Case Prioritization
Algorithm
Input: D is the test case coverage probability

dictionary, where the key is the test case, and
value is the set of impacted covered method
probabilities (Dkey← t , and Dvalue← I )

Input: T is the set of test cases
Output: T ′ is the set of prioritized test cases
/* let C be a set of the number of covered

impacted methods for each test case */

C ← ∅
// initialize set C

for tk in T do
// get the impacted covered method set of

test case tk
Ik ← D(tk )
C ← C ∪ |Ik |

end for
// initialize LoM-Score value

lom← getLowerQuartile(C)
let S be a dictionary, where the test case is the key,
and the test score is the value
S ← ∅
for tk in T do

Ik ← D(tk )
while |Ik | < lom do

/* add the element 0 to set Ik until it

has lom size of elements */

Ik ← Ik ∪ {0.0}
end while
let Ik ′ ⊆ Ik
Ik ′← getHighestLoMElements(Ik , lom)
s← 0 // s is the total score for test tk
for ij in Ik ′ do

/* add all the covered impacted method

probabilities in Ik ′ */

s← s+ ij
end for
// calculate the average of covered

impacted methods

S(tk )← s
lom

end for
// prioritize test cases in descending order

T ′← sortTestCases(S)

C. DIS-LoM-SCORE TEST CASE PRIORITIZATION
The Dis-LoM-Score test case prioritization we propose is
based on the LoM-Score test case prioritization approach. The
difference is that theDis-LoM-Score also includes the dissim-
ilarity between test cases. We recall that state-of-the-art test
case prioritization techniques such as Total, and Total-Diff
(details given in SectionV-B), have alternate test case prioriti-
zation techniques. For instance, the alternate TCP for Total is
Additional, and for Total-Diff is Additional-Diff. These tech-
niques aim for prioritizing test cases that are more likely to be
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different than the test cases that have high priority, and this is
done by giving high priority to test cases that have a higher
coverage that is not covered yet. Since that our proposed
LoM-Score TCP technique generates a score for test cases
we couldn’t incorporate the coverage information directly.
Therefore, we used the Jaccard similarity between test cases
based on the methods they covered. In Equation (10), the
formula for calculating the Jaccard similarities between test
cases are given, where coverage(ti) is the set of the covered
method by test ti. To calculate the similarities between the two
test cases, the intersection of covered methods is divided by
the union of covered methods. The similarity percentages that
are calculated for each test pair will be used in every iteration
during the prioritization to update test scores.

J (ti, tj) =
|coverage(ti) ∩ coverage(tj)|
|coverage(ti) ∪ coverage(tj)|

(10)

In Algorithm 2, we provide the algorithm for our pro-
posed Dis-LoM-Score TCP approach. The Dis-LoM-Score
TCP approach uses the calculated test scores that are cal-
culated from the LoM-Score. First, the test case with the
maximum score will be selected as the highest-priority test
case, which corresponds to l in Equation (11), and L is the set
of test scores calculated by LoM-Score. Based on the selected
test case, every test case score is updated by multiplying with
the coefficient calculated by J (l ′, l)), and then subtracted by
the test score.

l ∈ L

L ′ ← L − {l}

∀l ′ ∈ L ′, l ′← l ′ − (l ′ · J (l ′, l))

J (l ′, l) ∈ [1, 0] (11)

V. CASE STUDY
A. PROJECT SELECTION AND MUTATION TESTING
In our case study, we have selected and used 10 Java projects
from Defects4J [24], which is given in Table 1. Defects4J is
a framework that allows researchers to experiment with real
bugs and fixes. In our case study, we couldn’t use the real
bugs from Defects4J, since each bug is isolated in a separate
commit, whichmakes it difficult tomeasure theAPFD scores.
The APFD score is meaningful when there are multiple faults
included in the project so that test cases can be prioritized.
If there is only one fault in the project, then there is no reason
to prioritize the test cases and just find the test case that
exposes the fault.

Paterson et al. [25], combined multiple faults from
Defects4J so that test case prioritization techniques can
be evaluated on multiple real faults. However, their study
was focused on coverage-based test case prioritization tech-
niques, where only one version of the project is sufficient.
Our test case prioritization technique is based on changes,
which requires 2 versions of the project. In the study of
Paterson et al. [25], selecting the base project is another dif-
ficult problem, due to the projects being combined from

Algorithm 2Dis-LoM-Score Test Case Prioritization
Algorithm
Input: D is the test case coverage probability

dictionary, where the key is the test case, and
value is the set of impacted covered method
probabilities (Dkey← t , and Dvalue← I )

Input: T is the set of test cases
Output: T ′ is the set of prioritized test cases
let S be a dictionary, where the test case is the key,
and the test score is the value

// initialize the prioritized test cases

T ′← ∅
// collect test scores from LoM

S ← getLoMTestScores(D,T )
while T ̸= ∅ do

tk ← getTestWithMaxScore(S)
for ti in T do

if tk ̸= ti then
X ← intersectionOfCoverage(ti, tk )
Y ← unionOfCoverage(ti, tk )
// calculate the Jaccard similarity

j← |X |
|Y |

/* update the test scores of the

remaining tests cases based on

the selected test case */

S(ti)← S(ti)− (S(ti) ∗ j)
end if

end for
T ← T − {tk}
T ′← T ′ ∪ {tk}

end while

TABLE 1. Studied project information from Defect4J.

multiple commits. Therefore, we have used Major [26], [27]
a mutation tool on one of the fix versions from Dejects4J, and
injected/seeded multiple mutants into the project.

