
EVALUATING IMPACTS OF
MICRO-ARCHITECTURAL METRICS ON ERROR
RESILIENCE AND PERFORMANCE OF GENERAL

PURPOSE GPU APPLICATIONS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Burak TOPÇU

July 2023
İZMİR

We approve the thesis of Burak TOPÇU

Examining Committee Members:

Assistant Professor Dr. Erdem ALKIM
Department of Computer Science, Dokuz Eylül University

Professor Dr. Cüneyt Fehmi BAZLAMAÇCI
Department of Computer Engineering, Izmir Institute of Technology

Assistant Professor Dr. Işıl ÖZ
Department of Computer Engineering, Izmir Institute of Technology

10 July 2023

Assistant Professor Dr. Işıl ÖZ
Department of Computer Engineering
Izmir Institute of Technology

Professor Dr. Cüneyt Fehmi BAZLAMAÇI Professor Dr. Mehtap EANES
Head of the Department of Dean of the Graduate School of
Computer Engineering Engineering and Sciences

ACKNOWLEDGMENTS

Firstly, I would like to begin by expressing my gratefulness to my supervisor,

Associate Professor Işıl Öz. She has illustrated my research environment by pointing out

hot topics and has accompanied me by discussing my deductions and experimental results.

Furthermore, I have had the opportunity to publish and present my works at academic

conferences and journals in a funded way with the help of project collaborations that she

leads.

I would like to thank the PARS research group due to our academic meetings

in which the group member presented current works in their research domain and re-

sources that enabled me to speed up the experiments. In addition, I would like to thank

the Scientific and Technological Research Council of Turkey (TÜBİTAK) due to the

project’s partnerships at FTGPGPU (Hardware Fault Tolerance Analysis for General Pur-

pose Graphics Processing Units (GPGPU) Applications, Grant No: 119E011) and RAP-

PROX (Resource-Aware Compiler Design for Approximate Computing Techniques in

General Purpose Graphics Processing Units (GPGPU) Applications, Grant No: 122E395)

in which I worked as a graduate-funded researcher.

I would like to thank my colleagues for their helpful, understanding, and support-

ive approaches such that we distributed the courses depending on the TAs’ research focus

and the workload of these courses equally.

I would like to thank my family members. Their beyond-conditions love motivates

me to be lively in my daily life, which positively reflects my academic research motivation

and dedication. Moreover, I would like to thank my girlfriend and close friends because

they have always supported me whenever I feel overwhelmed.

Finally, I would like to thank and express my loyalty to the greatest leader, Atatürk,

who is the founder leader of our country, paving the way for or forming the state systems

& ministries, and educational institutions such as IZTECH.

ABSTRACT

EVALUATING IMPACTS OF MICRO-ARCHITECTURAL METRICS
ON ERROR RESILIENCE AND PERFORMANCE OF GENERAL

PURPOSE GPU APPLICATIONS

Rapidly growing data processing tasks require powerful and energy-efficient het-

erogeneous computing systems, and GPUs take on a significant mission for those sys-

tems in accelerating heavy workloads by executing multiple parallel tasks concurrently.

Increasing architectural complexity and widening employment of GPUs bring error re-

siliency concerns for safety-critical applications. Furthermore, approaches that enhance

performance and reduce energy dissipation handle error resiliency on GPUs through ap-

proximate computing solutions. Evaluating error resiliency in terms of either identifying

error proneness of a system or investigating approximations without much disturbing the

output necessities robust knowledge about the execution of a program on a device.

In this thesis, we develop a runtime performance and power monitoring tool vi-

sualizing the execution with detailed micro-architectural metrics. By utilizing the tool,

we acquire several fundamental understandings about runtime performance bottlenecks

and how perturbations affect output quality. Afterward, we propose a framework pre-

dicting fault vulnerability for error-resilient GPU applications. The framework can accu-

rately estimate error tolerance and saves from analyzing the fault occurrence probability

requiring significant effort. Depending on the performance bottlenecks observed with

the tool and the error propagation gained during prediction experiments, we introduce

a hardware-based approximation computing approach targeting to improve the perfor-

mance and power of GPU programs, especially memory-bound ones. The approximation

method, which resolves memory utilization bottlenecks at runtime, enhances performance

by 1.49× (up to 2.1×) and diminishes energy consumption by 28.4% (up to %52.6) while

maintaining the accuracy on the output above 98%.

iv

ÖZET

MİKRO-MİMARİ METRİKLERİN GENEL AMAÇLI GPU UYGULAMA
HATALARINA VE PERFORMANSINA ETKİLERİNİN

DEĞERLENDİRİLMESİ

Hızla artan veri işleme görevleri güçlü ve enerji tüketimi açısından verimli hetero-

jen hesaplama ortamları gerektirir ve GPU cihazları birçok görevi paralel şekilde çalıştırarak

bu sistemlerdeki yoğun iş yüklerini hızlandırmada önemli bir misyon üstlenir. Artan mi-

mari karmaşıklık ve GPU cihazlarının yaygın şekilde kullanılması güvenlik açısından

önemli uygulamalar için hataya karşı dayanıklılığa ilişkin endişeler ortaya çıkarır. Yanı

sıra, performansı artırırken enerji tüketimini azaltmayı hedefleyen yaklaşımlar ise hataya

karşı dayanıklılığı yakınsamalar yapmak ve faydalanmak yönüyle konuyu ele alır. Hataya

karşı dayanıklılığı, hata oluşumuna yönelimi veya çıktıyı çok bozmayacak yakınsamaları

değerlendirmek bir programın cihazdaki çalışmasına yönelik kapsamlı bilgilere sahip ol-

mayı gerekli kılar.

Bu tezde, GPU’daki gerçek zamanlı çalışmayı mikro mimari ölçümler aracılığıyla

sunan ve görselleştiren bir performans ve güç izleme aracı geliştirdik. Bu araç sayesinde,

çalışma esnasındaki performans darboğazları ve meydana gelen hataların çıktı kalitesini

nasıl etkilediği hakkında birçok temel anlayış elde ettik. Daha sonra, GPU uygulamaları

için hata güvenlik açığını tahmin eden bir yapı öneriyoruz. Bu yapı, hata toleransını

doğru bir şekilde tahmin etmeyi sağlar ve önemli çaba gerektiren hata oluşma olasılığını

analiz etmekten kurtarır. İzleme aracıyla gözlemlenen performans darboğazları ve tahmin

deneyleri sırasında elde edilen hata yayılımı gözlemlerini temel alarak, özellikle bellek

kullanımından kaynaklı GPU programlarının performansını ve gücünü iyileştirmeyi hede-

fleyen donanım tabanlı bir yakınsama aracı sunuyoruz. Çalışma zamanında bellek kul-

lanımına yönelik darboğazlarını çözen yakınsama yöntemi çıktıdaki doğruluğu %98’in

üzerinde tutarken, performansı 1,49× (en fazla 2,1×) artırır ve enerji tüketimini %28,4

(%52,6’ya kadar) azaltır.

v

Once upon a time, these apes were also humans ridiculing others, and we live together

with their evolved forms; we should pay more attention!

Maymunland, Indigo

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . xi

CHAPTER 1. INTRODUCTION . 1

1.1. Thesis Organizations and Contributions . 4

CHAPTER 2. BACKGROUND . 7

2.1. CUDA Programming Language . 7

2.2. GPU Architectures . 8

2.3. Micro-architectural metrics . 9

2.3.1. GPGPU-Sim . 10

2.4. Soft Error Vulnerability . 11

2.5. Approximate Computing . 13

CHAPTER 3. GPPRMON: GPU RUNTIME PERFORMANCE AND POWER

MONITORING TOOL . 14

3.1. Related Work . 16

3.2. Methodology . 18

3.2.1. Micro-architectural Metric Collection . 18

3.2.1.1. Performance Metrics . 19

3.2.1.2. Power Metrics . 20

3.2.2. Visualization . 21

3.3. Case Studies . 25

3.3.1. Performance Bottleneck Analysis and its Power Impacts for

a Memory-Intensive Workload . 25

3.3.2. Performance-Power Analysis of an Embedded Application 30

3.4. Summary . 34

CHAPTER 4. SOFT ERROR VULNERABILITY PREDICTION OF GENERAL

PURPOSE GPU APPLICATIONS . 35

4.1. Related Work . 36

4.2. Methodology . 39

vii

4.2.1. Fault Injection Framework . 40

4.2.2. Metric Collection . 41

4.2.3. Data Preprocessing . 44

4.2.4. Feature Selection . 45

4.2.5. Outlier Elimination . 47

4.2.6. Prediction Model Evaluation . 49

4.3. Experimental Study . 51

4.3.1. Experimental Setup . 51

4.3.2. Experimental Results . 54

4.3.2.1. Preprocessing Methods . 54

4.3.2.2. Feature Selection . 55

4.3.2.3. Outlier Elimination . 56

4.3.2.4. Regression Results . 57

4.3.2.5. Classification Results . 58

4.4. Summary . 60

CHAPTER 5. APPROXTRACKER: MEMORY-DRIVEN GPU APPROXIMA-

TOR ENHANCING PERFORMANCE, ENERGY EFFICIENCY, AND DATA

UTILIZATION . 62

5.1. Related Work . 63

5.2. Methodology . 65

5.2.1. ApproxTrackerL1D . 67

5.2.2. ApproxTrackerL2 . 70

5.3. Experimental Study . 71

5.3.1. Experimental Setup . 71

5.3.2. Experimental Results . 73

5.3.3. ApproxTracker Performance and Driven-Power on Various

GPU Applications . 74

5.3.4. ApproxTracker Performance and Driven-Power Improvements

on Various Datasets . 80

5.4. Summary . 83

CHAPTER 6. CONCLUSION . 86

REFERENCES . 88

viii

LIST OF FIGURES

Figure Page

Figure 2.1 CUDA, PTX, and SASS code snippets for vectorAdd GPU code. 7

Figure 2.2 The 3D Grid and Thread Block representations of a GPU kernel

workload. 8

Figure 2.3 A memory workload analysis overview section snapshot taken from

Nsight Compute tool. 10

Figure 2.4 The simulator’s modern GPU modeling. 11

Figure 2.5 Fault detection and classification flowchart Öz and Karadaş (2022). . 12

Figure 3.1 A workflow overview of GPPRMon framework. 19

Figure 3.2 General View displaying average performance and power consump-

tion measurements at runtime. 22

Figure 3.3 Spatial View revealing memory access statistic at runtime. 23

Figure 3.4 Temporal View monitors instruction executions together with the

performance and power consumption of the corresponding

SM. 24

Figure 3.5 Average memory access statistics in the cycle range of [5000, 100000].

27

Figure 3.6 Instruction monitoring for the load instructions on SM0 in the cycle

range of [5000, 30000]. 28

Figure 3.7 Memory performance overview in the cycle range of [5000, 9500]. . 29

Figure 3.8 IPC and dissipated power metrics throughout the [5000, 155000]

cycle interval of Kernel 0. 33

Figure 3.9 Instructions preparing threads for kernel task with thread-specific

data in the cycle range of [5000, 6500]. 33

Figure 4.1 General overview of fault prediction framework. 40

Figure 4.2 SDC, crash, and masked fault rates for target GPU kernels. 42

Figure 4.3 The upper and lower triangles show Pearson and Spearman correla-

tion results, respectively, between the simulator/profiler met-

rics and the fault rates (left is with the simulator and right is

with profiler features). 47

ix

Figure 4.4 Prediction experiments, where preprocessing methods result in the

highest accuracy values by keeping feature selection, outlier

eliminator, and ML classifier the same. 54

Figure 4.5 Spearman and Pearson correlation results between the features and

the fault rates. 55

Figure 4.6 Prediction experiments, where feature selection methods result in

the highest accuracy values by keeping preprocessing, outlier

eliminator methods, and ML classifier the same. 56

Figure 4.7 Prediction experiments, where outlier elimination methods result in

the highest accuracy values by keeping preprocessing, feature

selection methods, and ML classifier the same. 57

Figure 5.1 Execution flow of a memory request starting from LD/ST unit. 66

Figure 5.2 Locating ApproxTrackerL1D within the LD/ST unit on SMs. 67

Figure 5.3 Average miss rates on L1D and L2 caches experimented with naive,

ApproxTrackerL1D and ApproxTrackerL2 versions. 76

Figure 5.4 Normalized IPC and GPU Simulation Cycle experimented with naive,

ApproxTrackerL1D, and ApproxTrackerL2 versions. 77

Figure 5.5 Normalized runtime power dissipation and energy consumption ob-

tained through naive ApproxTrackerL1D and ApproxTrack-

erL2 versions. 79

Figure 5.6 Average miss rates on L1D and L2 caches for various data types

experimented with naive, ApproxTrackerL1D and Approx-

TrackerL2 versions. 80

Figure 5.7 The number of L2 cache accesses and misses obtained through naive,

ApproxTrackerL1D, and ApproxTrackerL2 versions among

various data types. 81

Figure 5.8 IPC and GPU simulation rates with ApproxTrackerL1D/L2 approaches

for various data types. 82

Figure 5.9 Average driven-power and energy consumption with ApproxTrack-

erL1D/L2 for various data types. 84

x

LIST OF TABLES

Table Page

Table 3.1 GV100 Based on Volta Architecture Configuration Specifications. . . 25

Table 3.2 Page Ranking kernel performance statistics. 26

Table 3.3 Dissipated power measured during K1’s execution on GV100 in the

cycle range of [5000,10000]. 31

Table 3.4 Fast Fourier kernel performance statistics. 32

Table 4.1 The metrics collected from the simulator. 43

Table 4.2 The metrics collected from the profiler. 44

Table 4.3 Selected features from the collected metrics. 48

Table 4.4 CUDA applications used in our experiments. 52

Table 4.5 Preprocessing, Feature Selection/Reduction, and Outlier Elimina-

tion methods and their hyper-parameter configurations. 53

Table 4.6 Regression accuracy results for masked faults on each machine learn-

ing algorithm. 58

Table 4.7 SDC and Crash rates classification results for 2/3-class evaluations

among all preprocessing methods. 59

Table 5.1 CUDA applications used in our experiments. 72

Table 5.2 Graph specifications. 72

Table 5.3 RTX2060 GPU configuration based on Turing architecture. 73

Table 5.4 Baseline performance overview among target applications. 75

Table 5.5 The number of memory accesses on caches experimented with naive,

ApproxTrackerL1D, and ApproxTrackerL2 versions. 78

xi

CHAPTER 1

INTRODUCTION

Today’s data processing tasks with drastically increasing data require heteroge-

neous computer systems with high performance and energy efficiency. Massively parallel

GPU architectures play a key role in accelerating workloads that can run in parallel, such

as deep learning, big data, scientific computing, and streaming applications. According

to TOP500 (2023) statistics, 21 entries out of the listed 28 accelerators/co-processors are

GPUs or GPU-based systems manufactured by NVIDIA, and the most preferred GPU

device is the Volta architecture-based Quadro GV100 GPU (NVIDIA (2018b)). Besides

NVIDIA, AMD and Intel are the other GPU manufacturing leaders in the industry and

exist in the same statistics.

GPU architectures mainly comprise many streaming multiprocessors (SMs) con-

sisting of several multi-functional computational resources and memory partitions con-

taining various storage units (Aamodt et al. (2018)). The SMs offer much more execution

resources than multi-cores and special functional units developed for faster execution of

computationally complex operations. The GPU memory hierarchy generically involves

an on-chip cache (usually L1 on SMs), an interconnection network, and memory parti-

tions. While the interconnection network provides the routing for the memory accesses

between SMs and the memory partitions, the L2 cache and DRAM banks reside in the

memory partitions. The swift evolution of high-compute tasks has led to the transforma-

tion of GPUs into versatile computational devices with much more complex architectures.

While GPUs traditionally accelerate data-independent parallel workloads like natural lan-

guage processing (NLP) or computer vision of artificial intelligence (AI) applications,

modern GPUs further boost the performance by utilizing either domain-specific solutions

such as tensor operators (Appleyard and Yokim (2017)) and Deep Learning Super Sam-

pling (DLSS, Stine et al. (2021)) or more sophisticated execution pipeline designs like

Shader Execution Reordering (SER, Rusch and Hart (2022)).

On the other side, some tasks do not effectively utilize the computational power

of GPUs, which breaks down the generic applicability. To illustrate, sorting algorithms

arranging elements in a specific execution flow based on comparison operations gener-

ally cannot reach devices’ maximum TFLOP rates because the control flow and particular

ordering necessities can cause computing resources to be idle due to waiting or control

1

flows. Furthermore, algorithms exposing heavy memory workloads or irregular data ac-

cesses incur memory bounds since thousands of parallel threads create pollution in both

on-chip and off-chip caches whenever the data locality is low or totally lacking (Hong

et al. (2022); Jain et al. (2019)). Besides the insufficiency of generic execution support,

energy consumption concerns are addressed more in the literature, as GPUs are widely

utilized throughout diverse applications and fields. While both performance and energy

improvements contribute efficient execution of GPU programs, the design decisions be-

come critical and get complicated, requiring the evaluation of the trade-offs between both

factors (Guerreiro et al. (2019); Krzywaniak et al. (2022); Sun et al. (2018)).

The cumulative developments in architecture complexity and the scaling up of

heterogeneous computer systems, including many sophisticated GPUs, have led to er-

ror resiliency trends that generate incorrect output. First, the rising reliability concerns

on error vulnerability (Borkar (2005)) and high costs of conventional redundancy-based

resiliency solutions bring significant research to evaluate error tolerance and seek less-

than-perfect other precautions. Especially, software error-resilient solutions propose in-

expensive hardware or software detectors to identify abnormal software behavior (Dim-

itrov and Zhou (2007); Goloubeva et al. (2003); Li et al. (2008)). Even if these solutions

are promising because of their ultra-low cost, they occasionally let some errors as silent

data corruptions (SDCs). Second, error tolerance on GPUs presents the emerging field

of approximate computing, which focuses on intentionally and carefully compromising

accuracy to achieve improved performance or energy efficiency. Approximate computing

proposes various techniques to reduce or completely eliminate the performance-limiting

factors with tolerable error rates. For example, the proposed methods include executing

more workload on the same device by utilizing operand similarity or smaller operands

from 64-bit to 32-bit/32-bit to 16-bit (Garcia et al. (2021); Peroni et al. (2020); Wong et al.

(2016)). Additionally, approximation methods based on hardware, software, or compiler

can save from memory bottlenecks by removing long-latency memory operations, early

cache evictions, and memory pipeline stalls, especially for memory-bounded applications

(Aktılav and Öz (2022); Gao et al. (2022); Hoshino et al. (2018); Maier et al. (2019);

Zhao et al. (2020)).

To facilitate the widespread adoption of both software-anomaly-based error detec-

tion and approximate computing, it is crucial to comprehend how perturbations, whether

intentional approximations or unintended errors, affect the outcome and quality of a com-

putation. This challenge is known as the perturbation-outcome problem (Venkatagiri et al.

(2016)). Ideally, a solution to this problem would possess the following characteris-

2

tics: (1) automatic determination without imposing excessive burden on programmers,

(2) applicability to general-purpose applications, (3) compatibility with various perturba-

tion models, and (4) guaranteed understanding of the impact on overall output quality,

as well as the resulting improvements in performance, energy efficiency, and resilience

costs. While a comprehensive solution that meets all these requirements is still elusive,

researchers have made substantial progress by relaxing certain cases. To understand how

perturbations, either deliberate approximations or unintentional errors, generally affect

the outcome of the computation, diving into micro-architectural metrics, which provides

insight into the internal structure and behavior of the execution, and evaluating them con-

cerning approximations for performance and energy dissipation improvements can clear

up obscures. Micro-architectural metrics provide valuable information for interpreting

and determining error resiliency by facilitating performance analysis, supporting fault in-

jection studies, enabling predictive modeling, and guiding system optimization and design

decisions.

The state-of-the-art GPU simulators like Multi2Sim (Ubal et al. (2012)), GPGPU-

Sim (Khairy et al. (2020)), and gem5 (Power et al. (2015)) model a virtual GPU and

execute a GPU code in a cycle-accurate manner. Likewise, GPU manufacturers offer

profiling instruments such as NVIDIA Nsight Compute (NVIDIA (2022a)) and System

Profiling (NVIDIA (2022d)) tools to evaluate application behavior and interaction with

the hardware. Even if the simulators are open to expanding source code to obtain the ap-

plication’s micro-architectural behavior and performance logs depending on the research

direction, such expansion still does not provide metrics for general-purpose evaluation ca-

pability. Moreover, both profilers and simulators lack runtime evaluation as the provided

metrics correspond to the occupation and interaction of the GPU kernel functions with

the hardware. In addition to the lack of a comprehensive observation tool, none of the

tools directly reports GPU programs’ dynamic hardware occupation, execution behavior

and metrics, and power consumption at runtime.

The limitations of the simulators and profilers hinder deeply investigating error

resiliency. The error tolerance analysis, such as determining fault occurrence probabil-

ity, requires many repetitive experiments and may become impractical for long-running

systems, especially on GPU simulators. Even if predicting the error vulnerability with-

out running numerous fault injection tests on each target software has become viable

for CPU systems (Guo et al. (2021); Jauk et al. (2019); Laguna et al. (2016); Lu et al.

(2014); Oliveira et al. (2018); Öz and Arslan (2021)), the estimation approaches utilizing

micro-architectural metrics are limited Kalra et al. (2018); Nie et al. (2018) for GPUs.

3

In addition, the approximate computing domain offers various hardware-, software- or

compiler-based error-resilient approximation solutions (Gao et al. (2022); Garcia et al.

(2021); Hoshino et al. (2018); Maier et al. (2019); Peroni et al. (2020); Wong et al. (2016);

Zhao et al. (2020)) which control the error tolerably and aims to improve execution perfor-

mance and energy usage by reducing or completely eliminating the performance limiting

factors. However, GPUs still cannot meet the expected hardware performance of heavy

memory workloads, especially for sparse data processing (Jiao et al. (2010)), and the lim-

ited GPU performance, which is slightly better than processing on multi-cores, cannot be

preferable due to the high energy consumption. Moreover, those approximate computing

approaches do not pay enough attention to how approximated values propagate through

the execution.

1.1. Thesis Organizations and Contributions

In this thesis, we evaluate the impacts of micro-architectural metrics on perfor-

mance and error resiliency based on soft error vulnerability prediction and approximate

computing approaches. Before the evaluation, we first develop a tool through the sim-

ulator to investigate the runtime behavior of any execution on GPUs considering micro-

architectural metrics. Developing such a tool improves our knowledge about the relation-

ship between application behaviors and micro-architectural metrics occupying hardware

with diverse architecture types and resources. In the second part of the thesis, we create

a prediction framework to estimate the soft error vulnerability and verify that a com-

prehensive machine learning (ML)-based estimation approach can determine the faults

which corrupt the output or stop the execution by employing micro-architectural metrics.

Furthermore, we discover that the runtime value transitions such as faults either do not

affect the output much when the transient data changes are local, and the operands have

no critical effect on the output or do not affect the output at all for most of the benchmark

applications. By benefiting from error propagation founding and realized performance

bottlenecks with the runtime evaluation tool, we offer an approximate computing method

based on runtime memory performance traces aiming to improve performance and en-

ergy dissipation by reducing performance-limiting factors within tolerable accuracy dis-

turbances on output.

The main contributions of this thesis are summarized as follows:

i. We introduce GPPRMon, a runtime performance and power monitoring tool for

GPU programs. GPPRMon, a simulation-based framework, dynamically collects
4

certain micro-architectural metrics and reports performance and power consump-

tion observations at runtime. GPPRMon provides a visualization interface that

presents both spatial and temporal views of the execution. Additionally, we pro-

vide two different case studies with usage scenarios in which one experiments

server model heavy GV100 (NVIDIA (2018b)) GPU, and the other Jetson AGX

Xavier (NVIDIA (2019)) corresponds to the GPU used in embedded applications.

