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ABSTRACT 

 

USING SMART CARD DATA FOR MODE SHIFT ESTIMATION: 

ENHANCING THE EFFICIENCY OF İZMİR’S TRANSIT SYSTEM 

 

The burden of highly subsidized public transportation services necessitates careful 

planning of operations and resource management. Traditionally, planning involves 

utilizing costly and cumbersome methods to collect historical data on passenger behavior 

and travel demand. This study aims to contribute to the use of passive data in the public 

transportation planning processes by utilizing smart card data from a one-weekday to 

estimate the potential mode shifts from bus transits following the commencement of the 

extended metro line in Narlıdere, İzmir. For this purpose, first, the trip chaining algorithm, 

widely used in literature, is used to estimate the alighting location of passengers. Then, 

the competitive bus routes are determined, and this process is accompanied by other 

algorithms developed to create alternative scenarios where the passengers repeat their 

trips by utilizing the metro. Finally, the mode shift behavior of the passengers is estimated 

by employing travel time saving, which is calculated both deterministically and 

considering the passenger’s travel convenience. 

As a result, 39 bus routes are identified operating inside the service area of the 

metro extension. Sixteen of them are selected for further analysis based on their 

competitiveness, which is higher than 55%. The results showed that almost 30 to 55% of 

the passengers on the competitive bus routes favor the metro opening by lowering travel 

time and/or increasing travel convenience. Additionally, out of 30,779 passengers using 

competitive bus routes, it is either not possible or feasible for 5,517 of them to switch to 

the metro because 76% start and end their journeys outside the metro's service area. 

Furthermore, the results of the spatial analysis on travel time savings revealed that 

investments benefit not only those who live nearby but also those who live further away. 

This emphasizes the significance of enhancing public transportation services, which 

promotes convenience and accessibility in mobility. Lastly, it is essential to note that the 

outputs of this study are contingent on assumptions and that varying assumptions will 

alter the outcomes. 
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ÖZET 

 

AKILLI KART VERİLERİNİ KULLANARAK MOD DEĞİŞİMİ 

TAHMİNİ: İZMİR ULAŞIM SİSTEMİNİN VERİMLİLİĞİNİN 

ARTTIRILMASI 

 

Toplu taşıma sistemlerinin ihtiyaç duyduğu ağır sübvansiyon miktarları iyi bir 

planlama ve etkin kaynak yönetimi süreçlerini zorunlu kılmaktadır. Planlama süreçleri 

genellikle yolcu davranışı ve yolculuk talebini belirlemek için maliyetli ve zahmetli 

geleneksel veri toplama yöntemlerini kullanmayı gerektirir. Bu çalışma bir günlük akıllı 

kart verisini kullanarak, İzmir’in Narlıdere ilçesine uzatılacak olan metro hattının hizmete 

açılmasından sonra otobüs hatlarından metroya olası mod değişimini tahmin etmek ve 

böylece planlama süreçlerinde pasif veri kullanımına katkıda bulunmayı amaçlamaktadır. 

İlk olarak, literatürde yaygın olarak kullanılan seyahat zinciri algoritması, yolcuların iniş 

noktalarını tahmin etmek için kullanılmıştır. Ardından, rekabetçi otobüs hatları 

belirlenmiş ve bu hatlardaki yolcuların seyahatlerini metroyu kullanarak tekrarladıkları 

alternatif senaryolar oluşturulmuştur. Çalışmanın son adımında, yolcuların seyahat 

sürelerindeki tasarrufları deterministik olarak ve yolcuk elverişliliği dikkate alınarak iki 

farklı şekilde hesaplanmıştır. 

Sonuç olarak hali hazırda uzatılan metro hattının servis alanında çalışan 39 otobüs 

hattı tespit edilmiştir. Bunlardan 16 tanesi rekabetçilik yüzdelerini %55’ten fazla olduğu 

ve bu otobüs hatlarını kullanan yolcuların %30 ila %55’ inin yolculuk sürelerini azalttığı 

ve/veya yolculuk elverişliliğini arttığı için metro hattına geçiş yapabilecekleri tahmin 

edilmiştir. Ayrıca, bu otobüs hatlarını kullanan yolculardan yaklaşık %18’inin uzatılan 

metroyu kullanmayı tercih etmelerinin makul olmayacağı tespit edilmiştir. Ayrıca, bu 

yolcuların büyük bir çoğunluğunun (%76) yolculuklarına metro servis alanı dışında 

başlayıp bitirdiği tespit edilmiştir. İlaveten, seyahat süresi kazanımlarının mekansal 

analizi, yatırımların yalnızca yakındaki değil, daha uzak bölgelerde yaşayan bireylere de 

hareketlilik elverişliliği/erişilebilirliğini iyileştirerek katkı sağladığını göstermektedir. 

Son olarak, farklı tahmin yaklaşımlarının sonuçları bu çalışmanın çıktılarının 

varsayımlara bağlı olduğunu ve farklı varsayımların sonuçları değiştireceğini 

göstermektedir. 
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CHAPTER 1 

 

INTRODUCTION 

 

Public transit is viewed as a low-cost solution to traffic congestion in central 

business districts and as a more environmentally friendly alternative to private transit due 

to its ability to reduce carbon emissions (Gao et al., 2022a; Mohammed & Oke, 2022). 

Although there seem to be many benefits that come with public transit, they all depend 

tightly on the efficiency of planning and operational processes (Miller et al., 2016). 

Cautious planning processes are necessary to ensure the efficiency of public 

transportation infrastructures because they are expensive, particularly rail systems. Mass 

transit, e.g., bus and metro transit, plays a vital role in densely populated urban areas and 

has often been seen as an effective way of relieving traffic congestion and improving 

mobility (Gao et al., 2022a; Mohammed & Oke, 2022; Shao et al., 2022). However, transit 

agencies must periodically measure the ridership and assess the service quality to ensure 

efficient, effective, and reliable public transportation system service.  

In general, the operation of public transportation services must be subsidized to 

compete with the rise in private vehicle ownership and use, as well as labor costs (Van 

Goeverden et al., 2006). In most countries, governments are motivated to cover the 

deficits by some kind of subsidy scheme to prevent the social exclusion of the 

handicapped people and to address the urban transit problems (Van Goeverden et al., 

2006). However, the increase in the required subsidies, particularly due to increase in the 

fuel prices, compels the transit operators to allocate resources as efficiently as possible. 

For example, starting from January 2, 2023, the new fare scheme has been implemented 

for public transit boardings in İzmir and, under this scheme, the full fare for a boarding is 

set at 8.78 ₺ (approximately 0.47 $)1, while the discounted fare is 3.00 ₺ (approximately 

0.16 $). Additionally, it has been stated that the average subsidy amount for one boarding 

is 16.79 ₺ (approximately 0.90 $). Taking into account the distribution in public transit 

usage based on fare types in İzmir, we can roughly say that the subsidy per boarding 

covers about 70% of the total cost of a boarding.  

 
1 On January 2, 2023, 1 USD was equivalent to 18.7180 Turkish Lira. 
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In this study, we aim to contribute to the operational efficiency of İzmir's bus 

transit system. We aim to establish a framework in determining the competition between 

bus routes and rail systems. In addition, we aim to provide results in several aspects, such 

as travel time savings, that can be used in the operational adjustments. As a case study, 

Narlıdere metro, which is planned to operate late in 2023, is considered. Our goal is to 

give the essential inputs for more efficiently aligning competitive bus routes according to 

the metro line, allowing us to remove unnecessary competition, improve the customer 

experience, and maximize resource usage. In turn, this will contribute to a more 

sustainable and accessible transportation network that serves the changing needs of 

İzmir's expanding population. The significance of this research resides in its potential to 

improve the quality of public transportation services in İzmir, which would benefit both 

residents and the environment. 

The current metro will be extended in an east-west direction, called Narlıdere 

metro line in this study, and start to operate in 2023. Several bus routes are currently 

operating in the service area of the new metro line. The goal is to estimate the impact of 

the metro extension in terms of passenger ridership change on these bus routes. So that 

these bus routes can be adjusted to be executed most efficiently, therefore, it is necessary 

to establish the change in the passengers’ route choice to estimate the mode shift from 

buses to the metro. 

This study uses one-day (weekday) multimodal Automatic Fare Collection (AFC) 

data, i.e., smart card (SC) data. It employs the trip chaining method to estimate the 

alighting location for each trip. After estimating the alighting stop for each trip, stop-

based origin, transfer, and destination matrixes are created for each passenger. Then, these 

outputs are used in further analyses to improve the public transportation planning process. 

To fulfill the purposes of this study, we created several algorithms using Python language. 

It is important to emphasize that all the data manipulation processes are constructed for 

general daily use, so constructed algorithms can be practically employed and used in 

strategic transit planning phases. All of the data manipulation work is performed on 

Spyder 5.4.1 software, a scientific Python development environment. In addition, ArcGIS 

ArcMap 10.3 is used mainly for map visualization for data analyses, such as calculating 

the route length of bus lines. We use Microsoft 365 Excel and Power BI Desktop software 

to create graphs and tables. 

For the sake of avoiding confusion, all of the concepts that are discussed in this 

research are defined in the following way: 
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• The term “stop” is only used for bus transit. 

• The term “station” is used for metro, tram, commuter rail, and ferry transit. 

• When the mode is unknown, "location" is sometimes used to refer stops and 

stations. 

• The term “run” defines each bus operation in a direction. 

• The concise term “transit” refers to public transit, public transportation, or public 

transport; these terms are reciprocal and commonly used in literature. 

Finally, “trip” is used to refer to each boarding transaction, and “journey” is used 

to define one or group of trips made to reach from one activity (origin) to another 

(destination). In other words, a journey is a collection of single or multiple one-way trips 

and transfers. 

 

1.1. Research Objectives 

 

Mainly, there are three main objectives in this thesis and their brief explanation 

can be found in the paragraphs below. 

Inferring the trips’ alighting locations, identifying transfer and destination 

locations, and creating origin-destination matrices. Most of the public transit systems 

use only-entry automatic fare collection systems. Thus, alighting stop information is not 

available in the smart card data. The trip chaining method is relatively easy (compared to 

probability and machine learning methods) and capable of estimating the majority of 

alighting locations. A trip chaining algorithm applicable to our smart card data is 

developed by adopting similar logic presented by (Trépanier et al., 2007). Details about 

the developed trip chaining algorithm are presented in section 4.1. After the alighting 

estimation, we can identify whether the alighting location is a transfer or destination 

location by implementing the activity time threshold (section 4.1.1.5). After that, the 

origin-destination matrices can be constructed, as explained in section 4.1.3.  

Establishing inter-route relationships. Inter-route relationships can be simplified 

into competition and cooperation. This process is vital to determine the passenger who 

may shift from bus to metro after the metro extension. Thus, the bus routes, which carry 

the passengers who might benefit from the metro extension, must be identified first. A 

service buffer is created around the metro stations to determine the targeted bus routes. 
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Then competition and cooperation indices are utilized to characterize these bus routes. 

This process can be found in section 0. 

Estimating the mode shifters to see the ridership change on buses. The main effort 

is to estimate the change in ridership on buses operating within the service area of the 

metro extension. To analyze this change, we utilize passenger load profiles. First, we 

determined the bus runs in section 4.3.1, passenger in-vehicle, and alighting times in 

section 4.3.4. Then, passenger flow groups are created, and an alternative trips scenario, 

where the passengers are forced to use the metro to repeat their actualized trip, for each 

passenger group is identified in section 4.4. Finally, the passenger’s decision on shifting 

to the metro or staying on buses is estimated in section 4.6 employing two different 

approaches: deterministic and travel convenience. 

The results of these objectives can be directly or indirectly used for several 

purposes. For example, passenger load profiles at both route and run levels can be used 

in transit performance analysis.  

It is important to emphasize that all the analyses in this thesis are performed only 

using passive data, without using any kind of surveys or any external data gathered from 

participants or respondents. 

 

1.2. Public Transportation in İzmir 

 

İzmir is the third-largest city located on the western coast of Turkey. According 

to the Turkish Statistical Institute (TÜİK), the population of İzmir in 2022 is 4,462,056 

(TÜİK, 2023). A large proportion of the population (78.6%) lives in densely populated 

areas. In İzmir, there are 30 districts, and they are colored regarding the district's 

population in Figure 1.1. The map in the upper right shows the PT trip generation obtained 

based on the smart card data. The population is densely located in and around the central 

business district (CBD). Central business districts are designated as Konak, Karabağlar, 

Karşıyaka, Çiğli, Bayraklı, Bornova, Buca, Gaziemir, Balçova, Narlıdere and Güzelbahçe 

(İzBB, 2022). As of 2022, the Buca district has the highest population, with 517,963 

people. 

Public transit services are managed by İzmir Metropolitan Municipality. In İzmir, 

there are metro, bus, tram, commuter rail, and ferry transit systems, and each allows 

boarding via smart card. These modes are integrated via transfer centers. The primary 
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transfer centers are located at high-capacity intersections of public transportation routes. 

It may be in the city's central business district (CBD) or in areas such as airports, stations, 

and transit terminals outside the city center, where intercity or international transportation 

connections are available. The majority of public transportation routes, as well as access 

and transfer for pedestrians and cyclists, are linked to the primary transfer centers. 

Transfer centers are generally restricted or prohibited private vehicle access zones, 

typically in city centers. There are eight prominent transfer locations in Izmir. Besides, in 

İzmir Transportation Master Plan 2030 (UPİ2030), it is expected to have 21 minor 

transfer locations and 23 transfer points planned for 2030. This indicates the preference 

towards transfer-oriented development in transportation planning in İzmir. So, the 

integration, convenience, and quality of these transfer locations will be essential to 

implementing this development policy in public transportation. 

 

 

Figure 1.1. İzmir’s population and public transportation trip generation maps. 

 

İzmir's transit system uses several fare policies for several passenger groups. For 

instance, older people (above 60 years old) can use the transit service charge free. Also, 
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the fare is discounted for students and teachers. Besides, public transportation is free for 

disabled people, national athletes, relatives of martyries and war veterans, etc. Also, 

transfers made within 120 minutes are free for students, teachers, and older people. For 

the full-fare passengers, first and second transfers are about half and one-third of the full 

fare, respectively. Also, all fares are halved to encourage the use of public transport during 

rush hour. 

Bus transportation in İzmir is administered by the General Directorate of 

Electricity, Water, Coal Gas, and Public Transport (ESHOT), established in 1943. At the 

time, ESHOT is responsible for operating 364 bus routes and 12,073 bus stops (6,042 and 

6,031 stops for outbound and inbound, respectively), utilizing 1,780 buses of different 

sizes. On the 29th of December 2019, ESHOT incorporated the minibus operators working 

as private-public transportation providers. These incorporated minibus operators serve 

remote areas of İzmir, such as Seferihisar and Kiraz. In Figure 1.2, the bus routes in the 

outbound direction can be seen. Bus routes densely operate within the central business 

district (CBD). Besides, there are bus routes that connect remote districts to the CBD. In 

general, these bus routes operate on very long routes. Table 1.1 presents general 

information about the longest, shortest, and most-used bus routes. Besides, most long bus 

routes are operated with very low frequencies, e.g., the headway is one hour for route 

987, and route 806 only has two daily runs. 

A commuter rail system (İzban) operates on a 136 km route with 41 stations and 

219 carriages (see Figure 1.3). It connects several remote districts to CBD. The target is 

to serve 550 thousand passengers daily (İzBB, 2023). The fare policy adopted on 

commuter rail service requires passengers to tap both while entering and exiting the 

system, i.e., the "pay as you go" policy. The passengers are charged with the full fare 

when boarding and some of the payment is returned, based on trip distance, if the 

passenger alights before the terminus. This process allows recording true alighting stop 

information.  

There is one metro line (İzmir Metro) serving along the shore at the northeast-

southwest axis. It has 17 subway stations; 5 out of 17 are open stations (Hilal, Halkapınar, 

Stadyum, Sanayi, and Bölge), one station is called a "half-open station" (open but under 

the ground level), and the rest are underground. 
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Figure 1.2. Bus routes in the outbound direction in İzmir. 

 

In addition, there are two tram lines  (see  Figure 1.6): T1 operates between 

Alaybey and Ataşehir, and T2 operates between Fahrettin Altay and Konak. In public, T1 

and T2 are called Karşıyaka and Konak trams, respectively. The Karşıyaka tram 

commenced its service on the 11th of April 2017; the Konak tram was introduced to the 

public on the 24th of March 2018, respectively. 

Table 1.2 shows total boarding transactions on metro, bus, tram, and commuter 

rail in respective years. Also, a percent change in the ridership between successive years 

is given. In İzmir, there were two tram lines (T1 and T2): T1, which operated between 

Alaybey and Ataşehir, and T2, which operated between Fahrettin Altay and Konak. T1 

and T2 were put into service on the 11th of April 2017 and on the 24th of March 2018, 

respectively. Thus, 1) there were no tram boardings in 2016, 2) In 2017, the number of 

boardings was low as it served only seven months, and 3) there was an extreme increase 

(451%) in tram boardings between 2017 and 2018 because the second tram was put into 

service. 
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Table 1.1. An overview of the characteristics of bus routes in İzmir. 

  
Outbound Inbound 

 Bus 

Routes 
# of Stops Length (km) # of Stops Length (km) 

Longest 5 806 182 145.72 179 142.34 

 795 114 72.71 111 72.63 

 761 101 72.37 100 72.33 

 987 135 71.59 128 71.00  

837 69 66.23 69 65.03 

Shortest 5 596 6 2.60 6 4.28 

 412 10 3.08 10 2.99 

 114 12 3.61 12 3.69 

 29 10 3.67 10 3.43 

 
89 14 3.84 15 3.83 

Most used 5 912 23 18.57 24 18.52 

 304 21 9.37 18 9.30 

 800 51 33.64 53 33.15 

 691 38 16.33 39 16.53 

 680 23 9.18 24 9.31 
 

 

 

Figure 1.3. İzban (commuter rail) route and station locations. 
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Important to mention that İzmir also has a docked bicycle sharing system that 

allows locals to rent a bike using a smart card and credit card. Although the number of 

stations and bicycles has increased, its primary use is recreational and spatial integration 

with the transit system, which has several aspects that need improvement.  

 

Table 1.2. Annual transit boarding counts by mode between 2016 – 2021. 

 Metro Bus Tram Com. Rail 

Year 
Boardings 

(millions) 

Change  

% 

Boardings 

(millions) 

Change  

% 

Boardings 

(millions) 

Change  

% 

Boardings 

(millions) 

Change 

% 

2016 93.85 

 

315.06 

 

0.00 

 

83.83 

 

2017 96.69 3% 307.63 -2% 3.39 0% 93.42 11% 

2018 95.95 -1% 302.29 -2% 18.67 451% 80.11 -14% 

2019 96.20 0% 307.37 2% 34.14 83% 75.82 -5% 

2020 48.62 -49% 174.41 -43% 16.69 -51% 42.96 -43% 

2021 57.99 
19%  

(40%) 
201.71 

16%  

(-34%) 
19.80 

19%  

(-42%) 
53.44 

24%  

(-30%) 
 

Note: Percentages in parentheses are the percent change between pre-pandemic (2019) and 2021, which 

is a pandemic year. 

 

The model splits are presented in Figure 1.4 based on the smart card data. The 

first graph of the figure shows the public transportation mode split for a weekday, the 5th 

of April 2022. The second graph on the figure, which shows the modal split of 2022, 

proves that smart card data is a good representative of average public transportation use 

in İzmir. Also, modal split percentages of smart card data align with the yearly modal 

splits presented in Figure 1.4. There is a clear dominance of bus transit because İzmir's 

rail systems' service coverage is very limited. Thus, passengers are very dependent on bus 

transit, for example, the residents in Buca district. This is also an environmental issue 
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since the number of electric transit buses is very small. Besides, bus transit dependency 

means more road congestion, especially during rush hours. 

 

 

Figure 1.4. a) Modal split of trips b) Modal split of cardholders 

 

Analyses should be done considering the peak hours (rush hours) when the 

demand reaches its peak on the surrounding road network (Meyer, 2016) or in public 

transportation. In Figure 1.5, the transit demand by the hours of the day is visualized using 

smart card data on a weekday, 05.04.2022. The grey bars show the total demand tracked 

by smart card data and indicate a narrow and clear morning peak between 7 a.m. and 9 

a.m. On the other hand, at the evening peak, the demand is spread over a wider range of 

hours between 4 p.m. and 7 p.m. It is worth noting that a consistent demand for 

transportation services exists between morning and evening peaks. This demand is 

particularly evident when considering bus transit, represented by the graph's red line. The 

weight of bus transit on the overall transit demand becomes apparent from this 

representation, and it is clear that it shapes the general picture of the transit demand. On 

the other hand, although the figure does not provide a clear insight into the variation in 

tram usage, there seems to be a relatively low fluctuation in tram demand throughout the 

day. This observation suggests that trams also serve leisure trips, likely due to their routes 

that closely follow the shoreline. 
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Figure 1.5. Number of boarding transactions by the time of the day 
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 Figure 1.6. The display map of the İzmir’s rail systems (İzBB, 2019).  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 As stated by Meyer (2016), travel can be defined as a means to destinations where 

activities occur because of economic and personal needs. One of the important concepts 

in travel demand modeling is viewing travel as a derived demand because it is a 

result/outcome of activities occurring at destinations. Additionally, passengers are 

customers of travel, as they are purchasing one of the available modes of travel over 

another. Since passengers are considered as customers, market segmentation is used to 

estimate travel patterns more precisely, assuming segments with similar characteristics 

have similar travel needs. Several attributes are used to simulate the choices of these 

segments: household income, auto ownership, gender, age, and household structure. As 

there is a choosing process, one mode over another, it is considered that each available 

travel mode has its utility, and this utility, which is often the cost of the travel, or the 

travel time required, differs from one market segment to another (Meyer, 2016).  

Understanding and modeling this choosing process is one of the main subjects in 

transportation planning. Especially for public transport operators, estimating travel 

demand and responses of the users in case of any service changes, e.g., fare, schedule, or 

network level changes, is very important because of being dependent on subsidies and 

accountability mechanisms. As in the definition presented above, passengers' willingness 

to choose public transportation modes is highly relevant to the utility of the mode 

presented to the passenger. So, public transportation system operators continuously 

analyze and evaluate their operations to increase their service quality to be a more 

appealing alternative for transportation, with the responsibility of utilizing their sources 

more cost-effectively and efficiently. For this purpose, smart card data can be used as one 

of many sources. 

The literature review section presents the smart card data and summarizes its use 

in public transportation planning. In this study, we have employed smart card data 

consisting of tap-in and tap-out data collected by the automated fare collection (AFC) 

system; thus, studies using smart card data to infer alighting locations are summarized. 

Later, load profile estimation and its use for determining the bottlenecks in bus 
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transportation are introduced. Finally, the effect of a major network change, e.g., metro 

line extension, on the current transportation network, i.e., bus routes, is presented based 

on the literature. 

 

2.1. Smart Card Use in Public Transport 

 

Smart cards (SC) are an application of the AFC system and are used to store and 

process data, particularly for identification, authorization, and payment (Pelletier et al., 

2011). Accordingly, smart cards are used in public transportation systems to validate the 

user and automatically collect the fare. Depending on the public transit agencies' policy, 

the AFC system may require passengers to indicate their boarding and alighting activity 

by tapping the smart card (Mohammed & Oke, 2022). Then,  public transit operator stores 

these individual passenger data collected by the AFC system (A. Cui, 2006).  

Despite the major disadvantage of implementing an Automated Fare Collection 

system based on smart card technology in public transit vehicles being its capital cost, the 

system also offers notable benefits for both public transportation users and operators. 

Many transit agencies are adopted smart card based Automated Fare Collection systems 

around the world (António et al., 2016; Bagchi & White, 2005; Hussain et al., 2021), as 

its name implied, to automate the face collection, easing public transport use for passenger 

and increasing the efficiency of revenue collection (António et al., 2016). According to 

Hao (2007), these advantages can be summarized as follows: 

 

• Smart cards can reduce the cost compared to cash fare payment by improving staff 

utilization (Hao, 2007). Furthermore, PT drivers can carry out their duties without 

interruptions caused by payment procedures. This reduced workload increases 

their performance as they have fewer interactions with passengers (Chira-Chavala 

& Coifman, 1996; Hao, 2007). 

• The capacity and built-in flexibility of the smart card make it possible to create 

complex and adjustable pricing systems if required (Hao, 2007). This way, fare 

packages can be arranged specifically for the market segments, such as students, 

elderly, disabled users, etc. 

• With the existence of AFC systems, flexible fare schemes can be implemented 

more efficiently (Hao, 2007). At the time, in İzmir, transferring between public 
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transportation modes within 120 minutes is charged approximately half of the full 

payment. It is free of charge for students, teachers, and passengers older than 60 

years old. In addition, to increase public transportation use and decrease the 

tendency towards private vehicles, fares are half the price on peak hours, between 

06:00-07:00 and 19:00-20:00. 

• Smart cards can be used on several public transportation systems, thus, increasing 

the adherence between different PT modes and easing integration (Bagchi & 

White, 2005). 

• Adopting the AFC system based on smart cards decreases the dwelling time on 

stops (Chira-Chavala & Coifman, 1996; Deri, 2018; Hao, 2007), increasing the 

reliability (on-time performance) and the level of service. 

 

Finally, smart card data presents an opportunity for collecting individual travel 

data, which can be used to create passenger flows and better understand travel behavior. 

The quality of the data can be further increased by combining it with additional data 

collected from other Automated Data Collection (ADC) systems, such as Automated 

Vehicle Location (AVL) and Automated Passenger Count (APC) (Jinhua, 2004). 

Important to note that  AFC data lack socio-demographic attributes, so traditional data 

collection methods, e.g., household surveys, can enrich the data to compensate for this 

need (Bagchi & White, 2005; Trépanier et al., 2009). Overall quality and reliability of the 

studies that employed automatically collected data depend highly on the quality of the 

system that collects and processes the data. However, AFC data often have problems 

during data collection, possibly caused by hardware, software, or the user (Robinson et 

al., 2014). For this reason, a data cleaning process is necessary before using the data in 

an analysis. The following section will discuss using smart card data in subjects related 

to public transit planning. 

 

2.2. Public Transport Planning 

 

Public transit agencies are generally dependent on the information gathered by 

manual data collection methods, such as household or OD surveys, which are costly and 

unreliable, to utilize in planning, managing, and evaluation processes (Zhao et al., 2007). 

Although AFC systems are used to manage revenue collection in PT systems (Trépanier 
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et al., 2007), they record and provide access to massive amounts of continuous data 

(available for long periods), which can be linked to individual card and used in PT 

planning (Bagchi & White, 2005).  

There are two kinds of AFC systems: one is the entry-only (open) system that only 

requires tapping just for boarding as in many cities such as İstanbul, Madrid, New York, 

Santiago de Chile, Porto, and London; the second is entry-exit (closed) system that 

requires tapping both while boarding and alighting as in Seoul in Korea and SEQ in 

Australia (Cengiz, 2022). As explained in SECTİON…, both entry-only and entry-exit 

AFC systems are used in İzmir. Metro, two tram lines, and most bus routes have entry-

only AFC systems, whereas closed AFC systems are used on only 13 bus routes and the 

commuter rail system (İzban). 

Generally, AFC systems work with geographic positioning systems (GPS) and 

record the following information: card ID, public transportation mode, vehicle ID, driver 

ID, stop/station ID, route no, route direction, fare segment (student, full-payment, older 

people, etc.), transfer status and transaction time (Deri, 2018). The availability of this data 

provide an opportunity for researchers/planners to use the data for public transit planning, 

including the analysis of PT users' travel patterns and travel behaviors, performance 

assessment, and planning of the PT systems (T. Li et al., 2018; Pronello et al., 2018), 

service adjustment and determination of routes’ passenger load profile (Pelletier et al., 

2011).  

In a comprehensive review, Pelletier et al. (2011) used three categories to classify 

the research areas of the studies on the use of smart card data in public transport. The first 

category includes strategic-level studies related to long-term planning, such as 

understanding user behavior, demand management, fare policy analysis, anticipating 

network extensions, and modeling the loyalty of transit users. The second covers tactical-

level studies, such as service adjustment, determination of load profiles, destination, and 

transfer inference, and determination of origin-destination matrix. The third is 

operational-level studies, mostly related to performance evaluation, such as schedule 

adherence, vehicle kilometers, and person-kilometers, and providing real-time 

information (Pelletier et al., 2011). 