There are also other notable state-of-the-art mutation
frameworks such as Pitest [28], which is also meant for Java
projects. Pitest has strengths in generating stable mutations
and has capabilities of minimizing the number of equivalent
mutants [29]. However, since we are using the APFD metric

VOLUME 11, 2023 57145



E. Ufuktepe, T. Tuglular: Application of the LoM and Dissimilarity Analysis to Regression TCP

in our study, we only focus on the killed mutants and not
the mutation score. Therefore, equivalent mutants are not an
issue in this study. The main reason we haven’t used Pitest
is that it does not generate the source codes of the generated
mutants, since it works at a compile level. Furthermore,Major
is integrated with Defects4J and its projects, which makes it
easier to perform mutation testing.

Another reason why we used mutation faults is that stud-
ies have shown mutation faults can be a representative of
real faults and it is appropriate to use mutation faults in
the context of regression testing techniques [30], [31]. Nev-
ertheless, Do and Rothermel [32] have empirically inves-
tigated the effectiveness of using mutation fault. On the
other hand, MuJava provides various types of mutants in
method [33] and class levels [34]. However, since this
study proposes a method-level granularity approach, only
method-level mutants have been selected and added to the
selected open-source projects. Just et al. [35] did a study on
if mutants are valid substitutes for real faults, and their results
have shown that conditional operator replacement, relational
operator replacement, and statement deletion mutants are
more often coupled to real faults than other mutants, which is
heavily considered during our mutant selection and seeding
process.

In Table 2, we present the number of mutants that are
generated by the Major mutation framework, along with the
number of killed mutants. Since we are interested in mutants
that are detectable we select our mutants among the killed
mutants. However, there are some mutants that are applied to
some statements and operators. Therefore, we had to select
only one of them, which also reduces the number of mutants
we can hand seed into the projects.

TABLE 2. Total number of the generated mutants by Major, with the
number of killed mutants, and the number of selected and seeded
mutants for each project.

The Major mutation framework is capable of generating
9 mutant types. However, we were only able to include 7 of
the mutant types, which is given in Table 3 along with their
brief descriptions. There are several reasons why we couldn’t
include all themutants in our case study. One of them is due to
the context of the projects that do not meet the requirements
for performing a specific mutation type. For instance, shifting
operations are commonly seen in embedded programming.

However, the projects that we have studied are not mainly
meant for embedded applications. Another reason is that,
even though some mutant types were generated, they were
not killed or detected by any test case.

Finally, in Table 4 we provide the details of the num-
ber of included mutant types for each project. During our
hand-seeding process with mutants, we have tried to include
as many mutants with different types. However, due to the
number of killed mutants, the variety of mutants, and the
overlap between different mutants, a significant amount of
mutants were not included. For the reproducibility of our case
study, we have also shared 10 of the hand-seeded projects
from Defects4J.

In Table 4, we see that some of the mutant types were not
as much as the others, such as LOR and ORU. There are
two possible reasons why we couldn’t include more of these
mutant types:

• The operators to be mutated were not available or
present in the projects. Therefore, these types of mutants
were absent. Furthermore, the LOR and ORV mutants
are not common mutants, because the mutation that is
applied to these operators is mostly application depen-
dent. For instance, shifting is a logical operator, and
shifting is not a common operator. We would be able
to see these operators mostly in embedding computing,
or cryptography applications. Thereby, it is very unlikely
to see these operators in software that we use in our daily
lives.

• The mutant can be present, but the mutants were not
killed.We cannot include mutants that survived, because
they cannot be detected by any test case, which will
affect the APFD score, and against the idea of the APFD
calculation.

B. COMPARED TEST CASE PRIORITIZATION TECHNIQUES
In previous studies on TCP, it is quite common to see spe-
cific TCP techniques that are used for comparison with their
proposed TCP techniques in their empirical studies. These
techniques were proposed by Elbaum et al. [36], [37], and
Do et al. [6]. They have proposed many techniques by fol-
lowing two basic approaches that are applied on different
levels of granularity and different coverage criteria. These
two approaches are Total and Additional. The Total approach
gives higher priority and sorts test cases based on satisfying
the maximum criteria to the minimum. The criteria can be the
number of covered components, the probability of exposing
fault, etc. On the other hand, the Additional approach follows
a similar idea to Total. The Additional approach prioritizes
and sorts the test cases based on the maximum components
that are not covered yet.

Since our proposed TCP technique is a method-level gran-
ularity approach, to make a meaningful comparison we have
selected five of the TCP techniques that are based on method-
level granularity:
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TABLE 3. Included mutant type information from Major.

TABLE 4. Number of included mutants by mutant types.

1) Random Ordering TCP: Random ordering is a tech-
nique that is used for experimental control, for set-
ting the lower bound in the case study. Proposed TCP
methods that perform under random are considered
insignificant approaches. Basically, the random order-
ing shuffles the order of test cases in the test suite.
In this study, 50 different random test case orders are
generated and the average of their APFD results is
calculated.

2) Total TCP Technique: Total [36], [37] is a coverage-
based approach that orders test cases from the max-
imum number of covered methods to the minimum
number of covered methods. This approach ignores if
a method is already covered by prior test cases. If mul-
tiple test cases cover the same number of methods the
selection for the order will be random.