To the best of our knowledge, GPPRMon, which enables the user to perform a

fine-granularity evaluation of the target execution by observing instruction-level

microarchitectural features, is the first work visualizing the execution for multi-

ple user-configurable scenarios, relating memory hierarchy utilization with perfor-

mance and tracking power dissipation at runtime. The GPPRMon research pa-

per was accepted to be published at The 2nd International Workshop on Resource

Awareness of Systems and Society (RAW, 2023) of the 29th International European

Conference on Parallel and Distributed Computing and Minisymposia.

ii. We present an ML-based soft error vulnerability prediction for GPU applications.

Our research contributes to many fault injection experiments and discovers the pat-

terns between fault rates and micro-architectural program characteristics collected

via a simulator or profilers. To the best of our knowledge, this is the first study

that uses a comprehensive set of regression and classification models supported

by feature selection, preprocessing, and outlier elimination techniques and trained

with micro-architectural indicators to predict soft error vulnerability at the kernel

level instead of the whole GPU application. This research’s initial version was pub-

lished at the 30th Euromicro International Conference on Parallel, Distributed, and

Network-based Processing (PDP) (Topçu and Öz (2022)), and the extended version

was published in The Journal of Supercomputing (Topçu and Öz (2022)).

iii. We develop memory-centric approximation-based approaches, ApproxTrackers, by

detecting and flushing long-latency memory operations deliberately at runtime to

reduce problems related to the memory wall. We conduct preliminary classifica-

tion experiments to determine approximable target GPU applications by utilizing

the microarchitectural metrics, and those applications mostly consist of memory-

bound ones with irregular memory access behaviors. Although our approach tar-

gets memory-bound applications, we apply our solution to other domains. At the

end of this chapter, we analyze the performance and energy consumption improve-

ments within small accuracy deviations according to the experimental results. After

defending this thesis, we will submit our hardware approximation tracker, Approx-
5

Tracker, to a conference or a journal.

Background chapter, 2nd Chapter, provides baseline information for CUDA pro-

gramming language, GPU architectures, micro-architectural metrics, simulators and pro-

filers, soft error vulnerability, and approximate computing topics. In the 3rd Chapter,

we introduce the runtime performance and power monitoring tool mentioned above and

present two case studies for analyzing runtime performance and power consumption with

a server and an embedded application GPU. In the 4th Chapter, we offer a comprehensive

ML-based framework for predicting soft error vulnerability. We analyze the fault tol-

erance of GPU applications and associate these errors with micro-architectural metrics.

In the 5th Chapter, we propose an approximate computing approach that improves per-

formance and reduces energy consumption based on error propagation and performance

bottlenecks analysis. Lastly, we summarize the contributions of our work to the literature,

explain expected future research directions, and share our conclusions in the 6th Chapter.

6

CHAPTER 2

BACKGROUND

2.1. CUDA Programming Language

Figure 2.1. CUDA, PTX, and SASS code snippets for vectorAdd GPU code.

Compute Unified Device Architecture (CUDA) (NVIDIA (2023a)) designed with

Fortran, C, and C++, provides a programming API to accelerate general-purpose comput-

ing, such as scientific simulations and machine learning with GPU functions, called GPU

kernels, by leveraging the computational power of NVIDIA GPUs. Figure 2.1 demon-

strates a GPU kernel example, given as the vectorAdd with CUDA code snippet. NVCC

(NVIDIA (2023b)) compiles CUDA codes and generates a SASS executable where source

and assembly (SASS, NVIDIA (2015)) corresponds to the real machine assembly instruc-

tions. 1 in Figure 2.1 reveals a compilation command where sm_ID needs to be config-
7

ured depending on the GPU architecture. For example, in this thesis, we experiment with

Pascal, Volta, and Turing GPUs and compile the CUDA codes with sm_61, sm_70, and

sm_75 identifiers, respectively. By CUDA-Object-Dump (cuobjdump) utility as in 2 , we

can obtain Parallel Thread Executable (PTX) instructions (NVIDIA (2023d)), which cor-

responds to virtual machine instructions and are capable of one-to-one representation of

SASS. The code obtained with 3 displays the SASS instructions for vectorAdd GPU ker-

nel. NVIDIA provides a CUDA debugger, cuda-gdb (NVIDIA (2022b)), and the CUDA

developers can set breakpoints, observe states of hardware components, and change the

stored values (i.e., in registers) through the debugger at runtime. In this thesis, we ex-

periment with CUDA applications and NVIDIA GPU architectures and employ all the

mentioned utilities through the experiments.

Figure 2.2. The 3D Grid and Thread Block representations of a GPU kernel workload.

Figure 2.2 represents a GPU kernel that consists of a 3D grid space, where each

grid has a 3D thread block, including multiple threads. Before launching a GPU ker-

nel, the developer agrees on a data management policy between CPU and GPU memory.

Warps, consisting of groups of 32 threads within the same thread block, are the smallest

execution element in the CUDA context and run in parallel. The kernel completes its ex-

ecution after terminating all thread blocks. Although each thread operates with different

data and operands, the warping aims to execute and complete the same instructions of

grouped threads in parallel.

2.2. GPU Architectures

Modern GPU architectures, modeled in Figure 2.4, mainly comprise SMs (aka

CUDA Cores), interconnection networks, and memory partitions with high bandwidth.

8

GPUs employ a single-instruction-multiple-thread (SIMT) execution in their Streaming

Multiprocessor (SM) units (Aamodt et al. (2018)). When a kernel launches, the Gigath-

read engine (thread block scheduler) schedules thread blocks to SMs by exploiting the

Round-Robin policy. The SM has a large register file holding thread operands and sav-

ing from long latencies during context switches, instruction dispatchers, warp schedulers,

and functional units. The total number of registers determines the number of active thread

blocks, some of which may be issued to the same SMs. SMs fetch the warp instructions

from the instruction cache, place them into instruction buffers, and then decode. The

warp schedulers determine the next instruction group within a warp, and the instruction

dispatching unit issues decoded instructions to the functional units by considering op-

codes. SM’s functional units involve LD/ST units, SP/DP/INT ALUs, specialized units

for complex mathematical operations, and tensor cores. While ALUs perform arithmetic

and logic operations depending on operand type, tensor cores conduct vectorial/matrices

load-multiplication-store operations such as fused multiply and add (FMA) with mixed

precision. The LD/ST unit is responsible for executing memory-type instructions. The

LD/ST unit includes a memory access coalescing unit, which combines multiple memory

requests accessing the same data into one to reduce overhead access overhead. An in-

terconnection network connects SMs and memory partitions where DRAM and L2 cache

(Last-Level cache) are placed. While the cores inside the same SM can access the L1

cache, all the cores can communicate via the L2 cache structure. Unlike the older GPUs,

a distinct scratchpad memory (i.e., shared memory) resource no longer exists. Instead,

the L1 cache, which can still be configured as scratchpad memory, is the on-chip data

memory, and the compiler conducts possible optimizations with hardware support auto-

matically after Volta architecture. Memory accesses, whether load or store, look on the

L1 cache first, and then the L2 cache and DRAM partitions via the interconnection net-

work for the desired data. Data access gets slower for memory instructions as moving

down the hierarchy. It is worth noting that GPU architectures are continually evolving,

with each new generation introducing enhancements in performance, power efficiency,

and specialized features. The above overview provides a general understanding of GPU

architecture, but specific details and terminology may vary based on the GPU model and

manufacturer. During the thesis, we experiment with the QUADRO P4000, GV100, and

RTX1650 GPUs based on Pascal, Volta, and Turing architectures, respectively. The ex-

perimental setup in the following chapters mentions architectural and resource specs for

these GPUs.

9

2.3. Micro-architectural metrics

GPU developers analyze applications’ behavior and hardware occupation by em-

ploying metrics obtained via profilers through real GPUs or simulators configuring a vir-

tual GPU. Since we conduct our research based on NVIDIA products, we utilize Nsight

System (NVIDIA (2022d)) and Compute (NVIDIA (2022a)) profiler tools to collect met-

rics. In Nsight Compute tool, Compute Workload Analysis section presents utilization of

functional units, elapsed and active IPC, and issue rate of operands type such as FP16,

FP32, which helps to obtain SMs activity. The tool gives many detailed memory metrics

such as the number of requests with instruction types on caches and device memory, band-

width throughput (data size/second), memory utilization in percent, and hit/miss rates of

caches in Memory Workload Analysis section as in Figure 2.3. We first exploit Nsight

Compute tool in the hardware occupancy metric extraction part of the soft error vulner-

ability study. Furthermore, we use the tool’s CLI support in the approximate computing

section to determine target CUDA applications, to which we will apply approximation

methods by taking care of the memory utilization metrics.

Figure 2.3. A memory workload analysis overview section snapshot taken from Nsight

Compute tool.

Moreover, GPGPU-Sim (Khairy et al. (2020)), a state-of-the-art open-source GPU

simulator modeling NVIDIA products, reports general performance and architecture oc-

cupancy metrics. GPGPU-Sim gathers the number of individual memory access on all

L1 and L2 caches with hit/miss rates and DRAM banks and general occupancy metrics

such as IPC, SM, and memory like the Nsight Compute. In addition, NVML (NVIDIA

(2023c)) and AccelWattch (Kandiah et al. (2021)) support energy dissipation metrics for

real GPUs and GPGPU-Sim v4.2, respectively.

10

2.3.1. GPGPU-Sim

Figure 2.4. The simulator’s modern GPU modeling.

GPU researchers mainly exploit GPGPU-Sim (Khairy et al. (2020)) to conduct ex-

perimental studies targeting NVIDIA GPUs among the other simulators as it has evolved

by tracking developments on the real hardware in the previous two decades, such as in-

cluding tensor cores. Figure 2.4 displays the workflow of an NVIDIA-based GPU simula-

tor executing either CUDA- or OpenCL-based applications. The simulator provides func-

tional enabling developers to check the kernel’s functional correctness and performance-

driven mode that simulates the kernel for the configured GPU in a cycle-accurate man-

ner. The simulator runs PTX instructions extracted from the executable object by cuboj-

dump since the machine decoding of SASS instructions onto the hardware is not publicly

available. The simulator officially supports Fermi, Kepler, Pascal, Volta, and Turing ar-

chitectures. However, computer architects may simulate any correctly configured GPU

configuration on the simulator. In addition to cycle-accurate simulation, the AccelWattch

power model, which supports Dynamic Voltage-Frequency Scaling (DVFS), measures en-

ergy dissipation for official GPUs with an accuracy above 90%. We develop the runtime

performance and power monitoring tool by extending the simulator’s timing and power

measurement models. Moreover, while utilizing the simulator to collect performance and

instruction metrics in the soft error vulnerability study, we implement approximate com-

puting approaches to the GPU architecture by modifying the simulator’s source code.

11

2.4. Soft Error Vulnerability

Figure 2.5. Fault detection and classification flowchart Öz and Karadaş (2022).

Soft errors are transient errors causing logic state changes on the hardware com-

ponents (Mukherjee (2008)). Soft errors can occur for various reasons, such as cosmic

rays and particle strikes, electromagnetic interference, voltage fluctuations, and thermal

effects. The most prevalent way to evaluate the soft error vulnerability of an application is

to perform fault injection (FI) experiments. To illustrate, one bit of one register is flipped

at a random time during the execution of the application, and the output result is examined

to observe the effect of the fault in our FI scenario. Figure 2.5 displays the fault detection

and classification scheme. The outcome of the FI experiments can be classified into three

categories: 1) Correct Execution (Masked): The faults do not affect the output since the

corrupted value is not used or overwritten in the remaining part of the program. 2) Silent

Data Corruption (SDC): The program terminates, but the program’s output is not the ex-

pected output due to the corrupted data. 3) Crash: The program fails by terminating with

an error code.

The FI tool developed by Öz and Karadaş (2022) pauses CUDA applications at

runtime, performs fault injections into registers by flipping one selective bit, and resumes

execution. FI tool conducts such a procedure uniformly 1000 times and classifies the error

rates mentioned above for the CUDA applications. In this study, we enlarge the FI tests

among the CUDA applications widely employed in literature and seek to capture the rela-

tionship between soft errors and GPU execution performance with the micro-architectural

12

metrics.

2.5. Approximate Computing

Approximate Computing (Anghel et al. (2018)) studies target to obtain high-

performance and low-energy consumption-oriented computer systems by controlling er-

ror tolerance with diverse approaches. These mainly cover sub-circuits such as approximation-

oriented ALUs Esmaeilzadeh et al. (2012), storage units by truncating the lower bits in-

stead of storing exact data values or lowering refresh rate, Mittal (2016); Sampson et al.

(2014), and software-level approximations such as memoization (Rahimi et al. (2013)) or

loop perforation (Sidiroglou-Douskos et al. (2011)). In addition to these approaches, as

computer architecture research evolves, more complex system-level approximation stud-

ies obtain better system-level performance and lower energy consumption with tolerable

errors. Whether domain-specific or not, system-based approaches intelligently identify

performance bottlenecks, such as memory pipeline stalls at runtime, conduct approxi-

mations to boost performance, and reduce driven power without affecting output much.

Since GPU devices are relatively complex systems, hardware-based approximation meth-

ods aim to solve local and overall performance problems synchronized. In the approxi-

mate computing side of error resiliency, we determine the memory performance bottle-

necks by tracking micro-architectural metrics and offer a solution to detect and eliminate

local temporal bottlenecks at runtime within a tolerable accuracy deviation.

13

CHAPTER 3

GPPRMON: GPU RUNTIME PERFORMANCE AND

POWER MONITORING TOOL

Although GPUs have large computational power, their performance and energy ef-

ficiency may decrease mostly for workloads with memory-intensive characteristics. Be-

sides several works that indicate the memory wall problem for the GPUs (Hong et al.

(2022); Jain et al. (2019)), a significant amount of studies have clarified the different

aspects of memory bottleneck points for GPU applications (Lew et al. (2019); O’Neil

and Burtscher (2014)) and proposed various improvements (Jog et al. (2013); Koo et al.

(2017); Vijaykumar et al. (2018); Zhao et al. (2019)). Additionally, the researchers

have proposed methods for energy-efficient executions considering memory operations

on GPU programs (Chen et al. (2014); Rhu et al. (2013)). Efficient execution of GPU

programs involves considering both performance and energy improvements, but these

two factors often contradict each other. Thus, making design decisions in this regard

becomes crucial and complex, as it requires carefully evaluating the trade-offs between

performance and energy efficiency (Guerreiro et al. (2019); Krzywaniak et al. (2022); Sun

et al. (2018)).

Based on performance improvement and energy-efficiency concerns, reasoning

a GPU application’s performance bottlenecks and interpreting power consumption dur-

ing the execution requires more analytical measurements and rigorous evaluations. The

evaluation of kernel performance and its relation to power consumption on GPUs often

obscures valuable insights that can be gained from conducting a baseline analysis from

multiple perspectives. To fully understand the execution of a GPU program, it is important

to explicitly investigate each warp instruction as done in research on multi-core architec-

tures. However, existing tools like NVIDIA’s GPU profiler (Nsight Compute Tool) and

state-of-the-art GPU simulation tools (such as AccelSim and Multi2Sim) primarily oper-

ate at the kernel level and do not directly report dynamic performance, memory access

behavior, and power consumption of GPU programs during runtime. Additional effort is

required to collect relevant micro-architectural metrics from experiments for runtime per-

formance and power consumption analysis. Researchers often develop their own target-

specific monitoring solutions, leading to repetitive and redundant efforts in literature.

GPPRMon, a performance and power monitoring tool for GPU architectures,
14

monitors the program’s performance and driven power on hardware based on the dynamic

behavior of memory accesses and thread blocks during the execution. Our simulation-

based framework dynamically collects IPC, individual instructions’ issues/completions,

and memory-centric microarchitectural metrics and reports achieved performance with

energy dissipation for sub-components at runtime. Our visualization interface presents

both spatial and temporal views of the execution, where the first demonstrates the perfor-

mance and power metrics for each hardware component, including global memory and

caches, and the latter shows the corresponding information at the instruction granularity

in a timeline. GPPRMon enables users to perform a fine-granularity evaluation of the

target execution by observing instruction-level microarchitectural features related to per-

formance and reasoning dissipated power at runtime. To the best of our knowledge, this is

the first work monitoring a GPU kernel’s performance by visualizing the execution of in-

structions for multiple user-configurable scenarios, relating memory hierarchy utilization

with performance, and tracking energy dissipation at runtime. Our main contributions are

as follows:

• We propose a systematic metric collection that keeps track of IPC per SM, instruc-

tion execution records for each warp to clearly observe issues/completions, detailed

memory usage statistics per each sub-unit to interpret its effect on performance and

power dissipation statistics for each GPU component at runtime with a configurable

sampling cycle by extending the GPGPU-Sim v4.2 (newest, hereafter referred as the

simulator throughout this chapter) framework.

• We design and build a visualization framework consisting of the following three

perspectives. The visualizer interface concurrently runs with the simulator and dis-

plays the GPU kernel execution status by processing collected micro-architectural

metrics at runtime.

i. General View displays the average IPC of active SMs, access statistics of

active L1D and L2 caches, row buffer utilization of DRAM partitions, and

dissipated power by the main components for an execution interval.

ii. Temporal View shows each thread block’s instructions issue and completion

cycles separately at warp level. In addition to power statistics for the sub-

components in an SM, we place L1 data cache access statistics to relate mem-

ory workload and the thread block’s performance within the execution inter-

val.

iii. Spatial View demonstrates the access information for each on-chip L1 data
15

cache, L2 cache in each sub-partition, and row buffers of DRAM banks in

each memory partition with average dissipated power distribution among the

sub-units of the memory partitions in any execution interval.

• We demonstrate the potential usages of the GPPRMon framework and its visual-

izations by performing experiments for a memory-intensive graph and embedded

application workloads to exemplify detailed performance and power analysis for

the target GPU executions.

3.1. Related Work

AerialVision (Ariel et al. (2010)) visualizes runtime warp divergence, dynamic

IPC, global memory access statistics, and active thread count with a mapping window

between source code and exposed pipeline latency metrics of the kernel execution. GP-

PRMon is similar to AerialVision in terms of providing runtime performance metrics.

While GPPRMon enables developers to dig into details of GPU execution within spe-

cific execution and architecture monitoring, such as instruction-level displaying at run-

time, AerialVision profiles mostly micro-architectural metrics on a much longer execution

scale. Moreover, the authors visualize overall GPU performance without per-component

performance analysis, which may hide information about heterogeneous behavior inside

kernel execution. Additionally, AerialVision does not support tracking energy dissipation.

Nsight Compute tool (NVIDIA (2022a)) runs a CUDA program on an NVIDIA

GPU device and collects hardware occupation statistics on a kernel basis. Profiling with

Compute tool eases interpreting the overall kernel performance and hardware utilization

with too detailed micro-architectural metrics and a well-designed GUI. On the other hand,

Compute tool does provide runtime monitoring of neither performance with hardware

utilization statistics nor dissipated power for the kernel execution, while GPPRMon pro-

vides configurable tracking options for performance and power metrics during the run-

time. Moreover, NVIDIA does not provide any detailed documentation for over 100000

micro-architectural metrics supplied by Compute tool.

TAU Performance System (Shende and Malony (2006)) is a performance profil-

ing tool for hybrid parallel programs such as CUDA and OpenCL by intercepting the

execution and calling metric collection functions. After gathering the results, TAU in-

tegrates them with data through instrumentation to display a performance picture of the

execution. Like Nsight Systems tool (NVIDIA (2022d)), which provides performance
16

traces for high-level CUDA functions such as cudaMemCpy, TAU does not address de-

tailed hardware usage and performance belongs to runtime execution. In addition, it lacks

providing energy consumption of the hardware.

Daisen (Sun et al. (2021)) displays the overall occupancy on SM pipeline stages

and memory components during the simulation. The authors aim to propose a performance-

improving architecture by iterating an algorithm that benefits from the previously col-

lected performance and hardware usage metrics. In other words, Daisen does not highlight

the performance degrading points analytically. Instead, it addresses general bottlenecks

and optimizes performance iteratively by re-configuring simulations. Similar to CHAM-

PVis (Pentecost et al. (2019)), their approach offers more systematic performance opti-

mization points on GPU executions. On the other hand, GPPRMon focuses on monitoring

the execution at the PTX instruction level and relating the execution with the memory oc-

cupancy during execution. Furthermore, while GPPRMon supports energy consumption

metrics, Daisen does not provide them.

Candel et al. (2015) model a portion of the memory hierarchy of the AMD GPUs

by investigating the behavior of MSHRs and coalescing unit for vector (warp for our case)

memory requests by extending Multi2Sim. The authors find that the size and switching

frequencies of MSHRs affect performance directly, especially for irregular workloads.

Additionally, coalesced memory accesses, implemented in the GPGPU-Sim as well, re-

duce the repeated overheads of memory requests, significantly affecting performance for

global memory accesses. Unlike the GPPRMon, their approach mostly focuses on mod-

eling the behavior of the MSHR and coalescing unit, a portion of the memory hierarchy,

of AMD GPUs instead of monitoring performance and energy consumption at runtime.

CHAMPVis (Pentecost et al. (2019)) offers a web-supported architectural perfor-

mance monitoring tool that provides a hierarchical analysis of trends and bottlenecks for

diverse application domains. The tool, which aims to analyze performance by evaluat-

ing metrics from a system view, generates predictive optimization speculations automati-

cally in an application-specific manner. Different from GPPRMon, CHAMPVis does not

employ any dissipated power tracking. Moreover, GPPRMon yields detailed execution

statistics, whereas CHAMPVis highlights the overall trends.

Islam et al. (2019) present an analysis and visualization framework, namely DASH-

ING, targeting exascale computing based on multi-core architectures. The authors pro-

vide user interaction models with some environment configuration options for analysis

and visualization. Similarly, GPPRMon supports most of the official NVIDIA GPUs for

multiple performance analyses and includes multi-functional metric collection and visu-

17

alization options depending on the user’s demand. However, we supply more low-level

performance and energy dissipation analysis utility at runtime as described in Temporal

Overview.

MemAxes (Giménez et al. (2018)) proposes an analysis framework on memory

performance with various inspections for multi-core architectures. Its interface visualizes

the analysis by obtaining performance metrics among different simulations and mapping

them into a single visual. In addition, the authors offer memory utilization-based cluster-

ing research among the benchmark applications. On the contrary, GPPRMon allows eval-

uating GPUs performance and energy consumption in terms of performance and power

dissipation through Spatial, Temporal, and General views during the runtime.

3.2. Methodology

GPPRMon enables monitoring and visualizing kernel performance and power

consumption at runtime by evaluating hardware utilization. Figure 3.1 displays GP-

PRMon workflow consisting of two main stages: 1 Metric Collection, 2 Visualization.

During any execution interval based on a user configuration, GPPRMon systematically

calculates IPC rates of SMs, records thread block instruction’s issue completions within

each SM, collects memory access statistics for each memory component, and tracks dis-

sipated power among sub-hardware units. Parts 1-a and 1-b in Figure 3.1 demonstrate

examples of the power and performance metrics, respectively. Part 2 reveals GPPRMon’s

visualizer with three views to show general performance, memory access statistics, and

instruction monitoring by processing the collected metrics. We build our framework on

top of the simulator, which is compatible with official GPU configurations given as part

of the simulator.

3.2.1. Micro-architectural Metric Collection

The Micro-architectural Metric Collection phase of GPPRMon, shown in Part

1 in Figure 3.1, describes the systematical records for performance and power metrics

during the execution. The tool creates separate folders to collect each component’s statis-

tics and distinct files for each sub-component with IDs. To reduce storage and access

overheads during the kernel’s execution, we utilize CSV file format for recording met-

rics. GPPRMon provides multi-functional metric collection options, such as accumulat-

18

Figure 3.1. A workflow overview of GPPRMon framework.

ing all statistics during execution or discarding store operations from micro-architectural

memory metrics. To provide multi-functional usage, we implement separate configura-

tion options for power and performance metrics such that one must activate the runtime

micro-architectural metric tracker mode for the desired metric in the configuration file.

