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Abstract
Accurate determination of the optical properties of ultra-thin dielectric films is an essential and
challenging task in optical fiber sensor systems. However, nanoscale thickness identification of
these films may be laborious due to insufficient and protracted classical curve matching
algorithms. Therefore, this experimental study presents an application of a radial basis function
neural network in phase diffraction-based optical characterization systems to determine the
thickness of nanoscale polymer films. The non-stationary measurement data with environmental
and detector noise were subjected to a detailed analysis. The outcomes of this investigation are
benchmarked against the linear discriminant analysis method and further verified by means of
scanning electron microscopy. The results show that the neural network has reached a
remarkable accuracy of 98% and 82.5%, respectively, in tests with simulation and experimental
data. In this way, rapid and precise thickness estimation may be realized within the tolerance
range of 25 nm, offering a significant improvement over conventional measurement techniques.

Keywords: phase diffraction, neural network, optical fiber sensor, optical characterization,
thin dielectric film

(Some figures may appear in colour only in the online journal)

1. Introduction

Thin dielectric films are widely used in optical fiber-based
sensor technologies as a sensing element or interrogator for
various measurements [1–10]. The mentioned studies present
applications on gases [1], humidity [2–4], temperature [5, 6],
the affinity of molecular interactions [7], pressure [8, 9], geo-
technical health [10] etc. To achieve more intelligent sensing
capabilities, the particular thin dielectric films are conjuncted
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with optical fibers which promises the excellent potential for
realizing novel sensor concepts [11–13]. Since the sensors’
sensitivity and performance strongly relates to the dielec-
tric films’ optical properties (e.g. thickness, refractive index)
[14, 15], their characterization has become an important and
challenging subject in recent years.

In the literature, optical characterization techniques usually
depend on interferometric, spectroscopic and ellipsometric
techniques [16–22]. However, they are generally complicated
and time-consuming procedures for curved surfaces as well as
require a sophisticated laboratory environment. Therefore,
non-invasive and cost-effective phase diffraction-based
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characterization schemes have been exploited for practical
applications [23–26]. Nevertheless, the processing of recor-
ded diffraction patterns is usually implemented by classical
curve matching methods having some errors from the actual
thickness value. Besides, the noisy recorded data show rapid
variations due to near-field measurements, causing ambiguity
in determining the parameter of interest. Therefore, the applic-
ation of neural networks to the phase diffraction scheme may
be a good approach to enhance the thickness accuracy.

The neural network approaches in the photonics area have
received a lot of interest in the last decade by eliminating
the need for human intervention, increasing accuracy, and
speeding up the process. It has a wide range of applica-
tion areas in the open literature, including optical distance
measurement [27], defect detection [28], event identification
[29], strain sensing [30–32], acoustic sensing [33, 34], tem-
perature sensing [35], optical fiber bending measurement [36],
optical communication networks [37–39], optical reflectivity
measurements [40, 41], tactile sensing [42], leakage detection
[43] etc. They have also been used in the thickness character-
ization of dielectric films due to their importance in fiber optic
sensor technologies [44, 45]. In this way, not only the thick-
ness sensitivity of the system is improved but also more accur-
ate and reliable results can be obtained at a level that cannot
be obtained with conventional methods.

This study presents an application of the radial basis func-
tion (RBF) neural network to improve the thickness sensitiv-
ity of phase diffraction-based optical characterization systems.
The proposed mathematical and experimental model includes
two main parts: (1) phase diffraction and (2) neural network.
Initially, the film-coated fiber’s diffraction patterns are recor-
ded on the camera. Then, they are converted from 2D to 1D
data using feature mapping methods to reduce the compu-
tational burden. By leveraging the RBF neural network, we
obtain faster and more precise results than conventional curve
matching methods, which are less effective for resolving the
subtle nanoscale variations in thickness. Moreover, through a
detailed parametric sweep, we achieve a sensitivity range of
25 nm with sufficient accuracy. To assess the robustness of
our approach, we explore the effect of noise on our numerical
model using Poisson and Gaussian distributions. Specifically,
we obtain high accuracy of 98%when tested on synthetic data,
whereas this rate is seen as 82.5% when noisy experimental
data is used. To further assess the impact of our approach, we
make a comparison with the widely-used linear discriminant
analysis (LDA) method, which is a linear fitting approach dif-
ferent from neural network algorithms. Our results show that
the accuracy of LDA drops to 47% when using 25 nm classes,
thus highlighting the superior performance of our RBF neural
network approach in improving thickness resolution.

