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ABSTRACT

RESOURCE ALLOCATION FOR MASSIVE MULTIPLE INPUT

MULTIPLE OUTPUT BASED COMMUNICATIONS SYSTEMS

In this thesis, we examine resource allocation strategies for massive multiple-input

and multiple-output (MIMO) based wireless communications systems to increase system

performance, considering computation-intensive applications with low-latency communi-

cation. Firstly, we propose user selection algorithms for non-orthogonal multiple-access

(NOMA)-based massive MIMO systems in densely deployed scenarios to increase the

sum data rate. Then, we investigate mobile edge computing (MEC) as a solution to en-

able computation-intensive and delay-critical applications. We propose resource alloca-

tion algorithms considering the downlink and uplink transmit powers, the task offloading

decision factor and the computing resources to reduce both transmission and computing

delays for the massive MIMO-NOMA-assisted MEC system. Finally, we consider a coop-

erative MEC system where helpers assist in the execution of cell-edge users’ computation-

intensive tasks with low latency. On the other hand, the task offloading in MEC can

introduce security concerns as the offloaded data may be intercepted and overheard by

eavesdroppers. Since ensuring a secure task offloading scheme in MEC is important, we

formulate the optimization problem to minimize both offloading and computing delays

while satisfying security constraints for a massive MIMO-based cooperative MEC. We

provide performance results based on sum data rate, delay and total offloading data for

the proposed schemes in massive MIMO based wireless communication systems.
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ÖZET

YOĞUN ÇOK GİRİŞLİ ÇOK ÇIKIŞLI HABERLEŞME SİSTEMLERİ

İÇİN KAYNAK TAHSİSİ

Bu tezde, düşük gecikmeli haberleşme ile yoğun hesaplama gerektiren uygula-

malar için, sistem performansını artırmak amacıyla yoğun çok girişli ve çok çıkışlı (MIMO)

kablosuz iletişim sistemlerinde kaynak tahsisi stratejileri incelenmektedir. Öncelikle,

toplam veri hızını artırmak amacıyla yoğun olarak konuşlandırılmış senaryolarda dik-

gen olmayan çoklu erişim (NOMA) tabanlı yoğun MIMO sistemleri için kullanıcı seçim

algoritmaları önerilmektedir. Ardından, yoğun hesaplama gerektiren ve gecikme açısın-

dan kritik olan uygulamaları gerçekleştirmek için bir çözüm olarak mobil uç hesaplama

(MEC) sistemi incelenmektedir. Yoğun MIMO-NOMA destekli MEC sistemi için, hem

iletim hem de hesaplama gecikmelerini azaltmak amacıyla aşağı bağlantı ve yukarı bağlantı

iletim güçlerini, görev iletim karar faktörünü ve hesaplama kaynaklarını dikkate alan kay-

nak tahsis algoritmaları önerilmektedir. Son olarak, yardımcıların düşük gecikme süre-

siyle hücre ucundaki kullanıcıların yoğun hesaplama gerektiren görevlerini yürütmesine

yardımcı olan işbirlikçi bir MEC sistemi dikkate alınmaktadır. Öte yandan, MEC’de

görev iletimi sırasında, verilerin gizli dinleyiciler tarafından engellenebilir ya da duyu-

labilir olması güvenlik sorunu yaratabilir. MEC’de güvenli bir şekilde görev iletimini

sağlamak önemli olduğundan, yoğun MIMO tabanlı işbirlikçi MEC sisteminde güvenlik

kısıtlamaları göz önünde bulundurularak, hem iletim hem de hesaplama gecikmelerini en

aza indirmek için bir optimizasyon problemi formüle edilmektedir. Yoğun MIMO tabanlı

kablosuz iletişim sistemlerinde, önerilen şemalar için toplam veri hızı, gecikme ve toplam

iletilen veriye dayalı performans sonuçları sağlanmaktadır.
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CHAPTER 1

INTRODUCTION

1.1. Background and Motivation

In recent years, there has been an exponential increase in demand for wireless

data traffic and the number of connected devices. In addition to this demand, mobile

users request seamless service at higher data rates to perform data-intensive applications.

To cope with this growing request, it is necessary to introduce new technologies that

can enhance spectral efficiency while enabling spatial reuse of the available spectrum.

This can be achieved by utilizing multiple antennas at the base station (BS) and/or user

equipment (UE), which increases the number of degrees of freedom available through the

propagation channel. Therefore, multiple-input and multiple-output (MIMO) has been

presented to significantly improve the sum data rate without increasing the bandwidth or

the transmit power.

With the increased demand for higher spectral efficiency and reduced delay, mas-

sive MIMO technology at the BS with a large number of antennas has been provided

as a promising solution for these requirements. By using a large number of antennas,

the BS can accommodate multiple co-channel users simultaneously. In addition to the

high spectral efficiency, these systems offer several other advantages, such as diversity

gain, improved reliability, and increased energy efficiency. Furthermore, accurately esti-

mating the channel response between each transmit-receive link is critical for effectively

leveraging the benefits of massive MIMO. Several studies have demonstrated that as the

number of antennas in a system grows, the user channel tends to be sparse (Lahbib et al.,

2019). The massive MIMO channel responses exhibit sparsity because a few number of

paths contain the majority of the received energy. Thus, instead of relying on a large

training sequence to estimate the channel matrix, it is recommended to leverage the spar-

sity of the channel response. Estimating the channel response in sparse uplink channels

of massive MIMO systems can be accomplished using compressive sensing (CS) to re-

cover the original sparse signal with only a small number of measurements. Numerous

greedy algorithms have been developed in the literature to address the CS problem. These
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algorithms include matching pursuit (MP) (Mallat and Zhang, 1993), orthogonal match-

ing pursuit (OMP) (Davis et al., 1997), regularized orthogonal matching pursuit (ROMP)

(Needell and Vershynin, 2010), stagewise orthogonal matching pursuit (StOMP) (Donoho

et al., 2012), orthogonal complementary matching pursuit (OCMP) (Rath and Guillemot,

2009), compressive sampling matching pursuit (CoSaMP) (Needell and Tropp, 2009), and

gradient pursuit (GP) (Blumensath and Davies, 2008).