Concurrently to Part 1 , the visualizer processes the data in CSVs and generates run-

time monitoring visualizations, given as Part 2 . The following sub-sections explain the

micro-architectural performance and driven power metrics as part of our tool.

3.2.1.1. Performance Metrics

L1 Data and L2 Caches: GPPRMon cumulatively tracks the cache access statis-

tics and exports them at the end of the observation interval. A memory request’s caches

access status may be one of the following states: i) Hit: Data resides on the cache line;

ii) Hit Reserved: The cache line is allocated, but the requested data is still on-flight; iii)

Miss: Cache line, in which the request looks for data, causes many sector misses, result

in a bigger dirty counter than the threshold, and the data is evicted from the cache line;

iv) Reservation Failure: One of a line allocation failure, MSHR entry allocation failure,

merging an entry with an existing in MSHR entry failure, or no-space on miss queue to

hold new requests may cause a reservation failure; v) Sector Miss: A memory request

cannot find the data in the sector of a cache line (i.e., a sector is 32B, whereas a cache

line is 128B); vi) MSHR hit: When the upcoming request’s sector miss has already been

19

recorded, and request can merge with the existing entry, MSHR hit occurs.

While hits infer that memory requests cause tolerable latency, misses generally

refer to bigger latency for memory operations and increasing traffic on the lower level

of the hierarchy. Handling intensive misses requires detailed analytic observations to

deduct behavioral interpretations between application performance and cache utilization.

For example, a reservation failure causes a memory pipeline stall meaning that all the

sub-architecture is locked till the reservation failure is recorded by the responsible miss

handlers. If the architectural performance suffers from the inevitable misses due to data

sparsity, optimizing the cache such that it acts depending on runtime miss rate may save

from the memory pipeline stalls by keeping reservations failure in a tolerable amount.

Hence, cache access statistics reveal many insights about the performance and might also

give clues about target solutions.

Row Buffers of DRAM Banks: Since row buffer hits save from the additional

activation latencies of accessing DRAM cells among the global memory accesses, we

support separate metric collections for the row buffers in each memory partition. Our

approach supports observing row buffer access metrics for either just load or load and

store operations together. As a result, GPPRMon enables tracking row buffer utilization

for the memory accesses missed on L2 caches at runtime.

IPC: GPPRMon provides the per-sampling IPC rates for each SM to evaluate the

overall performance of the SMs separately. For example, GV100 SMs include four SP

ALUs with four pipe depths, as presented in Figure 2.4. When a thread block occupies

all SP-ALU units, assuming an operation takes one cycle, the ideal IPC should be sixteen

without taking care of other functional units. However, IPC mostly oscillates during the

execution based on the utilization quality of functional units on SM. One can conduct IPC

comparisons at runtime and investigate the reasons for the variation.

Instruction Monitor: The instruction monitor utility records the issue and com-

pletion cycles of instructions with opcode, operand, and PC at warp level for each SM

separately. Since GPUs execute instructions for multiple threads concurrently by a com-

mon PC within a warp, we monitor issues and completions at the warp level. While the

first row of the Instruction Monitor in Part 1-b shows the issue statistics, the second dis-

plays the completion. Even if the dispatcher unit may issue the same instruction multiple

times for a warp, we are sure that any two instructions, of which CTA_ID, SM_ID, local

Warp_ID, and PC are the same, cannot change the issue/completion sequence. Hence, we

can obtain the correct issue/completion matching for each instruction.

20

3.2.1.2. Power Metrics

The comprehensive results of the dissipated power on GPU yield an analytical

observation that gains significance. Therefore, we develop GPPRMon to systematically

collect the power distribution on the sub-units of SMs, memory partitions, and the inter-

connection network besides the performance. GPPRMon classifies SM’s power distribu-

tion as execution units, the register file, the beginning of the pipeline stages, functional

units, and LD/ST units involving the on-chip L1D cache. Furthermore, GPPRMon dis-

tributes and displays DRAM power metrics among the front-end-engine and transaction

engine of memory controllers (MCs), the physical connection between MC-DRAM.

We implement the power metric collection service on top of the AccelWattch

(Kandiah et al. (2021)), which includes modeling for dynamic-voltage frequency scaling

(DVFS) and is built through McPAT (Li et al. (2009)). GPPRMon assures the following

measurements during runtime for each component apart from idle SM: Peak Dynamic(W),

the maximum momentary power within the interval, Sub-threshold Leakage (W) and Gate

Leakage(W), the leaked power (due to current leakage) from the junctions of MOSFETs,

and Runtime Dynamic (W), the total consumed power. Moreover, GPPRMon supports

collecting power metrics either cumulatively or distinctly for each sample, starting from a

kernel’s execution. In addition to collecting power consumption for each interval indepen-

dently, GPPRMon supports accumulating power consumption measurements by starting

from a kernel’s execution.

3.2.2. Visualization

By processing the collected metrics in Part 1 , GPPRMon depicts performance

and power dissipation with three perspectives at runtime, as represented in Part 2 in

Figure 3.1, and enables pointing out a detailed investigation of hardware utilization.

i. General View, Part 2-a , presents the average memory access statistics, the overall

IPC of GPU, and dissipated power among the major components with application-

and architecture-specific information;

ii. Spatial View, Part 2-b , shows the access statistics of all the memory units on the

GPU device memory hierarchy and dissipated overall power among the memory

partitions by enabling the monitoring of the entire GPU memory space;

21

Figure 3.2. General View displaying average performance and power consumption

measurements at runtime.

iii. Temporal View, Part 2-c , demonstrates instruction execution statistics with acti-

vation intervals at warp-level for user-specified thread blocks, L1D cache access

characteristics, and power distribution among the sub-components of SMs.

GPPRMon includes three visualization configuration options and an interval of

sampling cycle to divide runtime execution into portions. Since Temporal View may re-

quire scanning of many data for all thread blocks, especially in large architectures, GP-

PRMon provides a Temporal View option among the thread blocks determined with IDs.

We explain the remaining configuration options of the GPPRMon tool in detail with in-

troductory test results on our GitHub1. Depending on the configuration, GPPRMon starts

tracking collected metrics for each kernel and systematically saves images in PNG format

per execution interval.

Figure 3.2, an example of the General View, presents the overall measurement of

Kernel 0 in the Sparse Matrix-Vector Multiplication (SPMV) (Xu et al. (2019)) program

on GV100. It displays average memory access statistics of active L1D caches, L2 caches,

and DRAM banks; average IPC value among the active SMs; dissipated power on major

sub-GPU components within an execution interval. The view includes grid (i.e., 1764

thread blocks) and thread block dimensions (i.e., 256 threads per block) with the number

of actively used SMs so that the users can realize issue mappings of thread blocks to the

SMs. To illustrate, Figure 3.2 shows that Kernel 0 executes with the IPC rate of 1.08 and

1https://github.com/BT-MasterThesis-2020-23/GPPRMon

22

utilizes the memory hierarchy inefficiently due to high miss and reservation failure rates

in the interval of [55000, 56000] on GV100 whose SMs support concurrent execution

of 2048 threads. Considering that GV100 SMs contain 16 amounts of each SP/INT/DP

ALUs, SFUs, and Tensor Cores, we can notice the low performance. The ideal IPC can be

much more than 1.08 with 640 active thread blocks (8 thread blocks per SM) for the given

interval. The long-latency memory operations may slow down instruction completion and

cause a reduction in IPC for Kernel 0. Moreover, memory partitions cover 75% of total

power, which validates that SMs mostly stay idle for the displayed execution portion in

Figure 3.2. Our General View supports two additional visuals that show the time span-

ning of memory access statistics and the relationship between IPC and power metrics at

runtime as in Figure 3.5 and 3.8 (examples given as part of our case studies), respectively.

Figure 3.3. Spatial View revealing memory access statistic at runtime.

Figure 3.3, an example of our Spatial View, shows the memory access statistics

across the GPU memory hierarchy on L1D caches, L2 caches, and DRAM. On caches,

the green refers to hit and hit reserved accesses concentration, the red indicates miss and

sector miss intensity, and the blue states many reservation failures through miss queues

or MSHR. Similarly, DRAM bank pixels are colored with a mixture of red and blue to

specify the row buffer misses and hits, respectively. Spatial View demonstrates data ac-

cess statistics per memory unit, resource quantities, architecture types, and driven power

on memory partitions (all features can be found in our GitHub repository). To detail the

view, we zoom in on some memory units in Figure 3.3, which presents statistics in the

cycles of [51000, 51500] belonging to the Kernel 0 of SPMV. In that interval, distinct

L1D caches behave similarly, such that almost all L1D caches turn blue due to reserva-
23

tion failure concentration. To illustrate, the reservation failure rate of which miss access

requests cannot be transferred to lower memory levels is 0.92 and 0.78 on L1D-0 and

L1D-1, respectively. On the contrary, statistics on L2 caches imply heterogeneous data

accesses caused by multiple reasons, such as data sparsity. L2 Cache-6 and -54 bring

hit rates of 0.75 and 0.67, and L2 Cache-37 causes 0.67 miss and 0.33 sector miss rates.

Furthermore, the Kernel 0 does not exploit row buffers of DRAM banks since many turn

to purple in the same interval. Gray color among the units regards no access occurring on

the Spatial View during the corresponding execution interval.

Figure 3.4. Temporal View monitors instruction executions together with the perfor-

mance and power consumption of the corresponding SM.

Figure 3.4, an example of our Temporal View, displays a thread block’s execution

statistics at warp-level with SM’s ID and IPC, L1D cache statistics, and dissipated power

of core components in any configurable execution interval. It presents each warp’s PTX

instruction sequence, with opcodes, operands (source/destination registers and immediate

values if they exist), and the program counter (PC) shared through all threads. The Issue/-

Completion column exposes the execution start and writeback times of warp instruction

segments within any thread block. For instance, Figure 3.4 reveals the execution monitor-

ing of the 2nd thread block on SM2 for the Kernel 0 in the cycle range of [8000, 8500].

The instruction dispatcher unit issues two SP loads with PC=368 and PC=376 at cycles

8071 and 8072, and they are completed at cycles 8179 and 8178, respectively. Temporal

View allows tracking execution duration per instruction in this manner. Considering that

L1D cache hits should be completed lower than 25 cycles, these load instructions lasting

above 100 cycles are the misses or sector misses on the L1D cache of SM2. In addition,

the view enables us to relate IPC, instruction statistics, and power metrics. The fact that

the rate of memory instructions to all instructions is 0.37 and inefficient use of the L1D

cache within the given interval significantly degrades the IPC on SM2. Furthermore, the
24

LD/ST unit dissipates nearly 92% of SMs total power in the corresponding interval be-

cause of the pressure on the L1D cache. As a result, one can analyze the data locality in a

multi-perspective by utilizing access statistics of caches and row buffers on Spatial View

and tracing the issue/completion times of memory operations on Temporal View during

the runtime.

3.3. Case Studies

3.3.1. Performance Bottleneck Analysis and its Power Impacts for a

Memory-Intensive Workload

We evaluate CUDA implementation of the Page Ranking (PR) algorithm given in

Gardenia Benchmark suite Xu et al. (2019) to analyze a memory-bound GPU program and

irregular memory access statistics with GPPRMon. PR algorithm assigns weights to graph

nodes describing the relative importance among them. We perform the experiment on

Volta architecture-based GV100, commonly used in HPC systems and GPU architecture

research.

Table 3.1. GV100 Based on Volta Architecture Configuration Specifications.

Streaming

Mutlipro-

cessor

Specs (80)

Reg. bank size, # of reg. bank 65536 32-bit regs., 16 reg. banks

SP, SF, DP, INT, TC, LD/ST (WB-Depth) 4, 4, 4, 4, 4, 1(8)

Warp Scheduler 4 (LRR) per SM

L1D Cache, #of banks, latency, line size 128KB, 4, 20 cycles, 128B

L1I Cache, #of banks, latency, line size 128KB, 1, 20 cycles, 128B

Memory

Partition

Specs (32)

L2 Cache, #of banks, latency, line size 96KB, 2, 160 cycles, 128B

DRAM, #of banks, latency (after L2) 1GB, 16, 100 cycles, 128B

DRAM scheduler First-ready, first-come first-service

SP: Single Precision, SF: Special Functional, DP: Double Precision, INT: Integer, TC: Tensor

Core, LD/ST: Load / Store, WB: Write back

Table 3.2 presents the PR algorithm’s performance overview on the GV100 with

the memory access statistics using the simulator’s naive version. The algorithm iterates
25

with the Contribution Step (K0), Pull Step (K1), and Linear Normalization (K2) kernels

throughout the execution, and the number of iterations may vary depending on the data

size. At the beginning of PR, K0 causes a high miss rate on caches due to compulsory

misses. Since the required data mostly fit into the L2 cache for K0, we do not observe

row buffer locality information among DRAM accesses. In other words, the first L2

misses do not access the same row of DRAM banks within any memory partition. Over

and above these, total elapsed cycles indicate that K1 dominates the execution at 99.7%.

Hence, accelerating K1, whose IPC and occupancy values are much lower than K0 and K2,

directly affects the overall performance and power consumption. While the average miss

and reservation failure rates imply pollution on L1D caches, a comparably small miss rate

occurs on L2 caches with low reservation failures. The row buffer locality is around 0.65

among the DRAM accesses for K0. Furthermore, the simulator’s performance mode does

not distinguish memory usage of load and store operations; thus, Table 3.2 represents the

cumulative memory occupancy statistics.

Table 3.2. Page Ranking kernel performance statistics.

GPU

IPC

GPU Oc-

cupancy

L1D L2 DRAM

Kernel
Miss

Rate

RF.

Rate

Miss

Rate

RF.

Rate
RB. Loc.

Total Cy-

cle

Contrib K0 715.59 82.76% 1.000 0.819 0.333 0.0 -nan 8670

PullStep K1 3.007 5.55% 0.584 0.400 0.156 0.011 0.658 8677889

LinNorm K2 1297.6 77.108% 0.501 0.285 0.457 0.001 0.724 11718

RF: Reservation failure, RB Loc.: Row buffer locality

GV100 includes 870GB/s bandwidth migrating 217.5 Giga SP float to the SMs

and 14.8-SP/7.4-DP TFLOPS peak computational power NVIDIA (2018b). That is, the

time for a load complies with the execution of 68 SP float operations on SMs, ideally

(i.e., without L1D and L2). On the contrary, the fact that K1 has a memory instruction

intensity of around 0.2 in PTX code validates intrinsic memory workload bounds K1

performance. Not only K1 is memory-bound, but also inefficient memory usage severely

impacts performance. In this manner, we investigate runtime performance limitations

with execution statistics and hardware specs through GPPRMon, for K1. We evaluate the

PR algorithm through GPPRMon with the execution sampling intervals as 100, 500, 1000,

2500, 5000, 10000, 25000, 50000, and 100000 cycles (entire data can be found in our

GitHub). Increasing the visualization frequency hides the key observations because the
26

execution converges to average micro-architectural statistics. Hence, we identify runtime

performance-degrading factors at low-frequency execution snapshots.

Figure 3.5. Average memory access statistics in the cycle range of [5000, 100000].

While the average IPC is around 0.3 for K1, General View results where visualiza-

tion frequency is 500 cycles indicate that IPC oscillates in the range of [0.1, 9.54], with

the highest peak of 53.44. Figure 3.5, which is part of General Overview, shows average

access statistics on memory units in [5000, 100000] cycles. After caches warm-up (i.e.,

10000 GPU cycles), while the average miss rate on L1D caches oscillates in [0.14, 0.51],

sector misses, which the simulator does not provide separately, vary in [0.05, 0.31] with

without accumulating statistics. These observations reveal that data pollution exists on

the L1D caches, which breaks exploiting cache locality during runtime. For example, K1

does not benefit from the spatial locality on the L1D cache since the MSHR hits among

the sector misses oscillate slightly in [0.03, 0.08] during the execution without covering

outlier statistics. Furthermore, the overall hit rate on L2 caches is quite high according

to General View when we use the web-Stanford dataset Leskovec et al. (2009a), whose

graph size is five times larger than the L2 cache capacity. While the performance metrics

in Table 3.2 hides the statistics of L2 as it counts misses before warming up at kernel

launch, the actual L2 hit rate oscillates in [0.82, 0.95] during the runtime with sampling

per 500 cycles as displayed in Figure 3.5. Additionally, the row buffer hits and misses

vary in [0.2, 0.85] in an unstable manner which verifies data sparsity throughout the exe-

cution. Moreover, General View visuals point out that GPU dissipates power in the range

of [3076W, 46738W] within every 10000 cycles. The SMs dissipate most due to the rich

number of on-chip gates in functional units and register. Elapsed total power increases in

parallel with rising SM occupancy and IPC.
27

Figure 3.6. Instruction monitoring for the load instructions on SM0 in the cycle range

of [5000, 30000].

The K1 comprises 1102 thread blocks (TB 2), with 256 threads per block, and

GV100 support 16 TBs to run simultaneously on each SM. Register resources per SM

limits the number of TBs such that only 8 can execute concurrently during the execution

of K1. Hence, the GigaThread engine initially assigns 640 TBs to the SMs in a round-

robin fashion (RRB), and the remaining 462 TBs are sequentially launched later. K0’s

last TB executes on SM53, and K1 issues TBs starting from SM54 due to RRB policy.

Similarly, SM0 starts with the execution of TB-24 and allocates the TBs sequentially,

starting from TB-104 and continuing with TB-184 until it keeps eight.

Figure 3.6 displays the instruction issue/completion cycles of 8 TBs running on

SM0, and the first and second lines point to the load instructions whose PC=296 (loads

DP) and PC=312 (loads SP), respectively. We merge multiple snapshots of Temporal View

in Figure 3.6 belonging to TBs in SM0 to evaluate the performance of load instructions.

Figure 3.7, a snapshot of Spatial View, shows the memory access statistics of representa-

tive components within the same interval. We follow the access statistics on the memory

hierarchy with Figure 3.7 and relate the observations with the issue/completion duration

of loads in Figure 3.6.

After the kernel launch, each thread collects thread-specific operands from pa-

rameter memory which takes 250-450 cycles to obtain pointers for target data addressed

with the thread’s private registers. The warp schedulers dispatch the load instructions

pointed to by the PC=296 (ld.global.u64), and all eight warps of TB-24 start executing

the instruction after Cycle 5455. Furthermore, Figure 3.6 reveals that SM dispatches load

instructions from the remaining TBs in the interval of [5470, 5786] after issuing the load

2Throughout the case study section, thread block term is abbreviated as TB

28

instructions of TB-24. Figure 3.7 reveals that no access occurs on some L1D caches,

and none of the L2 caches and DRAM banks are accessed during the preparation time

in [5000, 5500] in part 1 . None of the data brought to the L1D cache of SM0 by the

warps of TB-24 after Cycle 6087 (Warp 6) enables the early completion of the instruc-

tion pointed with PC=296, belonging to the TB-104, TB-184, TB-264, TB-344, TB-424,

TB-504, and TB-584. We highlight this observation with the bold fonts representing the

earliest completion times within each TB in the second row of the first instructions. Ad-

ditionally, a high reservation failure and no MSHR hit rates on the L1D cache of SM0

in Part 2 of Figure 3.7 confirms that the locality utilization between TBs is dramatically

low for the first load. If the locality utilization existed on the L1D cache, we should have

observed larger MSHR hit rates and completion of the same instructions just after Cy-

cle 6087. 2,3,4,5 parts in Figure 3.7 reveal that reservation failed requests pointed by

PC=296 cause miss on L2 caches without MSHR merging. Thus, memory requests of the

same instruction from different SMs cannot benefit locality on the L2 cache partitions and

cause more traffic in the memory hierarchy.

Figure 3.7. Memory performance overview in the cycle range of [5000, 9500].

Parts 3,4,5,6 in Figure 3.7 reveal that the access status of L1D mostly turns to the
29

hit after Cycle 6000. Unlike the load instructions at PC=296, loads of threads at PC=312

(ld.global.u32) usually hit; thus, the second line for each TB in Figure 3.6 shows that the

completion takes much fewer cycles for the loads at PC=312. To illustrate, while TB-504

completes the first load instructions within 2133 cycles, it takes 26 cycles for the second

instructions, apart from Warp 63, whose requests cause misses on both the L1D and L2

caches. While the loads at PC=296 complete the execution in the range of [350, 2250]

cycles, the loads at PC=312 take less than 50 cycles for most of the warps due to the

increasing hits on the L1D cache. However, loads at PC=296 delay the issue of second

load instructions with excessive latencies. One may follow that the overall miss rate on

each L1D cache reduces by tracking the activation cycles of the second load instructions

in 3.6 and investigating accesses statistics in 3,4,5,6 parts of Figure 3.7. Furthermore,

considering the L2 latency is over 150 cycles, warps within the same TB use the data

previously brought to the L1D cache. Therefore, load instructions issued by different TBs

may exploit the data locality arising from other TBs loads on the L1D cache.

GigaThread engine issues the remaining TBs beginning with the 641st to SMs

after 55000 cycles. With the observation that a TB occupies 50000 cycles on an SM for

the Web-Stanford graph, which can easily fit into DRAM, the schedule of any waiting TB

delays around 2000 cycles. Such delays affect the performance of a TB by 4%, besides

causing inefficient usage of memory and degrading the overall performance of K1. In

this manner, an approach such as adaptive TB scheduling by throttling the LD/ST unit

issue amount depending on the access statistics of caches can eliminate the performance

bottlenecks and increase the overall performance.

The dissipated power in Table 3.3 obtained with GPPRMon metric collection tool

coincides with performance observations. Registers load thread-specific data (from the

parameter memory) such as thread ID during the 5000-5500 cycles, causing higher power

consumption on SMs. In the following 4500 cycles, the memory partition’s power dissipa-

tion gets more than the SMs. Intense memory operations and pressure on the on-chip L1D

cache increase the consumed energy on LD/ST units. The remaining functional units do

not cause too much energy dissipation as they stay mostly idle after Cycle 5500. Accord-

ing to observations via GPPRMon in Table 3.3, DRAM contains most of the dissipated

power in the memory partitions with intense usage of high-bandwidth NVIDIA (2018c).

As a result, when irregular memory accesses exist, which stalls the memory pipeline and

keeps SMs idle, released power gets lower along with performance. The fact that nearly

half of the load instructions operate at a quarter speed compared to the ideal performance

infers that the inefficient access behavior on memory usage wastes.

30

Table 3.3. Dissipated power measured during K1’s execution on GV100 in the cycle

range of [5000,10000].

Streaming Multiprocessor

Cycles Exec. Units Funct. Units LD/ST. Unit SM Idle SM Total

5000, 5500 2637.57 54.30 35.67 23.75 2751.30

5500, 6000 597.03 6.31 860.01 0 1463.69

6000, 6500 614.408 12.41 399.89 0 1026.71

6500, 7000 708.63 14.38 464.29 0 1187.312

7000, 7500 686.78 13.90 463.94 0 1164.62

7500, 8000 795.81 16.26 487.37 0 1299.44

8000, 8500 543.02 10.19 335 0 888.21

8500, 9000 354.47 5.58 249.28 0 609.34

9000, 9500 474.91 5.34 455.42 0 935.67

9500, 10000 446.76 4.76 475.46 0 926.99

Memory Partition

Cycles
MC

FEE

PHY

Int.
MC TE DRAM L2 NoCs

Mem. To-

tal

5000, 5500 3.74 8.17 4.59 0 0 0.67 16.51

5500, 6000 177.24 17.77 9.39 557.15 3.36 26.92 764.92

6000, 6500 56.06 31.28 16.14 1346.38 3.06 92.60 1452.94

6500, 7000 65.52 31.40 16.20 1354.31 3.05 94.17 1470.52

7000, 7500 65.57 31.37 16.19 1354.91 3.07 94.39 1471.15

7500, 8000 69.97 29.68 15.34 1264.33 3.70 96.66 1383.07

8000, 8500 60.43 30.52 15.76 1341.36 4.4 124.73 1451.96

8500, 9000 51.96 31.10 16.05 1362.57 19.04 148.04 1480.74

9000, 9500 80.23 27.75 14.38 1096.85 66.13 216.84 1284.35

9500, 10000 78.17 23.83 12.42 843.20 41.01 153.79 968.65

MC: Memory Controller, PHY Int: Physical Interface, FEE: Front-end engine, TE: Transaction

Engine, NoC, Network-on-Chip.