The organization of the article is as follows. Section 2
provides the readers with the essential background informa-
tion necessary to understand the proposed methodology. The
intricate experimental setup, including the coating procedure
and the measurement methodology, is elucidated in section 3.
In section 4, we present the results obtained using the pro-
posed methodology, along with their detailed analysis and dis-
cussion. The scanning electron microscopy (SEM) images are

also presented for verification. The concluding remarks are
given in the last section.

2. Proposed method

The proposed model is mainly interested in neural network
application for the thickness estimation of dielectric films
coated on optical fibers. It can be divided into two main
parts: (1) plane wave-based phase diffraction from film-coated
optical fiber via paraxial ray tracing and (2) application of RBF
network to noisy near field diffraction pattern acquired by the
sensor array. The general scheme of optical system and neural
network is given in figure 1.

As seen from the figure 1(a), every point of the incid-
ent wavefront is exposed to different phase delays due to the
curved geometry while traversing the three-layer geometry.
Therefore, the plane wavefront is discretized to the sections
represented by rays. Every ray is paraxially traced and the
acquired phase through the phase object can be represented
as:

U(x ′) = A(x ′)eikze−iϕs , |x ′|> c

U(x ′) = A(x ′)eikze−i[ϕs+ϕd], b< |x ′|< c

U(x ′) = A(x ′)eikze−i[ϕs+ϕd+ϕcl], a< |x ′|< b

U(x ′) = A(x ′)eikze−i[ϕs+ϕd+ϕcl+ϕco], 0< |x ′|< a (1)

where a, b and c are the core, the cladding and the coated
optical fiber radii, respectively. Besides, ϕs, ϕd, ϕcl and ϕco are
the optical paths given in [24]. Since the phase is more sens-
itive than amplitude of the field, the amplitude of plane wave
A(x

′
) is assumed unity for the simplicity.

In the end, the diffracted field at point P on the sensor
array at a distance z is calculated according to the near field
Huygens–Fresnel diffraction formula as [46]:

U ′(P) =− 1
4π

∞∑
x ′=−∞

(
ik(1+ cosθ)− cosθ

r

)
eikr

r
U(x ′) (2)

where cosθ is the obliquity factor. The intensity can be found
by taking the absolute square of the diffracted field by equal-
izing the total power on the detector to unity.

Once the normalized intensity is obtained on the sensor
array, the neural network part starts. The general overview of
the neural network is given in figure 1(b). The recorded 2D
intensity consists of 1D diffraction patterns. By mapping these
diffraction patterns to the RBF neural network having sim-
pler structure and faster learning speed [47], the algorithm is
trained with synthetic data. The network consists of three lay-
ers: input layer, hidden layer, and output layer. The input layer
spans the n-dimensional input vectors. Non-linear RBFs are
used in the hidden layer. At the output of the network, the data
is a linear combination of input and RBFs. The scalar expres-
sion for the output of the system can be written as:

y(x) =
M∑
j=1

wjf(||x− cj||)+w0 (3)
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Figure 1. (a) The diffraction geometry from coated optical fiber (b) illustration of RBF Neural Network.

whereM denotes the number of neurons, x= [x1 x2 . . .] indic-
ates the input vector, wj is the weight of the related neuron,
w0 means the weight of the bias, f and cj = [cj1 cj2 . . .] indicate
the RBF, and the center vector of the related neuron, respect-
ively. ||.|| means the Euclidian norm in the vector space. The
RBF, which depends only on distance, is usually Gaussian and
can be expressed as equation (5). Gaussian RBFs (GRBF) are
smooth, localized, and have a universal approximation prop-
erty, making themwell-suited for modeling complex functions
with localized patterns [48]. Since we are interested in a large
circular phase object in our model that causes diffraction of
the input field, and the diffraction integrals usually lead to
Gaussian-like functions [49, 50], GRBFs are chosen.

f(||x− cj||) = e
−

||x−cj||
2

2σ2
i (4)

where σi is the centrality distance. The most straightforward
scheme for training RBF neural networks is to take a set of
center values that are randomly chosen from training. Then
it uses fixed-width functions and trains the weights to linear
output units [51]. This process can be done iteratively to min-
imize the error. The mean squared error, to be minimized, is
expressed as follows [52].

