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ABSTRACT

FREDHOLM INTEGRAL EQUATIONS OF THE FIRST KIND

A unique variation of the inverse problem is the first type of Fredholm in-
tegral equation. To address the computing issue, inverse mathematical physics
problems have been converted into the first type of Fredholm integral equa-
tion. We also use the Landweber iteration as an alternative to the well-known
Tikhonov regularization technique , which has been shown to be most effective
in solving ill-posed inverse problems. The Landweber iteration is a straight-
forward and effective technique that exhibits convergence towards the accurate
solution given specific conditions. Consequently, it serves as a valuable instru-
ment for resolving inverse problems across diverse domains, including signal
processing and geophysics.

Following the examination of the properties of uniqueness and existence
pertaining to solutions of integral equations of the first kind, the aforementioned
equations are resolved through the utilization of the collocation method. The
trapezoidal rule is widely utilized in numerical integration due to its straight-
forward implementation and computational efficiency. However, it may not
be appropriate for integrals with significant oscillatory behavior. In instances
of this nature, it may be imperative to employ more sophisticated numerical
integration methods, such as Gaussian quadrature or adaptive quadrature, in
order to attain precise outcomes. For weakly singular integrals that appear
in formulations of integral equations of potential problems in domains with
corners and edges, we provide n-points Gaussian quadrature procedures which
are particularly useful in numerical integration problems where the integral is
difficult to evaluate. The accuracy of the method depends on the number of
points used in the procedure, with higher order rules providing more accurate
results.



ÖZET

BİRİNCİ TÜR FREDHOLM İNTEGRAL DENKLEMLERİ

Fredholm bütünsel eşitliğinin ilk türü, ters sorunun özel bir türüdür. Matem-
atik fiziğinin tersi sorunları, hesaplama sorunu çözmek için ilk tip Fredholm
bütünsel eşitliğine çevrildi. Bütünsel eşitliğin çözümü için tahmin etmeye
çalıştığımız proje yöntemini ve kolokasyon yöntemini kullanırız. Ayrıca Tikhonov
düzenleme yöntemi iyi bilinir ve alternatif olarak, Landweber iterasyonunu kul-
lanırız.

Trapezoidal kural, sürekli çekirdeklerle bütünleşen bütünsel operatörlerin
sayısal entegrasyonu için kullanılırken, zayıf singular çekirgeler başka bir yöntem
kullanılarak sayısal entegrasyonda kullanılır. Metodun doğruluğunu kontrol
etmek için farklı test durumları dikkate alınır ve yaklaşım ve hata sonuçlarının
sırası sayısal örneklerle gösterilir.
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CHAPTER 1

Introduction

1.1 History of Fredholm Integral Equation of First Kind

" Some mathematicians still have a kind of fear whenever they encounter a
Fredholm integral equation of the first kind. " ∼ 𝐹𝑟𝑎𝑛𝑐𝑒𝑠𝑐𝑜 𝑇𝑟𝑖𝑐𝑜𝑚𝑖

In the year 1825, the Italian mathematician Abel made a significant contribution to
the field by formulating an integral equation related to the well-known tautochrone problem
(see references [1], [2] and [3]). Integral equations are a class of equations that involve
an unknown function 𝜑(𝑥) to be evaluated within the integral sign. The investigation of
integral equations is widely recognized as a highly beneficial area of study in both pure and
applied mathematics. This approach demonstrates significant utility in addressing a wide
range of physical challenges. Numerous initial and boundary value problems pertaining
to ordinary differential equations (ODE) and partial differential equations (PDE) have the
potential to be reformulated as problems that involve solutions in the form of approximate
integral equations.

The most significant and obvious of the three criteria for determining whether a
problem is ill-posed is instability under data perturbations. One must therefore take extra
precautions because it is very likely that traditional numerical methods will fail when
attempting to solve ill-posed problems.

The individual known as E. Picard was obligated to furnish substantiation for
his essential and complete requirement, now acknowledged as the "Picard’s Criterion,"
concerning the existence of solutions to a Fredholm integral equation of the first kind. The
individual in question neglected to address the matter of approximate solutions, as their
attention was solely directed towards the existence of solutions. The analysis conducted by
Picard on Fredholm integral equations of the first kind demonstrates that these equations
exhibit characteristics commonly associated with ill-posed problems. The notion of an
ill-posed problem, or more precisely, that of a well-posed problem, was first introduced
by Hadamard [4] over a century ago. Tikhonov [2] and Phillips [5] each put forth an
independent proposition for a regularization technique. The regularization technique
involves the substitution of ill-posed problems with well-posed ones. The theoretical
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contribution made by Tikhonov in 1943 had a notable impact on the stability of solutions
pertaining to inverse problems. The author demonstrated that ensuring the stability of the
solution to the inverse problem, which involves determining the spatial arrangement of
mass beneath a surface that produces a particular gravitational potential on said surface,
can be achieved by restricting the permissible mass distributions to a compact subset of a
specified function space. This concept is further explained in the scholarly work cited as
reference [6].

The text that follows is organized as follows: In Chapter 2, we will provide a general
overview of linearly ill-posed problems and the development of appropriate regularization
techniques using spectral theory. Additionally, it provides the IFK solution’s convergence
and accuracy criteria. One such technique is the Landweber iteration, which is introduced
and in-depth examined in Chapter 6 using the created framework.

The section on analytical solutions is in Chapter 3. The Tikhonov method and
regularization are then discussed in Chapters 4 and 5. Chapter 7 discusses the application of
the projection method and the collocation method while also showcasing a few theoretical
algorithms. The Gauss-Quadrature for singular kernels was the last point we made. The
final section of Chapter 9 provides a succinct summary of our findings. The numerical
projection method, Tikhonov regularization method, Landweber iteration method, and
Gaussian quadrature approach are included in addition to other numerical solutions to the
equation.



CHAPTER 2

Fredholm Integral Equations of the First Kind

Integral equations play a crucial role in diverse fields of science and engineer-
ing. Fredholm integral equations are widely recognized as highly valuable in various
disciplines, including control systems, economics, electrical engineering, medicine, and
more (see [7]). The first kind Fredholm integral equation, denoted as equation (2.1), is
expressed as follows:

∫ 𝑏

𝑎

𝐾 (𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓 (𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏. (2.1)

In this equation, the functions 𝑓 (𝑥) and 𝐾 (𝑥, 𝑡) are given and the function 𝜑(𝑥) is the
unknown quantity that needs to be determined. In general, this kind of integral equation
is inverse problem for a given kernel 𝐾 and driving term 𝑓 , (see Refs. [8],[3],and [2]).

We consider the integral equations (2.1), as an operator equations of the first kind

𝐴𝜑 = 𝑓 (2.2)

in appropriate normed function spaces. The notation 𝐴 : 𝑋 → 𝑌 denotes a function that
maps elements from a set 𝑋 to a set 𝑌 in a one-to-one manner. In other words, for every
element 𝜑 ∈ 𝑋 , the function 𝐴 assigns a distinct element 𝐴𝜑 ∈ 𝑌 [2].

2.1 Ill-posed Problems

According to Hadamard, in order for a mathematical model to be considered
"properly-posed" or "well-posed" in the context of a physical problem, it must satisfy the
following three properties [4]:
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1. There is a way to solve the issue (Existences).

2. The problem has at most of one solution (Uniqueness).

3. The solution exhibits continuous dependence on the data (Stability).

Definition 2.1 Consider an operator 𝐴 : 𝑈 → 𝑉 that maps a subset𝑈 of a normed space
𝑋 to a subset 𝑉 of a normed space 𝑌 . The equation

𝐴𝜑 = 𝑓 , (2.3)

is called well-posed or properly posed if 𝐴 : 𝑈 → 𝑉 is bĳective and the inverse operator
𝐴−1 : 𝑉 → 𝑈 is continuous. Otherwise, the equation is called ill-posed or improperly
posed [4].

By previous definition, there are three types of ill-posedness;

- The equation (2.3) does not have a solution for all 𝑓 ∈ 𝑉 if the mapping 𝐴 is not
surjective, indicating the nonexistence of a solution.

- The equation represented by equation (2.3) may possess multiple solutions in the event
that the function 𝐴 fails to exhibit injectivity (Non-uniqueness).

- The solution 𝜑 of equation (2.3) exhibits a lack of continuity with respect to the data
𝑓 in the case where the existence of the operator 𝐴−1 : 𝑉 → 𝑈 is present but its
continuity is not guaranteed (Instability).

The Fredholm integral equations of the first kind exhibit inherent ill-posedness.
The management and condensation of the stability condition pose significant challenges,
as a violation of this condition implies that even minor changes in the data can result in
highly significant deviations in the solution.

2.2 Compact Self-Adjoint Operators

In this paper, 𝑋 and 𝑌 will always denote Hilbert spaces (see refs. [8], [2],[4], and
[9]). In quantum mechanics and functional analysis, Hilbert spaces, a particular kind of
mathematical space, are frequently employed. They are distinguished by having an inner
product that enables the definition of vector lengths and angles.



Definition 2.2 [4] A linear mapping 𝐴 from a Banach space 𝑋 to a Banach space 𝑌
is considered compact if the image of any bounded subset of 𝑋 under 𝐴 is a relatively
compact set, meaning that its closure is compact.

Theorem 2.3 [4] Linear equations 𝐴𝜑 = 𝑓 with compact operators 𝐴 : 𝑋 → 𝑌 , where
𝑋 and 𝑌 are normed spaces and dim 𝑋 = ∞ are always ill-posed .

Theorem 2.4 [4] Let us consider two Hilbert spaces, which we will denote as 𝑋 and
𝑌 . We will now introduce a bounded linear operator, denoted as 𝐴, that maps from the
Hilbert space 𝑋 to the Hilbert space 𝑌 . There exists a linear operator 𝐴∗ : 𝑌 → 𝑋 that is
uniquely determined and possesses the property.

(𝐴𝜑, 𝜓) = (𝜑, 𝐴∗𝜓),

for all 𝜑 ∈ 𝑋 and 𝜓 ∈ 𝑌 , i.e., 𝐴 and the adjoint of 𝐴 is defined with respect to the
dual systems (𝑋, 𝑋) and (𝑌,𝑌 ), which are generated by the scalar products on 𝑋 and 𝑌
respectively. The operator 𝐴∗ is bounded and

∥𝐴∥ = ∥𝐴∗∥.

(Again we use the same symbol (·, ·) for the scalar products on 𝑋 and 𝑌 . ).

Theorem 2.5 [4] In the context of a bounded linear operator, it is observed that there
exists a certain property

𝐴(𝑋)⊥ = 𝑁 (𝐴∗) 𝑎𝑛𝑑 𝑁 (𝐴∗)⊥ = 𝐴(𝑋).

Note 2.6 If operator 𝐴 consists of a finite rank and 𝑓𝑛 → 𝑓 , then operator 𝐾 𝑓𝑛 → 𝐾 𝑓 .
Compact is a characteristic of an operator.

