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Abstract 

 

We investigated the application of structure-activity relationship approaches to underpin structural properties that potentially 

control the genotoxic potential of 9 different metal oxide nanoparticles (CuO, ZnO, NiO, SiO2, TiO2, CeO2, Fe2O3, Fe3O4 and 

Co3O4). In particular, we compiled a pool of quantum-mechanical, experimental and periodic table-driven descriptors and 

explored their distinctive contribution to the measured activity (genotoxicity). We first employed a clustered heatmap and parallel 

coordinates plot for visual exploration of the clusters and outliers of the data and finding corresponding responsible 

physicochemical descriptors. We then investigated the strength (and direction) of the relationship among descriptors and between 

descriptors and genotoxicity using similarity metrics. By using orthogonal projections to latent structures (OPLS), we were able 

to quantify the relative contribution of each descriptor to the genotoxicity of metal oxide nanoparticles. Our results suggested 

that zeta potential, the ratio of core electrons to valence electrons, Fermi energy and electronegativity were significant predictors 

of genotoxicity. Such computer-assisted approaches hold considerable promise for maximizing the use of accumulated data in 

nanotoxicology, prioritizing nanoparticles for further testing and filling data gaps required for hazard assessment processes. 
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1.  INTRODUCTION 

 

Ongoing globalization of nano-sciences has not only made 

exposure to nano-enabled materials inevitable, but also 

raised new challenges in the safety and regulatory domains. 

In particular, unique physicochemical properties of metal 

oxide (MO) nanoparticles (NPs) have led to an ongoing 

increase in their manufacture and commercial use. Studies to 

date have shown that MONPs are capable of inducing 

cytotoxic [1], genotoxic/oxidative [2], neurotoxic [3, 4] and 

inflammatory effects [5]. Despite recent collaborative 

research efforts to tackle safety issues linked to MONPs, a 

consensus on how to properly assess their health risks has 

not been reached yet. Advances in molecular biology and 

information science have led to a paradigm shift in hazard 

assessment of both traditional and advanced chemicals, from 

heavily relying on animal-based tests, towards developing 

non-testing alternatives. The term “non-testing” in the 

context of hazard assessment refers to the use of 

computational technologies and to make sound risk 

management decisions regarding the safe manufacturing and 

use of products at lower costs and in less time along the path 

from design to commercial manufacturing and use. Non-

testing approaches hold considerable promise for making 
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better use of accumulated hazard data and contributing to the 

needs of the safety assessment of new chemicals at early 

design stages. 

 

Non-testing methods are generally placed into three broad 

categories: 1) grouping and read-across approaches, 2) 

structure-activity relationship (SAR) methods and 3) expert 

systems. While each of these methods differs in advanced 

settings with regard to the type of input data, methodology 

and level of complexity involved, they all depend on the 

same assumption that structurally similar compounds behave 

similarly in biological systems. In the context of chemical 

safety assessment, machine learning and statistical 

approaches correlating activity with the structure are widely 

used for categorization of chemicals based on hazard 

potential and prioritization for further testing, identification 

of hazard and hazard-related physicochemical properties and 

minimization of hazard by modifying toxicity-related 

properties (so-called safe-by-design). While the use of 

computational approaches in the safety assessment of 

conventional (drug-like) compounds is common practice, 

especially in pharmaceutical sciences, their application to 

NPs is still in its infancy and requires further investigation. 
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Here, we related the genotoxicity of MONPs that are 

commonly used in commercial applications to their 

physicochemical properties using SAR approaches. In 

particular, the relationship between descriptors encoding 

physicochemical properties and their contribution to the 

genotoxicity of MONPs was visually explored by high-

dimensional data visualization tools and modelled by a 

modified version of the partial least squares regression 

technique. A Pearson’s correlation matrix is employed to 

quantify the direction and strength of the relationship among 

descriptors and between descriptors and genotoxicity. 

 

2.  MATERIALS AND METHODS 

 

2.1.  Toxicity Data  

 

Data on the genotoxic potential of 9 different MONPs (CuO, 

ZnO, NiO, SiO2, TiO2, CeO2, Fe2O3, Fe3O4 and Co3O4) have 

been collected from the literature [6-8]. The collected 

toxicity data involve NP-induced DNA damage in lung 

epithelial cells (A549) measured by the alkaline version of 

the Comet assay following 4-hr exposure to 20 µg/cm2 and 

40 µg/cm2 of MONPs. 

