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ABSTRACT 
 

EXPERIMENTAL INVESTIGATION AND OPTIMIZATION OF 

LASER SURFACE TREATMENT PARAMETERS FOR 1.2379  

(AISI D2) TOOL STEEL 
 

Laser surface treatment has been used as a cost-effective method to improve the 

surface qualities of materials, such as hardness, strength, roughness, corrosion resistance, 

chemical resistance and coefficient of friction by modifying their structure and physical 

features using laser beam heat. In this thesis, surface properties such as hardness and 

roughness of 1.2379 cold work tool steel, a commonly used material in the die and mold 

industries for injection mold inserts, were investigated both experimental and numerical 

(regression analysis, optimization) studies. In the experimental part of the thesis, 1.2379 

cold work tool steel surface was treated using a commercially available industrial 

Ytterbium low-power pulsed fiber laser. Laser parameters including average power, 

repetition rate, line spacing and scan speed were considered as input parameters while 

hardness and roughness were used as output parameters. Input parameters used in the 

experiments were produced by using a 34 full factorial design. The effect of laser 

parameters on the surface properties of 1.2379 cold work tool steel was investigated by 

hardness and roughness measurements. Using the results of the measurements different 

regression models were conducted and the best fit was chosen. As a result of regression 

analysis, it is obtained that the second-order multiple non-linear model is the best 

regression equation for hardness and the second-order logarithmic multiple non-linear 

model is the best for roughness 

Following the experimental study and regression analysis, an optimization study 

was performed using Wolfram MATHEMATICA 11.3 to determine the optimum laser 

parameters for the hardness and roughness of 1.2379 cold work tool steel. In the 

optimization, Random Search (MRS), Simulated Annealing (MSA), Differential 

Evolution (MDE) and Nelder-Mead (MNM) methods were used for different 

optimization scenarios. By determining the optimum parameters, this thesis contributes 

to enhancing the surface properties, hardness and roughness, of 1.2379 cold work tool 

steel.  
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ÖZET 

 
1.2379 (AISI D2) TAKIM ÇELİĞİNİN LAZERLE YÜZEY İŞLEME 

PARAMETRELERİNİN DENEYSEL OLARAK İNCELENMESİ VE 

OPTİMİZASYONU 
 

Lazerle yüzey işleme, lazer ışını ısısı ile malzemelerin yapılarını ve fiziksel 

özelliklerini değiştirmekte olup yüzey özelliklerini (mukavemet, sertlik, pürüzlülük, 

sürtünme katsayısı, kimyasal direnç ve korozyon) geliştirmek için kullanılan uygun 

maliyetli bir teknolojidir. Bu tezde, kalıp endüstrisinde enjeksiyon kalıbı kesici uçlarında 

yaygın olarak kullanılan 1.2379 soğuk iş takım çeliğinin sertlik ve pürüzlülüğü gibi yüzey 

özellikleri hem deneysel hem de sayısal (regresyon analizi, optimizasyon) çalışmalarla 

incelenmiştir. Tezin deneysel bölümünde, 1.2379 soğuk iş takım çeliği yüzeyi, ticari 

olarak temin edilebilen bir endüstriyel Ytterbium düşük güçlü darbeli fiber lazer 

kullanılarak işlenmiştir. Giriş parametreleri olarak lazer parametreleri olan ortalama güç, 

tekrarlama oranı, çizgi aralığı ve tarama hızı; çıkış parametreleri olarak ise sertlik ve 

pürüzlülük kullanılmıştır. Deneylerde kullanılan giriş parametreleri 34 tam faktöriyel 

deney tasarımı kullanılarak üretilmiştir. Lazer parametrelerinin 1.2379 soğuk iş takım 

çeliğinin yüzey özelliklerine etkisi sertlik ve pürüzlülük ölçümleri ile araştırılmıştır. 

Ölçüm sonuçları kullanılarak farklı regresyon modelleri oluşturulmuş ve en uygun model 

seçilmiştir. Regresyon analizi sonucunda, ikinci mertebeden çoklu doğrusal olmayan 

modelin sertlik için en iyi regresyon denklemi, ikinci mertebeden çoklu doğrusal olmayan 

logaritmik modelin pürüzlülük için en iyi regresyon denklemi olduğu elde edilmiştir. 

Deneysel çalışma ve regresyon analizinin ardından Wolfram MATHEMATICA 

11.3 kullanılarak 1.2379 soğuk iş takım çeliğinin sertliği ve pürüzlülüğü için optimum 

lazer parametrelerinin belirlenmesi amacıyla optimizasyon çalışması yapılmıştır. Farklı 

optimizasyon senaryoları için Random Search (MRS), Simulated Annealing (MSA), 

Differential Evolution (MDE) ve Nelder-Mead (MNM) yöntemleri kullanılmıştır. 

Optimum parametreleri belirleyerek, bu tez 1.2379 soğuk iş takım çeliğinin yüzey 

özelliklerini sertliğini ve pürüzlülüğünü iyileştirmeye katkıda bulunmaktadır.  
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CHAPTER 1  

 

INTRODUCTION 

 
1.1.   Literature Review  

 

Surface qualities such as roughness, hardness, wear resistance and corrosion 

resistance are required for industrial applications. These alloys are highly expensive, thus 

there is an interest in decreasing the price of components that meet these specifications. 

In this regard, laser surface treatment (LST) has been employed as a cost-effective 

technology to enhance  the surface properties of materials by modifying their structure 

and physical features using laser beam heat 1. Laser surface treatment of materials is a 

useful technology since it allows to improve attributes including roughness, strength, 

hardness, corrosion, coefficient of friction and chemical resistance in a variety of 

materials. This enhancement is not only appropriate for applications with high wear rates 

and cutting loads, but it may also be utilized to protect or extend the component's 

functional life by repairing microcracks on surfaces. Furthermore, by producing a 

changed surface layer using laser surface treatment, aesthetics can be improved 2. The 

most common advantages of laser surface treatment over the other methods are; 

 enable to control distortion and thermal penetration.  

 to be chemically clean 

 enable to control thermal profile and therefore location and shape of heat affected 

zone (HAZ) 

 less after machining 

 possibility of remote processing  

 suitable for  automation 3. 

Surface quality of substrate materials can be improved through laser surface 

treatment by modifying phase composition, topography, and microstructure. Laser 

radiation (in the nm range) is absorbed by conduction electrons when incident on a 

substrate material. When these excited electrons collide with lattice ions, they rapidly heat 

up. The heat from this thin layer is delivered to the main substrate. As a result, a layer of 

material with a thickness greater than the usual radiation absorption depth is rapidly 



 

2 

heated. When the laser irradiation is turned off, the substrate material cools as heat is 

transferred. The interaction of the laser with the substrate can be seen in Figure 1.1. 

 

 
Figure 1.1. Laser material interaction 

 

Since laser surface treatment process is extremely nonlinear, numerical modelling  

is required for a clear understanding of the process 4. Vijay et. al. investigated an 

optimization study for surface roughness of stainless-steel parts during selective laser 

sintering process with the parameters of laser power, scan spacing and orientation. 

Taguchi method with L9 orthogonal array (OA) was preferred, and the optimal level of 

parameters was determined by the lower-the-better signal-to-noise (S/N) ratio. Moreover, 

analysis of variance (ANOVA) was applied to specify the most effected parameter and 

an empirical model was developed. Estimated optimum values in both approaches and 

experimental values were near enough (6.08 μm) 5.Matras et. al. studied optimization of 

surface roughness (Ra and Rz) by using laser scanning speed as a variable. A 

mathematical model was created and regression equations were developed by using 

ANOVA. The generated regression equations showed that the estimated and observed 

values are quite well matched. For parameter Ra, the R2 determined as 0.87, while for 

parameter Rz is 0.78 6.  

Considering optimum experimental parameter for laser surface treatment is the 

main problem of industry. Laser parameter optimization can be performed with many 

methods. One of them is Taguchi method. Timur et al. used Taguchi method to consider 

optimum laser surface treatment parameters on Al 6082-T6 material.  The effect of gas 

type pulse duration, pulse energy and focus position on laser surface treatment were 

investigated by using three levels. With this study it is obvious that which parameter have 

more effect on surface properties (roughness, porosity etc.)7. 

Surface hardness of laser treated AISI D2 tool steel was investigated with 

ANOVA and regression equations using a high power Nd:YAG fiber laser in Ref 8. To 

assess the influence of the treated surface's heating temperature and feed rate on the 

surface hardness, hardening depths, width, angle and laser beam's energy density, linear 

and quadratic regression models were created. ANOVA revealed that both the linear and 
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quadratic regression model responses of the laser beam's energy density (Elb) and surface 

hardness (HRC) are significant (P-value<0.05). Results demonstrate that the main factor 

effect the hardness is the heating temperature and feed rate of the treated surface ,and 

determined as 1270 °C and 90 mm/min respectively.8. 

In Ref  9  the influence of the laser-polishing process employed on a milled and 

EDMed surface of 1.2379 tool steel was investigated. Two different industrial lasers, a 

2.5 KW CO2 laser and a high-power 3.1 KW diode laser (HPDL) were used to determine 

and optimize the laser parameters (power, feed and focal offset), resulting in a roughness 

reduction of up to 90% and mean roughness values (Ra) below 0.5 mm. Because of its 

martensitic structure, this steel is very challenging to polish. On the other hand, it also 

has a serious limitation due to the appearance of cracks with high thermal gradients. Due 

to the nature of laser polishing, which involves melting and subsequently solidifying 

metals with high thermal gradients in extremely localized areas, it is important that laser 

parameters be controlled to minimize the heat-affected zone (HAZ).9. 

Nowadays, LST is one of the most innovative techniques in the industry. Despite 

its high cost, the manufacturer prefers to use laser technology due to the development of 

new types of lasers and the strict criteria for producing high added value parts. The final 

polishing process, which has a high added value and is manually carried out by skilled 

employees, can account for up to 30% of the entire production cost for the manufacture 

of dies and molds. Ukar et al. conducted laser Polishing on DIN 1,2379 tool steel tests 

using CO2 and High-Power Diode Lasers (HPDL). The laser polishing parameters as well 

as its level of influence on the melted surface have been specified using experiments and 

the Design of Experiments (DoE) techniques. Results showed that to it is possible to 

obtain 80%  final roughness reduction compared to the initial roughness value 10. 

A different technique was preferred in another study to evaluate the surface 

topography of laser-polished surfaces on ball-machined semi-finished parts of 1.2379 tool 

steel. The method is based on estimating the laser thermal field. In the tests, a 3.1 KW 

diode laser was utilized. Experimental verification demonstrates a reasonably good 

agreement between estimated and measured average roughness (Ra) and average 

roughness depth (Rz), with errors of less than 15% in all settings 11. 

Andre et al. 12 contributed to enhancing and expanding the empirical data set for 

laser micro polishing of 1.2379 tool steel by using a diode-pumped Yb:YAG disk laser . 

