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A New Construction Method for
Keystream Generators

Çağdaş Gül and Orhun Kara

Abstract— We introduce a new construction method of dif-
fusion layers for Substitution Permutation Network (SPN)
structures along with its security proofs. The new method can
be used in block ciphers, stream ciphers, hash functions, and
sponge constructions. Moreover, we define a new stream cipher
mode of operation through a fixed pseudorandom permutation
and provide its security proofs in the indistinguishability model.
We refer to a stream cipher as a Small Internal State Stream
(SISS) cipher if its internal state size is less than twice its
key size. There are not many studies about how to design and
analyze SISS ciphers due to the criterion on the internal state
sizes, resulting from the classical tradeoff attacks. We utilize our
new mode and diffusion layer construction to design an SISS
cipher having two versions, which we call DIZY. We further
provide security analyses and hardware implementations of
DIZY. In terms of area cost, power, and energy consumption,
the hardware performance is among the best when compared
to some prominent stream ciphers, especially for frame-based
encryptions that need frequent initialization. Unlike recent SISS
ciphers such as Sprout, Plantlet, LILLE, and Fruit; DIZY does
not have a keyed update function, enabling efficient key changing.

Index Terms— Block cipher, stream cipher, keystream, dif-
fusion layer, lightweight ciphers, truncated pseudorandom
permutations, tradeoff attacks.

I. INTRODUCTION

IN THIS work, we study how to design stream ciphers
whose internal state sizes are less than twice their key sizes,

which we call Small Internal State Stream (SISS) ciphers. Our
methodology is based on the efficient construction of diffusion
layers for Substitution Permutation Network (SPN) structures,
and the implementation of these SPN structures within a new
stream cipher mode, thereby offering a level of security that
can be rigorously demonstrated.

The demand for secure communication among ubiquitous
handheld devices with constrained resources has been on the
rise in the field of telecommunications. Given the limited
battery capacity of these lightweight portable devices, it is
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most likely that they provide the confidentially through frame-
based encryption by using either block ciphers in stream
cipher modes such as Kasumi in GSM, Keeloq of rolling code
systems, and AES in WPA2, or stream ciphers. In general,
stream ciphers consume more energy than block ciphers in
encrypting short frames [1].

In terms of security, the threshold for recovering an internal
state should not be larger than the threshold for recovering a
key through tradeoff attacks in a stream cipher. This compar-
ison suggests that the internal state size should be at least
4k/3 bits when the key length is k bits. However, to provide
resistance against tradeoff attacks, most contemporary stream
ciphers have internal state sizes of at least 2k bits. Despite
the persistent increase in the utilization of SISS ciphers in the
industry over the past two decades, there has been a scarcity of
research in the literature on the secure design of such ciphers
due to the strict limitations imposed on state sizes. Conversely,
there are several SISS ciphers that are widely used in practical
applications. However, a significant majority of them have
been demonstrated to possess substantial vulnerabilities. There
are practical attacks on A5/1 or A5/2 of GSM [2], E0 of
Bluetooth [3], Crypto1 and Hitag2 [4] of immobiliser systems,
Keeloq [5], Myfire Classics [6], [7], and RC4 of WEP [8], [9].

Armknecht and Mikhalev present a methodical approach for
the development of SISS ciphers through the introduction of
keyed state update functions [10], and prove that a cipher with
a keyed state update provides at least k-bit security against the
internal state recovery tradeoff attacks given in [11], [12], and
[13]. Basically, four modern SISS ciphers with keyed updates
have been designed since then. The first cipher, Sprout [10],
is analyzed intensively in [14], [15], [16], and [17]. Although
Plantlet is introduced to enhance the security of Sprout [18],
several attacks are published [19], [20], [21]. Fruit [22] and
LILLE [23] are the other recent SISS ciphers with keyed
updates. Fruit-80 [24] inherits some weaknesses [19], [20] and
there is a recent attack on LILLE [25]. But, no weaknesses
have been reported on the latest version of Fruit yet.

In recent years, there has been a proliferation of designs
for ultra-lightweight block ciphers such as [26], [27], [28],
[29], and [30]. However, the literature on SISS ciphers without
keyed updates is relatively scarce. One example is Lizard hav-
ing a 120-bit key and 121-bit internal state [31]. Nevertheless,
a new attack recovers internal states with an overall complexity
of 254 [32]. The main motivation of this work is to study the
question of how to design a secure SISS cipher without a keyed
update.
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We investigate the utilization of Truncated Pseudorandom
Permutations (T P P) as keystream generators. The studies on
the statistical divergence of T P Ps date back to the 1970s
as an old combinatorics problem introduced by Stam [33].
Some early works have presented loose bounds indepen-
dently [34], [35]. Then, the cryptography community has
realized that the Stam’s results are quite tight and a number of
works have verified his results [35], [36], [36], [38]. Gilboa et
al. have studied the question “How many queries are required
to distinguish a T P P from a random function?” [39]. This
question is already addressed in our case due to the restriction
on the amount of data to be encrypted. A tight bound is given
by Mennick [40] recently which we utilize in our security
proofs.

A. Our Contributions

The primary contributions are threefold: The proposal of a
new stream cipher mode with a formal proof of security, the
development of a diffusion layer construction with detailed
security analysis, and the design of a secure SISS cipher.

Our stream cipher mode uses a truncated pseudorandom per-
mutation that we call the T P P mode. There are several stream
cipher modes making use of pseudorandom permutations such
as GCM, GCM-SIV, EDM, EDMD, PMAC1, CENC, AES-
PRF, FastPRF [41], [42], [43], [44], [45], [46], [47], all of
which utilize key schedules. However, the T P P mode does
not require a key schedule, which enables us to construct
SISS ciphers by saving the cost of key registers. Furthermore,
we provide the security proofs of our mode in Section III.