3) Additional TCP Technique: Additional [36], [37] is
another coverage-based TCP approach, which is very
similar to the Total TCP technique. The only difference
is that the Additional approach prioritizes the test cases
based on a maximum number of methods that are not
covered yet. Unlike the Total TCP technique, the Addi-
tional approach gives a higher chance to test cases that
cover more methods that are not covered yet. If there
are test cases that cover the same number of methods
that are not covered yet, then a test case is selected
randomly among the test cases.

4) Total-Diff TCP Technique: The main idea of the
Total-Diff approach [6] is to prioritize by selecting the
test cases that cover most of the changed methods.
It ignores the methods that are not changed and focus

on the amount of covered changed methods. Therefore,
the test case that covers the most changed methods has
a high priority. Similar to the Total TCP technique, the
Total-Diff technique ignores if more than one test case
is covering the same changed method. If multiple test
cases cover the same number of changed methods the
selection for the order will be random.

5) Additional-Diff TCPTechnique:TheAdditional-Diff
TCP technique [6] selects its test cases that cover most
of the changedmethods that are not covered yet. If more
than one test case covers the same amount of change
methods that are not covered yet, then the test case
is selected randomly for the test case prioritization
order. However, on each selection of the test case, the
coverage information is updated for the remaining test
cases.

C. EVALUATION MEASURE
In terms of fault detection, to measure the efficiency of the
proposed test case prioritization techniques, the Average Per-
centage Fault Detection (APFD) metric is used. In addition,
APFD is a measure that is widely used in test case prioriti-
zation studies. The APFD measures how soon the faults are
detected based on the test case order. Higher values of APFD
indicate faster fault detection. To formally define the APFD
measure, let T be the set of n test cases and TFi be the index
of the first test case that detects the ith fault. Also, assume
that the number of faults/mutants that can be detected by the
test suite ism, then the value of APFDmetric of an ordering is
given by following Equation (12) [4]. Based on Equation (12),
the APFD value will range between 0 and 1, where the value
of 1 indicates that all faults are detected by the first test case.

APFD = 1−
TF1 + · · · + TFm

nm
+

1
2n

(12)

VI. RESULTS AND DISCUSSION
A. EVALUATION OF RESULTS
In this section, we first explain and compare experimental
results and then investigate the statistical significance of the
difference between our proposed TCP approaches LoM-Score
andDis-LoM-Scorewith the state-of-the-art TCP approaches.
In total we perform three statistical tests, first, we perform
the Tukey Honest Significant Difference (HSD) test to inves-
tigate the significance of TCP approaches for each project.
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TABLE 5. APFD and ranking results for 10 projects from Defects4J.

Then, we perform a Friedman test followed by the Wilcoxon
sign test on the APFD results in 10 projects for each method.
For all of our statistical tests, we used a statistical analysis
software called IBM SPSS (Statistical Product and Service
Solutions). These statistical tests are selected due to the obser-
vations on the TCP approaches not being independent of each
other since they are run on the same open-source projects we
have selected from Defects4J.

The ranks for each TCP method and for each project from
the Tukey HSD post-hoc test are given in Table 5. The Tukey
HSD post-hoc test is used for ranking and finding which TCP
methods are significantly different from the others, where
the ranks A, B, C, D, E, and F indicate the best to worst
performing TCP method, respectively. The TCP methods
that share the same rank indicate that the TCP methods are
not significantly different. The LoM-Score TCP method has
ranked A in 6 projects, B in 2 projects, and C in 2 projects.
For Dis-LoM-Score TCP method has ranked A in 6 projects,
and B in 4 projects. Since there was no significant difference

found between the Tota-Diff,Dis-LoM-Score, and LoM-Score
TCP methods we look into the APFD performance details
of the Tota-Diff TCP method. We found that the Tota-Diff
TCP method has ranked A in 7 projects, B in 1 project,
C in 1 project, and D in 1 project. However, it is important
to mention for project jackson-databind the Tota-Diff TCP
method has been performed under the Random, and Random
is used for setting the lower boundary for evaluating pro-
posed TCP method. In other words, proposed TCP methods
that perform under Random are considered to be unreliable
and insufficient. Even though the Total-Diff TCP method
has not shown any significant difference between Dis-LoM-
Score and LoM-Score, our proposed TCP method has shown
reliable, and consistent APFD results compare to Total-Diff.
Figure 4 shows box plots of the APFD results of 50 exe-

cutions for 10 projects from Defects4J. In Figure 4, the left-
most TCP method is the Random approach, which is used
for finding the lower boundary. If a TCP method performs
under Random, it is considered an insignificant approach,
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FIGURE 4. Box-plot of APFD results for 10 open-source Java projects for 7 TCP methods.

which we see that in Total TCP approach has performed
under Random in commons-codec (Figure4a), commons-csv
(Figure4c), jackson-core (Figure 4f), and jsoup (Figure 4j).
For Additional TCP approach, we see it performs under
Random in commons-codec (Figure 4a). For Additional-Diff

TCP approach, we see it performs under Random in jackson-
databind (Figure 4g). Finally, for Total-Diff TCP approach,
we see it performs under Random in jackson-databind
(Figure 4g). This indicates that every TCP method we have
compared with has performed under Random for at least
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one project in our case studies, while none of our proposed
TCP approaches performed under Random. These results
also show that our proposed TCP methods are more reliable
compared to the state-of-the-art TCP methods. Furthermore,
in Figure 4, we observe that in some projects, the compared
TCP methods that perform under Random can generate vari-
ous test orders that result in sporadic APFD results. In other
words, these TCPmethods will have outliers, sometimes they
can perform the best, and sometimes they can perform the
worst for the same project. Therefore, in Figure 4 for some
TCP methods and some projects there are wider box plots.
On the other hand, our proposed TCP methods have narrow
box plots, with very few to no outliers.