 

 



 

17 

 

2.2.1. Origin Destination Matrix Estimation 

 

The origin-destination (OD) matrix is the fundamental input in transit planning 

(Hussain et al., 2021). It shows the travel demand between points or areas in 

consideration, and it may include multiple trips and transfers but does not involve the 

components of access and egress to public transit (Alsger et al., 2015). The conventional 

approach to derive OD matrices is surveying transit users, asking about the location of 

starting and ending points of their daily trips. However, generally, surveying is 

cumbersome and comes with biases. One of the automated fare collection (AFC) data 

applications in transit planning is estimating the OD matrix of transit users (Hussain et 

al., 2021). 

As Mohammed and Oke (2022) indicated, two types of OD matrices can be 

considered: route-level OD matrices and network-level OD matrices. Route-level OD 

matrices show the passenger flow from a stop/station on a route to another stop/station 

on the same route. Route level OD matrices are primarily utilized in planning decisions, 

such as re-scheduling the vehicles, building new routes, or extending the existing ones. 

Network-level OD matrices show the true origin and destinations of trips, including 

transfers. Once the OD matrices are developed, the passenger flow between traffic zones 

can be obtained and used in planning decisions, such as constructing a new transit 

alternative to supply the demand (Mohammed & Oke, 2022).  

The studies in the literature that used the trip chaining method to create origin-

destination matrices are presented in Table 2.1. 

 

2.3. Trip Chaining Method 

 

The method was first presented by Barry et al. (2002) for inferring the destinations 

of metro users using entry-only AFC system data of New York City Transit (Barry et al., 

2002). In the last two decades, the trip chaining method has been used in many studies 

(Table 2.1) to infer the alighting stop of passengers’ trips and is further used to establish 

route or network-level OD matrixes.  
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Table 2.1. Studies used trip chaining algorithm, sample information, matching, and validation rates. Validation rates are in parentheses. 

Reference Location Data Source Sample length Sample Year Sample Size AFC 

system 

% Matching / 

(Validation) 

Validation Source Mode 

(Gordon et al., 

2013) 
London, England Oyter and iBus 10-weekday 6-10 and 13-17 

June 2011 
3-3.1million per 
day 

Entry only 74.50 / Bus, Rail 

(Jánošíkova et al., 

2014) 
Slovak Republic DPMŽ 1 week 12-18 Oct. 2009 115,007 Entry only 80.72 / Bus, Trolleybus 

(Trépanier et al., 

2015) 
Ontario, Canada STO 1-month October 2009 908,303 Entry only 80.64 1 / Bus 

(Huang et al., 

2020) 
China / / / / / 80 (90) Survey Bus 

(Jafari Kang et al., 

2021) 
Iran 7 BRT lines 2 months Sep. Oct. 2016 716,000 / 52.00 / BRT 

(Kumar, 2019) Twin cities, 

America 

Metro Transit 

U-pass 

4 days 7-10 March 2016 85,456 Pay-exit 85.00 / Bus, Rail 

(Deri, 2012) İzmir, Turkey / 1 week each March 2009 

June 2010 

378,260 

771,239 

Entry only 80.77 

83.01 

/ Bus, Rail, Ferry 

(Palamutçuolu & 

Gerşil, 2020) 
İzmir, Turkey / 15 days 

30 days 

2015 

2017 1,142,515 
Entry only 66.05 / Bus, Rail, Ferry 

(Lee et al., 2022) Sejong City, 

South Korea 

/ 42 weekdays 1 Apr. - 31 May 

2018 

116,194 Entry-exit 60 - 74.9 (65.6) 2 Tap-out data Bus 

(Cengiz, 2022) Madrid, Spain CRTM 1 weekday 
1 weekend 

4 Feb. 2020 
1 Feb. 2020 

709,170 
441,086 

Entry only / / Bus, Train 

(Kim et al., 2017) Seoul-Gwangju, 

Korea 

 
1 day 

1 week 

20-Oct-2015 

18-24 April 2016 

4,614,149 

959,578 

Entry-exit 78.2 (93.6) 

81.6 (94) 

Tap-out data Bus 

(Fidanoğlu & 

Gökaşar, 2022) 
Bursa, Turkey 8 bus routes 3 months / 1,861,791 Entry only 70% / Bus 

(Yan et al., 2019) Beijing, China Downtown bus 

data 

1 week 8-14 October / Entry-exit 87.23-62.66 3 

(72.98-71.88) 

/ / 

(Mosallanejad et 

al., 2019) 
Adelaide, 

Australia 

DPTI 1 day May 2017 1,177 Entry only 80.2 (98%) OD Survey Bus 

(Farzin, 2008) São Paulo, Brazil / / 2006 658,000 Entry only 76.7 4 Household survey Bus 

 

Notes: 1) In the study, unlinked trip destinations were estimated using the Kernel Density method, and the matching rate was increased by 10.9%. 2) The clustering method improved the 

matching rate of the base algorithm from 60% to 74.9%. The exact validation rate was 48.2%, validation rate was 65.6% within one stop difference. 3) Matching and validation rates were for 

regular and irregular users. 4) Destinations were inferred at the zone level. 
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Table 2.2. Studies used trip chaining algorithm, sample information, matching, and validation rates. Validation rates are in parentheses. 

Reference Location Data Source Sample 

length 

Sample Year Sample Size AFC 

system 

% Matching / 

(Validation) 

Validation 

Source 

Mode 

(Assemi et al., 

2020) 
SEQ - Australia GoCard - 

TransLink 
1 weekday 20 Mar. 2013 159,815 

(138,122) 

Entry-exit 72.2 (79.5) Tap-out data Bus, Train, Ferry 

(Barry et al., 

2002) 
America NYCT 1 weekday Wednesday, 

September 

6,000,000 Entry only 83 (90) Travel diary, metro exit 

counts 

Metro 

(Jinhua, 2004) America CTA 1 week / 2,602,819 Entry only 65.5 / Train 

(A. Alsger et al., 

2016) 
SEQ - Australia GoCard - 

TransLink 

1 weekday 20 Mar. 2013 161,446 Entry-exit 86.5 (72.6) Tap-out data Bus, Train, Ferry 

(Nunes et al., 

2016) 
Porto, Portugal STCP 1 month April 2010 ~3000000 Entry only 81.60 / Bus 

(M. Munizaga et 

al., 2014) 
Santiago, Chile Transantiago / / 715 5 Entry only 84.2 (90) Metro OD survey Bus, Metro 

(Munizaga et al., 

2012) 
Santiago, Chile Transantiago 2 weeks March 2009 

June 2010 
36,000,000 
38,000,000 

Entry only 80.77 
83.01 

/ Bus, Metro 

(D. Li et al., 

2011) 
Jinan, China Bus company / / 10,000 per day Entry only 75-85 6 / Bus Route 115  

(W. Wang et al., 

2011) 
London, 

England 

TfL / / 7,386 5 Entry only 66 65 BODS Route 185 NB 

and SB 

(Nassir et al., 

2011) 
Twin cities, 
America 

Metro Transit 1 weekday 10 Nov. 2008 84,413 
(10,886) 

Entry only 60.74% 
(95.4%) 

APC and AVL Bus 

(Barry et al., 

2009) 
America NYCT 2-week April 19-May 2, 

2004 

>7,000,000 

 for a weekday 

Entry only (90%) Metro exit counts, 

bus ride checks 

Subway, bus, 

ferry, tram 

(Zhao et al., 

2007) 
Chicago, 
America 

CTA 6 days January 2004 >2,500,000 Entry only 71.20% / Bus, Train 

(Trépanier et al., 

2006) 
Gatineau, 

Canada 

STO / July 2003 

October 2003 

378,260 

771,239 

Entry only 66% / Bus 

(A. Cui, 2006) America NYCT 5 weekdays 12-16 Sep. 2005 2,736,454 Entry only 79% / Bus, Rail 

(Cheng et al., 

2019) 
Guangzhou, 

China 

 
3 months 1 Jul. - 30 Sep. 

2017 

200,670 Entry-exit 85.27 (60.32-87.4) Tap-out data Metro 

 

Notes: 5) Validated sample sizes were used in the model. 6) Off-peak and peak hour matching rates, respectively. 
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Table 2.1 summarizes 30 studies that used the trip chaining method in their 

analysis. The majority of the studies were from America and China, 8 and 4, respectively. 

As can be seen, the sample size ranges from 715 to 38 million records depending on the 

purpose of the study. Similarly, the sample lengths range from 1 day to 3 months, 

depending on the assumptions in the trip chaining algorithm and the historic data 

requirement of additional methods to improve the matching performance. 21 out of 29 

studies employed entry-only AFC data (one was pay-exit, which provides the alighting 

stop instead of the boarding stop), whereas six studies had information on both boarding 

and alighting stops of each record (entry-exit system). Since it is important to validate the 

inferred stops and obtain the effect of trip chaining assumption on the estimation 

accuracy, entry-exit AFC data provides a valuable opportunity for endogenous validation. 

On the other hand, the validation process for the studies that used entry-only AFC 

data requires exogenous sources, such as travel diaries, OD surveys, automated passenger 

count (ADC) data, tally counts on stations, etc. For example, Farzin (2008) utilized 1997 

OD matrices developed based on the household survey to validate only the 5% of 2006 

OD matrices estimated in their study (Farzin, 2008). Barry et al. (2002) used a metro 

travel diary containing the origin and destination information of 300 residents to validate 

the accuracy of their main assumptions on metro trips (Barry et al., 2002). However, in 

the case of facilitating such exogenous sources, the sample sizes are generally much 

smaller, thus creating a bias in validation. More reliable data sources, which include real 

alighting information (location and time) as in entry-exit systems, can give insightful 

information on the validity of trip chaining assumptions (A. Alsger et al., 2016).  

 

2.3.1. Method Assumptions 

 

The method was first presented by Barry et al. (2002) for inferring the destinations 

of metro users using entry-only AFC system data of New York City Transit. Their trip 

chaining method was built on two main assumptions: 1) the majority of passengers alight 

at the station where they start their next trip, and 2) the majority of passengers return to 

their origin (boarding station of their very first trip) at the end of their last trip (Barry et 

al., 2002). These two baseline assumptions have been improved, and new assumptions 

have been added by researchers to make the algorithm compatible with different data 
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types collected from PT systems worldwide and to increase either the matching or 

validation rates.   

Hora et al. (2017) and Cerqueira et al. (2022) summarized all the trip-chaining 

assumptions established so far. Based on their compilation, once again, the main 

assumptions used in trip-chaining studies are listed chronologically as follows (Cerqueira 

et al., 2022; Hora et al., 2017): 

 

1. The majority of passengers alight at the station where they start their next trip 

(Barry et al., 2002); 

2. The majority of passengers return to their origin (boarding station of their very 

first trip) at the end of their last trip (Barry et al., 2002); 

3. The alighting stop of a trip cannot be inferred if it is the only trip of the 

cardholder for the day (Barry et al., 2002). This type of trip is termed as a unit 

(Trépanier & Chapleau, 2006) or a single trip, as in this study; 

4. The alighting stop cannot be inferred if consecutive transactions (boardings) 

occur at the same station (Barry et al., 2002); 

5. Passengers can only alight at a subsequent stop on the given direction of the 

route (Trépanier & Chapleau, 2006); 

6. The distance between the boarding stop of the next trip and the alighting stop 

of the previous trip must be less than the allowable walking distance 

(Trépanier & Chapleau, 2006); 

7. The alighting stop of the last trip of the day must be within the allowable 

walking distance of the boarding stop of the first trip of the day (Trépanier & 

Chapleau, 2006); 

8. In case of failed alighting stop estimation for the last trip on a day, the model 

can use the first boarding stop of the following day to infer the alighting stop 

of the last trip (Trépanier & Chapleau, 2006); 

9. For a trip, which the alighting stop estimation is failed, all the other trips of 

the month for the same user are compared to find a similar trip where the 

destination would have been found (Trépanier & Chapleau, 2006), i.e., 

historical data is used to find a similar trip pattern of a passenger; 

10. Passengers do not use any other transportation modes, i.e., shared mobility, 

private car, etc., but walk between any consecutive trip segments (Zhao et al., 

2007);  
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11. As a temporal check, estimated alighting action (alighting timestamp) must 

occur before the boarding time of the next trip (Nassir et al., 2011); 

12. A passenger is required a certain time to perform an activity, activity threshold 

(Nassir et al., 2011); 

13. A passenger must transfer in a given time, transfer threshold (Nassir et al., 

2011); 

14. If the model is not able to infer the alighting stop of the trip in the given 

direction, the model can be relaxed by searching a possible alighting stop in 

the opposite direction (Nassir et al., 2011); 

15. The hour with the lowest activity in the day can be used as the virtual 

midnight, for example, 3 a.m. (M. Munizaga et al., 2014). 

 

Some of the assumptions above are the relaxed form of their primer versions; for 

example, the first assumption is relaxed by using the sixth assumption, which allows the 

algorithm to search for an alighting stop within the allowable walking distance of the 

previous trip's boarding stop. Similarly, the seventh assumption can be preferred instead 

of the second assumption for relaxing the algorithm. Here, the matching rate and accuracy 

of the trip chaining algorithm became a function of the selected allowable walking 

distance, discussed in 4.1.1.3. In Table 2.3, the maximum (acceptable) walking distances 

used in various studies are presented. Obviously, different values have been considered 

for allowable walking distance in trip-chaining studies because of several logical reasons, 

such as public transit network and the architecture of the city in analysis, demographics, 

terrain, transfer conditions, and PT mode involved in the analysis (Hussain et al., 2021). 

The trip chaining method is capable of estimating the destination of trips (more 

specifically, linked trips) with a matching rate of around 60% to 85% depending on the 

rules applied in the algorithm (Cheng et al., 2019). 

 

2.3.2. Method Deficiencies 

 

There are several weak spots in the trip chaining method. First, the algorithm is 

not cable of including the non-integrated modes of transport, such as bike-sharing 

systems, taxis, car-sharing, or minibuses, and this is one of the main sources of error in 

estimating the alighting stop (M. Munizaga et al., 2014). Second, the method cannot 
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estimate the alighting location of an unlinked trip. As illustrated in Figure 2.1, the trip 

chaining algorithm cannot infer an alighting stop for the second and third trips. Finally, the effect 

of the built environment on the passengers’ decisions is difficult to implement. 

 

Table 2.3. Allowable walking distances used in trip chaining studies. 

Study Location Walking Distance (meters) 

Trepanier 2006 Gatineau, Canada 2000 

He 2015 Canada 2000 

Palamutçuoğlu 2020 İzmir, Türkiye 1500 

L'udmila 2014 Slovak Republic 1250 1 

Cui 2004 NYC, America 1100 

Munizaga 2012, 2014 Santiago, Chile 1000 

Wei Wang 2011 London, England 1000 

Deri 2012,2018 İzmir, Türkiye 1000 

Yang 2019 Beijing, China 1000 

Assemi et al. (2020) SEQ - Australia 800 

Alsger 2015, 2016 5 Australia 800 

Nassir 2011 Twin cities, America 800 

Kumar 2019 Twin cities, America 800 

Gordon 2013 London, England 750 

Cengiz 2022 Madrid, Spain 650 

Nunes 2016 Porto, Portugal 640 

Lee 2022 Sejong City, South Korea 500 

Kim 2017 Seoul - Gwangju, South Korea 500 

Jinhua Zhao 2004, 2007 Chicago, America 402 

Da (2021) Nanjing, China 400 

Mona 2019 Adelaide, Australia 400 

Yap 2017 Hague, Netherland 400 6 

Fidanoğlu Bursa, Türkiye 300-500 4 
 

Notes: 1) 15 minutes of walking distance at 5 km/h walking speed. 2) 500 meters is for transfer walking 

distance; 300 meters is for last trip. 3) Various walking distance values ranging between 200 m to 1,600 m were 

used in the study. 

 

Alternative methods, machine learning, and probability models often perform 

better than trip chaining. In terms of the matching rate of the mentioned methods: 

probability models show the best performance with matching rates close to 90%, and a 

deep learning model employed by Jung and Sohn (2017) has 60% and 87% matching 

rates for tight and relax criterion, respectively, trip chain models (see Table 2.1) have 

matching rates ranging between 65 and 95.4% (T. Li et al., 2018). A combination of the 

models also exists; for example, Assemi et al. (2020) used ANNs and improved the 

matching rate from 72.2% to 79.5% 
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Figure 2.1. Illustration of unlinked and chained trips (Z. Cui et al., 2021). 

 

2.4. Public Transport Service Area 

 

In most cases, a public transport user must walk, cycle, drive or share a ride to 

reach the closest or preferred public transport mode. Because public transportation 

systems typically serve major destinations and stops or stations are generally present at 

centralized locations, making it difficult for passengers to travel from their homes to stops 

or stations (access) and vice versa (egress). A public transport (PT) system's overall 

performance greatly depends on access and egress connections. Further, access and egress 

distance or time are the most significant factors considered in public transport mode 

choice (Rahman et al., 2022). Hence, a public transport system’s service (or influence) 

area is derived from the distance passengers are willing to walk to access or egress to a 

station, and it is a key performance measure because it is directly related to the percentage 

of the population being served (El-Geneidy et al., 2014).  

In transit-oriented development (TOD), there is a general acceptance of public 

transport (PT) planning for walkable access (or egress) distance, which is a quarter mile 

(400 m) for the bus stops and half a mile (800 m) for the rail stations (Canepa, 2007; El-
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Geneidy et al., 2014). Nevertheless, these de facto values may depend on various factors, 

such as trip characteristics; type of PT service, transfers, waiting time, or personal 

characteristics; household, gender, age, or environmental factors (El-Geneidy et al., 2014; 

van Soest et al., 2020). The recent increases in the usage of shared micro-mobility 

vehicles, such as bicycles, e-bikes, and e-scooter, may have increased the distance of a 

passenger willing to travel to access or egress, hence, the influence area of public 

transport modes. 

 

2.4.1. Inter-route Relationships 

 

In public transportation planning, the inter-route relationship is related to the 

physical connection between two or more routes. These relationships can be established 

by considering the overlapping service areas of the routes.   

Several studies in the literature have defined and established a set of factors for 

identifying inter-relationships between public transportation modes. According to Peng 

(1994), three inter-route relationships may be defined: independent, competing, and 

complementary. These routes are independent if no overlapping route buffers (service 

areas) exist between the routes. If the route buffers overlap, the relationship can develop 

in two ways; competing or complementary. The routes are complementary if their service 

areas intersect at one end, such as a terminus, or an intermediate location, such as a 

transfer location, and at least one end of the routes is different. Bus routes integrated with 

metro lines have this kind of inter-route relation and generally operate as a feeder mode. 

On the other hand, if route buffers overlap linearly and have at least one common end, 

they are in a competing relationship. For example, bus routes running on the same or 

parallel streets or a bus route running on the same corridor with a metro line is in a 

competing relationship (Peng, 1994).  

Consider two bus routes operating within the service area of a metro line with a 

similar amount of overlapping service areas, as illustrated in Figure 2.2. Bus route A 

collects passengers from the urban outskirts and runs mainly perpendicular to the metro 

line. Consequently, this type of bus route undertakes a feeding role for the metro line, 

gathering and evacuating passengers (F. Wang et al., 2022), and shares a complementary 

relationship. On the other hand, bus route B runs primarily parallel to the metro line. In 

this case, the bus route and metro line have a competitive relationship. As it can be seen 
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from Figure 2.2, it will be misleading to say whether the route has a competing or 

complementary relationship by only considering the amount of overlapping area. Here, 

collinearity can be utilized to distinguish this difference.  

In literature, there are different collinearity definitions based on a similar logic (J. 

Cui et al., 2020; Du et al., 2018; F. Wang et al., 2022; Wei et al., 2020). It is basically 

obtained by calculating the linearly overlapped service areas of the routes under 

consideration. The result is further used to determine the degree of competition. The 

assumption is that when the collinearity between routes increases, the level of competition 

between routes also increases (Peng, 1994), thus the likelihood of passenger flow 

exchange from one route to another (F. Wang et al., 2022). These relationships can also 

be viewed from the perspective of the passengers, who have the option to choose one of 

the competing routes to reach their destination, on the other hand, they must have a 

transfer from one complementary route to another to reach their destinations (S. J. Zhang 

et al., 2018). Since high collinearity between public transport systems, particularly 

between bus routes and rail system, increases the likelihood of passenger exchange, 

collinearity is considered a significant factor in bus route optimization studies.  

Du et al. (2018) used three categories, which are collinear, feeding, and 

intersecting routes, to classify bus routes based on their relationship with the rail transit 

stations. Their main focus was the route optimization of competing and intersecting bus 

routes. In their study, 500 m buffers were used on the train stations to define the direct 

attraction area of a station. As for the collinear relationship, they regarded a bus route 

with stops within the direct attraction area of two or more successive train stations. On 

the other hand, a bus route was considered to have a feeding relationship if its stops were 

within one train station’s direct attraction area. If the rail transit route and the conventional 

bus route intersect without the direct attraction area of rail transit stations, they have an 

intersecting relationship (Du et al., 2018). 

Wang et al. (2022) considered the collinearity between bus routes and a rail track 

as an indicator in their bus route optimization study, as well as other factors such as travel 

time and service area. The collinearity minimization effort is due to the correlation 

between collinearity and competition, and minimizing collinearity is expected to solve 

the competing routes problem. They simply defined the bus routes’ collinearity as the 

ratio of collinear route length with train track to total route length (F. Wang et al., 2022). 
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Figure 2.2. Illustration of competing (bus route B) and complementary (bus route A) 

bus routes within a metro service area. 

 

In another study on bus route optimization, Wei et al. (2020) developed 

cooperation and competition indices for bus routes to identify those that require 

optimization. They used 500 and 800 meters of buffers to define the service areas for bus 

stops and metro stations, respectively. They defined the cooperation index (𝑐𝑜𝑜) as the 

ratio of the total number of cooperation stations (𝑇𝑐𝑜𝑜) to the total number of bus stops 

and metro stations (𝑇𝐵𝑀) (Wei et al., 2020). 

 

coo =
TCOO

TBM
=

(TM − N)(TB − N)

(TM − 1)(TB − 1)
 (2.1) 

TBM = (TM − 1)(TB − 1)  (2.2) 

Tcoo = (TM − N)(TB − N) (2.3) 

 

Furthermore, Wei et al. (2020) defined the competition index (𝑐𝑜𝑚) as the ratio 

of competition stations (𝑇𝑐𝑜𝑚) to the total number of bus and metro stations (𝑇𝐵𝑀). As can 

be seen, they incorporated spatial variables, such as the overlapping area of the bus 

stations and the length between bus and metro stations. In the formula, 𝑁 is the total 

number of overlapping stations, 𝑠𝑏 is the buffer area of a single bus station, 𝑠𝑖 is the 

overlapping area of bus station number 𝑖, and 𝑠𝑖+𝑗 is the overlapping area of bus station 

number (𝑖 + 𝑗), 𝐿𝑏
𝑖,𝑖+𝑗

 is the travel distance between bus station number 𝑖 and (𝑖 + 𝑗), and 

𝐿𝑚
𝑖,𝑖+𝑗

 is the travel distance from metro station number 𝑖 to (𝑖 + 𝑗) (Wei et al., 2020).  
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com =
Tcom

TBM
 (2.4) 

Tcom = 2 × ∑ ∑ [
∆si

sb
×

∆si+j

sb
×

min(Lb
i,i+j

, Lm
i,i+j

)

max(Lb
i,i+j

, Lm
i,i+j

)
]

N−1

j=1

 

N

i=1

 (2.5) 

TBM = (TM − 1)(TB − 1) (2.6) 

 

Overall, they investigated 245 bus routes and 12 of them were determined as 

competitive, while 157 bus routes marked as cooperative to the Changsha Metro Line 2. 

Since the remaining ones (76) showed both properties, they were identified as competitive 

and cooperative. In addition, authors combined cooperation and competition indices to 

develop a co-opetition coefficient for their optimization (Wei et al., 2020). 

Cui et al. (2020) aimed to determine the bus routes that would need to be adjusted 

prior to the launch of the rail transit. First, they started by identifying the bus routes 

collinear with the rail transit line within the 750 m service buffer of the rail line. They 

considered a bus route to be collinear if its direction was parallel and within the service 

area of the rail line. In their study, three types of collinear lines (see Figure 2.3) were 

defined: fully collinear line, endpoint collinear line, and intermediate collinear line. 

Further, if the collinear part of a bus route was longer than 6 km, it was selected as the 

bus route that required adjustment. Then, they further analyzed the passengers’ travel 

patterns by employing a generalized cost function to determine the flows that would have 

benefited if the passengers were used the train in the collinear section instead of bus (J. 

Cui et al., 2020). 

 

 

Figure 2.3. Types of collinearity: a) endpoint collinear, b) intermediate collinear, c) fully 

collinear. (J. Cui et al., 2020) 
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Gadepalli et al. (2022) used 400 and 2000 meters of network buffers on metro 

stations to determine the candidate bus stops which can be used to transfer to the metro. 

To determine the overlapping bus routes, they select the bus routes having at least two 

stops in the 400 m metro influence area. Then, they further characterized the overlapping 

bus routes as parallel-competing, parallel-non-competing, and feeder based on the 

number of stops of a bus route within the 400 m metro influence area as a proxy to 

collinear distance. Feeder routes were identified as having less than 25% of their stops 

within 400 m of the metro. On the other hand, bus routes, which have more than 25% of 

their stops within 400 m of the metro, were identified as parallel routes. Additionally, 

parallel routes were grouped into two; if the route length within 400 m influence area is 

higher or equal to 2 km, it was labeled as competing, if not, marked as non-competing 

route. Then, in the trip level analysis, they categorized the bus trips into two categories, 

short overlap trips (less than 2 km) and long overlap trips (equal or more than 2 km). 

Their assumption was that long overlapping trips will likely shift from bus to metro. 

In Table 2.4, we summarize the terms and definitions found in the studies that aim 

to determine competitive bus routes within the rail transit service area. In conclusion, the 

collinearity of a bus route can be identified by determining the number of stops or the 

length of the route within the rail transit service area. And, whether the bus route has a 

competitive or complementary relationship with the rail transit line depends on the 

amount of its collinearity. There are several approaches employed in literature to establish 

this distinction, for example Luo et al. (2010) combined ecological theories with transit 

characteristics to assess the competition between rail and bus based on Lotka-Volterra 

model (Q. Y. Luo et al., 2010).  

In this study, a slightly altered version of the methodology developed by Gadepalli 

et al. (2022) is used to identify the bus routes that operate within the service area of a rail 

system (Gadepalli et al., 2022). In addition, we adopt a simplified version of the method 

presented by Wei et al. (2020) to determine the nature of the relationship (Wei et al., 

2020). 

 

2.5. Valuating Travel Convenience  

 

After the opening of the metro extension, passengers traveling within the metro 

service area will have an alternative mode to get to their destinations. In this study, one 
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of the objectives is to find an answer to the question of which passengers would prefer to 

use the metro service instead of the current mode of transportation, which is mainly 

limited to bus transit. In the way of answering this question, we implement the approach 

where we benefit from the valuation of convenience (or inconvenience) of public 

transport. For this purpose, perceived travel time studies, where the objective is to reveal 

the difference between real and perceived travel time components, are reviewed. The 

main gain from the review is the time multipliers of the travel stages to calculate the 

inconvenience of the two alternatives: bus, or metro. Since we work with time multipliers 

instead of monetary values, some degree of transferability is conveniently available 

(Wardman, 2014). In addition, travel time perception studies are also reviewed to 

establish general understanding on the importance of the perception as well as the travel 

convenience. Before going further, the time components considered in a passenger’s 

journey are presented with their definitions. 

 

Table 2.4. Inter-route relationship categories and definitions in the literature. 