Although the next-generation wireless systems provide several techniques, such

as MIMO and massive MIMO, it is essential to design multiple access schemes. Non-

orthogonal multiple-access (NOMA) has become an important technology due to its higher

spectral efficiency and massive connectivity compared to orthogonal multiple access (OMA)

schemes, such as time-division multiple access (TDMA), frequency-division multiple

access (FDMA), and code-division multiple access (CDMA). In NOMA, the same re-

source block of time, frequency, or code is shared by multiple users; superposition coding

and successive interference cancellation (SIC) can be used at the transceivers to manage

multiple-access interference.

In densely deployed scenarios that accommodate a large number of users, user

selection becomes essential since the BS cannot serve all of them simultaneously. Because

there can be more users to be supported than the number of transmit antennas available

at the BS. Thus, user selection is an important technique to improve system performance

while reducing inter-user interference.

On the other hand, increasing mobile computation-intensive applications and the

finite computation capacities of devices have recently generated new challenges in next-

generation systems. Since the applications have strict latency requirements and heavy

computation needs, the computing capability of the devices, e.g., local central processing

unit (CPU) frequency and memory, may be insufficient. Thus, the limited computation

capability can result in a degraded quality of user experience, such as excessive delay

and power consumption (Chen et al., 2022). Moreover, to fulfill the demands of real-

time tasks, it is essential to transmit a massive amount of data with very low latency.

Towards this end, mobile edge computing (MEC) is one of the most promising solutions

for computation-intensive and delay-sensitive applications such as virtual reality (VR),

augmented reality (AR), autonomous driving, interactive gaming, remote healthcare sys-

tems, unmanned aerial vehicles (UAVs) and the Internet of Things (IoT). In MEC sys-

tems, computing is implemented at the network edge, such as the BS, to significantly

reduce transmission distances compared to the cloud computing. MEC servers can be

connected to the BSs either through a backhaul link or directly integrated into the BSs
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using generic computing platforms (Zhao et al., 2019). This provides cloud-computing

services in close proximity to mobile users. Compared with cloud computing, in MEC

systems, users offload computation-intensive tasks to the powerful MEC servers for exe-

cution, which reduces latency. Thus, MEC can considerably decrease computation latency

and significantly reduce traffic loads on the backhaul networks (Zhao et al., 2020a).

Besides the advantages of the MEC system, it can be challenging to offload com-

putation tasks to the MEC when mobile devices are located far away from the network

edge having weak channel gain. To overcome these issues, cooperative edge computing

leveraging user cooperation is an effective solution (Liu, 2019). This approach involves

nearby mobile devices in close proximity to the BS sharing their computational and radio

resources to assist those far away mobile devices in executing computation tasks. Dur-

ing task offloading, part or all of the computationally intensive tasks on mobile devices

are transferred to the MEC server for remote computation. Thus, the computation capac-

ity is improved (Pan et al., 2021) and, the delay resulting from task offloading and task

execution at the server can be significantly reduced.

The performance of MEC systems can be improved by the multiple access strat-

egy since multiple users may need to access the same server for task offloading (Wen

et al., 2020). In this regard, NOMA can be implemented in MEC systems to meet the

demands of extremely high data rates (Li et al., 2020). By combining MEC with NOMA,

delay performance can be improved compared to MEC with OMA systems. On the other

hand, utilizing massive MIMO technology in MEC systems can enhance both spectral

efficiency and energy efficiency (Feng et al., 2020). Specifically, the coexistence of MEC

and massive MIMO is necessary to enable massive wireless connectivity with high data

rates, low-latency, and large computing capabilities. Therefore, the integration of NOMA

based massive MIMO into MEC systems can further enhance computing capability, in-

crease spectral efficiency, and reduce task delay (Pham et al., 2020).

On the other hand, there can be security challenges during the offloading process

in MEC. Since the offloading data may be intercepted and overheard by eavesdroppers,

a secure task offloading scheme in MEC systems is essential (Wang et al., 2020). In this

context, the physical layer security (PLS) technique has provided as a promising solution

to address the security issues for task offloading in MEC systems (Qian et al., 2021a).

In this thesis, we study resource allocation for massive MIMO based communica-

tions systems. Firstly, the proposed user selection algorithms are employed for NOMA-

MIMO based systems and massive MIMO-NOMA based systems to improve the sum

data rate. For massive MIMO systems, we consider reconstructing the sparse channel of
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massive MIMO with the OMP to reduce the feedback load. In addition, we investigate

the effect of the user selection algorithm on massive MIMO-NOMA based MEC systems

to reduce overall computing and transmission delay significantly.

It is important to investigate resource allocation for MEC systems in densely

deployed scenarios. This thesis also focuses on the integration of massive MIMO and

NOMA technologies into the MEC system to facilitate the offloading and further improve

the performance of the MEC system in terms of the amount of offloaded data and overall

computing and transmission delay. Furthermore, in the system, there may be a cell-edge

user with a computation-intensive and latency-critical task. The cell-edge user may suffer

from a low signal-to-noise ratio (SNR) or there may not be a strong direct transmission

link to the BS. Considering these users, we study the cooperative computation offloading

and resource allocation strategies in the MEC system. Thus, a multi-helper cooperative

MEC system based on NOMA has been proposed to maximize the total offloading data

under latency and power constraints. In addition, we investigate the massive MIMO based

cooperative MEC system to minimize the offloading and computing delay. Since secure

offloading in MEC systems is of critical importance, we also study secure offloading for

the massive MIMO based cooperative MEC system.

1.2. Outline of the Thesis

The thesis is organized as follows:

• In Chapter 2, the background information related to MIMO, massive MIMO and

NOMA technologies is described. Next, we briefly review the MIMO and mas-

sive MIMO channel models. Since user selection plays a critical role in improving

system performance, we explain the traditional user selection algorithms. More-

over, we introduce the CS approach, including OMP, to reconstruct the compressed

signal accurately and reduce the feedback load. Accordingly, in Section 2.5, the

compressive sensing based low complexity user selection is proposed for massive

MIMO systems by reconstructing the sparse channel of massive MIMO with the

OMP to reduce the feedback load (Yılmaz and Özbek, 2020). Section 2.6 intro-

duces a user selection algorithm for NOMA based MIMO systems (Yılmaz et al.,

2022). Moreover, the proposed user selection algorithm is also applied to NOMA

based massive MIMO systems in Section 2.7.
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• In Chapter 3, an overview of the MEC system is introduced. Section 3.2 addresses

the task offloading delay minimization problem for the massive MIMO-NOMA

based MEC system (Yılmaz and Özbek, 2023). The proposed framework enables

both cell-center and cell-edge users to offload their tasks to the MEC server by

applying an efficient user pairing, offloading and computation scheme. In Section

3.3, the user selection algorithm is applied to the massive MIMO-NOMA based

MEC system to reduce the task offloading delay significantly.