3.3.2. Performance-Power Analysis of an Embedded Application

Embedded applications targeting artificial intelligence, computer vision, and ad-

vanced graphics require high computational power, and Jetson AGX Xavier of NVIDIA

provides a System-on-Module (SoM) that meets these demands with a Volta-based GPU.
31

According to NVIDIA’s specifications NVIDIA (2019), we configure the AGX Xavier,

which contains an 8GB/16GB unified memory with a high-bandwidth interface to the

GPU, and a 512KB shared L2 cache exists in the memory hierarchy. Its GPU includes

8 SMs involving a 128KB on-chip cache per SM. Since the AGX Xavier is based on the

Volta architecture, many of the power measurement approaches for GV100 are also appli-

cable to its GPU component. Moreover, AccelWattch supports the changes in the mem-

ory hierarchy, such as limiting memory bandwidth and changing the L2 cache structure

to track power measurements. Therefore, our configuration represents the AGX Xavier

for timing and power measurements with the accuracy given in (Kandiah et al. (2021);

Khairy et al. (2020)).

Table 3.4. Fast Fourier kernel performance statistics.

GPU

IPC

GPU Oc-

cupancy

L1D L2 DRAM

Kernel
Miss

Rate

RF

Rate

Miss

Rate

RF

Rate

RB Loc.

(all)

RB Loc.

(LDs)

Total

Cycle

FFT K0 31.76 62.52% 0.67 0.92 0.65 0 0.21 0.89 990276

FFT K1 100.22 80.25% 0.1 0,75 0.20 0 0.33 0.92 235390

FFT K2 49.20 85.28% 0.1 0.837 0.21 0 0.41 0.92 239755

K-: -’th kernel, RB: DRAM Row buffers.

We execute the CUDA version of the Fast Fourier Transform (FFT) application

from the GPU4S embedded benchmark suite Kosmidis et al. (2020). Table 3.4 presents

the overall performance metrics for the execution of the first three kernels belonging to

the FFT with 2 billion float data. A maximum of 8 TBs, which includes 256 threads per

TB, can concurrently execute on the SMs since the register file limits the number of TBs.

FFT completes the execution by launching the same kernel sequentially through

the entire data. Since the kernels other than the K0 occupy the hardware similarly, they

result in similar performance results as in the metrics for K1 and K2 as deduced by Table

3.4. Moreover, FFT fits better in distributing the workload to GPU and utilizing resources

in a balanced way. Momentary observations during runtime mostly overlap with the over-

all execution behavior for kernel basis because of the smooth workload behavior. Thus,

we focus on explaining the relationship between performance and power consumption for

K0 by utilizing the results in General View of the GPPRMon.

Figure 3.8 displays K0’s IPC and power measurements sampled without accumu-
32

Figure 3.8. IPC and dissipated power metrics throughout the [5000, 155000] cycle

interval of Kernel 0.

lating at runtime. To avoid losing observation details related to IPC and power metrics of

the kernel, we report the relationship in three execution intervals. During the cycles [5000,

6500], the dissipated power per execution cycle and IPC values exceed the overall results

since SM registers will be written back with thread-specific identifier data, causing a high

activation on register files and functional units (i.e., parameter memory). Figure 3.9, GP-

PRMon’s General View, displays four loads, three data movements, and one multiply-add

instruction executed by 16384 threads concurrently (with 64 TBs where each contains

256 threads) in that interval.

Figure 3.9. Instructions preparing threads for kernel task with thread-specific data in

the cycle range of [5000, 6500].

Throughout the execution of the K0, the high miss rate on L1D and L2 caches

33

in Table 3.4 results in several global memory accesses among the requests. Our Gen-

eral View reveals the effect of those accesses on power dissipation with the yellow line

in Figure 3.8. The memory partitions dissipate half of the total power, around 50W, due

to constant intensive activation at runtime. Furthermore, IPC and power dissipation in-

crease with the active SMs moments. By tracking instances where IPC increases between

[55000, 105000] and [105000, 155000] cycles, we can see parallel increments in power

metrics dissipated by SMs and GPU. While the overall IPC value for K0 is 31.76, runtime

IPC varies in the range of [5, 75] as in Figure 3.8. The concurrently issued load/store

instructions cause small latencies, oscillating the overall SM throughput during runtime.

3.4. Summary

Briefly, GPPRMon proposes a systematic runtime micro-architectural metric col-

lection for instruction monitoring, performance, memory access, and driven power con-

cerns. It provides the multi-perspective visualizer framework that displays performance,

execution statistics of the workload, occupancy of the memory hierarchy, and dissipated

energy results to conduct baseline analysis on GPUs at runtime. GPPRMon reliably re-

veals all the interactions between hardware and application at runtime with these prop-

erties and helps explicit observations of the execution at the assembly instruction level.

GPPRMon has multiple user configuration capabilities concerning simulation and visual-

ization overhead, such as settling the runtime metric sampling frequency or accumulating

the statistics. Furthermore, the visualizer provides a set of properties for determining

execution monitoring intervals and a point of view of the execution behavior or hard-

ware occupancy among the General View, Spatial View, and Temporal View. As a result,

GPPRMon allows analyzing performance by relating execution behavior through hard-

ware utilization and assembly instructions and supports driven power with its distribution

among GPU components at runtime.

34

CHAPTER 4

SOFT ERROR VULNERABILITY PREDICTION OF

GENERAL PURPOSE GPU APPLICATIONS

The GPUs which reduce the execution times significantly exhibit a higher vulner-

ability to soft errors due to their complex structures, especially in extreme conditions such

as in highly radiated or high-temperature conditions. Hence, soft error reliability becomes

a critical concern for GPU applications. Various fault tolerance approaches (Dimitrov

et al. (2009); Mahmoud et al. (2018); Mittal and Vetter (2016)) have been employed to

enhance the reliability of GPUs, but they induce cost and performance overhead. Thus,

assessing the soft error vulnerability of GPU programs becomes critical when deciding

on the optimum fault tolerance approach.

The fault injection (FI) approach that introduces faults into the system with con-

figurable runtime conditions (Fang et al. (2016); Hari et al. (2017)) is a widely used vul-

nerability evaluation technique based on controlled experiments. FI injects faults into

hardware structures during the program execution, then tracks the program to see how the

injected fault affects the program outcome. Using silent data corruption (SDC) rates gath-

ered from FI experiments as a soft error vulnerability metric, one can determine whether

explicit fault tolerance strategies are required for the GPU program execution. In contrast,

fault injection (FI) techniques require numerous experiments to quantify the vulnerabil-

ity, which can be impractical, especially for long-running systems. Therefore, there is

a need to predict the susceptibility to soft errors without relying on extensive FI testing

for each target software. This chapter proposes a study that utilizes machine learning

(ML) to predict the soft error vulnerability of GPU applications. The goal is to save time

and resources by leveraging ML algorithms to discover patterns between fault rates, per-

formance, hardware usage, and program characteristics derived from micro-architectural

metrics collected through simulation or program profiling. While several ML-based pre-

diction mechanisms are available for CPU systems (Guo et al. (2021); Jauk et al. (2019);

Laguna et al. (2016); Lu et al. (2014); Oliveira et al. (2018); Öz and Arslan (2021)), the

existing approaches targeting GPU applications are limited (Kalra et al. (2018); Nie et al.

(2018)).

To the best of our knowledge, this is the first study that uses a comprehensive

set of regression and classification models supported by feature selection, preprocessing,
35

and outlier elimination techniques and trained with micro-architectural and performance

indicators to predict soft error vulnerability at the kernel level for GPU programs. Our

major contributions are as follows:

• We conduct FI experiments for forty-five GPU kernel functions selected from Poly-

Bench and Rodinia benchmark suites by utilizing the FI tool (Öz and Karadaş

(2022)) developed by the PARS research group.

• We collect metrics to cover micro-architectural interactions of hardware and pro-

gram, performance statistics, and PTX instructions to trace meaningful patterns

between programs and fault rates. We use the GPGPU-Sim (Khairy et al. (2020))

simulator and Nsight Compute tool (NVIDIA (2022a)) profiler to collect mentioned

metrics.

• We employ regression models to predict masked fault rates, while we utilize clas-

sification models for predicting SDCs and crash rates, which are hard to predict.

We enrich ML-based models with feature selection, outlier elimination, and data

preprocessing stages to increase our prediction accuracy values.

• We achieve 95.91%, 88.46%, and 85.71% prediction accuracy results for masked

fault, SDC, and crash rates, respectively.

4.1. Related Work

Since reliability is less investigated than performance issues and vendors generate

precautions without taking care of the optimizations’ overheads, there is also less re-

search investigating the soft error vulnerability of the GPU applications. Even if there are

interesting works about the reliability of multiprocessors evaluating both the architecture

vulnerability factor (AVF) and performance vulnerability factor (PVF), GPU literature

lacks in evaluating error reliability with multi-perspectives as they are comparably new

hardware devices.

Sabena et al. (2014) propose a reliability evaluation for GPU-based FFT algorithm

by disturbing the device with radiation experiments. First, they divide FFT into fifteen

stages and determine each stage’s error proneness with different floating numbers, which

affect register usage. They evaluate the reliability of GPUs with and without enabling the

L1 cache, and they obtain the most reliable GPU hardware configuration by turning off

36

the L1 cache usage. Their approach aims to find the most reliable hardware configuration

for the FFT algorithm. In this work, we evaluate the application’s error proneness and

predict these errors via ML-based models. We include varying GPU applications and

benefit from both hardware and performance metrics to predict the error proneness of the

GPU kernels.

PRISM (Kalra et al. (2018)) presents a framework built upon SASSIFI (Hari et al.

(2017)) to predict the error vulnerability of GPU programs. They use linear regression

and similarity-based approaches. While we choose our applications from Polybench and

Rodinia benchmark suites, their benchmark consists of selected GPU applications from

Parboil, Rodinia, and CUDA SDK. Even if they use many GPU programs, they do not

analyze features from different perspectives. They solely examine the instruction type

in the prediction experiments as we include them in our simulator features. In addition

to an extensive feature space from the profiler and the simulator, we also try to select

the most beneficial ones for the prediction and classification experiments. Moreover,

we apply preprocessing methods to our dataset and outlier elimination to ignore irrele-

vant data samples. Furthermore, we investigate the effect of ML-based schemes on those

predictions by using commonly used regression (GB, RF, SVM) and classification (GB,

SS+SGD, RF) approaches. In contrast, they only use Linear Regression and K-Nearest

Neighbour (K-NN) algorithms. Lastly, we provide fault predictions on the kernel basis

while their prediction results are based on the complete GPU program. Observing results

on a GPU application basis can cause different results regarding the propagation of the

corrupted data since it can be more critical for long-term executions such as the GPU

programs, including multiple kernel launches. They provide 90% accuracy rates for the

prediction of masked faults while we obtain 95.9% accuracy. Their work has no numeric

accuracy result for predicting SDCs and DUEs because there is a large standard devia-

tion in prediction accuracy. Unlikely, we can achieve 75.67% and 73.91% accuracy in

classifying 3-class SDCs and crashes, respectively.

Du et al. (2019) analyze the relationship between the soft errors and the major ar-

chitectural GPU structures such as register files, streaming multiprocessors, and register

files. Then, they find relationships between architectural properties and soft error vulner-

abilities. However, when defining those relationships, they do not include the program’s

architectural usage metrics of the belonging GPU applications. In our work, we exploit

both PTX instructions and hardware usage amounts of the corresponding GPU program to

capture the reasonable patterns which increase predicting the soft error vulnerabilities. In

other words, their AVF metrics to describe soft error reliability for the GPU programs do

37

not cover detailed architecture properties. However, we also provide the statistical results

for correlation, preprocessing, outlier elimination, and score analysis between hardware

usage/instruction type metrics and soft errors.

Nie et al. (2018) present ML-based approaches to predict fault rates in HPC sys-

tems. First, they correlate the GPU faults with their workload and different system char-

acteristics. Then, they create temporal and spatial feature groups. Error rates are trained

with the selected features to obtain a prediction model built on Neural Network (NN),

Support Vector Machine (SVM), Gradient Boosting Decision Tree (GBDT), and Logistic

Regression (LR). They focus on feature selection instead of the prediction results to find

and boost the most relevant features. They also investigate the overhead of the predic-

tion models in terms of execution time. For example, while LR finalizes in 4.8 seconds,

SVM takes 1.04 hours to obtain the model. They represent the prediction results both in

time and space. However, their feature set, including power consumption and temperature

metrics, is limited compared to ours’ which consists of results obtained from both pro-

filer and simulator. Their main focus is to compare the prediction model and trade-offs

by comparing accuracy results, overheads, scores for precision, and boosts to the most

relevant features. In contrast, our work aims to find a way to obtain the most successive

prediction model with a vast space basis and varying GPU kernels.

Wei et al. (2019) evaluate the soft error resilience of PTX instructions instead of

the whole application. Their investigation is a bit more detailed than ours because we in-

vestigate the soft error resilience of the GPU applications at the kernel function level. The

main motivation is to decrease the protection overhead by applying precautions for the

error vulnerability of instructions. They classify instructions as float, integer, load, and

store. They show that load-type instructions result in SDCs with the lowest probability

among those instruction types. In contrast, float-type instructions have a higher proba-

bility of exposing SDCs than the other instructions. Their findings match ours since we

find that masked faults are highly correlated with the amount of global memory writes.

Intuitively, one can imply that the disruption will be masked after the write operation even

if the corresponding register is disrupted during the fault injection.

Öz and Arslan (2021) apply a similar approach as ours except for target archi-

tecture and programs. Their work provides fault prediction models for the 30 multi-

threaded applications from PARSEC, SPLASH, and ParMiBench benchmark suites exe-

cuted on CPUs. Their features include performance, parallel programming, data sharing,

and thread communication characteristics. While they utilize RF Regression, SVM, and

GB Regression ML-based algorithms for the regression experiments, they benefit from

38

SVM, GB, and RF algorithms for the classification algorithms. They also provide preci-

sion and scoring results to verify their results’ success. They reach 88% accuracy levels

with the GB algorithm with reliable recall, precision, and F-score values.

Prediction-based approaches for soft error vulnerability evaluation have been pro-

posed in the literature to deal with long-running fault injection experiments. Our work

demonstrates a detailed soft error vulnerability prediction analysis and aims to broaden

the research about soft errors and their predictions in the GPU literature.

4.2. Methodology

Our main aim is to estimate fault rates by analyzing the relationship between the

soft error vulnerability of GPU applications and metrics consisting of micro-architectural

ones, instruction characteristics, and performance. We use machine learning-based re-

gression and classification models to predict the impacts of soft errors on program execu-

tion. Figure 4.1 depicts a high-level overview of our experimental framework, divided into

six main stages. First, we execute FI experiments to soft error rates and collect metrics

for our target programs. Subsequently, we perform preprocessing stage, whose output is

shown as preprocessed data and feature selection/reduction among the collected metrics.

After feature selection, we eliminate outlier samples from the dataset using selected fea-

tures and fault rates. The gray boxes in Figure 4.1 represent specific methods for feature

selection and outlier elimination stages. We continue with prediction experiments after

the elimination of outlier samples. The prediction stage takes selected features and fault

rates as input and generates prediction results as output. Brief descriptions corresponding

to the six main stages are as follows:

1. Fault injection: We conduct FI experiments with a recently proposed framework

(Öz and Karadaş (2022)) by the PARS research group to obtain kernel-level soft

error rates for a diverse GPU application set. Specifically, we collect three soft

error outcomes: masked faults, crashes, and SDCs.

2. Metric collection: We utilize simulation and profiling methods to collect micro-

architectural and performance metrics. For simulation, we use GPGPU-Sim (Khairy

et al. (2020)) that simulates CUDA- or Open-CL-based programs on a virtual hard-

ware environment, and provides performance indicators hardware usage metrics,

and extracts PTX level instructions. For profiling, we run selected benchmark GPU

39

Figure 4.1. General overview of fault prediction framework.

programs through the Nsight Compute tool (NVIDIA (2022a)) that generates de-

tailed micro-architectural metrics for the target GPU programs.

3. Data preprocessing: We perform various preprocessing techniques, including nor-

malization, scaling, and transformations, to provide a more reasonable basis be-

tween the collected metrics and the fault rates for feature selection and prediction

phases.

4. Feature selection: Since there are many metrics related to performance, hardware

usage, and program behavior, some can create disruptive effects for the prediction

phase. We perform feature selection to identify and extract the most helpful features

before the prediction phase.

5. Outlier elimination: Similar to the irrelevant metrics, there are also outlier GPU

kernels that cause less prominent fault rates than the others. Removing such kernels

from the dataset contributes to accuracy rates for predictions.

6. Fault rate prediction: We use machine learning-based regression and classification

algorithms to predict masked faults and SDCs/crashes, respectively.

We explain the details of those steps in the following sections.

40

4.2.1. Fault Injection Framework

We use the FI tool developed by the PARS research group (Öz and Karadaş

(2022)), which allows regional soft error vulnerability evaluation for target GPU pro-

grams. The FI region is specified by the user on the source code of the GPU kernel

function. The code must be compiled by enabling debugging (with -g and -G for activat-

ing debug in host code and device code, respectively) with cuda-gdb (NVIDIA (2022b)).

The tool first generates a golden output by regularly executing the program with target

input. Then, it generates a fault map for FIs by profiling the application. Lastly, it starts

running the application until it reaches the FI point’s breakpoint. At the breakpoint, the

tool pauses the execution and changes a register value depending on the fault map before

executing the specified instruction. Later, it activates the execution to continue where the

execution is paused. If the execution terminates without an error, the tool compares the

output and golden output and decides whether the fault causes an SDC or does not affect

the program output. If an error occurs during the execution, the tool reports it as a crash

state.

We conduct FI experiments for each kernel function to obtain generic soft error

vulnerability characteristics among target GPU programs. Figure 4.2 shows the target

GPU kernels on the x-axis and the corresponding soft error vulnerability rates on the

y-axis.

4.2.2. Metric Collection

We collect two sets of metrics from the simulation and profiling of the target GPU

applications. Specifically, we gather performance, micro-architectural usage, and instruc-

tion intensity (by taking care of opcodes) metrics from the simulation environment. At

the same time, we focus on detailed micro-architectural occupancy metrics and obtain

them from the profiler tool. The main motivation behind creating two different datasets is

to investigate the relationship between the simulator and the profiler metrics and interpret

their impacts on the results.

We simulate the target benchmark GPU programs and collect a set of metrics

quantifying and characterizing the execution using the performance simulation model

of the GPGPU-Sim (Khairy et al. (2020)) (hereafter referred to as the simulator in this

chapter). Moreover, we profile the same benchmark programs through Nsight Compute

41

Figure 4.2. SDC, crash, and masked fault rates for target GPU kernels.

42

(hereafter referred to as the profiler in this chapter) and gather precise micro-architectural

occupation and performance metrics. We intuitively collect only the metrics that can

potentially reveal meaningful patterns between fault rates of the target GPU kernels and

metrics. For instance, we include the metrics representing main program features, such as

SM throughput or the intensity of memory operations for a kernel; however, we discard

more specific metrics, such as DRAM row utilization rate. The reason for not including

all the gathered metrics is to exclude the ones that would mess up the dataset and break

the meaningful patterns.

Table 4.1. The metrics collected from the simulator.

Metric types Metric descriptions

load_inst Loads instructions

store_inst Store instructions

shMem_inst Instructions using shared memory

paramMem_inst Instructions using parameter memory

total_inst Total instructions

ipc Instruction per cycle

sim_rate Simulation rate (Simulation per wall time)

globMem_read Total global memory reads

globMem_write Total global memory writes

bwUtil Average bandwidth utilization

warpOcc Average warp occupancy on SMs

ctrlFlowInsts Control flow inst. / total inst. in PTX

memInsts Memory inst. / total inst. in PTX

aritInst ALU inst. / total inst. in PTX

sfuInsts Special Function unit (trigonometric) inst. / total inst. in PTX

mAddInsts Fused (i.e., add+mul) inst. / total inst. in PTX

textureMemInsts Texture inst. / total inst. in PTX

binaryInsts Binary inst. / total inst. in PTX

others Other inst. / total inst. PTX

fpInsts 32-bit Floating-Point inst. / total inst. in PTX

signedInsts 32-bit Signed-Integer inst. / total inst. in PTX

unsignedInsts 32-bit Unigned-Integer inst. / total inst. in PTX

Table 4.1 and 4.2 present the intuitively collected metrics from the simulator and

43

the profiler, respectively. Since the simulator and the profiler serve different purposes,

it is unlikely to collect all the same metrics. The profiler generates in detail micro-

architectural and performance metrics statistically, whereas the naive simulator reports

hardware performance measurements and kernel characteristics with the target kernel’s

PTX instruction. Even if they differ in usage scenarios, both supply some metrics, such

as IPC, achieved occupancy in SMs, and the total number of instructions executed for a

kernel. We consider each group of metrics independently since they represent different

executions, and we build separate prediction models for each dataset.

Table 4.2. The metrics collected from the profiler.

Metric types Metric descriptions

sol_sm SM throughput

sol_mem Compute memory pipeline throughput

sol_L1TexCacheSOL L1 texture memory throughput

sol_L2Cache L2 cache throughput

sol_Dram GPU DRAM throughput

duration Total duration in msec

elapsed_cycle Total cycles where GPU is active

ipc Total issued warp instructions per cycle

sm_busy SM throughput as percentage

mem_thput Total accessed bytes on DRAM (Gbyte/sec)

l1TexHitRate Hit rates on L1 and texture caches

l2HitRate Hit rates on L2 caches

memBusy Internal activity of memory partitions on DRAM

maxBand Reached maximum bandwidth connected to DRAM

activeWarpSch Active warp throughput on schedulers

warpCycInst Total cycles where warps instructions are resident

execInst Total executed instructions

regPerThread Register allocation per thread

achedOccup Achieved overall occupancy in percentage

achedActiveWarp Cumulative number of warps in flight on average over the runtime

44

4.2.3. Data Preprocessing

ML-based approaches mostly make predictions by running classification and re-

gression methods such as trees and regressors. During training, non-scalable numbers

can cause bias and flatten internal algorithm parameters for the estimation. For example,

while instruction intensities range in [0, 1], the number of instructions for kernels and

the total number of memory operations comprise enormous values. To make sure that the

numbers are scalable to each other, we perform preprocessing techniques provided by the

built-in functions of scikit-learn (Pedregosa et al. (2011)).

We utilize Maximum Absolute Scaler, Standard Scaler, and Min-Max Scaler as

scaling methods. The scalers scale numeric values into the same interval. For example,

the Maximum Absolute Scaler scales all numbers after finding the maximum absolute

value such that the scaled values of variables are calculated using Equation 4.1a. Simi-

larly, Equation 4.1b shows the formula for Min-Max Scaler algorithm. Furthermore, the

Standard Scaler method scales benefiting from both mean value and standard deviation

as in Equation 4.1c.

xscaled =
x

max(X)
(4.1a)

xscaled =
x−min(X)

max(X)−min(X)
(4.1b)

z =
x− µ

σ
1 (4.1c)

In addition to scaling methods, we apply normalization and transformation tech-

niques for preprocessing methods. Normalization scales the metrics into the specified

intervals. On the other hand, the Quantile Transform transforms the metric space to the

uniform probability distribution. Polynomial Feature generates a new feature space con-

sisting of all polynomial combinations of the metrics with the user-specified degree. For

example, if the metric space is two dimensional and of the form [x, y], the second degree

Polynomial Features are [1, x, y, x2, xy, y2]. The Spline Transform method generates a

univariate basis spline with minimal support for given preconditions by the user.