The results reveal that to obtain larger laser beam sizes, smaller laser polishing fluids are 

required. Furthermore, with larger laser beam diameters, the same or lower surface 



 

4 

roughness and less undesired surface characteristics are formed. This demonstrates a 

possible way for industrial laser micro polishing applications, where area rates of up to a 

few m2/min may be produced using commercially available laser beam sources 12. 

In the literature there are limited studies on laser surface treatment of 1.2379 and 

they used CO2 and diode laser, there are no studies which use fiber laser in the treatment 

of 1.2379 tool steel. In this thesis, laser surface treatment process applied on 1.2379 cold 

work tool steel with variant laser parameters (i.e. power, pulse duration, frequency and 

line spacing). Following that, hardness and roughness values of treated surfaces were 

measured. Additionally, this research aimed to determine optimum laser parameters for 

roughness and hardness by using different regression models and optimization 

techniques. 

 

1.2.  Objectives of Thesis 
 

Laser surface treatment is one of the important operations for material processing. 

It gives an opportunity to change the mechanical properties of cold work tool steel. 

Compared to other methods which are used for surface treatment process, laser surface 

treatment has many advantages such as low cost and compatibility to automation. 

In this thesis, 1.2379 cold work tool steel which is mostly used material in die and 

mold industry is treated with fiber laser to improve surface properties. In the industry the 

hardness and roughness of this material plays an important role in manufacturing. Thus, 

with LST process surface properties were modified. In order to determine proper laser 

parameters for 1.2379 cold work tool steel, three main processes were performed in this 

study. In the first stage, the surface of the material was processed with a laser and the 

hardness and roughness values were measured. In the second stage, regression models 

were created and the best model was selected. In the final stage, four different non-

traditional optimization methods which are Random Search, Simulated Annealing, 

Differential Evolution and Nelder-Mead were performed to find optimum roughness and 

hardness values. The following are some of the key reasons for writing this thesis: 

 To treat the surface of 1.2379 cold work tool steel by using low power fiber laser  

 To investigate the effect of laser parameters (i.e., power, frequency, scan speed 

and line spacing) on surface properties such as hardness and roughness of 1.2379 

cold work tool steel 
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 Improving the surface quality of 1.2379 cold work tool steel for long-term use. 

 Decreasing the set-up number by increasing the tool life in mass production. 

 Observing different regression methods and finding the high R2 value. 

 To consider proper laser parameters for expected hardness and roughness values 

by using optimization methods. 

As a summary, the flowchart of LST optimization of 1.2379 cold work tool steel 

is given in Figure 1.2. 

 

 
Figure 1.2. Flow chart of LST optimization for 1.2379 cold work tool steel 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stochastic Optimization 
Methods 

12 Different Regression 
Models 

 

34 Full Factorial  
Design 

Inputs: Average Power, 
Repetition Rate, Line Spacing 

and Scan Speed 

Outputs: 
Hardness and Roughness 



 

6 

CHAPTER 2 
 

LASER TECHOLOGY AND APPLICATIONS 
 

2.1.  Lasers 
 

The foundations of the laser system were first laid in 1917 by Albert EINSTEIN 

with the concept of “stimulated emission” predicted using a mathematical proof 3. The 

first ruby laser was introduced in 1960, and soon after that, systematic research on laser-

material interactions rapidly expanded. With the ruby laser, it has been found that the 

special interaction between the laser beam and the material causes permanent changes to 

the mechanical properties of material 13.  

The meaning of LASER word is light amplification by stimulated emission of 

radiation 14. A laser is composed of three parts: an energy source ('pump') a lasing medium 

(solid, liquid or gas), and an optical resonator as shown Figure 2.1. This establishes the 

required circumstances for photons to be stimulated and amplified by a cascade effect to 

produce laser light. Compared to other light sources, lasers have a high power density 

which allows them to generate a highly focused source of intense heat that declines only 

little with distance from the source15.  

 

 
Figure 2.1. Basic components of a laser system  16 

 

In practice, a laser device consists of a medium decoupled between two mirrors, 

a fully reflective mirror (fully glazed) on one side and a partially reflective mirror (semi-

glazed) on the other side. When this medium is pumped in such a way that a localization 
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transformation occurs that raises the majority of the active atoms (or molecules) in it to 

higher than normal energy levels, a coherent light that can reflect back and forth between 

the end mirrors of the cavity occurs. This situation leads to the fact that the level of this 

coherent light reaches a threshold point (the point at which the gain generated by light 

amplification begins to exceed all the losses that can occur simultaneously). In this way, 

the device begins to emit a beam of laser light 17 as shown in Figure 2.2 18.  

 

 
Figure 2.2. Light emitted by the laser nozzle 18 

 

From an engineering point of view, a laser is an energy conversion device that 

simply converts the energy coming from a primary source (optical, chemical, electrical, 

thermal or nuclear) into an electromagnetic beam (ultraviolet, visible or infrared) of a 

special frequency. This transformation is achieved with certain solid, liquid or gaseous 

media. When these media are excited with certain techniques at the molecular or atomic 

scale, a coherent and relatively monochromatic (almost single frequency) form of light (a 

laser light beam) is formed. Due to their coherence and monochromaticity, both low-

power and high-power laser light beams have a very small divergence angle. For this 

reason, they can be transmitted relatively up to extremely large distances either through 

transmissive or reflective type focusing lenses 17. 
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2.2. Laser Classification
 

There are various types of lasers, and they can be classified based on the pump 

mechanism and the composition of the energy levels. Although additional sources of 

energy such as nuclear, chemical or particle-kinetic energy are potential, the most 

commonly used pumping processes are optical and electrical. The energy levels might be 

either electronic (describing distinct energy states of an electron), vibrational (describing 

different energy states of atomic vibrations in a solid), or a mix of them 16. Figure 2.3 

shows the main types of lasers developed and still in use from the past to the present, 

categorized according to the environment in which they are produced 19. 

 

 
Figure 2.3.  Main laser types  
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2.2.1. Solid-State Lasers 
 

Ruby laser was the first solid-state laser. Ruby is an aluminum crystalline and this 

crystalline involves some amount of chromium. These chromium atoms generate a red 

laser beam 20.  

The usage area of solid-state lasers has grown significantly since the invention of 

another solid-state laser which is called Nd: YAG. In this laser, cylindrical rod-shaped 

crystals are coated with an antireflective material and polished on both ends. The crystals 

are held together by a metal container. Special flash bulbs and reflecting mirrors are 

inserted in the container depending on the stimulation type used. A laser beam with a 

wavelength of 1064nm is produced when a Nd:YAG crystal is excited by a high intensity 

light 21. 

 

2.2.1.1. Fiber Lasers 

 

With the development of fiber optic components, laser science enhances its 

fundamental parameters such as average power, pulse energy, peak power, 

wavelength and pulse energy characterization. Nowadays, fiber lasers are the most recent 

generation of laser technology. The fundamental loss of fused silica fibers has now been 

reduced to 0.15 dB/km at 1550 nm. Due to its advantages such as, good beam quality, 

high brightness, low noise, low cost, high power, extended lifetime, high reliability and 

minimal maintenance need, fiber laser technology has evolved from a laboratory 

instrument to a highly welcome industrial solution. Because of their adaptability, fiber 

laser systems have found a wide range of applications in everyday technical practice 22,23.  

 

2.2.2. Gas Lasers 
 

By inducing gaseous substances, gas lasers generate a laser beam. These 

compounds are inserted and fixed in a closed tube and the laser beam is activated by 

electrodes located throughout the tube. The gas composition changes depending on the 

laser type that is used. The early gas lasers employed a combination of helium and neon. 

Recent studies on the gas combination have indicated that CO2 laser mixtures are more 

efficient than helium and neon lasers. Owing to the wavelength of the laser beam they 
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generate and their great power capacity, these lasers are commonly employed in industrial 

operations (up to 50 kW) 20. Over time, most of the work has turned to new closed-type 

lasers that do not require gas supply during operation. These lasers have a more compact 

construction and lower running costs than CO2 lasers that require gas supply. The heat 

generated in the closed laser tube is transported to the exterior surfaces by the mixed gas. 

CO2 lasers are commonly utilized in the treatment of plastic materials 24. 

 

2.2.3. Semi-Conductor Lasers 
 

Semi-conductor laser is created using crystals produced from semiconductor 

materials. A semiconductor substance is a gallium arsenide crystal. In this form of crystal 

laser, electrons lose energy and produce photons when a positive voltage is applied to the 

"p" side and a negative voltage is applied to the "n" side of the combination surface of 

"p" and "n" type materials. This photon-electron collision produces additional photons. 

Laser beams are formed as a result of photons reaching a sufficient level. These lasers 

generate a significant amount of light. Semi-conductive lasers provide a higher than 50% 

efficiency. The wavelength and optical properties of a laser beam produced by a diode 

laser are widely used in industry, metal and plastic materials welding, and a variety of 

surface treatments such as surface cleaning and hardening 25,26. 

 

2.2.4. Liquid Lasers 
 

There is a substantial risk of damage while working with solid lasers owing to 

heat created in the material during high-power operation or heat caused by the pumping 

light. Instead of a crystalline or glassy rod, organic dyes are deposited in solutions created 

by reducing them in solvents in liquid lasers. The most distinguishing factor from the 

others is that the desired wavelength may be investigated by modifying it in a specific 

spectrum based on the material employed rather than a single wavelength27,28. 
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2.3. Applications of Lasers
 

Lasers have been used in our daily lives since the 1970s, thanks to rapidly 

developing technology. Lasers, which are classified as low-intensity lasers or high-

intensity, have a highly diverse and broad range of applications. Based on the main 

categories, the application areas of lasers used for industrial and commercial purposes 

can be represented in Figure 2.4. There are also numerous key scientific applications 

being explored on various scales by government and industry groups, as well as 

universities, such as laser weapons, laser-induced nuclear fusion, isotope enrichment, 

spectroscopy and atomic physics, and measurement.18. 

 

 
Figure 2.4. Laser applications 

 

2.4.  Laser Material Interaction 
 

Nowadays, laser material interaction is one of the fastest-growing fields, and its 

advancement has paralleled the development of novel laser system designs. Compared to 

conventional methods, laser material processing offers various advantages. Processing 
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materials with lasers became increasingly significant after the introduction of new laser 

types and progress in applied sciences and industry 3. Modifications in the crystal 

structure, chemistry, and morphology of the material induced by laser radiation causes 

changes in the material's behavior. The laser capacity to deliver large amounts of energy 

to the material in a very short period of time at a region near to the surface enables to 

change in the material properties 29. The capacity to precisely manage where in the 

material and at what rate energy is deposited is one of the laser's important features as a 

material processing tool. To accomplish the required material modification, this control 

is performed through the right selection of laser processing settings30.  