TABLE 6. (a) Ranking result of Friedman test on all 7 TCP techniques,
(b) Ranking result of Friedman test on all TCP techniques except
Dis-LoM-Score, (c) Ranking result of Friedman test on all TCP techniques
except Dis-LoM-Score and LoM-Score.

The Friedman test is a non-parametric test that allows us to
statistically test the difference between the results of all the
approaches at once. In Table 6, column (a), we performed the
Friedman test on all seven TCP approaches to investigate if
there is a significant difference when all the TCP approaches
are evaluated together. Then, in Table 6, column (b), we have
excluded the Dis-LoM-Score TCP results from the Friedman
test to observe if there is any significant difference between
the remaining six TCP approaches.We then perform our third
Friedman test which we excluded theDis-LoM-Score and the
LoM-Score TCP approaches and performed on the remaining
five TCP approaches to see if there is any significant differ-
ence between the remaining approaches.

In Table 6, we also notice that for the Random approach,
we have the same Mean Rank values on the three differ-
ent rankings (a), (b), and (c). When the Friedman test is
performed for each ranking (a), (b), and (c), we obtained
the same value, i.e., 1.70, for the Random approach. Since
the TCP approaches are ranked in ascending order for each
ranking, the Random approach will always have the same
lowest ranking.

In addition to the three Friedman test given in Table 6,
we provide the details of the test statistics from the three
Friedman tests in Table 7. The test statistics that are given
in Table 7 show that in column (a), where both Dis-
LoM-Score and LoM-Score TCP approaches are included
in the Friedman test, with a significance level of 0.05, the
p-value is 0.001 < 0.05. Thereby, we can say that there
is a significant difference between the TCP approaches in
column (a). In column (b), where the Dis-LoM-Score is

TABLE 7. (a) Test statistics of Friedman on all 7 TCP techniques, (b) Test
statistics of Friedman on all TCP techniques except Dis-LoM-Score,
(c) Test statistics of Friedman on all TCP techniques except Dis-LoM-Score
and LoM-Score.

excluded, we again see that the p-value is 0.001 < 0.05.
In column (c), where we excluded both Dis-LoM-Score and
LoM-Score TCP approaches, we see that the p-value is
0.007 < 0.05, which still indicates that there is still a sig-
nificant difference between the remaining TCP approaches.
However, we see a slight increase in the p-value.

After our observations, we see that there is a significant
difference between the TCP approaches when we have the
Dis-LoM-Score and LoM-Score TCP approaches in the Fried-
man test, which allows us to perform a Wilcoxon Sign test so
that it can provide a detailed analysis. In other words, the
Wilcoxon Sign test will show which TCP approaches have
a significant difference when compared with our proposed
Dis-LoM-Score and LoM-Score TCP approaches. We first
perform the Wilcoxon Sign test between the Dis-LoM-Score
TCP approach with the rest of all TCP approaches. Then,
we perform the Wilcoxon Sign test between the LoM-Score
TCP approach with the rest of all TCP approaches. First,
in Table 8 we present the two-tailed Wilcoxon Sign test
results of the Dis-LoM-Score TCP approach, and in Table 9
we present the two-tailed Wilcoxon Sign test results of the
LoM-Score TCP approach. The given Z values in
Tables 8 and 9 are calculated based on the positive ranks. The
p-values are examinedwith a significance level of 0.05, where
the p-values that are smaller than 0.05 indicate a significant
difference between the TCP approaches.

TABLE 8. Significantly different methods compared to the Dis-LoM-Score
method with respect to two-tailed Wilcoxon test.

Based on the results in Table 8, we observe a significant
difference between the Dis-LoM-Score TCP approach with
Random, Total, Additional, Additional-Diff for a significance
level of 0.05.

Based on the results in Table 9, we observe a significant
difference between the LoM-Score TCP approach with Ran-
dom, Total, Additional-Diff for a significance level of 0.05.
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TABLE 9. Significantly different methods compared to the LoM-Score
method with respect to two-tailed Wilcoxon test.

In addition to our Friedman and two-tailed Wilcoxon Sign
test, we also performed a one-way Analysis of Variance
(ANOVA) analysis on the mean APFD values for each project
to statistically analyze the difference between the TCP meth-
ods. Then, we performed a Tukey HSD test on each project
again on the mean of APFD values for seven TCP methods.
The Tukey HSD post-hoc test categorizes the TCP methods
into different groups/ranks with respect to their APFD perfor-
mances. We considered the significance level α = 0.05 for
both of the statistical procedures.