MSE=
1
N

N∑
i=1

(yi − ŷi)
2 (5)

where yi denotes the actual value, ŷi is the predicted value,
and N means the number of samples. If the MSE goes below
the user-defined value, the iteration is terminated and the final
output value is predicted.

3. Experiment

The polymer-coated optical fiber is chosen as a three-layer
geometry phase object having known optical properties such
as refractive index and radii. Since we want to exert nano-
meter precision and stability over the thickness of multi-layer
films, the prominent technique layer by layer Assembly is

selected for the coating procedure [53–55]. A combination of
Polyacrylic acid and polyethylenimine was used in the exper-
iment. We can obtain desired multi-layer coating thickness by
creating positive and negative charged layers via repeating dip-
ping and drying processes, respectively.

The illustration of experiment setup and laboratory photo
is given in figure 2. The experimental setup begins with the
generation of plane wave via conversion of 632.8 nm He–Ne
laser with a beam expander. Then, the plane wave was sent
to the polymer-coated optical fiber. After the plane wave dif-
fracts from the phase object on the sensor array, the near field
diffraction pattern is recorded. The sensor array has 1.12µm
pixel size. The distance between phase object and sensor array
is 600µm and the radius of core and cladding are a= 4.15µm
and b = 62.5µm, respectively.

After the recorded intensity pattern is obtained from the
sensor array, the RBF neural network algorithm is applied.
Diffraction patterns are generated through the numerical sim-
ulations using the formulations in the previous section. These
generated data are used for training purposes, and each vec-
tor is matched with a thickness value. Some of the generated
data is used for testing so that the number of neurons needed,
and the required mean squared error target can be determined.
Then, the numerical simulation data are trained with a RBF
network and the experimental data were tested over this net-
work. Then the recorded patterns are classified and the thick-
ness value of the dielectric films can be predicted. At the end,
thickness value of dielectric films are verified by SEM.

4. Results and discussion

In this study, we set our sights on the intricate detection of
coating thickness beyond the limits of classical diffraction
theory. For this reason, the neural network is trained up to
450.5 nm to cover all coating thickness ranges. To this end,
we generated data using Matlab software, producing a com-
prehensive dataset featuring 0.5 nm increments between 0 nm
and 450.5 nm coating thickness. Each dataset contains 137
units; however, due to the symmetry of the generated data,
we reduced the length of the samples to 74 units. Out of 901
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Figure 2. The experimental setup (a) illustration (b) laboratory photo.

Table 1. The accuracy rate of the neural network approach for MSE = 10−2.

5 10 25 50 150 225

10 0.10 0.24 0.54 0.84 0.98 1.00
20 0.41 0.68 0.90 0.98 1.00 1.00
30 0.82 0.92 0.97 0.99 1.00 1.00
40 0.89 0.95 0.97 0.99 1.00 1.00
50 0.91 0.95 0.98 0.99 1.00 1.00
60 0.91 0.96 0.98 0.99 1.00 1.00
70 0.90 0.96 0.98 0.99 1.00 1.00
80 0.90 0.96 0.97 0.99 1.00 1.00
90 0.90 0.96 0.97 0.98 1.00 1.00
100 0.90 0.94 0.98 0.99 1.00 1.00
110 0.90 0.95 0.97 0.99 1.00 1.00
120 0.90 0.95 0.96 0.99 1.00 1.00
130 0.88 0.95 0.90 0.99 1.00 1.00
140 0.89 0.89 0.90 0.93 1.00 1.00
150 0.89 0.88 0.98 0.95 1.00 1.00
160 0.88 0.89 0.97 0.88 1.00 1.00
170 0.88 0.84 0.98 0.88 1.00 1.00

