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Abstract
Breast cancer is a major global health concern, and early and accurate diagnosis is crucial for effective treatment.
Recent advancements in computer-assisted prediction models have facilitated diagnosis and prognosis using high-resolution
histopathology images, which provide detailed information on cancerous tissue. However, these high-resolution images often
require resizing, leading to potential data loss. In this study, we demonstrate the effect of a learnable adaptive resizer for breast
cancer classification using the BreakHis dataset. Our approach incorporates the adaptive resizer with various convolutional
neural network models, including VGG16, VGG19, MobileNetV2, InceptionResnetV2, DenseNet121, DenseNet201, and
EfficientNetB0. Despite producing visually less appealing images, the learnable resizer effectively improves classification
performance. DenseNet201, when jointly trained with the adaptive resizer, achieves the highest accuracy of 98.96% for input
images of 448×448 resolution. Our experimental results demonstrate that the adaptive resizer performs better at a magnifica-
tion factor of 40× compared to higher magnifications. While its effectiveness becomes less pronounced as image resolution
increases to 100×, 200×, and 400×, the adaptive resizer still outperforms bilinear interpolation. In conclusion, this study
highlights the potential of adaptive resizers in enhancing performance for medical image classification. By outperforming
traditional image resizing methods, our work contributes to the advancement of deep neural networks in the field of breast
cancer diagnostics.
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1 Introduction

Cancer is the world’s second leading cause of death, with an
estimated 9.6 million deaths in 2018 [1]. There are many
different types of cancer, but the most common are lung
cancer, breast cancer, and skin cancer [2]. Breast cancer
stands as the predominant form of cancer among women
and represents the primary contributor to cancer-relatedmor-
tality globally. Early diagnosis of breast cancer is crucial
for the treatment process, as it is typically curable when
detected early but often becomes incurable once it spreads
to other body parts [3, 4]. Various techniques are available
for breast cancer detection, including X-ray [5], ultrasound
[6], magnetic resonance (MR) [7], and computed tomog-
raphy (CT) [8]. In addition to these noninvasive methods,
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cancerous tissue samples can also be used for diagnosis.
Histopathological images, obtained from hematoxylin and
eosin (H&E) stained tissue sections, provide vital informa-
tion for pathologists in diagnosing anddeterminingprognosis
[9]. Recently computer-aided classification methods have
enhanced diagnostic accuracy, achieving high classifica-
tion rates in automatically categorizing breast tissues. These
methods can support pathologists and help reduce misdiag-
nosis [11].

For this purpose, studies have been conducted on classi-
fication algorithms with high accuracy and rapid processing
capabilities. Han et al. proposed a class structure-based deep
convolutional neural network (CSDCNN) method for multi-
class classification applications. They compared CSDCNN
with several popular convolutional neural netwroks (CNN)
and achieved an accuracy between 92.8 and 94.7% for differ-
ent magnification factors in multiclass classification. They
also got an accuracy for binary classification of 94.8 and
97.1% [12]. Vo et al. proposed a method for the multiclass
and binary classification of breast cancer using an incre-
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mental boosting convolutional network. They evaluated their
approach by comparing itwith several popularmethods using
two distinct datasets. In the Bioimaging 2015 breast histol-
ogy classification challenge, they achieved a classification
accuracy of 96.4% and 99.5% for four and two classes,
respectively, and 96.9% accuracy for the 200×magnification
factor on the BreakHis dataset [13]. Ahmad et al. intro-
duced a novel hybrid model for breast cancer classification,
called AlexNet-GRU, which combines the AlexNet CNN
with gated recurrent units. This model was compared to two
other models, CNN-GRU and CNN long short-term mem-
ory (CNN-LSTM), using the PCam dataset. The proposed
method achieved an accuracy of 99.50%, outperforming the
other twomethods [2]. Srinidhi et al. reviewedmore than 130
articles using different types of deep learning methods, such
as supervised, poorly supervised, unsupervised, and cancer-
based transfer learning. These studies focus on various tasks,
such as cell or nucleus segmentation, tissue classification,
tumor detection, disease prediction, and prognosis, and have
been applied to multiple cancer types, including breast can-
cer [9]. These works show that computer-assisted methods
improve classification, detection, and prognosis accuracy
[2, 15–17]. Furthermore, it can assist the pathologist and
decrease the misdiagnosis rate.