1µ and σ stand for the mean and standard deviation, respectively.

45

4.2.4. Feature Selection

To figure out the decisive metrics and filter the irrelevant ones, and increase the

prediction accuracy for fault estimation experiments, we perform the following feature

selection methods: 1) Generic Univariate Selection, 2) Principle Component Analysis

(PCA), 3) Pearson and Spearman Correlations.

Generic Univariate Selection evaluates features individually and determines the

strength of the relationship of the metric with the target output. Based on the univariate

statistical tests, it captures the best features among all metrics. It also allows performing

feature selection with a configurable strategy enabling hyper-parameter search for the

prediction tests (Pedregosa et al. (2011)).

While working with high dimensional datasets, as in our case, PCA reduces di-

mensions from the feature space (Abdi and Williams (2010)), beneficial for pattern cap-

turing complexity. It transforms the correlated metrics to linearly independent (orthog-

onal) metrics so that significant relationships between metrics and target is captured to

enhance the accuracy of ML-based prediction experiments while reducing the dimension-

ality. In this context, we aim to save from the irrelevant metrics that can create noise

effects on internal parameter settling.

Spearman correlation coefficient describes the monotonic relationship between

the metrics and the fault rates without considering whether the relationship is linear. Equa-

tion 4.2 represents Spearman’s rank correlation coefficient formula. The approach scales

relevance in the range [-1, 1], where the closeness to -1 or 1 describes a high relation

between those two parameters. Additionally, Pearson’s correlation coefficient describes a

linear relationship between the two inputs, and the results are scaled in between [-1, 1] as

in Spearman’s. The closeness to -1 or 1 describes that those two metrics are correlated,

while closeness to 0 reveals the dissimilarity between those metrics. Equation 4.3 shows

the Pearson correlation coefficient formula.

ρs = 1−
∑n

i=1 d
2
i

n3 − n
2 (4.2)

ρp =
E[(X − µX)(Y − µY)]

σXσY

3 (4.3)

2d and n stand for the difference between two rankings and the number of observations, respectively.
3E, σ, and µ stand for the expectation, the standard deviation, and the mean, respectively.

46

Figure 4.3 demonstrates the correlation between micro-architectural metrics and

fault rates. For example, regPerThread metric represents the allocated number of registers

per thread. Those registers can be used for indexing memory locations or temporary

usages, and the faults can be masked or affect the output depending on the register’s

usage purpose in the program. As demonstrated in Figure 4.3, its correlation results with

Pearson method are -0.11 for SDC, 0.53 for the crash, and -0.39 for the masked faults,

respectively. Moreover, the amount of global memory writes is crucial since the faults

can be masked due to the store operations. The corresponding correlation result is 0.18

with the Pearson method.

Figure 4.3. The upper and lower triangles show Pearson and Spearman correlation

results, respectively, between the simulator/profiler metrics and the fault

rates (left is with the simulator and right is with profiler features).

Warp occupancy is another significant metric describing the relationship between

the faults and the metrics; thus, selected as a feature. Spearman correlation coefficient

between the warpOcc metric from simulator metrics and crashes is 0.28.

Additionally, the instruction intensity metrics obtained by classifying instructions

depending on the PTX operational codes in Table 4.1 are also highly correlated with the

fault rates compared to the other metrics. To illustrate, memInsts and sfuInsts intensity

metrics result in -0.21 and 0.32 correlations with SDC faults, respectively. As a result, we

determine the feature set among the metrics whose either Pearson or Spearman correla-

tion result is bigger than 0.2 with the fault rates (shown in Figure 4.3). Table 4.3 presents

our selected features among simulator and profiler metrics.

47

Table 4.3. Selected features from the collected metrics.

For SDC For Crash For Masked

Fr
om

th
e

si
m

ul
at

or
load_inst others globalMem_write

store_inst signedInsts bwutil

shMem_inst binaryInsts binaryInsts

total_inst sim_rate ipc

ipc warpOcc signedInsts

globalMem_Read aritInsts unsignedInsts

globalMem_Write unsignedInsts

bwutil

sfuInsts

textureMemInsts

memInsts

Fr
om

th
e

pr
ofi

le
r

sol_sm sol_L1TexCache sol_Dram

sol_Dram ipc mem_thput

sol_L1TexCache regPerThread maxBand

sol_L2Cache sol_sm warpCycInst

execInst sol_Dram regPerThread

duration duration

elapsed_cycle elapsed_cycle

sm_busy sm_busy

mem_thput l2HitRate

memBusy

warpCycInst

achedOccup

achedActiveWarp

4.2.5. Outlier Elimination

Similar to including irrelevant metrics in the prediction experiments, outlier kernel

samples can distort the ML model parameters and degrade the prediction accuracy. Hence,

we eliminate outliers before beginning prediction tests. In this manner, we utilize Local

Outlier Factor (LOF), Elliptic Envelope, One Class SVM, and Isolation Forest algorithms

from the scikit-learn library (Pedregosa et al. (2011)).

48

• LOF algorithm measures the locality distance among the user-specified k nearest

neighbor and eliminates the outlier elements. While LOF (k) < 1 represents the

inlier elements, LOF (k) > 1 corresponds to outlier elements where LOF (k) is the

local reachability density.

• Elliptic Envelope algorithm creates a virtual elliptical area with the provided dataset.

As one can infer, the values that fall inside the envelope are evaluated as useful,

while the others (outside the envelope) are the outlier elements.

• One Class SVM algorithm, which is different from the Supervised SVM, captures

the boundaries for the given data samples and helps border the outliers.

• Isolation Forest algorithm implements recursive partitioning among the dataset,

where different from the other outlier eliminators. It examines the data samples

to determine whether it adds to the isolated trees. The remaining external nodes are

the outlier samples.

4.2.6. Prediction Model Evaluation

We build ML-based prediction models to predict the soft error vulnerabilities for

the target GPU programs at the kernel function level. Scaling down the investigation

from the complete GPU programs to the individual kernel functions provides a better

opportunity to observe the possible reasons for the occurrence of the faults. We utilize

regression and classification approaches for our fault prediction task.

As the first approach, we apply regression algorithms to predict masked fault,

SDC, and crash rates by exploiting the selected features. Specifically, we use Random

Forest (RF), Support Vector Machine (SVM), and Gradient Boosting (GB) algorithms. RF

benefits from the multiple decision trees by selecting more accurate ones from the training

set. SVM starts with a curve type such as linear or parabolic and a certain amount of error

range called epsilon. Then, it tries to fit the specified curve considering the training data

by calculating the absolute value error between the expected and the actual fault rate. GB

builds an additive curve model forward stage-wise to optimize arbitrary differentiable loss

functions as in deep neural network algorithms. In each stage, a regression tree is fitted

on the negative gradient of the given loss function, and the resultant stable curve is used

for the prediction tests of the remaining samples of the dataset.

49

We build 1536 experiment configurations with the combinations of the four fea-

ture selection methods, four different outlier elimination techniques, eight different pre-

processing techniques, and three ML algorithms for the regression approach to predict

masked faults. Furthermore, we individually train the regression models with features

deduced from the simulator and the profiler metrics.

For our regression models, we calculate the accuracy results according to the fol-

lowing formula:

(1− |errorpredicted − errorobserved|
errorobserved

) ∗ 100 (4.4)

Even if we can reach accurate prediction results for the masked fault rates, which

range [0.682, 0.939], the regression models do not yield similar accuracy results for the

crash and the SDC rates with the values in the range of [0.012, 0.263] and [0.008, 0.173],

respectively. Since the masked fault rates are pretty large compared to SDC and crash

rates, the little oscillations around the fitted curve for the test samples are acceptable.

However, similar slight deviations are not acceptable for the SDC and the crash rates

because these deviations cause more significant prediction errors. Hence, we build clas-

sification models for predicting the SDC and the crash rates as an alternative approach.

For the classification approach, similar to the previous work Öz and Arslan (2021),

we define different classes by considering the SDC and crash rates and predict the class

of each kernel function in our evaluation. Specifically, in the two-class model for SDC

prediction, we define two classes by considering the SDC values of the target kernel

functions. For example, the kernel functions with SDC rates between [0.010, 0.050] and

[0.051, 0.200] are classified as Not Vulnerable (with lower SDC rates) and Vulnerable

(with higher SDC rates), respectively. Accordingly, we can predict whether GPU kernels

are vulnerable to soft errors. As a result, we create two different classification experiment

models by dividing our dataset into two and three classes so that each class has nearly the

same data.

In addition to RF and GB algorithms, we utilize an ensembled classification model

configured by cascading the Standard Scaler (SS) and Stochastic Gradient Descent (SGD)

classifier. In addition to SS explained in the Data Preprocessing section, SGD algorithm

calculates the gradient loss estimated for each sample, and the algorithm parameters are

updated along with the learning rate accordingly. Moreover, SGD algorithm enables using

L1 and L2 regularizations to disturb algorithm parameters and prevent overfitting.

50

We build 384 classification models to predict the SDC and the crash rates. We use

one configuration for each ML model instead of building them with different hyperparam-

eters. We evaluate classification success depending on the accuracy, simply the correct

classification rate.

Since our dataset has a limited number of data samples (i.e., 45 kernel functions),

we prefer to use the K-fold cross-validation method for the prediction work where K

corresponds to the test sample number. The 1-fold method uses 44 (K-1, where K = 45)

kernels to train ML models and one kernel to predict the fault rate for each fault type by

passing through trained models.

4.3. Experimental Study

4.3.1. Experimental Setup

For the experimental evaluation, we select 23 CUDA applications, where 13 of

them are from Polybench (Grauer-Gray et al. (2012)), and 10 of them are Rodinia (Che

et al. (2009)) benchmark suites, respectively. Table 4.4 presents the descriptions of the

target programs.

We perform FI experiments by targeting each kernel function of the programs and

similarly collect the metrics for individual kernel functions. We conduct FI tests on an

Intel-based workstation with an NVIDIA Quadro P4000 (NVIDIA (2022c)). We use 1000

FIs per kernel function by using the statistical approach (Leveugle et al. (2009)), which

provides a confidence level of 95% and an error margin of 3%. Since we use NVIDIA

GPUs in our experiments, we use the NVCC compiler and cuda-gdb debugger for the

FI and compilation processes. While we exploit from the Nsight Compute tool, version

2019.4.0, our simulation environment is the GPU-Sim v4.0 simulator. We configure the

Quadro P4000 device based on hardware resources (NVIDIA (2018a, 2022c)) on the sim-

ulator by specifying the parameters such as SM amount (SIMT cluster), warp scheduler,

DRAM memory channel partitions, L1 and L2 cache sizes. Afterward, we conduct sim-

ulations in the performance mode of the simulator. We share our configuration files and

collected metrics from both the profiler and the simulator in our GitHub repository4.

4https://github.com/BT-MasterThesis-2020-23/SoftErrorVulnerabilityPrediction-GPGPUs

51

Table 4.4. CUDA applications used in our experiments.

Application Description

Ta
ke

n
fr

om
Po

ly
B

en
ch

2DConvolution Convolution with 2D input data

3DConvolution Convolution with 3D input data

3mm Multiplication of 2 3D matrix

Atax Matrix transpose and vector multiplication

Bicg Sub kernel of BiCG Linear Solver

Correlation Correlation computation

Covariance Covariance computation

Fdtd-2d 2-D Finite different time domain kernel

Gramschmidt Gram-Schmidt decomposition

Gemm Matrix multiplication C=alpha.A.B+beta.C

Gesummv Scalar, vector, and matrix multiplication

Mvt Matrix vector product and transpose

Syrk Symmetric rank-k update

Ta
ke

n
fr

om
R

od
in

ia

Backprop ML algorithm trains weights and nodes

Bfs Graph traversing algorithm for all graph components

Gaussian Gaussian elimination method implementation

Heartwall Tracking of the movement over an ultrasound image responding to

the stimulus

Hotspot Thermal simulation tool to estimate processor architecture

Hybrid Sort Fusion of merge sort on bucket sort algorithms

Needleman - Wunsch Global optimization method for DNA sequence alignment

NN-Euclid Nearest neighbor finder algorithm

Streamcluster Online clustering

Srad version 2 Diffusion algorithm based on partial differential equations to re-

move speckles in an image

First, we apply preprocessing to our dataset since the correlation results among all

micro-architectural metrics are not promising, and their values are not scalable compared

to each other. Based on preprocessing, we interpret how scaling, normalization, and trans-

formation affect our prediction accuracy results. Secondly, we apply feature selection/re-

duction methods before prediction. Specifically, we use Genetic Univariate Selection,

PCA, and Manual Feature Selection, where we select the features by using Spearman

and Pearson Correlation results in addition to prediction models with all features. Like

52

Table 4.5. Preprocessing, Feature Selection/Reduction, and Outlier Elimination

methods and their hyper-parameter configurations.

Hyper-parameters

Preprocessing

Methods

Maximum Absolute Scaler With default parameters

Standard Scaler With default parameters

Min-Max Scaler With default parameters

Quantile Transform Output distribution = ’normal’, random-

ness = 0

Normalization Norm = ’l2’

Polynomial Features Degree = 3

Spline Transform Degree = 2, n_knots = 3

Feature

Selection &

Reduction

Methods

Generic Univariate Selection Mode = ’percentile’, param = 50

Manual Feature Selection Spearman Corr >= 0.2 || Pearson Corr >=

0.2

Principle Component Analysis With 9 dimensions from all dimensions

Outlier

Elimination

Methods

Local Outlier Factor With default parameters

Elliptic Envelope contamination = 0.01

One Class SVM nu = 0.01

Isolation Forest contamination = 0.1

preprocessing tools, scikit-learn includes built-in mentioned feature selection and reduc-

tion functions. Lastly, we apply outlier detection methods to remove outliers due to their

noisy effects on the prediction experiments. We try with the LOF, Elliptic Envelope, One

Class SVM, and Isolation Forest methods for outlier elimination. Table 4.5 presents all

the hyper-parameters for the configuration of preprocessing, feature selection/reduction,

and outlier elimination methods.

We employ three different machine learning algorithms for the regression (SVM,

RF, and GB) and the classification (Pipelined SS+SGD, RF, and GB) experiments, where

each algorithm has four different configurations based on hyper-parameters as part of

scikit library Pedregosa et al. (2011). The hyper-parameter values used in our evaluations

are as follows: The learning rates used for the GB Regression are 0.001, 0.01, 0.1, and

0.25. For the RF Regression, we configure the effect of randomness as 20 and 50, the

number of estimators as 100, 1000, and 10000, and keep other parameters as default. For

the SVM regression, we assign the kernel function as polynomial curves with two and

53

three degrees, sigmoid and radial curves. For the classification, the maximum depth of

trees is two, and the total iteration amount is 1000 for each algorithm. In addition, the

epsilon error is 0.001 (i.e., minimized error threshold), and the number of parallel workers

is 20.

4.3.2. Experimental Results

4.3.2.1. Preprocessing Methods

Figure 4.4 demonstrates the highest prediction accuracy results for the preprocess-

ing methods for our classification experiments. The predictions with Polynomial Features

bring the most accurate predictions for 2-class SDCs with simulator features, while Quan-

tile Transform generates the most accurate ones with the profiler features. In addition,

Quantile Transform achieves the most successful estimations among the classification ex-

periments with the profiler features except for the prediction of 3-class SDCs.

Figure 4.4. Prediction experiments, where preprocessing methods result in the highest

accuracy values by keeping feature selection, outlier eliminator, and ML

classifier the same.

54

With simulator features, the scalers cannot generate as accurate results as trans-

formers. In contrast, transformers have low accuracy rates except for the Quantile Trans-

form for most predictions. We can conclude that Quantile Transform increases prediction

accuracy with profiler metrics. If developers use the simulator metrics, they need to act

by taking care of which method to use; for instance, if they predict 2-class SDCs, they

should use Normalization as preprocessing.

4.3.2.2. Feature Selection

Figure 4.5. Spearman and Pearson correlation results between the features and the

fault rates.

After collecting the micro-architectural and performance metrics from the simu-

lator and the profiler, we apply the feature selection methods before eliminating outlier

kernels from the dataset. Figure 4.5 presents Spearman and Pearson correlation results to

show the statistical relationship between fault rates and features extracted by both simu-

lator and profiler. The relationship of any feature is not the same for all fault types. For
55

example, while Spearman correlation coefficient calculated with compute unit memory

bandwidth throughput (sol_mem) and SDC rate is above 0.35, this feature has a corre-

lation value lower than 0.2 for the crashes and the masked faults. Thus, we separately

apply feature selection approaches to datasets for each fault type. For Manual Feature

Selection, we select the metrics whose either Spearman or Pearson correlation coefficient

is greater than 0.2 with SDCs, crashes, or masked faults.

Figure 4.6 demonstrates how each feature selection/reduction approach affects the

prediction accuracy. PCA results in the highest accuracy values for the experiments except

for the 3-class SDC classification with simulator metrics.

Figure 4.6. Prediction experiments, where feature selection methods result in the high-

est accuracy values by keeping preprocessing, outlier eliminator methods,

and ML classifier the same.

Feature selection and reduction methods act differently. While the feature selec-

tions select some metrics as representative features, the reduction method tries to reduce

dimensions by investigating the internal relationship among the features. In our case,

PCA solves the eigenvalue problem on our dataset to create nine different components.

The main reason behind the highest accurate scores is that resultant components (fused

features) after the PCA are orthogonal to each other, giving identical classification indica-

tors for the classification trees. Hence, classification models perform better with the PCA

method.

56

4.3.2.3. Outlier Elimination

Figure 4.7 shows the effect of the outlier elimination methods on our prediction

accuracy values. With simulator features, while Elliptic Envelope results in the worst

prediction results, One Class SVM has the best accuracy rates with both the simulator and

the profiler features on average. For the prediction of 2/3-class SDCs, Isolation Forest

and One Class SVM are the most successive outlier eliminators, respectively, when we

use features obtained from the simulator for training.

Figure 4.7. Prediction experiments, where outlier elimination methods result in the

highest accuracy values by keeping preprocessing, feature selection meth-

ods, and ML classifier the same.

Additionally, LOF and One Class SVM are the most reliable outlier eliminators

for 2/3-class crashes. Furthermore, the One Class SVM eliminator provides the best es-

timation results for the prediction of 2/3-class of SDCs and 3-class of crashes, with the

profiler features. Elliptic Envelope provides the most accurate predictions for classifying

crashes with 2-class.

57

4.3.2.4. Regression Results

We use the regression-based ML models to predict the masked fault rates. Table

4.6 shows the accuracy results of the regression algorithms based on the simulator and

the profiler metrics. We experiment prediction of masked faults with all the mentioned

outlier elimination and preprocessing methods. However, we list the results by select-

ing the most accurate results with the specified feature selection and classifier methods.

While all algorithms have prediction accuracy values larger than 90%, the GB algorithm

results in the highest prediction accuracy, 95.905%, with the Manual Feature Selection

from simulator metrics preprocessed with Standard Scalar and One Class SVM outlier

elimination method. In addition, the RF algorithm results in 96.323% with all profiler

features preprocessed with Min-Max Scaler and One Class SVM method.

Table 4.6. Regression accuracy results for masked faults on each machine learning

algorithm.

The simulator metrics

Algorithm All Features Gen. Uni. Sel. Man. Feat. Sel. PCA

RF 95.827 95.748 95.827 95.748

GB 95.905 95.695 95.905 95.900

SVM 93.952 93.952 91.747 93.572

The profiler metrics

RF 96.323 95.796 95.827 95.394

GB 96.297 95.993 95.905 95.939

SVM 95.399 95.399 93.952 93.149

4.3.2.5. Classification Results

We build classification models for SDC and crash rate predictions to estimate

the vulnerability class instead of predicting the exact value. We present our results for

both 2-class and 3-class models, where we define different classes by considering the

fault rate intervals of the kernel functions. Instead of predicting the probability of taking

place SDCs or crashes, classifying their occurrence probability as high or low while the

58

application is running and obtaining reliable results gives an idea about the soft error-

proneness of the GPU application. This approach illustrates the proneness of a GPU

kernel to the SDCs or crashes with reliable prediction results, especially with 2-class

experiments.

Table 4.7. SDC and Crash rates classification results for 2/3-class evaluations among

all preprocessing methods.

Prediction Accuracy

Algorithm Feature Selection Method Simulator Fea-

tures

Profile Fea-

tures

All Features 80.769 / 72.727 77.143 / 83.333

RF Generic Univariate Selection 80.769 / 80.000 76.316 / 79.545

Manual Feature Selection 76.923 / 70.270 76.000 / 81.818

PCA 84.615 / 79.545 84.000 / 79.545

All Features 78.378 / 75.676 80.556 / 85.000

2-
C

la
ss

SD
C

/C
ra

sh GB Generic Univariate Selection 76.923 / 78.049 75.000 / 79.545

Manual Feature Selection 83.784 / 72.222 75.676 / 82.500

PCA 88.462 / 82.500 76.000 / 79.545

All Features 70.732 / 80.769 75.000 / 85.714

SS+SGD Generic Univariate Selection 73.684 / 84.211 79.545 / 78.947

Manual Feature Selection 80.488 / 78.378 73.684 / 83.784

PCA 79.545 / 78.947 79.545 / 82.857

All Features 63.415 / 60.976 65.909 / 73.913

RF Generic Univariate Selection 65.714 / 68.571 65.909 / 71.053

Manual Feature Selection 68.293 / 60.976 65.909 / 69.565

PCA 66.667 / 68.889 65.909 / 68.889

All Features 67.568 / 64.865 67.500 / 66.667

3-
C

la
ss

C
ra

sh GB Generic Univariate Selection 62.162 / 67.857 62.500 / 71.053

Manual Feature Selection 75.676 / 65.854 68.889 / 74.286

PCA 67.568 / 71.053 70.000 / 71.053

All Features 61.765 / 70.270 65.909 / 68.571

SS+SGD Generic Univariate Selection 70.968 / 68.571 68.293 / 68.182

Manual Feature Selection 73.529 / 63.415 68.421 / 68.182

PCA 68.293 / 68.182 73.684 / 69.565

59

Table 4.7 presents our 2-class and 3-class evaluations with varying feature selec-

tion and classification approaches. Each classification approach provides different accu-

racy results for each feature selection approach. To illustrate, in a scenario where we

use simulator features while we obtain 88.46% prediction accuracy to classify 2-class

SDCs with the PCA and GB algorithm, the obtained maximum prediction accuracy for

2-class Crashes is 84.21% with pipelined SS+SGD algorithms. Various feature selection

approaches change the accuracy results for each classification target even if we use the

same classification algorithm. For example, GB generates the most accurate prediction

results for both 2-class and 3-class SDCs, where we reach these results with PCA and

Manual Feature Selection, respectively. Based on these results, we can conclude that no

generic ML-based classification approach or feature selection method fits all scenarios

with different targets. Adversely, each classification has its unique characteristics due to

varying fault rates.

The most accurate prediction results with the simulator features are 88.46%/84.21%

and 75.67%/71.05% for 2/3-class SDCs and crashes, while the same prediction results

with profiler features are 84%/85.71%, 73.68&/73.91%, respectively. Unlike the pre-

dicting masked faults, the results confirm that simulator features generate more accurate

predictions than the profiler metrics for predicting SDC and crash rates. Since the fault in-

jection tool injects faults into registers by assuming that memory cells are saved from the

transient faults with ECCs, register usage metrics are more effective for the predictions.