 

2.2.  Descriptors 

 

Descriptor data used in SAR analysis are given in Table 1. 

 

Table 1. Experimentally-measured, quantum mechanically-

computed and periodic table-based descriptors used in this 

study 

 No Descriptor Explanation 

E
x

p
er

im
en

ta
l EX1 Size_TEM Mean particle size 

EX2 Size_DLS Hydrodynamic particle size 

EX3 Zeta Zeta potential 

EX4 ROS Reactive Oxygen Species 

Q
u

an
tu

m
 M

ec
h

an
ic

al
 

QM1 F_energy Fermi energy 

QM2 HOMO Highest occupied molecular 

orbital QM3 LUMO Lowest unoccupied energy 

orbital QM4 B_gap HOMO-LUMO band gap 

QM5 Hardness Chemical hardness 

QM6 C_pot Chemical potential 

QM7 ΔH_f Enthalpy of formation 

QM8 χ Electronegativity 

P
er

io
d

ic
 T

ab
le

-b
as

ed
 

PT1 MW Molecular weight, g/mol 

PT2 No_Me Number of metals 

PT3 No_Ox Number of oxygen atoms 

PT4 EN_Me Electronegativity of metal 

PT5 T_EN_Me Total metal electronegativity 

PT6 T_EN/No_Ox Electronegativity per oxygen 

PT7 Ox_St Oxidation state 

PT8 Z_Me Atomic number 

PT9 Zv_Me Valence electrons of metal 

PT10 PT_Me Periodic table number of metal 

PT11 (Z_Zv)/Zv Core electrons/valence 

electrons PT12 V_Me Valency of metal 

2.2.1.  Experimental Descriptors 

 

A set of four experimental descriptors including mean 

particle size measured by Transmission Electron Microscopy 

(TEM), hydrodynamic diameter and zeta potential measured 

by Dynamic Light Scattering (DLS) and reactive oxygen 

species (ROS) formation capacity was collected from 

literature [6-8] and used as input parameters in SAR analysis. 

 

2.2.2.  Quantum-Mechanical Descriptors 

 

A set of 8 quantum mechanical descriptors derived based on 

density functional theory (DFT) including Fermi energy, 

highest occupied molecular orbitals (HOMO), lowest 

unoccupied energy orbitals (LUMO), band gap, hardness, 

chemical potential, enthalpy of formation, and 

electronegativity was collected from the literature [9]. 

 

2.2.3.  Periodic Table-Based Descriptors 

 

A set of 12 descriptors including molecular weight, number 

of metals and oxygen atoms, electronegativity of metal, total 

metal electronegativity per oxygen atoms, oxidation state, 

atomic number, periodic table number of metal, the ratio of 

the number of core electrons to the number of valence 

electrons and valency of metal was calculated based on the 

molecular formula and the periodic table of the elements. 

 

2.3.  Data Scaling 

 

Prior to data exploration and modelling, the z-score 

transformation was carried out for normalizing each value in 

the dataset using the following formula: 

 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝜇

𝜎
 

 

where μ is the mean and σ is the standard deviation. 

 

2.4.  Exploratory Analysis 

 

For the visual exploration of multivariate descriptor data in 

relation to toxicity potential, two different techniques, 

parallel coordinates and heatmaps, were employed. Pearson 

correlation matrix was constructed to determine inter-

correlated descriptors and how strongly each of these 

descriptors is related to toxicity. All analyses were carried 

out in R Version 4.2.0 [10] using the packages "pheatmap", 

"Hmisc", "corrplot", and "PerformanceAnalytics". 

 

2.5.  Modelling 

 

Partial least squares (PLS) is a modelling technique that 

combines dimensionality reduction through principal 

component analysis (PCA) and regression [11]. While 

unsupervised PCA is mainly focusing on finding the 

compressed representation of predictor variables only, in 

supervised PLS regression, the correlation between the 

predictor and outcome variables is taken into account to 

compute principal components which are then used to fit a 

regression model. One of the most recent extensions of PLS 

is called orthogonal projections to latent structures (OPLS) 

which decomposes the PLS solution into predictive 
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(correlated with the response) and orthogonal (uncorrelated 

with the response) components [12]. To model the 

relationship between descriptors and the genotoxicity 

potential of MONPS, OPLS regression was performed on the 

scaled data using the SIMCA software version 17. 