Histopathology images contain a significant amount of
valuable information, but their large spatial size can pose a
challenge for many computer-assisted models. Due to mem-
ory constraints, trainingCNNmodels at high resolutionsmay
not be feasible, necessitating the resizing of images to a uni-
form size to accommodate deep learning training tools [18].
Therefore, spatial resizing is often necessary for the suc-
cessful implementation of the computer-assisted models in
histopathology [19]. However, conventional resizing meth-
ods like nearest neighbor, bilinear, and bicubic may result in
data loss despite their speed, as they do not preserve the fine
details of the original image. As a result, alternative resiz-
ing methods have been proposed to address these issues in
artificial intelligence applications [18–22].

Talebi et al. introduced a new image resizer that is jointly
trained with classification models to improve their perfor-
mance. Their proposed resizer can be used in place of
conventional resizers, and although it does not improve visual
quality, it has been shown to enhance model accuracy. The
researchers evaluated their learned resizer using four dif-
ferent models for classification with the ImageNet dataset
and compared its performance to that of a bilinear resizer.
The proposed resizer outperformed the bilinear resizer for all
models tested [19]. Han et al. applied the learnable resizer
proposed by Talebi et al. to COVID-19 lung CT image clas-
sification, jointly training the MobileNet model with the
learnable resizer. The researchers compared their results with
those of five differentmodels, namelyVGG19,Resnet50_v2,
MobileNet, Inception_v3, and Densenet169. The jointly

Table 1 The BreakHis dataset consists of 9109 microscopic images of
breast tumor tissues, which were collected from 82 different patients
with different magnification factors (40×, 100×, 200×, and 400×)

Magnification factor Benign Malignant Total

40× 625 1370 1995

100× 644 1437 2081

200× 623 1390 2013

400× 588 1232 1820

Total image 2480 5429 7909

trained MobileNet model with the learnable resizer achieved
an accuracy of 96.9%, sensitivity of 98.3%, and specificity of
95.3%, outperforming the other models. Notably, the jointly
trained MobileNet model with the learnable resizer only had
30,000 more parameters than the MobileNet model [21].
Zhang et al. also applied a similar learnable resizer that maps
the features to a high-dimensional space through convolution
for image geolocation with the Pittsburgh30k dataset. The
researchers compared their method with the resizer proposed
by Talebi et al. and a model without a resizer. Their proposed
method is simpler than existing methods and achieved better
performance [18].

In this paper, we present a comprehensive evaluation of
transfer learning models for classifying the BreakHis dataset
using a hybrid approach with an adaptive resizer. We exper-
imented with seven prominent models and assessed their
performance using bilinear interpolation and various reso-
lutions with the adaptive resizer. Additionally, we conducted
further experiments to classify different magnifications of
the dataset separately, employing both hold-out and five-
fold cross-validation methods. Our findings provide valuable
insights into the performance of transfer learning models on
this dataset and emphasize the importance of utilizing an
adaptive resizer for enhancing model performance.

2 Methods

2.1 Dataset

BreakHis dataset is a publicly available database of
histopathological images of breast cancer tissues. It was
developed by the Laboratory of Applied Mathematics in the
Department of Statistics at the Federal University of Per-
nambuco, Brazil [23]. The general information about the
BreakHis dataset is given inTable 1. Thebreast cancer dataset
is composed of two main categories: benign and malignant,
each of which has four different subtypes.

The normal and cancerous histopathology images samples
from the dataset are shown in Fig. 1. The dataset stands out
for its high-quality images of breast cancer tissues, which
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Fig. 1 Sample histopathology
images from the dataset: (a) and
(b) show benign samples, while
(c) and (d) display malignant
samples. (a) and (c) are at 40×
magnification, and (b) and (d)
are at 400× magnification

are crucial for the development of accurate computer-aided
diagnosis systems.