Study Terms Definitions 

(Peng, 

1994) 

Complementary intersects at one end or at an intermediate location, and at least one 

end is different 

Competing one common end and linear overlapping 

Independent no overlapping 

(Du et al., 

2018) 

Collinear having stops within the direct attraction area of two or more 

consecutive train stations 

Feeding having stops within the direct attraction area of one train station 

Intersecting intersects without being in a direct attraction area of a train station 

(Gadepalli 

et al., 

2022) 

Feeder routes having less than 25% of their stops in 400 m influence area 

Parallel routes having higher than 25% of their stops in 400 m influence 

area 

Competing parallel routes having 2 km or more route length in 400 m influence 

area 

Non-competing parallel routes less than 2 km route length in 400 m influence area 

(Wei et al., 

2020) 

Cooperation 

index 

ratio of total number of cooperation stations to the total number of 

bus and metro stations  

Competition 

index 

the ratio of competition stations to the total number of bus and 

metro stations 

(F. Wang 

et al., 

2022) 

Collinearity ratio of collinear route length with train track to total route length 

(J. Cui et 

al., 2020) 

Collinear route a bus route is collinear if its direction is parallel to and within the 

service area of the train line, three types: endpoint, intermediate 

and fully collinear 
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2.5.1. Travel Time Components in a Passenger’s Journey 

 

There are several stages observed in the passengers’ journey made on public 

transit. The complete travel time of a passenger consists of in-vehicle and out-of-vehicle 

components. In some cases, especially in a multimodal public transport trip, out-of-

vehicle time may be very close to the in-vehicle time, for instance, Meng et al. (2018) 

presented that out-of-vehicle time accounts for 40.3% in average actual travel time (Meng 

et al., 2018). In- and out-of-vehicle time stages are access/egress, waiting, in-vehicle and 

walking times presented in Figure 2.4. Out-of-vehicle time components capture the 

inconvenience of public transportation not being instantaneously accessible and available, 

whereas in-vehicle time components capture the inconvenience of crowding (and having 

to stand) and transfer time components capture the inconvenience of having to transfer, 

walk, and wait (Wardman, 2014). 

 

 

Figure 2.4. Travel time components in a journey (Brands et al., 2022). 

 

Access/egress time is the time spent, most likely by walking, to reach their first 

origin of their journey, such as workplace or home (Brands et al., 2022), i.e., the time 

passed between 𝑡0 and 𝑡1 in Figure 2.4. Access and egress times are mainly related to the 

catchment area of transit mode and the performance of the transit service highly correlated 

with them (Rahman et al., 2022). According to Van der Waard (1988), access time is 

affected by the anxiety of attempting not to miss the vehicle, therefore, it is perceived as 

longer than egress time (Van der Waard, 1988). 

Waiting time is the total time spent at stops/stations while waiting for the transit, 

i.e., the sum of times spent between 𝑡1 − 𝑡2 and 𝑡4 − 𝑡5 in Figure 2.4. Passengers tend to 

reduce the time by planning their arrival and departure times. Thus, origin waiting time 

(𝑡1 − 𝑡2) may be lower than transfer waiting time (𝑡4 − 𝑡5) due to reliability and 

integration problems between transit modes. In addition, some studies in literature used 
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hidden waiting time to capture the potential waiting time due to service quality problems 

along with platform waiting time (Furth & Muller, 2006; Nielsen, 2000; Nielsen et al., 

2021). Hidden waiting time may be defined as half of the headway of the least frequent 

transit services used in a journey (M. K. A. Anderson, 2013). On the other hand, this issue 

was also put in the literature by the terms of headway and displacement time, which were 

used to represent not being able to travel at the desired time (Wardman, 2014). 

In-vehicle time includes the time passed in the transit vehicle. In other words, total 

of times between 𝑡2 − 𝑡3 and 𝑡5 − 𝑡6 in Figure 2.4. It can be approximated by using the 

length of the trip and the commercial speed of the transit vehicle (km traveled per unit of 

time, including the time spent on stops/stations) (Amirgholy et al., 2017). Here, crowding 

level or penalty for not seating components can be employed to distinguish the difference 

in perception of in-vehicle time, for example between a passenger who travels seating 

and standing. 

Transfer time includes the walking time and waiting time components at each 

transfer point (Brands et al., 2022). Besides, the phenomenon of transferring in public 

transportation may include transfer penalty along with walking time and waiting time 

(Jara-Diaz et al., 2022). Transfer penalty refers to a purely psychological aspect of the 

transfer process that is influenced by the environment in which the transfer occurs (Guo 

& Wilson, 2011). 

 

2.5.2. Time Multipliers for Valuing Travel Convenience 

 

Time multipliers obtained from the relative valuations of components based on 

the people’s travel choices collected using stated preference or revealed preference 

techniques (Wardman, 2014). SP approaches in public transportation basically mimic the 

travel conditions and put into respondents evaluations by offering multiple choices that 

require them to trade-off one relevant variable against another (Wardman, 2014). On the 

other hand, RP method depend on the actualized choices where travelers assumed to be 

familiar with all the transit alternatives (Wardman, 2014). To gain insights about the 

relative valuations of travel time components, mode and route choice models may exploit. 

Generally, these studies assess travel experience of passengers in terms of travel time 

components: access, egress, waiting, in-vehicle and transfer times and number of transfers 

(M. K. Anderson et al., 2017; Rui, 2016). Those results can be used in the policy 
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evaluation and predicting the impact of a change in the service on the route choice 

(Nielsen et al., 2021). Keeping in mind that these valuations, i.e., time multipliers, may 

vary across countries depending on several factors: cultural differences, different 

standards and expectations, operating practices, sampled public, socioeconomic 

composition, travel conditions (Wardman, 2014) and weather (Nielsen et al., 2021). 

Nonetheless, they may be considered inherently more transferrable than monetary based 

valuations (Wardman, 2014). 

In the following sections, time multipliers (relative to in-vehicle time) under 

several headings will be presented mainly based on a comprehensive review by Wardman 

(2014). In addition, we reviewed the recent public transport route choice and perceived 

travel time studies to present the current state of work by presenting rates of substitutions 

alongside the time multipliers. 

 

2.5.3. Walk and Wait Time Multipliers 

 

These two attributes form the out-of-vehicle experience of a passenger, where 

passenger may be affected by the inconvenience, effort and frustration, and common 

practice was to apply weight of two (2.0) to walk and wait time (Wardman, 2014). In 

Table 2.5, time multipliers for out-of-vehicle components are presented based on a study 

by Wardman (2014)  where large scale reviews on value of time bus with insights into 

time multipliers were collected. 

Here, one distinction should be made that access/egress walk and first waiting 

time components may be evaluated separately. This is important because access time 

multipliers may be lower than walk time because access may involve modes that require 

less effort than walking, and first waiting may be avoided by planning arrival times, thus 

can be lower than the transfer waiting multipliers (Wardman, 2014). Also, one other 

reason for the low access time multipliers, especially for rail, is that some studies in 

literature worked with public transportation networks, named as hub-and-spoke, where 

the alternative routes are very limited (Bovy & Hoogendoorn-Lanser, 2005; Raveau et 

al., 2011; Vrtic & Axhausen, 2002) and mainly focused on metro and train corridors 

where bus transit was considered as access and egress modes (M. K. Anderson et al., 

2017). Thus, modes of access may have a lesser disutility than walking (Wardman, 2014).  
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Table 2.5. Time multipliers for out-of-vehicle time components. (Wardman, 2014) 

Study Wardman et al. (2013)  Abrantes and 

Wardman (2011) 

Attribute All Bus Rail UK Non-UK RP  
 

UK RP 

Walk Time 1.68 1.64 1.65 1.62 1.93 2.01 
 

1.65 1.84 

Access Time 1.68 1.62 1.29 1.57 1.93 1.88 
 

- - 

Wait Time 1.8 1.74 1.49 1.68 1.93 2.22 
 

1.7 2.32 

Transfer Wait 1.84 1.92 1.83 1.72 1.93 2.03 
 

- - 
 

Note: In the table RP is the abbreviation for revealed preference survey. This distinction is made because 

time multipliers found using RP surveys found to be higher than the SP values. 
 

Further, time multipliers obtained from revealed preference surveys are larger and 

consistent with the common practice of assuming two (2) as time multiplier for out-of-

vehicle components (Wardman, 2014). Also, there might be some external factors, e.g., 

crowding at stop/station etc., may have influence on walk and wait time multipliers. 

Hence, crowding factor may be implemented to gain precision to these multipliers 

(Wardman, 2014). 

 

2.5.4. Transfer Penalty 

 

Transfer walking and waiting times are covered in the previous section. In this 

section, the fixed cost, which is named transfer penalty, used to reflect the deterrence of 

transferring is discussed. The transfer penalty is significant due to the inconvenience and 

risks involved, independent of the time spent walking and waiting, and there is a chance 

that the next service will be missed, and any ongoing activities will be interrupted 

(Wardman, 2004).  

One issue here is whether the transfer penalty is obtained alongside the transfer 

time components or solely obtained without considering any separate time component. 

Wardman (2001) reviewed studies in this aspect and distinguished studies which 

presented a pure transfer penalty independent of time effects (Wardman, 2001). When the 

time effects are not excluded, transfer penalty averaged around 30 minutes, whereas it 

was averaged around 17.6 minutes in case of considering pure transfer penalties 
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(Wardman, 2001). Furthermore, Vrtic and Axhausen (2002) stated that when the walking 

and waiting time at transfer locations were omitted, the transfer penalty ratio increased 

from 5.7 min/transfer to 13.1 min/transfer (Vrtic & Axhausen, 2002). Other than time 

effects, Nielsen et al. (2021) stated several other contributing factors, e.g., ease of 

wayfinding, shopping availability, having escalators and level changes, on the 

substitution rate are also presented. Their results for transfer penalties were ranging from 

5.4 to 12.1 minutes of bus in-vehicle time for the best and worst transfer attribute 

scenarios (Nielsen et al., 2021). Guo et al (2011) studied the variability of transfer penalty 

based on transfer stations of London Underground (LUL) system and the results showed 

that the minimum (for the best transfer station) and maximum (for the worst transfer 

station) penalties were 0.5 minutes and 9 minutes in IVT units, respectively (Guo & 

Wilson, 2011). 

On the other hand, Anderson et al. (2017) presented the penalties for transfer 

considering modes as 18.8, 14.2 and 7.2 min of bus in-vehicle times for bus-to- bus, bus-

to-train, and train-to-train, respectively. This finding indicates that transferring to rail 

transit from bus is felt less burdensome by the transit passengers. This may be due to rail 

transit is more reliable and frequent. In addition, transfer penalties for longer trips were 

found to be higher than for shorter trips because of the tendency of passengers to remain 

on board and prefer in-vehicle activities such as reading and sleeping (Anderson et al., 

2017). Pursula & Weurlander (1999) found that transfer penalty equal to 10 min of door-

to-door travel time. In addition, passengers were found to prefer travelling 15 minutes 

longer to get a seat for the trip (Pursula & Weurlander, 1999). Besides, relatively low 

transfer penalty of 5 minutes was also found in literature (M. Yap et al., 2020). 

Further, because of the very high frequency of the metro, metro in-vehicle time 

substitution rate was found to be lower than both bus and train. The variation in transfer 

penalty ratios may be explained in several ways, one reason for finding smaller ratios 

may be the successful coordination of arrival and departure times of PT modes in those 

locations, hence, having to transfer from one PT mode to another is perceived less 

deterrent (Jánošíkova et al., 2014). The transfer penalties form the literature can be seen 

in Table 2.6. These values are mainly gathers from the study (Wardman, 2014). Some of 

the more recent transfer penalty values are added to the table, others are mentioned above. 
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Table 2.6. In-vehicle time equivalencies for transfer penalties in literature. 

Study Condition Transfer Penalties 

Wallis et 

al. (2013) 

  

 
Peak Off-peak         

Same mode 4 12.5 
    

Between modes 9 17         

Wardman 

(2001) 

  

 
5 km 25 km 100 km 250 km 

  

Commute 6.9 5.8 5.0 4.5 
  

Other 13.7 11.5 9.9 9     

(Douglas 

and Jones, 

2013 

 
Bus Short Bus Med. Bus all Rail Short Rail Med.  Rail All 

Bus to Bus 14.8 14.6 14.5 18.1 28.6 23.3 

Bus to Rail 11.1 16.6 15.1 15.8 19.3 17.5 

Wardman 

and 

Shires, 

2000 

  

 

1st 

Transfer 

2nd 

Transfer         

30 min 9.1 5.8 
    

60 min 11.1 7 
    

120 min 15.1 9.4         

Raveau et 

al., 2013 

 

London Santiago         

AM Peak Com. 5.24-7.70 5.84-10.30 
    

Off Peak Non-

Com. 

10.65-

15.66 

9.05-15.95 

        

Anderson 

et al. 

(2017) 

  

 
Work Leisure         

Bus to Bus 18.8 26.2 
    

Bus to Train 14.2 21.8 
    

Train to Bus 17.3 26.5 
    

Train to Train 7.2 13.4         

Nielsen et 

al. (2021) 

 
Work Leisure 

    

With Tr. Attr. 7.92 9.13 
    

w/o Transfer Attr. 9.44 12.76 
     

Note: The values should be seen by considering both conditions. For example, transfer values gather from 

Nielsen et al. (2021) are presented for work and leisure trips in two ways: considering transfer attributes 

(With Tr. Attr.) and not considering transfer attributes (w/o Transfer Attr.). 
 

2.5.5. Crowding Convenience 

 

Crowding multipliers are applied to the in-vehicle times and their magnitudes vary 

according to crowding level. Crowding level may be indicated in terms of passenger per 

meter square (pass./m²) or the load factor in percentages (see Table 2.7). The load factor 

is the ratio of the number of passengers to the seating capacity. Hence, the increase in the 

loading factor results in a reduction in service quality, while simultaneously enhancing 

cost efficiency.  

The inconvenience of standing is readily apparent and can be anticipated to 

significantly increase the value of travel time, thus used in transit route choice studies 
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(Nielsen et al., 2000; Raveau et al., 2014) overcrowding will also impact those who are 

seated to the extent that they will experience an increase in inconvenience and discomfort, 

leading to a rise in time values (Wardman, 2014). In addition, the burden of travelling on 

passengers in crowd conditions depends on its severity It is important to quantify the 

crowding inconvenience to reveal its influence on passengers’ travel choices (Shao et al., 

2022; M. Yap et al., 2020). For example, Shao et al., (2022) studied the bus crowding 

influence on bus in-vehicle times and concluded that increase in the crowding degree 

leads to longer perceived travel time. They classified crowding level using standing 

density lower limits of 4.2 pass./m² and 7.5 pass./m² for crowded and very crowded 

conditions. The crowding level time multipliers ranged between 1.11 (4 pass./m²) and 

2.51 (10 pass./m²). 

In Table 2.7, the crowding time multipliers found in relevant literature are 

presented. The time multipliers are presented for seating and standing passengers. The 

negative effect of the in-vehicle crowding on the seating passengers is also present and 

the multipliers are not very low. For instance, when a passenger with a seat on a bus with 

35 seating capacity travels with 70 passengers, the perceived travel time is 31 minutes for 

a 20-minute trip. 

 

Table 2.7. Crowding multipliers from literature (Wardman et al., 2011; Kroes et al., 

2014) 

 Seat  Stand 

 

Wardman 

et al. (2011)  
Kroes et al. (2014)  Wardman 

et al. (2011)  
Kroes et al. (2014) 

Load 

Factor 
Com. Leis.  All Metro 

Bus + 

Tram 
 Com. Leis.  All Metro 

Bus + 

Tram 

50% 0.86 1.04 
 

1.0 1.0 1.0 
 

- - 
 

- - - 

75% 0.95 1.14 
 

1.0 1.0 1.0 
 

- - 
 

- - - 

100% 1.05 1.26 
 

1.083 1.077 1.102 
 

1.62 1.94 
 

- - - 

125% 1.16 1.39 
 

1.165 1.155 1.204 
 

1.79 2.15 
 

1.289 1.27 1.342 

150% 1.27 1.53 
 

1.248 1.232 1.307 
 

1.99 2.39 
 

1.394 1.362 1.467 

175% 1.4 1.69 
 

1.248 1.232 1.307 
 

2.2 2.64 
 

1.394 1.453 1.593 

200% 1.55 1.86 
 

1.330 1.309 1.409 
 

2.44 2.93 
 

1.499 1.453 1.593 

250% - - 
 

1.413 1.386 1.511 
 

- - 
 

1.604 1.545 1.718 
 

Note: “Com.” and “Leis.” are the abbreviations for commuter and leisure trips. 
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2.5.6. Summary 

 

It can be foreseen that, over time with changes in expectations, multipliers may 

change. Also, multipliers might be tempered by conditions, so for example, commuters 

in Tokyo might have somewhat greater tolerance to crowding than commuters in many 

other metro systems (Wardman, 2014). The recommended indicative multipliers by 

Wardman (2014) are presented in Table 2.8. 

 

Table 2.8. Recommended time multipleries for time attirubutes by Wardman (2014). 

Convenience Term Indicative Multiplier 

Walking with more than normal effort 4.0 

Waiting in crowded conditions 2.5 - 4.0 

Walking in crowded conditions 2.0 - 3.5 

Walking and waiting in normal conditions 1.75 - 2.0 

Standing 1.50 - 2.0 

Headway 0.5 - 0.8 

Displacement time 0.4 - 0.6 

Transfer penalty 5 - 15 minutes 
 

 

2.6. Travel Time Perceptions 

 

Public transportation users perceive time differently depending on their 

preferences and quality of service provided by transit mode (Nielsen et al., 2021). The 

satisfaction and preferences of transit passengers are affected by their perception of travel 

time thus it is essential to consider in demand forecasting, modeling, planning and 

operating public transportation systems (Currie, 2005; Meng et al., 2018). Using objective 

performance data in planning models is insufficient to reflect the subjective images of 

passengers (O’Farrell & Markham, 1974). The difference in perception affects the route 

choice behavior of passengers, thus creating a necessity for considering the perceived 

travel time in route and mode choice analysis. Perceived travel time can be defined as the 

duration felt by passengers while traveling (Meng et al., 2018) and include the sum of 

waiting, in-vehicle and transfer (walking etc.) time across all trips (Jenelius, 2018).  

 There are several factors influence the passengers’ travel time perception, such 

as travel cost, level of comfort, and reliability of the service (Dewulf et al., 2012; Hess et 
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al., 2004; Meng et al., 2018; Padhye et al., 2020; Psarros et al., 2011). Brands et al. (2022) 

concluded that, on average, transit users perceive their travel times 11% longer than the 

actual travel time. In addition, Meng et al. (2018) found that socioeconomic 

characteristics may contribute to a 5% increase in the perceived travel time. Furthermore, 

they found that passengers perceive travel times at each stage greater than the actual and 

women tend to overestimate their walking, waiting and in-vehicle time than men (Meng 

et al., 2018). Besides, transit users generally prefer the fastest way of travel from their 

origin to their destination. Because of that, in general, transit passengers have more 

positive attitude toward rail transit modes than buses because rail transit modes are 

usually more regular, reliable and comfortable (M. K. Anderson et al., 2017; Nielsen, 

2000). However, attitudes can change depending on the circumstances; for instance, 

passengers generally do not prefer metro transit for short trips; thus, the perception of 

passengers with short travel times on metro transit may be more negative than that of 

passengers on buses (Brands et al., 2022). 

O’Farrell and Markham (1974) studied on the perception of car-owning 

commuters on the to or from the work journey variables, namely waiting time, in-vehicle 

time and cost. They found that regular train users overestimate their in-vehicle train time 

by 7.7%, on the other hand car users underestimate by 5.1%. On the other hand, they 

found that bus in-vehicle times were 26% and 32% for morning and evening trips, 

respectively. Importantly, bus users stated that they perceived bus waiting times 76% and 

205% higher than the actual waiting times in the morning and evening, respectively 

(O’Farrell & Markham, 1974). Brands et al. (2022) compared the actual travel times from 

AVL data with the perceived travel times reported in a survey. Survey results showed that 

around 40% of the respondents reported their travel time higher than the actual. On 

average, in-vehicle travel times are perceived 11% higher than the actual travel times. 

Their results indicated that, short trips are likely to denigrate more than the long trips 

(Brands et al., 2022). Meng et al. (2018) stated that passengers perceive more while 

waiting than walking. In addition, transfer walking time has been established to be more 

onerous than the access and egress walking times. Also, it was stated that the time spent 

on the preceding stage has little impact on the perception. They concluded that, on 

average, passengers perceive 6 to 10%, 11 to 12%, and 3 to 5% higher than the actual 

walking, waiting and in-vehicle times, respectively (Meng et al., 2018). Dewulf et al. 

(2012) studied walking time perceptions of people with different destination locations. It 

can be interpreted from their results that walking time perceptions mostly (86.1%) 
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reported equal or higher than the actual times and the overestimation was 23% (Dewulf 

et al., 2012). Watkins et al. (2011) studied the effect of real time information systems on 

bus waiting times. Their results showed that passengers using traditional information 

perceive waiting times approximately 16% longer than the actual. Further, real time 

information systems decrease the perceived travel time by 31%. Interestingly, they also 

found that real time information systems users wait almost 2 min less than those using 

traditional information (Watkins et al., 2011). 

 

2.7. The Impact of the Network Change 

 

To determine the impact of any network change, such as opening a new transit 

line, before-and-after (ex-post) analysis is used. However, the opening of a new transit 

line is typically accompanied by changes to the rest of the transportation network, land 

use, and transit systems (Brands et al., 2020), such as the adjustment (or termination) of 

bus routes collinear to the new metro line (Gao et al., 2022b). Most of the impact studies 

focus on a new rail service that replaces an existing bus service, as opposed to a case in 

which the two modes compete. Thus, the observed situation does not involve a choice 

between rail and bus, but rather a forced conversion and attraction to a new service that 

provides a higher level of service (Ben-Akiva & Morikawa, 2002). Hence, observed 

impacts, such as total ridership, travel time, reliability, or modal split, cannot be directly 

attributed to the new transit line (Brands et al., 2020).  

For example, extending an existing metro line requires replanning existing bus 

routes to minimize the competition between modes. This is mostly the case in ex-post 

analysis. Thus, making a before and after comparison between bus and metro systems 

does not represent the true mode choice behavior. This fact constraints to make a 

meaningful ridership attraction comparison between bus and metro (Ben-Akiva & 

Morikawa, 2002). External factors and corresponding service changes in the network 

need to be isolated to make a meaningful comparison between before and after conditions.  

Brands et al. (2020), used two longitudinal smart card data sets, which include 5-

6 weeks of multimodal tap-in and tap-out transactions before and after opening periods 

of the new metro line in Amsterdam, and corresponding AVL data are employed for the 

ex-post analysis. For travelers to get used to the network change, the later data set starts 

7 weeks after the new metro line is opened. To be able to make before and after journeys 
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comparable, they clustered the stops using the agglomerative hierarchical clustering 

(AHC) method and performed their analysis at the cluster level instead of the stop level. 

Although some clusters near the new metro line showed a decrease in ridership, total 

ridership increased by 4% indicating that passengers changed their route choice, including 

the origin and destination of their journeys or access/egress modes. Regarding travel time, 

their results do not show a significant change in average. This is interesting because the 

metro tends to travel in shorter running times compared to bus and tram systems. Thus, a 

decrease in travel time is likely to be expected, however, it seems to be that arranging bus 

and tram service to complement the new metro line and forcing travelers to change their 

flow pattern did not enhance their travel time experience. Clusters along the new metro 

line showed the highest gain in travel times, contrary to that, the outskirts of the city 

experienced a negative impact. Due to the induced demand (newly attracted passengers), 

their results showed a slight decrease in the number of transfers. But there was a slight 

increase in the number of transfers when only travelers in the before case were included. 

Gadepalli et al. (2022) studied the impact of a newly introduced metro rail on 

existing urban bus routes in terms of overall ridership change and time savings 

experienced by transport users. As was stated in the study, the bus service network was 

not adjusted according to a new metro line. That is generally never the case because 

opening a new metro line, and adjusting the transport network, e.g., bus routes, are 

planned and performed simultaneously (Brands, Dixit, and van Oort 2020). Therefore, 

this type of a study is important for understanding trip characteristics and user preferences 

on collinear public transport routes, for example which type of trips are performed, e.g., 

long, or short distance, or for what purpose the transport system is used, e.g., as feeder or 

main mode. The results of the study showed that travelers prefer the metro for long 

distance (more than 5 km) trips when they have bus and metro options. On the other hand, 

66% of the bus trips within the metro influence area were shorter than 5 km, whereas the 

overall share of short bus trips was 42-52%. Trip level analysis results showed that 25% 

of the passengers of only 27 of 1,474* collinear bus routes travelled parallel to metro.  

The findings indicate that public transport users prefer the bus for short-distance 

trips, and the metro for long-distance trips. In addition, it seems that some fixed bus 

demand is present even if there is a metro alternative. This may be due to the fact that bus 

stops are generally more accessible than metro stations; hence, elderly people tend to 

prefer the bus over the metro. Therefore, this need should not be overlooked when 

adjusting the bus system.  
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CHAPTER 3 

 

DATA AND DATA PROCESSING 

 

3.1. Data Collection 

 

İzmir municipality provides General Transit Feed Specification (GTFS) data for 

the all the public transportation modes available which are bus, metro, commuter rail, 

tram, and ferry. Most of the required information can be obtained from these GTFS data, 

such as operative bus routes, bus stop identification numbers and locations, names and 

locations of metro, commuter rail, tram, and ferry stations. However, stops are not 

assigned to bus routes in the bus GTFS data. To create lists that show the stops that are 

on specific bus routes, for example the list of stops that are on the going direction of bus 

route 10, are provided through Application Programming Interface (API) by İzmir 

Municipality. Python Spider IDE interface is used to gather all the updated information 

related to public transportation modes, such as operative bus lines, bus stop identification 

numbers and locations, rail (metro, commuter rail and tram) station names and locations, 

and finally ferry station names and locations. 

 

3.1.1. Bus Stop and Rail Station Data 

 

The geographical coordinates of the stops and stations are obtained from the open 

source GTFS data (İzBB, 2022). This data also includes the name and ID of the stops and 

station. The information of which stop is on the route of which bus is gathered from the 

open data source using API service (ESHOT, 2021b). To create the paths of the bus routes 

that are followed on the road network, the GPS data collected for the bus routes is 

retrieved from (ESHOT, 2021a). This route data is then created on the geographical 

information system environment using ArcGIS ArcMap 10.3. 
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3.1.2. Smart Card Data 

 

ESHOT General Directorate provided one weekday (05.06.2022) smart card data 

which includes 1,969,185 both tap-in and tap-out transactions. In the smart card data, 

201,511 (10.23%) of the total transactions are tap-out (alighting) transactions on 

commuter rail (İzban) and thirteen bus routes which abide “pay as you go” policy. The 

remaining is tap-in (boarding) records account 1,767,674 (89.77%) transactions. 

Since the boarding transactions are only required, alighting transactions are 

separated from the smart card data. This “alighting data” is further used to validate the 

estimations of developed trip chaining algorithm in section 5.1.3. More importantly, since 

the data may include some errors, data cleaning and error correction processes are applied 

to the remaining “boarding data”. These processes are explained in the following sections. 

 

3.2. Data Cleaning 

 

Data cleaning (or cleansing) process is often required in studies working with big 

data. As explained by Hussain et al. (2021), data cleaning process often requires prior 

knowledge about the sources (human or equipment) of the errors to be able to refine or 

correct these errors. Human or equipment failures may lead to several problems in smart 

card data. For example, in entry-exit systems, there may be some alighting time records 

earlier than or equal to boarding times. In addition, there may be some record with missing 

information on boarding time/location or card ID, or duplication of tap-in or tap-out 

events (Hussain et al., 2021). 

Before feeding the smart card data to the trip chain algorithm, the data cleaning 

process is required to eliminate errors. Some errors occur during the fare collection, such 

as the one-stop boarding problem (section 3.2.2.2). Some occur due to the public transit 

service changes, such as removed bus routes (section 3.2.1). The transactions on these 

bus routes are extracted from the data set. There might also be some issues due to changed 

or removed bus stops (section 3.2.2.1). This is due to the difference between the dates of 

smart card data and the analysis. In addition to the errors, some passenger behavior causes 

the trip chain algorithm to fail, such as group boarding problem (section 3.2.2.3); these 

are the boarding transactions done by the same cardholder at the same stop or station with 

a 5-10 second time gap. An algorithm, which completes the cleaning process with an 
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acceptable running time, should be created to eliminate these problems. All of the errors 

discovered in the smart card data, as well as the strategies used to eliminate or fix these 

errors in order to improve the effectiveness of the trip chaining method are explained in 

the following sections. 