A linear operator 𝐴 : 𝑋 → 𝑋 that maps a Hilbert space 𝑋 onto itself is referred to
as self-adjoint if it satisfies the condition 𝐴 = 𝐴∗, where 𝐴∗ denotes the adjoint of 𝐴, and
𝜑 and 𝜓 are arbitrary elements of 𝑋 . It is crucial to note that, within the framework of a
self-adjoint operator, the scalar product (𝐴𝜑, 𝜑) is an actual values quantity that is valid



for all elements 𝜑 belonging to the set 𝑋 (see refs. [2],[4]), since

(𝐴𝜑, 𝜑) = (𝜑, 𝐴𝜑) = (𝐴𝜑, 𝜑).

In facts, 𝐴∗ is exists, linear and unique. If 𝐴 is bounded, then 𝐴∗ is bounded, and
if 𝐴 is compact, 𝐴∗ is compact.

Theorem 2.7 [4] Consider a Hilbert space 𝑋 and a self-adjoint compact operator 𝐴 :

𝑋 → 𝑋 where 𝐴 is non-zero. Subsequently, it can be deduced that all eigenvalues of
matrix 𝐴 possess the characteristic of being real numbers. Matrix 𝐴 possesses at least
one eigenvalue that is distinct from zero, and it can have at most a countable collection of
eigenvalues that converge solely at zero. According to the cited reference, it is stated that all
eigenspaces 𝑁 (_𝐼 − 𝐴) corresponding to nonzero eigenvalues _ possess finite dimension.
Additionally, the eigenspaces associated with distinct eigenvalues are orthogonal to each
other. Assume the sequence (_𝑛) of the nonzero eigenvalues to be ordered such that

|_1 | ⩾ |_2 | ⩾ |_3 | ⩾ . . . ,

and denote by 𝑃𝑛 : 𝑋 → 𝑁 (_𝐼−𝐴) the orthogonal projection operator onto the eigenspace
for the eigenvalue (_𝑛). Then

𝐴 =

∞∑︁
𝑛=1

_𝑛𝑃𝑛, (2.4)

in the sense of norm convergence. The orthogonal projection operator onto the null-space
𝑁 (𝐴) is denoted as 𝑄 : 𝑋 → 𝑁 (𝐴) [2]. Then

𝜑 =

∞∑︁
𝑛=1

𝑃𝑛𝜑 +𝑄𝜑 (2.5)

for all 𝜑 ∈ 𝑋 .



CHAPTER 3

Analytical Solution

Analytical solutions to problems are possible. It is possible to change a first-
kind equation into a second-kind equation. Then, using the Adomian decomposition
method (see [10]), we can apply the currently available techniques of the second kind to
the modified problem. Tikhonov and Philips independently developed the regularization
technique.

𝑓 (𝑥) =
∫ 𝑏

𝑎

𝐾 (𝑥, 𝑡)𝑢(𝑡)𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏] . (3.1)

where [𝑎, 𝑏] is a closed and bounded region, 𝑎 and 𝑏 are constants, 𝐾 (𝑥, 𝑡) is kernel,
𝑓 (𝑥) is the data function and 𝑢(𝑥) is the unknown function that will be determined. The
approximation of Fredholm integral equations of first kind;

𝛼𝑢𝛼 (𝑥) = 𝑓 (𝑥) −
∫ 𝑏

𝑎

𝐾 (𝑥, 𝑡)𝑢𝛼 (𝑡)𝑑𝑡. (3.2)

where 𝛼 is a small positive parameter which is called the regularization parameter. The
equation (3.2) can be written

𝑢𝛼 (𝑥) =
1

𝛼
𝑓 (𝑥) − 1

𝛼

∫ 𝑏

𝑎

𝐾 (𝑥, 𝑡)𝑢𝛼 (𝑡)𝑑𝑡. (3.3)

Hence, Tikhonov and Philips demonstrated that the solution 𝑢𝛼 of Equation (3.2)
converges to the solution 𝑢𝛼 (𝑥) of Equation (3.1) as the parameter 𝛼 approaches zero, as
referenced in [10]. It was shown that

𝑢(𝑥) = lim
𝛼→0

𝑢𝛼 (𝑥). (3.4)

7



It is of greatest significance to acknowledge that the initial form of the Fredholm
integral equation represents a problem that is improperly posed. An ill-posed problem
may not have a solution, or if it does, it may not be an unique solution.

Proof We can see on the example 3.1;

Example 3.1

sin(𝑥)
2

=
2

𝜋

∫ 𝜋/2

0
sin(𝑥) sin(𝑡)𝑢(𝑡)𝑑𝑡, 0 < 𝑥 ≤ 𝜋/2. (3.5)

The regularization method is employed to solve the Fredholm integral equation of the first
kind

𝛼𝑢𝛼 (𝑥) =
sin(𝑥)

2
− 2

𝜋

∫ 𝜋/2

0
sin(𝑥) sin(𝑡)𝑢𝛼 (𝑡)𝑑𝑡. (3.6)

Such that,

𝑢𝛼 (𝑥) =
1

2𝛼
sin(𝑥) − 2

𝜋𝛼

∫ 𝜋/2

0
sin(𝑥) sin(𝑡)𝑢𝛼 (𝑡)𝑑𝑡. (3.7)

By the Adomain decomposition method,

𝑢𝛼 (𝑥) =
∞∑︁
𝑛=0

𝑢𝛼𝑛 (𝑥). (3.8)

The recurrence relation,

𝑢𝛼0 (𝑥) =
1

2𝛼
sin(𝑥),

𝑢𝛼𝑘+1 (𝑥) = − 2

𝜋𝛼

∫ 𝜋/2

0
sin(𝑥) sin(𝑡)𝑢𝛼𝑘 (𝑡)𝑑𝑡, 𝑘 ≥ 0.



Consequently, the components are given

𝑢𝛼1 (𝑥) = − 2

𝜋𝛼

∫ 𝜋/2

0
sin(𝑥) sin(𝑡)𝑢𝛼0 (𝑡)𝑑𝑡,

= − 2

𝜋𝛼
sin(𝑥)

∫ 𝜋/2

0
sin(𝑡) 1

2𝛼
sin(𝑡)𝑑𝑡,

= − 1

𝜋𝛼2
sin(𝑥)

∫ 𝜋/2

0
sin2(𝑡)𝑑𝑡︸             ︷︷             ︸
= 𝜋
4

,

= − 1

𝜋𝛼2
.
𝜋

4
. sin(𝑥) = − 1

4𝛼2
sin(𝑥).

𝑢𝛼2 (𝑥) = − 2

𝜋𝛼

∫ 𝜋/2

0
sin(𝑥) sin(𝑡)𝑢𝛼1 (𝑡)𝑑𝑡,

= − 2

𝜋𝛼
sin(𝑥)

∫ 𝜋/2

0
sin(𝑡)

(
− 1

4𝛼2
sin(𝑡)

)
𝑑𝑡,

=
1

2𝜋𝛼3
sin(𝑥)

∫ 𝜋/2

0
sin2(𝑡)𝑑𝑡︸             ︷︷             ︸
= 𝜋
4

,

=
1

2𝜋𝛼3
𝜋

4
sin(𝑥) = 1

8𝛼3
sin(𝑥).

𝑢𝛼3 (𝑥) = − 2

𝜋𝛼

∫ 𝜋/2

0
sin(𝑥) sin(𝑡)𝑢𝛼2 (𝑡)𝑑𝑡,

= − 2

𝜋𝛼
sin(𝑥)

∫ 𝜋/2

0
sin(𝑡)

(
1

8𝛼3
sin(𝑡)

)
𝑑𝑡,

= − 1

4𝜋𝛼4
sin(𝑥)

∫ 𝜋/2

0
sin2(𝑡)𝑑𝑡︸             ︷︷             ︸
= 𝜋
4

,

= − 1

4𝜋𝛼4
𝜋

4
sin(𝑥) = − 1

16𝛼4
𝑠𝑖𝑛(𝑥).



This result gives the approximate solution when it is substituted into (3.8)

𝑢𝛼 (𝑥) =
1

2𝛼
sin(𝑥)

(
1 − 1

2𝛼
+ 1

4𝛼2
− 1

8𝛼3
+ · · ·

)
︸                                ︷︷                                ︸

= 2𝛼
1

𝑢𝛼 (𝑥) =
1

2𝛼
sin(𝑥).2𝛼 = sin(𝑥).

Hence,
𝑢(𝑥) = lim

𝛼→0
𝑢𝛼 (𝑥) = sin(𝑥).

□

It is showed that we get the solution of the equation.
Then, we check the uniqueness ;

2

𝜋

∫ 𝜋/2

0
sin(𝑥) sin(𝑡)𝜑(𝑡)𝑑𝑡 = sin(𝑥)

2

sin(𝑥)
∫ 𝜋/2

0
sin(𝑡)𝜑(𝑡)𝑑𝑡 = 𝜋 sin(𝑥)

4∫ 𝜋/2

0
sin(𝑡)𝜑(𝑡)𝑑𝑡 = 𝜋

4∫ 𝜋/2

0
sin(𝑡) 𝜋

4
𝑑𝑡 = −𝜋

4
cos(𝑡)

���𝜋/2
0

=
𝜋

4∫ 𝜋/2

0
sin(𝑡) sin(𝑡)𝑑𝑡 = 𝜋

4

Indeed, it is not a unique solution because the operator is not injective. By definition of
ill-posedness (2.1), the operator must be injective. Hence, we cannot solve the integral
equations analytically.



CHAPTER 4

Regularization of Ill-posed Problems

" Every restriction corresponds to a law of nature, a regularization of the
universe. " ∼ Carl Sagan

The utilization of the regularization technique enables the transformation of an
ill-posed Fredholm integral equation of the first kind into a problem that is well-posed.

∫ 𝑏

𝑎

𝐾 (𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓 (𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏. (4.1)

where 𝑓 (𝑥) and 𝐾 (𝑥, 𝑡) are known functions and 𝜑(𝑥) is the unknown function to be
determined. As we did in the section before, this equation will be represented by an
abstract equation of the form

𝐴𝜑 = 𝑓 , (4.2)

where 𝐴 is a linear compact operator. The comprehension of compact linear operators
on Hilbert space is significantly augmented by the theory of singular functions, which
was formulated by E.Schmidt [11]. Consequently, there is a prevalent endeavor to obtain
a particular all-encompassing resolution, commonly acknowledged as the solution with
the minimum norm least squares. The application of the Tikhonov regularization method
possesses the potential to convert a problem that is initially stated with flaws into one that
is approximately well-defined.

The general solution 𝜑 = 𝐴−1 𝑓 which satisfies the normal equations

𝐴∗𝐴𝜑 = 𝐴∗ 𝑓 , (4.3)

where 𝐴∗ is the adjoint of 𝐴. According to Schmidt’s theory [2], the compact self-adjoint
operator 𝐴∗𝐴 is known to have eigenvalues that are non-negative.

11



4.1 Singular Value Decomposition

The utilization of the mathematical technique known as the singular value decom-
position(SVD) contributes to the advancement of our comprehension of the process of
smoothing and the existence of solutions to Fredholm integral equations of the first kind
([2]).

Definition 4.1 [2] Let us consider the Hilbert spaces 𝑋 and 𝑌 , and denote by 𝐴 : 𝑋 → 𝑌

a compact linear operator. In addition, let 𝐴∗ : 𝑌 → 𝑋 denote the adjoint of 𝐴. The non-
negative square roots of the eigenvalues of the non-negative self-adjoint compact operator
𝐴∗𝐴 : 𝑋 → 𝑋 are commonly known as the singular values.