 

2.5.  Laser Surface Treatment  
 

The selective heat treatment of metallic materials for decreased wear was one of 

the earliest commercial uses for laser surface treatment process 31. Heat treatment of 

metals has typically employed heating to a specific temperature in an oven, flame, 

induction, or electric arc to create a crystal phase change and then rapidly cooling to 

ambient temperature and freezing in a non-equilibrium phase. The pace of cooling from 

the high temperature crystal phase impacts the shape and mechanical characteristics of 

the subsequent room-temperature crystal. Such heat treatments are widely employed to 

harden or temper load-bearing surfaces in order to minimize friction, wear and working 

life 32. However, machining the entire part is undesirable in most circumstances because 

it makes the part prone to degradation or fracture. Rapid surface heating with reduced 

thermal penetration is partly owing to the laser. Following, self-quenching into the 

cooling mass change is restricted to a thin layer of surface material. By changing laser 

parameters such as pulse duration (or scan speed for CW lasers) and intensity, the heating 

and quenching rates, and hence the resultant material characteristics can be modified 33. 

High processing rates, accurate curing depth control, reduced component deformation 

and cracking, elimination of separate quenching media, and selective hardening of small 

hard-to-reach places are the primary benefits of laser surface heat treatment 30. 

LST applications can be grouped into two types. The first one is to remanufacture 

or refurbish parts in order to recover their qualities and dimensions 34. The second one is 

to create new materials with superior characteristics. Table 2.1 lists several articles that 

used the LST process. 
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Table 2.1. Some applications of LST 35–43 

Material Application Improvement References 
CMSX-4 (Ni-
based super 

alloy) 

Repair of turbine 
blades 

This method helped to 
develop monocrystalline 

CMSX-4 

35 

Stellite-6/WC 
on B27 boron 

steel 

Repair of tools for 
soil cultivation 

Formation of 
intermetallic compounds 

improved the wear 
resistance 

36 

NI40 and NI60 
on C60 steel 

Improvement of 
barrel- screw 

system in plastic 
injection molding 

Ni-Cr alloy clad 
improved the 

microhardness 

37 

CPM9V steel on 
H13 tool steel 

Repair of molds 
and dies used in hot 
and cold working 

Presence of compressive 
stress due to formation 

of martensite phase 

38 

Grade C wheel 
U75V rail with 
316L, 420, 410 

Repair of damaged 
railway wheels 

The wear rates decrease 
with increased hardness 

of the clad materials 

39 

Titanium 
hydroxylapatite 

on Nitinol 

Coating on Nitinol 
implants to restrict 

nickel release 

Modulus of elasticity of 
coated samples falls in 
the range of 6–30 GPa 
which is similar to the 

natural bone 

40 

Mg-Zn-Dy alloy 
casted and laser 

melted 

Restrict in vitro 
degradation and 
improve tissue 

integration 

Improvement in in vitro 
degradation due to 

formation of insoluble 
protective layer 

41 

Powdered 
Co29Cr9W3Cu 

alloy 

SLM is used to 
develop 

Co29Cr9W3Cu 
alloy joint 
prostheses 

Initiation of crack is 
arrested due to plastic 
deformation caused by 

strain-induced 
martensitic 

transformation 

42 

Ti powder on 
Ti6Al4V 
substrate 

Improve in vitro 
biocompatibility 
capacity of the 

titanium deposits to 
be used as medical 

implants 

In vitro test of samples in 
Hank’s solution shows 
that the leaching was 

within the desired values 

43 
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CHAPTER 3 

 

MODELING  
 

3.1.  Design of Experiment (DoE) 
 

Design of Experiment (DoE) is a useful approach to discover new processes as 

well as learning more about current processes, and then selecting these processes to obtain 

world-class performance. Ronald Fisher invented the first DoE in the early 1920s. His 

first research included assessing the effect of different fertilizers on different plots. The 

eventual stage of the crop was determined not just by the fertilizer, but also by a variety 

of additional elements.  Fisher employed DoE to isolate the influence of fertilizer from 

the effects of other variables. DoE has been extensively recognized and used in biological 

and agricultural domains after this study. It is known that several DoE study have been 

effectively employed by many US and European companies in the last 15 years 44. 

DoE is a very successful statistical and mathematical method for improving the 

performance of a system or process, which is defined as the conversion of inputs into 

outputs. Factors or variables, levels, and responses are the components of the 

experimental approach's design. The process's input variables can be controllable and 

uncontrolled factors 44,45. The potential applications of DoE in manufacturing processes 

include: 

 improved process yield and stability  

 improved profits and return on investment  

 improved process capability 

 reduced process variability and hence better product performance consistency 

 reduced manufacturing costs 

 reduced process design and development time  

 heightened engineers’ morale with success in solving chronic problems  

 increased understanding of the relationship between key process inputs and 

output(s) 

 increased business profitability by reducing scrap rate, defect rate, rework, retest, 

etc. 46 
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The appropriate DoE technique should be carefully selected according to the goal 

of the experiment and number of factors. There are many methods used in DoE study, 

widely used ones listed in this literature review. These methods are Full Factorial, 

Randomized Complete Block Design, Fractional Factorial, Taguchi and D-Optimal 

Design 47,48. 

 

3.1.1. Full Factorial Design 
 

Full and fractional factorial designs at two and three levels are well known and 

most widely used DoE techniques by manufacturing industries. Using factorial designs, 

a researcher can obtain a consistent response on the effects of variables. There are two 

kinds of factorial designs, these are full and fractional factorials. A full factorial design is 

an experimental design in which every factor setting interacts with every other one. When 

there are five or more components, the complete factorial design needs a substantial 

amount of operation and is inconvenient. In such instances, fractional factorial design can 

be preferred 44,49. 

 

3.1.2. Randomized Complete Block Design 
 

The randomized complete block design (RCBD) is a typical design for 

biostatistical research in which comparable experimental units are divided into blocks or 

replicates. It is used to control variance in an experiment by, for example, accounting for 

geographic effects in a field or greenhouse. The RCBD is distinguished by the fact that 

each block receives each treatment exactly once. Randomized complete block designs 

differ from completely randomized designs in that the experimental units are divided into 

blocks based on known or hypothesized variance that is separated by the blocks. Variation 

like fertility, sand and wind gradients, or animal age and litter may be separated using 

proper blocking. As a result, the circumstances within each block are as uniform as 

feasible, yet considerable variances may occur between blocks 50. 
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3.1.3. Fractional Factorial Design 
 

In full factorial experiment design, combinations of all levels of factors are 

examined one by one, which increases the cost of the experiment and takes a lot of time. 

In other words, the design of a full factorial experiment has a maximum duration and 

expense. The correlation between the data obtained from the experiment and the cost and 

time spent is very critical in the design process. In order to save cost and time, fractional 

factorial experiment design reduce the number of experiments 51. 

 

3.1.4. Taguchi Design 
 

Taguchi experimental design approach is used as an efficient method for solving 

optimization problems by minimizing processing performance with the least tests and at 

the lowest cost. In this method, it is expected to save time and money by minimizing the 

number of experiments by employing the vertical indexes of  the Taguchi method 52.  

In Taguchi technique, all elements influencing process quality can be classified 

into two categories: control factors and noise factors. The control variables are defined 

by the manufacturer and are simply adjustable. These are the most significant criteria in 

establishing the quality of product properties. The Taguchi method is applied in the 

following steps:  

i. identifying the factors/interactions,  

ii. identifying the levels of each factor,  

iii. selecting an appropriate orthogonal array (OA),  

iv. assigning the factors/interactions to columns of the OA,  

v. conducting the experiments,  

vi. analyzing the data and determining the optimal levels,  

vii. conducting the confirmation experiment53. 

 

3.1.5. Optimal Design (D-Optimal) 
 

              D-optimal design, which is a kind of computer-aided design, complies with the 

high-level standards or criteria specified by the developers in the development stage. The 

product prototype generates very close results in this design method and usually appears 
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to approach the perfect design for that product. D-optimal designs are flat optimizations 

that are based on the optimality criterion and model to fit. D-optimal design matrices are 

typically not orthogonal, and the effect estimates are coupled, in contrast to normal 

classical designs such as factorization and fractional factorization. D-optimal design 

provides various advantages in terms of time and cost limitations. This method directly 

focusses on particular criteria and reduces the costs associated with the investigation 

process. Different factors allow us to create unique combinations. Shortly, this method 

prefer to use more promising combinations while ignores insignificant results 44,47,49,54.   

 

3.1.6. Box-Behnken Design 
 

Box-Bhenken design was created by Box and Bhenken in 1980. This experimental 

design is a practical method to develop second order response surface55. The Box-

Behnken Design generates an experimental matrix that is required for the combination of 

process parameters and conditions56. Box Bhenken is one of the important experiment 

design methods that allows to reduce experiment costs. With the use of progressive 

regression analysis, Box-Behnken experimental design results can be predicted in a short 

time by conducting a small number of experimental studies57. 

 

3.2.  Regression Analysis 
 

Regression analysis is one of the most important subjects of statistics. Regression 

analysis is a mathematical analysis technique created to predict or estimate the 

relationship between two or more variables that have a cause-effect relationship 58. 

Generally, a regression model is expressed by Equation 3.1 (y represents the 

dependent variable, α represents the constant, x1 represents independent variable, β1 

indicates the (regression) coefficient of the independent variable x and the e denotes the 

error (or residual) of the equation) .The steps of regression analysis is shown in Figure 

3.1 59.  

 

(3.1) 
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Figure 3.1. Steps of regression analysis  

 

3.2.1.    Simple Linear Regression 
 

Simple linear regression describes the relationship between the response variable 

Y and the given input variable X 60. While correlation and its related inference can assist 

in determining the relationship between two quantitative variables, they do not provide 

the full picture. While the correlations between two sets of predictor and responder may 

be comparable, the effect sizes are chosen differently. A more detailed view of the 

relationship between predictor and response is provided by simple linear regression. By 

establishing a few assumptions about the error that surrounds our regression line, we can 

choose the best line to describe this relationship, one that is directly related to the 

correlation 61.  

The simple linear regression relationship for response variable Y and the input 

variable X can be represented by Equation 3.2. In the given equation β0 and β1 are 

unknown parameters and can be predicted from data. Also e represent the random error 

of the regression model 62,63. 

 

                                                                                            (3.2) 

 

 

 

Use the regression model

Validate the regression results

Interpret the regression results

Test the assumptions of regression analysis

Specify and estimate the regression model

Consider data requirements for regression analysis
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3.2.2.    Simple Non-linear Regression 
 

The linear model produces good outcomes in many scenarios; however, this may 

not be possible in other cases. The relationship between response and input variable 

cannot always be expressed with the use of the linear model. Therefore, nonlinear 

models can produce more accurate findings  as an alternative way 64. Simple non-linear 

regression model can be expressed by Equation 3.3 63.  