2.2 Data augmentation

Data augmentation is a widely used machine learning tech-
nique that helps to expand the amount of training datawithout
requiring additional data collection. This technique involves
applying various transformations to the original data, such
as image augmentation, rotation, flipping, or adding noise, to
generate new data samples that are comparative to the initial
data [24]. The augmented data is then used to train machine
learning models, which can enhance the generalization per-
formance, particularly when the amount of original data is
limited [25].

In this study, classical augmentation techniques like zoom
and vertical–horizontal flips from Keras libraries were used.

2.3 Adaptive learnable resizer

Adaptive resizer model is designed to address the challenge
of resizing images while preserving their content and main-
taining visual quality [19]. The examples demonstrate how
the model can be trained on a dataset of images and used
to resize new images to a target size in Fig. 2. The learn-
able resizer model is based on a CNN architecture, which
is a type of deep learning model commonly utilized for
image analysis tasks [26]. The model is trained on a dataset
of images using a supervised learning approach, where the
goal is to predict the best resizing operation for the input
image.

The detailed architecture of the adaptive resizer is shown
in Fig. 3. The adaptive resizer model was designed by Talebi

Fig. 2 Sample images of resizer input and output which are taken from
various experiments, input images on the 1st, 3rd, and 5th columns, and
resized images on the right side of them

et al. [19] which was made up of convolutional layers that
extract features from the input image, followed by dense lay-
ers that forecast the appropriate resizing action. The model
predicts the best resizing operation for each pixel in the input
image, with the resizing operation being a linear combina-
tion of predefined resizing functions. These functions are
learned by the model along the training process. The model
is trained using a mean squared error loss function, which
measures the difference between the predicted and actual
resizing operations. Adaptive resizer is jointly trained with
classification models during the training and learns to adjust
the weights of the resizing functions to minimize the loss
and improve its ability to predict the best resizing operation
over the baseline image classifiers to improve classification
performance.
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2.4 Adaptive resizer-based transfer learning
framework

Transfer learning is a machine learning technique where a
model trained on one task is leveraged to solve a different
task. It has become increasingly popular in recent years,
especially in deep learning, where pre-trained models can
be used to speed up the training process, improve general-
ization, and achieve higher accuracy on the target task [27].
Transfer learningmodels can be broadly categorized into two
types: feature-based transfer learning andfine-tuning transfer
learning. Feature-based transfer learning entails extracting
features from input data using pre-trained models, which are
then used as an input to a newmodel trained on the target task.
Fine-tuning transfer learning, on the other hand, involves tak-
ing a pre-trainedmodel to a new task by slightlymodifying its
parameters during additional training. Utilizing pre-trained
models as a foundation, transfer learning expedites the learn-
ing process, enhances accuracy for new tasks, and reduces
the need for large amounts of labeled data. Transfer learning
is also useful for tasks where acquiring labeled data is costly
or time-intensive, as it can decrease the total amount of data
required for training.

However, a significant challenge with transfer learning
models is that their input resolution value is usually rela-
tively small, ranging between 200 × 200 and 224 × 224
pixels. This down sampling is done through mathematical
methods such as scaling, bilinear, and bicubic interpolation,
which leads to a data loss for detailed images regardless of
the original dataset’s resolution [29]. To address this issue,
Talebi et al. [19] developed an adaptive learnable resizer that
mitigates the problem by convolution from the original size
to 224×224. During the training phase, this technique also
trains itself alongside the model, making it a jointly trainable
model. As a result of these operations, the output is smaller
than the original image, but it contains less information loss.
This trade-off results in images that may appear degraded
to the human eye, but since they contain more information,
they significantly improve the performance of the model.
The effectiveness of this technique relies on various factors,
such as the quality of the pre-trained model, the interpolation
method used, and the complexity of the target task. There-
fore, it is crucial to carefully evaluate the performance of
the adaptive learnable resizer and other similar techniques
in different application scenarios and datasets to ensure their
suitability and effectiveness.

Fig. 3 Detailed architecture of the adaptive resizer. The input image,
after undergoing two convolution layers and batch normalization, is
bilinearly resized and processed through predefined residual blocks.