Theorem 4.2 [2] The sequence (`𝑛) represents the nonzero singular values of the compact
linear operator 𝐴 (where 𝐴 is not equal to zero), and these values are repeated based
on their multiplicity. In other words, the repetition is determined by the dimension of the
null-spaces 𝑁 (`2𝑛 𝐼 − 𝐴∗𝐴). Then there exist orthonormal sequences (𝜙𝑛) in 𝑋 and (𝑔𝑛)
in 𝑌 such that

𝐴𝜑𝑛 = `𝑛𝑔𝑛, 𝐴∗𝑔𝑛 = `𝑛𝜑𝑛. (4.4)

for all 𝑛 ∈ N. For each 𝜑 ∈ 𝑋 we have the singular value decomposition

𝜑 =

∞∑︁
𝑛=1

(𝜑, 𝜑𝑛)𝜑𝑛 +𝑄𝜑. (4.5)

with the orthogonal projection operator 𝑄 : 𝑋 → 𝑁 (𝐴) and

𝐴𝜑 =

∞∑︁
𝑛=1

`𝑛 (𝜑, 𝜑𝑛)𝑔𝑛 (4.6)

A system denoted as (`𝑛, 𝜑𝑛, 𝑔𝑛), where 𝑛 belongs to the set of natural numbers, and
possessing the aforementioned properties, is referred to as a singular system of matrix
𝐴. When the quantity of singular values is limited, the series denoted by equations (4.5)



and (4.6) are transformed into finite sums. It is important to acknowledge that when
considering an injective operator 𝐴, the orthonormal system {𝜑𝑛 : 𝑛 ∈ N} derived from
the singular system forms a comprehensive system within the space 𝑋 .

Note 4.3 Let (𝜑𝑛) denote an orthonormal sequence of the eigenelements of 𝐴∗𝐴, i.e.,
𝐴∗𝐴𝜑𝑛 = `2𝑛𝜑𝑛.

Theorem 4.4 (Picard) [2] Let 𝐴 : 𝑋 → 𝑌 be a compact linear operator with singular
system (`𝑛, 𝜑𝑛, 𝑔𝑛). The equation of the first kind

𝐴𝜑 = 𝑓 (4.7)

is solvable if and only if f belongs to the orthogonal complement 𝑁 (𝐴∗)⊥ and satisfies

∞∑︁
𝑛=1

1

`2𝑛
| ( 𝑓 , 𝑔𝑛) |2 < ∞. (4.8)

In this case a solution is given by

𝜑 =

∞∑︁
𝑛=1

1

`𝑛
( 𝑓 , 𝑔𝑛)𝜑𝑛. (4.9)

Picard’s theorem demonstrates the ill-posed nature of the equation 𝐴𝜑 = 𝑓 .
The function 𝑓 on the right-hand side is required to satisfy Equation (4.8). Picard

(2.1) employed the principles of singular system theory to formulate his renowned criterion
for the existence of solutions to equations of the aforementioned form (4.1).

Note 4.5 Equivalent condition: 𝑓 ∈ 𝑟𝑎𝑛𝑔𝑒(𝐴).

Note 4.6 According to Picard’s theorem, the existence of a solution for equation (4.1) can
be guaranteed when a compact linear operator 𝐴 is involved, provided that the function
𝑓 belongs to the range of 𝐴 and satisfies condition (4.8), which requires the singular
components of 𝑓 to decay at a rate that is sufficient. This phenomenon has been identified
and labeled as "Picard’s Criterion"([2]).



4.2 Regularization Schemes

Definition 4.7 [2] Let us consider two normed spaces, which we will denote as 𝑋 and 𝑌 .
We are given a bounded linear operator 𝐴 : 𝑋 → 𝑌 that is injective. Then a family of
bounded linear operators 𝑅𝛼 : 𝑌 → 𝑋 , 𝛼 > 0, with the property of point-wise convergence

lim
𝛼→0

𝑅𝛼𝐴𝜑 = 𝜑, 𝜑 ∈ 𝑋

is called a regularization scheme for the operator 𝐴. The term 𝛼 is commonly referred to
as the regularization parameter.

The efficacy of the Singular Value Decomposition (SVD) in the analysis of first-kind
Fredholm integral equations is evident.

According to Picard’s Theorem (4.4), the ill-posedness in a first-kind equation
with a compact operator can be attributed to the manner in which the eigenvalues behave
as the parameters ` → 0 and 𝑛→ ∞.

Theorem 4.8 [2] Consider a compact linear operator 𝐴 : 𝑋 → 𝑌 that is injective. Let
(`𝑛, 𝜑𝑛, 𝑔𝑛) be the singular system of 𝐴, where 𝑛 ∈ N. Let 𝑞 : (0,∞) × (0, ∥𝐴∥) → R be
a bounded function. We assume that for each 𝛼 > 0, there exists a positive constant 𝑐(𝛼)
such that

|𝑞(𝛼, `) | ≤ 𝑐(𝛼)`, 0 < ` ≤ ∥𝐴∥. (4.10)

and
lim
𝛼→0

𝑞(𝛼, `) = 1, 0 < ` ≤ ∥𝐴∥. (4.11)

The bounded linear operators 𝑅𝛼 : 𝑌 → 𝑋 , where 𝛼 > 0, are defined by

𝑅𝛼 𝑓 :=
∞∑︁
𝑛=1

1

`𝑛
𝑞(𝛼, `) ( 𝑓 , 𝑔𝑛)𝜑𝑛, 𝑓 ∈ 𝑌 . (4.12)



describe a regularization scheme with

∥𝑅𝛼∥ ≤ 𝑐(𝛼). (4.13)

We see that ”1/`𝑛” in that part of theorem 4.8, we have a problem that means
` → 0, 𝑛 → ∞. We describe some classical regularization schemes by choosing the
damping(filter function) q appropriately.

Theorem 4.9 [2] Let 𝐴 : 𝑋 → 𝑌 be a compact linear operator. Then for each 𝛼 > 0 the
operator 𝛼𝐼 + 𝐴∗𝐴 : 𝑋 → 𝑋 has a bounded inverse. Furthermore, if 𝐴 is injective then

𝑅𝛼 := (𝛼𝐼 + 𝐴∗𝐴)−1𝐴∗ (4.14)

describes a regularization scheme with ∥𝑅𝛼∥ ≤ 1/2
√
𝛼.

Note 4.10 It is concluded that the operator 𝐴 is injective. Let (`𝑛, 𝜑𝑛, 𝑔𝑛), where 𝑛
belongs to the set of natural numbers, be a singular system for the operator 𝐴. Then the
unique solution 𝜑𝛼 of

𝛼𝜑𝛼 + 𝐴∗𝐴𝜑𝛼 = 𝐴∗ 𝑓 (4.15)

can be written in the form

𝜑𝛼 =

∞∑︁
𝑛=1

`𝑛

𝛼 + `2𝑛
( 𝑓 , 𝑔𝑛)𝜑𝑛. (4.16)

The equation 𝐴∗𝐴𝜑𝑛 = `2𝑛𝜑𝑛 is indeed utilized and the application of SVD is demonstrated
in equation (4.6) to 𝐴∗ 𝑓 , we find

(𝛼𝐼 + 𝐴∗𝐴)𝜑𝛼 =

∞∑︁
𝑛=1

`𝑛 ( 𝑓 , 𝑔𝑛)𝜑𝑛 = 𝐴∗ 𝑓 . (4.17)

We try to cut off the "filter factors", which is singular value. It turns on the
regularization method.



Note 4.11 In conclusion, the Picard theorem showed that the equation (4.1), with a
compact linear operator 𝐴, exhibits a solution for a given 𝑓 ∈ 𝑁 (𝐴∗)⊥ if and only if the
singular components 𝑓 decay sufficiently rapidly for the condition (4.8) to hold.

In the context of discrete mathematics, specifically involving finite-dimensional
matrices, it is postulated that the matrix under consideration is either square or possesses
a greater number of rows than columns. Then, for any matrix 𝐴 ∈ R, 𝑚x𝑛 with 𝑚 ⩾ 𝑛,
the SVD takes the form

𝐴 = 𝑈Σ𝑉𝑇 =

𝑛∑︁
𝑖=1

𝑢𝑖𝜎𝑖𝑣
𝑇
𝑖 .

Here, Σ ∈ R𝑛x𝑛 is a diagonal matrix with the singular values, satisfying

Σ = 𝑑𝑖𝑎𝑔(𝜎1, . . . , 𝜎𝑛), 𝜎1 ⩾ 𝜎2 ⩾ · · · ⩾ 𝜎𝑛 ⩾ 0.

The matrices𝑈 ∈ R𝑚x𝑛 and 𝑉 ∈ R𝑛x𝑛 are composed of the left and right singular vectors

𝑈 = (𝑢1, . . . , 𝑢𝑛), 𝑉 = (𝑣1, . . . , 𝑣𝑛).

and both matrices have orthonormal columns:

𝑢𝑇𝑖 𝑢 𝑗 = 𝑣
𝑇
𝑖 𝑣 𝑗 = Σ𝑖 𝑗 𝑖, 𝑗 = 1, . . . , 𝑛.

The expression of the inverse of matrix 𝐴, if it exists, can be demonstrated in a clear and
direct manner;

𝐴−1 = 𝑉Σ−1𝑈𝑇

Thus we have ∥𝐴−1∥ = Σ−1, and it follows immediately

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 2 − 𝑛𝑜𝑟𝑚 : 𝑐𝑜𝑛𝑑2(𝐴) = ∥𝐴∥2∥𝐴−1∥2 = 𝜎1/𝜎𝑛.



The aforementioned expression remains valid in the case where matrix 𝐴 is rectangular and
possesses full rank. The computational complexity of all the singular value decomposition
algorithms is O(𝑚𝑛2) floating point operations (flops), under the condition that 𝑚 ⩾ 𝑛.



CHAPTER 5

The Tikhonov Regularization

As we did in the section previously, we will represent this equation as an abstract
equation of the form

𝐴𝜑 = 𝑓 . (5.1)

where 𝐴 be a compact operator that maps from the Hilbert space 𝑋 to the Hilbert space 𝑌 .
We have shown that there is typically more than one possible solution to this

equation. To solve this problem, we are looking for a certain general solution, sometimes
known as the minimal norm least squares solution. In other words, our program asks that
the solution to an imperfectly given issue be exchanged for an approximately sufficient
solution.

The 𝜑 = 𝐴−1 𝑓 is general solution. Hence, it satisfies the normal equations

(𝐴∗𝐴)𝜑 = 𝐴∗ 𝑓 , (5.2)

where 𝐴∗ is the adjoint of 𝐴. The eigenvalues of the self-adjoint compact operator
represented by 𝐴∗𝐴 are characterized with non-negativity. Moreover, it can be deduced
that the eigenvalues of the operator 𝐴∗𝐴 + 𝛼𝐼 on 𝑋 , with 𝐼 representing the identity
operator [4], are invariably positive for all positive values of 𝛼. The issue of determining
a solution for the equation is characterized by a bounded inverse in relation to the operator
(𝐴 ∗ 𝐴 + 𝛼𝐼);

(𝐴∗𝐴 + 𝛼𝐼)𝜑 = 𝐴∗ 𝑓 . (5.3)

turns on approximately well-posed problem. The solution 𝜑(𝛼) of the Tikhonov regular-
ization problem, as defined in [2], is referred to as the Tikhonov regularized solution. This
solution is obtained according to the theorem.