The T P P mode necessitates the use of a pseudorandom
permutation, specifically one with a large block size given
that the permutation is fixed. However, the block sizes of
conventional block ciphers are often inadequate for this mode.
Therefore, we propose a new method of constructing diffusion
layers for SPN ciphers that possess larger block sizes. We show
that these layers provide fast diffusion for the SPN ciphers hav-
ing relatively large numbers of S-boxes (Substitution-boxes),
in terms of the numbers of differentially and linearly active
S-boxes by Theorem 6 and Theorem 4 in Section IV. Fur-
thermore, our proposed diffusion layers effectively integrate
matrix multiplications and bitwise permutations, resulting in
a reduction of XOR (exclusive-or) operations in hardware.
We introduce two examples, the 120-bit and 160-bit diffusion
layers, which consist of 72 and 96 XOR operations, respec-
tively. The proposed method can be applied to a variety of
cryptographic designs, including block ciphers, hash functions,
and sponge functions.

To demonstrate the feasibility of our new construction
method, we introduce the DIZY SISS cipher in Section V.
DIZY comes in two variations, each with a different key
length. The first variant, DIZY-80, uses an 80-bit key, while
the second variant, DIZY-128, uses a 128-bit key. We give
their security analyses in Section VI with their implementa-
tion results on Field Programmable Gate Array (FPGA) and
Application-Specific Integrated Circuit (ASIC) platforms in
Section VII. We compare our performance results with some
of the well-known lightweight ciphers in Table IV.

II. MOTIVATION AND PROBLEM STATEMENT

Tradeoff attacks form a class of generic attacks that are
typically divided into two phases: An offline phase, during
which tables are constructed containing input/output pairs of
a given one-way function, and an online phase, during which
the outputs of the one-way function are searched for within
the previously constructed tables.

The internal state size of a stream cipher is supposed to be
at least twice as large as its security level to counter tradeoff
attacks where the security level is typically equated with the
length of the key used in the stream cipher [11], [12], [13].
In this case, the time complexity of the online phase of a
generic tradeoff attack to recover an internal state is at least
2k for a k-bit key. However, if we define our oneway function
as the function whose input is the main key and the output is
a keystream part for a chosen and fixed I V , we can recover
the main key in about 22k/3 calls with 22k/3 memory in the
online phase by the Hellman tradeoff attack [50], [51]. That
is, the Hellman attack is applicable to any symmetric cipher
as a k-bit oneway function. Therefore, when evaluating the
security of any tradeoff attack, it is essential to compare it with
the Hellman attack instead of simply measuring it against the
exhaustive search. As a result, the default security threshold
of the online phase of any tradeoff attack for an internal state
recovery must be 22k/3 rather than 2k . Hence, the internal state
size is enough to be at least 4k/3 which makes the design of
SISS ciphers possible [52], [53].

Finding preimages of a oneway function of the identical
input-output sizes is known as the Hellman inverting problem
with a default solution proposed by Hellman as T 2 M =

N 2 in a domain of N elements with the offline complexity
P = N . Here T and M represent the time and the memory
complexities of the online phase [50]. The Biryukov-Shamir
curve is M2 D2T = N 2 with D2

≤ T , where N is the number
of all the internal states [11]. It is enough to invert one of D
keystream segments. Moreover, P D = N in the offline phase.
If the internal state size is more than 4k/3 then the online
phase of the Biryukov-Shamir attack is at least 22k/3, which
is achieved when we have 2k/3 data [11]. The offline cost is
at least 2k . So, if the number of encryptions is restricted to
be at most 2k/3 then the Biryukov-Shamir inverting problem
for the internal states will be as hard as the Hellman inverting
problem for the main key with a fixed I V . A similar argument
is valid for the Babbage-Golić attack [12], [13].

Almost all the modern key stream generators without keyed
updates have larger internal states than 4k/3. The security
against divide-and-conquer or guess-and-determine attacks is
usually provided by means of large states of keystream gen-
erators such as 288-bit internal state of Trivium with 80-bit
key [54]. So, it is unknown in the literature how to design
secure SISS ciphers. We address this comprehensive open
problem.

III. A NEW STREAM CIPHER MODE

Let P be a pseudorandom permutation used as a state update
function such that P(xi−1) = xi . Define the output function
as the least significant w bits yi = T P P(xi−1) of xi where
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Fig. 1. T P P mode.

T P P is the composition of P and the truncation function.
We describe two games, Game A and Game B, to prove
the indistinguishability of the T P P mode. There are two
entities in a game who are the challenger and the distinguisher.
Only the challenger has access to the permutation P and the
distinguisher has to ask the challenger for the corresponding
outputs of the inputs he/she can query since P is unknown
to the distinguisher. The challenger publishes either the cor-
responding outputs or random outputs with probability ½.
The objective of the distinguisher is to guess the source with
the highest possible probability by exploiting his/her infinite
computational power.

Game A entails a powerful assumption that the distinguisher
can choose the truncated part of the input in the internal state.
We can nevertheless provide a bound for his/her advantage to
distinguish the outputs of the T P P mode from the outputs of a
random function. Game B simulates the real use case scenario
of the mode where the distinguisher does not query anything
but tries to distinguish a keystream sequence generated through
the T P P mode from a random sequence.

a) Game A: Let a distinguisher queries distinct
z1, . . . , zq ∈ G F(2)n−w adaptively where G F(2) is the binary
Galois field. Let yi = T P P(zi ||yi−1) where y0 is chosen by
the challenger at random and let f : G F(2)n−w

→ G F(2)w

be a random function. One bit is chosen randomly. The
distinguisher is given the output O f = { f (zi : i = 1, . . . , q)}

if the random bit is 0, and the output OT P P = {yi : i =

1, . . . , q} otherwise. The objective of the distinguisher is to
correctly guess the source as either T P P or f with the highest
possible probability. For any algorithm AD returning 1 when
his/her guess is for T P P , define the advantage Adv f

T P P (AD)

as

Adv f
T P P (AD) = | Pr(ADT P P

= 1) − Pr(AD f
= 1)|

where the former and latter probabilities are over the drawings
through T P P and f respectively. Lemma 1 gives an upper
bound for the advantage of any distinguisher.