B. ANSWERING RESEARCH QUESTIONS
RQ1: How can change impact analysis information be
used in test case prioritization and is it effective? In this
study, by using program slicing, call graphs, change informa-
tion, and Markov chains, we were able to assign numerical
values to the impacted methods. These impacted methods
are represented with probabilistic information. The impacted
method with a lower probability means that the methods
can be affected by the changes with a lower chance. On the
other hand, a method with a higher probability represents
that, with a high chance the method might be affected by
the changes that are made in the software and must be tested
with higher priority. However, the problem in using these
numerical values is that every test case has a different number
of covering methods. Therefore, calculating the average of
the numerical values of the test cases are not providing a fair
evaluation while prioritizing the test cases. Using a simple
average calculation on test cases that has too many covered
methods, where the covered methods with lower probabilities
have the majority can decrease the value of the test case.
In addition, even if the test case covers methods with higher
probability, their value will be undermined with average
(mean) calculation. Thereby, we have used the lower quartile
value of the number of covered methods for each test case,
which is inspired by the ‘‘Law of the Minimum (LoM).’’ This
allowed us to evaluate the test cases fairly. This methodology
has prioritized the test cases and used the change impact
analysis effectively. Even though the change impact analysis
data were used effectively in prioritizing test cases, similar
test cases were prioritized consecutively, which sometimes
led to a decrease in APFD results. This problem has been
discussed in our research question RQ2.
RQ2: Does using change impact analysis information

solve the problem of similar test cases to be ordered
consecutively in test case prioritization? In our research

questionRQ1, we have discussed the usage of change impact
analysis in test case prioritization, which is related to research
question RQ2, we wanted to observe and evaluate if using
change impact analysis data will solve the problem in similar
test cases to be ordered consecutively or not. We were able
to solve the problem of how to change impact analysis data.
To solve this problem we differentiated similar test cases
by multiplying the ratio of the covered methods, for each
test case. In order to increase the priority of such test cases,
we used Jaccard similarity. This way, we calculated the num-
ber of similarities among test cases and reduced their score
with respect to the amount of similarity. We called this test
case prioritization method Dis-LoM-Score, which performed
better than LoM-Score in 4 projects and ranked 1st in three
of our case study projects commons-csv, jackson-core, and
jsoup. The reason whyDis-LoM-Score did not perform better
LoM-Score in the other six projects is because of the coverage
criteria granularity we used for calculating similarity. For
similarity, we used method coverage, and we found that there
were test cases that covered the exact same methods. In other
words, there were test cases that had a 100% similarity which
annihilated the test score (test score multiplied by 0) that
was calculated. Once a 100% similarity between test cases is
calculated. The test case score is updated to 0, which will end
as a low-priority test case, and will not be given the chance
for exposing faults. Therefore, a fine-level granularity (such
as statement-level or branch-level) similarity could reduce the
possibility of test score annihilation.

C. RUNTIME EVALUATION
In this section, we evaluate the runtime performances of
our proposed TCP methods with the other TCP methods we
have compared. In Table 10, we present the mean runtime
values in milliseconds (ms). We see that the Dis-LoM-Score
TCP method is the slowest among all other TCP methods.
The main reason Dis-LoM-Score is slowest is because it
uses Jaccard similarity to update test scores after each selec-
tion of test case, which is already an expensive process.
Even though Dis-LoM-Score is the slowest, on average it
still performs under 2 minutes, which is still a reasonable
time.

We can also see that the diff-based TCP methods also have
high runtimes compared to the traditional coverage-based
TCP method. This is an expected runtime result since these
TCP methods have a diff process in between.

It is also important to mention that, we haven’t included
the runtime results of the change impact analysis step for
LoM-Score and Dis-LoM-Score, since that we provide the
change impact analysis results separately. However, previ-
ous studies [38], [39] that used Code-Change-Sniffer on the
Defects4J data have reported that the change impact analysis
ran between 15-185 seconds depending on the size of the
project. We had consistent runtime results on the change
impact analysis from previous studies, which are again within
a reasonable runtime.
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TABLE 10. Mean of runtime (ms) for every 10 projects from Defects4J and for 6 TCP techniques.

We also do a complexity analysis on both LoM-Score
and Dis-LoM-Score test case prioritization algorithms. The
LoM-Score approach iterates the list of test cases to find
and select the test case with the next maximum test score,
which is actually a sorting operation, that orders test cases
in descending order. Thereby, if there are n number of test
cases in the list, the complexity of the LoM-Score test case
prioritization algorithm is O(n2). The Dis-LoM-Score test
case prioritization algorithm is quite similar to the LoM-
Score test case prioritization algorithm. The difference is,
before the sorting operation, we first calculate the similarities
between test cases using Jaccard similarity, which has aO(n2)
complexity. However, this operation is done only once. Then
we select the test case with the highest test score at every
iteration, which is a O(n2) complexity as well. After the
highest test score is selected, we update the test score for
all the remaining test cases, which takes another n itera-
tion. Therefore, the complexity of the Dis-LoM-Score test
case prioritization algorithm is O(n3). To improve the per-
formance, the test score updating operation is implemented
with multi-threads and runs in parallel. While updating the
test scores, we do not require any synchronization because the
updated test score are not dependent on each other. Briefly,
we can conclude that the LoM-Score test case prioritization
algorithm has lower complexity compared to Dis-LoM-Score
test case prioritization algorithm.

D. THREATS TO VALIDITY
In this section, we discuss the limitations of our overall
evaluation that involves our external and internal threats to
validity.