Theorem 5.1 [2] Let 𝐴 : 𝑋 → 𝑌 be a bounded linear operator and let 𝛼 > 0. For every
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element 𝑓 in the set 𝑌 , there exists a single and distinct element 𝜑𝛼 in the set 𝑋 such that

∥𝐴𝜑𝛼 − 𝑓 ∥2 = inf
𝜑∈𝑋

{∥𝐴𝜑𝛼 − 𝑓 ∥2 + 𝛼∥𝜑∥2}. (5.4)

The minimizer 𝜑𝛼 can be obtained by finding the unique solution of the equation

(𝛼𝐼 + 𝐴∗𝐴)𝜑𝛼 = 𝐴∗ 𝑓 , (5.5)

and depends continuously on 𝑓 .

The parameter 𝛼, which is greater than zero, in equation (5.4) functions as a
regularization parameter. Its purpose is to control the relative impact of the accuracy term
and the regularization term in the equation. Let us examine the sequence (`𝑛, 𝜑𝑛, 𝑔𝑛) for
𝑛 = 1, 2, . . . , which functions as an unique system for the operator 𝐴.

Theorem 5.2 [2] Consider a compact linear operator 𝐴 : 𝑋 → 𝑌 that is injective. Then
for 𝑓 ∈ 𝐴(𝑋) the condition 𝑓 ∈ 𝐴𝐴∗𝐴(𝑋) ( 𝑓 = 𝐴𝐴∗𝐴𝑔 𝑓 𝑜𝑟 𝑠𝑜𝑚𝑒 𝑔 ∈ 𝑋) is necessary
and sufficient for

∥𝜑𝛼 − 𝐴−1 𝑓 ∥ = O(𝛼), 𝛼 → 0. (5.6)

The discrete ill-posed problem is commonly encountered when individual values
of matrix 𝐴 exhibit a gradual convergence towards zero, resulting in an ill-conditioned
matrix. This phenomenon is particularly evident in the right-hand side of equation (5.4).

Note 5.3 The equation (5.4) is equal to

min
𝜑

{
∥𝐴𝜑 − 𝑓 ∥22 + 𝛼2 ∥𝜑∥

2
2

}
.

The condition number of (𝛼𝐼+𝐴∗𝐴) decreases as the size of the matrix 𝐴 increases.
The Tikhonov regularization of the equation corresponds to the regularization operators;



Theorem 5.4 Let 𝐴 : 𝑋 → 𝑌 be an injective bounded linear operator. Then

𝑅𝛼 := (𝛼𝐼 + 𝐴∗𝐴)−1𝐴∗ (5.7)

describes a regularization scheme with

∥𝑅𝛼∥ ≤ ∥𝐴∥
𝛼
. (5.8)

The equation (5.7) yields the Tikhonov approximation to 𝐴∗ 𝑓 , which corresponds
to the solution with the minimum norm of the normal equations.

Hence, it can be inferred that the vectors denoted by 𝑅𝛼 are actual approximations
to 𝐴∗ 𝑓 with respect to the given equation

𝑅𝛼 → 𝐴∗ 𝑓 𝑎𝑠 𝛼 → 0.

Furthermore, it can be observed that the Tikhonov approximation, represented by
the symbol 𝑅𝛼, exhibits continuous dependence on the function 𝑓 for any fixed positive
value of 𝛼. This can be attributed to the boundedness of the operator (𝛼𝐼 + 𝐴∗𝐴)−1𝐴∗ for
every fixed positive value of 𝛼.

Note 5.5 In summary, the application of the Tikhonov regularization technique allows for
the approximation of an ill-posed problem through the formulation of a set of intercon-
nected well-posed problems.

The initial section of our study demonstrated that the function 𝑓 specified in
equation (4.2) is commonly a quantity that is measured or observed. Consequently, the
true 𝑓 is not readily accessible in practical applications. The optimal outcome that can be
expected is the derivation of an approximation 𝑓 𝛿 of 𝑓 that meets the condition:

∥ 𝑓 𝛿 − 𝑓 ∥
∥ 𝑓 ∥ = 𝛿,

where 𝛿 represents a predetermined limit on the error of measurement. Rather than



constructing a regularized approximation using the actual function 𝑓 , we are constrained
to utilize the available data 𝑓 𝛿 to construct the regularized approximations.

Numerical solutions are extremely sensitive to noise and perturbations, and certain
types of perturbation are caused by rounding error because the problem (5.1) is ill-posed.
The regularization method should be used to solve an ill posed problem with noisy data.
We include the solutions to linear problems as described by

𝐴𝜑𝛿 = 𝑓 𝛿 (5.9)

where 𝐴 ∈ R𝑚x𝑛 with 𝑚 ≥ 𝑛 and 𝑓 𝛿 is noisy data and known, but represents

𝑓 𝛿 = 𝑓 + 𝛿 ∗ [ ∗ ∥ 𝑓 ∥
∥[∥ ; (5.10)

where [ is a random variable, 𝛿 - noise level.

Figure 5.1: The necessity for regularization can be demonstrated through illustration.

The coefficient matrices of discrete ill-posed problems typically have a very high
condition number.This implies that the simplistic approach is highly susceptible to any
alteration in the right-hand side, which serves as a representation of the errors in the data.



Then classical perturbation theory leads to the bound

∥𝜑𝑒𝑥𝑎𝑐𝑡 − 𝜑∥2
∥𝜑𝑒𝑥𝑎𝑐𝑡 ∥2

≤ 𝑐𝑜𝑛𝑑 (𝐴) ∥ 𝑓 𝛿∥2
∥ 𝑓𝑒𝑥𝑎𝑐𝑡 ∥2

(5.11)

Given the large condition number of matrix 𝐴, it can be inferred that the difference
between the estimated value 𝜑 and the exact value 𝜑𝑒𝑥𝑎𝑐𝑡 can be significant. Rather than
constructing a regularized approximation using the actual function 𝑓 , we are constrained
to utilize the provided data 𝑓 𝛿 and construct regularized approximations as follows:

𝜑𝛿𝛼 = (𝛼𝐼 + 𝐴∗𝐴)−1𝐴∗ 𝑓 𝛿

It has been established that the estimations 𝑓𝛼 derived from clean data 𝑓 converge
towards the solution of minimum norm least squares 𝐴∗ 𝑓 . Hence, it is justifiable to draw
a comparison between 𝜑𝛿𝛼 and 𝜑𝛼.

𝜑𝛿𝛼 − 𝜑𝛼 = (𝛼𝐼 + 𝐴∗𝐴)−1𝐴∗( 𝑓 𝛿 − 𝑓 ).

The results of this method are demonstrated through the emphasis on the following out-
comes:

∥𝐴𝐴∗(𝛼𝐼 + 𝐴∗𝐴)−1∥2 ≤ 1, ∥(𝛼𝐼 + 𝐴∗𝐴)−1∥2 ≤ 1/𝛼.

and hence
∥𝜑𝛿𝛼 − 𝜑𝛼∥2 ≤ 𝛿/2

√
𝛼 (5.12)

The previously mentioned inequality denotes a stability threshold for the approx-
imation 𝜑𝛿𝛼. Given these considerations, it can be concluded that as the regularization
parameter 𝛼 approaches zero, the process becomes unstable, while keeping the error level
𝛿 constant. Optimal regularization parameter selection involves determining the appro-



priate value based on the data error. In accordance with Tikhonov’s proposition, it can be
stated that the selection of a choice 𝛼 = 𝛼(𝛿) results in the implementation of a regular
algorithm for the ill-posed problem (5.5). Assuming that

𝛼(𝛿) → 0 𝑎𝑛𝑑 𝜑𝛿𝛼 (𝛿) → 𝐴∗ 𝑓 𝑎𝑠 𝛿 → 0.

The investigation of the regularization technique can be best carried out in the
context of a Hilbert space, where the integral operator is represented by a compact operator
denoted as 𝐴 : 𝑋 → 𝑌 . In this context, 𝑋 and 𝑌 represent Hilbert spaces. The norm of
the variable 𝑋 should exhibit adequate robustness in order to impose favorable structural
characteristics on the solution, whereas the norm of the variable𝑌 should be appropriately
flexible to accommodate realistic data functions. The regularization method involves
seeking a solution to the equation

𝐴𝜑 = 𝑓 . (5.13)

is sought by minimizing the functional

∥𝐴𝜑𝛼 − 𝑓 ∥2 = ∥𝐴𝜑 − 𝑓 ∥2 + 𝛼∥𝜑∥2, (5.14)

where 𝛼 > 0 is a regularization parameter. The minimizer 𝜑𝛼 of this functional is the
solution of the well-posed second-kind equation

(𝐴∗𝐴)𝜑𝛼 + 𝛼𝜑𝛼 = 𝐴∗ 𝑓 . (5.15)

Therefore, the function ℎ exhibits both uniqueness and stability when subjected to pertur-
bations of the data function 𝑓 . The discrepancy principle, introduced by V.A. Morozov [9],
is an a posteriori parameter choice strategy that was informally utilized by D.L. Phillips
[9]. According to this principle, there is a unique 𝛼(𝛿) satisfying

∥𝐴𝜑𝛿
𝛼(𝛿) − 𝑓 𝛿∥ = 𝛿 𝑎𝑛𝑑 ∥𝜑𝛿

𝛼(𝛿) − 𝜑∥ → 0. 𝑎𝑠 𝛿 → 0.



Moreover, if the function 𝜑 lies within the range of the adjoint operator 𝐴∗ then

∥𝜑𝛿
𝛼(𝛿) − 𝜑∥ = O(

√
𝛿)

but this order is best possible [9]. The authors T. Raus, H. Gfrerer, and H. Engl have devel-
oped discrepancy principles that achieve the optimal order O(𝛿2/3) (refer to [9]). One can
employ an iterative approach to scale the brick wall of ordinary Tikhonov regularization,
which has a complexity of O(𝛿2/3). In iterated Tikhonov regularization, the functionals
are successively minimized,

∥𝐴𝜑𝛼 − 𝑓 𝛿∥2 = min
𝜑

{∥𝐴𝜑𝛼 − 𝑓 𝛿∥2 + 𝛼∥𝜑𝛼∥2}, (5.16)

A suitable set of regularization parameters is 𝛼. With this approach, any 𝑝 in the range of
[0, 1) is approximated to an order of O(𝛿𝑝).



CHAPTER 6

The Landweber Method

The Landweber iteration, also known as the Landweber algorithm, was developed
to tackle non-linear problems with constraints and has now been expanded to solve ill-
posed linear inverse problems. Louis Landweber[12] first suggested the method in the
1950s, and it can today be seen as a specific example of many other, more generic methods.
The Landweber method iteratively minimizes the residual error between the observed data
and the estimated solution.