generated datasets, we utilized 451 fixed data for training and
450 for testing. We optimized the parameters for the RBFs,
selecting a spread value of one and incrementally adding 25
neurons between displays. The maximum number of neurons
and mean squared error goal are determined through paramet-
ric sweeps, and the results are presented in tables 1 and 2.
These tables highlight the variation in coating estimation sens-
itivity and the number of neurons for two different mean
squared error goals. In these tables, the first column and the
first row correspond to the maximum number of neurons and
classification sensitivity in the classes, respectively. The sens-
itivity values are classified into six categories, with the 25 nm
sensitivity range designated as the first class, the 25.5–50 nm
sensitivity range as the second class, and so forth. We pro-
gressively increase the number of neurons in the hidden layer
in ten-step increments, up to a maximum of 170. In cases
where the number of neurons was limited to 10, the accuracy
was insufficient. However, by gradually increasing the num-
ber of neurons, we ultimately achieved the desired level of
accuracy.

The overarching objective of this investigation is to main-
tain a consistently high level of accuracy throughout the test-
ing phase. Therefore, we employed a neural network architec-
ture of no fewer than 20 neurons to achieve 25 nm sensitivity.
Notably, this choice of neural network structure is consistent

across bothmean squared error goal tables. To thoroughly ana-
lyze our method’s performance, we create classes specifically
designed to achieve the aforementioned sensitivity value. For
a meaningful comparison, we also implement a linear discrim-
ination analysis simulation, which similarly constructs classes
according to different sensitivity values using the same data.
Remarkably, the performance of the latter method is found to
be relatively lackluster, achieving a meager 47% accuracy for
25 nm sensitivity, as detailed in table 3.

In the network, we used synthetic data for training and
experimental data for testing where measurement data often
contain additional noise, such as shot and thermal noise,
which differ from the simulated data. Therefore, we carried
out numerical simulations incorporating thermal noise via the
Gaussian distribution and shot noise via the Poisson distribu-
tion. As shown in figure 3(a), RBF and LDA algorithms give
approximately the same results for low signal-to-noise ratio
(SNR) values. It can be seen that the accuracy rate between the
output validation data and the test target data increases with
the help of RBF for SNR values of about 30 dB and above.
To see similar performance in LDA, the SNR should exceed
120 dB. The RBF algorithm yields better results as the MSE
goal decreases despite low accuracy at low SNR values due to
over-training. Besides, we model the synthetic data with the
Poisson distribution. Since the test data are mapped between

4



Meas. Sci. Technol. 34 (2023) 125201 E Ataç et al

Table 2. The accuracy rate of the neural network approach for MSE = 10−3.

5 10 25 50 150 225

10 0.10 0.24 0.54 0.84 0.98 1.00
20 0.41 0.68 0.90 0.98 1.00 1.00
30 0.82 0.92 0.97 0.99 1.00 1.00
40 0.89 0.95 0.97 0.99 1.00 1.00
50 0.91 0.95 0.98 0.99 1.00 1.00
60 0.91 0.96 0.98 0.99 1.00 1.00
70 0.90 0.96 0.98 0.99 1.00 1.00
80 0.90 0.96 0.97 0.99 1.00 1.00
90 0.90 0.96 0.97 0.98 1.00 1.00
100 0.90 0.94 0.98 0.99 1.00 1.00
110 0.90 0.95 0.97 0.99 1.00 1.00
120 0.90 0.95 0.96 0.99 1.00 1.00
130 0.88 0.95 0.90 0.99 1.00 1.00
140 0.89 0.89 0.90 0.93 1.00 1.00
150 0.89 0.88 0.98 0.95 1.00 1.00
160 0.88 0.89 0.97 0.89 1.00 1.00
170 0.88 0.84 0.98 0.86 1.00 1.00

Table 3. The accuracy rate of the linear discriminant analysis.

Sens. (nm) 5 10 25 50 150 225

Accu. 0.17 0.30 0.47 0.52 0.66 0.82

Figure 3. Effect of noise on the accuracy rate of neural network with various MSE goals and LDA (a) accuracy versus SNR of AWGN
(b) accuracy versus mean of Poisson noise.

0 and 1, the Poisson distribution noise’s mean is also adjusted
not to exceed 0.1. As demonstrated in figure 3(b), the accur-
acy decreases for all algorithms and MSE goal values as the
noise power increases. The most successful result is obtained
at low noise forMSE= 0.05. To see the effect of additive white
Gaussian noise (AWGN) and Poisson distributed noise com-
binations, we add them together. Two cases for Poisson distri-
bution noise, for the mean value 0.001, are given in figure 4.
The accuracy is investigated for parametrically increased SNR
value of the AWGN channel. The dB values, where the accur-
acy value jumps abruptly, coincide with approximately the
same points. However, a decrease is observed in the maximum
accuracy values reached.