Lemma 1: Let q < 2n−1.5w. The advantage of distinguish-
ing T P P from a random function f in pairwise distinct q
queries is bounded by

Adv f
T P P (AD) ≤

1
2

√
(2w − 1)q(q − 1)

(2n−w − 1)(2n−w − q + 1)
.

Proof: Let f1(z) = T P P ′(z) by truncating the most
significant n − 2w bits of the output of another random
permutation P ′ of (n − w) bits. The expected numbers of
occurrences of any output α ∈ G F(2)w among j − 1 out-
puts are equal in f1 and T P P , which we denote ℓ. Then,

∣∣∣ 2n−w
−ℓ

2n− j+1 −
1

2w

∣∣∣ <

∣∣∣ 2n−2w
−ℓ

2n−w− j+1 −
1

2w

∣∣∣. That is,

| Pr(T P P(z j ||y j−1) = α|{zi }) − Pr(T P P(z j ||y j−1) = α)|

is less than the distance

| Pr( f1(z j ) = α|{zi }) − Pr( f1(z j ) = α)|

for α and j > 2 with i = 1, . . . , j − 1. Therefore,
Adv f

T P P (AD) ≤ Adv f
f1
(AD). Let Y be the distribution

coming from yi = T P P ′(zi ) and X be the distribution coming
from the outputs of f . Let K L(Y ; X) be the Kullback-Leibner
divergence which is∑

α

Pr(Y = α) log
(

Pr(Y = α)

Pr(X = α)

)
.

It has an upper bound (2w
−1)q(q−1)

2(2n−w−1)(2n−w−q+1)
[33], [40]. Then,

1
2 + Adv f

f1
(AD) is bounded above by 1

2 +

(
1
2 K L(Y ; X)

)1/2

by Pinker’s inequality [33], which gives the result.
b) Game B: The distinguisher has the full advantage in

case the queries collide in Game A. We introduce the following
game. Let the challenger produce the keystream sequence {yi }

of length D through yi = T P P(zi ), P(zi ) = zi+1 where z0 is
randomly chosen and is kept secret. The challenger produces
another sequence {y′

i } through a True Random Number Gener-
ator (TRNG) and chooses one of {yi } or {y′

i } with probability
½ to publish. A distinguisher is supposed to guess correctly
with the highest possible probability via an algorithm AD
whether the sequence he/she is given is either {yi } or {y′

i }.
Theorem 1: Let D < 2n−w. The advantage of distinguish-

ing {yi } from {y′

i } by AD is bounded above by D
2n (2w/2

+
1
2 ).

Proof: Let D < 2n−w. The probability that the period
of yi is less than D is D/2n which contributes D/2n+1 to
the advantage. Otherwise, all zi ’s are pairwise distinct since
P is a permutation. As in the proof of Lemma 1, let Y be
the distribution coming from {yi } and X be the distribution
coming from the outputs {y′

i } of a T RN G. Then, K L(Y ; X) ≤

(2w
− 1)D(D − 1)/2(2n

− 1)(2n
− D + 1) and hence the

advantage is bounded by

1
2

√
(2w − 1)D(D − 1)

(2n − 1)(2n − D + 1)
+

D
2n+1

by Pinker’s inequality [33]. Note that [(2w
− 1)

D(D − 1)]/[4(2n
− 1)(2n

− D + 1)] ≤ D22w/22n for
D < 2n−w.

IV. DESIGN RATIONALE AND DIFFUSION LAYER

An SPN cipher consists of s-bit S-boxes and a linear trans-
formation as its confusion and diffusion layers respectively.
The block length is n and the number of S-boxes is t =

n/s. We choose a 5-bit perfect nonlinear permutation whose
nonlinearity is 12, as the S-box for our design, possessing a
unique property where one-bit difference does not produce a
one-bit output difference in the least significant two bits and
also any input bit in the least significant two bits has no bias
with any output bit. Its table is given in Section V.
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Fig. 2. High level structure of one permutation block.

A. Linear Transformation

The objective of the linear transformation is to maximize
the number of active S-boxes with respect to both linear
and differential cryptanalysis. An S-box is considered to be
differentially active if it exhibits non-zero differential behavior,
and linearly active if there exists a linear mask in its output.

We assume the number of S-boxes, t , is divisible by 8 and
we define 8 equivalence (eq.) classes E0, . . . , E7, which are
pairwise disjoint and their union gives all the indices of
S-boxes. Ei contains indices of t/8 S-boxes and it is not
important which S-boxes are contained in which class for our
statements. We define an n/4 × n/4 invertible binary matrix
M and our linear transformation is constructed through M as

M ·

(
Er

i
Er

i+4

)
=

(
Er+1

2i
Er+1

2i+1

)
for i = 0, 1, 2, 3 (1)

where
( Er

i
Er

i+4

)
is an n/4 × 1 vector consisting of the bits of

the S-boxes in Ei and Ei+4 in the r -th round in a fixed order
starting from the S-box indices in Er

i . We ignore the round
number r in the notation for simplicity from now on. The
vector

( E2i
E2i+1

)
is defined similarly. Any differentially (linearly)

active eq. class contains at least one differentially (linearly)
active S-box.