We examine the integral equation, employing iterative solvers based on Landweber
type iterative methods.

Figure 6.1: The fundamental notion of semiconvergence. In the initial iterations, the
iterates 𝑥𝑘 exhibit a tendency to progressively improve as approximations to the precise
solution 𝑥𝑒𝑥𝑎𝑐𝑡 .

The first requirement is to enhance existing iterative methods because they only
require matrix-vector products. This makes them computationally efficient and suitable
for large-scale problems. However, these methods may converge slowly or even fail
to converge for ill-conditioned matrices. Therefore, there is a need to develop new
preconditioning techniques to improve the convergence rate of iterative methods.

We must use iterative techniques that do not use a fixed regularization parameter
but instead use the number of iterations as a regularization parameter to meet the second
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requirement. Remember that iterative methods always produce a series of iterations
𝑥1, 𝑥2, . . . , 𝑥𝑘 that converge to some solution, starting with a user-specified starting vector
𝑥0(often the zero vector). In the case of 𝑘 = 1, 2, . . . and for some iterative methods, the
initial iterations of 𝑥𝑘 resemble regularized(filtered) solutions. They progressively become
closer and closer to the exact solution 𝑥𝑒𝑥𝑎𝑐𝑡 . We may view the Landweber algorithm as
solving:

min
𝑥

∥𝐴𝑥 − 𝑓 ∥2 (6.1)

using an iterative method. We examine a Landweber method

𝑥𝑛+1 = 𝑥𝑛 + 𝜔𝐴𝑇 ( 𝑓 − 𝐴𝑥𝑛), 𝑛 = 0, 1, 2, . . . , 𝑘 . (6.2)

where𝜔 is a relaxation parameter and real number that must satisfy 0 < 𝜔 < 2∥𝐴𝑇 𝐴∥−12 =

2/𝜎2
1 .

Theorem 6.1 [13] Let 𝜔 be a positive real number. The iterates of equation (6.1) will
converge to a solution of equation (6.2) if and only if the value of 𝜔 satisfies the condition
0 < 𝜔 < 2/𝜎2

1 , where 𝜎1 represents the greatest singular value of matrix 𝐴. If 𝑥0 belongs
to the range of the transpose of matrix 𝐴 over the real numbers, then 𝑥𝑘 is the only solution
that has the smallest Euclidean norm.

In each iteration, the computation involves determining the residual vector 𝑟𝑘 =

𝑏 − 𝐴𝑥𝑘 and subsequently multiplying it with 𝐴𝑇 and 𝜔. This correction is then added to
the current iterate 𝑥𝑘 in order to obtain the subsequent iterate. Specifically, we can write
the 𝑘th iterate as

𝑥𝑘 = 𝑉Φ𝑘Σ
−1𝑈𝑇 𝑓 ,

where the elements of the diagonal matrix Φ𝑘 = 𝑑𝑖𝑎𝑔(𝜙𝑘1, . . . , 𝜙
𝑘
𝑘
) are the filter factors for

𝑥𝑘 , which are given by

𝜙𝑘𝑖 = 1 − (1 − 𝜔𝜎2
𝑖 )𝑘 , 𝑖 = 1, 2, . . . , 𝑛.

Additionally, we have that for small singular values 𝜎𝑖, 𝜙𝑘𝑖 ≈ 𝑘𝜔𝜎2
𝑖
, meaning that they



degrade at the same rate as the Tikhonov filter factors.

Note 6.2 It is important to acknowledge that we consider the problem, which encompasses
a broader scope than solving the linear equation 𝐴𝜑 = 𝑓 . It should be noted that a linear
system of equations has the potential to exhibit consistency when considering noise-free
data, but may demonstrate inconsistency when considering the presence of noise in the
data of interest. As a result, the scope of the comparison between the minimization problem
and the linear system is more extensive. If the singular values of matrix 𝐴 exhibit a gradual
decrease towards zero and the matrix 𝐴 is characterized by ill-conditioning, the reduction
of equation (6.1) generally gives rise to a discrete ill-posed problem.



CHAPTER 7

Projection Method

Integral equations are discretized with the intention of converting them into systems
of linear algebraic equations that can be solved numerically to obtain approximations of
solutions. The process of finding a solution to an equation of the first kind

𝐴𝜑 = 𝑓 . (7.1)

The projection method is frequently employed for numerical solutions of an injective
compact operator 𝐴 : 𝑋 → 𝑌 from a Banach space 𝑋 to a Banach space 𝑌 , without the
inclusion of regularization techniques.

Definition 7.1 [2], Let 𝑋 denote a normed space and𝑈 be a nontrivial subspace contained
within 𝑋 . A linear operator 𝑃 : 𝑋 → 𝑈 that is bounded and satisfies the condition 𝑃𝜑 = 𝜑

for all 𝜑 ∈ 𝑈 is referred to as a projection operator from 𝑋 onto U.

Definition 7.2 [2], Consider two Banach spaces, denoted by 𝑋 and 𝑌 , and let 𝐴 be a
bounded linear operator mapping from 𝑋 to 𝑌 . It is given that 𝐴 is an injective operator.
Consider two sequences of sub-spaces, denoted as 𝑋𝑛 ⊂ 𝑋 and 𝑌𝑛 ⊂ 𝑌 . It is given
that the dimension of each subspace in both sequences is equal to 𝑛. Additionally, we
have projection operators 𝑃𝑛 : 𝑌 → 𝑌𝑛. For given 𝑓 ∈ 𝐴(𝑋) the projection method
approximates the solution 𝜑 ∈ 𝑋 of

𝐴𝜑 = 𝑓 (7.2)

for 𝜑 ∈ 𝑋 by projected equation

𝑃𝑛𝐴𝜑𝑛 = 𝑃𝑛 𝑓 𝜑𝑛 ∈ 𝑋𝑛. (7.3)

We describe projection method as a general tool for approximately solving linear
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operator equations by projection them onto sub-spaces which is finite dimensional.

Note 7.3 In a general, it can be stated that projection methods are classified as semi-
discrete methods. Therefore, numerical computations will be employed to obtain an
approximate version of form

𝑃𝑛𝐴𝑛𝜑𝑛 = 𝑃𝑛 𝑓𝑛. (7.4)

where 𝐴𝑛 is some approximation to 𝐴 and 𝑓𝑛 approximates 𝑓 .

A theorem can be stated as follows:

Theorem 7.4 [2], Let us consider a bĳective bounded linear operator 𝐴 : 𝑋 → 𝑌 , where
𝑋 and 𝑌 are Banach spaces. We assume that the projection operators 𝑃𝑛 : 𝑌 → 𝑌𝑛 and
the approximating bounded linear operators 𝐴𝑛 : 𝑋 → 𝑌 point-wise convergence

𝑃𝑛𝐴𝑛 − 𝑃𝑛𝐴→ 0, 𝑛→ ∞,

and
sup

𝜑∈𝑋𝑛,∥𝜑∥=1
∥𝑃𝑛𝐴𝑛 − 𝑃𝑛𝐴∥ → 0, 𝑛→ ∞,

is satisfied. For sufficiently large values of 𝑛, the approximate equation (7.4) exhibits a
unique solution, and an error estimate can be obtained

∥𝜑𝑛 − 𝜑∥ ≤ 𝐶{ inf
𝜓∈𝑋𝑛

∥𝜓 − 𝜑∥ + ∥(𝑃𝑛𝐴𝑛 − 𝑃𝑛𝐴)𝜑∥ + ∥𝑃𝑛 ( 𝑓𝑛 − 𝑓 )∥} (7.5)

for the solution 𝜑 of (7.1) and some constant 𝐶.

In other words,the projection operator is a linear operator that operates between
two finite-dimensional spaces. The projection method is a technique that reduces the
solution of a linear system to finite dimensions.

The projection method is a flexible tool in mathematical modeling because it
can also be used to approximate partial differential equation solutions. As a result, the
projection method is effective in terms of computation and can be used to solve a variety



of issues. It is crucial to remember that the basis functions chosen to represent the solution
have an impact on the method’s accuracy.

7.1 The Collocation Method

The first kind of linear integral equations can be expressed as follows:

∫ 𝑏

𝑎

𝐾 (𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓 (𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏. (7.6)

In this equation, the kernel 𝐾 and the function 𝑓 are known, while 𝜑 represents the
unknown function that needs to be determined. The Fredholm integral equations of first
kind were discretized using a discretization scheme based on the projection method.

Definition 7.5 [2] Consider two sequences of sub-spaces, denoted as 𝑋𝑛 ⊂ 𝑋 and𝑌𝑛 ⊂ 𝑌 ,
where the dimension of each subspace is 𝑛. We define the equation (7.1) to be satisfied
only at a finite number of points, which we refer to as "collocation points". Let𝑌 be the set
defined as the image of the function 𝐶 on the graph 𝐺. We proceed by selecting 𝑛 points,
denoted as 𝑥 (𝑛)1 , 𝑥

(𝑛)
2 , . . . , 𝑥

(𝑛)
𝑛 , from the graph 𝐺.

Then the collocation method approximates the solution of (7.1) by an element
𝜑𝑛 ∈ 𝑋𝑛 satisfying

(𝐴𝜑𝑛) (𝑥 𝑗 ) = 𝑓 (𝑥 𝑗 ), 𝑗 = 1, . . . , 𝑛. (7.7)

Let 𝑋𝑛 = 𝑠𝑝𝑎𝑛{𝑢1, . . . , 𝑢𝑛}. Then, we represent 𝜑𝑛 as a linear combination

𝜑𝑛 =

𝑛∑︁
𝑘=1

𝛾𝑘𝑢𝑘 , (7.8)

and immediately see that (7.7) is equivalent to the linear system [2]

𝑛∑︁
𝑘=1

𝛾𝑘 (𝐴𝑢𝑘 ) (𝑥 𝑗 ) = 𝑓 (𝑥 𝑗 ), 𝑗 = 1, . . . , 𝑛. (7.9)



for the coefficients 𝛾1, . . . , 𝛾𝑛.

The method can be understood as a projection method that utilizes the interpolation
operator 𝑃𝑛 : 𝑌 → 𝑌𝑛. The establishment of the equivalence of equation (7.7) can
be achieved by taking into account the fact that the interpolating function is uniquely
determined by its values at the interpolation points [2].

𝑃𝑛𝐴𝜑𝑛 = 𝑃𝑛 𝑓 . (7.10)

Moreover, let us now assume that we have chosen a basis for a finite dimensional
sub-spaces which is spanned by the columns of the matrix 𝜑 = 𝑠𝑝𝑎𝑛{𝑢1, . . . , 𝑢𝑛} ∈ R𝑛×𝑛.
Within this particular context, our primary aim is to identify a resolution, articulated
within the selected framework, that effectively fulfills the given right-hand side denoted
as 𝑓 . We can formulate this as a constrained least squares problem:

min
𝜑

∥𝐴𝜑 − 𝑓 ∥2 𝑠.𝑡 𝜑 = 𝑠𝑝𝑎𝑛{𝑢1, . . . , 𝑢𝑛}. (7.11)

It is worth mentioning that the collocation method can be considered as a projection
method, wherein a solution to equation (7.1) is sought within the subspace formed by the
basis functions 𝑢1, . . . , 𝑢𝑛.