1) INTERNAL THREATS TO VALIDITY
While calculating the similarity between test cases, we fol-
lowed a naive approach by checking if test cases covered the
same methods (not statements or branches of a statement).
However, the main threat of following this approach is that it
will not take into account if the test cases are covering com-
pletely different statements or branches of the same method.
This type of scenario will prove the opposite of the simi-
lar result of method-based coverage. For instance, assume
there are two test cases t1 and t2, and they both cover the
methods m1, m2, and m3. Based on a method-level coverage

similarity analysis, the test cases t1 and t2 will be calculated
as 100% similar. So, if test case t2 is selected, while we use the
Dis-LoM-Score TCP approach, the updated test score for t1,
will be 0 and will be set as the lowest priority score. However,
in reality, multiple test cases can cover the exact methods, but
they could be covering different parts of the methods. There-
fore, a finer granularity of coverage similarity would give
more accurate results compared to large granularity coverage
such as method coverage. On the other hand, using a finer
granularity like statements or branches will lead to higher
complexity due to the increased number of elements that
are covered. The Jaccard similarity is already expensive and
would make the Dis-LoM TCP even slower. Therefore, there
is a trade-off using a finer or larger granularity of coverage
criteria. However, our code has been designed in a way to
support different coverage criteria, the developer only needs
to provide the coverage data.

Another limitation is that this study has not taken into
account flaky tests, where test cases have a test execution
dependency. Dependent test cases can affect the order of
test cases. For instance, a test case might have to run before
another test case, due to its setup and initialization that will
be used by other test cases. If this test case is not executed
before this can lead the dependent test cases to result in
failure, which could be a false alarm. Thereby, each TCP
approach that we have evaluated, including our proposed TCP
methods might have generated infeasible test cases execution
order, which can cause flaky tests [40]. Therefore, in future
work, we plan to find the dependent test cases and discard the
possibility of generating infeasible TCP orders.

Our proposed two TCP methods (LoM-Score and Dis-
LoM-Score) rely on a change impact analysis tool called
Code-Change-Sniffer [5]. We used Code-Change-Sniffer
because it provides probabilistic results of a method being
impacted by a change, which allows us to calculate a score
for each test case. Best to our knowledge, other change impact
analysis approaches do not provide such information or they
do not share their code publicly so that we can use or integrate
it into our approach. In addition, Code-Change-Sniffer was
reported to have high recall values (very few to no false-
negatives), but contain false-positive results. Relying on a
change impact analysis that has false-positive results can
disorient andmislead the test case prioritization approach and
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test score calculation. However, if the change impact analysis
is replaced with another that has higher recall and precision
results, it could improve the test case prioritization outcome.

2) EXTERNAL THREATS TO VALIDITY
We have performed our case study on ten different open-
source Java projects, which were obtained and used from
Defects4J. However, this case study is not sufficient to gen-
eralize results for every Java-based software or other that are
developed in different programming languages. Therefore,
the selected projects from Defects4J [24] may not represent
all the software that is actively been used.

In our case study, the APFD metric is selected for com-
paring TCP techniques. Moreover, the APFD is an accepted
and widely used metric, although in literature the APFD
metric is mostly discussed as not taking any consideration
of the cost of test case runtimes. For instance, it is possible
that two different test execution orders can have the same
APFD values. However, at the point, where both of them have
detected all the faults could result in different test execution
time. Briefly, even if both test execution orders have the same
APFD values, they might have different run times.

All the faults in the case study are injected with Major and
their representatives of real faults may be argued. There are
also studies [24] that provide real faults. However, the faults
were all isolated and contained in different commits. There-
fore, we couldn’t include multiple faults in one project,
otherwise, the APFD measure would be meaningful on
with a single fault. We could have used the projects that
were created by Paterson et al. [25], which includes multiple
faults in a project. However, those projects were meant for
coverage-based TCP approaches, and not for change-based
TCP approaches. For change-based TCP approaches, a base
project is also required so that a diff could be calculated.
Thereby, we had to hand-seed themutants that were generated
by Major. It is important to mention that mutation faults can
be a representative of real faults [30], [31]. These studies
indicate that it is usually appropriate to use mutation faults
for studying regression testing techniques.

While hand-seeding the mutants manually, we tried to
include as various types of mutants as possible and tried to
include as much as possible that was generated by Major.
However, since we have manually selected the mutants and
hand-seeded the mutants to the projects, there is still a pos-
sibility of this approach being biased. There could be better
ways of selecting better mutants that represent real faults or
could have increased the number of mutants that are seeded.
But again, we have carefully selected themutation testing tool
that is well-known for generatingmutants that could represent
real faults, such as Statement-Deletion.

VII. RELATED WORK
Mirarab et al. [16] proposed an approach to prioritize test
cases in the aspect of regression testing to enhance the
rate of fault detection. They proposed a unified model
based on the probability that uses Bayesian Networks (BN).

Their proposed model utilizes data on source code changes,
software fault proneness, and test coverage. The approach
was compared with nine different prioritization approaches
by using APFD (Average Percentage Faults Detected) met-
ric results. They observed that BN has produced better
results when the software system contains more faults. Later,
Mirarab and Tahvildari [41] extended the approach by adding
a feedback route to update the Bayesian Network as prioriti-
zation progresses. For instance, if a test case covers a set of
program elements, the probability of selecting other test cases
that cover the same elements will be lowered. In addition,
Ufuktepe et al. [18] extended the work of [16] by provid-
ing a fully automated test case prioritization and execution
architecture by using different tools. All these studies have
used Bayesian Network and focused on the class-level test
case prioritization, by using change information, but they do
not include information on data dependency. In our study,
we have focused on method-level test case prioritization
and included data dependency information combined with
the flow of method-calling relationships. This information
has been used with Markov chains to obtain the reasoning
information with respect to the data dependency, change
information, and method calling relationships.