• In Chapter 4, cooperative MEC systems are represented. Section 4.1 presents a

multi-helper cooperative MEC system based on NOMA (Yılmaz and Özbek, 2022).

We present the resource allocation problem to maximize the total offloading data

under the latency and power constraints for the proposed framework. Section 4.2

proposes a novel framework for a cooperative MEC system with massive MIMO

and NOMA technologies to minimize the overall delay, including security aspects

(Yılmaz et al., 2023). The problem of minimizing the overall computing and trans-

mission delay over the massive MIMO-NOMA assisted MEC system is formulated

under computing capability and transmit power constraints.

• Chapter 5 concludes the thesis and discusses potential future research directions.
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CHAPTER 2

USER SELECTION FOR MIMO BASED SYSTEMS

In this chapter, background information about multiple-input multiple-output (MIMO),

massive MIMO, non-orthogonal multiple access (NOMA) based systems are provided.

Then, user selection algorithms are investigated. Following this, we propose user selec-

tion algorithms for massive MIMO system, NOMA based MIMO system and NOMA

based massive MIMO systems.

2.1. Multiple-Input Multiple-Output (MIMO) Systems

MIMO systems have emerged as one of the most promising technologies for

wireless communications to provide a reliable communication link through spatial di-

versity and a higher data rate by using multiplexing techniques without requiring addi-

tional power or bandwidth. Specifically, MIMO systems can achieve multiplexing gain

by transmitting different signals through different antennas, which results in a higher data

rate. These systems can achieve diversity gain by transmitting the same signals through

different paths, resulting in a higher probability of detection and higher reliability. More-

over, MIMO technology achieves higher spectral efficiency since multiple antennas at the

BS can simultaneously serve multiple users while separating them in the spatial domain.

2.1.1. Channel Model for MIMO Systems

Let N be the number of antennas at the BS and K be the number of users with a

single antenna, where the MIMO channel vector hk is defined as;

hk =
√
Lk gk (2.1)

where hk is the N × 1 channel vector between the BS and the kth user. The path-loss co-

efficient for the kth user is represented by Lk, which is the large-scale fading component.
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The small-scale Rayleigh fading component of the channel with size N ×1 is represented

by gk, which each element of gk is modeled as independent and identically distributed

(i.i.d.) and Gaussian random variables denoted by CN (0, 1).

2.2. Massive MIMO Systems

Massive MIMO systems have been the most outstanding technology in terms of

supporting high spectral efficiency and energy efficiency for the wireless communications.

Adopting the multi-user concept and providing extra degrees of freedom in the spatial

domain can significantly improve the multiplexing gain and reliability of such systems,

allowing many tens of users to be served more effectively in the same time-frequency

resource in massive MIMO systems.

Current MIMO systems generally employ up to eight antennas at the BS, whereas

in massive MIMO systems, the BS is equipped with hundreds of antennas. The key idea

is based on using a large number of transmit antennas to serve multiple users simultane-

ously where the number of antennas at the BS is much higher than the number of served

users. The fading effects are completely eliminated as the number of antennas at the

BS approaches infinity (Marzetta, 2010). In particular, using a high number of antennas,

the small-scale fading effect can be eliminated through channel hardening, resulting in

a deterministic scalar channel model (Hochwald et al., 2004). More specifically, when

increasing the number of antennas at the BS, the channel variations decrease and the

channel hardening effect appears in which the variations of the channel gain in time and

frequency decrease. Moreover, massive MIMO systems can achieve very high sum data

rate under favorable propagation conditions by utilizing simple linear processing (Rusek

et al., 2013). These advantages make massive MIMO very attractive for wireless commu-

nication systems.

2.2.1. Channel Model for Massive MIMO Systems

In this subsection, the correlated Rayleigh fading with the local scattering channel

model is considered (Björnson et al., 2017). We define hk ∈ CNx1 is the channel vector

between the kth user and the BS with N antennas. For two-dimensional (2D) channel

models, the channel vector due to the effect of clusters of scatterers is written as follows

(Ngo et al., 2013) (Björnson et al., 2017) (Zhang et al., 2022);
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hk =

√
Lk

Np

Np∑
i=1

a (φk,i) cki (2.2)

where Np is the number of Non-Line Of Sight (NLoS) paths from the BS to the kth user.

cki is the channel coefficient between the kth user and the BS associated with each path

which is modeled as Rayleigh fading by CN (0, 1). Here, a (φk,i) ∈ CNx1 is the steering

array vector at the BS which denotes the antenna array response of the ith path of the

kth user in the direction of φk,i. For uniform linear array (ULA) antenna models, the

array response (Hawej and Shayan, 2018) (Dai et al., 2019) (Hawej and Shayan, 2019) is

defined as;

a (φk,i) =
[
1, e−j2πD

λ
cos(φk,i), . . . , e−j2πD

λ
(N−1)cos(φk,i)

]T
(2.3)

where φk,i is the angle of azimuth of the ith path for the kth user and D/λ = 0.5, where λ

is the wavelength of the carrier signal.

The azimuth angle can be expressed as φk,i � φk + δi with a nominal angle

φk ∈ [−90◦, 90◦] and a random deviation modeled as a uniform variate which lies within,

δi ∼ U
[−√

3σφ,
√
3σφ

]
, from the nominal angle with the angular standard deviation

(ASD), σφ (Björnson et al., 2017).

Figure 2.1. Illustration of NLoS propagation under the local scattering model

(Source: Björnson et al. 2017).

Fig. 2.1 shows that the scattering is localized around the user equipment (UE).

The nominal angle φ and ASD σφ of the multi-path components are key parameters to

model the spatial correlation matrix.