It is necessary to state that, before constructing the data cleaning algorithm, prior 

information is gathered from transit authorities for the possible errors (systematic or 

personal) in smart card data. In addition, preliminary analyses are also performed to gain 

experience with the data. We handle the errors in the SC data in two ways, elimination, 

and correction. The summary of the data cleaning and other manipulation processes are 

presented in  

 

3.2.1. Error Elimination 

 

Error elimination is applied to 1,767,674 (89.77% of the total) bus, metro, 

commuter rail, tram, and ferry transactions. Prior to data correction phase, errors that 

cannot be corrected are eliminated. Such as, 154 (0.01%) transactions with missing card 

ID information, 1,154 (0.065%) transactions assigned to one card ID, 736 (0.042%) 

transactions with no boarding time/location information are deleted. 

 In addition to this, since there is inconsistency between the dates of the two data 

sets: the smart card data is from 05.06.2022 and the bus stop and route data is from 

09.02.2023. Thus, the smart card data is checked for whether there are any bus routes 

newly added or shortly removed from operation. 6 (six) bus routes are determined to be 

removed and corresponding 976 (0.055%) boarding transactions are deleted. As a result, 

3,020 (0.17%) transactions are deleted in error elimination and 1,764,654 (89.60%) 

transactions are remained. 

 

3.2.2. Error Correction 

 

As it was mentioned earlier, in İzmir, commuter rail system (İzban) and 13 bus 

routes connecting remote districts to CBD require tapping out to get a refund from the 

full payment charge. This means that smart card data includes alighting information of 

the passengers who used commuter rail and the mentioned bus routes. Error correction 

steps are only applied to 1,764,654 boarding transactions. Before feeding the boarding 
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data to the trip-chain algorithm for estimating the alighting locations, 3 (three) steps of 

error correction process are performed. Error correction steps are summarized below.  

First, 17,623 boardings at stops that were not on the bus route are corrected by 

replacing the bus stop with the closest bus stop on the route. Second, 29,632 boardings 

at the last stops are determined and corrected by reversing the trip direction. After 

reversing the direction of some boarding transactions in the 3rd step, the 2nd step needs 

to be reapplied, so, 3,543 boardings at stops that were not on the bus route are corrected 

in a similar way. The cleaned and corrected 1,091,356 bus boarding transactions are 

merged with the rest of the data (673,298 boarding transactions on the other PT modes), 

resulting in a complete boarding data set of 1,764,654 transactions. Third, group 

boardings are handled by assigning a unique card ID to each transaction in the group.  

 

3.2.2.1. Changed or Non-operative Bus Stops 

 

This problem is only observed on the bus boarding transactions. There are 

transactions that the boarding stop is not on the given bus route and direction due to the 

nearly 8 months of time gap between the date of smart card and public transit stop data. 

During this period, there might be changes applied to the route or the location of stops. 

In addition, some stops might be taken out of order due to operational changes. This issue 

is handled by changing the problem stop with the closest stop on the given bus route and 

direction. 

 

3.2.2.2. One-stop Boarding Problem 

 

This is a major problem that both decreases the accuracy and matching rate of our 

trip chaining algorithm. Izmir’s Automatic Fare Collection (AFC) system requires drivers 

to change direction at the end of each bus trip. The system denotes the outbound direction 

as 1 and inbound direction as 2. Bus drivers need to set the direction before starting a new 

trip to enable the system to correctly record the boarding stops. If the driver fails to change 

direction before starting a new trip, AFC system assigns all the boardings of the new trip 

to the last stop of the previous trip. This issue underlies the first type of one-stop boarding 

problem in three scenarios represented in the Figure 3.1. The 1st scenario may occur 

because bus drivers often let passengers board at the terminus before setting the direction 
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for the next trip. It is assumed that all the one-stop boarding problems where the boardings 

assign the last stop are in the majority as in the 1st scenario, hence, correction algorithm 

is built accordingly. However, as the figure indicates, our correction is not capable of 

correcting the problem if the problem is realized as in the 2nd and 3rd scenarios.  

In the preliminary analysis, it is observed that 29,632 boardings (1.68% of total 

boardings) are on the last stops of the bus routes. In our algorithm, the following steps are 

applied to correct the issue represented in scenario one. First, the last stop boardings are 

identified by matching the boarding stops (in the SC data) with the last stops of the bus 

routes (obtained from API) by two directions. Second, the direction of the identified last 

boardings is reversed. For some of bus routes, the same stop is used as the last stop in the 

inbound direction and the first stop in the outbound direction, or vice versa. Hence stop 

IDs are the same. Thus, changing only the direction of last stop boardings is sufficient to 

correct the issue. However, for most bus routes, these stop IDs are different. This problem 

is solved by applying the previous data cleaning step in section 3.2.2.1. 

 

 

Figure 3.1. Possible scenarios of the issue where all the boardings are assigned to last 

stops. 
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On the other hand, independent of the failure of changing the run’s direction, there 

are bus runs that all the boarding transactions are assigned to one stop. Even though these 

problems may be considered as rare when the size of the whole data is considered, they 

negatively impact the estimation of the alighting locations of complete journeys. 

 

3.2.2.3. Group Boarding 

 

 Repetitive transactions are considered as duplicate records, and discarded from 

the data (Hora et al., 2017). In İzmir, it is common to see several boarding transactions 

with small time gaps, e.g., 5-10 seconds, at the same stop/station from the same 

cardholder, as shown in Table 3.1. The situation may have happened when someone 

offered to pay (tap) for another, or when a group of people travelled using a single card. 

In this study, this situation is called group boarding. Since the trip chain algorithm looks 

for a relation between successive trips, it fails to estimate when two successive boarding 

transactions occur at the same stop/station, as in the group boarding.  

Diker et al. (2016) solved group boarding problem by keeping the first boarding 

transaction in the passenger's trip chain and treating the other boarding transactions as 

separate single trips (Diker et al., 2016). In this study, as it is illustrated in the figure, we 

assigned a new card ID for each successive boarding transaction within a trip. 

 

Table 3.1. An example of a group boarding and assigned new card IDs. 

# Card ID Boarding Time Stop ID New Card ID 

1 KART 10111 08:15:25 50318 KART 10111 

2 KART 10111 08:15:33 50318 KART 10111 - 1 

3 KART 10111 08:15:41 50318 KART 10111 - 2 

4 KART 10111 08:15:46 50318 KART 10111 - 3 
 

 

Correction for group boarding problem was applied for 1,764,654 boarding 

transactions from 633,083 unique card IDs. With the correction, the number of unique 

card IDs increased by 4,936, i.e., correction created an additional 4,936 passengers. This 

should be kept in mind that there were one way group boarding trips, i.e., two passengers 
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used the same card for a one-way trip. So, assigning a unique card ID for the two 

passengers resulted in two single boardings. If the group boarding correction is not 

applied here, the record in the given example is to be treated as multiple boarding and fed 

to the trip chain algorithm, consequently, resulting in a failed estimation. This way, the 

number of single trips may have increased, however, matching rate of the algorithm may 

also have increased. 
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Table 3.2. Summary of data cleaning and data manipulation processes. 

Phase Process # of Transactions % of Total % of Boarding 

Trans. 

% in Multiple 

Boardings 

Action 

- Start 1,969,185 100% - - - 

Separation Alighting Trans. 201,511 10.23% - - Seperation 

Boarding Trans. 1,767,674 89.77% 100% - Seperation 

Preliminary Error 

Elimination 
Missing card ID 154 0.01% 0.01% - Elimination 

Over-boarding 1,154 0.06% 0.07% - Elimination 

Missing info. 736 0.04% 0.04% - Elimination 

Non-operative bus routes 976 0.05% 0.06% - Elimination 

Total 3020 0.15% 0.17% - 
 

After Elimination - 1,764,654 89.61% 99.83% - 
 

Data Cleaning Boardings at last stops 29,632 1.50% 1.68% - Correction 

Boardings at stops not on the bus route 21,166 1.07% 1.20% - Correction 

Boardings Remaining from Yesterday 3,240 0.16% 0.18% - Correction 

Single trips 145,690 7.40% 8.26% - Elimination 

Multi boardings 1,618,964 82.21% 91.74% 100% Trip chain input 

Trip chaining result 

(1,250 m walking 

threshold) 

Estimated 1,378,120 69.98% 78.10% 85.12% Trip chain output 

Not estimated 240,844 12.23% 13.65% 14.88% Trip chain output 

 



 

50 

 

CHAPTER 4 

 

METHODOLOGY 

 

The data set contains 1,764,654 transactions as a result of the data cleaning 

processes in section 3. The methodology for this thesis is based on several elements, all 

of which include data processing approaches that serve to estimate the potential passenger 

exchange from bus to the metro service after the completion of the metro extension. We 

used passenger load profiles to illustrate how the ridership on the bus routes, which are 

currently operating within the metro extension’s service area, changed after introducing 

the metro alternative. This will assist us in understanding the impact of the new metro 

service and making informed future transportation planning decisions.  

First, the assumptions, which are necessary in trip chaining method, are 

established in section 4.1.1. Then, based on these assumptions, trip chaining algorithm is 

constructed to estimate the alighting locations in section 4.1.2. Second, a series of 

algorithms are developed in section 4.3 to create the passenger load profile of bus routes 

as realistically as possible. Since the primary objective is to simulate the passenger shifts 

from bus routes to the metro, it is necessary to identify the bus routes that presently 

operate within the service area of the metro extension. Thus, in section 4.2.1, we aim to 

determine the bus routes that operate within the service area of the metro extension. Then, 

in section 0, the competitive or cooperative relationship of these bus routes with the metro 

is established. Thereafter, the passenger flows on the targeted bus routes are categorized 

in section 4.4. In this section, for each passenger flow category, we also develop an 

alternative scenario where the passengers are forced to use the metro, and bus, if 

necessary, to repeat their actualized trips. In the final part, section 4.5, two travel time 

cost functions are developed: one for the actualized trip and one for the trip(s) in the 

alternative scenario. In this section, we explicitly explain our methodology for 

constructing the travel time cost functions and the underlying assumptions used to 

configure alternative scenarios. Then, we estimate the mode shifts based on travel time 

savings. 
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4.1. Trip Chaining Method 

 

The trip chaining method is used in many studies (see Table 2.1) mostly to create 

origin destination matrices to further use in transportation planning. In this study, trip 

chaining method is employed to estimate the alighting location of the trips conducted on 

public transportation modes. The trip chaining method is relatively easier (compared to 

probabilistic and machine learning methods) to construct and has a reasonable 

performance in estimating alighting locations. However, the method has two deficiencies: 

first, by its nature, it is not capable of estimating alighting locations of single trips 

(singular boarding transactions); second, alternative modes other than walking are not 

considered, such riding bicycles or e-scooters. 

Even though the algorithm's performance appears to be above average compared 

to those presented in the literature, we acknowledge that our algorithm lacks the most 

recent developments presented to enhance the trip chaining method's capabilities. In the 

following section, the adopted assumptions, which form the foundation of the trip 

chaining algorithm, are presented. 

 

4.1.1. Assumptions in Trip Chaining Algorithm 

 

The trip chaining algorithm is essentially a set of assumptions and principles that 

are defined based on real-world conditions in order to estimate a passenger's alighting 

location. The assumptions and rules that are adopted in the developed trip chaining 

algorithm are listed below. 

 

1. The majority of passengers alight at the station where they start their next trip 

(Barry et al., 2002). 

2. The majority of passengers return to their origin (boarding station of their very 

first trip) at the end of their last trip (Barry et al., 2002). 

3. The alighting stop of a trip cannot be inferred, if it is the only trip of the 

cardholder for the day (Barry et al., 2002). This type of trip is termed as a unit 

(Trépanier & Chapleau, 2006) or a single trip as in this study. 

4. The alighting stop cannot be inferred if consecutive transactions (boardings) 

occur at the same station (Barry et al., 2002). 



 

52 

 

5. Passengers can only alight at a subsequent stop on the given direction of the 

route (Trépanier & Chapleau, 2006). This rule is only applicable to bus 

boarding transactions since the boarding transactions on other public 

transportation modes do not have trip direction information. 

6. The distance between the boarding stop of the next trip and the alighting stop 

of the previous trip must be less than the allowable walking distance 

(Trépanier & Chapleau, 2006). 

7. The alighting stop of the last trip of the day must be within the allowable 

walking distance of the boarding stop of the first trip of the day (Trépanier & 

Chapleau, 2006). 

8. Passengers do not use any other transportation modes, i.e., shared mobility, 

private car etc., but walk between any consecutive trip segments (Zhao et al., 

2007).  

9. A passenger is required a certain time to perform an activity, activity threshold 

(Nassir et al., 2011). 

10. A passenger must transfer in a given time, transfer threshold (Nassir et al., 

2011). 

11. The hour with the lowest activity in the day can be used as the virtual midnight 

(M. Munizaga et al., 2014). 

 

4.1.1.1. Single Trips 

 

As in stated in the 3rd assumption, the alighting location cannot be inferred if it is 

the only trip (single trip) of the card holder (Barry et al., 2002). Due to the inability of the 

trip chaining method to determine the destinations of single trips, these trips should be 

excluded from the analysis.  

As a result of the data cleaning process, a data set of 1,764,654 transactions from 

646,757 cardholders is obtained. The first graph on Figure 4.1 indicates that there are 

145,690 (8.26%) single trips that cannot be used in the trip chaining algorithm. These 

transactions are excluded from the analysis. Besides, the second graph on Figure 4.1 

shows the number of occurrences of card IDs in the complete data set. The percentage of 

cardholders who have only one trip record on the 5th of April 2022 is 22.53%.  
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Figure 4.1. a) Number of single b) Number of card ID occurrences. 

 

Table 4.1 shows the data set, in which each cardholder has two or more trip 

records. This data set contains 1,618,964 (91.74%) transactions of 500,876 unique card 

IDs. 

 

Table 4.1. Number of occurrences of the unique card IDs in the smart card data. 

Occurrence 2 3 4 5 6 7 8 >8 Total 

Counts 229,634 81,731 109,998 35,591 26,967 8,836 4,415 3,895 500,876 

Percentages 45.85% 16.32% 21.96% 7.11% 5.38% 1.76% 0.88% 0.78% 100% 

 

Note: The occurrence value can be viewed as a representation of the number of trips made by a cardholder. 

The mean occurrence (trip) for the smart card data is 3.94. 229,634 cardholders use the public transportation 

twice. 

 

4.1.1.2. Same Boarding and Alighting Location 

 

For several reasons, the trip chaining algorithm estimates the alighting location of 

some trips at the same location where the boarding happened. In regard to 4th trip chaining 

assumption, these issues are label as failure. Due to this issue, estimations for 54,878 

transactions failed (see Figure 5.1). 
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4.1.1.3. Walking Distance 

 

In Table 2.3, various walking distance values in the literature can be seen. As the 

table indicates, different values have been preferred for allowable walking distance 

because this threshold is affected by several factors, including city architecture, 

demographics, terrain, transfer conditions, and transit mode in the analysis (Hussain et 

al., 2021).  

To implement the walking distance in the algorithms, haversine distance function 

can be utilized (Assemi et al., 2020). Haversine distance is relatively easier to calculate 

than the network walking distance which often requires additional service, for example 

Google Maps distance matrix service. Using the latitude and longitude information of two 

points (stop/station) and the radius of the earth (6,371 km), haversine distance between 

these points can be calculated (Assemi et al., 2020). For this purpose, the built in 

“haversine” function of python library is used in our algorithms. 

In our study, a sensitivity analysis is conducted to select the proper walking 

threshold, i.e., allowable walking distance. To perform sensitivity analysis, the haversine 

distance between the boarding stop/station and the closest stop/station on the route of the 

next trip is computed for all trips except for the last trip in a passenger's journey. For the 

last trip, the distance between the first trip's boarding stop and the nearest stop on the last 

trip's route is calculated. Since 2,000 meters is the maximum allowable walking distance 

used in trip chaining studies according to Table 2.3, higher distance thresholds are not 

considered.  

The distribution of the calculated distances is given in Figure 4.2. As the figure 

indicates, the majority of the calculated distances (90.77%) are equal or lower than 2,000 

meters. For instance, the cumulative percentage line on the figure indicates that alighting 

locations of 88.51% of the transactions can be estimated if the walking distance threshold 

is selected as 1,250 meters. Besides, it can be seen from the figure that increasing the 

walking threshold beyond 1,250 meters does not increase the number of alighting location 

estimation significantly. In light of the sensitivity analysis and after considering the 

preferences of local passengers and the characteristics of the public transportation 

infrastructure, we have determined the allowable walking distance threshold as 1,250 

meters. 
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Figure 4.2. The number of transactions whose alighting location can be estimated based 

on walking distance intervals. 

 

This interpretation also suggests that increasing the walking distance threshold in 

the trip chain algorithm over 1,250 has no significant influence on estimation 

performance. This is similar to another walking distance sensitivity analysis performed 

by António A. Nunes and Dias (2016), the failed estimation was 10.5, 7.7 and 5.8% for 

400, 640 and 1,000 m thresholds, respectively (A. Nunes & Dias, 2016). In addition, 

Alsger et al. (2015) also found that transfer walking distance was less than 600 m for 

about 85% of passengers and increasing the walking distance beyond 800 m had no 

significant effect on the results (Alsger et al., 2015). However, in some cases, e.g., if there 

is a stop that provides higher level of service than the closest stops, passengers may be 

willing to walk longer distances to benefit from the high level of service (Assemi et al., 

2020). 

 

4.1.1.4. Transition Hour 

 

In our smart card data, the day starts at 00:00 and ends at 23:59 by default. It 

means that trips that are the continuation of the previous day's trip chain may be present 

in the data. Since the algorithm sorts the data by the time to define the first and the last 

trips of an individual, this results in incorrect sorting. This is important because the chain 
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algorithm infers the alighting stops of intermediate trips based on boarding location of 

the next trip, and infers the last alighting stop in reference to first boarding stop. To reduce 

the error and number of ignored trips (Cengiz, 2022), time internal definition of a day 

must be made adequately by determining the transition hour (virtual midnight). In the 

literature, several transition hours have been used; 4 a.m. (Cengiz, 2022; M. Munizaga et 

al., 2014), 5 a.m. (António A. Nunes & Dias, 2016), and 3 a.m. (Barry et al., 2009; Hora 

et al., 2017; Nassir et al., 2011). Meaning that, it may vary by location due to different 

PT policies adopted by the local authorities. Generally, the lowest activity observed in an 

hour on the day of analysis is used as the virtual midnight (António A. Nunes & Dias, 

2016; Cengiz, 2022; M. Munizaga et al., 2014). We adopted the methodology presented 

by Munizaga et al. (2014) to determine the transition hour of a working day. Table 4.2 

shows the number of transactions occurred after midnight. After 4 a.m. there are no 

transactions in the smart card data, thus these hours are not presented in the table. 

In our case, the lowest number of activities (27) occurs between 3:00 and 4:00 

a.m., so 4:00 a.m. is chosen as the transition hour. We presumed that public transportation 

operations for all modes begin at 4 a.m. and end at 3:59 a.m. the following morning. In 

addition, all transactions before 4 a.m. are moved to the following day under the 

assumption that passengers exhibit similar trip behavior. 

 

Table 4.2. The number of transactions (activities) occurred during the time intervals. 

Time Interval 00:00 - 00:59 01:00 - 01:59 02:00 - 02:59 03:00 - 03:59 Total 

# of Activities 3036 130 47 27 3240 
 

Note: The least number of trips are seen between 03:00 - 03:59. Thus, 4 a.m. is selected as transition 

hour. In total, 3,240 transactions are transferred to the next day.  

 

4.1.1.5. Activity and Transfer Detection 

 

Passengers may need to make one or more trips to reach their destinations. To 

determine whether a passenger performs a transfer trip, spatial and/or temporal thresholds 

must be defined. In general, the amount of time between consecutive journeys and spatial 

thresholds are used to determine whether an alighting location is a transfer point or the 

journey's final destination. Alsger et al. (2015) presented insightful findings about the 
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effects of different transfer times and distance thresholds on the estimated O-D matrices 

using South East Queensland smart card data. They showed that passengers spend 85% 

of their transfer time for waiting or short activities not for walking, further, change in 

transfer time from 15 to 90 minutes had a slight effect, and the last alighting location 

(destination) for most passengers was within 800 m of their first boarding location (origin) 

(Alsger et al., 2015).   

In addition, Nassir et al. (2011) considered all the trips made within 2.5-h interval 

as transfer trips based on the current Metro Transit fare policy, which states that all the 

trips made in the time span are free of charge (Nassir et al., 2011). It is critical to set 

proper time thresholds that reflect actual circumstances to determine the transfer trips 

correctly. Besides, it was found that passenger do not wait more than 30 minutes in the 

areas serves by high frequency bus and rail transit network (Ali et al., 2016). 

Since the alighting time information is not available, the time gap between 

boarding times of consecutive trips is controlled for the time threshold, which is set as 

120 minutes. This is the time span currently adopted in the fare policy that allows 

passengers to transfer free or with discount.  

 

4.1.2. Alighting Estimation using Trip Chaining Algorithm 

 

After establishing the necessary assumptions, the trip chaining algorithm can be 

constructed. The developed trip chaining algorithm follows similar rules that are 

presented by Trepanier (2007), but with the limitation that since the SC data is only for 

one day; it is not possible to establish a link with the historic data in order to estimate an 

alighting stop for unlinked trips.  

The output data set of data cleaning process is the input of the trip chaining 

algorithm. The primary objective of performing both elimination and correction 

operations before implementing the trip chaining algorithm is to reduce its execution 

time. The alighting estimation process, which processes İzmir’s transit data (containing 

1,618,964 transactions in total) in less than 18 minutes on an eight-core 2.6 GHz laptop 

PC with 32 GB of RAM. This execution time makes the process feasible, so it can be 

utilized multiple times per day.  
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Figure 4.3. Alighting estimation process in the developed trip chaining algorithm. 

 

The alighting estimation process is illustrated in Figure 4.3. The figure illustrates 

the procedure as if all the three trips are made on bus routes, but almost the same logic 

applies to metro, tram, commuter rail, and ferry. We have information about the direction 

of bus trips, allowing us to narrow our search for the alighting stop by applying the 5th 

assumption. This is necessary for the bus routes since the bus may travel a different route 

in each direction. However, direction information is unavailable for the other modes. 

Consequently, the alighting station is searched considering all the stations on the mode’s 

route. Since the routes of the other modes of public transportation are identical in both 

directions, it is not anticipated that failure to implement the fifth assumption will 

compromise the results' reliability. 

As illustrated, all trips except the final trip (first and second trips in Figure 4.3) 

are associated with the subsequent trip to estimate the alighting stop/station. In contrast, 

the alighting stop/station of the final trip (third trip in Figure 4.3) is estimated based on 

the boarding stop/station of the initial trip. To estimate the alighting stop or station, a 

buffer is evaluated around the boarding stop/station. Here, the allowable walking distance 

threshold is used as the radius of the buffer. In addition, an alighting stop search pool is 
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established for trips. If a stop/station in the alighting stop searching pool is within the 

buffer zone of the subsequent or initial trip's boarding stop/station, this stop/station is 

selected as the alighting stop. If multiple stops/stations are present within the buffer zone, 

the closest stop/station is selected. The primary steps in the trip chaining algorithm are as 

follows: 

 

1) Sort the input data by transaction time. 

2) Create a list of unique card IDs. (The following steps will be applied sequentially 

until all the elements in this list are processed.) 

3) Select the card ID in the sequence. 

4) Filter the data by card ID. The result of this step is a data set of all the trips done 

by the cardholder with the selected card ID. 

5) Select the trip in the sequence.  

6) For the trips but the last trip of the cardholder, the “next trip” is the trip which is 

right after the current trip in the sequence. If the trip is the last trip, consider the 

first trip of the card holder as the “next trip”. 

7) Create the alighting stop/station searching pool, which is the stops/stations that 

the cardholder may have alight, based on the current mode. If the mode is bus, the 

alighting stop searching pool consists of only the stops in the direction that are 

after the boarding stop. 

8) Calculate the distances between the stops/stations in the searching pool and the 

boarding stop/station of the next trip. Select the closest stop/station. 

9) If the distance is higher than the allowable walking distance threshold, alighting 

stop/station is not estimated. Return to step 2 if the current trip is the last trip. If 

else, return to step (4). 

10) If the distance is smaller than the allowable walking distance threshold, select the 

closest stop/station the searching pool as the alighting stop/station.  

11) If the alighting stop/station is the same as the boarding stop/station, alighting 

stop/station is not estimated. Otherwise, the closest stop/station is selected as the 

alighting stop/station. Return to step 2 if the current trip is the last trip. If else, 

return to step (4). 
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4.1.3. OD Matrix 

 

Although trip level alighting estimation is sufficient for the main objective of this 

study, an algorithm is implemented to the trip chaining method that creates the origin and 

destination pairs for every journey of a cardholder. This implementation increased the 

running time of the trip chaining algorithm by 8 minutes (26 min in total). 

The process is that if a cardholder does not take a trip in 120 minutes (activity 

threshold) after the previous trip’s boarding time, the alighting location is considered as 

destination of the passenger’s journey, as explained in section 4.1.1.5. Accordingly, an 

additional Excel sheet is produced containing the number of journeys, origin, and 

destination of the journeys (stop/station level) and also transit modes used in the journey 

are presented, as in Table 4.3.  

In total, 909,402 journeys from 500,876 cardholders are identified based on the 

activity threshold. The destination information for 181,645 (20%) of the journeys is not 

available due to trip chaining algorithm could not find an eligible alighting location 

regarding walking threshold. Also, based on the applied thresholds, it is obtained that 

105,891 cardholders only have one journey in the day. 58,305 (55.06%) single journeys 

do not have an estimated alighting location.   

 

Table 4.3. An example of the output of the OD algorithm. 

Card ID 
Journey 

Order 
Origin Destination Transit Modes 

KART 459410 1 50517 Halkapınar Bus - Metro - Com. Rail 

KART 459410 2 Halkapınar 50517 Metro - Bus 

KART 440125 1 31364 31272 Bus 

KART 124355 1 40955 40088 Bus 

KART 124355 2 40088 40018 Bus - Bus 

KART 124355 3 40019 40953 Bus - Bus 

KART 481905 1 Demirköprü Naldöken Com. Rail 

KART 481905 2 Naldöken Demirköprü Com. Rail 

KART 401058 1 31318 Tepeköy Bus - Com. Rail 

KART 401058 2 Tepeköy 31319 Com. Rail - Metro - Bus 
 

 

Further, using ArcGIS ArcMap 10.3, the stops and stations within the districts’ 

boundaries are identified. There are 31 districts in İzmir and 11 of them constitute the 
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central business district as shown in Figure 4.4. These districts are considered as traffic 

zones to be able to produce zonal passenger flows. 

 

 

Figure 4.4. The districts (left) and CBD (top-right) of the İzmir city.  

 

4.2. Inter-route Relationships 

 

Here, the primary objective is to identify the bus routes which are expected to be 

affected by the extension of the metro line, as well as their relationship with the metro. 

For this purpose, in section 4.2.1, we determine the bus routes operating within the metro 

extension’s service area. Then, in section 0, the relationship between these bus routes and 

the metro are established by calculating the competitiveness and cooperativeness of the 

bus routes. In order to do that, two indices are developed: cooperation index and 

competition index. Finally, the bus routes with the highest degree of competition are 

deemed to be the most affected from the extension of the metro line due to the 

presumption that the likelihood of passenger exchange is high between routes in 

competition (F. Wang et al., 2022; J. Zhang & Li, 2014). These bus routes are further 

analyzed to simulate the passenger’s mode shift. 

Important to note that, instead of using haversine distance, we prefer to use 

network walking distance to define the service area of a station. This process is explained 

in section 4.2.1. The primary steps in the procedure are outlined below. 
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1) Define the direction of the analysis, inbound or outbound. 

2) Filter the data set of bus stops based on the analyzed direction. This data set 

consists of all the unique bus stops on the bus routes in the given direction. 

3) For each unique bus stop, calculate the network walking distance to all the 

stations. 

4) Determine the minimum distance and the related station. 

5) If the minimum distance is below the threshold, i.e., if the stop is within the service 

area of any station, record the following: stop name, related station and distance. 

Otherwise, pass. 

6) Determine the bus routes that have any of the recorded stops in their routes. 

7) For each identified bus route: 

a) obtain the number of stops within the service area of the rail system on its 

route, 

b) obtain the number of stations whose service area contains at least one stop, 

c) calculate the competition and cooperation indices. 