Simulator metrics include instructions and register usages such as instruction types and

intensities. In general, we can say that simulator metrics characterize the kernel behavior

in addition to the hardware usage metrics with the PTX code. In other words, the simu-

lator metrics are more beneficial in representing the application’s structure. Rather than

the GPU hardware usage metrics provided by the profiler, metrics that provide quality

and quantity regarding the application’s register usage are more crucial according to the

results of the prediction experiments.

The classification results reveal that we can utilize the classifiers for soft error

vulnerability prediction of GPU programs. When we define the problem as a classification

problem to obtain the vulnerability level of the target program, we can predict in which

range we expect to see SDC or crash conditions. This evaluation enables us to understand

how vulnerable the program is, even if we cannot predict the absolute SDC or crash rates.

We can decide whether to perform fault tolerance techniques based on the classification

outcome.

60

4.4. Summary

To sum up, we predict occurrence rates of SDCs, crashes, and masked faults with

the help of a comprehensive ML-based framework trained with the simulator and the pro-

filer metrics. Since SDCs and crashes are observed dramatically less than the masked

faults, we use a classification method to determine the error vulnerability conditions in-

stead of the regression approach. We benefit from various preprocessing tools, feature

selection/reduction approaches, and outlier eliminators to increase the accuracy results of

the prediction experiments. We carry out 384 experiments for the prediction of 2/3-class

SDCs and crashes separately and 1536 experiments for the prediction of masked faults.

These experiments provide detailed comparisons for preprocessing methods, feature se-

lection/reduction approaches, outlier eliminations, machine learning model selections,

and evaluation of the relationship between micro-architectural metrics and soft error vul-

nerability. While the experiments with the simulator features result in more reliable pre-

diction accuracy results for the 2/3-class SDCs and crashes, profiler features provide more

accurate prediction results for predicting masked faults with the regression approach. As

a result of the experiments, we achieve 95.91%, 88.46%, and 85.71% prediction accuracy

results for masked fault, SDC, and crash rates, respectively.

61

CHAPTER 5

APPROXTRACKER: MEMORY-DRIVEN GPU

APPROXIMATOR ENHANCING PERFORMANCE,

ENERGY EFFICIENCY, AND DATA UTILIZATION

A GPU executes thousands of parallel threads that utilize memory concurrently

and seriously cause memory traffic in memory partitions degrading memory utilization

and performance. GPUs may become chronically inefficient in data processing tasks

where the data is sparse to benefit from the locality on caches, and today’s several data-

parallel tasks cannot employ heavy-processing power effectively. That problem has been

tried to be optimized to achieve better performance and energy dissipation in literature

(Chatterjee et al. (2014); Koo et al. (2017); Singh and Nasre (2020); Vijaykumar et al.

(2018); Zhao et al. (2019)). OWL (Jog et al. (2013)) controls the number of active

thread blocks issued to the SMs (i.e., decreasing parallel executing threads) depending on

the memory workload reduce memory limitations. Furthermore, recent near-/in-memory

research (Pattnaik et al. (2019)) reduces the negative impacts of heavy memory work-

load and destructive irregular behavior without overloading memory hierarchy by spatial

memory requests. Enhancing the performance and energy consumption of irregular com-

putational workloads with software or hardware solutions eliminates the drawbacks and

widens their usage among real-world applications, and various approximate computing

methods considering execution error resiliency investigate the generic usability limits.

Some state-of-the-art approximate computing techniques on hardware utilize small

lookup tables to benefit from operand similarity on SMs, which eliminate redundant and

unnecessary computations (Garcia et al. (2021); Rahimi et al. (2016)), kernel perforation

to increase memory performance (Maier et al. (2019)) and in-memory data comparison

(Choi et al. (2022)) which reduces memory workload and obtains compute-memory work-

load balance within tolerable accuracy borders. On the other side, approximating either

gradient loss computation (Wang et al. (2019)) or matrix multiplications (Imani et al.

(2019)) iteratively for deep learning applications and partially processing graphs with ap-

proximating graph attribute values (Singh and Nasre (2018)) are viable software-based

approximation offerings on GPUs. In addition, ML-based strategies enable selecting op-

timal approximate computing methods depending on the usage requirement considering

62

performance and accuracy (Aktılav and Öz (2022)). By viewing the realized approaches,

monitoring the micro-architectural metrics at runtime together explicitly reveal chronic

performance bottlenecks, which may differ depending on the application domain, and in-

form the propagation of the approximated values throughout the execution on a GPU. We

investigate and clarify that parallelizable applications processing massive datasets, espe-

cially with irregular memory access behavior like graphs, worsen the performance and

energy consumption through GPPRMon tool in Section 3.3.1.

Enhancing the functioning of memory hierarchy with approximate computing can

allow for overcoming memory bounds and bring compute-memory workload balance.

This study solves the commonly faced memory exploitation problems with approximation-

based solutions. We propose multi-functional ApproxTrackers, which mitigate the mem-

ory workload by tracking per-memory component locality information and skipping the

memory requests at local memory regions temporally at runtime. To the best of our knowl-

edge, this is the first study that temporally flushes memory requests based on the local

memory components’ performance considering the error propagation at runtime. Our

major contributions are as follows:

• We develop multi-functional approximate computing approaches, ApproxTrackers,

which flush memory requests depending on the regional memory traffics with the

feedback obtained via L1D and L2 caches at runtime. We experiment ApproxTrack-

ers for two scenarios: 1) ApproxTrackers with various GPU algorithms, which al-

lows evaluating the performance and energy impacts of proposed approaches on

different execution domains, and 2) ApproxTrackers with the sparse matrix mul-

tiplication algorithm and various graphs, which enables interpreting performance

and energy impacts of processing different datasets.

• ApproxTrackerL1D, which operates on L1D caches, improves the performance of

applications from various domains by 18.6% and reduces energy consumption by

14.8%.

• ApproxTrackers acquires 1.495× performance increase on a sparse matrix multi-

plication algorithm experimented with various data by flushing memory requests

depending, and lower the overall energy consumption by 28.4%.

63

5.1. Related Work

Garcia et al. (2021) provide a framework, TruLook, that leverages approximate

computing techniques to enhance GPU acceleration by minimizing redundant and unnec-

essary exact computations. It achieves this by utilizing computation reuse and approx-

imate arithmetic operations. The framework incorporates small lookup tables near the

stream cores of the GPU architecture, enabling the retrieval of pre-computed values for

both exact and potentially inexact matches. The level of inexact matching is controlled by

a threshold determined by the number of mantissa bits involved in the search. The hard-

ware configuration of TruLook can be adjusted at runtime to ensure the required level of

accuracy for a given application. In experimental evaluations on the ImageNet dataset

using a quality loss budget of 0% and less than 1%, TruLook demonstrates an average

energy-delay product improvement of 2.1× and 5.6× over four popular networks. Tru-

Look differs from our approach in terms of handling the approximation targets during the

execution. While our approach, ApproxTrackers, aims to eliminate memory bottleneck

problems, TruLook offers reducing SMs’ computation workload.

Nvalt (Imani et al. (2018)) utilizes a nonvolatile approximate lookup table to ac-

celerate computations on general-purpose GPUs by storing frequently occurring input

patterns within an approximation. Nvalt searches for and retrieves the stored data that

best matches the input to generate an approximate output. To measure the similarity

between binary representations, they leverage the analog characteristics of nonvolatile

content addressable memory and define an appropriate similarity metric. By controlling

the ratio of application execution between the approximate Nvalt and the accurate GPU

cores, the design allows for tuning the level of accuracy based on user requirements. As

a result of their evaluations, Nvalt demonstrates an average energy improvement of 4.5×

and a performance enhancement of 5.7× compared to a baseline GPU while maintaining

an average relative error of less than 10%. On the other side, our approach tracks the run-

time memory performance via L1D cache and L2 caches and conducts flushing among

the memory requests by keeping the accuracy distraction at most 2%.

Maier et al. (2019) and Maier et al. (2018) focus on approximating memory-bound

applications running on mobile GPUs and computationally rich GPUs, respectively. Both

approaches introduce kernel perforation, which takes advantage of the fast local memory

available in GPUs to achieve high performance while maintaining more accurate results.

They experiment with kernel perforation to six different applications for mobile GPUs

and conduct evaluations on the Qualcomm Adreno 506 and the ARM Mali T860 MP2

64

architectures. They state that even when the local memory is not specialized as dedicated

fast memory in the hardware, kernel perforation still yields a speedup of 1.25× due to

improved memory layout and caching effects on mobile GPUs. For the bigger GPUs, their

approach first skips the loading of parts of the input data from global memory and uses

reconstruction techniques on local memory later to reach higher accuracy. Experimental

results with bigger GPUs demonstrate the effectiveness of our approach in accelerating

the execution of diverse applications, and their speedup ranges from 1.6× to 3×, indicating

a significant performance improvement. ApproxTrackers targets to solve similar memory

bottleneck problems at runtime by skipping memory requests depending on the memory

utilization feedback from both on-chip and off-chip memory units.

Singh and Nasre (2019) addresses irregular memory accesses and control-flow-

associated challenges for graphs by introducing approximations to mitigate their impact.

They employ several techniques to enhance memory coalescing, reduce memory access

latency, and minimize thread divergence. They renumber and replicate nodes to improve

memory coalescing, facilitating better data alignment and coalesced memory accesses.

Adding edges among specific nodes brought into shared memory mitigates memory la-

tency, reducing the time required to access data. Additionally, they normalize degrees

across nodes assigned to a warp, mitigating thread divergence and improving parallelism.

Their approximations for coalescing, memory latency, and thread divergence result in

mean speedups of 1.3×, 1.41×, and 1.06×, respectively, while maintaining the accuracy

bounds at 83%, 78%, and 84%, respectively. ApproxTrackers offer a better performance

targeting the same application domain while they conduct approximations on the hard-

ware. Unlike their research, by keeping the accuracy distraction below 2%, our research

accelerates the graph workloads by an average of 1.75×.

5.2. Methodology

Our purpose is to obtain memory/compute workload balance on GPUs through

the execution, resolving bottlenecks in memory hierarchy at runtime to improve per-

formance and mitigate power consumption. ApproxTrackers mainly eliminate memory

operations selectively by depending on the runtime performance of components tracked

with the micro-architectural metrics and enhance GPU memory performance for error-

resilient applications. Since GPUs employ on-chip memory units privately within each

SM and off-chip memory partitions among all execution workloads, local metrics cannot

address performance bottlenecks throughout the entire memory hierarchy; and determin-
65

ing representative micro-architectural metrics to track memory performance locally and

temporally is essential. To illustrate, solely tracking misses in the memory unit of an

SM provides information only for the performance of that particular SM and does not

represent the utilization of other memory components’ performance. Instead, hybrid and

synchronized tracking of each unit’s memory usage will enable us to manage each mem-

ory unit separately, such as applying solutions depending on the local behavior of each

component at runtime. Therefore, we developed the ApproxTrackers to track each mem-

ory component’s local utilization at runtime by benefiting from the detailed representa-

tive micro-architectural metrics and decide to flush a memory request from the pipeline

accordingly.

Figure 5.1. Execution flow of a memory request starting from LD/ST unit.

Figure 5.1 illustrates the execution flow of memory requests on SMs and off-

chip memory partitions, whose internal structure is detailed in Figure 2.4 (Aamodt et al.

(2018)). These figures describe how a memory request is handled within a GPU and do

not depict the resource quantities and internal structures for any real architecture. LD/ST

units on SMs set the target address of the memory request in the address generator unit

(AGU). If a memory request needs to access a specialized memory unit, such as constant

memory, LD/ST unit may direct it accordingly. Otherwise, LD/ST unit transmits memory

requests to the L1D cache after coalescing. When the memory request’s access status

is hit or hit_reserved on the L1D cache, the request returns on the 1 st path in Figure

5.1 and reaches the writeback stage of SM’s execution pipeline. Conversely, memory

requests follow the 2 nd path when the looked-for data does not exist on the L1D cache,

in which the access status is either miss or sector miss. The Miss-Status-Holding-Register

66

(MSHR) unit tries to merge the missed request with other misses that look for the same

data. Additionally, reservation failures due to resource insufficiency can occur on 2 nd

and 3 rd paths, and these failures cause memory pipeline stalls because the GPU must

continue execution without losing the missed accesses.

5.2.1. ApproxTrackerL1D

Figure 5.2. Locating ApproxTrackerL1D within the LD/ST unit on SMs.

Resolving the bottlenecks occurring on only one L1D cache does not significantly

impact other SMs’ or lower memory partitions’ memory workload. To manage the whole

memory workload, we propose the ApproxTrackerL1D approach at first, which directly

manages the bottlenecks of all L1D caches comprehensively, and Figure 5.2 shows where

it resides on an SM.

ApproxTrackerL1D algorithm decides to either flush the memory request or keep

it in the memory pipeline based on the access statistics of L1D caches that are informa-

tive about the memory traffic on SMs directly and on memory partitions implicitly and

Algorithm 1 shows the approximation procedure followed by ApproxTrackerL1D. The

m_stats array, at 2nd Line, counts the number of hit, hit_reserved, miss, and sector_miss

accesses consecutively at runtime for each L1D cache. ApproxTrackerL1D tracks per

L1D cache statistics depending on the status information of consecutive accesses tempo-

rally, m_stats, by employing a slicing interval. Employing a slicing window, counted by

accessCounter, allows detecting temporal performance degradation at the runtime with-

out converging the entire kernel behavior. For example, assigning the slicing window for

500 consecutive memory accesses through an L1D cache provides acting depending on

the temporal statistics of the corresponding accesses.

67

Algorithm 1: ApproxTrackerL1D approximation check controller algorithm

1 bool checkFlushOnL1DCache()

2 totalAcc← mstats[0] +mstats[1] +mstats[2] +mstats[3]

// Calculates total accesses within the slicing interval

3 currStats← 0

4 if totalAcc then
// currStats stands for the miss rate within the slicing interval

5 currStats← (mstats[2] +mstats[3])/totalAcc

/* 1) currStats >= miss rate threshold for the corresponding kernel || 2)

Wait for the first 16 accesses within the slicing interval || 3)

flushCounter controls the error percentage */

6 if (currStats ≥ L1DMissThreshold[∗kernel_id]) & (accessCounter ≥ 16) &

(flushCounter[∗kernel_id] ≥ 0) then

7 return true

8 return false

Additionally, deciding to flush a memory request from a local memory pipeline

portion before temporal warm-up at runtime may prevent utilizing data locality. Thus, Ap-

proxTrackerL1D waits for 16 consecutive memory requests on the corresponding cache

before deciding to flush any memory request till the L1D cache temporally warms up.

Waiting for at least 16 consecutive accesses, tracked with accessCounter at 6th Line,

aims to track temporal locality on L1D caches and conduct flushes according to inter- and

intra-warp locality feedback (Rogers et al. (2013)). In this way, ApproxTrackerL1D de-

ploys the approximation algorithm temporally, considering data locality per L1D cache.

We design ApproxTrackers so developers can configure the data locality threshold for

each kernel and each L1D cache.

The Algorithm 2 shows the counter statistic updater algorithm of ApproxTrack-

erL1D. ApproxTrackerL1D updates statistics depending on afterFlush flag. If no flush

occurs (i.e., afterFlush is false), ApproxTrackerL1D updates the m_stats counter depend-

ing on the access status of the corresponding memory request by executing the block

beginning at 10’th Line. It increments the accessCounter, which controls the slicing in-

terval limits. If the accessCounter reaches the pre-configured slicing window size, all

statistics are cleared to track the following consecutive memory accesses. On the other

side, if the ApproxTrackerL1D activates the updater just after flushing a memory request

in which afterFlush flag is true, the code block starting at 4’th Line is executed, which

decrements the error tracker (flushCounter), increments the slicing window flush counter

68

(intervalCheck). Additionally, ApproxTrackerL1D clears all the statistics and starts a new

observation interval again if the flushing of 8 memory requests has been made within the

same interval. In this way, ApproxTrackerL1D deletes memory requests whenever the

locality threshold is exceeded and waits some time to observe the upcoming execution

behavior of the L1D cache. The LD/ST unit pipe depth of Volta GPUs is capable of 8

consecutive memory requests, and we aim to capture all the missed ones in the pipeline

when the locality is lower than the threshold.

Algorithm 2: ApproxTrackerL1D tracking update algorithm

1 void updateApproximatorL1D(status, afterF lush)

2 accessCounter ← accessCounter + 1 // Increment slicing window counter

3 if afterF lush then

4 flushCounter[kernel_id]← flushCounter[kernel_id]− 1 // Decrement number

of expected flush counter

5 intervalCheck ← intervalCheck + 1 // Increment number of flush counter

within the slicing interval

6 if intervalCheck > 8 then
// If 8 accesses flushed within the slicing interval, clear stats

7 intervalCheck ← 0, accessCounter ← 0

8 for i← 0 to NUM_CACHE_REQUEST_STATUS by 1 do

9 mstats[i]← 0

10 else

11 mstats[status] + + // Update cache statistics considering the status

12 if accessCounter ≥ accessSliceInterval then
/* Clear stats for the new slicing window interval */

13 accessCounter ← 0

14 for i← 0 to NUM_CACHE_REQUEST_STATUS by 1 do

15 mstats[i]← 0

ApproxTrackerL1D’s updater module employs a 64-bit flushCounter to control

the maximum memory access to be deleted from the corresponding SM for a kernel. Set-

ting the flushCounter to a pre-determined value limits the disruption on the output and

enables us to handle accuracy. Even if it does not directly control the accuracy bounds

because flushing a memory request may disturb output in a nondeterministic manner, it

essentially allows adjusting accuracy within tolerable limits. The developer sets an error

69

percentage, and each ApproxTrackerL1D module assigns an upper bound for maximum

flushable accesses obtained with error × 0.01 × naiveAccessith_sm where the number

of naiveAccessith_sm corresponds to the number of memory requests on i’th SM’s L1D

cache resulting from the pre-simulation. That is, each SM has its own approximation

limitation through the above algorithms. Besides the methodology of flushing memory

requests, ApproxTrackerL1D carries out approximations by replacing data that would

be loaded with zeros in the writeback execution pipeline stage. Consequently, Approx-

TrackerL1D implements an L1D cache-based approximation by following the temporal

data locality utilization of each L1D cache and reducing the memory workload at critical

times, which improves performance and power consumption.

5.2.2. ApproxTrackerL2

According to the cycle-accurate GPU simulator official configuration details1 (Khairy

et al. (2020)), the average latency to access the DRAM row buffers (without activating

DRAM cells) is fifteen times higher than to L1D cache and three times higher than the L2

cache for Volta GPUs respectively, and the access latency to memory units varies among

the GPU architectures. In addition to the latency variation among the GPU devices, the

memory traffic that depends on application type in memory partitions significantly affects

the performance, as demonstrated in Section 3.3.1. ApproxTrackerL1D, which attempts

to handle off-chip memory traffic by tracking L1D cache exploitation, might not become

comprehensive enough without considering off-chip memory partitions, especially if no

specific traffic patterns exist in the memory partitions.

ApproxTrackerL2 tracks memory partition behaviors, removes memory requests

selectively from the pipeline before to be issued to the off-chip by LD/ST memory ports,

and aims to reduce the off-chip memory traffic whenever the memory performance is

bottlenecked at runtime. ApproxTrackerL2 conducts approximations similar to Approx-

TrackerL1D in terms of approximation algorithm and approach. It tracks the temporal

efficiency on each L2 cache within sub-memory partitions with a slicing window counted

with accessCounter and a statistic counter array (i.e., mstats) as in the code Algorithm

1. ApproxTrackerL2 conducts the approximations by flushing the memory requests in

SMs without forwarding them to off-chip memory partitions. ApproxTrackerL2 operates

based on the same rules as ApproxTrackerL1D, such as tracking 16 consecutive mem-

ory requests on the same L2 cache before starting flushing or flushing a maximum of 8
1https://github.com/gpgpu-sim/gpgpu-sim_distribution/tree/master/configs/tested-cfgs/SM7_QV100

70

memory requests within the same slicing interval at most.

The hardware implementation of ApproxTrackerL2 deploys to architecture more

complexly than ApproxTrackerL1D. It employs synchronized multiple modules across

the coalescer unit, interconnection network, and sub-memory partitions. The module

in the coalescer unit leverages similar address decoders of the interconnection network

to obtain the target off-chip memory partitions to which memory requests are transmit-

ted. Hence, ApproxTrackerL2 makes flush decisions for memory requests whose off-chip

target addresses are already known within SMs accordingly, which enables acting each

memory partition individually depending on the performance bottlenecks.

Before beginning execution on GPU, the updated coalescer unit takes the miss

rate thresholds for each L2 cache and holds them in a list. Copying address decoders

to the coalescer unit does not bring performance overhead since memory requests are

still routed through the interconnection network decoders. We develop ApproxTrackerL2

such that developers can configure the slicing window size, maximum flushable memory

accesses, and error percentage depending on their application’s performance requirements

and accuracy limits. Lastly, ApproxTrackerL2 writes zero to the operands of the flushed

memory requests.

5.3. Experimental Study

5.3.1. Experimental Setup

For the experimental evaluation, we test ApproxTrackerL1D/L2 with six appli-

cations as in Table 5.1 from PolyBench, Rodinia, TangoDNN, and Gardenia benchmark

suites (Che et al. (2009); Grauer-Gray et al. (2012); Karki et al. (2019); Xu et al. (2019)).

We mainly target memory-bound applications, but we include various contemporary do-

mains and observe ApproxTrackers’ performance and energy consumption impacts on

them. While TangoDNN, PolyBench, and Rodinia applications come with proper test

datasets, Gardenia has trivial datasets. To evaluate the impact of data size and sparsity

dependency, we test ApproxTrackers with the SPMV algorithm on Higgs Twitter, lp1

sparse matrix, web-Google and live journal online social network (soc-LiveJournal) data

collected from the Suite-Sparse Matrix Collection datasets as in Table 5.2.

71

Table 5.1. CUDA applications used in our experiments.

Application Description

PolyBench 2DConvolution Convolution 2D input data and 2D mask.

Rodinia HybridSort Fusion of merge sort on bucket sort algorithms.

TangoDNN
GRU Gated Recurrent Neural Network

LSTM Long/Short term memory Recurrent Neural Network

Gardenia
Connected Components (CC) Afforest & Shiloach-Vishkin algorithms

SPMV Sparse Matrix-Vector Multiplication

Table 5.2. Graph specifications.

Graph Description

Higgs Twitter,

(Domenico et al. (2013))

Main Social Network #V = 456626, #E = 14855842.

Retweet #V = 256491, #E = 328132.

Mention #V = 116408, #E = 150818.

Others, (Leskovec et al.

(2009b))

LP1 #V = 534388, #E = 1109032.

LiveJournal online social network , #V = 4847571, #E = 68993773.

Web graph from Google #V = 875713, #E = 5105039.

As simulating all applications require too much time, we first profile 60 CUDA

workloads utilizing Nsight Compute tool (NVIDIA (2022a)) on NVIDIA’s RTX 1650,

extract the micro-architectural metrics2, and create an experimental target application set

where we will investigate the ApproxTrackers’ impact explicitly. Afterward, we naively

simulate target applications, collect performance and driven-runtime power metrics, and

obtain the exact outputs. To evaluate approaches, we configure two experiment scenarios

for ApproxTrackerL1D in which each SM deletes its 2% and 1% of memory requests that

will probably bring misses on L1D caches. Similarly, we create another two test setups

for ApproxTrackerL2 that flushes 2% and 1% of memory requests that will cause misses

on L2 caches and create traffic on off-chip memory partitions, respectively.