Recall that the differential branch number of a matrix in
terms of a given word size is the minimum number of the
sum of the nonzero words of all the nonzero inputs and
their outputs. The branch number of the transpose matrix
gives the linear branch number. If the branch number is the
maximum possible then the matrix is called a Maximum
Distance Separable (MDS) matrix.

Definition 1: We say an invertible matrix M provides
Second-Degree Diffusion (SDD) if it satisfies the following.

• M is MDS as a 2 × 2 matrix over a pair of eq. classes.
• The row reduced echelon form of any successive s × s

submatrix as an s-bit word is nonzero and contains at
most one 1 in a row and at most one 1 in a column.

We assume M provides SDD by default. Proposition 1 states
that a nonzero s-bit vector produces a nonzero output by the
multiplication of at least one of the s × s submatrices.

Proposition 1: Let an s × s matrix S be a submatrix of
M whose i-th column and j-th row are nonzero. Then SX ̸=

0 and Y ⊺S ̸= 0 for any vector X whose i-th coordinate is 1 and
Y whose j-th coordinate is 1 where Y ⊺ is Y ’s transpose.

Proof: Let P S be in row reduced echelon form and ∃k
with (P S)k,i = 1 since its i-th column is nonzero. The k-th
row of P S contains exactly one 1, which implies that the k-th
coordinate of P SX is 1. Then, P SX ̸= 0. So, SX ̸= 0 since
P is invertible. The second part is similar.

If M provides SDD then its transpose also provides SDD.
So, any generic statement about differential analysis has an
analogy for linear analysis. Therefore, we skip the proofs for
the linear case. If one S-box is active then both of the eq.
classes are differentially and linearly active in both the next
and the previous rounds since M is an MDS matrix over the
words of eq. classes.

If M provides SDD then M−1 also provides SDD. In fact,
the branch number of M−1 as a 2 × 2 matrix is also 3.
Moreover, for any s×s submatrix S of M , consider S · X = Y .
Then the nonzero bits of Y can be inverted into the bits of X in
the support since the row-reduced echelon form of S contains
at most one 1 in a row and at most one 1 in a column. Let
the corresponding submatrix of M−1 be S′ with S′

· Y = X ′

where X ′ is the support of X whose bits appear in Y . Then,
the row reduced echelon form of S′ also contains at most one
1 in a row a since we can recover the support X ′ as a subset
of X . A similar argument is valid on the transpose of M .

We show by Theorem 4 and Theorem 6 that matrices provid-
ing SDD have fast diffusion. The dependencies among active
S-boxes should be considered when there is no randomization
with round key addition. We minimize the dependencies by
sending each bit of the output of an S-box to different S-boxes
in our construction, DIZY, where each passive bit randomizes
the S-box inputs.

Lemma 2: If only one S-box is active in the i-th round, then
there are 2, 4, and 8 differentially (linearly) active eq. classes
in the next (previous) three rounds respectively. Moreover,
there are at least 4 differentially (linearly) active S-boxes in
the (i + 4)-th round ((i − 4)-th round).

Proof: Considering the indices in modulo 8, E2 j and
E2 j+1 are differentially active in the next round by Equation 1.
Similarly, E4 j , E4 j+1, E4 j+2 and E4 j+3 are active in the
(i + 2)-th round and they are all distinct. Eventually, all the
eq. classes will be differentially active in the (i + 3)-th round
since their indices take all the values from 0 to 7 modulo
8. In the (i + 4)-th round, at least half of the eq. classes are
active since M is MDS, yielding at least 4 differentially active
S-boxes.

Theorem 2: If there is one active S-Box in the i-th round
then there are 2, 4, and 8 differentially/linearly active eq.
classes in the (i ± 1)-th, (i ± 2)-th and (i ± 3)-th rounds
respectively.

Proof: We have 2, 4, and 8 differentially active eq. classes
in the next three rounds respectively by Lemma 2. Moreover,
there are 2, 4, and 8 differentially active eq. classes in the
previous three rounds also since M−1 provides SDD.

Corollary 1: If there is only one active S-Box in the i-th
round then there are at least 37 differentially/linearly active
S-boxes in 9 rounds starting from i − 4 up to i + 4.

Proof: There are at least 2, 4, 8, and 4 differen-
tially/linearly active S-boxes starting from i − 4 up to i + 4
rounds by Theorem 2 and Lemma 2. So, we have at least
37 active S-boxes.
Matrices with high branch numbers constitute a good diffusion
with Equation 1.

Proposition 2: Let the branch numbers of M and its trans-
pose with respect to s-bit words be d and dT respectively.
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If only one S-box is active in a round, there are at least d
(dT ), 2d + 1 (2dT + 1) and 5d (5dT ) differentially (linearly)
active S-boxes in the following (previous) two, three and four
rounds respectively, starting from the current round.

Proof: If there are k1 and k2 differentially active S-boxes
in two active eq. classes (k1, k2 ̸= 0) in the second round, then
k1 + k2 ≥ d − 1. Similarly, if l1, l2, l3, l4 (all are nonzero) are
the number of active S-boxes in four active eq. classes in the
third round, we have l1+l2 ≥ d−k1 and l3+l4 ≥ d−k2. If ti is
the number of active S-boxes in the (i − 1)-th active eq. class
for i = 0, . . . , 7 in the fourth round, then t2i−1 + t2i ≥ d−li
for i = 0, 1, 2, 3. Then, we have k1+k2+1 ≥ d,

∑3
i=0 li +d ≥

2d +1 and
∑7

i=0 ti +
∑3

i=0 li +k1+k2+1 ≥ 5d active S-boxes
in two, three and four rounds respectively.
We can exploit Proposition 2 to maximize the number of active
S-boxes by using MDS matrices over s-bit words.