 

                                                                                         (3.3) 

 

3.2.3.    Multiple Linear Regression 
 

Simple linear regression models just one variable uses to explain variation of Y 

data, while more than one variable uses in multiple regression models to determine the 

variation of Y data. Multiple Regression is used to describe regression with more than 

one X variable. The relation Multiple linear regression model can be expressed by 

Equation 3.4 which has n explanatory (X) variables:65 

 

                                                          (3.4)                        

 

3.2.4.    Multiple Non-linear Regression 
 

Multiple nonlinear regression is a kind of regression analysis in which the 

relationship between observation data and a function may be specified. In the multiple 

nonlinear regression model, the dependent variable is determined by various independent 

variables through nonlinear combinations66. Multiple non-linear regression model can be 

shown by Equation 3.5 63. 

 

                                                      (3.5) 
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3.3.  Coefficient of Determination (R2)  
 

The coefficient of determination is the percentage ratio of total variability in the 

dependent variable accounted for by the regression equation in the independent variable 

(s). A R2 value of 1 implies that the fitted regression equation accounts for all the 

variability in the dependent possible values in the sample data. The number of  0 for R2 

shows that the regression equation explains for none of the variability67. 

After fitting the regression model, checking whether the model is sufficient or not 

is the most important part of regression analysis. It is necessary to guarantee that the 

generated model is sufficiently close to the correct model and to check whether it provides 

all the assumptions of the least squares regression analysis. If the regression model does 

not provide sufficient adaptation, it will give weak or misleading results58. 

The Coefficient of Determination, also known as the R-squared (R2), is the most 

widely used statistic in regression. The R2 is the fraction of data variance (Y) explained 

by the model (X). The R2 is determined by Equation 3.6. Figure 3.2 shows how the R2 is 

the proportion of variation in the data (Y) explained by the model 65 . 

 

                                                     (3.6) 

 

                                                         (3.7) 

 

                                                        (3.8) 

Where; 

Sum of Squares Total: 

SST is the Variation in the data also known as the difference between data and overall 

Avarage 

Sum of Squares Model: 

SSM: Variaion of the model or the difference between average and estimated data 

SSE is Sum of Squared Regression also known as variation not accounted by the model 

 is the y value for observation i  

 is the mean of y value 

 is the predicted value of y for observation i 
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Figure 3.2. How the R2 is the proportion of variation in the data (Y) explained by the 
                   model65   
 
                                                                                                                                     

The adjusted R-squared analyses the explanatory power of regression models with 

different predictor values. The adjusted R-squared is a variant of R-squared that has been 

changed to account for the number of predictors in the model. Only if the additional term 

enhances the model more than could be predicted by chance does the adjusted R-squared 

rise. It falls when a predictor improves the model by a less amount than would be 

anticipated by chance. It is possible for the adjusted R-squared to be negative, although 

it is generally not. Also, It is never greater than R-squared 68. Adjusted R2 can be 

calculated by using Equation 3.9 69: 

 

                                        (3.9) 

 

Where N is the sample size, and k is the number of predictor variables in the 

analysis. Smaller values for N, and larger values for k, lead to greater downward 

adjustment of R2. 

 

3.4.  Neuro-Regression Modeling 
 

Artificial neural networks and regression analysis are two main data analysis 

techniques. Both approaches have their advantages and disadvantages. In order to build 

more reliable models and predictions, a hybrid technique was developed to combine the 



 

22 

advantages of these two methods while minimizing their limitations. This method is 

known as Neuro-Regression. The suggested technique combines the benefits of the RA 

and ANN methods while avoiding their disadvantages, resulting in a substantially reduced 

error rate when compared to both methods. The primary objective of neuro-regression 

research is to develop a learning model that can reliably estimate previously unknown 

data. As a result, the learning model developed must be generalized in order to ensure the 

right categorization of data in the future. Generalization relates to how successfully the 

model learns from the provided data and applies what it has learnt. Validation, Training, 

and Test sets are the most often utilized methodologies for measuring generalization. If 

the model performs well on data that it has not observed in training, it is considered to 

perform well on the provided data 47,70. 

 

3.4.1. Train and Test Set 

 

The data collection should be separated into test and training sets before 

conducting mathematical modelling. This divide might be around 80% training dataset 

and 20% testing data. The training set is the dataset used to train the model. The test set 

is a data set that is used to evaluate the model that was created in the training set. The 

model is first trained on the training set before making predictions on the test set. 

Following that, the predictions are compared with the real response variable in the test 

data, and the model's accuracy is assessed. Furthermore, the model learns better when the 

training set is larger 47,70. 

 

3.4.2.  Validation Set 

 

After the model is decided at the end of each training with the validation set, it is 

tested with the test set and the effectiveness of the model is observed in a more reliable 

way. The validation set has no influence on the model's fit performance. Furthermore, the 

test set determines whether the model is under or over fit. Only overfitting to the test set 

is checked by the validation set 70,71. 
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CHAPTER 4 
 

OPTIMIZATION  
 

The process of obtaining the best possible result under specified conditions is 

known as optimization. Engineers must make various technological and operational 

decisions at various phases of the design, development, and maintenance of any 

engineering system. All of these options are ultimately aimed at either minimizing the 

work required or maximizing the intended result. Because the effort needed or expected 

utility in each practical scenario may be described as a function of specific selection 

factors, optimization can be defined as the method of determining the parameters that 

give a function the highest or smallest value 72.  

Performance optimization is a critical subject in the design and operation of 

modern engineering systems in a wide range of sectors such as manufacturing, robotics, 

communication and logistics. Most engineering systems are either too complex to model 

or the system parameters are difficult to identify. Because of these reasons learning 

methods must be employed 73. 

 

4.1.  Single Objective Optimization 
 

The maximum or minimization of the objective function based on a single variable 

under a constraint or an unconstrained problem is the subject of single-objective 

optimization problems. The objective function in single-objective optimization problems 

has just a single variable. The function might change depending on the various values of 

that variable. 

The single-objective optimization function can have: 

a. relative / local min 

b. relative / local max  

c. absolute / global min 

d. absolute / global max.  

Single-objective optimization is a useful method in less complicated real-time 

studies. However, optimization is also required at low levels 74. The mathematical 

definition of single objective optimization can be expressed as follows: 
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Minimize f (x) or Maximize f (x)   

where,  x = (x1, x2, x3, …, xn)T   

Subject to, 

gi (x) ≤ 0             i = 1,2,…,m 

hj (x) = 0             j = 1,2,….,k       

 

4.2.  Multi Objective Optimization 
 

Multi objective optimization (multi objective programming or multicriteria 

optimization), is a branch of multiple-criteria decision-making that deals with 

mathematical optimization problems where numerous objective functions must be 

simultaneously optimized. Numerous scientific disciplines, including engineering, have 

used multi-objective  optimization to help make the best choices when multiple objectives 

must be compromised 75. The mathematical definition of multi objective optimization can 

be expressed as follows: 

Minimize f1 (x), f2 (x),…,fr (x)  or Maximize f1 (x), f2 (x),…,fr (x)   

where   x = (x1, x2, x3, …, xn)T   

Subject to, 

gi (x) ≤ 0             i = 1,2,…,m 

hj (x) = 0             j = 1,2,….,k      

 

4.3.  Traditional and Non-Traditional Optimization 

 

Traditional and non-traditional techniques are the main categories of optimization 

methods. Traditional and non-traditional optimization are also called deterministic and 

stochastic optimization respectively.  These methods have advantages and disadvantages 

based on usage areas. The traditional approach begins with the initial answer and develops 

the ideal solution with each further iteration. The decision about the first strategy will 

affect this convergence. These techniques are inappropriate for discontinuous objectives. 

Because of this, the necessity of non-traditional methods arises. Also, certain 

unconventional techniques are referred to as nature-inspired techniques76. 

Traditional techniques are slower than non-traditional techniques, however if the 

problem is small more accurate results can be found. Mathematical programming, 
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Dynamic programming, Integer programming are some of the traditional optimization 

techniques. Non-Traditional Optimization techniques are fast enough, however there is 

no guarantee for optimum solution like traditional techniques. It is kind of  approximation 

method. 77. 

Non-traditional optimization methods are used in various studies in literature in 

recent years and scientists continue to develop new strategies and approaches in stochastic 

optimization techniques. Some of the example of stochastic optimization methods are; 

Simulated Annealing (SA), Genetic Algorithm (GA), Differential Evolution (DE), 

Random Search (RS), Particle Swarm Optimization (PSO), Tabu Search (TS), Artificial 

Bee Colony (ABC), Ant Colony Optimization (ACO), Markov Chain Monte Carlo 

(MCMC), Harmony Search (HS), Covariance Matrix Adaption (CMA), Grenade 

Explosion Method (GEM). Since laser surface treatment process is extremely nonlinear, 

stochastic optimization methods were preferred. Four different optimization methods 

(Simulated Annealing (MSA), Differential Evolution (MDE), Nelder-Mead (MNM) and 

Random Search (MRS)) were preferred for this thesis. 
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CHAPTER 5 

 

MATERIAL AND METHODS 

 
In this chapter, the material and techniques utilized in the experiments are discussed 

in detail. 

 

5.1.  Material 
 

The material employed in this study is 1.2379 cold work tool steel. The following 

chapters include full details about tool steels. 

 

5.1.1. Tool Steel 
 

Any steel that is "used to create tools for cutting, molding, or otherwise shaping a 

material into a part or component appropriate to a certain function" is called as a "tool 

steel"78. Tool steels are high-alloy steels that shape, mould and cut other materials, such 

as steels, nonferrous metals, and polymers used in the manufacturing of tools, dies, and 

molds. Tool steels can be hardened and tempered and can be either carbon, alloy, or high-

speed steels. To suit specific criteria, they are often melted in electric furnaces and 

manufactured using tool steel techniques. They can be incorporated into certain hand 

tools or mechanical fixtures to cut, shape, mold and blank materials at normal or high 

temperatures. In a wide range of other applications where resistance to wear, strength, 

toughness, and other qualities are required for optimum performance, tool steels are also 

used 79. 

The American Society for Testing and Materials (ASTM) designation, in which 

each steel grade is called by a letter followed by a number, is one of the primary 

classification techniques for tool steels. The number, which is often in sequential (and 

typically historical) sequence, designates a certain developed steel, while the letter 

indicates one feature of the tool steel. According to ASTM, tool steels are classified into 

nine types of steels. Table 5.1 presents the symbols for the tool steels in the ASTM 

group80. 
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Table 5.1. ASTM classification of tool steels 

Classification ASTM Symbol  

Water-hardening tool steels W 

Shock-resisting tool steels S 

Oil-hardening cold work tool steels  O 

Air-hardening, medium-alloy cold work tool steels A 

High-carbon, high-chromium cold work tool steels for Dies  D 

Plastic mold steels P 

Hot work tool steels, chromium, tungsten   H 

Tungsten high-speed tool steels T 

Molybdenum high-speed tool steels M 

 

 

5.1.1.1.Cold Work Tool Steel 

 

In the industry, various metal forming processes such as pressing, bending, 

pulling, cutting and punching of workpieces are performed by cold work molds. The main  

parts that directly contact and shape the workpieces in these molds are cold work tool 

steels. For this reason, the correct selection and processing of mold steels takes a critical 

role in the durability of molds. Cold work tool steels are usually used in forming process 

of the formed material at temperatures below 200°C 79,81. 