 

The result of the process contains the targeted bus routes as well as their 

competition and cooperation degrees with the rail systems. Details can be found in the 

following sections. 

 

4.2.1. Targeted Bus Routes 

 

To determine the bus routes that can be alternative to the metro, service are of the 

metro extension should defined (Soza-Parra et al., 2022). This service area is defined as 

a buffer zone which the area set around the metro stations that covers any possible 

alighting locations of transit passengers (Alsger et al., 2015). Based on the literature and 

considering the topography around the metro line, the service radius is selected as 600 

meters. This value is lower than 800 meters which is the commonly accepted service 

radius for rail system’s station. 800 meters may be acceptable for access and egress 

activities; however, passengers tend to prefer walking shorter distances for transferring. 

Additionally, the extension of the metro line is expected to serve residents of the Narlıdere 

and Balçova districts. These districts have residential areas located on hilly terrain, and 

there are bus routes serving these areas. A large service radius for a metro station may 
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cover portions of these areas that are not easily accessible by walking due to severe street 

slopes. Thus, 600 meters is selected as the radius of the service buffer around a metro 

station. Besides, we make use of Google Maps API Distance Matrix service to calculate 

the network walking distance between two points. The network walking distance is 

calculated to determine if the stop is within the service area of that station. The bus stop 

is considered to be within the station’s service area if the distance to the station is equal 

to or less than 600 meters. 

As illustrated in Figure 4.5, haversine distance results in much longer distances, 

thus may cover some streets that are not feasible to walk. In the case of using the haversine 

distance method, 72 unique bus stops are within the service area. On the other hand, if 

the network walking distance is used, 54 unique bus stops are withing the service area. 

By using network walking distance, we believe that the accuracy of the algorithms is 

enhanced. This is also important because of the factors, which are the number of stops 

and related stations, used to establish the relationship between bus routes and the metro 

line. After establishing the service radius around the metro stations, the stops within the 

service areas are determined. Then, the targeted bus routes are identified according to the 

stops within the service area of the stations. 

 

 

Figure 4.5. The illustration of the difference using network walking and haversine 

distance to define the service area of a station. 
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4.2.2. Competitive and Cooperative Bus Routes 

 

As explained in the literature review, a relationship can be developed in two ways; 

competitive or cooperative. In addition, a contradictory relationship, which is called co-

opetition relationship, may also be observed for some bus routes (Wei et al., 2020). The 

assumption is that when the collinearity between a bus route and a rail system increases, 

the level of competition also increases (Peng, 1994). The degree of competition and 

cooperation of a bus route is determined based on its collinearity with the rail system. To 

define the collinearity mathematically, we use two factors: 1) the number of bus stops 

within the rail system’s service area, 2) the number of metro stations with at least one bus 

stop within their service area. Furthermore, competition and cooperation indices are 

developed to calculate the competitiveness and cooperativeness of a bus route. The above-

mentioned collinearity factors used in these indices are explained in the sections 4.2.2.1 

and 4.2.2.2. 

The developed algorithm for this process is so adaptable that it can determine bus 

routes operating within a service area of any rail system. Since our goal is to determine 

the bus routes that operate within the service area of the metro extension, the algorithm 

is fed with the coordinates of the stations on the metro extension. Then, two factors are 

used to calculate competition (𝐼𝑐𝑜𝑚) and cooperation (𝐼𝑐𝑜𝑜) indices. 

 

4.2.2.1. Competition Index 

 

As explained in the previous section, two factors are used to define the collinearity 

and competition index (𝐼𝑐𝑜𝑚) is constructed as below. The first factor (𝛼) is the ratio of 

the number of bus stops within the metro service area (𝑏𝑤) to the total number of bus 

stops (𝑏𝑡).  

 

αcom =
bw

bt
 (4.1) 

βcom = {

0     , mw = 1

   
mw

mt
  , mw > 1 (4.2) 

Icom =
αcom + βcom

2
    (4.3) 
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where, 

𝑏𝑤 is the number of bus stops within the defined service area, 

𝑏𝑡 is the total number of bus stops on the route, 

𝑚𝑤 is the number of collinear stations, i.e., number of stations which has a stop within 

its service area, 

𝑚𝑡 is the total number of the stations, 

𝛼𝑐𝑜𝑚 is the ratio of number of bus stops withing the defined service area, 

𝛽𝑐𝑜𝑚 is the collinearity ratio, 

𝐼𝑐𝑜𝑚 is the competition index which gives the competitiveness of a bus route. 

 

Instead of simply using 𝑏𝑤, 𝛼𝑐𝑜𝑚 is used to consider the length of the bus route 

outside the rail system’s service area. For example, a bus route can be fully collinear to 

the rail system, but it may also operate outside of the rail system’s service area for a 

reasonable amount of length. In this case, assigning a high competitiveness to this bus 

route will be misleading. Because this route also shows cooperative features by collecting 

passengers outside of the rail system’s service area and transferring them to the rail 

system. 

To calculate the value of the second factor (𝛽𝑐𝑜𝑚), we defined a conditional 

function with respect to definitions in the literature (see Table 2.4). According to 

definitions in the literature, if 𝑏𝑤 equals 1 (one), the competitiveness of the bus route is 

deemed to be zero, thus 𝛽𝑐𝑜𝑚 is zero. Because this circumstance, in which a bus route 

serves within the service area of only one station of the rail system, is a characteristic of 

complementary (feeder) bus routes. Here, we adopt an approach similar to that of 

Gadepalli et al. (2022) and use this ratio as an approximation for the collinear length of 

the bus route to the metro (Gadepalli et al., 2022). Thus, if  𝑏𝑤 is higher than 1 (one), 

𝛽𝑐𝑜𝑚 is the proportion of the number of metro stations with at least one bus stop within 

their service area (𝑚𝑤) to the total number of metro stations (𝑚𝑡).  

For example, bus route 5 has 28 stops on its route in outbound direction where 24 

of them are within the metro service area. Consequently, 𝑠𝑡 and 𝑠𝑤 are equal to 28 and 

24, respectively. In this case, 𝛼𝑐𝑜𝑚 is calculated as 0.857. In addition, bus route 5 is related 

to all the stations of metro extension, thus 𝑚𝑤, which is 8 (eight), is equal to 𝑚𝑡. Then, 

𝛽𝑐𝑜𝑚 is equal to 1 (one). Finally, the competitiveness of bus route 5 is calculated as 0.929 

by using competitiveness index. 
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4.2.2.2. Cooperation Index 

 

The cooperation index (𝐼𝑐𝑜𝑜) is defined as the exact opposite of the competition 

index. It means that the summation of cooperation and competition index results of a bus 

route is equal to 1 (one). Once again, two factors are used to calculate the cooperation 

index (𝐼𝑐𝑜𝑜) and is defined as below. The definition of the variables is already presented 

in the previous section; thus, they are not repeated here. 

Since the cooperation between a bus route and a rail system decreases with an 

increase in the collinearity between them, 𝛼𝑐𝑜𝑜 is defined as (4.4. To calculate the second 

factor (𝛽𝑐𝑜𝑜), a conditional equation is used (equation (4.5). We defined a conditional 

function and when the 𝑚𝑤 equals to 1 (one) 𝛽𝑐𝑜𝑜 is also equal to 1 (one). As explained in 

the previous section, the reason is that being related to only one station is a feature of 

complementary (feeder) bus routes. 

 

αcoo = 1 −
bw

bt
 (4.4) 

βcom = {

1     , mw = 1

  1 − 
mw

mt
  , mw > 1 (4.5) 

Icoo =
αcoo + βcoo

2
 (4.6) 

 

4.2.2.3. An Example for Competitive and Cooperative Bus Routes 

 

In Figure 4.6, three bus routes in relationship with the metro line are visualized to 

discuss competing and complementary relationships on real examples. These bus routes 

are currently in operation. The metro line, represented with red, and its stations’ service 

area are indicated by hatched areas. We use 600 meters network walking distance to 

define the service areas. As it is seen, Route 10 (green line) runs parallel to the metro line 

on the collinear corridor between F. Altay and Konak stations. One might consider this 

bus route competitive by only examining the relationship heuristically because it runs 

fully collinear to the metro. However, this bus route is only related to three metro stations 

with 4 stops, and it is complementary rather than competitive. Further, Route 167 (blue 

line) is an endpoint collinear bus route primarily operating as a feeder bus having 
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complementary relationship with the metro line. On the other hand, Route 971 (pink line) 

also has a complementary relationship with the metro line, thereafter, serving the 

passengers traveling within Narlıdere and Balçova. In addition, this bus route will be an 

intermediate collinear bus route after the extension of the metro line from F. Altay to 

Narlıdere. Although characteristics of bus routes can be roughly identified heuristically 

by looking at their spatial representation, this is not a practical and an accurate approach. 

Hence, a systematic approach should be adopted. In this study, we have developed a 

systematic framework based on the abovementioned definitions to determine the 

competing and complementary bus routes within the service area of any given group of 

stops/stations in section 4.2.1.  

 

 

Figure 4.6. Example bus routes for cooperation and competition. 

 

4.3. Passenger Load Profile 

 

Passenger load profiles are used in the operational level transit planning especially 

for service adjustments (Pelletier et al., 2011). Although manual surveys have frequently 

been used to estimate onboard passenger loads, such surveys are too expensive to be 

completed daily across all available services, and they are also prone to mistakes and 

biases (D. Luo et al., 2018). For this reason, utilizing passive-data to obtain such transit 

planning inputs is valuable. For example, passenger loads can be determined by 
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combining AFC, AVL and GTFS data which are collected from the urban transit systems 

(D. Luo et al., 2018). 

Passenger load profile or occupancy levels may be determined using the boarding 

and alighting counts on stops/stations. In this thesis, an algorithm is developed to 

determine the passenger load profile of any bus route. Passenger load profiles provide a 

rough insight into the bottlenecks in bus operation in terms of service quality. We have 

utilized one-day of smart card data containing boarding and corresponding alighting 

locations, which are estimated using trip-chaining algorithm in the previous section.  

Since both boarding and estimated alighting locations are available, load profile 

of any bus route can be obtained. However, there are trips with a failed alighting stop 

estimation due to reasons explained in section 2.3.2, such as unlinked trips. Barry et al. 

(2009) assigned an alighting stop to passengers who have no estimated alighting stop 

information by uniform sampling on the basis of observed distribution from passengers 

at the same stop/station with estimated alighting stop information (Barry et al., 2009). 

This issue also creates unbalanced trip generation and attraction pairs, thus requires a 

correction to create OD matrices. To estimate system-wide OD matrix, A. Cui (2006) was 

scaled the number of the trips with inferred alighting stops to match the control totals 

(entry-exit counts) for the rail system (A. Cui, 2006). In the purpose of obtaining load 

profile of the bus routes, the last stop on the direction is assigned as an alighting stop for 

failed estimations. Although this assumption has a negative impact on the accuracy, it has 

an insignificant influence in our case because of high matching rates (see Table 5.4)  

found for the bus routes operating within the metro extension’s service area. In other 

words, the number of passengers whose alighting stop is not estimated is very low for the 

targeted bus routes. 

Besides, in the smart card data, there is not any information about the bus runs of 

a bus route. Thus, the runs of a bus route must be determined priori for obtaining the 

passenger load profiles. In addition, the determination of  bus running times, headways 

and frequencies of a bus route also requires the identification of bus run numbers since 

this information cannot be directly obtained from the smart card data. 
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4.3.1. Bus Runs 

 

Similar to the method one presented by Deri (2018), vehicle plates and bus stop 

orders are used to calculate the number of bus runs performed in a day. The time gap 

between the earliest and latest boarding transactions is primarily utilized to prevent 

incorrect run assignment, such as that caused by the one-stop-boarding problem. As with 

all other procedures, the data on the smart card is sorted by boarding time, from earliest 

to latest. The steps followed in the bus frequency determination algorithm are presented 

below. 

First, smart card data is filtered based on the bus route number and the direction, 

for example bus route 551 and direction 1 (outgoing). Then for every boarding transaction 

on the bus route, vehicle plate, assigned bus run number and boarding stop order are 

recorded in separate lists named as plate list, run number list, and stop order list, 

respectively. The main objective for generating these lists is to be capable of retrieving 

the previous run number and stop order for the current transaction's vehicle plate. 

Previous run number and prior stop order refer to previously recorded run number and 

stop order for the present bus plate. For example, the bus plate, run number and boarding 

stop order for a transaction are AB123, 4 and 15, respectively. And assume that, for the 

next several transactions, a different vehicle plate is present. When vehicle plate AB123 

is observed again, the algorithm requires to reach the boarding stop order and assigned 

run number of the last time this vehicle plate was seen. Hence, these lists record the 

history of the inputs and outputs, so they can be reached any time. 

For the first transaction, the vehicle plate and the transaction are assigned to the 

first bus run. Then, the vehicle plate and the run number are stored in vehicle plate list 

and run number list, respectively. Also, the corresponding boarding stop order is stored 

in the stop order list.  

For the next boarding transaction, if the vehicle plate is encountered before, i.e., 

if it is in the vehicle plate list, the current bus stop order is compared with the previous 

bus stop order. If the current bus stop order is equal to the previous stop order, it is 

assumed that the bus run continues, and the current transaction is assigned to the previous 

run number. Here, a control parameter must be added in case of boardings happening at 

the same stop on different bus runs. For example, the last boarding on the previous bus 

run and the first boarding on the current bus run may have happened at the same stop. In 
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this case, the time difference between these consecutive transactions can be used to 

distinguish bus runs. Even in extremely high demand situations, the time difference 

between two boarding transactions at the same stop, i.e., dwelling time, is usually not 

expected to be greater than 2-3 minutes. In our case, there are two exceptions for this 

assumption: 1) drivers let passengers board buses at terminus on layover time, thus, there 

might be transactions happened in longer time gaps, 2) one-stop-boarding problem. In 

one-stop-boarding problem, all the boarding transactions are assigned to one stop on the 

bus route, however, boarding times are correct. In case of one-stop boarding problem and 

low demand situations, the time difference between boardings might be nearly high as 

bus running time.  Thus, the time difference threshold here is set as 20 minutes. If the 

time difference between the corresponding boarding time of the previous transaction and 

the boarding time of the current transaction on the current vehicle is higher than 20 

minutes, the vehicle plate and the transaction is assigned to the next bus run.  

If the current stop order is higher than the previous stop order, it is assumed that 

the latest bus run continues, and the current transaction is assigned to the previous run 

number. We also need to consider the possibility that the run may have changed even 

though the current stop order is higher than the previous stop order. So, a time threshold, 

which is 30 minutes in our algorithm, must be used to distinguish these bus runs. To 

determine the value for this threshold, the worst scenario is considered. For example, 

consider a bus run having a boarding transaction at its first stop. The next boarding on the 

same run may have happened at a stop near the terminus, i.e., after some time that is close 

to route’s running time. Thus, the time threshold needs to be higher than the typical 

running time. If the time difference between consecutive boardings on the same vehicle 

is higher than 30 minutes, the vehicle plate and the transaction is assigned to the next bus 

run. Finally, if the current bus stop order is lower than the previous one, it is assumed that 

the bus has started a new bus run; the vehicle plate and the transaction are assigned to the 

next bus run.  

If the vehicle plate is not encountered before, i.e., if it is not in the plate list, the 

vehicle plate and the transaction are assigned to the next bus run. The bus runs of a bus 

route can be determined using this algorithm as well as the bus frequency. 

Here, due to failing to change the direction, there are bus runs that seem to last 

from the beginning to the end of the operation. This causes to have some bus run with 

unusually high passenger count. This problem is tried to eliminate in section 4.3.6. 
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4.3.2. Bus Running Speeds 

 

Before explaining the algorithm, the following should be stated. The stop data set 

has the stop-to-stop haversine distances calculated using the latitudes and longitudes of 

consecutive stops for each bus route. Furthermore, to obtain the real bus route lengths, all 

the bus routes are created on ArcGIS ArcMap software using open-source GPS data of 

bus routes provided by İzmir municipality. Then, the real route length of a bus route is 

determined. Generally, haversine distances are scaled by √2 to obtain realistic distances 

(M. D. Yap et al., 2017). Instead of this approach, stop-to-stop distances are scaled to 

equalize the total haversine route length and real route length of a bus route and added to 

the bus stop data as corrected distance.  

After the determination of the runs of a bus route, the bus running speed can be 

calculated. To determine the running speeds for all the runs of a bus route, we simply 

utilized the boarding times at first and last stops where the boarding transactions occurred 

on a run. For the sake of clarity, the capital letter F is used to denote the first stop which 

has a boarding transaction on a bus run. Likewise, L is used to represent the last stop. 

Then, using the latest transaction time at F and the earliest transaction time at L, the travel 

time is calculated. And then, the distance between stop F and L and travel time is used to 

calculate the running speed of the run. Finally, all the calculated speed values are recorded 

in a list based on the relevant run number so that they can be accessed at any time. 

However, there are several complications that must be considered. First, there 

might be only one boarding (low demand situation) on the run. In this case, there is not 

enough data to calculate the running speed. The second issue is the one-stop-boarding 

problem which is the case where all the boarding transactions are assigned to one stop. 

Third, some several reasons, the results of running speed calculations might be 

inconsistent, i.e., as too high or low speed values could be calculated. In our algorithm, 

the upper and lower limits for a bus speed are set as 15 and 55 km/h, respectively. In any 

of the three cases, the algorithm first looks at the list where the running speeds are 

recorded.  
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4.3.3. Bus Running Times 

 

The total travel time, i.e., running time, of a bus route run can be calculated by 

dividing the route’s total length to its running speed. A route’s total length is obtained by 

determining the distance between its first and last stops. When the running speed between 

the farthest stops with boarding transactions is determined, this speed value can be 

presumed to be constant for that run. The following equation is used to calculate the run 

times of a bus route: 

 

RT =
distance(s1, sn)

RS
  (4.7) 

 

where, 

𝑅𝑇 is running time for the run of a bus route, 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑖, 𝑠𝑗)  is the function that returns the distance between given two   stops on a 

bus route, 

𝑅𝑆  is the calculated speed for the run of a bus route, 

𝑠1 is the first stop on a bus route, 

𝑠𝑛 is the last stop on a bus route. 

 

Bus running times are utilized in section 4.3.6 to eliminate the unrealistic results 

due to not properly setting the bus direction. 

 

4.3.4. Travel Times (Bus in-vehicle Times) and Alighting Times 

 

In the previous section, the running speeds of bus routes, which are specific to 

each run, are determined. By using the running speed information, bus in-vehicle times 

and the alighting time of each passenger can be obtained.  

Bus in-vehicle time is the time that is spent in the bus to travel from the 

passenger’s boarding stop (𝑠𝑏) to estimated alighting stop (𝑠𝑎). There are two approaches 

used to calculate a passenger’s bus in-vehicle time. First, we look for a record of a 

boarding transaction at the estimated alighting stop. If there is a boarding transaction at 

the estimated alighting stop, it means that we have the information about when the bus 
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arrived at the stop. In this case, the passenger's alighting time is assumed to be equal to 

the boarding transaction's time stamp. So, the travel time (bus in-vehicle time) of a 

passenger is calculated using the following equation: 

 

IVTb = TSb − Tstamp(sa) (4.8) 

  

where, 

𝑇𝑆𝑏 is the time stamp of the passenger’s boarding transaction, 

𝑇𝑠𝑡𝑎𝑚𝑝(𝑠𝑖) is the function that returns the time of the earliest boarding transaction 

                     at the given stop 𝑠𝑖, 

𝑠𝑎  is the estimated alighting stop of the passenger. 

 

If there is not a boarding transaction record at the estimated alighting stop, we use 

the running speed and the distance between the boarding (𝑠𝑏) and alighting (𝑠𝑎) stops of 

the passenger to calculate the bus in-vehicle time, 𝐼𝑉𝑇𝑏. In this case, bus in-vehicle time 

of a passenger is calculated using the following equation: 

 

IVTb =
distance(sb, sa)

RS
 (4.9)  

 

where, 

𝑅𝑆  is the running speed calculated for the bus run that the passenger boards, 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑖, 𝑠𝑗)  is the function that returns the distance between bus stops 𝑠𝑖 and 𝑠𝑗. 

 

With the calculation of passengers’ travel time (bus in-vehicle time), the alighting 

time of passengers can be determined by simply adding the value of 𝐼𝑉𝑇𝑏 to their boarding 

time. Furthermore, a control check is employed for the determined alighting times if the 

calculation is done based on the running speed. Because there is an approximation in 

using the running speed for calculating the travel times since the speed of a bus is not 

likely to be constant. Thus, there might be some alighting time estimations that are later 

or earlier than the actualized alighting times. For the early estimations, there is not any 

information to use to correct the estimation. However, for the late alighting time 

estimations, we utilize the boarding time of the passengers’ next trip. If the alighting time 
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estimation is later than the next trip’s boarding time, the boarding time of the next trip is 

considered as the alighting time of the previous trip. 

 

4.3.5. Trip Purpose: Transfer or Activity 

 

In section 4.1.1.5, we roughly determine the origin and destination of passengers 

by considering walking distance and time thresholds. However, as previously mentioned, 

the time threshold is controlled between boarding times since the alighting time 

information is not available. Since the alighting time of a passenger is calculated in 

section 4.3.4, it can be used to determine whether the trip is a transfer or not as illustrated 

in Figure 4.7. In this way, the transfer identification is enhanced. Important to note that, 

surely the alighting time estimation process could be done simultaneously in the trip 

changing algorithm, however, this would dramatically increase the running time of the 

algorithm. On the other hand, in this section, we handle the process for bus route level, 

thus the data size is relatively very small. Hence, sacrifice can be made here on the 

running time performance in order to enhance the results. 

 

 

Figure 4.7. Spatial and temporal visualization of transfer and destination detection 

procedure. 
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Transfer time is simply calculated as the difference between the boardings time 

of the subsequent trip and the estimated alighting time of the previous trip (Wang et al., 

2011). In the light of these definitions, a trip is defined as transfer if the distance between 

related boarding and estimated alighting locations is not higher than 1,250 meters (MTD) 

and the time difference between estimated alighting and next boarding time is not higher 

than 20 minutes (MTT). In this case, the alighting location is labeled as transfer point. On 

the other hand, if the time difference is higher than 20 minutes, the trip is defined as 

activity and the alighting location is considered as destination point. 

 

4.3.6. Error Correction 

 

Although determination of bus runs is sufficient to produce the passenger load 

profile of a bus route, due to one-direction problem, a correction is necessary to be 

applied. In summary, the one-direction problem is the case that all the runs of a bus route 

seem to operate in only one direction, outbound (direction 1) or inbound (direction 2). 

This problem also results in having one-stop boarding problem because smart card system 

is not able to relate the position of the bus with nearest bus stop on the bus route in the 

correct direction, it assigns all the boardings to the last stop in the incorrect direction.  

In these cases, the time thresholds used in the bus run determination algorithm 

become insufficient because these thresholds consider the time difference between 

successive transactions. Thus, when the direction is always the same, the time difference 

between successive transactions is most likely to be under 20 minutes which is set to solve 

the issues due to one-stop boarding problem in bus run determinations algorithm. 

For this reason, an additional step is applied. This correction is only applied to the 

runs that are labeled as “one-stop boarding problem” by the bus run determination 

algorithm. In this case, the summation of the time difference between consecutive 

transactions is considered. When this summation is equal to the bus running time, which 

is the mean running times of all the bus runs determined in section 4.3.3, the current 

direction of the run is changed, and summation is started over. This process is continued 

for all the runs that have one-stop boarding problem. Then, the transactions with the 

changed direction are excluded from the passenger profile analysis.  
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One deficiency here is assuming that the initial direction is correct. For example, 

the first bus run may be in the inbound direction but in the smart card data, it can be 

assigned to outbound direction. The algorithm cannot distinguish this situation. 

This correction provides more reliable occupancy analysis. On the other hand, due 

to the one-direction problem, the number of runs performed for a bus route may have 

been estimated incorrectly. 

 

4.4. Passenger Flow Groups and Alternative Scenarios 

 

As stated in the earlier sections, our objective is to establish which bus passengers 

are likely to shift to the metro based on their perceived travel time savings. For this 

purpose, alternative scenarios are simulated in which the bus passenger is forced to use 

the metro.  Important to note that alternative scenarios are constructed to assess the travel 

time gain or loss for only considering the travels within collinear section. We consider 

sufficient for estimating the passengers’ decision by solely assessing the effect of metro 

within the collinear section on the travel time saving without considering the travel history 

of passengers prior or later (J. Cui et al., 2020). However, as suggested, analysis must be 

done at passengers’ journey level instead of trip level to be able to explain the passengers 

behavior (Soza-Parra et al., 2022). Hence, we enhance our trip level analysis by looking 

at the next trip’s purpose (transfer or destination) and mode (metro or others) while 

defining passenger flow groups. Then a set of rules are defined accordingly to construct 

the most plausible alternative scenarios. For this purpose, passenger trips performed 

within the service are of the metro extension, i.e., trips performed using targeted bus 

routes identified in section 4.2.1, are categorized in a accordance with (Gao et al., 2022b).  

In total, eight different kinds of trip behavior are defined and summarized in 

Figure 4.8. Then, we construct alternative scenarios of the actualized trips by considering 

what the passenger would have done if she had used the metro. For example, consider a 

passenger who boards and alights at stops within the metro service area. For this 

passenger, performing a metro trip is sufficient since the origin (boarding stop) and the 

destination (alighting stop) of the passenger’s trip are within the service area of the metro 

alternative. Hence, only a metro trip is required to be simulated in the alternative 

(simulated) scenario. On the other hand, if both the boarding and the alighting stop of a 

passenger are not within the metro alternative, this passenger needs to perform transfer 
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activities as well as the metro trip in the simulated scenario. In the case of the latter 

example, the passenger 1) makes a bus trip to transfer to metro, then 2) performs a metro 

trip, finally 3) performs another bus trip to reach the destination of the original trip. There 

are several different cases which require different configurations in the simulated 

scenarios. Hence, the configuration of the alternative (simulated) scenarios is constructed 

according to the passenger flow groups observed in the buses operating within the service 

area of the metro extension. 

The passenger flows on bus routes operating within the metro extension’s service 

area are categorized into two main groups. The main groups are created based on whether 

the boarding stop of a passenger is within the service area or not. We use the capital letter 

“A” if the boarding stop of a passenger is within the service area. If the boarding stop is 

not within the service area, passenger flow is denoted as “B”.  

Furthermore, these two main groups are divided into subgroups based on the 

location of the estimated alighting stop. Here, we also utilize the information of whether 

the trip is transfer to metro or has another purpose. Because if the bus trip has been made 

to transfer to the metro in the first place, the transfer time costs in the alternative scenario 

can be neglected. Thus, the main groups are further divided into three and denoted by 

using the numbers 1, 2 and 3, respectively.  

Furthermore, there are some trips on the targeted bus routes that are not feasible 

to replace with a metro trip. For example, there are passengers having trips taken outside 

the metro extension’s service area. These passenger flows (P2) cannot be replaced by the 

metro. On the other hand, there are very short bus trips taken within the service area, 

however only related to one metro station. In other words, there are trips starting and 

ending in the service area of only one metro station. In addition, a trip might start outside 

of the service area however ended in the service area of the first station on the trip’s route. 

These trips are also impractical to be replaced by the metro, thus the latter two trip types 

are grouped as P1. As a result, groups P1 and P2 indicate the bus trips that are not possible 

or impractical to be repeated by the metro. 

In summary, the passenger trips are categorized according to the locations of 

boarding and alighting stops. This process is applicable for every bus route operating 

within the metro service area. The algorithm begins by filtering all the transactions on a 

bus route based on predetermined bus runs and then applies the steps explained in the 

following sections to each passenger trip.  
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Figure 4.8. Passenger flow categories used in this study. 

 

In the following sections, the alternative scenarios for each passenger group are 

explained. Since in this study the mode shift estimation of the passengers is determined 

according to the time savings, the time components are also presented. The explanation 

and calculation of mentioned time components in the following sections are presented in 

section 4.6.1. 

 

4.4.1. Boarding Stop within the Metro Service Area (Group A) 

 

If the boarding stop of passengers is within the service area of the metro extension, 

their trips are collected under the main group A. Group A is further divided into three 

subgroups according to the location of alighting stops and trip purpose. These subgroups 

and configured alternative scenarios for these trips are explained below. 