Corollary 2: Let M be an MDS matrix over s-bit words.
If one S-box is active in the i-th round, then there are at least
5t/2 + 9 differentially/linearly active S-boxes in seven rounds
starting from the (i − 3)-th round.

Proof: The inverse and transpose matrices are also MDS.
If only one S-box is active in the i-th round, then there are
at least 5t/4 + 5 differentially/linearly active S-boxes in the
forthcoming and previous four rounds by Proposition 2. So,
we have at least 2 · (5t/4 + 5) − 1 = 5t/2 + 9 active S-boxes
in seven rounds starting from the (i − 3)-th round.
We focus on lightweight constructions. So, we prefer light-
weight matrices, which also can have nice diffusion properties.

Lemma 3: If there are at least 3 differentially/linearly active
eq. classes, then there are at least 6 differentially/linearly active
eq. classes in two consecutive rounds.

Proof: M is MDS over a pair of eq. classes by
Definition 1. So, its branch number is 3. At least two M
is active which gives at least 6 active eq. classes in two
rounds.
We prove that there are at least 6 eq. classes in two consecutive
rounds on average when we consider 8 or more rounds in
Theorem 4. For this generalization, we need to introduce
Lemma 4 and then Proposition 3 first.

Lemma 4: Assume there are 3 active eq. classes in the 2nd
and 4th rounds. Then, there are 6 active eq. classes in the 1st
and 5th rounds and 3 or 4 active eq. classes in the 3rd round.

Proof: The number of active eq. classes in the third round
cannot be 6 since these 6 eq. classes cannot be three pairs
of the form Ei , E4i to produce 3 active classes in the fourth
round. 3 active classes can never produce 5 active classes.
So, the only possibilities are 3 and 4. In both cases, we have
two adjacent active classes in the fourth round. These two
adjacent active classes produce 4 active classes in the fifth
round by Proposition 3 and the other active class produces
two more active classes. So, we have 6 active classes. The
same argument in the decryption direction implies that there
are also 6 active classes in the first round.

Proposition 3: Assume one odd indexed eq. class and one
even indexed eq. class are differentially active. Then, four eq.
classes are differentially active in the next round and all the eq.
classes will be differentially active after two-round encryption.
Similarly, if the indices of two linearly active eq. classes are

2i or 2i + 1 and 2i + 4 or 2i + 5 for i = 0, 1 then four eq.
classes are linearly active in the previous round and all the eq.
classes are linearly active after two-round decryption.

Proof: Let Ei and E j be active. Assume i is even and
j is odd. If i and j are adjacent then four eq. classes are
differentially active in the next round and all the eq. classes
will be differentially active after two-round encryption since
E2 j mod 8, E2 j+1 mod 8, E2 j+2 mod 8 are all distinct modulo 4.
If they are not adjacent, then either (i and j + 4 mod 8) or
(i +4 and j mod 8) or (i +4 and j +4 mod 8) are adjacent.
But, all these pairs will make the same eq. classes differentially
active in the next round according to Equation 1. For the case
of linear cryptanalysis, the pairs (2i, 2i+4) mod 8, (2i, 2i+5)

mod 8, (2i+1, 2i+4) mod 8 and (2i+1, 2i+5) mod 8 make
the same eq. classes linearly active in the previous round.
Then, pick one pair whose indices differ by 4. This pair makes
four eq. classes linearly active in the previous round and all
the eq. classes linearly active after two-round decryption.
All the technical details in this section are preliminary to prove
Theorem 3 and Theorem 4.

Theorem 3: There are at least 13 differentially/linearly
active S-boxes in 5 consecutive rounds.

Proof: Assume two active eq. classes are E j and E j+2
or E j and E j+6. Then, we have 4 active eq. classes in the
next round. They are either {E0, E1, E4, E5} or {E2, E3, E6, E7}.
Without loss of generality, assume {E0, E1, E4, E5} are active.
Then, at least one in {E0, E1} and at least one in {E2, E3} are
active in the forthcoming round. If four of them are active then,
all the eq. classes will be active in the next round. If three of
them are active then 6 of the eq. classes will be active in
the next round. So, assume two of them active. If they are
odd and even ({E0, E3} or {E1, E2}) then again we have 4 and
then 8 active eq. classes in next two rounds by Proposition 3.
So, in the worst case {E0, E2} or {E1, E3} are active. These
two active eq. classes will again produce at least 4 active eq.
classes. So, it will go on as 2-4-2-4. . . in the worst case. If there
are one or two active classes in the fourth round, this time,
use M−1 and repeat the argument above for the decryption to
show there are at least 13 differentially active classes. Other
cases are already treated in the previous statements.
Theorem 3 gives practical security limits for the small number
of rounds. In addition, Theorem 4 shows that any matrix
providing SDD can constitute a very fast diffusion layer.

Theorem 4: There are at least 24 differentially/linearly
active S-boxes in 8 consecutive rounds.

Proof: If all the pairs of two consecutive rounds
(2i − 1, 2i) for i = 1, 2, 3, 4 contain at least one round
having more than two active eq. classes, then (2i − 1, 2i)
contains at least 6 active eq. classes by using Lemma 3
both in encryption and decryption. So, assume one of the
pairs (2i − 1, 2i) contains 2-2, 2-1, or 1-2 active classes.
Then 2-2 will extend to 2-2-4-8-4 in both encryption and
decryption directions. Similarly, 2-1 will extend 2-1-2-4-8-4
in the encryption direction and 1-2-4-8-4 in the decryption
direction by Theorem 2. In the worst case, one active class
is in the beginning or at the end. So, the worst case is 1-2-
4-8-4-2-1-2 or 2-1-2-4-8-4-2-1. In all cases, we have at least
24 active S-boxes.
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We can further improve the diffusion property of the matrices.
Definition 2: Assume M provides SDD. Then, M provides

SDD completely if it satisfies the following conditions.
• If one of E2i or E2i+1 as outputs of M is differentially

passive then the other contains at least two differentially
active S-boxes for i = 0, 1, 2, 3.