In the case of MSE = 0.05, the accuracy is lower than
LDA in the low SNR region due to overfitting. At low SNRs,

the data points are more dispersed and have fewer distinct
clusters, making it challenging for an RBF classifier to sep-
arate the classes accurately. Regularization helps by introdu-
cing constraints to the model, making it less noise-sensitive
and reducing overfitting. We utilized Ridge regularization
with a ridge parameter that determines the strength of reg-
ularization applied to the model. Random search technique
was used to explore a range of ridge parameter values dur-
ing cross-validation. When regularization is applied with an
appropriate ridge parameter value, it is observed that this
approach improves the accuracy up to 22% in the low SNR
region whereas, degrading the accuracy in the high SNR
region. The model already captures the underlying patterns
in the data effectively without additional regularization in
high SNR scenarios. When regularization is applied in this
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Figure 4. Effect of both Poisson distributed shot noise and Gaussian distributed thermal noise (a) mean of Poisson distribution is 0.001 with
varying SNR for Gaussian noise (b) mean of Poisson distribution is 0.005 with varying SNR for Gaussian noise.

Figure 5. Non-coated optical fiber (a) experimental diffraction pattern (b) simulation and reconstruction of measurement data.

case, it penalizes large coefficients, dampening the model’s
flexibility.

After obtaining experimental data, we input the measure-
ment data into the trained network. The columns of diffraction
patterns were selected as the test data, and the rescaling pro-
cess was performed without any filtering operation. Column
selection was carried out by creating the columns with fea-
ture extraction, as visualized in figure 5(a). As a result, the 2D
image file can be projected onto a 1D vector, and the com-
putational load can be reduced. To further alleviate the com-
putational burden of the algorithm, only half of the diffraction
pattern is evaluated. Forty different vectors were utilized as the
test data of the trained network to determine the coating thick-
ness with an accuracy of 25 nm tolerance. The optical fibers
have average thicknesses of non-coated, 140 nm, 235 nm, and
365 nm, all verified by SEM. The average coating thicknesses
were determined by measuring various points on the samples.
The SEM images of the four different optical fibers are given
in figure 6.

In the final part, we classify and estimate the thickness of
the transparent dielectric film using the network. Eighteen dif-
ferent classes with a sensitivity of 25 nm are created. The res-
ults obtained from the test data for the classification task are
presented in figure 7. The actual curve is shown in red, while
the output data is classified and assigned to one of the cre-
ated classes. Generally, the output data is rounded, but in this
case, we show unrounded results to facilitate the visualization.

Figure 6. SEM images with average coating thickness:
(a) non-coated (b) 140 nm (c) 235 nm (d) 365 nm.

Our analysis showed that 33 out of 40 data points belonged to
the correct class, while only seven were assigned to an incor-
rect class, with a slight shift of only one unit. This demon-
strates an 82.5% accuracy rate in the characterization of the
coating thickness, which is a promising result for our network
application.

6
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Figure 7. Results of experimental data.

5. Conclusion

This article presents an application of RBF neural network
for the precise thickness identification of curved transparent
dielectric films on the optical fiber. We have demonstrated that
the conventional phase diffraction technique integrating with
the RBF algorithm has huge potential to enhance thickness
resolution significantly by reducing the radius of errors. Our
experimental results show that the RBF network achieves an
outstanding accuracy of 98% for 25 nm sensitivity, where half
of the numerical simulation data is used for training and the
other half for testing. Moreover, we examine noise effects in
detail presenting parametric results. According to the obser-
vations, there is a particular threshold value for AWGN and a
monotonic decrease curve for Poisson distribution noise. In the
case of using experimental data for testing, the RBF network
exhibits 82.5% accuracy for the same sensitivity value, primar-
ily due to noise in the data. Our findings were also verified
by destructive SEM measurements. As a result, the proposed
approach is viable and efficient instead of traditional curve-
matching methods for precisely estimating the thickness of
transparent dielectric films in fiber optic sensor technologies.

Data availability statement
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