Following an additional convolution and batch normalization, the image
combines with its bilinearly resized form. The final output is the sum
of this result and the input image resized to the target resolution
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Fig. 4 Architecture of the adaptive resizer-based transfer learning
framework for image classification. The input image is processed
through the adaptive resizer, resulting in a detailed, 224 × 224 image
that retains significant attributes for classification. This image is subse-
quently processed by the convolutional layers of the selected transfer

learning models (VGG16, VGG19, MobileNetV2, InceptionResnetV2,
Resnet, DenseNet121, DenseNet201, or EfficientNetB0) to extract
salient features that are directly passed through fully connected lay-
ers for final classification as either benign or malignant

The model, which is shown in Fig. 4, takes an image as
an input, passes it through to the adaptive learnable resizer
to convert it into a 224×224 image, and then applies trans-
fer learning using the CNN part of seven different transfer
learning architectures. After obtaining the output from the
CNN, the model passes it through a fully connected (FC)
network consisting of five layers with ReLU activation. The
first layer of the FC network has 200 neurons, followed by
two more layers with 200 neurons each. Then, there are two
additional layers with 50 and 40 neurons, respectively, and
a final layer with 30 neurons. The output layer of the model
has two neurons with softmax activation function, which is
used for binary classification. Overall, the model appears to
be a deep neural network with multiple hidden layers that
allow it to learn complex features and patterns in the input
image.

In this study, several experimentswere conductedwith dif-
ferent CNN models, including VGG16, VGG19,
MobileNetV2, InceptionResnetV2, DenseNet121,
DenseNet201, and EfficientNetB0.

2.5 Performance evaluation

Accuracy, precision, specificity, recall, F1-score, and MCC
are commonly used metrics for evaluating the performance
of machine learning models. These metrics provide a com-
prehensive view of the model’s ability to correctly identify
positive and negative cases. Precision indicates the propor-
tion of correctly detected positive cases among all cases
identified as positive, whereas accuracy measures the per-
centage of true predictions generated by a model. Sensitivity,
also known as recall or true positive rate, measures the pro-
portion of actual positive cases correctly identified by the
model. Specificity, on the other hand, measures the propor-
tion of actual negative cases correctly identified by themodel.
The F1-Score combines both precision and recall, where a
score of 1 represents perfect precision and recall. MCC is

a correlation coefficient that considers true and false posi-
tives and negatives, and produces a value between−1 and 1,
where a valueof 1 represents a perfect prediction, 0 represents
a random prediction, and−1 represents a completely wrong
prediction. These metrics are valuable tools for choosing the
best model for a given task and guiding model performance
improvements.

3 Results and discussions

It is important to preserve as much detail as possible
when processing medical images, especially for datasets
like BreakHis, which contain important microscopic details.
Bilinear rescaling or downscaling of images may lead to
the loss of fine details, which can be particularly problem-
atic when working with lower magnification images, such
as those in the 40× class. Adaptive resizing addresses this
issue by considering each image’s unique characteristics,
such as size, shape, and content, ensuring critical details are
preserved during the resizing process. Jointly trained with
classification models, the adaptive resizer improves classi-
fication performance by adjusting the weights of resizing
functions, providing better quality resized images that assist
downstream CNNs in more effective learning [19]. This
results in improved accuracy and generalization, making it a
versatile component for various computer vision tasks, such
as object detection, image segmentation, and classification.

In the first experiment, the use of an adaptive resizer had
a positive effect on the training of the VGG19 model. As
shown in Fig. 5, the model trained with the adaptive resizer
was able to learn faster in the first 20 epochs compared to
the model trained with bilinear rescaling. This indicates that
the adaptive resizer was able to better preserve important
details in the images, allowing the model to learn more effi-
ciently. In addition, the fluctuating effect on the curves was
reduced with the use of the adaptive resizer. This suggests
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Fig. 5 Adaptive resizer effect on VGG19, a without resizer, b with
resizer. The model trained with the adaptive resizer was able to learn
faster in the first 20 epochs compared to the model trained with bilinear
rescaling. The training difference is very evident in the first 10 epochs.