• If one of Ei or Ei+4 as outputs of M−1 is linearly passive
then the other contains at least two linearly active S-boxes
for i = 0, 1, 2, 3.

The matrices providing SDD completely propagate the number
of active S-boxes faster.

Theorem 5: If M provides SDD completely, then there are
at least 16 differentially/linearly active S-boxes in 5 rounds.

Proof: Consider the 2nd and 4th rounds. If there are
*-3-*-3-* or *-3-*-4-* active classes then there are at least 6-
3-3-3-6 or *-3-3-4-8 active classes respectively by Lemma 4.
If there are more than 3 active classes in the 2nd and 4th
rounds, then there are at least 4 active S-boxes both in the
third and in the last rounds. If there is one active S-box in the
2nd or 4th round then there are at least 2-2-2-4-8 or 8-8-4-2-2
active S-boxes. If there are 2 active S-boxes in the second
round then we have either 4-2-4-2-4 active classes with at
least 4-4-4-4-4 active S-boxes or 4-2-1-2-4 active classes with
at least 4-4-2-2-4 active S-boxes in the worst case.

Theorem 6: If M provides SDD completely, then there are
at least 30 differentially/linearly active S-boxes in 8 rounds.

Proof: If there is one active eq. class in a round, then
there are 1-2-4-8-4-2-1-2 active eq. classes and 1-2-4-8-8-
4-2-2 active S-boxes in the worst case. For the case of
two active eq. classes in a round, we have 2-4-2-4-2-4-
2-4 active eq. classes in the worst case. Then there are at
least 2-4-4-4-4-4-4-4 active S-boxes. Recall that case 2-2
will extend to 2-2-4-8-4 both in the encryption and in the
decryption direction. If there are 3 differentially active eq.
classes in a round then the forthcoming five rounds will have
at least 3-3-3-6-3, 3-3-4-8-4, 3-4-8-4-4, or 3-6-6-3-3 active eq.
classes both in the encryption and the decryption direction by
Lemma 4. Then there are at least 3-4-4-6-6, 3-4-4-8-8, 3-4-8-
8-4, and 3-6-6-6-4 differentially active S-boxes in 5 rounds.
We have at least 17 active S-boxes in 4 rounds for these
cases.

B. Properties of Our Matrices

We minimize the number of XOR operations in our matri-
ces. They do not provide SDD by themselves. However,
we still take advantage by complying with some of the criteria
in Definition 1 (the first condition) and we list the similar
diffusion properties as follows.
• The first three bits of each s-bit word have two copies and the
last two bits are single. Moreover, a single bit is not XORed
with another single bit.
• Both matrices provide SDD completely for the characteristics
whose single bits in each s-bit word are either both active or
both passive.
• Single bits of an s-bit word go to different classes and come
from different classes.

TABLE I
THE BUILDING BLOCKS OF DIZY

• Four input bits of any two XORs come from at least three
different s-bit words.
• (40-bit) The output bits of each s-bit word are sent to
8 different s-bit words and the input bits in an s-bit word
comes from 8 different s-bit words.
• (40-bit) If two bits go to same s-bit word, their copies go to
different s-bit words.

V. DESCRIPTIONS OF NEW DESIGNS

a) High Level Description: We call our algorithms as
DIZY-80 for 80-bit key and DIZY-128 for 128-bit key. The
state update function is an SPN structure having 15 rounds.
Its one round consists of constant additions, an S-box layer,
4 binary matrix multiplications with M and the permutation
of eight subblocks respectively. Each subblock defines an
eq. class. Table I depicts the sizes and the numbers of the
parameters.

b) Round function: We call each round of the state
update function the round function. The round function starts
with the addition of a constant. The i-th round constant is
XORed to the least significant four bits of each s = 5-bit
word for the round number i = 1, . . . , 15, which is produced
by clocking the LFSR whose characteristic polynomial is
x4

+ x + 1, i times starting from the initial value (1, 0, 0, 0).
Then, 24 and 32 S-box operations are performed in parallel
for DIZY-80 and DIZY-128 respectively.The next step consists
of the multiplications of 4 binary matrices with each 30-bit or
40-bit parts of the internal state for DIZY-80 or DIZY-128
respectively. We call each matrix M . Last, we permute eight
subblocks as (0, 4, 1, 5, 2, 6, 3, 7). Let us remark that all the
statements in Section IV are invariant with respect to the order
of the matrix multiplication and the permutation.

c) Output function: After 15 iterations of the round
function, the 32 bits of the internal state are given as the
output. These output bits are the least significant 3i-th bitsof
the internal state for i = 0, . . . , 31. The maximum of the total
lengths of keystreams is 232 blocks which are 237 bits per one
key.

d) Initialization Phase: Initially, the state is null. First
of all, the most significant 48\64 bits of the key are XORed
with the 48-bit\64-bit part of the internal state which is
formed by concatenating the most significant two bits of each
5-bit word in order, for DIZY-80\128 respectively. Each two-
bit value then forms the most significant two bits of the
corresponding 5-bit word of the internal state. As the next
step, the round function is run once and the remaining key
bits are incorporated similarly: The least significant 32\64 key
bits are XORed two by two with the most significant two
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TABLE II
M FOR DIZY-80

TABLE III
M FOR DIZY-128

bits of the 5-bit words of the most significant 120\160-bit
state in the second round for DIZY-80\128 respectively. The
round function is run 14 times without incorporating any
input afterward. The key initialization step is completed at
the end of the 15th round. The I V is incorporated with the
same procedure of key initialization and this step is completed
in 15 more rounds. That is, after 30 rounds in total in the
initialization phase, the first internal state is obtained.