 

1. If the alighting stop (𝑠𝑎) is within the service area of the metro extension and the trip 

is to transfer to metro. 
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In the Figure 4.9, an example of a trip in group A-1 can be seen. In the actualized 

bus trip, passenger boards (𝑠𝑏) and alights (𝑠𝑎) at stops withing the service area of the 

metro extension. In the alternative (simulated) scenario in which the passengers are forced 

to use the metro, the following travel activities are assumed: 

1) Passengers take the metro instead of taking the bus, 

2) Passengers access to the metro at station 𝑀𝑏 that is the closest to their boarding 

stop (𝑠𝑏) in the actualized bus trip, 

3) Passengers take a metro trip to reach the destination of their subsequent trip. 

In the actualized trips, passengers in this group access the bus stop and wait for 

the bus. The first assumption states that the passengers do not require to perform any 

additional activity. In the same way, they access the metro station instead of accessing 

the bus stop.  

 

 

Figure 4.9. Illustration of the alternative scenario configured for group A-1. 

 

Important to note that, to be able to compare the bus in-vehicle time of the 

actualized trip with the metro in-vehicle time of the alternative scenario, the travel time 

(𝐼𝑉𝑇𝑚) between the boarding station (𝑀𝑏) and the closest station (𝑀𝑎∗) to the alighting 

stop of their actualized trips is calculated for the trips in this group. 

 

2. If the alighting stop (𝑠𝑎) is within the service area of the metro extension and the trip 

is not to transfer to metro. 
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The alternative scenario configured for the A-2 trips is nearly identical to the A-1 

and illustrated in Figure 4.10. There are only in-station walking activities, for access and 

egress, additionally. The reason for grouping these trips, which are not to transfer to the 

metro, is to use this information to characterize the bus routes in further analysis. Also, 

since these passengers do not transfer to the metro, they alight at the station (𝑀𝑎) which 

is the closest to their alighting bus stop (𝑠𝑎).  

 

 

Figure 4.10. Illustration of the alternative scenario configured for group A-2. 

 

3. If the alighting stop (𝑠𝑎) is not within the service area of the metro extension. 

 

In this group (Figure 4.11), passengers end their trips at a bus stop which is not 

within the service area of the metro extension.  In this case, if the passengers prefer to use 

the metro, they also need to transfer to a bus route from the metro to reach their 

destination. For this reason, the following travel activities are assumed in the alternative 

scenario: 

1) Passengers access the metro at station 𝑀𝑏, which is the closest to their 

boarding stop (𝑠𝑏), 

2) Passengers walk at the station 𝑀𝑏 (in-station walking time), 

3) Passengers take a metro trip (metro in-vehicle time), 

4) Passengers alight at station 𝑀𝑎, which is the closest to any stop (𝑠𝑡𝑟) on the 

bus route, 

5) Passengers walk at the station 𝑀𝑎 (in-station walking time), 
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6) Passengers walk (transfer walking time) from 𝑀𝑎 to 𝑠𝑡𝑟 to transfer to any bus 

route, 

7) Passengers wait for a bus route (transfer waiting time) to board, 

8) Passengers make a bus trip (bus in-vehicle time) to reach their destination (𝑠𝑎). 

 

As can be seen from the configuration of trips, the alternative scenario includes 

additional activities compared to A-1 and A-2.  

 

 

Figure 4.11. Illustration of the alternative scenario configured for group A-3. 

 

4.4.2. Boarding Stop is not within the Metro Service Area (Group B) 

 

If the boarding stop of the passengers is not within the service area of the metro 

extension, the trips of these passengers are grouped under main group B.  In the same 

manner, the main group B is further divided into three subgroups according to the location 

of alighting stops and trip purpose. These subgroups are explained below. 

 

1. If the alighting stop (𝑠𝑎) is within the service area of the metro extension and the trip 

is to transfer to metro. 
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Passengers in this group start their trip at a bus station (𝑠𝑏), not within the metro 

extension's service area. Besides, the purpose of the actualized trip is to transfer to the 

metro at a station that is also not within the service area. In other words, the only 

difference between actualized trip and alternative scenario is that passengers transfer to 

the metro at a closer station in the alternative scenario by taking a shorter bus trip. The 

activities in the alternative scenario can be listed as follows: 

1) Passengers access the bus route at stop 𝑠𝑏, 

2) Passengers take a bus trip (bus in-vehicle time), 

3) Passengers alight at stop 𝑠𝑡𝑟 on the bus route, which is determined by the rules 

presented in section 4.4.3, 

4) Passengers walk (transfer walking time) from 𝑠𝑡𝑟 to 𝑀𝑏 to transfer to the 

metro, 

5) Passengers walk at the station 𝑀𝑏 (in-station walking time), 

6) Passengers wait for the metro (transfer waiting time) to board, 

7) Passengers have a metro trip (metro in-vehicle time) to reach the destination 

of their subsequent trip. 

 

 

Figure 4.12. Illustration of the alternative scenario configured for group B-1. 

 

As for the group A-1, the metro travel time (𝐼𝑉𝑇𝑚) between the boarding station 

(𝑀𝑏) and the closest station (𝑀𝑎∗) to the alighting stop of their actualized trips is 

calculated to be able to calculate the travel time cost of the alternative scenario. 
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Importantly, it is assumed that all transfer activities prior to the metro trip in the 

alternative scenario, namely transfer walking (step 4) and transfer waiting (step 5), have 

no time cost. Because, if we consider the passengers’ journey, these passengers will 

anyhow transfer to the metro at the end of their actualized trip.  

 

2. If the alighting stop (𝑠𝑎) is within the service area of the metro extension and the trip 

is not to transfer to metro. 

 

As in group B-1, the boarding stop of the passengers is not within the service area 

of the metro extension. Unlike group B-1, passengers do not perform their actualized bus 

trip to transfer to the metro. Thus, they alight at a station (𝑀𝑎), which is the closest to 

their alighting bus stop (𝑠𝑎). 

 

 

Figure 4.13. Illustration of the alternative scenario configured for group B-2. 

 

For this reason, there are transfer costs to consider. The alternative scenario for 

this group is constructed as follows: 

1) Passengers board the bus route at the stop 𝑠𝑏, 

2) Passengers have a bus trip (bus in-vehicle time), 

3) Passengers alight at a bus stop (𝑠𝑡𝑟) on the bus route, which is determined by 

the rules presented in 4.4.3, 
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4) Passengers walk (transfer walking time) from 𝑠𝑡𝑟 to 𝑀𝑏 to transfer to the 

metro, 

5) Passengers walk at the station 𝑀𝑏 (in-station walking time), 

6) Passengers wait for the metro (transfer waiting time) to board, 

7) Passengers take a metro trip (metro in-vehicle time), 

9) Passengers alight at station 𝑀𝑎, which is the closest to stop 𝑠𝑎 on the bus route. 

10) Passengers walk at the station 𝑀𝑎 (in-station walking time), 

 

Differently, these passengers do not transfer to the metro in their journey. Thus, 

there are transfer costs, namely transfer walking (step 4) and waiting (step 5), and in 

station walking times (steps 5 and 10) to consider. The calculations of these transfer costs 

are explained in 4.6.1. 

 

3. If the alighting stop (𝑠𝑎) is not within the service area of the metro extension. 

 

In this group, both boarding and alighting stops of the passengers are outside the 

service area of the metro extension. Therefore, these passengers are the most 

disadvantaged in the alternative scenario. The configuration of the alternative scenario is 

as follows: 

1) Passengers board the bus route at the stop 𝑠𝑏, 

2) Passengers have a bus trip (bus in-vehicle time), 

3) Passenger alight at a bus stop (𝑠𝑡𝑟
1 ) on the bus route, which is determined by 

the rules presented in 4.4.3, 

4) Passengers walk (transfer walking time) from 𝑠𝑡𝑟
1  to 𝑀𝑏 to transfer to the 

metro, 

5) Passengers walk at the station 𝑀𝑏 (in-station walking time), 

6) Passengers wait for the metro (transfer waiting time) to board, 

7) Passengers have a metro trip (metro in-vehicle time), 

11) Passengers alight at a station (𝑀𝑎) that is the closest to any bus stop (𝑠𝑡𝑟
2 ) on 

the bus route, 

12) Passengers walk (transfer walking time) from 𝑀𝑎 to 𝑠𝑡𝑟
2  to transfer to any bus 

route, 

13) Passengers walk at the station 𝑀𝑎 (in-station walking time), 

14) Passengers wait for a bus route (transfer waiting time) to board, 



 

85 

 

15) Passengers take a bus trip (bus in-vehicle time) to reach their destination (𝑠𝑎). 

 

 

Figure 4.14: Illustration of the alternative scenario for group B-3. 

 

It is clear that these passengers need to take three trips (2 bus trips and 1 metro 

trip) in the alternative scenario just to use the metro in their journey. The expected 

behavior from these passengers is to continue to use the bus routes after opening the metro 

extension. 

 

4.4.3. Transfer Locations in the Alternative Scenarios 

 

As explained in the previous section, some passengers must have transfer trip(s) 

if they want to use the metro in their journey. For this reason, the most plausible transfer 

locations are required to be determined. We define two different ways to determine 

plausible transfer locations: one for the transfers to the metro and one for the transfers 

from the metro.  

The process of determining the transfer stop and station for the transfer trips to 

metro is illustrated in the Figure 4.15. The transfer stop is determined by considering 

transfer walking and bus in-vehicle times for each bus stop in the service area. In this 

process, first, the possible transfer stops, the closest stations to these stops, and the 

walking distances are determined. The walking distances are calculated using Google 

Maps API Distance Matrix service. This service requires the geographical coordinates of 

two points and calculates the walking distance in between. In this case, these two points 

are the possible transfer stop and the metro station. By using walking distance rather than 
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haversine distance, we can determine the transfer locations with greater accuracy. After 

the walking distances are obtained, the transfer walking time (𝑇𝑊𝑇) is calculated walking 

speed.  

 

 

Figure 4.15. Presentation of transfer stop and station selection rules. 

 

The walking speed of passengers is generated based on whether they are student, 

elderly, or others, as explained in section 4.6.1.1. Calculation of the transfer walking time 

is explained in section 4.6.1.5. Then, the bus in-vehicle time is required to determine the 

transfer stop. Bus in-vehicle time is calculated for all the stops within the service area of 

the metro extension as if they are the transfer stop. Also transfer walking times for these 

stops are calculated. The summation of bus in-vehicle and transfer walking times for each 

stop is calculated. The stop, which gives the minimal summation is selected as the transfer 

stop, and the related metro station is the transfer station. 

For the transfers from the metro, the transfer station is simply determined by 

choosing the furthermost bus stop on the bus route, which is within the metro service area. 

We assume that passengers will prefer to travel by metro as long as possible to exploit its 

benefits. The reason for using these two different methods is that the distances between 

bus stops are relatively shorter than the distances between metro stations. Thus, 

passengers have the flexibility to choose a stop that minimizes the transfer walking time 

as well as the bus in-vehicle time. For these reasons, the transfer stop for bus passengers 

is selected based on the total of transfer walking and bus in-vehicle times. 
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4.5. Travel Time Calculations 

 

Passengers considers several factors in Since the travel time has been a significant 

indicator of passengers’ mode choice (Fan et al., 2016; Gao et al., 2022b), travel time is 

evaluated regarding two different approaches: 1) considers the convenience of 

passengers, 2) considers  passengers’ travel time saving calculated deterministically. The 

time cost of actualized trips and trips in the alternative scenarios are calculated based on 

both travel convenience and deterministic approach using the functions developed in 

section 4.5.1 and section 4.5.2, respectively. These functions are evaluated and compared 

based on the time savings to predict the passengers who most likely will shift from bus to 

metro. Factors used in these functions are in units of time (minutes) and mainly are in-

vehicle time, transfer penalty, penalty if no seat and, transfer walking and waiting times. 

The definitions of these terms are presented in section 0. The monetary cost is not 

included in the functions because fare prices of bus and metro are equal and transfers 

within 120 minutes are free of charge for all the fare classes but full fare class. Even 

though it is neglected in this study, there will be a minor additional monetary expense for 

the full fare passengers due to the necessity to transfer in the alternative scenarios. In the 

travel convenience approach, we utilize the time multipliers to implement the perceived 

inconvenience of passengers while traveling.  

The monetary costs are not included and variables are scaled using time 

multipliers, so the functions developed for the travel convenience approach can be called 

generalized time functions (Wardman, 2014). On the other hand, the functions 

constructed for the deterministic approach are called time functions. 

It is important to note that these functions are evaluated for each passenger trip 

instead of passenger flow groups. This approach results in a longer computational time 

but provides the flexibility to use disaggregated factors, such as bus running speed and 

seating capacity of the bus, as well as to define rules in the algorithm in micro levels, such 

as transfer location selection in section 4.4.3. One benefit of using bus running speeds is 

that the variation of running speeds due to the variation in traffic congestion can be 

considered. Hence, the variation in the service quality of a bus route is reflected in the 

calculation of the passenger’s bus in-vehicle time. Furthermore, the seating capacity of a 

bus can be utilized to reflect the discomfort of travel standing on a bus.  
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4.5.1. Travel Convenience Approach 

 

One of the earliest convenience definitions made by Claffey (1964) in a travel 

context. The definition can be put as that the convenience is greatest for passengers when 

they put least effort to adjust their plans and habits to use the transit, and when challenges 

to getting to transit stations and boarding transit vehicles are minimized (Claffey, 1964). 

We have used convenience evaluation for identifying the passenger most likely to prefer 

metro over bus after the opening of the metro extension, i.e., Narlıdere metro. It is a 

widely acknowledged fact that making public transportation more convenient increases 

its likelihood of being chosen over other modes and the demand for it (Wardman, 2014). 

There are several justifications to implementing convenience (or inconvenience) 

evaluation to this process. 1) It is an important component of the overall attractiveness of 

public transportation directly affecting the wellbeing of travelers, 2) Poor performance 

significantly discourages to use the transit, 3) Important to understand the trade-offs 

between public transportation convenience in the practice of transit planning, and 4) 

Convenience may capture the sensitivity of broader mobility objects (Wardman, 2014).  

Generally, the relative importance of the variables, which have an influence on 

the passenger’s mode selection, is obtained by conducting SP or RP surveys. 

Unfortunately, since such data is not available, the range time multiplier of the variables 

found in literature is considered in the evaluation of the time functions. We believe that 

time multipliers presented in section 2.5.2 are transferrable to some degree and can be 

used in the evaluation of time functions. For this reason, we collect the time multipliers 

presented in literature to gain insight into their variation. Nevertheless, comparing the 

time multipliers across studies is difficult due to the specific values may depended on the 

context of the case and other conditions, such as weather, in different countries (Nielsen 

et al., 2021). We prioritize simulating the conditions where shifting to metro is the most 

and least favorable for the bus passengers. Thus, the minimum and maximum values of 

the time multipliers for each time component are considered.  

Based on the values presented in section 4.5.1.1, min and max values of time 

multipliers for each variable are defined. Since the time multipliers are used in the time 

functions, i.e., results give an impression about the inconvenience, low and high values 

represent the best and worst conditions. Thus, we can see the possible mode shift 
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conditions by evaluating the functions using different relative importance attached to the 

variables.  

 

4.5.1.1. Selected Min and Max Values for The Time Multipliers 

 

Here, we determine the min and max time multipliers for transfer walking and 

waiting, transfer penalty and crowding inconvenience based on literature review and 

especially considering the values in Table 2.8. 

First, for the transfer walking multiplier, the min and the max values are selected 

as 1.68 and 2.01, respectively. The time multipliers for transfer waiting are selected as 

1.72 and 2.03 for the min and the max values, respectively. The max values were obtained 

from the analysis using RP surveys in which waiting and walking time multipliers 

generally found higher than SP values (Wardman, 2014). In addition, the recommended 

maximum value for out-of-vehicle time multipliers for calculations is two (2) (Wardman, 

2014). 

Second, we determine the min and max values for transfer penalty according to 

the review in section 2.5.4. The variation in the transfer penalties in the literature is very 

high, ranging between 5 to 30 minutes of in-vehicle time. Review shows that transfer 

penalties vary regarding the mode of transit and the purpose of trips. The min and max 

values are selected as 5 and 12 minutes for the transfer penalty, respectively. The upper 

bound of the transfer penalty is constraint by considering the transit policy, travel habits 

and expert view from public transit authorities. 

Third, crowding time multipliers are aimed to determine. The important decision 

is made here that crowding effect is solely considered for the bus travels and disregarded 

for the metro travel. This decision is motivated by the lack of capacity and the passenger 

demand information since the extension has not yet commenced operations. However, it 

is worth noticing that this assumption, while having some influence, does not deviate the 

evaluation due to the postulated inherent advantages of the metro service, such as comfort, 

reliability, and time efficiency compared to the bus (Ben-Akiva & Morikawa, 2002). In 

addition, we believe that the effect of favoring metro in-vehicle time is compensated by 

using max values for other components. As a result, we make use of the load factor and 

defined set of crowding multipliers for min and max conditions based on Paris crowding 

multipliers (Kroes et al., 2014). These values are presented in Table 4.4. 
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Table 4.4. Crowding time multipliers for bus trips based on load factors. 

Load Factor 75% 100% 125% 150% 200% 250% 

Min 1.0 1.083 1.289 1.394 1.499 1.604 

Max 1.0 1.102 1.342 1.467 1.593 1.718 
 

Note: These values are taken from the study by Kroes et al., (2014). 

 

4.5.1.2. Generalized Time Function for Actualized Trips 

 

In order to reflect the convenience, crowding time multiplier is utilized. The 

calculated bus in-vehicle times (actual travel time) are multiplied with the defined 

crowding time multipliers. Since the analysis is conducted on trip level, actualized trips 

are singular trips and there are no transfer activities, thus the cost function only consists 

of bus in-vehicle time. In addition, a time multiplier, which reflects the effect of comfort 

on perceived travel time, is utilized. The cost function for the actualized trips is calculated 

using the following equations: 

 

Gac =  αcr
l × IVTb (4.10) 

l =
Vi

Vseat
× 100 (4.11) 

 

where, 

𝐺𝑎𝑐 is the cost function for the actualized trips, 

𝐼𝑉𝑇𝑏 is the travel time of a passenger on the bus, i.e., bus in-vehicle time, 

𝑙 is the load factor, 

𝛼𝑐𝑟
𝑙  is the crowding time multiplier for the calculated load factor at the boarding stop, 

𝑉𝑖  is the passenger load, i.e., occupancy level, on the bus at the boarding bus stop of 

the passenger, 

𝑉𝑠𝑒𝑎𝑡 is the seating capacity of the bus (specific to each bus plate). 

 

By using a crowding time multiplier, the convenience (or comfort) of a passenger 

is assured to be taken into account. To establish whether the magnitude of the crowding 

time multiplier, the loading factor is utilized. 
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4.5.1.3. Generalized Time Function for Alternative Scenarios 

 

The second function is constructed for alternative scenarios where the passengers 

are forced to use the metro in their journey. In other words, this is the scenario where the 

passengers have to use the metro to repeat their actualized. This generalized time function 

consists of in-vehicle and out-of-vehicle time components. Here, in-vehicle time 

components refer to bus and metro in-vehicle times. Transfer walking and waiting times, 

in-station walking time, and transfer penalty components constitute the out-of-vehicle 

time function. The calculation of these time components is explained in section 4.6. 

Generalized time function for alternative trips is calculated using the following equations: 

 

Galt = αcr
l × IVTb + IVTm + Tovt (4.12) 

Govt = δ × (∑ TWTi

2

i=1

+ ∑ IWTj

2

j=1

) + θ × (WTb + WTm) + ∑ TPk

2

k=1

 (4.13) 

WTb =
Hb

2
 (4.14) 

WTm =
Hm

2
 (4.15)  

 

where, 

𝐺𝑎𝑙𝑡  is the generalized time function for alternative trips, 

𝐺𝑜𝑣𝑡 is the generalized time function for out-of-vehicle time components, 

𝐼𝑉𝑇𝑏  is the bus in-vehicle time, 

𝛼𝑐𝑟
𝑙  is the crowding time multiplier for the calculated load factor at the boarding stop, 

𝐼𝑉𝑇𝑚  is the metro in-vehicle time, 

𝑇𝑊𝑇𝑖 is the time for transfer walking, which may be required up to two times in our 

configuration, 

𝑊𝑇𝑏 is the transfer waiting time at a bus stop, 

𝑊𝑇𝑚 is the transfer waiting time at a metro station, 

𝐼𝑊𝑇𝑗 is the in station walking time; up to two times, 

𝐻𝑏  is the headway of a bus route, 

𝐻𝑚  is the headway of the metro, 

𝑇𝑃𝑘 is the penalty for a transfer activity, up to two times, 
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𝛿 and 𝜃  are the time multipliers attached to related attributes.  

 

The transfer walking and waiting time multipliers, and the transfer penalty 

component are used to establish the passenger's travel convenient of the time in the 

alternative scenarios. Additionally, a constant in-station walking time is considered. The 

time multipliers defined for each attribute can be seen in 4.5.1.1.  

 

4.5.2. Deterministic Approach 

 

In this approach, we disregard the convenience or perception factors in the process 

of estimating the passengers who are likely to shift to metro after its introduction. Time 

components are computed for actualized trips and alternative trips using the developed 

time functions presented in the following sections. 

 

4.5.2.1. Time Function for Actualized Trips 

 

In contrast to generalized time functions, there are no time multipliers to scale the 

impedance of the time components. Thus, there is only bus in-vehicle time in the time 

function since access walking and waiting times are neglected. In summary, the time 

function for the actualized trips (𝑇𝑎𝑐) is equal to the bus in-vehicle time (𝐼𝑉𝑇𝑏) calculated 

in section 4.3.4. 

 

4.5.2.2. Time Function for Alternative Scenarios 

 

In the alternative scenarios passengers might have transfer walking and waiting, 

in-station walking as well as bus trips to access or egress from the metro. Thus, the time 

function is evaluated for the alternative scenarios using following equations: 

 

Talt = IVTb + IVTm + Tovt (4.16) 

Tovt =  ∑ TWTi

2

i=1

+ WTb + WTm + ∑ IWTj

2

j=1

 (4.17) 
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where, 

𝑇𝑎𝑙𝑡  is the time function for alternative scenarios, 

𝑇𝑜𝑣𝑡  is the function for the out-of-vehicle time components. 

 

Other attributes are already defined in the previous section. Main differences from 

the convenience approach are that time multipliers and transfer penalty are not used in 

the calculations. 

 

4.6. Passenger’s Decision: Shift or Stay 

 

In the case of travel convenience approach, the decision of passengers is presumed 

to favor the more convenient travel option. Thus, we compare 𝐺𝑎𝑙𝑡 and 𝐺𝑎𝑐 values for 

each passenger. If 𝐺𝑎𝑙𝑡 is found lower than 𝐺𝑎𝑐, the passenger is assumed to shift to metro. 

If otherwise, the passenger is assumed to stay, i.e., continue using the bus.  

In the deterministic approach, we define two criteria: 1) the result of the 𝑇𝑎𝑙𝑡 must 

be lower than 𝑇𝑎𝑐, 2) there must be at least 10% time saving in the alternative scenario. If 

these two conditions are satisfied, the passenger is assumed to shift to metro. 

 

4.6.1. Calculation of Travel Time Components 

 

In-vehicle time term refers to the amount of time a passenger spent in any public 

transportation mode while traveling. There are bus and metro in-vehicle times that are to 

be calculated for the actualized trips and the trips in the alternative scenarios. Transfer 

walking time and transfer waiting time are the components of transfer activities. In 

addition to these two, the transfer penalty is utilized to reflect the deterrence of 

transferring on the passengers’ travel time perception. The alternative scenarios 

configured for the groups A-3, B-2 and B-3 include transfer components. 

 

4.6.1.1. Walking Speed 

 

Walking activity is a mode of transport (Wigan, 1995) which is regarded as the 

most efficient one (Gore et al., 2020). Since most of the trips on public transit services 

start and end with walking, it is important to understand what influences pedestrian 
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walking. In particular, the influence of access, egress and transfer walking times are 

investigated in public transportation route choice studies and they are stated as some of 

the main descriptors of the passengers’ route choices (Bovy & Hoogendoorn-Lanser, 

2005; Eluru et al., 2012; Nielsen, 2000; Nielsen et al., 2021). For that reason, it is critical 

to calculate these values as accurately as possible. Since we use the walking speed in the 

transfer walking time calculations, it becomes important to be defined properly. 

The walking speed of a pedestrian may vary depending on several factors, such 

as age, gender and walking purpose of the pedestrian as well as traffic and surrounding 

environmental characteristics (Knoblauch et al., 1996). For example, presence of parked 

vehicles found to have influence on walking speed (Gore et al., 2020) and using 

carriageways instead of sidewalks found to decrease the walking speed of passengers 

(Gore et al., 2020; Rastogi et al., 2011). Also, using cellphone during walking found to 

reduce the walking speed in general (Rastogi et al., 2011).  

Rastogi et al. (2011) indicated that walking speed in the educational areas (85.27 

m/min; 5.12 km/h) found to be 26% higher than the mean walking speed (67.87 m/min; 

4.07 km/h). They also presented the walking speeds for different age groups and high 

variation was observed. The walking speeds for older, middle-aged and  young 

pedestrians were 55.17 m/min (3.31 km/h), 68.73 m/min (4.12 km/h) and 77.23 m/min 

(4.63 km/h), respectively (Rastogi et al., 2011). On the other hand, Knoblauch et al. 

(1996) presented mean walking speeds as 1.51 m/sec (5.44 km/h) and 1.25 m/sec (4.50 

km/h) for pedestrians younger and older than 65 years old, respectively (Knoblauch et al., 

1996). Wigan (1995) presented walking speeds for men and women in different age 

groups based on the data collected in 1986, Australia. For men under 60 years old, the 

walking speed varied between 3.2 and 5.9 km/h with a mean of 4.7 km/h. For women, 

walking speeds varied between 3.3 and 5.8 km/h with a mean of 4.0 km/h. For pedestrians 

aged above 60 years old, the walking speeds were ranged between 3.5 - 4.5 km/h and 2.8 

– 3.3 km/h for men and women, respectively (Wigan, 1995). Tanaboriboon et al. (1986) 

found mean walking speeds 54 m/min (3.24 km/h) and 76 m/min (4.56 km/h) for elderly 

and young pedestrians in Singapore, respectively. They stated that mean walking values 

were higher in U.S. and Britain, 81 m/min (4.86 km/h) and 78 m/min (4.68 km/h), 

respectively (Tanaboriboon et al., 1986). Dewulf et al. (2012) presented walking speed 

values for various age groups by genders as 4.71, 4.95 and 4.59 km/ hour for young, 

senior and elderly passenger where these values were 4.77, 4.79 and 4.28 for females 

(Dewulf et al., 2012). Cengiz (2022) considered 50 m/min (3 km/h) walking speed of 
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senior people in Madrid to calculate their transfer times. These findings indicate that 

walking speeds vary regarding age and gender etc., thus walking should also be defined 

accordingly.  

 

Table 4.5. The walking speed values from studies in literature. 

Studies 
Rastogi et 

al. (2011) 

Knoblauch 

et al. (1996) 
Wigan (1995) 

Tanaboriboon et al. (1986) 

  

Segment   Man Women Singapore U.S. Britain 

Mean 4.07 - - - - 4.86 4.68 

Educational 

area 
5.12 - - - - - - 

Older 3.31 4.50 3.5 - 4.5 2.8 - 3.3 3.24 - - 

Middle-aged 4.12 - - - - - - 

Young 4.63 5.44 3.2 - 5.9 3.3 - 5.8 4.56 - - 
 

 

There is an obvious variation in walking speeds for pedestrian groups. Thus, we 

used fare type information, which is available in the smart card data, to classify 

passengers as students, elderly, and others. The latter group is considered to consist of a 

mix of passengers, thus represented with mean values. Based on the findings above, a 

lower and upper limit as well as the mode of walking speeds are defined for the three 

groups as in Table 4.6.  

 

Table 4.6. Selected walking speed limits in our study. 

Limits and Mode Student Older People Others 

Lower limit (km/h) 
Left 

5.0 3.4 4.5 

Peak (km/h) 
Mode 

5.5 4.0 4.8 

Upper limit (km/h) 
Right 

5.8 4.4 5.0 
 

 

To select a random walking speed, we use triangular distribution function in 

“NumPy” library in Python. Triangular distribution is a continuous probability 

distribution with the lower limit to the left, the peak at the mode, and the upper limit to 

the right. It is mostly used in simulations to represent the randomness in the choices. 