During experiments, we set the slicing window size to 5000 memory requests

that are lower than 1% of overall memory accesses of a cache on average among tar-

get applications. The purpose is to act temporally (i.e., neither too short nor too small)

2https://github.com/BT-MasterThesis-2020-23/Application_PreProfilings_onNCU

72

depending on runtime performance during the execution. Furthermore, we utilize the

individual memory exploitation metrics obtained through the base simulation of each ker-

nel for the per-cache threshold values to determine the flushing of a memory request. We

specify the maximum flushable memory requests per memory unit based on the number

of missed memory requests on the corresponding unit observed during the base execution.

For example, if the execution causes 234567 misses and sector misses among the memory

requests with a 0.4 miss rate on the L1D cache of SM0, ApproxTrackerL1D assigns the

threshold of SM0’s L1D cache as 0.4 and can flush either 1% or 2% for those misses at

runtime.

We implement ApproxTracker by extending GPGPU-Sim v4.2 (Khairy et al. (2020))

and collect the power metrics by AccelWattch (Kandiah et al. (2021)) extension of the

simulator. Then, we simulate the target CUDA applications through RTX2060 GPU con-

figuration (TechPowerUp (2020)). Table 5.3 shows the RTX2060 hardware resources.

Since we conduct experiments through NVIDIA GPUs, we utilize the CUDA Toolkit ver-

sion 11.6 and the corresponding NVCC compiler. One can reach results for pre-profiling

experiments with Nsight Compute tool, simulation results for naive and each Approx-

Tracker experiment, and the updated version of the simulator source code via the link3.

Table 5.3. RTX2060 GPU configuration based on Turing architecture.

Streaming

Multipro-

cessor

Specs (30)

Register bank size, # of register bank 65536 32-bit registers, 16 register banks

SP, SF, DP, INT, TC, LD/ST (WB-Depth) 4, 4, 4, 4, 4, 1(8)

Warp Scheduler 4 (LRR) per SM

L1D Cache, #of banks, latency, line size 128KB, 1, 32 cycles, 128B

L1I Cache, #of banks, latency, line size 128KB, 1, 32 cycles, 128B

12 mem, 24

sub-mem

partitions.

L2 Cache, #of banks, latency, line size 128KB, 2, 194 cycles, 128B

DRAM, #of banks, latency (after L2) 512MB, 12, 96 cycles, 128B

DRAM scheduler First-ready, first-come first-service

SP: Single Precision, SF: Special Functional, DP: Double Precision, INT: Integer, TC: Tensor

Core, LD/ST: Load / Store, WB: Write back

3https://github.com/BT-MasterThesis-2020-23/ApproxTracker

73

5.3.2. Experimental Results

We evaluate the experiment results with two different approaches. While we

test ApproxTrackerL1D/L2 on applications from various domains in terms of perfor-

mance and power results, we experiment ApproxTrackers on a memory-bound program

by changing the processed data to reveal the significance of processed data on the execu-

tion and how ApproxTrackers handles them. In all results below, ApproxTrackers’ -2 and

-1 suffixes stand for flushing missed requests of 2% and 1%, respectively.

We evaluate the accuracy of applications in the PolyBench, Rodinia, and Gardenia

benchmark suites based on data corruption in the whole output. Assuming that applica-

tions from Gardenia Rodinia and PolyBench suites produce a total of X data as output,

we define accuracy based on the percentage of corrupted data in the output applications.

For example, the fact that the application generates 100 output values and two of them are

corrupted during the experiments states that ApproxTrackers completes the execution at

98% accurately. In TangoDNN applications, accuracy is defined based on the prediction

success depending on the trained DNN models. In these experiments, we define accuracy

based on how much ApproxTrackers distorted the prediction accuracy.

In addition, we designed ApproxTracker to flush only load operations among both

stores and loads. The purpose is to reduce the probability of worsening accuracy caused

by deleting data to be stored. However, in some CUDA applications, the access we flushed

coincided with pointers, causing the applications to crash. To illustrate, Breadth First

Search (BFS) and Connected Components of Afforest & Shiloach-Vishkin algorithms

(CC) from the Gardenia benchmark terminate with the crash state when experimented

with ApproxTrackers.

In applications mentioned in 5.1, skipping memory requests either directly cor-

rupts or several flushes together corrupt a value in the output. Therefore, by configuring

2% and 1% of the overall memory requests to skip, we limit the errors to below 2%.

Hence, the accuracy deviation for the results is at most 2%. Furthermore, flushing mem-

ory requests for some applications corrupts the output by around 0.1% because errors do

not propagate throughout the execution. One can find all the results in the experimen-

tal_results file in the previously mentioned GitHub repository.

74

5.3.3. ApproxTracker Performance and Driven-Power on Various

GPU Applications

Table 5.4. Baseline performance overview among target applications.

Application
Total

Cycle
IPC Occup. L1D Miss L2 Miss RB Loc.

Stall Cy-

cle

SPMV 21449970 5.90 35.07% 0.553 0.324 0.182 4 989 317

CC 3608674 14.55 40.75% 0.626 0.108 0.128 60 786

2DConv 1295864 582.24 60.85% 0.246 0.705 0.936 0

GRU 16015599 2.85 48.51% 0.975 0.001 0.818 50 893

LSTM 509423 88.61 46.79% 0.223 0.014 0.961 0

HybridSort 1336354 217.05 45.22% 0.786 0.805 0.876 342

Table 5.4 shows performance overview metrics for target applications. Total Cy-

cle elapsed during the simulations informs about the execution duration, and Stall Cy-

cles stand for the cycles wasted during the memory pipeline locks during the runtime.

Occupancy metric describes the overall GPU utilization depending on SM and memory

hierarchy throughput values. SPMV, CC, GRU, and HybridSort applications cause high

miss rates on L1D and low utilization on DRAM row buffers, and the low memory perfor-

mance decreases IPC rates for these applications. 2DConvolution employs the hardware

the most efficiently among the target applications considering the performance metrics

such as IPC and Occupancy. The GRU and LSTM applications from TangoDNN result

in similar Occupation values, while GRU completes the execution dramatically longer

than LSTM. Some GRU’s kernels limit the Occupation for some of the kernels, which

extends the execution (i.e., Total Cycle) and lowers the GRU’s IPC. Conversely, LSTM

completes the execution fastest among the target applications since it has a small work-

load compared to others. Even if HybridSort seems to cause too many misses on both

L1D and L2 caches, the corresponding memory requests are compulsory misses. Accord-

ing to the IPC and Occupancy, the overall performance of HybridSort outperforms SPMV

and CC, although the application cause many misses.

Figure 5.3 displays the cache miss rates on L1D and L2 caches experimented with

ApproxTrackers, which flushes 2% and 1% of memory requests depending on the runtime
75

Figure 5.3. Average miss rates on L1D and L2 caches experimented with naive, Ap-

proxTrackerL1D and ApproxTrackerL2 versions.

memory performance, and Table 5.5 shows the number of memory access statistics on

caches. ApproxTrackers generally decreases the miss rates on L1D caches, as explicitly

shown in SPMV, GRU, and HybridSort results. ApproxTrackerL1D significantly reduces

the L1D cache miss rates because it flushes more memory requests based on directly each

L1D cache utilization on each SM. For example, ApproxTrackerL1D decreases the av-

erage miss rate on L1D caches from 0.55 to 0.43 and 0.97 to 0.82 for SPMV and GRU

applications, respectively. Moreover, ApproxTrackers can diminish the miss rates on L2

caches (sub-memory partitions) for the applications such as HybridSort. In contrast, the

proposed approaches do not further lower the miss rates of the applications that can utilize

L2 caches well. The L2 cache usage behavior for some applications, such as 2DConvolu-

tion and LSTM, does not oscillate much during the execution, so ApproxTrackers cannot

detect an imbalanced workload on off-chip memory partitions for flush during runtime.

Table 5.5 shows the number of memory accesses on caches with naive with and

ApproxTrackers. One can realize that applications whose runtime performance is sig-

nificantly affected by ApproxTrackers, like HybridSort and SPMV, have fewer memory

access reaching L1D and L2 caches. For the applications with few instances of miss

rates above the threshold, ApproxTrackers still decrease the number of memory accesses.

However, since the changed runtime cache behavior does not affect the remaining ac-

cesses, they yield similar cache access rates. For example, even though ApproxTrackers

reduce the number of accesses reaching L1D caches, the corresponding overall miss rates

do not further lower. Additionally, applications that process small datasets directly can

76

utilize L2 caches well because the data fits into it, and ApproxTrackerL2 does not change

such applications’ memory usage behavior drastically as in GRU and LSTM. Regarding

reducing the memory workload, ApproxTrackerL2 outperforms ApproxTrackerL1D for

applications utilizing other on-chip memory components like texture cache more since

ApproxTrackerL1D performs flush operations based on L1D cache statistics. To illus-

trate, HybridSort cause more pressure on memory partitions than L1D caches because

most on-chip memory requests access to the texture cache. Hence, ApproxTrackerL2

can decrease the off-chip memory workload more which is more crucial for performance.

According to the results, we observe that applications that employ caches efficiently and

cause low miss rates do not expose too many distractions on cache behavior, and those

miss rates generally exist throughout the entire kernel without oscillating. Therefore, Ap-

proxTrackers can slightly change these applications’ runtime behavior and performance.

On the other hand, ApproxTrackers seriously change the execution behavior of applica-

tions with irregular memory accesses on the memory hierarchy.

Figure 5.4. Normalized IPC and GPU Simulation Cycle experimented with naive, Ap-

proxTrackerL1D, and ApproxTrackerL2 versions.

Figure 5.4 shows ApproxTrackers’ impact on the IPC and GPU simulation perfor-

mance rates. GPU simulation performance stands for the total simulation cycles elapsed

during the execution, and we normalize each experimental result according to the baseline

experiment result. ApproxTrackerL1D, particularly configured to flush 2% of memory re-

quests, directly impacts overall IPC among SMs and execution performance by solving

high miss rates on caches during the execution. ApproxTrackerL1D raises the average
77

Table 5.5. The number of memory accesses on caches experimented with naive, Ap-

proxTrackerL1D, and ApproxTrackerL2 versions.

Applications
Accesses on

L1D C.

Misses on

L1D

Accesses on

L2 C.

Misses on

L2

SPMV base 44 213 215 24 455 284 24 460 819 7 941 303

ApproxTrackerL1D 2% 39 369 223 17 117 427 17 123 426 6 348 684

ApproxTrackerL1D 1% 40 686 921 17 902 245 17 965 172 6 647 113

ApproxTrackerL2 2% 41 929 299 20 380 188 20 385 879 7 318 237

ApproxTrackerL2 1% 42 968 839 21 937 632 2 1943 339 7 600 659

CC base 10 976 414 6 880 696 6 899 275 751 512

ApproxTrackerL1D 2% 10 643 965 6 308 565 6 329 020 747 175

ApproxTrackerL1D 1% 10 869 477 6 496 750 6 519 004 749 200

ApproxTrackerL2 2% 11 227 687 6 801 718 6 822 170 751 771

ApproxTrackerL2 1% 11 090 420 6 836 569 6 855 846 752 007

2DConvolution base 24 080 908 5 945 560 5 945 560 4 193 280

ApproxTrackerL1D 2% 23 912 164 5 895 392 5 931 264 4 151 884

ApproxTrackerL1D 1% 23 945 881 5 890 686 5 890 686 4 503 568

ApproxTrackerL2 2% 24 043 132 5 866 524 5 874 183 4 100 179

ApproxTrackerL2 1% 24 045 166 5 891 065 5 893 034 4 125 123

GRU base 20 598 784 20 087 140 20 089 172 32 300

ApproxTrackerL1D 2% 20 598 784 17 302 978 17 308 601 32 300

ApproxTrackerL1D 1% 20 397 921 17 349 232 17 360 886 32 300

ApproxTrackerL2 2% 20 598 157 20 083 251 20 084 963 32 300

ApproxTrackerL2 1% 20 597 028 20 082 102 20 084 172 32 300

LSTM base 3 420 928 765 196 765 196 11 309

ApproxTrackerL1D 2% 3 409 074 806 970 807 038 13 456

ApproxTrackerL1D 1% 3 416 730 806 901 806 969 13 459

ApproxTrackerL2 2% 3 420 712 768 633 768 731 13 227

ApproxTrackerL2 1% 3 420 832 766 274 766 372 12 120

HybridSort 20 757 084 16 321 621 46 828 781 37 702 607

ApproxTrackerL1D 2% 18 518 931 14 074 387 44 491 162 32 478 548

ApproxTrackerL1D 1% 18 960 722 14 410 148 44 990 875 33 293 247

ApproxTrackerL2 2% 18 126 851 12 960 698 43 594 103 31 387 754

ApproxTrackerL2 1% 18 403 488 13 618 581 44 261 753 32 311 079

78

performance improvement for SPMV and GRU applications to over 20%. ApproxTrack-

ers solve the memory bottlenecks on both on-chip and off-chip memory portions at run-

time, exploiting local performance trackers for the applications whose memory usage

worsens.

We include applications that efficiently utilize GPU resources to extend the tar-

get domains and observe the performance impact of ApproxTracker approaches on these

domains. As these applications generally do not face a significant memory bottleneck

problem during runtime by using existing resources in a balanced way, ApproxTrackers

have minimal impact on execution behavior and performance. In this manner, neither

ApproxTrackerL1D nor ApproxTrackerL2 results in similar IPC and overall performance

improvements for the applications such as CC and LSTM, which process relatively small

datasets. As the small workloads do not bring performance-damaging memory traffic on

off-chip memory partitions, ApproxTrackers have slight variations in execution perfor-

mance. Consequently, ApproxTrackerL1D leads to an average improvement performance

at 18.6% among the target applications by enhancing memory performance at runtime.

Figure 5.5. Normalized runtime power dissipation and energy consumption obtained

through naive ApproxTrackerL1D and ApproxTrackerL2 versions.

Figure 5.5 displays on-average runtime power dissipation and the overall energy

consumption observed through the execution of GPU kernels. Runtime power consump-

tion of a GPU application with ApproxTrackers does not significantly change depending

on CUDA application variation, and the power measurements are slightly different from

the normalized naive version results. Only the applications experimented with flushing
79

2% of memory requests within ApproxTrackerL1D reach a slight decrease in the GPU av-

erage power consumption because that configuration increases SM utilization by solving

the off-chip memory workload bottlenecks. As the power consumption measurements do

not vary significantly, the total energy consumption improvements overlap with the per-

formance. As a result, ApproxTrackerL1D, the most powerful in terms of performance

enhancement among all configurations, achieves 14.8% of energy savings on target appli-

cations.

5.3.4. ApproxTracker Performance and Driven-Power

Improvements on Various Datasets

Figure 5.6. Average miss rates on L1D and L2 caches for various data types experi-

mented with naive, ApproxTrackerL1D and ApproxTrackerL2 versions.

Figure 5.6 reveals the miss rates on the L1D and L2 caches for the SPMV al-

gorithm processing varying datasets through naive and ApproxTrackerL1D/L2 simulator

versions. ApproxTrackerL1D, configured to remove 2% of memory requests, signifi-

cantly reduces miss rates on L1D caches at runtime. For instance, the average cache miss

rate among 30 L1D caches decreases from 0.56 to 0.43 for the higgsTwitter and from

0.45 to 0.37 for the higgsTwitterRetweet data through the execution of SPMV with Ap-

proxTrackerL1D, respectively. Moreover, ApproxTrackerL1D, which is allowed to flush

1% of memory requests, slightly lower the average miss rate than in experiments with

2%. Even if, ApproxTrackerL2 does not perform as promising as ApproxTrackerL1D
80

for reducing the average miss rates on L1D caches for webGoogle and higgsTwitter data,

it can reach similar miss rate decreases for lp1, higgsTwitterRetweet, and higgsTwitter-

Mention data. The fact that the sparse data size gets smaller diminishes the pressures on

L1D caches, and off-chip memory partitions reach the performance limits before on-chip

memory components. The reason is that off-chip memory partitions try to service multi-

ple sparse data, which quickly creates traffic, and SMs’ memory components do not face

such a limitation easily, especially if corresponding SMs hold a small number of thread

blocks. As ApproxTrackerL1D flushes more memory requests in total without issuing

them to the off-chip region, it reduces misses rates on L1D caches more than Approx-

TrackerL2 for comparably smaller graphs like webGoogle and higgsTwitter. Even so,

each ApproxTracker increases data locality utilization on L1D caches.

In contrast, ApproxTrackers cannot diminish the miss rates on L2 caches apart

from the lp1 data and the exceptional case observed with webGoogle and ApproxTrack-

erL1D. In Figure 5.7, we display the total memory accesses on the sub-memory parti-

tions to evaluate how ApproxTrackers change the number of accesses with corresponding

misses.

Figure 5.7. The number of L2 cache accesses and misses obtained through naive,

ApproxTrackerL1D, and ApproxTrackerL2 versions among various data

types.

While the left sub-figure shows the total L2 cache accesses normalized to the

baseline results, the right represents the change among the misses for all accesses on L2

caches. Even if ApproxTrackers seems to either raise the miss rates on L2 caches higgsT-

81

witter and higgsTwitterRetweet or does not change those rates significantly for remaining

data, both the number of accesses and missed ones on L2 caches reduce for all datasets.

As a result, both ApproxTrackerL1D and ApproxTrackerL2 reduce the number of mem-

ory accesses on L2 caches by more than 15% compared to the baseline results despite the

2% and 1% flush configurations.

Lastly, socLiveJournal is a 1GB graph which is nearly ten times bigger than hig-

gsTwitter and webGoogle graphs whose data size are around 70/150MB. Whereas Ap-

proxTrackerL1D drastically decreases off-chip memory traffic for webGoogle and higgsT-

witter graphs, it does not mitigate processing the memory workload with socLiveJournal.

Even if processing socLiveJournal causes high miss rates on both L1D and L2 caches,

ApproxTrackers’ flushing commands do not spread to the execution and fade away too

earlier than the completion of the kernel.

Figure 5.8. IPC and GPU simulation rates with ApproxTrackerL1D/L2 approaches for

various data types.

Figure 5.8 displays the normalized IPC and GPU simulation cycles depending on

the baseline execution results to evaluate the impact of ApproxTrackers on performance.

According to the IPC results, increasing the utilization of L1D caches by reducing the

miss rates directly speeds up the SMs due to completing memory requests faster, regard-

less of the data types being processed. While ApproxTrackerL1D can lead the IPC im-

provements on webGoogle and higgsTwitter data by increasing utilization on L1D caches

more, ApproxTrackerL2 has the same impact on the execution performance with Ap-

proxTrackerL1D for the remaining datasets. We should note that even if one expects a
82

relational increase in IPCs depending on the number of flushed requests, such a change in

performance may not occur for all cases due to either harming future locality with flushed

requests or application behavior. There are no significant differences in IPC results ob-

tained with ApproxTrackers either 2% or 1% flush configurations results in similar IPC

rates because skipping 1% of memory workload suffices to fix memory bottlenecks at

runtime, and raising the number of flushes does not further improve performance.

The overall GPU execution performances generally increase in experiments, as

shown in Figure 5.8. Interpreting the overall performance requires more comprehen-

sive reasoning, different from the rising IPC rates. Flushing memory requests based on

tracking traffic on off-chip memory partitions has a more accelerating effect on perfor-

mance than tracking on on-chip caches. For example, lowering the off-chip memory

workload has doubled the performance according to the performance results with higgsT-

witterRetweet and higgsTwitterMention data. We deduce that regional memory traffics

within the memory partitions dramatically starves SMs due to the long latency mem-

ory operations, and ApproxTrackers can resolve them at runtime. Since ApproxTrackers

reach the number of flushable accesses quickly during execution for big and sparse data,

they do not touch most of the execution of SPMV with socLiveJournal. As a result,

ApproxTrackerL1D with 2% and 1% flush configurations accelerates experiments on the

SPMV algorithm and various data by an average of 1.52× and 1.47× times, while Approx-

TrackerL2 2% and 1% 1.47× and 1.44×, respectively. ApproxTrackers with 1% flush con-

figurations can efficiently identify the memory requests to be issued to off-chip memory

at critical bottleneck moments, and doubling the flushable requests does not drastically

further improves the performance.

Figure 5.9 represents results for the average runtime power consumption (on the

left) and overall energy consumption (on the right) observed through the experiments with

naive and ApproxTrackers simulators. As seen in the left figure, neither ApproxTrack-

erL1D nor ApproxTrackerL2 methods have a considerable impact on the runtime power,

apart from the slight decreases observed in some datasets such as higgsTwitterRetweet.

Implementing ApproxTrackers does not directly manipulate the main contributors to the

runtime power of GPUs, which are the functional units and register files on the SMs. In

this manner, ApproxTrackers affects the overall energy proportional to the performance

variations without considering the negligible overhead of ApproxTrackers. ApproxTrack-

erL1D and ApproxTrackerL2, which speed up the GPU performance, lower the overall

energy consumption by 30%, 26.8%, 26.8%, and 24.1% through the experiments with 2%

and 1% flush configurations, respectively.
83

Figure 5.9. Average driven-power and energy consumption with ApproxTrack-

erL1D/L2 for various data types.

5.4. Summary

To conclude, ApproxTrackers aim to detect the memory bottlenecks on GPU hard-

ware during runtime by receiving local feedback from each memory unit and selectively

discarding memory requests to improve performance and reduce energy consumption.

ApproxTrackerL1D tracks the utilization of each L1D cache within the SMs through ad-

ditional tracker hardware and flushes memory requests that could cause a bottleneck in

the memory hierarchy. Similarly, ApproxTrackerL2 tracks the memory exploitation on

off-chip sub-memory partitions individually and deletes the memory requests from the

memory pipeline before transmitting them from SMs to off-chip partitions at runtime.

While ApproxTrackerL1D targets solving on-chip memory utilization problems directly,

ApproxTrackerL2 manages regional workloads within the memory partitions. Further-

more, Each ApproxTracker writes zero to the operands of the flushed memory requests.

ApproxTrackers’ performance improvements vary depending on the application’s

runtime memory behavior. While the proposed approaches enhance the execution per-

formance of memory-bounded applications significantly, they can slightly affect the per-

formance of the applications that utilize the hardware in a balanced manner. The average

performance advancement and energy consumption reduction among all experiments with

ApproxTrackers are 18.6% and 14.8%, respectively. To investigate how memory utiliza-

tion affects the overall execution performance and ApproxTrackers changes it, we test

ApproxTrackers with the SPMV algorithm where SPMV processes sparse data causing

low memory exploitation and various datasets whose graph sizes and number of vertices
84

and edges change. ApproxTrackerL1D, configured with 2% and 1% flush settings, speeds

up the SPMV algorithm processing various datasets by an average of 1.52× times and

1.47×, respectively. Likewise, ApproxTrackerL2 accelerates the same algorithm 1.47×

and 1.44× with the same flush configurations. Additionally, ApproxTrackerL1D/L2 with

2% and 1% flush assignments reduce overall energy consumption by 30%, 26.8%, 26.8%,

and 24.1% for the same experimental configurations.

85

CHAPTER 6

CONCLUSION

In this thesis, we present a detailed investigation of the impacts of micro-architectural

metrics on error resiliency which we handle separately as soft error vulnerability and ap-

proximate computing, and performance in the GPU domain. We first propose a compre-

hensive runtime GPU monitoring tool, GPPRMon, proposing a systematic runtime metric

collection for performance and power consumption and visualizing execution statistics in

multi-perspective by considering the literature’s deficiency for such a tool. We conduct

a performance bottleneck analysis by utilizing GPPRMon to evaluate execution at warp

instruction granularity at runtime and help explicit observations of the execution. We be-

lieve that GPPRMon will allow conducting baseline analysis for the literature concerning

GPU performance and power dissipation and eliminate the need for additional in-house

efforts for real-time monitoring and profiling support. Many contributions from or on top

of GPPRMon might emerge as future work. For illustrate, Micro-architectural metrics

collected from other environments can be displayed by exploiting the GPPRMon’s visu-

alizer. Furthermore, metric collection and visualization frameworks may be expanded to

monitor the execution on GPUs in detail.