The model without the adaptive resizer was able to learn between 85–
90%, while the model using the adaptive resizer was able to learn up
to 95%. The fluctuating effect on the curves was also reduced with the
use of the adaptive resizer

that the model trained with the adaptive resizer was more
stable during training, which can lead to better overall per-
formance. These results suggest that the use of an adaptive
resizer is beneficial for trainingdeep learningmodels onmed-
ical image datasets like BreakHis. By preserving important
details in the images, the adaptive resizer can help to improve
the efficiency and stability of the training, ultimately leading
to better performance of the model.

Selecting an appropriate model architecture for a given
dataset is crucial since the model performance can vary
depending on the dataset’s unique characteristics. Further-
more, various factors, such as the input resolution of the
adaptive resizer, the specific model used, and the system’s
hyperparameters, can all influence the model’s performance.
Thus, thorough consideration and experimentation are nec-
essary to find the optimal configuration of these factors. In
this study, multiple transfer learning models were assessed
on the dataset without modifying any hyperparameters, with
the goal of finding the best-suited structure for the dataset’s
unique characteristics. The adaptive resizer for image pro-
cessing necessitates a square input image. However, the
initial resolution of the examined image was 700×460,
violating this prerequisite. To address this, a series of exper-
iments were conducted to determine the optimal input size,
assessing four different input dimensions: 224× 224, 300×
300, 448× 448, and 600× 600.

For the 224×224 size, the images were directly resized
using the bilinear method without using an adaptive resizer.
For the remaining sizes, the images were first resized from
700 × 460 to the target size using bilinear method before
being fed into the adaptive resizer. These specific input sizes
and resizing methods were selected based on their propor-
tional relationship to each other. Seven different models
were evaluated and their performances were compared using
hold-out validation, as presented in Table 2. The winning
model’s training and validation accuracy-loss graphs are
shown in Fig. 6. While this analysis is valuable for deter-

mining the most suitable model for a given dataset, it is
essential to consider other factors such as the availability
of pre-trained models, computational resources needed for
training, and specific application requirements. However, it
should be noted that the performance of the adaptive resizer
might vary depending on the dataset and the issue being
addressed. Therefore, we recommend experimenting with
different transfer learningmodels and hyperparameterswhen
using the adaptive resizer to identify the optimal configura-
tion for a given task.

In deep learning, selecting the appropriate number of train-
ing epochs is crucial, as it significantly affects the resulting
model’s performance. To evaluate this factor, a comparative
analysis was conducted on seven different transfer learning
models using the BreakHis dataset’s 40× class. The findings
revealed that using an adaptive resizer with DenseNet201
resulted in the best performance when the input resolution
was set to 448×448. The models were trained for 25 epochs
with a batch size of 16, and a small number of epochs
were chosen to identify the highest performing model while
avoiding overfitting. The results emphasize the importance
of selecting the right number of training epochs for optimal
performance for a given task and dataset. Additionally, the
study underscores the significance of choosing a suitable pre-
trained model and input resolution, which can considerably
influence the model’s overall performance.

After identifying themost optimal transfer learningmodel
and hyperparameters for the BreakHis dataset, experiments
were conducted to evaluate the model’s performance using
two different validation techniques: hold-out and fivefold
cross-validation. In the hold-out method, the dataset is
divided into training 70%, validation 15%, and testing sets
15%. The model is trained on the remaining data, and its
performance is evaluated on the test set. The fivefold cross-
validation splits the dataset into five equal parts, with each
part serving as the validation set once, and the rest of it used
for training. The process is repeated five times, with each
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Table 2 Comparison of model performances with respect to resolu-
tions, resizing type, training time, and accuracy. The experiments were
performed on all transfer learning models to determine the best perfor-

mance results regarding resolution for the adaptive resizer. The winning
results were bolded for each model

Model name Input resolution Output resolution Resizing type Total parameters Total training time (s) Test acc