Instead of using explicit values for the walking speed, we prefer adding some randomness. 
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Unlike other distributions, these parameters define the probability distribution function’s 

shape explicitly. 

 

4.6.1.2. Bus In-vehicle Times 

 

The calculation of bus in vehicle time of passengers is established in 4.3.4. 

Besides, the alternative scenarios may also include bus trips to and/or from the metro. 

Specifically, trips where the origin (boarding stop) and/or destination (alighting stop) are 

not within the metro service area, i.e., trips grouped under A-3, B-1, B-2, and B-3, 

includes bus trip(s). For those bus trips, bus in-vehicle times are required to be calculated. 

The transfer stops for those bus trips are determined in 4.4.3. So, bus in-vehicle times can 

be calculated using (4. presented in section 4.3.4. 

 

4.6.1.3. Metro In-vehicle Times  

 

Metro in-vehicle times are only required to be calculated for the alternative 

scenarios. The calculation procedure is similar to the latter approach presented in bus in-

vehicle time calculation, thus (4. can be altered for this purpose. For metro operating 

speed, we use 40 km/h in the calculations. Similarly, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑖, 𝑠𝑗) function is used to 

calculate the distance between boarding (𝑢𝑏) and alighting (𝑢𝑎) stations determined in 

section. The determination of metro boarding and alighting stations of a passenger in the 

alternative scenarios is explained in 4.4.3.  

 

4.6.1.4. Transfer Penalty 

 

As the literature review indicates, passengers do not prefer the transfer activities 

and a constant disutility term (transfer penalty) is employed along with other transfer 

components to reflect this attitude. The alternative scenarios configured for the groups A-

3, B-2 and B-3 include 5 minutes of transfer penalty for each transfer. Transfer penalty is 

not applied to A-1 and A-2 since they do not include transfer activities in their alternative 

scenarios. B-1 is also excluded even though its alternative scenario includes a transfer. 

The reason is that for the actualized trips are performed to transfer to metro in group B-

1, thus, the transfer cost can be ignored.  
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4.6.1.5. Transfer Walking Times 

 

Transfer walking time refers to the time that passengers spent walking to the 

boarding location of their next trip. In the alternative scenarios, passengers may require 

walking from a stop to station or vice versa. As explained in section 4.4.3, the transfer 

walking distances, i.e., network walking distances, are obtained using the Google Maps 

API. Then transfer walking time is calculated using passenger’s walking speed, which is 

determined as explained in section 4.6.1.1.  

The alternative scenarios of groups A-3, B-2 and B-3 include transfer walking. As 

explained above, the transfer walking time is disregarded for group B-1 because 

passengers in this group are having the bus trip to transfer the metro in the first place. 

This component is not required to be calculated for the other groups since they do not 

include a transfer activity. 

 

4.6.1.6. In-station Walking Time 

 

To represent the time passengers spent walking at stations, a fixed value of time 

is considered for the three groups: student, elderly, and others. This in-station walking 

time can be estimated by considering the walking time at the entry/exit of the station,  

walking time on the passage, stairs or escalator, and the walking time on the platform; 

requiring information about the stations (J. Cui et al., 2020). Since such data is not 

available, instead, we used fixed values. For example, Cengiz (2022) considered 5 

minutes of in-station time in the transfer time calculations for Madrid (Cengiz, 2022).  

Since in-station walking time is dependent on the walking speed of a passenger, 

we defined a constant in-station walking distance of 100 meters and in-station walking 

time is calculated based on given walking speeds. 

 

4.6.1.7. Transfer Waiting Times 

 

Since the smart card data only includes the boarding times, it is not possible to 

estimate the passengers waiting time at the stops/stations. In order to quantify the 

passengers transfer waiting times, we set the waiting time as equal to half of the scheduled 



 

98 

 

headway of the boarding line in the defined peak hours (Yap et al. 2020a). The determined 

headways for the bus and metro are explained below. 

For the metro, we defined 5 and 3 minutes of headways for the operating hour 

between 6 am to 7 am and between 7 am to 8 pm, respectively. For the hours outside of 

these time durations, the headway is defined as 7.5 minutes. These headways are based 

on the metro schedule declared for a weekday on the official website. 

For the bus headways, morning and evening peak hours are determined as the 

hours in which the buses operate at the highest frequencies. Hence, AM peak and PM 

peak hours are obtained as 7 am to 9 am and 4 pm to 7 pm based on planned schedules, 

respectively. For the AM and PM peak hours, bus headway is taken as 7.5 minutes. For 

the exogenous hours, the headway is 15 minutes. Here, one explanation must be made. 

According to our configuration for alternative scenarios, metro-to-bus transfers are 

allocated where the station is closest to any bus stop that is on the boarding bus route. It 

means that there will be several bus routes operating at the transfer location. Thus, 

considering the individual headways will be misleading since there are other bus 

alternatives with different frequencies. For these reasons, we used common headway 

values. 

 

4.6.2. Other Time Components 

 

In this study, access and egress times are neglected. One reason is that the original 

location of access and egress activities are not available. Thus, whether the mode is bus 

or metro, the distance that the passenger travelled (by walking etc.) to and from the 

stop/station is unknown. We preferred to neglect these components for the sake of 

simplicity and to reduce having unrealistic results by implementing another assumption 

which is not supported by a local analysis.  
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CHAPTER 5 

 

RESULTS 

 

Explanatory analysis is conducted on the data which is obtained in section 3.2.1. 

In the following section, this dataset is referred to as the boarding dataset. This data 

contains 1,764,654 (89.60%) boarding, and 201,511 (10.23%) alighting transactions. As 

is stated, 3,020 (0.17%) transactions are removed in the error elimination process, since 

their proportion is very small, their quantity is neglected while presenting the results.  

All the analyses after the trip chaining results are only performed for the 16 bus 

routes found competitive to the metro extension. Also, all the analyses are only done for 

the outbound direction. 

 

5.1. Trip Chaining Algorithm Results 

 

The trip chaining algorithm is applied to the data set in which each cardholder has 

multiple trips. This data consists of 1,618,964 trip records and in a suitable condition to 

be fed to the trip chaining algorithm.  

 

5.1.1. Matching Rate 

 

The matching rate is the proportion of trips with an estimated alighting location 

to the total number of trips. Our trip chain algorithm is able to estimate an alighting 

location of 1,378,120 (85.12% ) trips. Note that, there are no single trips in the input 

dataset. If the single trips are also considered, the matching rate decreases to 78.10%.  

In Figure 5.1, the performance of the developed trip chaining algorithm can be 

interpreted. Due to the nature of the trip chaining algorithm, 8.26% of the trips cannot be 

used in the process. Besides, alighting estimation of 3.11% of the trips are failed. There 

might be several reasons of this issue, such as passengers might have used another mode 

or transportation that cannot be tracked by smartcard data, e.g., minibuses. 
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Figure 5.1. Trip chaining algorithm matching results. Distance is the calculated 

haversine distance between estimated alighting and next trip’s boarding 

stops. 

 

 

 

Figure 5.2. Trip chaining matching performance by transit mode. 

 

In Figure 5.3, trip chaining results by the hour of the day can be seen. According 

to the figure, the percentage of single trips are high on the hours after midnight. This 

indicates the importance of using at least two days of data. Also, unlinked trips are more 

likely to be observed due to midnight bus services. Furthermore, the decrease in matching 

rates during these hours may be attributed to the fact that rail transit services are 

predominantly unavailable after midnight, and there is a relatively high reliance on bus 
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transit during these hours. If we look at the hours in a day, the proportion of the single 

trips became constant independent to the number of trips. 

 

 

Figure 5.3. Results in percentages by hour of the day. 

 

The matching performance by transit modes can be seen in Figure 5.2. The highest 

matching rate is established for the metro. Bus transit has the least matching rate with 

81.5% estimation performance. In Table 5.1, the percentages are given on the total of the 

transactions. The numbers clearly indicate that by improving the trip chaining algorithm, 

there is a potential to increase the mathing rate by 13.65%. However, single trips requires 

to implement different methods, such as probability and machine learning models, thus 

historic data.   

 

Table 5.1. Matching rates regarding complete dataset by transit modes. 

Mode Bus 
Com. 

Rail 
Metro Tram Ferry Total 

Estimated 805,829 204,139 257,064 77,199 33,889 1,378,120 

% in grand total 45.66% 11.57% 14.57% 4.37% 1.92% 78.10% 

Estimation Failed 183,187 20,202 23,924 10,085 3,446 240,844 

% in grand total 10.38% 1.14% 1.36% 0.57% 0.20% 13.65% 

Single Trips 102,340 18,286 15,835 7,156 2,073 145,690 

% in grand total 5.80% 1.04% 0.90% 0.41% 0.12% 8.26% 

Modal Totals 1,091,356 242,627 296,823 94,440 39,408 1,764,654 

% in grand total 61.85% 13.75% 16.82% 5.35% 2.23% 100% 
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5.1.2. OD Matrix 

 

In total, 909,402 journeys from 500,876 cardholders are identified based on the 

activity threshold. The destination information for 181,645 (20%) of the journeys is not 

available due to trip chaining algorithm could not find an eligible alighting location 

regarding walking threshold. Also, based on the applied thresholds, it is obtained that 

105,891 cardholders only have one journey in the day. In other words, it is most likely 

that these passengers have taken one way trip or round trip in a short time. To be able to 

distinguish that, we can look at the number of one-journey cardholders those alighting 

location is not estimated. In this case 58,305 (55.06%) of one-journey situations have no 

estimated alighting location, thus it can be said that these are the one-way journeys where 

passengers do not return to their first origin of the day. 

 

5.1.3. Validation 

 

In İzmir, all commuter rail system and thirteen bus routes that run through rural 

areas are operated according to “pay as you go” policy. This means that when boarding 

these bus routes and commuter rail, passengers are charged  with the full fare, and then 

when they get off the bus, they must tap out in order to receive a refund. Therefore, as 

stated in section 3.1.2, the tap-out location information is available for 201,511 trips. 

192,632 (95.6%) of those are from the commuter rail, the rest 8,879 (4.4%) are the records 

from the buses. By using the card ID and transaction time information, a dataset 

consisting of both tap-out and corresponding tap-in transactions is obtained. And then, 

from this dataset, a joint data set which consists of both estimated and true alighting 

locations of 168,661 trips is created.  

The objective here is to assess the accuracy of the developed trip chaining 

algorithm. He et al. (2015) defined the accuracy of the algorithm as the ability to find a 

destination within an acceptable distance from the true destination. They determined the 

accuracy by calculating the distance between estimated destinations and the true 

destinations. Their results indicated that the accuracy in the case of perfect matching (0 

distance) was 65.8%, and it reached to 85% at 1,000 m tolerance distance (He et al., 

2015). In accordance, distribution of the distances between estimated and true alighting 

locations are obtained and presented in Figure 5.4 
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Figure 5.4. The matching percentages based on the amount of relaxed distance between 

estimated and true alighting locations. 

 

 

Figure 5.5. A real example for an egress behavior that results in incorrect alighting 

location estimation. 
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There might be several arguments to support to consider the relaxed matching 

instead of perfect matching: 

• Passengers may prefer to avoid spending time in congestion and alight several 

stops earlier. 

• Passengers may prefer to walk further than usual and alight earlier or later than 

the closest stop, i.e., they might not prefer to get off from the PT vehicle at the 

stop closest to next boarding stop for walking or running errands (see Figure 5.5) 

especially when they are returning their home or if there are stops close to 

shopping/entertainment centers (W. Wang et al., 2011). 

 

5.2. Inter-route Relationship Results 

 

As stated in section 4.2.1, our algorithm used to establish inter-route relationships 

is applicable to any set of station for a given direction; inbound or outbound. As an 

example, we present the inter-route relationship results obtained for current metro line, 

Konak tram and planned metro extension in the following paragraphs. The service areas 

for the analyses are created for each station and their coverage is defined by the 600 

meters network walking distance. 

As mentioned in section 1.2, there is currently one metro line with 17 stations 

operating from Fahrettin Altay to Evka-3 station in İzmir. 178 bus stops are found within 

the defined service areas for outbound direction (see Figure 5.6). Furthermore, 176 bus 

routes are identified as being in relationship with the metro. However, the competition 

index results for all the bus routes are found to be lower than 55%. The highest belongs 

to the bus route 681 with 52.2% competition value, which has 15 stops within the service 

area of the 7 metro stations, namely Fahrettin Altay, Poligon, Göztepe, Hatay, İzmirspor, 

Üçyol and Çankaya. In the meantime, Fahrettin Altay, Bornova and Konak stations are 

found to be most related stations to the bus routes with having 26, 24 and 24 stops within 

their service areas, respectively. 

Similarly, this process is repeated for Konak tram line for outbound direction. 

There are 19 stations on its route. The rail system’s service area includes 124 bus stops 

that serve 122 bus routes. Three bus routes are found to have competition index values 

higher than 55%. These are bus route 10, 253 and 811 having competition index values 

76.3%, 63.4% and 57.9% respectively. Remember that bus route 10 is given as an 
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example for the metro competition in section 4.2.2.3. For the Konak tram, this bus route 

shows competitive features because all of its stops are within the service area of the tram 

and being related to 10 stations. The most related stations are found to be Fahrettin Altay, 

Konak İskele and Halkapınar stations. 

Finally, considering our objective, the process is also utilized for the 

determination of the interrelating bus routes with the metro extension for outbound 

direction. There will be an additional 7 stations with the opening of the metro extension. 

The analysis is performed on these stations including Fahrettin Altay station. As a result, 

the algorithm detects 54 bus stops within the service area of the metro extension. Then 

after, from those stops, 39 bus routes, which are related to the metro extension in some 

way, are determined. According to analysis, if the current conditions are preserved, there 

will be several bus routes with relatively high competition (above 70%); bus routes 5, 

551, 6 and 305 with competition values of 83.9%, 76.8%, 71.5%, and 70.0%, respectively. 

 

 

Figure 5.6. Representation of metro service area and the stops within the area. 
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For a representation of the results obtained from these processes, some of the 

results are presented in Table 5.2. For the metro and Konak tram lines, there are not any 

bus routes with a high competitiveness except bus route 10 for the Konak tram. This bus 

route operates parallel to both the metro and Konak tram line knowingly due to the high 

elderly demand. In Figure 5.7, the passenger profile of bus route 10 is compared to all 

bus routes. To do that, we utilize the fare types explained in section 1.2. If we look at the 

passenger profile of bus route 10 there is a distinct difference where the percentages of 

elderly and free-of-charge passengers are higher than the average of bus transit, and 

student usage is very low. This figure also supports the necessity of operating bus route 

10 in the current conditions. 

 

 

Figure 5.7. Passenger profile of bus route 10 according to fare types. 

 

Table 5.2 also shows that there will be several bus routes highly competitive to 

the metro extension. Other than the first three competitive bus routes to the metro 

extension, there are several bus routes similar to 984 which is related to all the stations 

on the metro extension however they run outside the service area in majority. These bus 

routes both show competitive and cooperative features. Even though the competitiveness 

of bus route 984 is found relatively low, some adjustments may be utilized, such as 

shortening its route. 

In conclusion, determination of inter-route relationships may ensure efficient 

allocation of transit resources by preventing to operate services in competition. In 

addition, prior knowledge about the competitive bus routes to a rail system may be 
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favorable in case of rail system’s disruption. These bus routes can be boosted to satisfy 

the unmet demand. Also, to pull the sustainable alternative to push the less favored, more 

complex fare policies can be adopted for the competitive modes. 

 

Table 5.2. Some of the inter-route relationship results for metro, Konak tram and planned 

metro extension for outbound direction. 

System Route 

No 

# of 

Stops 

# of Stops 

Within 

Related 

Stations 

Order Competition Cooperation 

Metro 

Extension 
5 28 19 8 1 83.9% 16.1% 

551 28 15 8 2 76.8% 23.2% 

6 27 15 7 3 71.5% 28.5% 

984 87 16 8 12 59.2% 40.8% 

311 26 7 4 20 38.5% 61.5% 

Konak 

Tram 
10 19 19 10 1 76.3% 23.7% 

253 13 11 8 2 63.4% 36.6% 

811 5 5 3 3 57.9% 42.1% 

486 16 5 3 10 23.5% 76.5% 

480 26 4 3 20 15.6% 84.4% 

Current 

Metro 

681 23 15 7 1 53% 47% 

15 10 8 4 2 52% 48% 

21 9 7 3 3 48% 52% 

 
35 20 5 3 10 21.3% 78.7% 

 
520 32 5 3 23 16.6% 83.4% 

 

Note: Order represents the order of the bus route’s competitiveness order among other bus routes. 

 

5.3. Passenger Load Profile Results 

 

Passenger load profile is an important input used in the service adjustments in 

which maximum loading point/segment is required (Pelletier et al., 2011). One of the 

major compliances in determining transit service is  the selection of the most efficient 
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headway, or frequency (vehicle/hour), for each route in the system considering the time 

of the day and day of the week (Ceder, 2007). These service adjustments are the essence 

of  maintaining adequate service quality and minimizing number of required vehicle runs 

(Ceder, 2007). Generally, ride check surveys, which are not impractical to conduct 

frequently on every system, are performed to obtain passenger load profiles. One of the 

important outcomes of our study is the passenger load profiles that can be created for any 

bus route. Since the stop level alighting locations are estimated using trip chaining 

algorithm, we are able to calculate the passenger load between consecutive stops of bus 

routes for the day of analysis. In addition, since we also determine the bus runs (section 

4.3.1), the passenger load of bus routes can be produced at the run level. For each run, the 

passenger load between stops can be calculated. Then, this information can be used to 

identify bottlenecks in the service as well as to distinguish the effect of a service change 

on the ridership as it is done in section 0. Before going into analysis results, it is important 

to note that there are some passengers whose alighting stop is not estimated by the trip 

chaining algorithm. To have a complete view and consistency in the results, for those, the 

alighting location is assumed to be the last stop. 

The passenger load profiles are presented at the route and the run level. While 

presenting the passenger load profiles of bus routes at the run level, we also indicate the 

seating and theoretical capacity of the vehicle, and the average passenger load on that run. 

Average passenger load is used to interpret the service quality of the run, and the bus 

route, in terms of crowding and seating possibilities. In addition, on the horizontal axis, 

the stop names are indicated in the order of the operation for a given direction. Besides, 

the vertical axis shows the passenger load, i.e., occupancy, and the load at the 

corresponding stop is visualized with a stepped line. All the analysis is done considering 

outbound direction.  

The largest population in İzmir resides in Buca district. However, it lacks the 

advantages of rail transit systems due to poor connectivity. Thus, the transit demand is 

mainly satisfied by bus transit. Consequently, the ridership on the bus routes serving the 

Buca district is high.  In Figure 5.8, the passenger loads on bus routes, 171, 268 and 878, 

which are selected giving credits to their high ridership, are visualized. In the figure, 

passenger load on the buses at each segment, i.e., between consecutive stops, are shown. 

By looking at the load changes for bus route 171 (green), most of its passengers (about 

75%) use this bus to reach Konak, which is a major transfer hub. In addition, there is a 

stop where the passenger can transfer to commuter rail at Koşu station.   
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In purpose of presenting the outputs obtained the process described in section 4.3, 

the bus route 171 is analyzed. In total, 97 bus runs were detected by our algorithm. Based 

on our calculations the mean, minimum, and maximum running speeds are found 19.46, 

26.65 and 15.13 kilometers per hour, respectively. The corresponding running times are 

calculated as 41.40, 29.95 and 52.75 minutes. The minimum and maximum running times 

are observed at 10 p.m. and 4 p.m. This indicates a soft spot that the current route of 171 

is very prone to traffic congestion. Figure 5.9 gives a clear view about the performance 

and service quality of the bus route. The x and y axes indicate the stops orders and the 

run numbers, respectively. For instance, the passenger load in AM peaks is very high after 

the 14th stop, hence, the service quality is low and most likely there are denied boardings 

between 14th and 26th stops. 

 

 

Figure 5.8. Passenger load of bus routes 868, 307 and 171 for the day of analysis on 

the outbound direction. 

 

Although the passenger load for a day provides an insight into the operational 

characteristics of the bus route, several issues cannot be captured, such as crowding, 

denied boardings etc. In Figure 5.10, the passenger load profiles of 14th , 41st and 74th 

runs are visualized to represent the conditions for morning, afternoon, and evening peaks, 
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respectively. The red and blue dashed lines show the average seating capacity and 

theoretical capacities. Average seating capacity is the average of the vehicles’ seating 

capacities used to operate the bus route. Theoretical capacity is calculated by multiplying 

the total capacity (seating plus standing capacities) with 0.75, which is the ratio used in 

transit planning.  The following interpretations may be done: 

1. There are small differences in the passenger loads throughout the day for 

the part of the route which is before 19th stop, 

2. For morning and evening peaks, it is most likely that passengers are not 

able to board between 20th and 26th stops, 

3. The 26th stop is a transfer stop, and around 15% of passengers alight at this 

stop, 

4. For the majority of the runs, passengers travel standing after the 14th stop, 

5. There is a significant difference between morning and evening runs, 

6. There are several stops where the demand is relatively high, for example 

the 8th and 21st stops. 

 

 

Figure 5.9. Occupancy heatmap of route 171. 
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Figure 5.10. Passenger load profile of selected runs for morning, afternoon, and evening 

peaks for bus route 171. 

 

 

5.4. Results of Mode Shift Estimation Processes 

 

In this section, the results of the process for estimating the ridership exchange 

from bus routes to metro extension are presented. The process starts with the 

identification of targeted bus routes. Then categorization of the passenger flows is 

performed. After that, travel time components are calculated based on two approaches 

presented in the previous sections. Finally, the decision of a passenger is estimated, and 

analyses are presented. Then, on the selected bus routes, the ridership change is further 

analyzed in the micro level by utilizing the passenger load profiles. This selection process 

is necessary since it is impractical to present all the results obtained for all the bus routes. 

Important to note that all the analysis is done for the outbound direction (denoted as 1). 

First, the results, which are obtained for the bus routes in relationship with the metro 

extension, are presented. In advance, the process has resulted in 39 bus routes which are 

found related to metro extension and the results are presented in Table 5.3. 
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5.4.1. Inter-route Relationships 

 

The bus routes found to have a relationship with the metro extension were 

identified in section 5.2. The relationship characteristics of all the related bus routes are 

presented in Table 5.3.  

 

Table 5.3. Competition and cooperition index values of target bus routes. 

# 
Bus 

Route 

Comp. 

% 

Coop. 

% 
 # 

Bus 

Route 

Comp. 

% 

Coop. 

% 
 # 

Bus 

Route 

Comp. 

% 

Coop. 

% 

1 5 83.9 16.1  14 985 57.9 42.1  27 883 8.3 91.7 

2 551 76.8 23.2  15 981 57.2 42.8  28 945 7.7 92.3 

3 6 71.5 28.5  16 987 55.9 44.1  29 873 6.5 93.5 

4 305 70.0 30.0  17 650 53.6 46.4  30 24 6.3 93.8 

5 7 67.2 32.8  18 950 43.8 56.3  31 969 6.3 93.8 

6 8 64.3 35.7  19 510 38.8 61.2  32 486 6.3 93.8 

7 82 61.4 38.6  20 311 38.5 61.5  33 10 5.3 94.7 

8 321 60.7 39.3  21 480 20.2 79.8  34 202 4.5 95.5 

9 971 59.9 40.1  22 167 10.0 90.0  35 671 4.4 95.6 

10 983 59.8 40.2  23 17 9.4 90.6  36 681 4.3 95.7 

11 982 59.4 40.6  24 690 8.8 91.2  37 946 3.3 96.7 

12 984 59.2 40.8  25 25 8.3 91.7  38 517 2.3 97.7 

13 975 58.2 41.8  26 977 8.3 91.7  39 879 2.2 97.8 
 

 

 

Evidently, there are 18 bus routes with cooperation index value higher than 90%. 

Mostly, the current transfer hub Fahrettin Altay station is the only station where these bus 

routes link to the metro extension. Important to note that the cooperation index does not 

vary too much, thus the distinction between bus routes is not clear for cooperative bus 

routes. This indicates the necessity of utilizing additional factors in the cooperation and 

competition indices. 

The objective of identifying the relationship type is based on the conclusion 

derived from a review of the relevant literature, that is, the exchange of ridership between 
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competing routes is more likely to occur. Therefore, we have decided to focus on the bus 

routes that have a competitive relationship. The bus routes having a competition index 

value higher than 55% are considered competitive. According to Table 5.3, the first 16 

bus routes are matching with this condition. These bus routes are considered as the main 

focus group, and further analysis is performed for these bus routes. The general 

information about the sixteen bus routes is presented in Table 5.4.  

 

Table 5.4. General information about the determined bus routes. 

No 
Route 

No 

# of Bus 

Runs 

# of 

Transactions 

Alighting stop is 

estimated 

Alighting stop is not 

estimated 

1 551 93 4,770 4,476 93.8% 294 6.2% 

2 8 71 4,636 4,202 90.6% 434 9.4% 

3 975 100 3,710 3,467 93.5% 243 6.5% 

4 984 60 3,372 3,146 93.3% 226 6.7% 

5 971 69 3,038 2,807 92.4% 231 7.6% 

6 82 46 2,157 1,988 92.2% 169 7.8% 

7 6 42 1,729 1,616 93.5% 113 6.5% 

8 5 42 1,715 1,608 93.8% 107 6.2% 

9 7 33 1,511 1,412 93.4% 99 6.6% 

10 321 27 1,329 1,241 93.4% 88 6.6% 

11 985 18 632 587 92.9% 45 7.1% 

12 305 17 590 548 92.9% 42 7.1% 

13 983 20 542 514 94.8% 28 5.2% 

14 987 12 498 458 92.0% 40 8.0% 

15 982 10 385 349 90.6% 36 9.4% 

16 981 4 165 159 96.4% 6 3.6% 

Total - - 30,779 28,578 - 2,201 - 
 

Note: These bus routes are determined based on the competition degrees with the metro extension 

as explained in section 4.2.1.  
 

There are 30,779 boarding transactions recorded on the 16 targeted bus routes. 

The alighting location of 28,578 (92.8%) the transactions are estimated using the trip 

chaining algorithm. This matching rate is above the average of the trip chaining average 

matching rate (85.12%) when single trips are excluded. This is promising because the 

negative effect of assuming the passengers, whose alighting location cannot be estimated, 

alight at the last stop will be minimal on the results.  

Figure 5.11 visualizes the inputs used in the inter-route relationship determination 

process and highlights the characteristics of the competitive bus routes. For example, 
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there are eight stations on the metro extension including the Fahrettin Altay station, which 

is currently operational, and if a bus route is related to all the eight stations, the green line 

shows the value of 100%. Thus, even though the percentage of route withing the service 

area is low for some bus routes, their competitiveness is higher than 50% because they 

are found to be related to all the stations. The bus routes having short route lengths (lower 

than 12 km) and high competitiveness values are clearly the ones requiring detailed 

analysis. A simple classification is made here, and the bus routes, 305, 5, 6, 551, 7 and 

971, are classified as urban bus routes. The rest (8, 82, 321, 983, 984, 975, 985, 982, 981 

and 987), which have longer route lengths, are categorized as suburban bus routes. The 

results are presented in detail for the suburban and urban bus routes.  

 

 

Figure 5.11. Graphical inter-route relationship evaluation of competitive bus routes. 

 

5.4.2. Passenger Flow Group Counts 

 

The mode shift estimation process relies on calculating the travel time savings for 

passengers in different scenarios tailored to specific passenger flow groups. Therefore, 

the number of passengers falling into these groups provides insights into the potential 

magnitude of mode shift that could take place. For this reason, the percentages of the 

passenger flow groups on the selected bus routes are presented in Figure 5.12. It is clear 
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that the passenger flow groups that will benefit the most from the opening of the metro 

extension are A-1 and B-1, since these passengers use the bus transit to transfer to the 

metro in the first place. The groups A-2 and B-2 follow the previously mentioned groups. 

Important to note that, since there is a transfer stage to or from the metro in groups A-2 

and B-2, the proportion of shifting passengers in these groups is greatly dependent on the 

transfer conditions in the area. Thus, in the convenience approach, the effect of these 

transfer stages is expected to be captured. 