The cold-work tool steels classify into four main groups: the O-series (oil-

hardening), W-series (water-hardening) the A-series (air-hardening), and the D-series 

(high carbon-chromium)82. 

 

5.1.1.1.1. 1.2379 Cold Work Tool Steel  

 

1.2379 (AISI D2), a ledeburitic chromium rich steel with 1.55% C, is one of the 

most extensively used cold work tool steels in mould and die applications  83. This steel 

has been highly preferred in critical applications in industrial sectors such as forming dies, 

collets and gauges in recent years. 1.2379 cold work tool steels are used as dies, trimming 

dies, coining dies, punches, shear blades, fuller, phillips head forming dies, thermosetting 

resin forming dies, cold forming dies, thread rolls, fine blanking, stripper plates, profiling 
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rollers and press tools, brick moulds, chisels, pneumatic tools, etc. 84–87. The worldwide 

demand for steel is expected to increase from 1700 million tons to almost 1750 million 

tons between 2016 and 2018, as indicated in Figure 5.1. Additionally, the growth in the 

production of passenger cars will definitely have a positive effect on the tool and mold 

industries. The chemical composition of 1.2379 cold work tool steel is given in Table 5.2. 

 

 

Figure 5.1. Global steel consumption 2006–202083 

 

Table 5. 2. The chemical composition of 1.2379 (D2) cold work tool steel (%) 88 

Fe  Cr  C  V  Mo  Mn  Si  
84.1  11.86  1.56  0.84  0.83  0.38  0.4  

 

 

5.2.  Experimental Methods 
 

The experimental study was performed on 1.2379 cold work tool steel with a cube 

which dimensions are 30 mm × 30 mm × 60 mm. Firstly, the samples were cleaned by an 

ultrasonic bath in acetone solution at 50 ° for 4 minutes as shown in Figure 5.2. After that 

samples were sandpapered as seen in Figure 5.3.  
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Figure 5.2. Ultrasonic bath 

 

 
Figure 5.3. Grinding and polishing machine 

 

Four main laser parameters (average power, repetition rate, scan speed and line 

spacing) are used as input and the surface properties such as hardness and roughness 

specified as output parameters as shown in Figure 5.4. The range of laser parameters 
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specified according to pre-experimental studies. To increase accuracy of optimization 

process full factorial design was applied by using four factors (average power, repetition 

rate, scan speed and line spacing) in 3 levels and two responses (hardness and roughness). 

To create design of experiment (DoE) data commercially available Design-Expert 

software was used. The building information is shown in Table 5.3.  and 34 full factorial 

DoE data is given in Table 5.4. By using four factors and three levels, 81 experimental 

runs were created. 

 

 
Figure 5.4. Black box of laser surface treatment 

 

Table 5.3. Building information 

 

Table 5.4. 34 Full factorial DoE 
  

Factor 1 Factor 2 Factor 3 Factor 4 
Std Experimental 

Run 
Average power 

(A) 
Repetition rate 

(B) 
Scan speed 

(C) 
Line spacing 

(D)   
[W] [kHz] [mm/s] [μm] 

1 1 10 20 10 20 
28 2 10 20 10 30 
55 3 10 20 10 40 
10 4 10 20 50 20 
37 5 10 20 50 30 
64 6 10 20 50 40 
19 7 10 20 90 20 
46 8 10 20 90 30 
73 9 10 20 90 40 
4 10 10 60 10 20
31 11 10 60 10 30 

                             (cont. on next page) 
 

File Version 13.0.5.0 
  

Study Type Factorial Subtype Randomized 
Design Type Full Factorial Runs 81.00 
Design Model 2FI Blocks No Blocks 
Center Points 0.0000 Build Time (ms) 1.0000 
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Table 5.4 (cont.)

58 12 10 60 10 40
13 13 10 60 50 20 
40 14 10 60 50 30 
67 15 10 60 50 40 
22 16 10 60 90 20 
49 17 10 60 90 30 
76 18 10 60 90 40 
7 19 10 100 10 20 
34 20 10 100 10 30 
61 21 10 100 10 40 
16 22 10 100 50 20 
43 23 10 100 50 30 
70 24 10 100 50 40 
25 25 10 100 90 20 
52 26 10 100 90 30 
79 27 10 100 90 40 
2 28 15 20 10 20 
29 29 15 20 10 30 
56 30 15 20 10 40 
11 31 15 20 50 20 
38 32 15 20 50 30 
65 33 15 20 50 40 
20 34 15 20 90 20 
47 35 15 20 90 30 
74 36 15 20 90 40 
5 37 15 60 10 20 
32 38 15 60 10 30 
59 39 15 60 10 40 
14 40 15 60 50 20 
41 41 15 60 50 30 
68 42 15 60 50 40 
23 43 15 60 90 20 
50 44 15 60 90 30 
77 45 15 60 90 40 
8 46 15 100 10 20 
35 47 15 100 10 30 
62 48 15 100 10 40 
17 49 15 100 50 20 
44 50 15 100 50 30 
71 51 15 100 50 40 
26 52 15 100 90 20 
53 53 15 100 90 30 
80 54 15 100 90 40 
3 55 20 20 10 20 
30 56 20 20 10 30 
57 57 20 20 10 40 
12 58 20 20 50 20 
39 59 20 20 50 30 
66 60 20 20 50 40 



 

32 

 
Table 5.4 (cont.)

21 61 20 20 90 20 
48 62 20 20 90 30 
75 63 20 20 90 40 
6 64 20 60 10 20 
33 65 20 60 10 30 
60 66 20 60 10 40 
15 67 20 60 50 20 
42 68 20 60 50 30 
69 69 20 60 50 40 
24 70 20 60 90 20 
51 71 20 60 90 30 
78 72 20 60 90 40 
9 73 20 100 10 20 
36 74 20 100 10 30 
63 75 20 100 10 40 
18 76 20 100 50 20 
45 77 20 100 50 30 
72 78 20 100 50 40 
27 79 20 100 90 20 
54 80 20 100 90 30 
81 81 20 100 90 40 

 

 

5.2.1. Laser Surface Treatment (LST) 
 

For the laser surface treatment process, a commercially available industrial 

ytterbium low power pulsed fiber laser was used. The specification of fiber laser is given 

in Table 5.5.  

The experimental setup is also given in Figure 5.5. As seen in Figure 5.5, a galvo 

scanner with a maximum scanning speed of 3000 mm·s−1 was used to control the 

movement of the laser beam and all the experiments were performed on the focal position. 

After laser treatment, the visual change on laser treated surface is shown in Figure 5.6 

 

5.2.2. Measurement Techniques 
 

            Two measurement techniques were used to measure surface properties of tool 

steel. The first one is hardness and the second one is hardness measurements. All the 

measurement and experimental study was performed in LATARUM (Laser Technologies 

Research and Application Center) which is located in Kocaeli University Technopark.  
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Figure 5.5. Laser surface treatment processing by using the fiber laser 
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In all measurements, a laser treated area measured three times from three different points 

and the average of these three measurements was taken as a result.   

 

 
Figure 5.6. Laser treated surface of 1.2379 cold work tool steel 

 

5.2.2.1. Hardness Measurement  

 

The resistance of a substance to indentation is determined by hardness 

testing. Vickers hardness testing is one of the oldest methods of hardness testing, and it 

has a broad hardness scale that makes it ideal for most metals and welds. A 136° 

pyramidal diamond indenter with a square indent is used in the Vickers hardness test 89. 

In this experiment (P=0.5 kg) load was applied for 8 seconds by reference to the ASTM 

E384 standard. The hardness (HV) is expressed by Equation 5.1. In Equation 5.1, F 

represents the applied load (measured in kilogram-force) and D2 represents the area of 

indentation (measured in square millimeters). Vickers hardness measurement is shown in 

Figure 5.7.  

  

HV = 1.854 (F/D2)                                           (5.1) 

 

5.2.2.2.Roughness Measurement  

 

Surface roughness is a set of non-directional parameters that describes how 

smooth a surface texture is in regions smaller than three dimensions 90. In the experiments, 

the roughness values of the surface were measured with a Time 3200 needle (stylus) 

tipped roughness measuring device as shown in Figure 5.8.  
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Figure 5.7. Vickers hardness measurement 
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Figure 5.8. Roughness (Ra) measurement. 

 

 

Table 5.5. Ytterbium low power pulsed fiber laser specifications 91 

Parameter  Value  Unit  

Nominal average output power  20  W  

Energy per pulse (at 20 kHz)  1  mJ  

Pulse duration  <50  ns  

Pulse peak power (at 20 kHz)  >20  kW  

Pulse repetition rate  20 - 100  kHz  

Laser wavelength  1080  nm  

 

 

 

Roughness 
measuring  
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Sample Sam
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CHAPTER 6 

 

RESULTS AND DISCUSSION 

 
6.1.  Problem Statement 

 

Roughness and hardness are the main surface characteristics of cold work tool 

steels in the industry. These types of steels are used in die and mold industry so they need 

to be a specific hardness and roughness value to manufacture parts that has same surface 

properties and sometimes the surface properties of these mold can be change in the mass 

production for this reason they can be treated by laser to obtain specific surface properties. 

Laser surface treatment is a useful method that changes the surface properties of 

materials. However, LST is a nonlinear process so numerical modeling is required to 

understand this process. In this thesis laser parameters optimization study was performed 

by using four different laser parameters as input and optimum hardness and roughness 

parameters are specified. 

In the first part of this thesis an experimental study was performed on 1.2379 cold 

work tool steel. Firstly, the steel was treated with laser using different parameters then 

roughness and hardness were measured. Following that, twelve regression models were 

used to find the best fit using experimental data. At the end of the study minimum and 

maximum values of hardness and roughness were determined in the optimization process. 

Therefore, which parameters should be used to find minimum or maximum surface 

properties can be seen in this thesis. Moreover, by using regression equation and 

optimization methods predictions about laser input parameters can be performed 

according to required surface properties. Additionally, experimental results showed that 

LST is a very effective process to increase or decrease hardness and roughness of 1.2379 

cold work tool steel. 
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6.2.  Experimental Results 
 

In this work, experiments were conducted to determine two primary surface 

characteristics: roughness and hardness. 