S-box: (00, 04, 0e, 09, 0d, 0b, 1e, 1b, 1c, 14, 13, 18,

17, 1d, 05, 0c, 0 f, 11, 08, 15, 03, 1 f, 19, 06, 10, 02, 16, 07,

1a, 0a, 01, 12)

M Matrices:The matrices are given in Table II and Table III.
Each row in Table II and Table III contains the outputs of a

5-bit word. The bit numbers stored in the boxes are the indices
and two indices in a box are XORed. For instance, the most
significant bit of the 2nd word is x7 ⊕ x27 for DIZY-80.

VI. SECURITY ANALYSIS

The bounds on the advantages of distinguishing the update
functions are 2−41

\2−72 and 2−81
\2−112 for DIZY-80\128

respectively in Game A\B in Section III. We adopt a 112-bit
security level for DIZY-128 in compliance with the NIST
security requirements for the competition of lightweight algo-
rithms: “An AEAD algorithm shall not specify key lengths that
are smaller than 128 bits. Cryptanalytic attacks on the AEAD
algorithm shall require at least 2112 computations” [55].

The complexity of the offline phases of the tradeoff attacks
recovering internal states is N/D in [11], [12], [13] where
N = 2120

\2160 for DIZY-80\128 respectively. Data is limited
to D = 232. Therefore, the complexities in the offline phases
are 288

\2128 for DIZY-80\128 respectively. The time and
memory complexities in the online phase are (N/D)2/3 [11],
[12], [13]. Hence, the time and memory complexities are
259

\285 for DIZY-80\128 respectively.

A. Key and I V Collisions

The seed (the first internal state) after the key and I V
initialization is a one-to-one function of the key for a fixed I V .

Proposition 4: Two different keys produce different seeds.

Proof: Any difference in key bits produces a pair in the
structure (00000, 01000, 10000, 11000) in the first round. The
S-box send these vectors to (00000, 11100, 01111, 10000).
The first two bits take all the values 0,1,2 and 3 where there is
at least one bit difference. But these bits have copies having no
XOR in the M matrices. So, any other difference has no effect
on these single bits. Therefore a nonzero difference still stays
in the second round. But, since there is no key bit incorporation
in the least significant two bits, a nonzero difference occurs
at the end of the second round.

It is much more difficult to give a result like Proposition 4
for different I V s. It is also computationally infeasible to
find I V1 and I V2 for two different keys K1 and K2 such
that (K1, I V1) and (K2, I V2) produce the same keystream
sequence.

B. Period

It is not easy to give tight lower bounds for the periods.
However, the expected periods of the update functions are
2119

\2159 for DIZY-80\128 respectively. The probability that
the period of a keystream is less than 232 is less than
2−88

\2−128 for DIZY-80\128 respectively.

C. Correlation and Algebraic Attacks

We expect the next state functions of DIZY to be pseudo-
random permutations and the output functions (T P P) to be
pseudorandom functions. So, there must be no correlation or
algebraic relation between the internal state and output bits.

D. Guess and Determine Attacks

An SISS cipher may easily be prone to guess-and-determine
attacks due to its small state. This is why we adopt the
design approach of utilizing pseudorandom permutations as
state update functions. The trivial guess-and-determine attack
is to guess n − w most significant bits and determine the initial
state from the w bit output. So, k + w ≤ n. We conjecture
that there is no guess-and-determine attack faster than the
trivial one since the state update function is a pseudorandom
permutation. It is computationally infeasible to recover the
input of a pseudorandom permutation from its partial output.

E. Active S-Boxes

If there are differences in the first three output bits of the
differentially active S-boxes or if there is a linear mask in the
first three input bits of the linearly active S-boxes then our
both M matrices behave as if they provide SDD and all the
statements in Section IV will be valid for such characteristics.
With our S-box, we can assume that M provides SDD if there
is a one-bit input difference of an S-box. Because we have
either the last two bits or at least one bit in the first three bits
active. Then, M diffuses these differences into two different
classes. So, we can achieve a high level of diffusion which is
as fast as those of the linear layers providing SDD.

Theorem 7: There are at least 20\22 active S-boxes in any
eight consecutive rounds of DIZY-80\128 respectively.
The proof makes use of the properties in Section IV-B and
examines similar cases as in the statements in Section IV.
We skip the proof for the sake of space.
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F. Truncated Differential Attack

Truncated differential attacks on SPN ciphers are generally
based on the probabilities of the activeness of S-boxes [56].
If an S-box is active then 6 S-boxes will probably be active
(8 S-boxes for the 128-bit case). The probability that any
output bit of an active S-box is active is 16/31 for randomly
chosen input difference since there are 31 nonzero vectors and
each coordinate takes 16 1’s and 15 0’s. This probability is
one-half if at least one output bit is active. Similarly, if i output
bits are passive then one of the remaining output bits is active
with probability 24−i/(25−i

− 1).
We examine the 128-bit case for the sake of simplic-

ity. We have pi+1 =
∑3

ℓ=0
(3
ℓ

) (
15+16pi

31

)8−2ℓ (
16−16pi

31

)2ℓ

where pi is the probability that an S-box is passive in the
i-th round.Then, pi+1 = 31−8(15 + 16pi )

2((15 + 16pi )
2

+

(16 − 16pi )
2)3. Note that limi→∞ pi = 2−5. There are

dependencies between the activeness of the S-boxes in the
eq. classes Ei and Ei+4 which complicate the computations.