 

 

Figure 5.12. Passenger flow group percentages on the bus routes. 

 

5.4.3. Mode Shift 

 

After the determination of the bus routes that are expected to be most affected 

with the opening of the metro extension, the mode shift estimation process can be 

performed. Mode shift estimation for the bus transit users is established using two 

methods. One method, namely deterministic approach (DA), determines whether 

passengers will shift or not based on the pure time saving which must be at least 10% of 

5 6 7 8 82 305 321 551 971 975 981 982 983 984 985 987

P2 4% 4% 4% 10% 13% 6% 15% 7% 4% 28% 21% 17% 21% 27% 35% 40%

P1 6% 8% 10% 4% 4% 5% 4% 3% 6% 3% 2% 5% 5% 2% 3% 3%

B-3 5% 5% 5% 4% 4% 1% 4% 3% 2% 5% 2% 5% 8% 6% 4% 6%

B-2 13% 13% 18% 31% 26% 23% 29% 13% 32% 32% 35% 34% 34% 32% 31% 28%

B-1 10% 12% 16% 14% 15% 12% 21% 12% 15% 17% 25% 19% 15% 19% 16% 11%

A-3 17% 15% 12% 1% 2% 2% 1% 10% 1% 1% 1% 0% 1% 1% 0% 0%

A-2 24% 22% 19% 22% 22% 31% 15% 27% 23% 10% 7% 11% 12% 8% 6% 7%

A-1 22% 21% 17% 14% 14% 20% 11% 25% 18% 6% 7% 8% 5% 5% 4% 5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Passenger Flow Groups by Bus Routes

A-1 A-2 A-3 B-1 B-2 B-3 P1 P2



 

116 

 

their travel time. The second method adds a stochasticity to the estimation process by 

considering travel convenience, namely convenience approach and denoted as CAMin 

and CAMax. In this method the minimum, and maximum time multipliers are used for 

CAMin and CAMax, respectively, to observe the range in the number of passengers 

shifting to metro. The mode shift estimation results for bus routes considering different 

estimation methods are given in Figure 5.13.  

 

 

Figure 5.13. Shift and stay status of bus routes in numbers by applied methods. 

 

According to Figure 5.13, about half of the passengers that used the bus routes 5, 

6, 7 and 8 are found shifting to the metro after the opening of the metro extension. The 

deterministic approach represents the evaluation condition where most passengers shift 

to the metro for the majority of the bus routes. The CAMin results in higher number of 

shifts on the bus routes where passenger travel long distances in a crowd condition, such 

as 984 and 975. 

If we look at the number of passengers shifting to the metro regarding the 

passenger flow groups and mode shift estimation method (see Figure 5.14), almost all the 

passengers in group A-1 are shifting to the metro. It appears that a very small number of 

passengers in group A-1 benefit the most from continuing to use the bus. The reason is 

that the median travel distance of the passengers, who are found to be not shifting, are 

2.9, 2.0 and 2.2 km for the methods DA, CAMin and CAMax, respectively. So, the 
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advantages of using the metro cannot aggregate on these passengers travelling such short 

distances. As expected, A-3 shows the least amount of shifting to the metro since the 

passengers who fall in this group are required to transfer twice in the alternative scenario. 

On the other hand, the convenience approaches result in lesser number of shifting 

passengers in groups except A-1 and B-1. In the case of A-1, the crowding conditions are 

in play, while the determinant is the transfer conditions for B-1. Besides, a classification 

based on the effort required to convince a passenger to shift to the metro considering the 

flow groups can be made by looking at the numbers in Figure 5.14. For the passengers 

grouped under P1, P2, A-3, B-2, and B-3, using the metro is either not possible or not 

feasible, hence they are labeled as “impractical” as in Table 5.5 . 

 

 

Figure 5.14. Shift and stay proportions by passenger flow groups and mode shift 

estimation methods. 

 

The aggregated results are presented in Table 5.5 for the 16 bus routes. As is 

evident, the demand for these bus routes is expected to decrease 30 to 55 percent. This 

indicates the importance of preparation on the service adjustments prior commencing the 

metro extension. In addition, based on our analysis, consideration of travel convenience 

to estimate the passengers’ decision has an effect on the results about  5-10%. This points 

out the importance of valuing passengers’ perception in transportation planning. 
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Table 5.5. The mode shift estimation results by methods for the bus routes. 

Result 

Boundary 

Method 
 

Shift 
 

Stay 

   
Total % 

 
Total Impractical 

(% in total) 

  Potential  

(% in total) 
All the 16 bus 

routes 
DA  11,885 38.6%  18,894 8,095 26.3%  10,799 35.1% ↑ 

CAMin  11,905 38.7%  18,874 8,193 26.6%  10,681 34.7% ↑ 

CAMax   10,458 34.0%   20,321 8,197 26.6%   12,124 39.4% ↑ 
             

Urban bus 

routes (5, 6, 7, 

305, 971 and 

551) 

DA  7,587 56.8%  5,766 2,990 22.4%  2,776 20.8% ↑ 

CAMin  6,970 52.2%  6,383 3,088 23.1%  3,295 24.7% ↑ 

CAMax   6,292 47.1%   7,061 3,091 23.1%   3,970 29.7% ↑ 
             

Suburban bus 

routes (8, 82, 

321, 983, 984, 

975, 985, 982, 

981 and 987) 

DA  4,298 24.7%  13,128 5,105 29.3%  8,023 46.0% ↑ 

CAMin  4,935 28.3%  12,491 5,105 29.3%  7,386 42.4% ↑ 

CAMax  4,166 23.9%  13,260 5,106 29.3%  8,154 46.8% ↑ 
 

Note: We consider the passengers found not shifting to the metro and fall into groups A-1, A-2, B-1, and B-2 as 

potential non-shifters. On the other hand, passengers in groups P1, P2, A-3, and B-3 are considered impractical non-

shifters. This classification is based on the average travel time savings required for the non-shifting passengers in the 

groups (Figure 6.8). 

 

5.4.4. Passenger Load Profiles 

 

Passenger load profiles are used to visualize the effect of opening the metro on 

the competitive bus routes. This output is valuable in that it gives deeper insight on the 

operational perspective at micro level. In the next paragraphs the passenger load profiles 

of bus routes 5 and 984 are analyzed. 

Since the number of runs for a bus route can go high as 100, it is also necessary 

to select representative bus runs. To do that, the maximum and average passenger load, 

i.e., average occupancy, values at each run are considered for selecting the representative 

bus runs for morning (AM) and evening (PM) peaks, and off-peak hours. The AM and 

PM peaks are considered as the hours between 7 and 9 a.m. and 4 and 7 p.m., respectively. 

The rest of the hours are considered off-peak hours. For each time segment, the bus run 

with the highest mean and maximum occupancies is selected between representative runs. 

In Figure 5.15, maximum and average occupancy levels are presented for bus route 5. 

Red bars represent the runs having the one-stop boarding problem. Runs with green colors 

selected as representatives. In the majority, vehicles with 26 seating capacity are used at the 

runs of bus route 5. The corresponding theoretical capacity is 66 passengers. The mean 
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occupancy for the day of analysis is found 15 passengers considering all runs except the 

ones with one-stop boarding problem. The figure also indicates there is no clear peak and 

off-peak working conditions, but the evening usage seems high. In the end, the runs 

numbered 11, 20, 30, and 31 are selected as representatives. Two bus runs (30th and 31st 

runs) are selected for PM peak because the flow characteristics are found to be worth 

analyzing. This process is applied for the other two bus routes to be analyzed. 

 

 

Figure 5.15. Maximum and average passenger load values of bus route 5. 

 

The passenger load profiles of  bus route 5’s 11th run for current, deterministic 

(DA), minimum (CAMin), and maximum (CAMax) convenience conditions are 

presented in Figure 5.16. Valuable interpretations can be made by analyzing the load 

profiles: 

1. In the best scenario, nearly 60% of the passengers are shifting to the metro, as 

a result, decreasing the average passenger load of 11th run from 22 to 9 

passengers, 

2. Passengers do not transfer to the metro at the earliest station due to long 

transfer walks, instead they transfer at the 13th stop where the transfer distance 

is 150 meters, 

3. Travel convenience factors, such as transfer penalties and in-station walking, 

are affective and reduce the number of passenger shifts. For passengers who 

do not switch routes after considering the minimum travel convenience 

components, the average time saved is 4 minutes for the deterministic 
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approach (DA), while there is an average time decrease of -3.6 minutes for the 

minimum convenience approach (CAMin). 

 

 

Figure 5.16. Passenger load profile comparison of the 11th run of bus route 5. 

  

The load profiles are very similar for the 20th  and 30th runs (Figure 5.17 and 

Figure 5.18), indicating that the passenger flow characteristics do not vary to much 

between morning and afternoon hours. However, a transient demand peak is occurred on 

31st run due to students’ mobility at the 17th stop which is close to a university (Figure 

5.19).  

For bus route 984, the 17th , 32nd and 41st runs are presented. The length of the bus 

route is 72 km, and it has 87 stops on its route. For this reason, only the last 33 stops are 

shown in the load figures. Also, the mode shift may only occur after the 67th, which is the 

first stop falls within the service area of the metro extension. It is clear in Figure 5.20 that 

the bus runs in a crowding condition for many of stops. After the metro opens, nearly 

40% of its passengers will shift to the metro. There are some passengers who won’t shift 

to the metro even though they are saving time. This is due to their high travel times, so 

the amount of time saved should also be high. Besides, max and min convenience 

coefficients are only significant if transfer activities are present. Otherwise, mode shift 

behavior overlaps regardless of using max or min time multipliers. 
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Figure 5.17. Passenger load profile comparison of the 20th run of bus route 5. 

 

 

 

Figure 5.18. Passenger load profile comparison of the 30th run of bus route 5. 
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Figure 5.19. Passenger load profile comparison of the 31st run of bus route 5. 

 

 

 

Figure 5.20. Passenger load profile comparison of the 17th run of bus route 984. 
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Figure 5.21. Passenger load profile comparison of the 32nd run of bus route 984. 

 

 

 

Figure 5.22. Passenger load profile comparison of the 41st run of bus route 984. 

 



 

124 

 

5.4.5. Urban and Suburban Bus Routes 

 

Selected sixteen bus routes are classified as urban and suburban considering their 

route lengths based on Figure 5.11. We present the results based on this classification in 

order to have further insights. 

We considered the bus routes 8, 82, 321, 975, 981, 982, 983, 984, 985 and 987 as 

suburban bus routes. These bus routes have a significant amount of route length outside 

of the service area of the metro extension and expected to have P1 and P2 passenger 

groups in higher proportions (see Figure 5.12). There are 17,426 (out of 30,779) 

passengers on these bus routes. The number of passengers fall into groups P1 and P2 is 

4,104. Meaning that it is either impractical or not feasible for these passengers to use the 

metro. The majority of the non-shifting passengers are the ones in group B-2 (28.52%) 

(see Figure 5.23). Their average bus travel distance (actual trip distance) is 22.7 km and 

the average metro in-vehicle time in the alternative scenarios of these passengers is 7.6 

minutes (approximately 5km). In addition, the average travel time savings are -3.36 and 

-11.72 minutes considering DA and CAMin methods. This means that these passengers 

start their trips far from the closest metro station on their route and forcing them to transfer 

to the metro causes some amount of travel time loss. The passengers in groups B-2  and 

B-1 can be avertable by enhancing transfer conditions since the required travel time 

improvements, which are -3.36 and -0.96 minutes on average for DA method, are 

relatively low. 

 

 

Figure 5.23: Suburban bus routes; travel time savings of non-shifting passengers by 

groups. 
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For the urban bus routes, the number of non-shifting passengers falling into group 

A-3 is relatively higher according to Figure 5.24. These passengers are ending their trips 

outside the metro service area, for example the passengers alighting at a stop near the 

ferry station, Üçkuyular İskele. The average travel time savings  

 

 

Figure 5.24: Urban bus routes; travel time savings of non-shifting passengers by 

groups. 

 

 

 

 

 

 

 

 

 

 

 

 

-11.97

-17.47

-1.31

-28.52

-0.61

-0.97-2.68

-5.12

-0.12

-9.01

-0.01

-0.97

2371

1210

713

465

210

1

0

500

1000

1500

2000

2500-30

-25

-20

-15

-10

-5

0

B-2 A-3 A-2 B-3 B-1 A-1

N
u

m
b

er
 o

f 
P

as
se

n
g
er

s

T
ra

v
el

 T
im

e 
S

av
in

g
s 

in
 g

en
er

al
iz

ed
 a

n
d

 a
ct

u
al

 

m
in

u
te

s

Passenger Flow Groups

CAMin Average Time Saving DA Average Time Saving Count



 

126 

 

 

CHAPTER 6 

 

DISCUSSION & CONCLUSION 

 

The present study aims to shed light on the effect of a major service change 

(extending a metro line) on the current bus transit system. In the previous sections, we 

have examined the influence of travel time calculated using the deterministic and travel 

convenience approaches to estimate the passenger’s mode shifting patterns between 

competitive bus routes and the metro. In the literature, it is commonly acknowledged that 

following the implementation of a rail system, transit authorities typically prioritize the 

adjustment of bus transit within the area to align with the goal of optimizing travel 

demand and promoting the use of the rail system (Brands et al., 2022; Gao et al., 2022b). 

However, it is crucial to ensure that this adjustment process does not lead to passenger 

dissatisfaction. Thus, the focus of this section is to identify potential areas within the 

transit network where issues may arise and prioritize improvements accordingly. First, 

the shifting behavior is discussed considering the travel distance of passengers. Then, the 

effect of the transfer walking on the passengers’ estimated decisions is established. Then, 

the spatial evaluation of the candidate transfer bus stops and the change in the travel time 

of passengers after commencing the metro extension is discussed. Following that, we 

comment on the possible adjustment strategies considering the presented findings for 

competitive urban and suburban bus routes. The discussion section is finalized presenting 

the comments on the applied travel time calculation approaches and the sensitivity of the 

results to the assumptions.  

 

6.1. Shifting Behavior by Travel Distance 

 

Some of the advantages of the two alternative modes may change depending on 

the passengers’ travel distance. Passengers tend to prefer metro for long distances and 

utilize buses for short travels within the metro influence area (Gadepalli et al., 2022). In 

Figure 6.1, the travel distances of the passengers on the targeted bus routes are visualized 

along with the proportion of their decisions. In order to gain insights into the mode shift 
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behavior of bus passengers along the parallel section with the extended metro line, we 

have excluded passengers whose origin locations are located far from the metro stations 

(beyond a distance of 3-4 km). So, the origin of the passengers using these bus routes are 

either within or very close to the metro stations. Thus, we will be able to see which mode 

is preferred for which travel distance intervals based on our approaches. Figure 6.1 clearly 

shows that bus transit is mostly preferred for travel distances shorter than 2.5 km. For the 

travel distances above this value, shifting behavior towards the metro increases. It seems 

the benefits of using metro will be more enhanced after 3-4 km which is in line with the 

findings in literature (Gadepalli et al., 2022). For travel distances higher than the length 

of the metro extension, buses are becoming more preferred. This is due to  the deterrence 

of transfer activities coming into play. These results are similar to findings in literature, 

meaning that our assumptions are capable of representing the expected behavior of 

passengers.  

 

 

Figure 6.1. Passengers’ mode shift pattern regarding their travel distances. 

 

6.2. Transfer Walking Distances in the Area 

 

We have determined the transfer walking distances, which are  the network 

walking distances between stops to stations that are the closest, in section 4.6.1.5. Hence, 

these transfer walking distances can be used in purpose of understanding the transfer 
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conditions from bus to metro considering the current location of bus stops. This is 

important due their closeness directly affects the integration efficiency between modes 

through the effect on travel time convenience. The distribution of transfer walking 

distances and average walking distances by stations are visualized in Figure 6.2. 

 

  

Figure 6.2. a) Shows the number of stops regarding the transfer walking distance (to 

closest metro station) intervals b) Average transfer walking distances by 

station. 

 

To provide further insights, we delve into the question of the potential number of 

passengers who might consider shifting their mode of transportation if the transfer 

walking distances in the area were reduced. For that, the passengers estimated not shifting 

the metro based on CAMin method (13,357 passengers) are collected. Note that 

passengers fall into P1 and P2 flow groups are excluded. The distribution these non-

shifting passengers’ travel time savings in generalized time minutes according to CAMin 

method is presented Figure 6.3. A total of 6,030 passengers, who require at most 10 

minutes of improvement in terms of generalized time, have the potential to exhibit a 

preference for transitioning to the metro system if transfer conditions are adequately 

enhanced. This can be achieved through measures such as enhancing the convenience of 

in-station walking times or optimizing transfer stops to reduce the distance passengers 

need to walk during transfers. This finding holds significance as it suggests that 

approximately 45% of passengers who initially do not consider shifting modes could be 

attracted by solely implementing strategic adjustments. 

Furthermore, a sensitivity analysis is performed in terms reduction in minutes of 

transfer and in-station walking times in Table 6.1. Since the transfer walking time 
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multiplier is 1.68 in CAMin method, 1 minute of reduction in transfer or in-station 

walking time decreases 1.68 generalized time minutes in the generalized travel time. For 

passengers who have transfer walking activity (10,000 of 13,357), the average transfer 

walking time is 3.81 minutes. For instance, by adjusting the location of transfer stops to 

decrease the walking distance about 10% of the non-shifters can be attracted to use the 

metro. On the other hand, improving the passengers in-station walking time perception 

by increasing the comfort and attractiveness of metro stations, such as providing 

escalators and shops etc., up to  32%  of non-shifting passengers may prefer to shift to the 

metro. 

 

 
Figure 6.3. Number of non-shifting passengers by generalized time savings under 

CAMin method. 

 

6.3. Transfer Stops 

 

In Figure 6.4, the pie charts are the locations of bus stops, which are either the 

transfer stop in the alternative scenarios (for groups B-1, B-2, and B-3) or the boarding 

stop of the actual trip (for groups A-1, A-2, and A-3). The yellow color represents the 

amount of passengers who use the particular bus stop to transfer to the metro in their 

alternative scenarios. On the other hand, blue color is used to represent the amount of 

passengers who do not need to have a transfer to shift to the metro. As is evident from 

Figure 6.4, certain bus stops will serve as crucial transfer points after commencing the 

metro extension. There seems to be several stations prioritized by the passengers of the 
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competitive bus routes to transfer to the metro. As expected, the first station of the 

extension is highly utilized to transfer to the metro by the passengers of suburban bus 

routes. The intermediate stations are mainly used by the passengers of the bus routes 

serving the outskirts of Narlıdere and Balçova districts, such as bus route 5, 6, 7, 305 and 

971. Indicating that there will be several minor transfer stations.  

 

Table 6.1. The change in number of non-shifting passengers by decrease in the 

transfer and in-station walking times (CAMin method). 

Time Component 
Reduction 

(minutes) 
# of new shifters 

% of non-shifting 

passengers (13,357) 

TWT 0.5 98 0.73% 
 1.0 208 1.56% 
 1.5 333 2.49% 

 2.0 496 3.71% 

 3.0 878 6.57% 

 4.0 1,304 9.76% 

  5.0 1,932 14.46% 

IWT 0.5 1,099 8.23% 

 1.0 2,203 16.49% 

 1.5 3,064 22.94% 

 2.0 3,652 27.34% 

 3.0 4,212 31.53% 

 
4.0 4,641 34.75% 

 

 

Ensuring the safety of pedestrians and implementing traffic regulations around the 

area hold paramount importance to increase accessibility of the metro stations.  This is 

essential to mitigate possible hazards, enhance travel convenience and consequently 

increase metro ridership. Besides, the implementation of traffic regulations also promotes 

sustainable mobility by reducing traffic congestion and promoting sustainable ways of 

transport, such as cycling, walking etc. For instance, providing parking facilities for 

micromobility vehicles around the stops where the most transfer activities occur may also 

provide seamless and efficient transportation system. These measures contribute to 

enhancing the overall experience for passengers, encouraging multimodal travel, and 

promoting sustainable urban mobility.  
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Figure 6.4. Possible transfer stations. 

 

6.4. Travel Time Savings 

 

Travel time saving is one of the main influencing factors in the passengers’ mode 

choice. Also, it is a powerful indicator to establish the efficiency of service changes. In 

Figure 6.5 and Figure 6.6, the geographical distribution of travel time savings by origin 

stops of competitive bus passengers considering CAMin method are shown. At first 

glance, in the current conditions, the passengers starting their trips within or close to the 

service area of the metro extension are benefiting from the advantages of the metro. 

Additionally, there are passengers in distant districts, such as Güzelbahçe and Gülbahçe, 

who are experiencing significant travel time reductions, typically ranging from 1 to 8 

generalized time minutes. It is highly likely that these passengers are the ones transferring 

to the metro at Fahrettin Altay station.  

In Figure 6.6, spatial distribution of travel time savings based on the origin stops 

of bus passengers within the service area of the metro extension is shown. It is clear the 

passengers who require transfer trip to use the metro are suffering from the deterrence of 

transferring on the travel convenience even though their origin is relatively close to the 

metro. This could also be attributed to the relatively short travel distances, resulting in 

minimal disparities for passengers when choosing between the metro and buses. It is also 

important to not there is a rarity in the high travel time savings around the metro stations. 
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This is due to the consideration of travel convenience instead of looking at pure travel 

time savings. This indicates that such expensive public transportation investments are 

also beneficial to people living distant from its direct service area. This may be enhanced 

by integrating the insufficient transit services in the remote districts with efficient, 

comfortable, and fast alternatives. Consequently, reducing the travel times and increasing 

the travel convenience of the people living remote districts and ensuring the equity and 

accessibility by making the mobility easier.  

In Figure 6.7, the average time savings by bus routes considering the shifting, non-

shifting, and all passengers separately based on CAMin method. The average time saving 

for shifting passengers is around 6 minutes of generalized time minutes. However, there 

is a sharp distinction between shifting and non-shifting passengers. If we consider the 

average travel time saving of all the passengers, it is negative for all bus routes in 

consideration. For the bus routes having longer route length, bus route 984 and so on, this 

value is relatively lower indicating that the number of passengers who benefit from 

utilizing the Narlıdere metro line is lower on these bus routes. This could also be 

interpreted as a requirement for the bus routes to continue operating in some capacity. 

 

 

Figure 6.5. Geographical distribution of travel time savings by origin (stop) for the 16 

bus routes in the analysis for the day. 
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Figure 6.6. Geographical distribution of travel time savings by origin (stop) close to 

the metro extension for the day of analysis. 

 

 

Figure 6.7.  Average generalized time saving of the passengers on the competitive bus 

routes based on CAMin method. 

 

The Figure 6.8 shows the average travel time savings for non-shifting passengers 

on the competitive bus routes. This figure can be interpreted as showing the required 

average travel time improvement for non-shifting passengers in the groups. If we analyze 

this figure with  Figure 5.14, we can see that, non-shifting passengers in group A-2 are 
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the potential shifters after a slight improvement in the travel times (2.2 generalized time 

minutes for CAMax method). Also, passengers in group B-2 can be considered as 

potential shifters since 4 minutes (actual time) of improvements can capture the majority 

of these passengers. Thus, as in Table 5.5, we can consider the passengers found not 

shifting to the metro and fall into groups A-1, A-2, B-1 and B-2 as potential shifters. On 

the other hand, passengers in groups P1, P2, A-3, and B-3 can be considered impractical 

shifters. This classification is based on the average travel time savings required for the 

non-shifting passengers in the groups. 

 

 

Figure 6.8: Average travel time savings of non-shifting passengers on the competitive 

bus routes by groups and method 

 

6.5. Urban and Suburban Bus Routes 

 

The result presented in section 5.4.5 gives important insights about the ways of 

efficiently adjusting the bus routes found competitive to the metro extension. The results 

indicate the possibility of shortening suburban bus routes by ending that the closest station 

of the metro extension. There are 17,426 passengers on these bus routes and 12,491 found 

not shifting to the metro. If we exclude the 3,529 passengers in group P2, since the will 

not be affected by the shortening of the bus routes, there are 8,962 passengers to be 

considered. The passengers in groups B-1 and B-2 (6,453 in total, 72%) are potential 

passengers that can be forced to use the metro and their travel time losses can be prevented 

by planning actions. However, the number of passengers in groups A-3 and B-3 (1,001 
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in total) indicates a need to run an alternative mode parallel to the metro line which also 

serves to stops outside of the metro extension’s service area. These passengers along with 

the ones in urban areas can be served by bus routes operating parallel to the metro. On 

the other hand, the number of passengers who start or end their trip outside the metro 

service area can be seen as the need of continuing the operation of urban bus routes in the 

current conditions. 

 

6.6. Sensitivity Analysis on Deterministic Approach Threshold 

 

In the deterministic approach (DA), the estimation of mode shift is based on the 

assumption that passengers will only shift to the metro if they save more than 10% of 

their travel time. Notably, the selection of this 10% threshold is subjective and can alter 

depending on a variety of factors. While this threshold is commonly used in literature, it 

is essential to note that the estimation process is sensitive to the threshold value chosen. 

Therefore, the favored threshold value can influence the estimation's results and 

outcomes. Figure 6.9 shows the sensitivity of the shifting behavior on the selected 

threshold. If the threshold is set to zero, the percentage of shifting passenger increases 

about 24% considering the 10% travel time saving threshold. 

 

 

Figure 6.9. The number of shifting passengers by different decision thresholds in DA 

method. 
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6.7. Conclusion 

 

First of all, we would like to emphasize that all the processes in our study are 

developed in such a way that they can be implemented practically and adoptable to 

alternative scenarios. There are several sections where improvements are necessary. For 

example, we have constructed  a trip chaining algorithm and established a successful 

matching rate. However, our algorithm lacks the recent improvements presented in 

literature. Probably the most important deficiency is that our algorithm does not improve 

its matching rate by utilizing multiple days of smart card data. In further analysis, we first 

aim to adopt our algorithm for multiple days of data, such as one week of one month.  

Furthermore, we believe that the process of establishing competitive and 

cooperative services with another transit service can be used in several aspects. For 

example, determining competitive services to a rail system is important to determine the 

transit systems that must be strengthened in case of a failure of the rail system. Also, to 

promote sustainable transportation modes, their alternatives can be made less attractive.  

Using different method in the travel time calculation while showing that there are 

variability in approaches and the importance of considering different aspects of traveling 

also states that the number do not fluctuate significantly and even the simplistic 

approaches may provide sufficient information for the aggregate level planning 

processes. 

Results show that the number of passengers who may shift to the metro is 

significant, and some adjustments are required. This will clearly help to decrease the 

congestion level on the streets by decreasing the number of buses in the traffic. On the 

other hand, the number of passengers that can be seen as resistant to mode shift even if 

the conditions are improved is also high (see Table 5.5). Similar to the findings presented 

by Gadepalli et al., (2022), some passengers on these parallel bus routes will not likely 

shift to the metro. About 40-50% of passengers are found to be not likely to prefer their 

bus trip to a metro trip. Thus, some parallel bus transit services are required.   

One other important result obtained by using network walking distance is the 

essentiality of regulatory precautions around the transfer bus stops. Because network 

walking distance also considers the location of pedestrian crossings. There are stops very 

close to a station in bird’s-eye view, however they lack the necessary regulations, such as 
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pedestrian crossings, etc. This shows that making stops solely close to the stations will 

not improve the transfer conditions, thereby encouraging passengers to shift to the metro. 

The mode preference of passengers is generally understood by analyzing stated or 

revealed preference surveys. There is a body of literature on passengers’ perception, mode 

choice, and route choice in public transportation that can be reviewed in order to 

understand the passenger behavior. In this study, instead of putting effort into conducting 

a survey, we focused on collecting the findings on the issue and directly implementing 

them in the analysis. However, we acknowledge that behavioral indications are very local 

and not easily transferable. 

Furthermore, the results of the spatial analysis of travel time savings showed that 

investments benefit not only residents within proximity but also individuals living in more 

distant areas. This emphasizes the significance of enhancing public transportation 

services, which promotes equity in mobility and accessibility. Successful integration 

strategies can leverage these enhancements to increase the benefits for all individuals. 

The results of this study can be used to prevent inefficiency in transit services by 

allocating resources and making specific adjustments. However, it is important to note 

that our results are sensitive to the assumptions we made. Additionally, this study can be 

improved by utilizing inputs, which are acquired from local data, that better characterized 

passengers’ behaviors and preferences. 
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