 

6.2.1. Experimental Results for Hardness  
 

After LST process hardness of 1.2379 cold work tool steel surface is measured 

and measurement results are presented in Table 6.1. Each of the 81 experimental runs was 

measured three times from various positions on the surface, and the average hardness is 

shown as given in Table 6.1. The experimental runs were all carried out with various laser 

input settings. 307 (HV0.5) is the initial hardness value of the material used in the 

experiment. The table demonstrates the hardness's change from its initial value. A laser 

can improve hardness to 80%, as seen experimental run 57. This improvement in hardness 

value shows that the laser has an effect on 1.2379 materials and is a suitable method for 

use in order to improve hardness in industry. 

 

Table 6.1. Experimental results for hardness measurement

Experimental 
Run 

Hardness Average 
Hardness Change Test 1 Test 2 Test 3  

[HV0.5] [HV0.5] [HV0.5] [HV0.5] [%] 
1 371 319 336 342.00 11.401 
2 299 304 311 304.67 -0.760 
3 293 304 315 304.00 -0.977 
4 309 286 343 312.67 1.846 
5 379 312 359 350.00 14.007 
6 300 330 322 317.33 3.366 
7 347 320 343 336.67 9.663 
8 305 280 325 303.33 -1.194 
9 318 305 295 306.00 -0.326 
10 286 291 331 302.67 -1.412 
11 373 323 326 340.67 10.966 
12 328 302 325 318.33 3.692 
13 292 302 305 299.67 -2.389 
14 287 283 299 289.67 -5.646 
15 302 306 331 313.00 1.954 
16 415 377 343 378.33 23.236 
17 369 326 334 343.00 11.726 

                             (cont. on next page) 
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Table 6.1 (cont.) 
18 292 337 324 317.67 3.474 
19 388 346 390 374.67 22.041 
20 328 344 320 330.67 7.709 
21 354 389 390 377.67 23.018 
22 320 363 324 335.67 9.338 
23 337 299 323 319.67 4.126 
24 317 304 325 315.33 2.714 
25 292 298 324 304.67 -0.760 
26 340 374 356 356.67 16.178 
27 409 344 300 351.00 14.332 
28 433 440 392 421.67 37.351 
29 470 460 425 451.67 47.123 
30 445 398 409 417.33 35.939 
31 296 303 311 303.33 -1.194 
32 398 395 418 403.67 31.488 
33 350 335 382 355.67 15.852 
34 345 360 359 354.67 15.527 
35 402 384 385 390.33 27.144 
36 394 376 422 397.33 29.425 
37 445 420 424 429.67 39.957 
38 402 427 443 424.00 38.111 
39 469 436 428 444.33 44.734 
40 388 354 355 365.67 19.110 
41 386 416 410 404.00 31.596 
42 402 405 390 399.00 29.967 
43 350 322 352 341.33 11.183 
44 392 386 376 384.67 25.299 
45 382 368 365 371.67 21.064 
46 444 432 465 447.00 45.603 
47 371 373 423 389.00 26.710 
48 520 473 459 484.00 57.655 
49 447 423 413 427.67 39.305 
50 379 411 399 396.33 29.099 
51 439 430 417 428.67 39.631 
52 395 396 402 397.67 29.533 
53 448 418 420 428.67 39.631 
54 464 423 414 433.67 41.260 
55 555 519 501 525.00 71.010 
56 467 506 502 491.67 60.152 
57 571 555 525 550.33 79.262 
58 382 421 374 392.33 27.796 
59 378 370 383 377.00 22.801 
60 435 374 391 400.00 30.293 
61 355 354 372 360.33 17.372 
62 322 400 415 379.00 23.453 
63 406 401 422 409.67 33.442 

(cont. on next page) 
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Table 6.1 (cont.) 
64 452 486 508 482.00 57.003 
65 423 450 471 448.00 45.928 
66 505 500 473 492.67 60.478 
67 410 393 432 411.67 34.093 
68 403 408 385 398.67 29.859 
69 371 408 400 393.00 28.013 
70 394 396 377 389.00 26.710 
71 375 372 354 367.00 19.544 
72 346 371 430 382.33 24.539 
73 403 408 392 401.00 30.619 
74 515 506 474 498.33 62.324 
75 494 430 480 468.00 52.443 
76 457 400 478 445.00 44.951 
77 416 378 392 395.33 28.773 
78 392 412 401 401.67 30.836 
79 344 383 347 358.00 16.612 
80 346 333 380 353.00 14.984 
81 369 348 354 357.00 16.287 

 

6.2.2. Experimental Results for Roughness 
 

The surface roughness properties of 1.2379 cold work tool steel are measured after 

LST process and measurement results are shown in Table 6.2. With various laser input 

parameters, 81 experimental runs were performed by using a low power fiber laser. The 

results of each experimental run were measured three times from various points on the 

surface, and the mean values were calculated as shown in Table 6.2. The material used in 

the experiment has an initial roughness of 0.485μm. The table also displays the 

roughness's change from the initial value. According to the results of experiments, laser 

surface treatment process on 1.2379 cold work tool steel can be reduced by up 33% (as 

seen experimental run 13); and also can be increased roughness by up to 243% (as seen 

experimental run 28). The experimented 1.2379 cold work tool steel has a low initial 

roughness compared to the other experimented tool steel. Since the materials used in this 

experiment (1.2379 cold work tool steel) are less initial roughness than the ones used in 

the literature, the experiments' roughness value could only be decreased by 33%. It has 

been shown that the roughness value may be decreased by employing a laser up to 

0.323μm. This value provides evidence that the material used in the experiment can be 

quite smooth. 
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Table 6.2. Experimental results for roughness measurement 

Experimental 
Run 

Roughness Avarage 
Roughness Change 

 
[μm] [μm] [μm] [μm] [%] 

1 0.853 0.692 0.775 0.773 59.450 
2 0.52 0.555 0.649 0.575 18.488 
3 0.625 0.644 0.62 0.630 29.828 
4 0.366 0.353 0.414 0.378 -22.131 
5 0.554 0.535 0.403 0.497 2.543 
6 0.399 0.401 0.369 0.390 -19.656 
7 0.362 0.389 0.343 0.365 -24.811 
8 0.421 0.54 0.484 0.482 -0.687 
9 0.434 0.407 0.412 0.418 -13.883 
10 0.622 0.593 0.605 0.607 25.086 
11 0.533 0.541 0.522 0.532 9.691 
12 0.629 0.635 0.629 0.631 30.103 
13 0.300 0.318 0.357 0.325 -32.990 
14 0.497 0.496 0.463 0.485 0.069 
15 0.467 0.325 0.412 0.401 -17.251 
16 0.37 0.347 0.34 0.352 -27.354 
17 0.331 0.376 0.359 0.355 -26.735 
18 0.292 0.389 0.287 0.323 -33.471 
19 0.531 0.678 0.645 0.618 27.423 
20 0.699 0.678 0.621 0.666 37.320 
21 0.621 0.624 0.709 0.651 34.296 
22 0.460 0.526 0.551 0.512 5.636 
23 0.480 0.45 0.476 0.469 -3.368 
24 0.513 0.511 0.573 0.532 9.759 
25 0.621 0.583 0.582 0.595 22.749 
26 0.372 0.391 0.354 0.372 -23.230 
27 0.465 0.471 0.563 0.500 3.024 
28 1.397 1.748 1.851 1.665 243.368 
29 0.871 1.038 1.036 0.982 102.405 
30 0.932 0.82 0.973 0.908 87.285 
31 0.699 0.735 0.821 0.752 54.983 
32 0.397 0.415 0.366 0.393 -19.038 
33 0.532 0.520 0.425 0.492 1.512 
34 0.408 0.339 0.329 0.359 -26.048 
35 0.309 0.348 0.357 0.338 -30.309 
36 0.339 0.46 0.395 0.398 -17.938 
37 0.733 0.793 0.88 0.802 65.361 
38 0.713 0.576 0.685 0.658 35.670 
39 0.645 0.583 0.548 0.592 22.062 
40 0.399 0.439 0.389 0.409 -15.670 
41 0.333 0.438 0.418 0.396 -18.282 
42 0.438 0.455 0.537 0.477 -1.718 

(cont. on next page) 
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 Table 6.2 (cont.)
43 0.439 0.433 0.437 0.436 -10.034 
44 0.356 0.312 0.371 0.346 -28.591 
45 0.346 0.442 0.45 0.413 -14.914 
46 0.91 0.787 0.887 0.861 77.595 
47 1.120 0.989 0.857 0.989 103.849 
48 1.215 1.193 1.067 1.158 138.832 
49 0.487 0.369 0.525 0.460 -5.086 
50 0.438 0.432 0.361 0.410 -15.395 
51 0.424 0.428 0.422 0.425 -12.440 
52 0.54 0.58 0.501 0.540 11.409 
53 0.57 0.586 0.586 0.581 19.725 
54 0.474 0.484 0.456 0.471 -2.818 
55 0.997 1.104 1.075 1.059 118.282 
56 0.897 0.886 0.926 0.903 86.186 
57 0.719 0.637 0.686 0.681 40.344 
58 0.665 0.597 0.709 0.657 35.464 
59 0.661 0.73 0.753 0.715 47.354 
60 0.723 0.620 0.637 0.660 36.082 
61 0.565 0.647 0.624 0.612 26.186 
62 0.479 0.536 0.571 0.529 9.003 
63 0.751 0.759 0.81 0.773 59.450 
64 0.669 0.714 0.559 0.647 33.471 
65 0.798 0.764 0.891 0.818 68.591 
66 0.814 0.856 0.911 0.860 77.388 
67 0.730 0.712 0.611 0.684 41.100 
68 0.565 0.472 0.512 0.516 6.460 
69 0.700 0.709 0.645 0.685 41.168 
70 0.591 0.634 0.725 0.650 34.021 
71 0.651 0.547 0.601 0.600 23.643 
72 0.697 0.583 0.728 0.669 38.007 
73 1.087 1.135 1.14 1.121 131.065 
74 1.327 1.386 1.14 1.284 164.811 
75 1.418 1.26 1.422 1.367 181.787 
76 0.435 0.522 0.564 0.507 4.536 
77 0.607 0.538 0.552 0.566 16.632 
78 0.662 0.551 0.65 0.621 28.041 
79 0.580 0.619 0.68 0.626 29.141 
80 0.586 0.542 0.596 0.575 18.488 
81 0.567 0.687 0.695 0.650 33.952 
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6.3.  Neuro-Regression Modelling Results 
 

Regression analysis is one of the primary techniques for estimating parameters, 

verifying and testing the model's accuracy. In this thesis, neuro regression analysis was 

used. In order to obtain the best results in optimization, 12 different mathematical models 

were tested. Table 6.3 includes a list of the mathematical models' names and 

formulas used in modeling study. In the mathematical modelling, the data collected from 

the experiments was separated into three groups randomly: 80% training data, 20% 

testing data, and 10% validation data that is selected from training data as shown in 

Appendix A. 