The constraint in equation (7.11) can be restated as the condition that 𝜑 is equal to
the product of 𝑢𝑘 and 𝛾, where 𝛾 is an unknown vector in R𝑘 . This leads to a regularized
solution expressed in the more computation formulation

𝜑𝑘 = 𝑢𝑘𝛾𝑘 , 𝛾𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∥(𝐴𝑢𝑘 )𝛾 − 𝑓 ∥2 (7.12)

The problem denoted as ∥(𝐴𝑋𝑘 )𝛾 − 𝑓 ∥2 in equation (7.12) is commonly referred
to as the projected problem because it is obtained by projecting the original problem onto
the subspace spanned by 𝑛 dimensions, namely 𝑠𝑝𝑎𝑛{𝑢1, . . . , 𝑢𝑛}. If the value of 𝑘 is not
excessively large, it is possible to calculate the matrix (𝐴𝜑𝑘 ) ∈ R𝑛x𝑘 in an explicit manner.
Subsequently, the projected problem, which refers to the least squares problem for 𝛾, can
be solved.

As a special case of the projection problem, if 𝜑𝑘 = (𝑢1, . . . , 𝑢𝑘 ), meaning that the
basis vectors consist of the first 𝑘 right singular vectors of matrix 𝐴, then the projected



problem takes the form

∥𝑈Σ𝑉𝑇𝜑𝑘𝛾 − 𝑓 ∥2 =
𝑈Σ

(
𝐼𝑘

0

)
𝛾 − 𝑓


2

=


©«
| |
𝑢1 . . . 𝑢𝑘

| |

ª®®¬
©«
𝜎1

. . .

𝜎𝑘

ª®®®¬ 𝛾 − 𝑓
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.

It follows immediately that the elements of 𝛾 (𝑘) are 𝛾 (𝑘) = 𝑢𝑇
𝑖
𝑓 /𝜎𝑖, and there for the

projected solution 𝜑(𝑘) = (𝑢1, . . . , 𝑢𝑘 )𝛾 (𝑘) is the solution.
A finite-dimensional family of functions can be used to numerically approximate

the solution to the equation 𝐴𝜑 = 𝑓 . The method is referred to as the projection method
because the exact solution of the equation is projection into a space of finite dimensions.
The collocation method is most well-known.

Examining the matrix’s condition number is one method that can be used to make
a prediction about how well or ill the matrix 𝐴 behaves in response to perturbations. This
index is defined in ∥𝜑 − 𝜑𝛼∥2 = ∥O∥2 as

𝑐𝑜𝑛𝑑 (𝐴) = ∥𝐴∥2∥𝐴−1∥2 = 𝜎1/𝜎𝑛. (7.13)

where 𝜎1 and 𝜎𝑛 are the greatest and the smallest singular values of A, respectively.
Matrix ill-conditioning is respected as a high condition number. A matrix is considered
singular if it has an uncountable number of elements. When the matrix is obtained through
the discretization of an integral equation, it becomes apparent that the singular values of
matrix 𝐴 exhibit a gradual decline until they eventually converge to a stable value close to
zero, approximately 𝜎1 times the precision of the computational machine. As a result, the
condition number 𝑐𝑜𝑛𝑑 (𝐴), which serves as a numerical indicator of a matrix’s sensitivity,
exhibits an unbounded nature and is roughly inversely proportional to the precision of the
computing machine. Ill-conditioning is a well-established phenomenon that can lead to
numerical instability during computations involving matrix 𝐴. To mitigate this concern,
various regularization techniques can be employed to improve the computational stability
and enhance the accuracy of the results.



7.1.1 The Collocation Method Application

Using the quadrature rule to approximate
∫ 𝑏

𝑎
𝐾 (𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 say

𝐴𝑛𝜑(𝑥𝑖) =
∫ 𝑏

𝑎

𝐾 (𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 �
𝑛∑︁
𝑗=1

𝛾 𝑗𝐾 (𝑥𝑖, 𝑡 𝑗 )𝑢(𝑡 𝑗 ).

So the equation (7.6) can be replaced by

𝐴𝑛𝜑(𝑥𝑖) =
𝑛∑︁
𝑗=1

𝛾 𝑗𝐾 (𝑥𝑖, 𝑡 𝑗 )𝑢(𝑡 𝑗 ) = 𝑓 (𝑥𝑖), 𝑎 ≤ 𝑥 ≤ 𝑏 (7.14)

In the collocation method the values of 𝜑(𝑡 𝑗 ), 𝑗 = 1, 2, . . . , 𝑛 are found so that the equation
(7.14) is verified for all points 𝑥1, 𝑥2, . . . , 𝑥𝑛, in [𝑎, 𝑏]. Although it’s not necessary to
assume 𝑚 = 𝑛, m and n are frequently chosen to be equal, and 𝑥𝑖 = (𝑏−𝑎)𝑖

𝑛
is chosen as

𝑥𝑖 = 𝑡𝑖, 𝑖 = 1, 2, . . . , 𝑛.

𝑛∑︁
𝑗=1

𝛾 𝑗𝐾 (𝑥𝑖, 𝑡 𝑗 )𝑢(𝑡 𝑗 ) = 𝑓 (𝑥𝑖), 𝑖 = 1, 2, . . . , 𝑛. (7.15)

Taking 𝐴 = (𝑎𝑖 𝑗 ) matrix such that 𝑎𝑖 𝑗 = 𝛾 𝑗 𝑘 (𝑥𝑖, 𝑡 𝑗 ) for 𝑎 ≤ 𝑖, 𝑗 ≤ 𝑛, the unknown
vector ®𝛾 = (𝛾(𝑡1), 𝛾(𝑡2), . . . , 𝛾(𝑡𝑛))𝑇 = (𝛾1, 𝛾2, . . . , 𝛾𝑛)𝑇 and the right hand side ®𝐹 =

( 𝑓1, 𝑓2, . . . , 𝑓𝑛)𝑇 , the equation (7.7) can be approximated by the matrix equation

𝐴 ®𝛾𝑛 = ®𝐹. (7.16)

Now applying Trapezoidal rule on equation (7.14) then we obtain

ℎ

[
1

2
𝐴𝑖0𝜑0 + 𝐴𝑖1𝜑1 + · · · + 1

2
𝐴𝑖𝑛𝜑𝑛

]
= 𝑓 (𝑥𝑖), 𝑖 = 0, 1, 2, . . . , 𝑛.



where ℎ = (𝑏 − 𝑎)/𝑛 and its general form is written as

𝐴𝜑 = 𝐹 (7.17)

Hence, we have the linear system then we can solve the finite linear system.



CHAPTER 8

Numerical Quadrature for Singular Kernel

In this paper, we propose a methodology for the development of high-order quadra-
ture methods that can be used to numerically compute singular integrals. Over the past
few years, researchers have developed generalized Gaussian quadratures as a solution for
situations where direct application of Gaussian quadratures is not feasible. In order to
ascertain the optimal number of quadrature points, our proposed approach employs an
adaptive algorithm and generalized Gaussian quadratures [14]. The efficacy and accuracy
of numerical integration for singular integrals can be significantly improved through the
utilization of high-order quadrature rules, as evidenced by previous studies.

Then, for any point 𝑦 ∈ (−1, 1), the quadrature rules

∫ 1

−1

1

2
log((𝑦 − 𝑥)2)𝜙(𝑥)𝑑𝑥 ≈

𝑁∑︁
𝑛=1

𝑊𝑛 (𝑦)𝜙(𝑥𝑛) (8.1)

have the degree 𝑁 − 1. Now, suppose that 𝑥1, 𝑥2, . . . , 𝑥𝑁 denotes the 𝑁−Legendre nodes
on [−1, 1].

Furthermore, we have provided a description of the quadrature formula for integrals
of the form (8.1), in which the point of evaluation 𝑦 lies within the interval of integration.
It can be confidently asserted that the quadrature formula will yield exact integration for
all functions 𝑓 conforming to the structure described in equation (7.17).

Theorem 8.1 [14] Let 𝑥1, 𝑥2, . . . , 𝑥𝑁 and 𝑤1, 𝑤2, . . . , 𝑤𝑁 represent the 𝑁 nodes and
weights of the Gaussian quadrature on the interval [−1, 1] . Let us assume that 𝜑 :

[−1, 1] → R is a function that is sufficiently smooth and 𝑃 𝑗 (𝑥) and 𝑄 𝑗 (𝑥) represent the
𝑗-th Legendre polynomial and Legendre function of the second kind, respectively. Finally,
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suppose that the coefficients𝑊1,1,𝑊1,2, . . . ,𝑊1,𝑁 is defined by the formulae

𝑊 =𝑤𝑛

(
(𝑃0(𝑥𝑛) − 𝑃1(𝑥𝑛))𝑅0(𝑦) +

𝑁−2∑︁
𝑗=1

(𝑃 𝑗−1(𝑥𝑛) − 𝑃 𝑗+1(𝑥𝑛))𝑅 𝑗 (𝑦)

+𝑃𝑁−2(𝑥𝑛)𝑅𝑁−1(𝑦) + 𝑃𝑁−1(𝑥𝑛)𝑅𝑁 (𝑦)) . (8.2)

for all 𝑛 = 1, 2, . . . , 𝑁 , with [(𝑁 + 𝑗 − 3)/2] denoting the integer part of (𝑁 + 𝑗 − 3)/2,
and the mappings 𝑅 𝑗 : (−1, 1) → R defined by the formula

𝑅 𝑗 (𝑦) = 𝑄 𝑗 (𝑦) +
1

4
𝑙𝑜𝑔

(
(𝑦 − 1)2

)
. (8.3)

Then, for any point 𝑦 ∈ (−1, 1), the quadrature rules

∫ 1

−1

1

2
log((𝑦 − 𝑥)2)𝜙(𝑥)𝑑𝑥 ≈

𝑁∑︁
𝑛=1

𝑊𝑛 (𝑦)𝜙(𝑥𝑛) (8.4)

have the degree 𝑁 − 1, respectively.

Note 8.2 For any natural number 𝑛 and 𝑥 ∈ [𝑎, 𝑏], the Legendre differential equation
[14] is

(1 − 𝑥2) 𝑑
2𝑢

𝑑𝑥2
− 2𝑥

𝑑𝑢

𝑑𝑥
+ 𝑛(𝑛 + 1)𝑢 = 0. (8.5)

A potential resolution to the Legendre differential equation (8.5) is the Legendre polynomial
𝑃𝑛 (𝑥) : [−1, 1] → R, defined by the three-term recursion formula

𝑃𝑛+1(𝑥) =
2𝑛 + 1

𝑛 + 1
𝑥𝑃𝑛 (𝑥) −

𝑛

𝑛 + 1
𝑃𝑛−1(𝑥). (8.6)



with

𝑃0(𝑥) = 1,

𝑃1(𝑥) = 𝑥.