 

 

 
Figure 1. Periodic table (PT) descriptors (PT1-12), Quantum Mechanical (QM) descriptors (QM1-8) and Experimental (EX) 

descriptors (EX1-4) of 9 MoNPs coloured according to high (red), medium (blue) and low (green) values of genotoxicity at 40 

µg/cm2 

 

3.  RESULTS 

 

For the purpose of data exploration, three different 

techniques including parallel coordinates, heat maps and 

Pearson’s correlation matrix were used. In parallel 

coordinates, the points used in Euclidean space are 

represented as a series of lines passing through parallel axes 

where each variable is represented by one parallel axis. 

Parallel coordinate visualization of the descriptor data is 

given in Figure 1. The results associated with high, medium 

and low genotoxicity are highlighted in red, blue and green, 

respectively. The parallel coordinate plot shows that 

electronegativity (QM8) is inversely related to genotoxicity 

while higher values of zeta potential (EX3) lead to a higher 

genotoxicity level. Similar observations can be made from 

Pearson’s correlation matrix given in Figure 2. 

 

 
Figure 2. Pearson’s correlation matrix displaying 

correlations between descriptors and genotoxicity [from –1 

(blue) to +1 (red)]. Color intensity and circle size are 

proportional to the strength of correlation. 

In Figure 2, positive and negative correlations are displayed 

in blue and red, respectively, while x indicates statistically 

non-significant correlations based on p-value of 0.05. GEN1 

and GEN2 refer to NP-induced DNA damage in A549 

following 4-hr exposure to 20 µg/cm2 and 40 µg/cm2 of 

MONPs. It is clear from Figure 2 that number of Oxygen 

atoms (PT3), valence electrons of metal (PT9), Fermi energy 

(QM1) and electronegativity (QM8) are negatively 

correlated with DNA damage while the ratio of core 

electrons to valence electrons (PT11) and zeta potential 

(EXP3) are positively correlated with DNA damage. We 

then combined heat map with clustering to prioritize MONPs 

based on genotoxic potential and to demonstrate the 

physicochemical differences between the ones belonging to 

different genotoxicity clusters (Figure 3). 

 

 
Figure 3. Clustered heat map displaying auto-scaled 

descriptor and genotoxicity values of 9 MONPs 
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Several observations can be made from the cluster heat map 

given in Figure 3. In particular, two MONPs, CuO and NiO 

are clearly distinguished from the rest due to their relatively 

high genotoxicity potential. Another interesting finding is 

that SiO2 which has the lowest genotoxicity at both measured 

doses also has the most extreme (e.g. the lowest or the 

highest) values in 14 descriptors (out of 24), suggesting the 

great influence of physicochemical properties on toxicity. 

 

As a next step, OPLS has been carried out to model the 

relationship between 24 descriptors and 2 genotoxicity 

results simultaneously. The R2 values reflecting the model fit 

are found to be 0.83 and 0.85 for genotoxicity measured at 

20 and 40 µg/cm2, respectively. The resulting score scatter, 

loadings and variable importance plots are given in Figures 

4–6. 

 

 
Figure 4. OPLS t1/t2 score plot showing the relationship 

between MONPs (red and green indicate higher and lower 

values of genotoxicity, respectively) 

 

As can be seen from Figure 4, three particular MONPs with 

relatively higher genotoxicity potential, CuO, NiO and 

CeO2, are clearly separated from the main cluster formed of 

MONPs with lower-genotoxicity values. The OPLS loadings 

given in Figure 5 display how the x-variables are combined 

to form the OPLS-score plot given in Figure 4. 

 

 
Figure 5. OPLS loadings plot showing the relationship 

between 24 descriptors (x variables) and 2 genotoxicity 

responses (y variables) 

 

By looking at the loading plots given in Figure 5, we can 

identify the descriptors contributing to the positioning and 

separation of MONPs shown in Figure 4. For the ease of 

interpretation, one can imagine a straight line passing 

through the response variable (GEN1 or GEN2) and the 

origin of the plot. When the descriptors (x variables) are 

perpendicularly projected onto this imaginary line, their 

distance from the origin signifies their contribution to the 

response variable. Based on this, it can be concluded that 

mean particle size measured by TEM (EX1) has a near-zero 

contribution to genotoxicity while zeta potential (EX3), 

number of oxygen atoms (PT3), the ratio of core electrons to 

valence electrons (PT11) and electronegativity (QM8) have 

the largest impact on genotoxic potential.  