8



On the other hand, the channel model given in (2.1) can also be used as massive

MIMO channel (Khansefid and Minn, 2014) (Zheng et al., 2014) (Zeng et al., 2020a)

(Chaves et al., 2022), namely uncorrelated massive MIMO channel.

2.3. Non-Orthogonal Multiple Access (NOMA)

NOMA is investigated as one of the possible enabling multiple access technolo-

gies for wireless communications systems to meet the requirements such as ultra-low

latency and massive connectivity while enhancing the overall spectral efficiency. The

main concept of NOMA is to simultaneously serve multiple users at the same time, same

frequency, or same code (Shi et al., 2020). In literature, there are mainly two types

of NOMA technologies: Power-domain NOMA (Islam et al., 2017) and code-domain

NOMA (Shental et al., 2017). NOMA uses superposition coding at the transmitter so

that the SIC receiver can separate the users both in the uplink and downlink channels. We

consider power domain NOMA in which the power difference of the users is exploited for

multi-user multiplexing and apply SIC to mitigate the inter-user interference (Wei et al.,

2020).

Since NOMA employs more than one user at the same resource block, it improves

the sum data rate compared to its traditional counterpart (Qian et al., 2021b), orthogo-

nal multiple access (OMA), such as time division multiple access (TDMA), frequency

division multiple access (FDMA) and code division multiple access (CDMA) (Dai et al.,

2015) (Islam et al., 2017) (Wang et al., 2018) (Wu et al., 2018). On the other hand, the

latency performance of power-domain NOMA versus OMA has also been examined in

recent literature. Specifically, the study presented in (Yu et al., 2018) has investigated

the link-layer capacity, namely, the effective capacity, of NOMA under probabilistic de-

lay constraints and shown that NOMA outperforms OMA at high signal-to-noise ratios.

Further investigations have investigated the performance of NOMA systems in terms of

ultra-reliable low-latency communications requirements (Amjad and Musavian, 2018).

2.3.1. Downlink NOMA

Fig. 2.2 shows the downlink (DL) NOMA for the case of one BS with N antenna

and two user equipments (UEs) with single-antennas.

9



Figure 2.2. DL NOMA system with two UEs.

The overall system transmission bandwidth is set to B. The BS transmits the

signal sk for each k user, where k = 1, 2 and E
[|sk|2] = 1 with transmit power Pk, where∑2

k=1 Pk = P . In downlink NOMA, the signals of the two UEs, s1 and s2, are superposed

as follows (Luo and Zhang, 2016);

s =
√

P1s1 +
√
P2s2 (2.4)

The received signal at kth user is given as;

yk = hH
k wd s+ nk (2.5)

where hk is the complex channel vector coefficient of size N×1 between kth user and the

BS, wd is the normalized precoder vector of size N × 1 for the kth user and is applied to

mitigate inter-user interference. Here, wd = hk

‖hk‖ is maximum ratio transmission (MRT)

precoding technique and can be computed through either the strong or weak user channels.

nk is additive white Gaussian noise (AWGN) whose elements are modeled by CN (0, σ2
n),

where σ2
n is the variance of AWGN.

Multi-user signal separation needs to be implemented at the UE side so that each

UE can retrieve its signal and decode its own data. This can be achieved using the SIC

10



technique. For the case of SIC, the optimal order for decoding is in the order of the

decreasing channel gain. Based on this order, any user can correctly decode the signals

of other users whose decoding order comes before the corresponding user. Thus, in a

two-UE case, assuming that the channel gain of the UE1 is higher than the UE2 as given

in Fig. 2.2, UE2 does not perform interference cancellation since it comes first in the

decoding order. UE1 first decodes s2 and subtracts its component from received signal y1;

then it decodes s1 without interference from s2 (Luo and Zhang, 2016). Thus, the data

rates of the users are defined as;

R1 = B log2

(
1 +

P1

∣∣hH
1 w

d
∣∣2

σ2
n

)

R2 = B log2

(
1 +

P2

∣∣hH
2 w

d
∣∣2

P1 |hH
2 w

d|2 + σ2
n

) (2.6)

On the other hand, in general, consider N antenna at the transmitter and K single

antenna users. The total number of clusters is denoted by M and each cluster accommo-

dates U users. The SIC technique is used between intra-cluster users to detect the signals.

We define the channel vector of size N × 1 between the transmitter and the uth user at the

mth cluster by hu,m. For each cluster, the relation ‖h1,m‖ > ‖h2,m‖ > . . . > ‖hU,m‖ is

maintained. Then, the normalized precoder vector wd
m for each cluster is applied. Thus,

the DL signal-to-interference-plus-noise ratio (SINR) of uth user in mth cluster is calcu-

lated by;

γd
u,m =

Pu,m

∣∣hH
u,mw

d
m

∣∣2
∣∣hH

u,mw
d
m

∣∣2 u−1∑
j=1

Pj,m︸ ︷︷ ︸
Inter-user interference

+
M∑

i=1,i �=m

(∣∣hH
u,mw

d
i

∣∣2 U∑
j=1

Pj,i

)
︸ ︷︷ ︸

Inter-cluster interference

+σ2
n

(2.7)

The average downlink sum data rate of the system with SIC can be expressed as

follows;

Rd
sum = B

M∑
m=1

U∑
u=1

E
{
log2

(
1 + γd

u,m

)}
(2.8)
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2.3.2. Uplink NOMA

Fig. 2.3 shows uplink (UL) NOMA with two UEs transmitting signals to the BS

on the same frequency resource and at the same time, and SIC conducted at the BS for

UE multi-user signal separation.

Figure 2.3. UL NOMA system with two UEs.

In uplink NOMA, the signals sk for each k user, where k = 1, 2 are transmitted

simultaneously to the BS through the user’s channel. The received signal at the BS,

y ∈ CN×1 is a superposed signal of s1 and s2 as follows (Luo and Zhang, 2016);

y = h1

√
P1s1 + h2

√
P2s2 + n (2.9)

where n ∈ CN×1 is the AWGN vector at the BS.