With GPPRMon, we acquire the knowledge for interpreting the interaction be-

tween applications and hardware, which enables evaluating error vulnerability for the

error resiliency domain. In soft error vulnerability prediction work, we estimate the oc-

currence rates of SDCs, crashes, and masked faults employing a comprehensive set of ML

frameworks trained with micro-architectural metrics. We exploit classification and re-

gression methods to predict SDC and crash, and masked fault rates, respectively, because

SDCs and crashes occur less frequently than masked faults. We exploit the simulator and

profiler to collect metrics deployed for training ML models. The experiments utilizing

simulator features, which are selected among metrics according to relevance with faults,

yield more accurate predictions for SDCs and crashes. Conversely, profiler features re-

sult in better results for estimating masked faults. Furthermore, an intriguing point for

future research is to apply the same approach using different GPU devices. In addition to

providing insights about the error resiliency of various GPUs, a comprehensive analysis,

including the execution of contemporary tasks such as DNN or graph applications, brings

a generic baseline related to GPU reliability. Moreover, it would be interesting to explore

86

the reconfiguration of fault injections by introducing faults into diverse hardware regions

under different physical conditions, such as extreme temperature or radiation conditions,

instead of relying solely on modeling. This physical configuration would bring a more

comprehensive fault tolerance analysis, ranging from macro-scale to micro-scale, and fa-

cilitate prediction analysis by re-evaluating the profiling results within the corresponding

architectural context.

Lastly, we evaluate the error resiliency based on the approximate computing idea,

which can improve performance and diminishes energy consumption, by configurable

hardware-based two approximator mechanisms, ApproxTrackerL1D/L2. While Approx-

TrackerL1D tracks each L1D cache on SMs’ memory performances, ApproxTrackerL2

follows the data locality exploitation of L2 caches on off-chip sub-memory partitions

at runtime, and each selectively flushes memory requests from the pipeline to resolve

performance bottlenecks. ApproxTrackers enhance the performance of algorithms from

various domains by 18.6% and reduce overall energy consumption by 14.8%. Among

the experiments for a memory-bounded application with various datasets, ApproxTrack-

ers improves the execution performance by 1,49× and lowers the energy dissipation by

28.4%. We found that irregular access behavior causes significant performance degrada-

tion by causing long latency operations, and handling off-chip memory workload without

causing bottleneck during execution significantly affects performance and energy con-

sumption. Moreover, alternative approximation approaches by incorporating feedback

from both L2 and L1D caches or considering additional other runtime tracks such as SM

occupancy to improve execution efficiency may be possible feature works. Additionally,

investigating the impact of varying threshold values to decide to flush a memory request

and analyzing their effects on performance would be another future study. These may

reveal optimal flush thresholds and approximation methods applicable generically to all

GPU workloads.

87

BIBLIOGRAPHY

Aamodt, T. M., W. W. L. Fung, and T. G. Rogers (2018). General-purpose graphics pro-

cessor architectures. Synthesis Lectures on Computer Architecture 13(2), 1–140.

Abdi, H. and L. J. Williams (2010). Principal component analysis. Wiley interdisciplinary

reviews: computational statistics 2(4), 433–459.

Aktılav, B. and I. Öz (2022). Performance and accuracy predictions of approximation

methods for shortest-path algorithms on gpus. Parallel Computing 112, 102942.

Anghel, L., M. Benabdenbi, A. Bosio, M. Traiola, and E. I. Vatajelu (2018). Test and

reliability in approximate computing. Journal of Electronic Testing 34(4), 375–387.

Appleyard, J. and S. Yokim (2017, October). Programming tensor cores in cuda 9.

Ariel, A., W. W. L. Fung, A. E. Turner, and T. M. Aamodt (2010). Visualizing complex

dynamics in many-core accelerator architectures. In 2010 IEEE International Sympo-

sium on Performance Analysis of Systems & Software (ISPASS), pp. 164–174.

Borkar, S. (2005). Designing reliable systems from unreliable components: the chal-

lenges of transistor variability and degradation. IEEE Micro 25(6), 10–16.

Candel, F., S. Petit, J. Sahuquillo, and J. Duato (2015). Accurately modeling the gpu

memory subsystem. In 2015 International Conference on High Performance Com-

puting & Simulation (HPCS), pp. 179–186.

Chatterjee, N., M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubramonia (2014).

Managing dram latency divergence in irregular gpgpu applications. In SC ’14: Pro-

ceedings of the International Conference for High Performance Computing, Network-

ing, Storage and Analysis, pp. 128–139.

Che, S., M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron (2009).

Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE Interna-

tional Symposium on Workload Characterization (IISWC), pp. 44–54.

88

Chen, X., L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu (2014). Adap-

tive cache management for energy-efficient gpu computing. In 2014 47th Annual

IEEE/ACM International Symposium on Microarchitecture, pp. 343–355.

Choi, J., H.-J. Lee, and C. E. Rhee (2022). Adc-pim: Accelerating convolution on the

gpu via in-memory approximate data comparison. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems 12(2), 458–471.

Dimitrov, M., M. Mantor, and H. Zhou (2009). Understanding software approaches for

gpgpu reliability. In Workshop on General Purpose Processing on Graphics Process-

ing Units.

Dimitrov, M. and H. Zhou (2007). Unified architectural support for soft-error protection

or software bug detection. In 16th International Conference on Parallel Architecture

and Compilation Techniques (PACT 2007), pp. 73–82.

Domenico, M., A. Lima, P. Mougel, and M. Musolesi (2013). The anatomy of a scientific

rumor. Scientific reports 3(1), 1–9.

Du, B., J. E. R. Condia, and M. S. Reorda (2019). An extended model to support de-

tailed gpgpu reliability analysis. In 2019 14th International Conference on Design

Technology of Integrated Systems In Nanoscale Era (DTIS), pp. 1–6.

Esmaeilzadeh, H., A. Sampson, L. Ceze, and D. Burger (2012, mar). Architecture support

for disciplined approximate programming. SIGARCH Comput. Archit. News 40(1),

301–312.

Fang, B., K. Pattabiraman, M. Ripeanu, and S. Gurumurthi (2016). A systematic method-

ology for evaluating the error resilience of gpgpu applications. IEEE Transactions on

Parallel and Distributed Systems 27(12), 3397–3411.

Gao, J., X. Chu, X. Wu, J. Wang, and G. He (2022). Parallel dynamic sparse approxi-

mate inverse preconditioning algorithm on gpu. IEEE Transactions on Parallel and

Distributed Systems 33(12), 4723–4737.

Garcia, R., F. Asgarinejad, B. Khaleghi, T. Rosing, and M. Imani (2021). Trulook: A

framework for configurable gpu approximation. In 2021 Design, Automation & Test
89

in Europe Conference & Exhibition (DATE), pp. 487–490.

Giménez, A., T. Gamblin, I. Jusufi, A. Bhatele, M. Schulz, P.-T. Bremer, and B. Hamann

(2018). Memaxes: Visualization and analytics for characterizing complex memory

performance behaviors. IEEE Transactions on Visualization and Computer Graph-

ics 24(7), 2180–2193.

Goloubeva, O., M. Rebaudengo, M. Sonza Reorda, and M. Violante (2003). Soft-error

detection using control flow assertions. In Proceedings 18th IEEE Symposium on De-

fect and Fault Tolerance in VLSI Systems, pp. 581–588.

Grauer-Gray, S., L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos (2012). Auto-

tuning a high-level language targeted to gpu codes. In 2012 Innovative Parallel Com-

puting (InPar), pp. 1–10.

Guerreiro, J., A. Ilic, N. Roma, and P. Tomás (2019). Dvfs-aware application classifica-

tion to improve gpgpus energy efficiency. Parallel Computing 83, 93–117.

Guo, L., D. Li, and I. Laguna (2021). Paris: Predicting application resilience using ma-

chine learning. Journal of Parallel and Distributed Computing 152, 111–124.

Hari, S., T. Tsai, M. Stephenson, S. Keckler, and J. Emer (2017, 04). Sassifi: An

architecture-level fault injection tool for gpu application resilience evaluation. In 2017

IEEE International Symposium on Performance Analysis of Systems and Software (IS-

PASS), pp. 249–258.

Hong, J., S. Cho, and G. Kim (2022). Overcoming memory capacity wall of gpus with

heterogeneous memory stack. IEEE Computer Architecture Letters 21(2), 61–64.

Hoshino, T., A. Ida, T. Hanawa, and K. Nakajima (2018). Load-balancing-aware parallel

algorithms of h-matrices with adaptive cross approximation for gpus. In 2018 IEEE

International Conference on Cluster Computing (CLUSTER), pp. 35–45.

Imani, M., D. Peroni, and T. Rosing (2018). Nvalt: Nonvolatile approximate lookup table

for gpu acceleration. IEEE Embedded Systems Letters 10(1), 14–17.

Imani, M., A. Sokolova, R. Garcia, A. Huang, F. Wu, B. Aksanli, and T. Rosing (2019).

90

Approxlp: Approximate multiplication with linearization and iterative error control.

In 2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6.

Islam, T., A. Ayala, Q. Jensen, and K. Ibrahim (2019). Toward a programmable anal-

ysis and visualization framework for interactive performance analytics. In 2019

IEEE/ACM International Workshop on Programming and Performance Visualization

Tools (ProTools), pp. 70–77.

Jain, P., A. Jain, A. Nrusimha, A. Gholami, P. Abbeel, J. Gonzalez, K. Keutzer, and

I. Stoica (2019). Checkmate: Breaking the memory wall with optimal tensor remate-

rialization. CoRR abs/1910.02653, 497–511.

Jauk, D., D. Yang, and M. Schulz (2019). Predicting faults in high performance com-

puting systems: An in-depth survey of the state-of-the-practice. In Proceedings of

the International Conference for High Performance Computing, Networking, Storage

and Analysis, SC ’19.

Jiao, Y., H. Lin, P. Balaji, and W. Feng (2010). Power and performance characterization

of computational kernels on the gpu. In 2010 IEEE/ACM Intel Conference on Green

Computing and Communications & Intel Conference on Cyber, Physical and Social

Computing, pp. 221–228.

Jog, A., O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. R.

Iyer, and C. R. Das (2013). OWL: cooperative thread array aware scheduling tech-

niques for improving GPGPU performance. In V. Sarkar and R. Bodík (Eds.), Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS 2013,

Houston, TX, USA, March 16-20, 2013, pp. 395–406. ACM.

Kalra, C., F. Previlon, X. Li, N. Rubin, and D. Kaeli (2018). Prism: Predicting resilience

of gpu applications using statistical methods. In Proceedings of the International Con-

ference for High Performance Computing, Networking, Storage, and Analysis, SC

’18.

Kandiah, V., S. Peverelle, M. Khairy, J. Pan, A. Manjunath, T. G. Rogers, T. M. Aamodt,

and N. Hardavellas (2021). Accelwattch: A power modeling framework for modern

gpus. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microar-

91

chitecture, MICRO ’21, New York, NY, USA, pp. 738–753. Association for Comput-

ing Machinery.

Karki, A., C. Palangotu Keshava, S. Mysore Shivakumar, J. Skow, G. Madhukesh-

war Hegde, and H. Jeon (2019). Tango: A deep neural network benchmark suite for

various accelerators. In 2019 IEEE International Symposium on Performance Analy-

sis of Systems and Software (ISPASS), pp. 137–138.

Khairy, M., Z. Shen, T. M. Aamodt, and T. G. Rogers (2020). Accel-sim: An extensible

simulation framework for validated gpu modeling. In 2020 ACM/IEEE 47th Annual

International Symposium on Computer Architecture (ISCA), pp. 473–486.

Koo, G., Y. Oh, W. W. Ro, and M. Annavaram (2017). Access pattern-aware cache man-

agement for improving data utilization in gpu. In 2017 ACM/IEEE 44th Annual Inter-

national Symposium on Computer Architecture (ISCA), pp. 307–319.

Kosmidis, L., I. Rodriguez Ferrandez, A. Jover-Alvarez, S. Alcaide, J. Lachaize,

J. Abella, O. Notebaert, F. Cazorla, and D. Steenari (2020, 06). Gpu4s: Embedded

gpus in space - latest project updates. Microprocessors and Microsystems 77, 103143.

Krzywaniak, A., P. Czarnul, and J. Proficz (2022). Gpu power capping for energy-

performance trade-offs in training of deep convolutional neural networks for image

recognition. In Computational Science – ICCS 2022, Cham, pp. 667–681. Springer

International Publishing.

Laguna, I., M. Schulz, D. F. Richards, J. Calhoun, and L. Olson (2016). Ipas: Intelligent

protection against silent output corruption in scientific applications. In IEEE/ACM

International Symposium on Code Generation and Optimization (CGO).

Leskovec, J., K. J. Lang, A. Dasgupta, and M. W. Mahoney (2009a). Community Struc-

ture in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined

Clusters. Internet Mathematics 6(1), 29 – 123.

Leskovec, J., K. J. Lang, A. Dasgupta, and M. W. Mahoney (2009b). Community struc-

ture in large networks: Natural cluster sizes and the absence of large well-defined

clusters. Internet Mathematics 6(1), 29–123.

92

Leveugle, R., A. Calvez, P. Maistri, and P. Vanhauwaert (2009). Statistical fault injec-

tion: Quantified error and confidence. In 2009 Design, Automation & Test in Europe

Conference & Exhibition, Proceedings of the Conference on Design, Automation and

Test in Europe (DATE).

Lew, J., D. A. Shah, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla, C. Ng, N. Goli,

M. D. Sinclair, T. G. Rogers, and T. M. Aamodt (2019). Analyzing machine learning

workloads using a detailed gpu simulator. In 2019 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), pp. 151–152.

Li, M.-L., P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou (2008,

mar). Understanding the propagation of hard errors to software and implications for

resilient system design. In Proceedings of the 13th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, ASPLOS

XIII, New York, NY, USA, pp. 265–276. Association for Computing Machinery.

Li, S., J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi (2009).

Mcpat: An integrated power, area, and timing modeling framework for multicore and

manycore architectures. In 2009 42nd Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), pp. 469–480.

Lu, Q., K. Pattabiraman, M. S. Gupta, and J. A. Rivers (2014). Sdctune: A model for

predicting the sdc proneness of an application for configurable protection. In Interna-

tional Conference on Compilers, Architecture and Synthesis for Embedded Systems

(CASES).

Mahmoud, A., S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keckler (2018). Optimiz-

ing software-directed instruction replication for gpu error detection. In Proceedings of

the International Conference for High Performance Computing, Networking, Storage,

and Analysis, SC ’18.

Maier, D., B. Cosenza, and B. Juurlink (2018). Local memory-aware kernel perforation.

In Proceedings of the 2018 International Symposium on Code Generation and Opti-

mization, CGO 2018, New York, NY, USA, pp. 278–287. Association for Computing

Machinery.

93

Maier, D., N. Mammeri, B. Cosenza, and B. Juurlink (2019). Approximating memory-

bound applications on mobile gpus. In 2019 International Conference on High Per-

formance Computing & Simulation (HPCS), pp. 329–335.

Mittal, S. (2016, mar). A survey of techniques for approximate computing. ACM Comput.

Surv. 48(4), 1–33.

Mittal, S. and J. S. Vetter (2016). A survey of techniques for modeling and improving

reliability of computing systems. IEEE Transactions on Parallel and Distributed Sys-

tems 27(4), 1226–1238.

Mukherjee, S. (2008). Architecture Design for Soft Errors. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc.

Nie, B., J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and D. Tiwari (2018).

Machine learning models for gpu error prediction in a large scale hpc system. In

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), pp. 95–106.

NVIDIA (2015). Ptx and sass assembly debugging.

NVIDIA (2018a). Data sheet: Nvidia quadro p4000.

NVIDIA (2018b). Data sheet: Quadro gv100.

NVIDIA (2018c, March). Volta architecture white paper.

NVIDIA (2019, June). Jetson agx xavier and the new era of autonomous machines.

NVIDIA (2022a, Aug). Kernel profiling guide.

NVIDIA (2022b). Nvidia, cuda-gdb.

NVIDIA (2022c). Nvidia quadro p4000.

NVIDIA (2022d, May). Profiler user’s guide.

94

NVIDIA (2023a). Cuda toolkit documentation.

NVIDIA (2023b). Nvidia cuda compiler driver nvcc.

NVIDIA (2023c). Nvidia management library (nvml).

NVIDIA (2023d). Parallel thread execution isa version 8.0.

Oliveira, D., F. B. Moreira, P. Rech, and P. Navaux (2018). Predicting the reliability

behavior of hpc applications. In International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD).

O’Neil, M. A. and M. Burtscher (2014). Microarchitectural performance characteriza-

tion of irregular gpu kernels. In 2014 IEEE International Symposium on Workload

Characterization (IISWC), pp. 130–139.

Öz, I. and Ö. F. Karadaş (2022). Regional soft error vulnerability and error propagation

analysis for gpgpu applications. The Journal of Supercomputing 78(3), 4095–4130.

Pattnaik, A., X. Tang, O. Kayiran, A. Jog, A. Mishra, M. T. Kandemir, A. Sivasubrama-

niam, and C. R. Das (2019). Opportunistic computing in gpu architectures. In 2019

ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA),

pp. 210–223.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research 12, 2825–2830.

Pentecost, L., U. Gupta, E. Ngan, J. Beyer, G.-Y. Wei, D. Brooks, and M. Behrisch

(2019). Champvis: Comparative hierarchical analysis of microarchitectural perfor-

mance. In 2019 IEEE/ACM International Workshop on Programming and Perfor-

mance Visualization Tools (ProTools), pp. 55–61.

Peroni, D., M. Imani, H. Nejatollahi, N. Dutt, and T. Rosing (2020). Data reuse for ac-

celerated approximate warps. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems 39(12), 4623–4634.

95

Power, J., J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood (2015). gem5-gpu: A

heterogeneous cpu-gpu simulator. IEEE Computer Architecture Letters 14(1), 34–36.

Rahimi, A., L. Benini, and R. K. Gupta (2013). Spatial memoization: Concurrent in-

struction reuse to correct timing errors in simd architectures. IEEE Transactions on

Circuits and Systems II: Express Briefs 60(12), 847–851.

Rahimi, A., L. Benini, and R. K. Gupta (2016). Circa-gpus: Increasing instruction reuse

through inexact computing in gp-gpus. IEEE Design & Test 33(6), 85–92.

Rhu, M., M. Sullivan, J. Leng, and M. Erez (2013). A locality-aware memory hierarchy

for energy-efficient gpu architectures. In Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-46, New York, NY, USA,

pp. 86–98. Association for Computing Machinery.

Rogers, T. G., M. O’Connor, and T. M. Aamodt (2013). Divergence-aware warp schedul-

ing. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, MICRO-46, New York, NY, USA, pp. 99–110. Association for Com-

puting Machinery.

Rusch, M. and E. Hart (2022, October). Improve shader performance and in-game frame

rates with shader execution reordering.

Sabena, D., L. Sterpone, L. Carro, and P. Rech (2014). Reliability evaluation of embedded

gpgpus for safety critical applications. IEEE Transactions on Nuclear Science 61(6),

3123–3129.

Sampson, A., J. Nelson, K. Strauss, and L. Ceze (2014, sep). Approximate storage in

solid-state memories. ACM Trans. Comput. Syst. 32(3), 1–23.

Shende, S. S. and A. D. Malony (2006, may). The tau parallel performance system. Int.

J. High Perform. Comput. Appl. 20(2), 287–311.

Sidiroglou-Douskos, S., S. Misailovic, H. Hoffmann, and M. Rinard (2011). Managing

performance vs. accuracy trade-offs with loop perforation. In Proceedings of the 19th

ACM SIGSOFT symposium and the 13th European conference on Foundations of soft-

ware engineering, ESEC/FSE ’11, New York, NY, USA, pp. 124–134. Association for
96

Computing Machinery.

Singh, S. and R. Nasre (2018). Scalable and performant graph processing on gpus using

approximate computing. IEEE Transactions on Multi-Scale Computing Systems 4(3),

190–203.

Singh, S. and R. Nasre (2019). Optimizing graph processing on gpus using approximate

computing: Poster. In Proceedings of the 24th Symposium on Principles and Practice

of Parallel Programming, PPoPP ’19, New York, NY, USA, pp. 395–396. Association

for Computing Machinery.

Singh, S. and R. Nasre (2020). Graffix: Efficient graph processing with a tinge of gpu-

specific approximations. In Proceedings of the 49th International Conference on Par-

allel Processing, ICPP ’20, New York, NY, USA. Association for Computing Ma-

chinery.

Stine, D., C. Musterle, and A. Rink (2021, September). Nvidia dlss and enscape: Intro-

ducing the latest technology in real-time visualization.

Sun, Y., S. Mukherjee, T. Baruah, S. Dong, J. Gutierrez, P. Mohan, and D. Kaeli (2018).

Evaluating performance tradeoffs on the radeon open compute platform. In 2018

IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS), pp. 209–218.

Sun, Y., Y. Zhang, A. Mosallaei, M. D. Shah, C. Dunne, and D. R. Kaeli (2021). Daisen:

A framework for visualizing detailed GPU execution. Comput. Graph. Forum 40(3),

239–250.

TechPowerUp (2020). Nvidia geforce rtx 2060.

TOP500 (2023). List Statistics | TOP500 — top500.org.

Topçu, B. and I. Öz (2022). Predicting the soft error vulnerability of gpgpu applica-

tions. In 2022 30th Euromicro International Conference on Parallel, Distributed and

Network-based Processing (PDP), pp. 108–115.

Ubal, R., B. Jang, P. Mistry, D. Schaa, and D. Kaeli (2012). Multi2sim: A simulation

97

framework for cpu-gpu computing. In 2012 21st International Conference on Parallel

Architectures and Compilation Techniques (PACT), pp. 335–344.

Venkatagiri, R., A. Mahmoud, S. K. S. Hari, and S. V. Adve (2016). Approxilyzer: To-

wards a systematic framework for instruction-level approximate computing and its

application to hardware resiliency. In 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 1–14.

Vijaykumar, N., E. Ebrahimi, K. Hsieh, P. B. Gibbons, and O. Mutlu (2018). The locality

descriptor: A holistic cross-layer abstraction to express data locality in gpus. In 2018

ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),

pp. 829–842.

Wang, Z., S. H. Nelaturu, and S. Amarasinghe (2019). Accelerated cnn training through

gradient approximation. In 2019 2nd Workshop on Energy Efficient Machine Learning

and Cognitive Computing for Embedded Applications (EMC2), pp. 31–35.

Wei, X., R. Zhang, Y. Liu, H. Yue, and J. Tan (2019). Evaluating the soft error resilience

of instructions for gpu applications. In 2019 IEEE International Conference on Com-

putational Science and Engineering (CSE) and IEEE International Conference on

Embedded and Ubiquitous Computing (EUC), pp. 459–464.

Wong, D., N. S. Kim, and M. Annavaram (2016). Approximating warps with intra-warp

operand value similarity. In 2016 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pp. 176–187.

Xu, Z., X. Chen, J. Shen, Y. Zhang, C. Chen, and C. Yang (2019, jan). Gardenia: A

graph processing benchmark suite for next-generation accelerators. ACM Journal on

Emerging Technologies in Computing Systems 15(1), 1280–1293.

Zhao, W., S. Tan, and P. Li (2020). Song: Approximate nearest neighbor search on gpu.

In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1033–

1044.

Zhao, X., A. Adileh, Z. Yu, Z. Wang, A. Jaleel, and L. Eeckhout (2019). Adaptive

memory-side last-level gpu caching. In 2019 ACM/IEEE 46th Annual International

98

Symposium on Computer Architecture (ISCA), pp. 411–423.

Öz, I. and S. Arslan (2021). Predicting the soft error vulnerability of parallel applications

using machine learning. Int. J. Parallel Program. 49(3), 410–439.

99