 

The variable importance in projection (VIP) plot showing the 

relative contribution of each descriptor to genotoxicity is 

given in Figure 6. The variables with the highest VIP scores 

are the most influential parameters for genotoxicity. 

 

 
Figure 6. Variable importance in projection (VIP) plot 

summarizing each variable’s contribution to the OPLS 

model 

 

4.  DISCUSSION 

 

Using a combination of multidimensional data visualization 

techniques, similarity metrics, clustering and regression-

based models, we identified intrinsic physicochemical 

properties that are seemingly related to the genotoxicity 

potential of MONPs. To ensure the collection of 

homogenous genotoxicity data, we restricted our selection to 

a specific cell line (lung epithelial cells), assay (alkaline 

Comet assay), NP class (metal oxides), exposure duration (4 

hours) and concentration (20 and 40 µg/cm2). We combined 

literature collected experimental  [6-8] and theoretical [9] 

descriptor data with simple periodic-table driven descriptors 

to encode the physicochemical properties of MONPs. 

 

Our results suggested that NiO and CuO, induced the highest 

level of DNA damage in the human lung epithelial cells, 

followed by CeO2 and TiO2. Indeed, the high genotoxic 

potential of both NPs has been frequently reported in the 

literature [13-18]. The next step was to explore the 

physicochemical drivers of the observed high and low 

genotoxicity. Out of 24 experimentally-measured and 

theoretically calculated descriptors, four particular ones, zeta 

potential, number of oxygen atoms, the ratio of core 

electrons to valence electrons and electronegativity were 

repeatedly found to be correlated with the observed 

genotoxicity. In particular, highly positive (>30 mV) values 

of low molecular weight (<80 g/mol) MONPs led to high 

 

Ceyda Öksel Karakuş
Modelling Genotoxic Effects of Metal Oxide Nanoparticles using QSAR Approach

Academic Platform Journal of Engineering and Smart Systems 10(3), 168-173, 2022 171



 

 

genotoxicity (>20% DNA damage compared to the control). 

The close correlation between positive surface charge and 

high toxicity is generally attributed to the increased capacity 

of positively-charged MONPs to interact with the 

negatively-charged cell membrane leading to higher levels 

of cellular uptake [19]. Despite its high zeta potential, Co3O4 

did not induce any DNA damage (potentially) due to its high 

molecular weight (241 g/mol) and/or the high number of 

oxygen atoms. 

 

A reverse relationship between electronegativity and 

genotoxic potential was observed. This could be attributed to 

the metal atoms with low electronegativity triggering an 

increase in the ionic concentration inside the endosome 

membrane (so-called proton sponge effect) and consequently 

leading to a swelling structure due to osmotic pressure, 

lysosome damage and cell death [20]. Another significant 

parameter contributing to the genotoxicity of MONPs was 

the ratio of the number of core electrons to the number of 

valence electrons. This trend was also observed by Kar, et al. 

[21] who reported that a higher value of the core and valence 

electron ratio resulted in higher levels of toxicity to E.coli. 

 

5.  CONCLUSION 

 

The alternative non-testing methods and approaches under 

EU’s REACH (Registration, Evaluation, Authorization and 

Restriction of Chemicals) regulation refer to the use of data-

driven models for the purpose of NP labelling, categorization 

and prediction of toxicity, environmental fate and 

ecotoxicity. Ultimately, they are expected to support 

decision-making processes in the context of safety 

assessment by exploring data-driven estimates for 

occupational, consumer and environmental risks associated 

with the manufacture and use of NPs. In particular, non-

testing methods hold great promise for maximizing the use 

of experimental toxicity data and contributing to the needs of 

the safety assessment of new materials at early design stages. 

While these techniques are not yet able to replace animal 

testing in nanotoxicology, they are capable of supporting 3R 

(Replacement, Reduction and Refinement) principles by 

minimizing the number of animals used in scientific 

procedures. Despite the strong industrial need and growing 

scientific and regulatory interest in the use of non-testing 

methods for prioritizing NPs according to their toxic 

potential and understanding structure-related root causes of 

their observed toxicity, the practical application and 

regulatory acceptance of computer-enabled material 

categorization and toxicity predictions have been limited so 

far. Given the diverse advantages that non-testing 

approaches offer to nanotoxicology, their use in regulatory 

context is expected to grow in the coming years. 
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