We assume UE1 is the cell-center user and UE2 is the cell-edge user, and the BS

conducts SIC according to the descending order of channel gains. The received signals of

the first and second UE at the BS after post-coding with the combiner vector w ∈ CN×1

are written, respectively, by (Thet et al., 2020);

r1 = wHh1

√
P1s1 +wHh2

√
P2s2 +wHn,

r2 = wHh2

√
P2s2 +wHn.

(2.10)
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For two UEs case, since the received signal at the UE1 is decoded without em-

ploying SIC due to its highest received power, the interference from the UE2 cannot be

removed, while SIC is applied at the UE2 successively to remove the interference from

the UE1. Thus, the data rates of the users are defined as;

R1 = B log2

(
1 +

P1

∣∣wH h1

∣∣2
P2 |wH h2|2 + σ2

n

)

R2 = B log2

(
1 +

P2

∣∣wH h2

∣∣2
σ2
n

) (2.11)

In general, when we consider uplink NOMA cluster, the SINR of uth user in mth

cluster is calculated by;

γu,m =
Pu,m

∣∣wH
m hu,m

∣∣2
U∑

j=u+1

Pj,m

∣∣wH
m hj,m

∣∣2
︸ ︷︷ ︸

Inter-user interference

+
M∑

i=1,i �=m

(
U∑

j=1

Pj,i

∣∣wH
m hj,i

∣∣2)
︸ ︷︷ ︸

Inter-cluster interference

+σ2
n

(2.12)

The average uplink sum data rate of the system with SIC can be expressed as

follows;

Rsum = B
M∑

m=1

U∑
u=1

E {log2 (1 + γu,m)} (2.13)

In this thesis, we study a synchronous UL-NOMA, which assumes perfectly time-

synchronized users’ signals are received at the BS.

2.4. User Selection Algorithms

The performance of multi-user MIMO systems depends on the user selection ap-

proach. In a dense system that requires to transmit a very large number of users, user
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selection is necessary since the number of users that can be simultaneously supported

can be limited by the number of transmit antennas at the BS. The instantaneous channels

among the users can be non-orthogonal, which results in mutual inter-user interference.

Thus, BS can increase sum data rate by selecting the best set of users to establish com-

munication.

In the literature, user selection has been widely investigated. There are two main

user selection algorithms, as the capacity-based greedy user selection and the semi or-

thogonal user group (SUS) selection given in (Yoo and Goldsmith, 2006), where itera-

tively selects the user considering the channel norm and the correlation coefficient. To

ease the problems of high computational complexity and high feedback, the greedy user

selection algorithm has been given in (Razi et al., 2010) based on the rate allocation

in vector perturbation precoding systems, which reduces the computational complexity

by removing the insignificant users from the candidate user set. Similarly, the authors

in (Tran et al., 2012) have presented a greedy low-complexity scheduling algorithm for

multi-user MIMO downlink channels, in which the product of squared row norms of the

effective channels is used as the selection metric. In (Ko and Lee, 2012), a low-complexity

scheduling algorithm using chordal distance as an orthogonality measure has been pre-

sented with the block diagonalization (BD) scheme to maximize the total throughput for

a multi-user MIMO downlink system.

In (Xu et al., 2014), the joint antenna selection and user selection problem has been

solved in distributed massive MIMO systems under the backhaul capacity constraint. In

(Benmimoune et al., 2015), the joint strategy has been examined, which performs antenna

selection and schedules the users to maximize the sum data rate. In (Li et al., 2018),

the user selection scheme for a hybrid architecture based on discrete Fourier transform

(DFT) processing has been examined by considering the achievable rate of the system

and guaranteeing the fairness of selection for a massive MIMO multi-user system.

2.5. Low Complexity User Selection for Massive MIMO Systems

In this section, a user selection algorithm is proposed with the reconstruction of

the sparse massive MIMO channel using the CS algorithm (Yılmaz and Özbek, 2020) by

eliminating the users based on channel correlation and employing the CS algorithm to

reduce the feedback load in the system.
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To fully harvest the benefit of excessive BS antennas in massive MIMO systems,

knowledge of channel state information at the transmitter (CSIT) is essential. However,

it is challenging to obtain an accurate CSIT. Since the training overhead for CSIT ac-

quisition grows proportionally with the number of BS antennas, it can be huge in such

systems. The previous studies avoid this challenge by adopting time-division duplexing

(TDD), where the CSIT can be obtained by exploiting channel reciprocity and the uplink

pilot-aided training overhead is proportional to the number of users. However, channel

reciprocity does not hold for massive MIMO systems with frequency-division duplexing

(FDD). Pilot-based channel estimation and uplink channel feedback are required, which

consume spectrum resources. Therefore, it is also essential to consider CSIT acquisition

for FDD systems.

Many studies have shown that the effective dimension of a massive MIMO channel

is actually much less than its original dimension because of the limited local scattering

effect in the propagation environment (Dai et al., 2018). Specifically, the massive MIMO

channel has an approximately sparse representation under the DFT basis when the BS

is equipped with a ULA. As a consequence, CS algorithm, which exploits the hidden

sparsity under the DFT basis, has been examined for downlink channel estimation and

feedback (Lu et al., 2019). In addition to that, the performance of massive MIMO systems

depends on the user selection approach. In this section, we present a user selection for

massive MIMO systems with reduced feedback load. The computational complexity of

the conventional user selection schemes is very high to be implemented in massive MIMO

systems. Our objective is to improve the sum data rate and reduce the feedback load in

massive MIMO systems through a user selection. In this algorithm, we eliminate the users

based on the channel correlation, and OMP algorithm is performed to reduce the feedback

load.

2.5.1. System Model

We consider the Massive MISO system model with N antennas at the BS and K

single-antenna users, under the assumption of N >> K >> 1 as shown in Fig. 2.4. In a

ULA antenna model, neighboring antennas are spaced by D = λ/2.

The received signal at the kth UE is given by;

yk = hH
k wksk +

K∑
i=1,i �=k

hH
k wisi + nk (2.14)
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where hk ∈ CNx1 is the channel vector, wk ∈ CNx1 is the kth UE precoder, the transmit-

ted symbol vector as s = [s1, . . . , sK ]
T ∈ CKx1, and nk is the AWGN with zero mean and

σ2
n variance, CN (0, σ2

n).