Regression analyses were carried out by using Wolfram Mathematica 11.3. The 

aim of this part is to develop a mathematical model and use these models to obtain the 

best R2 values. In Wolfram Mathematica tool, four laser parameters ((i.e., power, 

frequency, scan speed and line spacing) were used as input data and R2 training, R2 

training adjusted, R2 testing, R2 validation, maximum and minimum values of the models 

were calculated for hardness and roughness.  

Table 6.4 presents the neuro regression results of 12 different regression models 

for hardness. In model selection, the first step is to check R2 training value. R2 training 

value is expected to be greater than 0.95, and close enough to 1. R2 training value of 

SONTNR is lower than 0.95 thus it is not a suitable model. R2 training adjusted also should 

be greater than 0.95, and close enough to 1, so SONTN is not a suitable model. R2 testing 

and R2 Validation values expected to be greater than 0.7 and close enough to 1. 

Additionally, we need to check maximum and minimum values, these values should be 

in the range of experimental study results if these values are so high or lower than 

experimented results it means that the model is not suitable. In model FOLN, FOLNR, 

FOTN, FOTNR, L, LR, and SOLNR R2 testing or R2 Validation is lower than 0.7. In 

model SONR and FOTNR maximum or minimum value is quite different than 

experimental results. Model SOLN is suitable, but model SON has better results than 

SOLN. When we look at these arguments the best model is Second Order Multiple Non-

Linear (SON) for hardness. The regression equation for hardness is given by Equation 

6.1. and Wolfram Mathematica 11.3 code is given in Appendix B 
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Table 6.3. Regression models (linear, quadratic, trigonometric, logarithmic, and their  
                 rational forms) 

 

Model Name Nomenclature Formula 

Multiple linear L  

Multiple linear 
rational 

LR  

Second order 
multiple non-

linear 

SON  

Second order 
multiple non-
linear rational 

SONR  

First order 
trigonometric 
multiple non-

linear 

FOTN  

First order 
trigonometric  
multiple non-
linear rational 

FOTNR  

Second order 
trigonometric 
multiple non-

linear 

SOTN  

Second order 
trigonometric 
multiple non-
linear rational 

SOTNR 

 

First order 
logarithmic 

multiple non-
linear 

FOLN  

First order 
logarithmic 

multiple non-
linear rational 

FOLNR  

Second order 
logarithmic 

multiple non-
linear 

SOLN  

Second order 
logarithmic 

multiple non-
linear rational 

SOLNR  
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(6.1) 

                                                                                        

Table 6.4. Neuro-regression results for Hardness 

Models R2 

Training  

R2 

Training 
Adjusted 

R2 
Testing  

R2 
Validation Maximum  Minimum  

FOLN 0.992382 0.990997 0.683378 0.479235 457.311 308.744 

FOLNR 0.995409 0.994574 0.764166 0.627922 526.721 292.51 
FOTN 0.993483 0.990987 0.697218 0.689192 459.022 245.913 

FOTNR 0.997073 0.995952 0.570459 0.793735 383.213 -1.41651E+14 

L 0.991364 0.989794 0.629856 0.43403 453.725 311.687 

LR 0.995251 0.994388 0.751477 0.610908 521.129 290.374 

SOLN 0.995876 0.992341 0.809924 0.722725 476.021 310.424 

SOLNR 0.998086 0.996445 0.569544 0.85709 551.691 290.011 

SON 0.996052 0.992668 0.803777 0.745642 495.131 305.14 

SONR 0.998336 0.996909 0.721331 0.796014 2.46514*10^11  -7.54136*10^11 

SONTN 0.997164 1.00737 0.745706 0.821036 538.388 171.056 

SONTNR 0.19254 3.0994 -29.0528 -56.8289 6.64659*10^13  -7.24862*10^8 

 

The neuro regression results for 12 different regression models for roughness are 

provided in Table 6.5. R2 training for the models FOLN, L, and SONTNR is less than 

0.95. Model FOLNR, FOTNR, LR, SOLNR, SONR, and SONTN do not match 

experimental data in terms of their maximum or lowest values. FOTNR, SOLN, and SON 

are appropriate roughness models, but SOLN is the best model since it has a higher R2 

value and maximum and minimum values are the most similar to experimental data. So, 

second order logarithmic multiple non-linear (SOLN) was chosen as a regression model 

for roughness. The roughness regression equation is given by Equation 6.2. 
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Table 6.5. Neuro-regression results for Roughness 

Models R2 

Training  

R2 

Training 
Adjusted 

R2 
Testing  

R2 
Validation Maximum  Minimum  

FOLN 0.938542 0.927368 0.714816 0.423023 0.947295 0.314558 
FOLNR 0.964655 0.958228 0.581109 0.631264 3.75357*10^6  -1.25074E+11 
FOTN 0.950077 0.930958 0.746978 0.783079 1.05745 0.118529 

FOTNR 0.983791 0.977584 0.5683 0.761073 5.62508*10^10  -3.64579*10^13 

L 0.927747 0.91461 0.673494 0.287902 0.900524 0.314653 
LR 0.963459 0.956815 0.585858 0.583591 [Infinity] -\[Infinity] 

SOLN 0.957106 0.920339 0.717587 0.810759 1.0153 0.277508 

SOLNR 0.993495 0.987919 -0.71429 0.963465 0.629621  -1.23858*10^12 

SON 0.955194 0.916788 0.72336 0.798226 1.02841 0.250542 

SONR 0.993904 0.988679 -42.1369 0.962665 1.88338*10^13  -1.77502E+12 

SONTN 0.973767 1.06821 0.766541 0.786259 1.63377 0.0387422 

SONTNR 0.647455 1.91662 -1.67265 -1.36577 2.13247 -8509560000 

 

 

6.4.  Optimization Results 
 

The final material characteristics can be precisely controlled by selecting the 

proper laser parameters. This allows processing techniques to be designed and improved 

to offer the optimal material functioning for its expected performance 30. 

The purpose of this section of the thesis is to minimize and maximize roughness 

and hardness of 1.2379 cold work tool steel and specify the input parameters of laser 

device required for this process. Surface roughness and hardness of 1.2379cold work tool 

steel was optimized by using two scenarios for each output. It is aimed to find minimum 
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and maximum values of given outputs to see the effect of laser on surface properties. As 

mentioned in Chapter 4, there are two main optimization techniques which are traditional 

and non-traditional. In this thesis non-traditional, in other word stochastic optimization 

methods were used. To investigate different optimization algorithms and compare them, 

“Differential Evolution”, “Simulated Annealing”, “Random Search” and “Nelder-Mead” 

algorithms were performed on "Wolfram MATHEMATICA 11.3" with the help of 

“NMinimize” and “NMaximize” tool. These tools maximize and minimize objective 

function and give us optimum input parameters for required solution. Optimization 

scenarios for hardness and roughness are given in Table 6.6. The best equations selected 

for hardness (Equation 6.1) and roughness (Equation 6.2) were used in the optimization 

study. The code written for hardness optimization is given in Appendix C. 

For the experimented range of laser parameters, in scenario 1 minimum hardness, 

in scenario 2 maximum hardness, in scenario 3 minimum roughness and in scenario 4 

maximum hardness was evaluated. 

 

Table 6.6. Optimization scenarios for each problem (A:Average power, B:Repetition rate, 

                 C:Scan speed, D:Line spacing) 

 

 

6.4.1. Optimization Results for Hardness 
 

Table 6.7 gives the results of the 1.2379 material's surface hardness optimization 

In the table 6.7 objective function is surface hardness. All optimization algorithms 

(MNM, MDE, MSA, MRS) produced the same output values and laser input parameters. 

The minimum hardness value was found to be 305(HV0.5) in scenario 1. This value is 

almost the same as the initial hardness value. But although the minimum hardness 

Scenario Optimization Problem 1 
(Hardness) Scenario Optimization Problem 2 

(Roughness) 

1 

10 ≤  A ≤ 20 
 20 ≤ B ≤  100 
10 ≤  C ≤ 90 
20≤  D ≤ 40 

3 

10 ≤  A ≤ 20 
 20 ≤ B ≤  100 
10 ≤  C ≤ 90 
20≤  D ≤ 40 

2 

10 ≤  A ≤ 20 
 20 ≤ B ≤  100 
10 ≤  C ≤ 90 
20≤  D ≤ 40 

4 

10 ≤  A ≤ 20 
 20 ≤ B ≤  100 
10 ≤  C ≤ 90 
20≤  D ≤ 40 
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optimization did not change the hardness, the roughness value decreased by 21% to 0.381 

μm. These output values can be reached by applying laser parameters as: average 

power=10W repetition rate=20kHz Scan speed=51.879mm/s and D=33.080 μm.  

In scenario 2, maximum hardness was investigated. Results of optimization 

showed that optimization algorithm gave the same outcomes. Hardness value increase 

from 307(HV0.5) to 495(HV0.5), it means that hardness value can be increased 61% by 

applying laser on the surface. While hardness value increases, roughness value also 

increases to 0.99 μm. These surface properties can be reach by applying laser parameters 

as average power=20W, repetition rate=20kHz, scan speed=10mm/s and D=40 μm 

 

6.4.2. Optimization Results for Roughness  
 

Table 6.7 displays the outcomes of the surface roughness optimization for the 

1.2379 material. Surface roughness is the objective function in Table 6.7. Exactly the 

same output values and laser input parameters were obtained by all optimization methods 

(MNM, MDE, MSA, and MRS). In scenario 3, minimum roughness was evaluated as 

0277 μm. It is observed that the optimized minimum roughness value is 43% lower than 

the initial value. While minimize the roughness value hardness value almost never 

changed. Thus, it is possible to reduce roughness without any change in hardness value. 

For optimum minimum roughness value laser parameters should be entered as follows: 

average power=10W, repetition rate=42.221kHz, scan speed=55.284mm/s and D=29.888 

μm. 

In scenario 4 maximum roughness value was evaluated as 1.219 μm and the value 

of hardness is 476 (HV.05). For this scenario laser input parameters should be as follows: 

average power=20W, repetition rate=20kHz, scan speed=10mm/s and D=20 μm. 