G. Integral Attack

Any activeness corresponds to a permutation in an integral
attack [57]. If one eq. class is active, for a matrix satisfying
SDD then all the eq. classes are active after three rounds. So,
any eq. class will be balanced after four rounds and each vector
will appear an even number of times. A bijective S-box layer
produces a balanced set from this set, which introduces a five-
round distinguisher for the integral characteristic. We can add
two more rounds in the decryption direction. So, integral sets
of order 2, that is, 4 active eq. classes (the classes 0-2-4-6
or 1-3-5-7) taking all the 2n/2 values produce integral sets
of order 1 in the next round and active eq. classes after two
rounds. Therefore, 4 active eq. classes produce balanced sets
in each eq. classes in 7 rounds. This 7-round characteristic
is not valid for our matrices since they do not provide SDD.
Eventually, we do not expect any integral characteristic for
8 or more rounds.

H. Impossible Differentials

Any input/output difference that never occurs forms an
impossible differential [58]. The straightforward impossible
differential characteristic is given for 3 + 2 = 5 rounds
as1−2−4−8 active eq. classes in 3 rounds in the encryption
direction and 1−2−4 eq. classes in 2 rounds in the decryption
direction for the matrices providing SDD. In our case, we have
at least 1−2−3−5 active eq. classes for a one-bit difference.
So, there are at least 5 active eq. classes. On the other hand,
there are at most 4 active eq. classes in the decryption direction
if we have one active eq. class. So, we obtain a contradiction
in the middle, which simply implies that 1 active bit produces
at least two active eq. classes in the fifth round. Since the
algorithms provide the SAC property in 5 rounds and we
use bitwise linear transformations, we do not expect any
impossible differential characteristic in 10 rounds.

I. Boomerang Attack

A boomerang attack is a meet-in-the-middle attack [59] The
straightforward characteristic is 1-1-2-3-5 active S-boxes in

TABLE IV
FREQUENCIES ARE 10 MHZ EXCEPT FRUIT [22]. WE USE THE EXTEN-

SION HT FOR OUR PARALLEL IMPLEMENTATIONS

the encryption direction and 1-1-2-3 active S-boxes in the
decryption direction. Using the ladder switch method, it is
possible to bypass 5 active S-boxes in the fourth round. Hence
p = q = 2−28 and p2q2

= 2−112 for 7 rounds. We do not
expect any boomerang characteristic for 8 or more rounds.

VII. IMPLEMENTATION RESULTS

We have implemented DIZY both in FPGA and ASIC1 . The
performance results are depicted in Table IV. The numbers for
the other ciphers are from [1]. We do not compare with the
NIST lightweight algorithm submissions in [55] since they are
authenticated encryptions and their hardware area costs and
energy consumption are much higher.

We have implemented the algorithms in VHDL using
the Vivado 2017.3 Webpack tool. The serial versions cost
(151,131)\(187,172) (LUTS, FFs) and the parallel versions
cost (234,124)\(305,164) (LUTS, FFs) for DIZY-80\128
respectively in Spartan-7. The logic-level representations of
the algorithms have been generated utilizing Cadence Genus.
The ASIC implementations have been executed using the
standard cell library of the TSMC 65 nm CMOS process, with
a driving voltage of 1V and a clock frequency of 10 MHz.
The computation of Gate Equivalence (GE) numbers has been
performed by dividing the total area by the smallest 2-input
NAND gate in the cell library.

Our results are compared to the algorithms presented in [1],
which employ a round-based implementation and utilize regu-
lar flip flops. To maintain compatibility with the performances
in [1], 64-bit frames are generated at a frequency of 10 MHz.
The energy consumption values for 64-bit blocks, as reported
in [1], are presented in Table IV. We should note that there
are finer results as 1161 GE for Lizard and 1075 GE for
Present-80. However, we consider [1] to compare the energy
consumption fairly.

In order to optimize energy efficiency during frame pro-
cessing, the I V initialization is selected as the starting point.
That is, the key initialization is performed offline to conserve

1https://github.com/cagdasgAbuHafs/DIZY-cipher.git
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cycles during each frame. The DIZY-ht implementations uti-
lize parallel implementation of the S-boxes and M matrices,
resulting in an efficient generation of a 64-bit block in only
45 cycles.

In addition to the data presented in Table IV, esti-
mated power consumption results at 100 KHz intervals are
also available for consideration in the design of extremely
power-constrained devices. The estimated values for the DIZY-
80\80-ht\128\128-ht algorithms are 5.60\10.26\7.27\13.75
ÂB5W respectively.

VIII. CONCLUSION

We address the issue of state size limitations for keystream
generators imposed by tradeoff attacks. We introduce a new
construction method of diffusion layers for SPN structures by
utilizing matrices providing SDD and a new stream cipher
mode which we call a T P P mode. We analyze both the
diffusion layer and the mode intensively by proving several
security statements. We construct an SISS cipher which we
call DIZY, to exemplify our constructions and give its security
analyses. Additionally, we present a hardware implementation
of our proposed cipher and exhibit its effectiveness. Our results
indicate that it is one of the most efficient lightweight ciphers
available, with a hardware area cost of approximately 1.3K
GE for the DIZY-128 version, making it one of the smallest
symmetric ciphers with a 128-bit key. We posit that future
advancements in the construction of SISS ciphers have the
potential to further improve performance results. Moreover,
we keep the number of eq. classes in our theoretical infrastruc-
ture as 8. Further study can focus on generalizing statements
for 2m eq. classes for any positive integer m ∈ Z+.
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