Zhao et al. [42] has also used the Bayesian Network
(BN) based test case prioritization technique [16], however,
they highlighted that the BN-based test case prioritization
technique ignores the similarities between test cases that
share the same coverage information. Therefore, they have
combined the BN-based test case prioritization approach by
using clustering for grouping similar test cases. This allows
giving higher priority to test cases that are not similar to
the test cases that have a higher priority. In other words,
the same components will not be covered consecutively with
respect to the prioritized test cases. Our study differs by the
way we use Markov chains and Jaccard similarity instead
of using clustering. Since this study has used the TCP that
Mirarab et. al [16] proposed, it follows a class-level test case
prioritization approach.

Gupta et al. [43] proposed a regression testing approach
by using program slicing. In their study, they have used
dataflow-based regression testing that uses two types of pro-
gram slicing techniques; backward and forward walk slicing
techniques. With their technique and using program slicing
they intended to determine the directly and indirectly affected
define-use (def-use) pairs. With their approach, they reduced
the time of maintaining and updating the test suite. Using
slicing techniques to find the data dependency relationships
is a common method to use, our study is not only limited
to using program slicing but also uses change information to
strengthen the prioritization outcome.

Jeffrey et al. [44] mentioned the former techniques on
test case prioritization that were based on the total num-
ber of coverage requirements exercised by the test cases.
They presented a new approach to prioritize test cases that
considers the coverage requirements present in the relevant
slices of the outputs of test cases. In addition, they have
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implemented three different heuristics based on their relevant
slicing-based approach to prioritize test cases and perform
their case studies to compare the effectiveness of their tech-
niques with traditional techniques that only account for the
total requirement coverage. Their case study and results have
shown that using relevant slices for TCP has achieved high
rate of fault detection.

Panda et al. [45] proposed a static-based approach to pri-
oritize test cases in regression testing, by computing the
affected component coupling of the affected parts of the
object-oriented programs. In order to represent the affected
parts of the program, they have constructed a graph called
the affected slice graph (ASG). The ASG graph is used for
determining the fault-proneness of the nodes in the affected
slice graph, by computing their corresponding affected com-
ponent coupling. They prioritize their test cases with respect
to the test cases that cover the nodes with higher affected
component coupling values.

Wang et al. [46] targeted the test case prioritization prob-
lem on service-oriented workflow applications, by high-
lighting the architecture service-oriented applications that
require precise prioritization to execute test cases earlier to
detect failures. They have proposed a modification impact
analysis-based test case prioritization technique that investi-
gates the internal structure of software, and the fault propa-
gation behavior of modifications.

Tahat et al. [47] proposed and evaluated two test case
prioritization methods which are selective methods and
dependence-based methods, that utilized the state-based
model of the system under test (SUT). Their methods assume
that the changes/modifications are made both on the SUT and
its model. Furthermore, they have also presented an analytical
framework for evaluating test case prioritization methods,
in order to reduce the cost of evaluation and comparison. They
have performed empirical studies and compared their results
with different test case prioritization methods. The results of
their empirical studies have shown that system models might
improve the effectiveness of test case prioritization, in terms
of detecting the faults earlier.

Elbaum et al. [48] highlighted the unawareness of engi-
neers of the relationship between change patterns and testing
techniques’ cost-effectiveness which can lead to making poor
choices in defining regression testing. They have defined the
possible three poor choices: (1) designing expensive regres-
sion test suites; (2) integration of unnecessarily expensive
changes into the system build; (3) inappropriate selection of
change integration strategies or regression testing techniques.
Therefore, they have performed an empirical study on four
different software with several releases and the results have
shown that, change attributes play a significant role in the
performance of regression testing techniques.

Hao et al. [49] proposed a unified test case prioritization
approach that is motivated by the existing additional and
total coverage-based test case prioritization techniques. Their
approach initially assigns each program element a default

probability value denoting the probability that the element
contains a fault. When a test case is executed, there is a
chance that the test case might have some unit. Therefore, the
test case may reveal one or more faults in this unit, and the
probability that the unit missed the undetected faults is thus
reduced. They have represented the degree of reduction with
a ratio between 0.0-1.0 and use this ratio in their unified TCP
approach in order to encapsulate the aspects of the additional
strategy into the total strategy.

In another study, Emam et al. [50] proposed a fault-based
test case prioritization technique for model-based testing
procedures. They have proposed an extended directed graph
model, which is realized with reinforcement learning and
Hidden Markov Model in order to prioritize test cases. Fur-
thermore, they have proposed another alternative test case
prioritization approach based on the number of changes that
are made in the software. They have applied their test case
prioritization approaches to GUI-based applications.

Hemmati et al. [51] proposed a study on prioritizing man-
ual test cases in rapid release environment, by recalling that
most of the existing test case prioritization techniques are
code coverage based, which actually require access to the
source code. However, manual testing is mainly performed
in a black-box manner, where the source code is not provided
to the testers. Therefore, Hemmati et al. [51] examined exist-
ing diversity-based and history-based test case prioritization
techniques and modified them to make the test case prioriti-
zation technique applicable to the manual black-box system
testing. In their study, they have performed empirical studies
on several releases of desktop, mobile, and tablet Firefox
projects. They have concluded that test cases in rapid-release
environments can be very effectively prioritized for execu-
tion, based on their historical failure knowledge.