The Legendre function of the second kind [14] 𝑄𝑛 : C [−1, 1] → C, defined by the
three-term recursion formula

𝑄𝑛+1(𝑧) =
2𝑛 + 1

𝑛 + 1
𝑧𝑄𝑛 (𝑧) −

𝑛

𝑛 + 1
𝑄𝑛−1(𝑧). (8.7)

with

𝑄0(𝑧) =
1

2
log( 𝑧 + 1

𝑧 − 1
),

𝑄1(𝑧) =
𝑧

2
log( 𝑧 + 1

𝑧 − 1
) − 1,

It is evident that the function 𝑄𝑛 (𝑧) exhibits a branch cut in the complex z-plane
along the real axis spanning from −1 to 1. In accordance with established convention, the
function 𝑄𝑛 is defined on the branch cut. The real numbers can be mapped to the set of
real numbers using the given formula

𝑄𝑛 (𝑧) =
1

2
lim
ℎ→0

(𝑄𝑛 (𝑥 + 𝑖ℎ) +𝑄𝑛 (𝑥 − 𝑖ℎ)). (8.8)



CHAPTER 9

Numerical Experiments

The objective of this section is to demonstrate the precision and effectiveness of the
proposed methodologies by showcasing multiple examples of Fredholm integral equations
of the first kind (see Refs. [4] and [15]). The discretized manifestation of the problem
can be represented as the discrete ill-posed problem [2]. The minimization problem is
replaced by a linear system of equations, as the discrete version under consideration is a
consistent linear system

𝐴𝜑 = 𝑓 .

We consider noise-free and noisy data with noise levels,
(
∥ 𝑓− 𝑓 𝛿 ∥2
∥ 𝑓 ∥2

)
. To conduct

error analysis, the relative error is calculated. The numerical examples are compared to
each other by computing relative error,

(
∥𝜑−𝜑∥2
∥𝜑∥2

)
. A natural number 𝑁 represents the

number of points.
The objective of this concluding section is to provide numerical illustrations that

support the theoretical findings of this study. The methods employed in this study en-
compass the Collocation method, Tikhonov regularization method, Landweber iteration,
and the Generalized Gaussian Quadrature method. These methods will be implemented
using appropriate algorithms and the Matlab software. Subsequently, a comparison will
be made between the exact solution and the approximate solution using a suitable number
of 𝑛 points.

Example 9.1 The integral equation, as referenced in [16], can be solved using the collo-
cation method. The equation is defined as follows:

∫ 1

0
𝑒𝑥𝑡𝜑(𝑡)𝑑𝑡 = 𝑒𝑥+1 − 1

𝑥 + 1
, 0 ≤ 𝑥 ≤ 1.

The operator is injective. The function 𝜑(𝑥) = 𝑒𝑥 represents a unique solution. Before
solving the example, we will proof that the operator is injective.

Proof First of all, 𝜑(𝑥) be integrable on [0, 1] and 𝑒𝑥𝑡 be monotonic for 𝑥 is fixed.
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1. If 𝐴𝜑 = 0 ⇒ 𝜑 = 0, we are done.

2. Assume 𝜑 ≠ 0 on Ω+,

𝜑 > 0 ⇒ ∃Ω− 𝜑 < 0, 𝑥 ∈ Ω−

Case x = 0,

∫ 1

0
𝜑(𝑡)𝑑𝑡 = 0 ⇒

∫
Ω+
𝜑(𝑡)𝑑𝑡 = −

∫
Ω−

|𝜑(𝑡) |𝑑𝑡,∫
Ω+
𝜑(𝑡)𝑑𝑡 +

∫
Ω−

|𝜑(𝑡) |𝑑𝑡 = 0.

Figure 9.1: The graph shows Ω+ and Ω−

We are done.

Case 𝑥 ≠ 0, By extreme value theorem, ∃𝑡0, 𝑡1 such that for each 𝑥 ∈ [0, 1].

- Since 𝜑 is non-negative,

∫ 1

0
𝑒𝑥𝑡0𝜑(𝑡)𝑑𝑡 ≤

∫ 1

0
𝑒𝑥𝑡𝜑(𝑡)𝑑𝑡 ≤

∫ 1

0
𝑒𝑥𝑡1𝜑(𝑡)𝑑𝑡.

By the intermediate value theorem, 𝜑 attains every value of the interval [𝑡0, 𝑡1],
so for some 𝑡 in [0, 1].



- If 𝜑 is negative on [0, 1]

∫ 1

0
𝑒𝑥𝑡1𝜑(𝑡)𝑑𝑡 ≤

∫ 1

0
𝑒𝑥𝑡𝜑(𝑡)𝑑𝑡 ≤

∫ 1

0
𝑒𝑥𝑡0𝜑(𝑡)𝑑𝑡.

and we still get the same result as above. We are done. □

In order to estimate the value of an integral, the trapezoidal rule can be employed
in the following manner:

∫ 1

0
𝑒𝑥𝑡𝜑(𝑡)𝑑𝑡 ≈ ℎ

[
1

2
𝑒0𝜑(0) +

𝑛−1∑︁
𝑖=1

𝑒𝑖ℎ𝑥𝜑( 𝑗 ℎ) + 1

2
𝑒𝑥𝜑(1)

]
= 𝑓 (𝑥𝑖).

where 𝑏 = 1, 𝑎 = 0, 𝑥𝑛 =
∑𝑛
𝑖=1 𝑎 + (𝑖 − 1)ℎ , ℎ = 𝑏−𝑎

𝑛
and 0 ≤ 𝑡 ≤ 1.

We use the exact solution 𝜑 and its approximate one 𝜑𝑛 as well as the relative error
∥𝜑−𝜑𝑛∥2
∥𝜑∥2 of the example 9.1 in a natural number 𝑁 where 𝑁 is the number of collocation

points, for 𝑁 = 8, 16 and 32.

Figure 9.2: Basis functions the set of triangular functions(Hat function)



Table 9.1: Relative errors of the collocation method of 𝑁 = 8, 16 and 32 based on
piece-wise linear function.

N Condition (𝐴) Error

8 1.18182e+18 0.009032
16 1.32322e+18 0.019635
32 1.44785e+18 0.021673

The table 9.1 shows the solution of integral equation with basis of Hat function in
figure 9.2. Furthermore, it is observed from the data presented in Table 9.1 that as the
value of 𝑁 increases, the accuracy of the exact solution decreases. Hence, it is possible
to modify the basis by employing a spline basis, as illustrated in Figure 9.3.

Figure 9.3: The basis of B-Spline

The integral equations are solved using the spline basis depicted in Figure 9.3.



Table 9.2: Relative errors of the collocation method of 𝑁 = 8, 16 and 32 based on Spline
basis.

N Condition (𝐴) Error

8 1.01955e+17 0.009031
16 1.03098e+18 0.011764
32 1.24485e+18 0.017624

The table 9.2 shows the solution of integral equation with spline basis in figure
9.3. Increasing N will result in a closer representation of the matrix(𝐴), but it will become
more ill-conditioned.

Figure 9.4: Graph of approximation solution of integral equation with exact solution based
on hat function

We can therefore see that by using a collocation method with a different basis,
we can approach the exact solution very closely. Furthermore, the results are improved
as seen in the table 9.2, as the spline basis in figure 9.3 is a smoother function than the
hat function in figure 9.2. Thus, it is clear that by applying a collocation method with a
different basis, we can come close to finding the precise solution.



As the dimensions of the matrix increase, the solvability of the equation becomes
progressively more challenging due to the escalating condition number. This phenomenon
leads to a deviation between the approximate solution and the exact solution. In tjis case,
it is imperative to employ the regularization approach.



Example 9.2 To solve the Fredholm integral equation of the first kind, which is same as
previous example 9.1, but now, we will now employ the Tikhonov method.

∫ 1

0
𝑒𝑥𝑡𝜑(𝑡)𝑑𝑡 = 𝑒𝑥+1 − 1

𝑥 + 1
, 0 ≤ 𝑥 ≤ 1.

Let 𝑥𝑖 = 0 + 𝑖/𝑁, 𝑖 = 1, 2, . . . , 𝑁 + 1 ⊂ [0, 1] is the collocation points. Firstly, we apply
the Tikhonov regularization method with 𝛼 = 0.0001(1𝑒 − 04) and 𝐼 is identity matrix
without perturbation data .

Table 9.3: Relative errors of the Tikhonov regularization of 𝑁 = 32, 64 and 128.

N Condition (𝛼𝐼 + 𝐴∗𝐴) Error

32 1.9627e+04 0.018481
64 1.8960e+04 0.013629
128 1.8632e+04 0.010490

Figure 9.5: Graph of approximation solution of integral equation by Tikhonov regulariza-
tion without noisy data.



In conclusion, the Tikhonov regularization technique is employed in the presence
of noisy data. Consequently, a random distributed perturbation, acquired through the
utilization of the Matlab command "randn," is incorporated into the right hand side. We
obtain the vector 𝑓 𝛿 :

𝑓 𝛿 = 𝑓 + 𝛿 ∗ [ ∗ ∥ 𝑓 ∥
∥[∥ ,

where [ is a random variable, 𝛿 - noise level,

∥( 𝑓 𝛿 − 𝑓 )∥
∥ 𝑓 ∥ = 𝛿,

and the function "randn(.)" generates arrays of normally distributed random numbers with
mean 0, "randn(size(f))" returns an array of random entries of the same size as 𝑓 . We get
this equation,

𝐴𝜑𝛿 = 𝑓 𝛿 .

As a result, we use collocation points and Tikhonov regularization to solve the
integral equation.

We use the exact solution 𝜑 and its approximate one 𝜑𝑛 as well as the relative error
(∥𝜑 − 𝜑𝑛∥/∥𝜑∥) of the example 9.2 in some arbitrary points for 𝑁 = 32, 64, and 128. We
choose 𝛿 = 0.1 and [ = 𝑟𝑎𝑛𝑑𝑛(𝑁).

Table 9.4: Relative errors of the Tikhonov regularization of 𝑁 = 32, 64, and 128 .

N Condition (𝛼𝐼 + 𝐴∗𝐴) Error

32 1.9627e+04 0.027268
64 1.8960e+04 0.017671
128 1.8632e+04 0.010430



Figure 9.6: Graph of solution of integral equation with approximation solution by
Tikhonov regularization with noisy data

Tikhonov regularization can be applied to integral equations with or without noisy
data, but it is typically applied with noisy data. The table 9.4 demonstrates that while
the number of conditions is rising, the number of errors is falling. The exact result
is observable. Additionally, Tikhonov regularization is a helpful method for resolving
ambiguous problems where the solution might not be obvious or unique. Additionally, it
can aid in stabilizing the solution and avoiding over-fitting.

In conclusion, if we carefully examine the figure 9.6, we can see that the integral
equation has noisy data. By using Tikhonov regularization, we are able to find the
approximation solution even with noisy data. Tikhonov regularization, which involves
including a regularization term in the objective function, is a frequently employed technique
for resolving imprecise problems. This technique aids in solution stabilization and lessens
the impact of data noise.



Example 9.3 The Fredholm integral equation of the first kind, previously discussed, is
being addressed using the Landweber iteration method with collocation points.

∫ 1

0
𝑒𝑥𝑡𝜑(𝑡)𝑑𝑡 = 𝑒𝑥+1 − 1

𝑥 + 1
, 0 ≤ 𝑥 ≤ 1.