The first term of the right side of (2.14) contains the desired signal for the kth user,

the second term represents the interference caused by the other users, and the last term is

the noise.

Figure 2.4. Massive MISO system model.

For 2D channel models, the channel vector hk ∈ CNx1 for the kth user due to

the effect of clusters of scatterers is defined as given in (2.2). The total transmit power is

equally shared among all users.

The received signal for all UEs is expressed as;

y = HHWs+ n, (2.15)

where the channel matrix is H = [h1,h2, . . . ,hK ] ∈ CNxK , y = [y1 . . .yK ]
T ∈ CKx1,

and the precoder matrix is W = [w1, . . . ,wK ] ∈ CNxK , which is determined with Zero-

forcing (ZF) precoding as follows;

W = ηH
(
HHH

)−1
(2.16)
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In order to keep the short-term power constant, the factor η is calculated as;

η =
1√

tr
(
(HHH)−1) . (2.17)

Then, the SINR for kth user is;

γk =

∣∣hH
k wk

∣∣2
K∑

j=1,j �=k

|hH
k wj|2 + (1/ρ)

, ∀k ∈ K (2.18)

where ρ is the average signal-to-noise ratio (SNR).

The average sum data rate is calculated as;

RM-MISO = B
K∑
k=1

E {log2 (1 + γk)} (2.19)

2.5.2. Proposed Algorithm

Channel estimation, hk

Sparsity mapping, hs
k

Measurements

generation

Sparse vector reconstruction

with CS based alg., ĥs
k

Channel vector

reconstruction, ĥk

User selection

ZF

Feedback Link

Channel User sideBS side

bb

Figure 2.5. The proposed system model.
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Fig. 2.5 presents the general system structure for the proposed system. The pro-

posed user selection algorithm eliminates the users based on channel correlation by em-

ploying the CS algorithm, which reduces the feedback load in the system. The steps of

the proposed user selection algorithm are explained in the following three subsections, as

sparsity mapping, channel vector reconstruction and the proposed user selection method.

Sparsity Mapping: The basic procedure of the sparsity mapping at the user side

is illustrated in Fig. 2.6. We assume that each user has perfect the downlink channel vector

hk.

Due to the antenna correlation at the BS and limited local scattering effects, most

of the multi-path energy for each user tends to be concentrated in a relatively small region

within the virtual angular domain. Therefore, the channel is expected to have a sparse

representation in the virtual angular domain, so only a small fraction of components is

significant and the others are zero.

Channel estimation

hk

Sparsity mapping

hs
k

Measurements

generation, b

Figure 2.6. Sparsity mapping at the user side.

The channel vector hk is represented using virtual channel representation with a

proper basis;

hk = UHhs
k (2.20)

where hs
k ∈ CNx1 is the channel representation in the virtual angular domain, and U is

DFT matrix with CNxN .

The nth column of U is given by;

un � 1√
N

[
1 . . . e−j

2π(m−1)n
N . . . e−j

2π(N−1)n
N

]T
(2.21)

for m,n = 1, 2, . . . , N .

18



After mapping hk to a sparse channel vector hs
k, the measurement matrix is used

to reduce the number of samples as the channel vector. For hs
k and m feedback measure-

ments (FM), the random measurement vector b ∈ Cmx1 is generated as follows;

b = AThs
k, (2.22)

where A ∈ CNxm is a measurement matrix, which is generated off-line and known at

both the user and the BS sides. A is sampled from i.i.d. Gaussian distributed entries with

zero mean and 1/m variance.

After the measurement vector, b, is generated, it is fed back to the BS perfectly to

perform downlink precoding.

Channel Vector Reconstruction: The basic procedures of the applying CS algo-

rithm and the proposed user selection at the BS side are illustrated in Fig. 2.7.

To fully utilize the spatial multiplexing and the array gain of massive MIMO, the

CSIT is essential. However, it is inefficient to estimate the entire CSI using long pilot

training symbols at the BS. We should exploit the hidden sparsity in the CSIT estimation

and feedback process, where CS based algorithm is the efficient reconstruction of a sparse

signal from a few samples.

Sparse vector

reconstruction with

CS based alg., ĥs
k

Channel vector

reconstruction

ĥk

Proposed

user

selection

ZF

precoding

Figure 2.7. Channel vector reconstruction at the BS.

At the BS, as the CS-based algorithm, OMP is used for reconstructing the sparse

channel vector ĥs
k. In the OMP, since all columns of A are correlated with the b, the

sparse signal is reconstructed iteratively. In each iteration, the algorithm finds the column

of A which is most correlated to the b and adds its index. The stopping criterion is based

on the sparsity level (SL) value.

The reconstructed channel state information (CSI), ĥk, is obtained by mapping

back the reconstructed sparse channel vector ĥs
k based on the same basis used at the user

side. After that, the proposed user selection algorithm is applied to the reconstructed CSI.

The detail of the proposed algorithm is given in Algorithm 1.
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Finally, the BS performs the ZF precoding to eliminate inter-user interference and

achieve the sum data rate based on the reconstructed channel matrix Ĥ instead of H in

(2.16).

Proposed User Selection Method: The main objective of the proposed algorithm

is to improve the sum data rate and reduce the complexity. The steps of the proposed user

selection algorithm are given in Algorithm 1. Its complexity is determined to be upper-

bounded by Cip
K(K−1)

2
, where Cip is the complexity of the normalized inner-product for

each UE pair in Step 2.

Algorithm 1 Proposed User Selection Method

Step 1: Initialization:

S0 = {1, . . . , K} , S = ∅ (2.23)

Step 2: Determine the correlation coefficient βk,j between all UE pairs j �= k:

βk,j =

∣∣∣ĥH
k ĥj

∣∣∣∥∥∥ĥk

∥∥∥ ∥∥∥ĥj

∥∥∥ (2.24)

Note that βk,j = βj,k.

Step 3: Select the UE to be eliminated according to the degree of orthogonality.

• For kth UE, define USk set that holds the users whose the correlation coefficient

higher than β.

USk = {j ∈ S0 : βk,j > β, ∀k ∈ S0} (2.25)

where β is a small positive constant value. It characterizes the allowed degree of

orthogonality between two channel vectors.