Shin et al. [52] proposed a test case prioritization technique
that combines two approaches; mutation-based and diversity-
aware. Their technique relies on the diversity-aware muta-
tion adequacy criterion, which was previously proposed by
Shin et al. [53], [54]. The diversity-aware criterion’s goal is
to distinguish the behavior of every mutant from that of all the
others, despite the mutants from the original program. Based
on the diversity criterion distinguishing the mutants improves
the fault detection capabilities in terms of mutation testing.
Thereby, their proposed test case prioritization technique
gives higher priority to those test cases that help distinguish
all mutants as soon as possible. Other studies have also found
that mutation-based test cases prioritization [55], [56] to be
effective. Since mutation score is used as an indicator of
good quality test cases, using it in test case prioritization
gives higher priority to test cases that have a higher chance
of exposing faults.

Do et al. [57] designed and performed an experiment
on Java programs that are tested under JUnit framework.
They have found that test case prioritization improves the
rate of fault detection for JUnit test suites. In addition, they
have also revealed that in terms of test case prioritization,
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differences can occur with respect to the used program-
ming language and testing paradigm. Later, Do et al. [6],
associated the traditional test case prioritization techniques
with cost and depending on the testing processes that are
employed. On the other hand,Mei et al. [58] proposed a static
approach for prioritizing JUnit test cases. They have proposed
a TCP approach called JUPTA, which runs on a system with
JUnit test cases that functions in the absence of dynamic
coverage data.

Nardo et al. [59] presented a case study on coverage-based
regression testing techniques on a real-world industrial sys-
tem with real regression faults given. They have evaluated
test case prioritization, selection, minimization, and hybrid
approaches that combine selection and minimization tech-
niques. Their study on test case prioritization has shown
that techniques that are based on additional coverage with
finer-grained coverage criteria perform better in terms of fault
detection rates. Furthermore, they have observed that using
modification information in prioritization techniques does
not significantly enhance fault detection rates.

Eghbali and Tahvildari [60] discussed that acting randomly
in the case of ties can degrade the performance of the Addi-
tional Technique (AT) algorithm and they have empirically
shown that it is very likely for AT to face ties. To break the
ties, unlike AT-type techniques which only consider the not-
yet-covered entities for coverage, entities are assigned with
priorities for further coverage. They used lexicographical
ordering to break the ties. In addition, they proposed GeTLO
algorithm by modifying and enhancing the basic algorithm
in order to reduce its time complexity. However, they showed
even with their GeTLO algorithm they have faced ties in test
cases. Thereby, they have presented an algorithm that takes
into account all possible test cases to find the best test case.
Furthermore, they have studied different granularity levels
of coverage and they saw that their proposed algorithm has
outperformed many of the coverage-based techniques.

Most of the TCP techniques used a dynamic or static analy-
sis approach. Saha et al. [61] followed a different approach to
tackle the problem as an information retrieval problem, rather
than using traditional dynamic or static analysis approaches.
They have used change impact analysis to extract the changes,
and they have used the TF.IDF information retrieval model
to rank the test cases. The idea of this study intersects with
our approach by using change impact analysis information.
However, there are several differences between our work.
For instance, the authors have used a different change impact
analysis approach and used information retrieval techniques
to prioritize test cases, while we use Markov chains for
change impact analysis and used our formulation (Law of
Minimum inspired approach) to prioritize test cases.

Reinforcement learning has also been actively used in
several fields, such as trust mechanisms [62], and soft-
ware security [63]. In software testing, we also see appli-
cations of reinforcement learning in test case prioritization.
For instance, Bagherzadeh et al. [64] formalized the test case
prioritization in Continuous Integration (CI) environment as

a reinforcement learning problem, where changes are more
frequent in software. Another study [65], has used reinforce-
ment learning in test case prioritization using XCS classifier
systems (XCS), which is a genetic algorithm-based learning
system that is used in reinforcement learning.

VIII. CONCLUSION AND FUTURE WORK
In this study, a test case prioritization technique called LoM-
Score, which is based on change impact analysis has been
proposed. The proposed TCP technique has been imple-
mented for prioritizing test cases for regression testing.
Then the proposed approach has been enhanced with a
dissimilarity-based coordinate analysis that uses Jaccard sim-
ilarity. This approach is called Dis-LoM-Score.

In addition, we have used probabilistic results of a change
impact analysis tool called Code-Change-Sniffer [5]. The
change impact analysis tool follows a method-level gran-
ularity approach, which uses method change information,
program slicing, and call graph. Then this information is used
in aMarkov chain model to calculate the probabilistic results.

The proposed test case prioritization approaches LoM-
Score and Dis-LoM-Score are compared with five other TCP
techniques. The results show that LoM and Dis-LoM have
performed more consistent results compared to traditional
TCP techniques, and shown reliable results. Our statistical
tests have shown that there was no significant difference
between the Total-Diff TCP, which is also the competitive
TCP method. However, we have also observed that in some
cases Total-Diff TCP has performed under the Random TCP,
which makes Total-Diff an unreliable TCP method.

Testing a code where it is only changed may not be the best
approach since that change can have side effects, and these
side effects can be the actual code that needs to be tested.
Therefore, combining change impact analysis with test case
prioritization can have the advantage of guiding test cases to
focus on the codes that are impacted by the change. Test cases
that are only focused on the changed parts of the code can
easily miss the affected codes.

This study has many potentials for improvement. There-
fore, for future work, different change impact analysis tools
can be tested on the LoM-Score and Dis-LoM-Score TCP
methods to see if there are any significant differences. Fur-
thermore, the granularity that is used for similarity can be
replaced with a finer granularity such as; statement level or
branch level. A finer granularity could lead to calculating
accurate similarities, and better prioritization.
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