We know that the operator is injective. The unique solution is 𝜑(𝑥) = 𝑒𝑥 . Firstly, we apply
the Landweber iteration without noisy data. The algorithm is given by the update

𝑥𝑘+1 = 𝑥𝑘 + 𝜔𝐴∗( 𝑓 − 𝐴𝑥𝑘 ).

where the relaxation factor 𝜔 satisfies

0 < 𝜔 < 2∥𝐴𝑇 𝐴∥−1 = 2/𝜎2
1 .

where 𝜎1 is the largest singular value of 𝐴. We choose 𝜔 =
( 𝑓−𝐴𝑥0) ( 𝑓−𝐴𝑥0)

( 𝑓−𝐴𝑥0)𝑇 𝐴𝑇 ( 𝑓−𝐴𝑥0) , where
𝑥0 = 0 is initial vector.

Table 9.5: Residual and error of the Landweber iteration of 𝑁 = 32, 64, and 128.

N Residual: ∥( 𝑓 − 𝐴𝑥𝑘 )∥2 Error

32 0.00174 0.01827
64 0.00036 0.01708
128 0.00010 0.01625



Figure 9.7: Graph of approximation solution of integral equation by Landweber iteration
without noisy data

Then, we apply the Landweber iteration with noisy data. Consequently, the intro-
duction of a randomly distributed perturbation to each data function, we obtain the vector
𝑓 𝛿 :

𝑓 𝛿 = 𝑓 + 𝛿 ∗ [ ∗ ∥ 𝑓 ∥
∥[∥ ,

where [ is a random variable, 𝛿 - noise level and the function "randn(.)" generates arrays
of normally distributed random numbers with mean 0, "randn(size(f))" returns an array
of random entries of the same size as 𝑓 . We get this equation,

𝐴𝜑 = 𝑓 𝛿 .

Moreover, We may view the Landweber method with noisy data as solving:

min
𝑥∈R

∥𝐴𝜑 − 𝑓 𝛿∥2.



We choose 𝛿 = 0.1 and [ = 𝑟𝑎𝑛𝑑𝑛(𝑁, 1). The results of our approach are displayed :

Table 9.6: Residual and errors of the Landweber iteration of 𝑁 = 32, 64, and 128.

N ∥( 𝑓 𝛿 − 𝐴𝑥𝑘 )∥2 Error

32 0.00206 0.02533
64 0.00046 0.01512
128 0.00020 0.01121

Figure 9.8: Graph of approximation solution of integral equation by Landweber iteration
with noisy data

The Landweber iteration method has the potential to be used as an alternative
for Tikhonov regularization. The state of relaxation is imperative in this particular case.
Consequently, we ascertain the precise solution to the problem.

The Landweber iteration method is considered to be simpler in comparison to
Tikhonov regularization due to its avoidance of the need to compute the singular value
decomposition. If the relaxation factor is not selected with caution, the solution may exhibit



slow convergence and exhibit noise. Hence, determining the exact solution may be used
as a helpful indicator for evaluating the efficacy of the Landweber iteration. Additionally,
a variety of inverse problems, such as signal processing and image reconstruction, can be
solved using Landweber iteration. Due to its slow convergence rate, it might not be the
most effective approach for large-scale issues.



Example 9.4 In order to solve the Fredholm integral equation of the first kind, which is
presented without an exact solution.

∫ 1

0
𝑒𝑥𝑡𝜑(𝑡)𝑑𝑡 = 𝑥 cos(𝑥), 0 ≤ 𝑥 ≤ 1.

We apply collocation method with collocation points and piece-wise liner functions(Hat
functions).

Figure 9.9: Solution of Integral Equation without exact solution

Also, condition number of matrix 𝐴: 1.02485𝑒 + 04. Actually, we find the approx-
imation solution which looks like sin(𝑥) function.



Example 9.5 The Fredholm integral equation of the first kind [[14]] which is given

∫ 1

−1

1

2
log((𝑦 − 𝑥)2)𝜙(𝑥)𝑑𝑥 ≈

𝑁∑︁
𝑛=1

𝑊𝑛 (𝑦)𝜙(𝑥𝑛), (9.1)

where
𝜙 = sin(2𝑥) + cos(3𝑥).

We use the quadrature to evaluate integral of (9.1) for the singularities with function
𝜙 : [−1, 1] → R,

Table 9.7: 14-node quadrature formula for 𝑦 = −0.98628

𝑥𝑛 𝑤𝑛

-0.9863 -.1749507
-0.9285 -.243983
-0.8273 -.203561
-0.6873 -.215990
-0.5152 -.107525
-0.3191 -.119635
-0.1080 0.108820
0.1080 -.1913486
0.3191 0.903821
0.5152 0.448256
0.6873 0.104767
0.8273 0.561625
0.9285 0.607434
0.9863 0.213079

The table 9.7 shows that the integral equation is satisfied by the Gaussian quadra-
ture rule for singular kernels method (8.1) [14] . This rule is widely used in numerical
analysis for approximating integrals with singularities. The table provides the weights



and nodes necessary for accurate approximation using this method.



Example 9.6 We consider the following integral in article "Quadrature rules for weakly
singular, strongly singular, and hyper-singular integrals in boundary integral equation
methods [15]":

∫ 1

−1

(1 − 𝜏2)1/2
𝜏2 + _2

ln |𝑡 − 𝜏 |𝑑𝜏 = 𝜋 ln 2 + 𝜋
_
(1 + _2)1/2 ln

√
_2 + 𝑡2

_ +
√
1 + _2

. (9.2)

The integral in (9.2) contains logarithmic singularities at 𝜏 = 𝑡. For integrals of the
type (9.2) in the context of related singular integral equations, a number of special-purpose
quadrature rules have been proposed (see Refs. [15] and [14]).

First, We choose the _ = 5, Then, we can solve by Gaussian quadrature method
for singular kernel.

Table 9.8: Residual and errors of the Gaussian quadrature method of 𝑁 = 8, 16, and 32.

N ∥ 𝑓 − 𝐴𝜙𝑘 ∥2 Error

8 0.00260 0.06287
16 0.00326 0.06300
32 0.00430 0.56051

The table 9.8 illustrates that the integral equation is compact and ill-posed after
𝑁 = 16, which prevents convergence to the exact solution.

In addition, we apply the Tikhonov regularization method with Gaussian quadra-
ture nodes, _ = 5 , identity matrix 𝐼 and 𝛼 = 0.001(1𝑒 − 03) without perturbing the data.
It has been demonstrated that this approach works well for resolving ill-posed issues, par-
ticularly those involving singular kernels. It is crucial to remember that the regularization
parameters that are chosen can significantly affect how accurate the solution is, so care
should be taken to choose the correct values.



Table 9.9: Relative errors of the Tikhonov regularization of 𝑁 = 32, 64 and 128

N Condition (𝛼𝐼 + 𝐴∗𝐴) Error

32 1.08446e+03 0.025501176
64 1.09924e+03 0.010415111
128 1.11911e+03 0.010101289

Figure 9.10: The graph presented illustrates the approximate solution of an integral
equation without noisy data.

Therefore, the Tikhonov regularization technique is employed in the presence of
noisy data. We obtain the vector 𝑓 𝛿 :

𝑓 𝛿 = 𝑓 + 𝛿 ∗ [ ∗ ∥ 𝑓 ∥
∥[∥ ,



where [ is a random variable, 𝛿 - noise level. We have this equation,

𝐴𝜑 = 𝑓 𝛿 .

We choose 𝛿 = 0.1 and [ = 𝑟𝑎𝑛𝑑𝑛(𝑁, 1) (𝑀𝑎𝑡𝑙𝑎𝑏 − 𝑐𝑜𝑚𝑚𝑎𝑛𝑑). Moreover, we
apply the Tikhonov regularization method without perturbation data with 𝛼 = 0.001(1𝑒 −
03) and 𝐼 is identity matrix.

Table 9.10: Relative errors of the Tikhonov regularization method of 𝑁 = 32, 64, and 128.

N Condition (𝛼𝐼 + 𝐴∗𝐴) Error

32 1.08446e+03 0.03545011
64 1.09924e+03 0.01141511
128 1.11911e+03 0.01210128

,

Figure 9.11: The graph presented illustrates the approximation solution of an integral
equation using data that contains noise.



The Gaussian Quadrature rule is initially employed in the context of solving the
Fredholm integral equation of the first kind, which involves a singular kernel. Hence,
it is evident that the solution fails to converge at the given amount of 𝑁 = 16. The
observed phenomenon can be explained by the ill-conditioned characteristics of the matrix,
which arises from the existence of a singular kernel. As a result, numerical instability
occurs. Regularization techniques are frequently utilized to address the issue of ill-
conditioned matrices that possess singular kernels. The process of truncated singular
value decomposition entails the truncation of singular values that fall below a specific
threshold, thereby diminishing the influence of the singular kernel. In contrast, Tikhonov
regularization includes a regularization component to enhance the stability of the solution
by establishing a balance between accurately fitting the data and minimizing the norm of
the solution. Both methodologies have been demonstrated to be effective in augmenting
numerical stability and achieving precise solutions for equations of the first kind featuring
singular kernels.

The application of Tikhonov regularization is examined both in the presence and
absence of noisy data. The inclusion of a regularization parameter in the Tikhonov
regularization technique works to enhance the stability of the solution. This parameter
provides for finding a balance between the accuracy and smoothness of the solution. The
graph 9.11 depicted in the table 9.10 demonstrates how closely the result matches the
correct response.



CHAPTER 10

Conclusion

In this article, we examine the resolution of the Fredholm integral equation and
subsequently discuss the necessary conditions to attain a possible, unique, and correctly
available solution. To effectively examine the resolution of the Fredholm integral equation,
it is imperative to possess a comprehensive comprehension of the fundamental mathemat-
ical structure and methodologies employed. This encompasses the investigation of the
characteristics of the kernel function, analysis of conditions for convergence, and explo-
ration of diverse numerical techniques for solving equations of this nature. Moreover, a
comprehensive comprehension of linear algebra and functional analysis is imperative in
order to guarantee a rigorous examination of the existence, uniqueness, and stability of
the solution.

The application of the collocation method has been employed for the resolution
of Fredholm integral equations of the first order, utilizing hat functions and spline bases.
When a spline basis is used, the results are improved. After 𝑁 = 16, our solution gets
worse as the number of conditions increases. To try and improve the accuracy of our
solution, we can try increasing the quantity of collocation points or using a different
numerical approach. It is crucial to remember that the basis functions selected can have
a significant impact on the method’s effectiveness. We can use the generalized Gaussian
quadrature rule. These methods have been found to be effective in dealing with singular
kernels and large values of N. Furthermore, the Tikhonov method possesses the benefit of
exhibiting computational efficiency and straightforward implementation.

It is important to emphasize that regularization techniques, like Tikhonov regular-
ization, can help produce more stable solutions for problems, whether or not they involve
noisy data. To prevent over fitting or under fitting the data, it is crucial to carefully choose
the regularization parameter. Additionally, incorporating prior knowledge or constraints
into the regularization term can further improve the accuracy of the solution. For problems
of first kind, a specific type of iterative regularization known as the Landweber-type itera-
tive method can also produce reliable and stable results. The self-regularization property
of this method can also help with the analysis of the iterative process’s convergence.
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