VGG16 700× 460 224× 224 Bilinear 15,972,470 175 0.8961

VGG16 300× 300 224×224 A.Resizer 15,984,633 250 0.9515

VGG16 448×448 224×224 A.Resizer 15,984,633 300 0.9515

VGG16 600×600 224×224 A.Resizer 15,984,633 350 0.9653

VGG19 700×460 224×224 Bilinear 21,282,166 200 0.9446

VGG19 300×300 224×224 A.Resizer 21,294,329 275 0.9515

VGG19 448×448 224×224 A.Resizer 21,294,329 300 0.9377

VGG19 600×600 224×224 A.Resizer 21,294,329 375 0.9653

MobileNetV2 700×460 224×224 Bilinear 5,397,366 125 0.9169

MobileNetV2 300×300 224×224 A.Resizer 5,409,529 175 0.9342

MobileNetV2 448×448 224×224 A.Resizer 5,409,529 225 0.9307

MobileNetV2 600×600 224×224 A.Resizer 5,409,529 275 0.9480

InceptionResnetV2 700×460 224×224 Bilinear 56,240,118 475 0.9584

InceptionResnetV2 300×300 224×224 A.Resizer 56,272,281 525 0.9723

InceptionResnetV2 448×448 224×224 A.Resizer 56,272,281 525 0.9688

InceptionResnetV2 600×600 224×224 A.Resizer 56,272,281 625 0.9584

DenseNet121 700×460 224×224 Bilinear 9,549,686 275 0.9792

DenseNet121 300×300 224×224 A.Resizer 9,561,849 350 0.9861

DenseNet121 448×448 224×224 A.Resizer 9,561,849 375 0.9826

DenseNet121 600×600 224×224 A.Resizer 9,561,849 425 0.9688

DenseNet201 700×460 224×224 Bilinear 23,029,366 475 0.9757

DenseNet201 300×300 224×224 A.Resizer 23,041,529 525 0.9867

DenseNet201 448×448 224×224 A.Resizer 23,041,529 550 0.9896

DenseNet201 600×600 224×224 A.Resizer 23,041,529 625 0.9792

EfficientNetB0 700×460 224×224 Bilinear 16,687,553 225 0.9342

EfficientNetB0 300×300 224×224 A.Resizer 16,699,716 275 0.9433

EfficientNetB0 448×448 224×224 A.Resizer 16,699,716 325 0.9480

EfficientNetB0 600×600 224×224 A.Resizer 16,699,716 350 0.9515

Fig. 6 Performance results of
the winning model,
DenseNet201, with adaptive
resizer, on the 40×
magnification class with
hold-out validation method. The
40× class contains highly
detailed images, and when
resized with bilinear or bicubic
methods, crucial features may
be lost. The adaptive resizer
excels in preserving these
features, resulting in optimal
performance

part used as the validation set once, and the performance
of the model is evaluated by averaging the results across
the five runs. These validation techniques assess the model’s
robustness and generalization ability, which is important in
medical image analysis, where the model must perform well
on unseen data. The training performance results of the mod-

els are shown in Fig. 7, while metric results are given in Table
3.

Table 3 shows that the model’s performance in 40×
images is superior compared to other image resolutions. This
canbe attributed to the fact that 40× images are captured from
a farther distance, resulting in a loss of finer details when
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Fig. 7 Performance results of DenseNet201 with adaptive resizer for
magnification classes: a 40×, b 100×, c 200×, d 400×, assessed
through fivefold cross-validation. The beneficial effects of the adaptive

resizer are evident across all classes, particularly in those containing
highly detailed images, leading to improved performance outcomes

Table 3 Experiments results with DenseNet201

Model name Validation method Mag. factor Acc. MCC Specificity Precision Recall F1-score

DenseNet201 Hold-out 40× 0.9896 0.9684 0.9747 0.9815 0.9870 0.9841

DenseNet201 Cross val 40× 0.9779 0.9487 0.9850 0.9753 0.9735 0.9744

DenseNet201 Hold-out 100× 0.9833 0.9621 0.9850 0.9798 0.9823 0.9810

DenseNet201 Cross val 100× 0.9730 0.9233 0.9756 0.9643 0.9683 0.9663

DenseNet201 Hold-out 200× 0.9759 0.9457 0.9746 0.9691 0.9767 0.9727

DenseNet201 Cross val 200× 0.9587 0.9117 0.9785 0.9591 0.9527 0.9558

DenseNet201 Hold-Out 400× 0.9505 0.9074 0.9732 0.9537 0.9537 0.9537

DenseNet201 Cross val 400× 0.95 0.9151 0.9763 0.9588 0.9564 0.9575

rescaled using bilinear interpolation. However, the adaptive
resizer preserves these details, allowing efficient learning
by the downstream CNN models. As the image resolution
increases to 100×, 200×, and 400×, the effectiveness of the
adaptive resizer declines, although it still outperforms bilin-
ear interpolation. Table 2 further demonstrates the observed
performance advantages of the adaptive resizer over the bilin-
ear method.