Step 4: For kth UE, if the number of elements in USk is 0, add this kth UE to the selected

user set S is:

S = S ∪ {k} , if Card (USk) = 0. (2.26)

• The precoding matrix and the sum data rate are calculated based on the set of

selected UEs, S .
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2.5.3. Performance Evaluations

In the considered Massive MISO system, there is one BS employed between

N=48 and N=96 antennas, and K=16 users with single-antenna. For higher number of

antennas, the channel hardening occurs, and scheduling all UEs is optimal, which means

that more advanced scheduling does not provide gains (Dierks et al., 2015) (Björnson

et al., 2017).

There are only NLOS components in the system, where the standard deviation,

ASD, is determined as σφ = 10◦ (Dierks and Juenger, 2016). The SNR value, ρ, is

defined as 15 dB, where the path loss coefficients for all users are assumed to be the

same (Hawej and Shayan, 2018). The optimal β is determined through the numerical

simulations. We consider different feedback measurement values FM, and sparsity levels,

SL, while providing the performance results.

We examine the sum data rate versus the number of antennas at the BS and then

compare the performance of the proposed algorithm with the pair-wise SUS algorithm in

(Dierks and Juenger, 2016), labeled as "pair-wise SUS", and all UEs selected case. Specif-

ically, the pair-wise SUS algorithm first schedules all users. Then, at each iteration, the

scheduling algorithm finds the user pair with the largest correlation coefficient. From this

pair, the user with the smaller channel gain is removed. This continues until the correla-

tion coefficient between the remaining users are small enough. Moreover, the complexity

of the pair-wise SUS algorithm is determined to be upper-bounded by Cip
K(K−1)

2
+CvnK,

where Cvn is the complexity of one vector 2-norm.

The channel reconstruction performance is measured in terms of the mean square

error (MSE) based on the reconstructed channel matrix Ĥ and the actual channel matrix

H as follows;

MSE =

E

{∥∥∥Ĥ−H
∥∥∥2
F

}
N K

(2.27)

where ‖.‖F represents the Frobenius norm.

Fig. 2.8 and Fig. 2.9 show the MSE performance of the proposed algorithm to

indicate the effect of different FM and SL values on the quality of the channel reconstruc-

tion.

Fig. 2.8 shows the MSE performance of the proposed algorithm for SL=N/4 and

different values of FM. The numerical results show that when the FM is increased, the

21



MSE decreases. The reason is the increasing the number of measurements that send to

the BS side via the feedback link.
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Number of antennas at the BS, N
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Figure 2.8. MSE results for different FM in the proposed algorithm for K=16 and

SL=N/4.
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Figure 2.9. MSE results for different SL in the proposed algorithm for K=16 and

FM=N/2.
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Fig. 2.9 shows the MSE performance of the proposed algorithm for FM=N/2 and

different values of SL. It is seen that higher sparsity level decreases the MSE performance.

This is because the CS algorithm provides better performance to reconstruct the sparse

signal with higher sparsity levels which indicate the number of the non-zero coefficients

of the original signal.

From Fig. 2.8 and Fig. 2.9, we conclude that FM=3N/4 and SL=N/4 give the

minimum MSE value, thus improving the channel reconstruction in the proposed system.

Fig. 2.10 presents the sum data rate performance of the proposed algorithm as a

function of different β values for FM=3N/4 and SL=N/4. For any number of antennas,

the results show that β = 0.7 has the highest sum data rate since it allows to eliminate

correlated UEs. Thus, we fix β = 0.7 for the rest of the results.
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Figure 2.10. Sum data rate results for different β in the proposed algorithm for K=16,

FM=3N/4 and SL=N/4.

Fig. 2.11 illustrates the average data rate per user of all user selection algorithms

when FM=3N/4 and SL=N/4, and β = 0.7 for the pair-wise SUS algorithm and the pro-

posed algorithm to compare fairly. It is worth noting that the proposed algorithm provides

the best performance in terms of average data rate per user compared to the algorithms of

all UEs selected and pair-wise SUS. It is illustrated that applying user selection is more

advantageous for the low number of BS antennas since the variations of the channel gain

are high. When the number of antennas increases, the average data rate per user
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of the pair-wise SUS algorithm and the proposed algorithm close to each other due to

the decreasing degrees of orthogonality. Specifically, the proposed algorithm achieves

a 9% and 2% higher sum data rate compared to the pair-wise SUS algorithm for N=48

and N=96, respectively. For N=48, the proposed algorithm schedules 13 users while the

pair-wise SUS algorithm schedules 14 users. This indicates that the proposed algorithm

eliminates more users than the pair-wise SUS algorithm. Furthermore, the proposed al-

gorithm reduces complexity compared to the pair-wise SUS algorithm since the pair-wise

SUS algorithm has the factor of CvnK, which depends linearly on the number of users in

the system.

48 64 80 96
Number of antennas at the BS, N

3

3.5

4

4.5

5

5.5

6

6.5

7

D
at

a 
ra

te
 p

er
 u

se
r 

[b
ps

/H
z]

Proposed alg.
Pair-wise SUS
All UE scheduled

Figure 2.11. Comparison of the user selection algorithms for K=16, β=0.7, FM=3N/4

and SL=N/4.

2.6. User Selection for NOMA based MIMO Systems

In this section, we propose a user-set selection algorithm in a densely deployed

environment for an uplink NOMA based MIMO system to improve the sum data rate

(Yılmaz et al., 2022). The simulation results verify the advantage of the proposed user-

set selection with power allocation over conventional OMA systems.
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2.6.1. System Model

We consider an uplink MIMO-NOMA communication in which a BS has N anten-

nas and is serving K devices with a single-antenna, where K≥2N as shown in Fig. 2.12.

These devices can be smartphones, laptops, tablets and IoT devices.

Figure 2.12. Uplink NOMA based MIMO system model.

The BS with N antennas can serve up to N devices with traditional OMA systems.

On the other hand, in the uplink NOMA system, the BS simultaneously supports two user

sets. As a result, the total number of devices supported by the BS is equal to 2N (Kim

et al., 2015). Thus, the selection of 2N devices among K total devices is crucial and is

proposed in Section 2.6.2.

There are two user sets as strong and weak where each of them includes N devices.