Convergence graphics of maximum hardness and minimum roughness for MNM, 

MDE, MSA, MRS optimization algorithms are given in Figure 6.1 and Figure 6.2, 

respectively.  The figures show that after how many iterations the optimization algorithms 

approach the optimum value. Even if the number of iterations is completely different for 

each algorithm, all optimization algorithms employed in this study achieved the same 

results. The optimum value was found after about 30 iterations for MNM and MDE 

algorithms for both objective functions. Although the optimum value was found for the 

MSA algorithm after about 80 iterations, different values continued to be tested, but it 
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still coming back to the same value. While the MRS method provides a linear response 

for maximum hardness, for the minimum roughness value algorithm starts at the optimum 

and returns to the same value after checking different points. 
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Table 6.7. Results of the optimization problem for Hardness 

 

 

 

Scenario 
No Constraints Optimization 

Algorithms 

Output1 
Hardness 
(HV0.5) 

Output2 
Roughness 

(μm) 

Suggested 
Design 

1 
 

 
 

 

 

10 ≤ A ≤ 20 

20 ≤ B ≤  100 

10 ≤ C ≤ 90 

20≤ D ≤ 40 

MNM  

A= ,  
B= ,  
C= , 
D=

 

MDE  

A= ,  
B= ,  
C= , 
D=  

MSA  

A= ,  
B= ,  
C= , 
D=  

MRS  

A= ,  
B= ,  
C= , 
D=  

2 

 
 

10 ≤ A ≤ 20 

20 ≤ B ≤ 100 

10 ≤ C ≤ 90 

20≤ D ≤ 40 
 
 

MNM  

A= ,  
B= ,  
C=10,  
D=40 

MDE  

A= ,  
B= ,  
C=10,  
D=40 

MSA  

A= ,  
B= ,  
C=10,  
D=40 

MRS  

A= ,  
B= ,  
C=10,  
D=40 
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Table 6.8. Results of the optimization problem for Roughness 

 

 

Scenario 
No Constraints Optimization 

Algorithms 

Output1 
Hardness 
( HV0.5) 

Output2 
Roghness 

(μm ) 

Suggested 
Design 

3 
 

 
10 ≤ A ≤ 20 

20 ≤ B ≤ 100 

10 ≤ C ≤ 90 

20≤ D ≤ 40 

MNM  

A= ,  
B=  
C=  
D=  

MDE  

A= ,  
B=  
C=  
D=  

MSA  

A= ,  
B=  
C=  
D=  

MRS  

A= ,  
B=  
C=  
D=  

4 

 
 

10 ≤ A ≤ 20 

20 ≤ B ≤ 100 

10 ≤ C ≤ 90 

20≤ D ≤ 40 
 
 

MNM  

A= ,  
B= ,  
C=10,  
D=20 

MDE  

A= ,  
B= ,  
C=10,  
D=20 

MSA  

A= ,  
B= ,  
C=10,  
D=20 

MRS  

A= ,  
B= ,  
C=10,  
D=20 
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Figure 6.1. Convergence graphics of stochastic algorithms for maximum hardness  
                   a) MNM, b) MDE, c) MSA, d) MRS 
 

 

 
Figure 6.2. Convergence graphics of stochastic algorithms for minimum roughness  
                  a) MNM, b) MDE, c) MSA, d) MRS
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CHAPTER 7 

 

CONCLUSION 
 

In this thesis, a laser surface treatment optimization study was performed by using 

a commercially available low-power fiber laser. The research includes experimental 

studies, regression analysis, and optimization studies. Experimental studies were 

performed on 1.2379 cold work tool steel which is a widely used tool steel in industry. 

Laser parameters such as average power, repetition rate, line spacing and scan speed were 

specified as input parameters. The surface properties of the material (hardness and 

roughness) were measured after LST process and these surface properties were used as 

output parameters. Input parameters were determined with 34 full factorial designs, and 

81 experimental runs were created by using Design-Expert software. Each experimented 

surface parameter resulting in 81 experimental runs were measured three times to obtain 

mean values.  Hence, 243 measurements for hardness and 243 measurements for 

roughness were used as output. As the next step of the thesis, regression analysis using 

twelve different models was established for each output by using Wolfram 

MATHEMATICA 11.3. Thus, by trying different regression models, the model with the 

best/highest R2 values to be used in the optimization study could be selected. As a result 

of regression analysis, it is obtained that the second order multiple non-linear model is 

the best regression equation for hardness and the second order logarithmic multiple non-

linear model is the best for roughness.  In the last part of this thesis, optimization study 

was performed by using non-traditional optimization techniques which are Differential 

Evolution, Simulated Annealing, Random Search and Nelder-Mead. Optimization study 

was applied using Wolfram MATHEMATICA 11.3. When different optimization 

algorithm results were compared, it can be depicted that all optimization algorithms gave 

almost the same results for both objective functions. Furthermore, optimization studies 

have shown that the hardness or roughness of 1.2379 cold-work steel can be increased or 

decreased by applying appropriate laser parameters. 

In summary, this study showed that the surface properties of 1.2379 cold-work 

steel can be improved in a short period of time using a low-power fiber laser. Also, the 

laser parameters used in this study have a significant impact on the hardness and 

roughness properties of the material. Therefore, the laser parameters must be specified 
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precisely to obtain the desired surface properties. This study provides the possibility of 

specifying laser input parameters for expected roughness and hardness values using 

regression equations and optimization techniques. Only a few studies regarding LST of 

1.2379 cold work tool steel have been published in the literature. This thesis study is the 

first study that uses a low power fiber laser to enhance the surface characteristics of this 

steel. Additionally, different from the previous studies, many regression models and 

optimization methods were employed in this thesis to optimize the hardness and 

roughness of 1.2379 cold work tool steel. 
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APPENDIX A 

DATA GROUPS 
 

Table A.1. Training data (80%) 
 

Factor 1 Factor 2 Factor3 Factor4 Output 1 Output 2 

Experimental 

Run 

A:Average 
power 

B:Repetition 
rate 

C:Scan 
speed 

D:Line 
spacing 

Hardness Roughness 

 
[W] [kHz] [mm/s] [μm] [HV0.5] [μm] 

1 10 20 10 20 342.00 0.77 

2 10 20 10 30 304.67 0.57 

4 10 20 50 20 312.67 0.38 

5 10 20 50 30 350.00 0.50 

6 10 20 50 40 317.33 0.39 

7 10 20 90 20 336.67 0.36 

8 10 20 90 30 303.33 0.48 

9 10 20 90 40 306.00 0.42 

11 10 60 10 30 340.67 0.53 

12 10 60 10 40 318.33 0.63 

13 10 60 50 20 299.67 0.33 

14 10 60 50 30 289.67 0.49 

15 10 60 50 40 313.00 0.40 

16 10 60 90 20 378.33 0.35 

18 10 60 90 40 317.67 0.32 

19 10 100 10 20 374.67 0.62 

20 10 100 10 30 330.67 0.67 

22 10 100 50 20 335.67 0.51 

23 10 100 50 30 319.67 0.47 

25 10 100 90 20 304.67 0.60 

26 10 100 90 30 356.67 0.37 

(cont. on next page) 
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27 10 100 90 40 351.00 0.50

29 15 20 10 30 451.67 0.98 

30 15 20 10 40 417.33 0.91

31 15 20 50 20 303.33 0.75 

32 15 20 50 30 403.67 0.39 

34 15 20 90 20 354.67 0.36 

35 15 20 90 30 390.33 0.34 

36 15 20 90 40 397.33 0.40 

38 15 60 10 30 424.00 0.66 

39 15 60 10 40 444.33 0.59 

40 15 60 50 20 365.67 0.41 

41 15 60 50 30 404.00 0.40 

42 15 60 50 40 399.00 0.48 

43 15 60 90 20 341.33 0.44 

45 15 60 90 40 371.67 0.41 

46 15 100 10 20 447.00 0.86 

48 15 100 10 40 484.00 1.16 

49 15 100 50 20 427.67 0.46 

50 15 100 50 30 396.33 0.41 

51 15 100 50 40 428.67 0.42 

53 15 100 90 30 428.67 0.58 

54 15 100 90 40 433.67 0.47 

55 20 20 10 20 525.00 1.06 

56 20 20 10 30 491.67 0.90 

57 20 20 10 40 550.33 0.68 

58 20 20 50 20 392.33 0.66 

60 20 20 50 40 400.00 0.66 

61 20 20 90 20 360.33 0.61 

62 20 20 90 30 379.00 0.53 

(cont. on next page) 
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63 20 20 90 40 409.67 0.77

64 20 60 10 20 482.00 0.65 

65 20 60 10 30 448.00 0.82

67 20 60 50 20 411.67 0.68 

68 20 60 50 30 398.67 0.52 

69 20 60 50 40 393.00 0.68 

70 20 60 90 20 389.00 0.65 

71 20 60 90 30 367.00 0.60 

73 20 100 10 20 401.00 1.12 

74 20 100 10 30 498.33 1.28 

75 20 100 10 40 468.00 1.37 

76 20 100 50 20 445.00 0.51 

78 20 100 50 40 401.67 0.62 

79 20 100 90 20 358.00 0.63 

80 20 100 90 30 353.00 0.57 
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Table A.2. Testing data 20% 
 

Factor 1 Factor 2 Factor3 Factor4 Output 1 Output 2 

Experimental 

Run 

A:Average 
power 

B:Repetition 
rate 

C:Scan 
speed 

D:Line 
spacing 

Hardness Roughness 

 
[W] [kHz] [mm/s] [μm] [HV0.5] [μm] 

3 10 20 10 40 304.00 0.63 

10 10 60 10 20 302.67 0.61 

17 10 60 90 30 343.00 0.36 

21 10 100 10 40 377.67 0.65 

24 10 100 50 40 315.33 0.53 

28 15 20 10 20 421.67 1.67 

33 15 20 50 40 355.67 0.49 

37 15 60 10 20 429.67 0.80 

44 15 60 90 30 384.67 0.35 

47 15 100 10 30 389.00 0.99 

52 15 100 90 20 397.67 0.54 

59 20 20 50 30 377.00 0.71 

66 20 60 10 40 492.67 0.86 

72 20 60 90 40 382.33 0.67 

77 20 100 50 30 395.33 0.57 

81 20 100 90 40 357.00 0.65 
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Table A.3. Validation data 10% 
 

Factor 1 Factor 2 Factor3 Factor4 Output 1 Output 2 

Experimental 

Run 

A:Average 
power 

B:Repetition 
rate 

C:Scan 
speed 

D:Line 
spacing 

Hardness Roughness 

 
[W] [kHz] [mm/s] [μm] [HV0.5] [μm] 

9 10 20 90 40 306.00 0.42 

18 10 60 90 40 317.67 0.32 

26 10 100 90 30 356.67 0.37 

32 15 20 50 30 403.67 0.39 

39 15 60 10 40 444.33 0.59 

51 15 100 50 40 428.67 0.42 

56 20 20 10 30 491.67 0.90 

64 20 60 10 20 482.00 0.65 

75 20 100 10 40 468.00 1.37 
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APPENDIX B 

REGRESSION CODE FOR HARDNESS (SECOND ORDER 

MULTIPLE NON-LINEAR (SON)) 

 

48.4232 17 0.00159865 x3 x4 0.0205614 x42
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i 1

Length B20

H20 i H20predicted i 2

i 1

Length B20

H20 i Hbar 2
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i 1

Length B10

H10 i H10predicted i 2

i 1

Length B10

H10 i H10bar 2
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APPENDIX C 

OPTIMIZATION CODE FOR HARDNESS 
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