Moreover, our study also highlights that the adaptive
resizer’s structural characteristics make it a more effective

method for image resizing. Unlike bilinear interpolation,
which applies a uniform approach to all images, the adaptive
resizer is designed to resize images based on their spe-
cific features. This flexibility enables the adaptive resizer
to effectively capture and preserve fine details, leading to
improvedmodel performance. Furthermore, the findings also
emphasize the importance of selecting appropriate image res-
olutions for specific tasks. While higher resolution images
may provide more detail, they can also be more challeng-
ing to process and may require more sophisticated resizing
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methods. In contrast, lower resolution images may be eas-
ier to process, but they may lack sufficient detail for certain
applications. Thus, selecting the right resolution and resizing
method is crucial to achieve optimal performance in image-
based tasks.

The study’s results emphasize the advantages of using
adaptive resizer over bilinear interpolation for image resiz-
ing, particularly in the context of machine learning applica-
tions. Furthermore, the findings highlight the importance of
selecting appropriate image resolutions and resizingmethods
based on the specific requirements of the task being per-
formed. It is possible that the adaptive resizer can quickly
learn the images in the dataset after the first few epochs, as
its adaptive nature allows it to adjust to the characteristics
of the images. However, the exact performance of the adap-
tive resizer will depend on various factors, such as the size
and complexity of the dataset, the chosen transfer learning
model, and the specific hyperparameters used during train-
ing. It is also possible that the adaptive resizer may show
different training performances when used with different
transfer learningmodels. This is because the transfer learning
models may have different architectures, and therefore may
require different adaptations in order to effectively process
the images.

4 Conclusion

Breast cancer is a prevalent disease affecting millions of
women worldwide and ranking as the second most fre-
quent cancer in humans. Early and accurate diagnosis is
crucial for effective treatment, leading to a surge in computer-
assisted prediction studies using histopathology images.
These images, rich in detail and information about can-
cerous tissue, have high resolution and large spatial sizes,
necessitating spatial resizing for most computer-assisted
models. Our study demonstrates the effectiveness of an adap-
tive learning image resizer to improve the performance of
deep learning models in medical image analysis, especially
breast cancer classification using histopathological images
with different magnifications. By preserving critical details
during the resizing process, the adaptive resizer enables
more efficient and stable learning in the underlying CNN
models, outperforming traditional resizing methods like
bilinear interpolation. Our experiments using the BreakHis
dataset and seven transfer learning models have shown that
DenseNet201, when jointly trained with an adaptive resizer,
achieves the best performance with an accuracy of 98.96%
for 40× magnification images. Our findings emphasize the
potential of the adaptive resizer as a powerful tool for enhanc-
ing image classification. The adaptive resizer’s ability to
preserve important details and adapt to the unique char-
acteristics of images resulted in better performance across

all magnification factors, especially in 40× magnification
images, where it significantly outperformed bilinear interpo-
lation. The study also highlights the importance of selecting
the appropriate image resolution, transfer learning model,
and hyperparameters for optimal performance. The adap-
tive resizer’s potential to generalize across various image
classification tasks and its compatibility with different CNN
models highlights its versatility as a powerful tool for med-
ical image analysis and other computer vision applications.
Future research can extend this study to include multiclass
breast cancer classification, evaluate the adaptive resizer’s
performancewith other transfer learningmodels, and explore
its application in different datasets and diverse computer
vision tasks. By offering an effective and flexible solution for
image resizing, the adaptive resizer presents a valuable con-
tribution to the ongoing advancements in the field ofmachine
learning and computer vision.
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