We consider the two-users NOMA with a total of M clusters, including one strong and one

weak user for each cluster, where the number of clusters is equal to the number of antennas

at the BS, M=N and m ∈ {1, . . . ,M}. The strong users set represents the devices that

have high channel gains, whereas the devices in the weak users set have relatively low

channel gains. Accordingly, the uplink channel vectors belonging to each set are denoted
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as hm,j between the BS and the device in the corresponding set of j = 1, 2 for each mth

cluster and determined as in (2.1). The channel matrices belonging to the strong users set,

H1, and weak users set, H2, in all clusters are given by;

H1 = [h1,1 . . .hm,1 . . .hM,1] (2.28)

H2 = [h1,2 . . .hm,2 . . .hM,2] (2.29)

where the overall N × M channel matrices Hj , whose element hm,j with size N × 1

uplink channel vector, can be given as Hj = Gj D
1/2
j (Khansefid and Minn, 2014) (Zeng

et al., 2020a). Here, Dj = diag {L1,j, L2,j, . . . , LM,j} ∈ RM×M is a diagonal matrix and

represents the large-scale fading component including path loss. Gj is a N ×M matrix

including N × 1 vector of gm,j belonging to each device in the jth set and mth cluster.

Thus, we have hm,j =
√
Lm,j gm,j between the BS and a device of m = 1, 2, ...,M for

the set of j = 1, 2.

The received signal at the BS is the summation of the signals coming from these

two sets as;

y =
M∑

m=1

2∑
j=1

hm,j
√
αm,jsm,j + n, (2.30)

where αm,j is the power allocation factor of the device in the jth set and mth cluster within

the range 0 < αm,j ≤ 1. The uplink symbol of the device in the jth set and mth cluster is

given by sm,j having E[|sm,j|2] ≤ P , where P is the maximum transmit power per device.

The AWGN vector of size N × 1 is given by n and each element of the vector is modeled

by a Gaussian distribution random variable with zero mean and σ2
n variance.

We can re-write (2.30) as;

y = (H1s1 +H2s2) + n, (2.31)

where M × 1 transmitted signal vectors for the strong, s1, and weak, s2, users set are

given respectively as;
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s1 =
[√

α1,1s1,1 . . .
√
αm,1sm,1 . . .

√
αM,1sM,1

]T
,

s2 =
[√

α1,2s1,2 . . .
√
αm,2sm,2 . . .

√
αM,2sM,2

]T
.

According to the received signal in (2.31), both symbols belonging to the strong

and weak users are extracted at the BS with SIC decoding. Firstly, the signals of the

devices in the strong users set are decoded under the inter-set interference caused by the

devices in the weak users set. Then, the SIC is applied to decode the signals in the weak

users set by subtracting the signals of strong users from the received signal. Thus, the

signals in the weak users set are decoded without the inter-set interference.

In order to cancel the intra-set interference, the ZF postcoding technique is em-

ployed at the BS. It is assumed that the BS can have the perfect CSI belonging to all

devices. The ZF postcoding matrix W
′
j with j = 1, 2 is determined through overall

channel matrix by;

W
′
j = HH

j

(
HjH

H
j

)−1
, (2.32)

where the normalized ZF postcoding matrix is given by;

Wj =
[
w1,j

T . . .wm,j
T . . .wM,j

T
]T

, (2.33)

with wm,j is the ZF postcoder vector with the length of 1×N for the device in the jth set

and mth cluster. It is determined by; wm,j =
w

′
m,j

‖w′
m,j‖ where w

′
m,j is the mth row of W

′
j .

Firstly, the signals of the strong devices are decoded under inter-set interference

by using the postcoding matrix W1. Accordingly, the received signal vector of the strong

set, r1 = [r1,1 . . . rm,1 . . . rM,1]
T

, can be expressed as;

r1 = W1y = W1H1s1 +W1H2s2 +W1n. (2.34)

From (2.34), the received signal of the strong user in the mth cluster is given by;

rm,1 = wm,1hm,1
√
αm,1sm,1+

M∑
i=1

wm,1hi,2
√
αi,2si,2+

M∑
j=1,j �=m

wm,1hj,1
√
αj,1sj,1+wm,1n,

(2.35)
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where the first term represents the desired signals of the strong users set and the second

term is the inter-set interference caused by the weak users set.

For the strong user in the mth cluster, the instantaneous SINR is given by;

SINRm,1 =
αm,1P |wm,1hm,1|2

M∑
i=1

αi,2P |wm,1hi,2|2 +
M∑

j=1,j �=m

αj,1P |wm,1hj,1|2 + ‖wm,1‖2 σ2
n

. (2.36)

For decoding of the signals of weak users set, SIC is applied and, in this case,

there will be no inter-set interference. Thus, after utilizing ZF postcoding matrix W2, the

received signal vector of the weak set, r2 = [r1,2 . . . rm,2 . . . rM,2]
T

, is expressed as;

r2 = W2H2s2 +W2n. (2.37)

From (2.37), the received signal of the weak user in the mth cluster is given by;

rm,2 = wm,2hm,2
√
αm,2sm,2 +

⎛⎝ M∑
j=1,j �=m

wm,2hj,2
√
αj,2sj,2

⎞⎠+wm,2n. (2.38)

For the weak user in the mth cluster, the instantaneous SINR is defined by;

SINRm,2 =
αm,2P |wm,2hm,2|2

M∑
j=1,j �=m

αj,2P |wm,2hj,2|2 + ‖wm,2‖2 σ2
n

. (2.39)

The average data rate of the user in the jth set and the mth cluster is given by;

Rm,j = B E {log2 (1 + SINRm,j)} . (2.40)

The sum data rate of M devices for each user set, j=1,2, is given by;

Rj,NOMA =
M∑

m=1

Rm,j. (2.41)
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Thus, the overall sum data rate in NOMA system is determined by;

RNOMA
sum =

2∑
j=1

Rj,NOMA. (2.42)

For the purpose of comparing, the average data rates of devices are given in the

corresponding sets for conventional OMA system as;

Rj,OMA =
B

2

M∑
m=1

E

{
log2

(
1 +

P |wm,jhm,j|2
‖wm,j‖2 σn

2

)}
, (2.43)

where 1
2

is added since two time slots are required to support 2M devices in the OMA

system with N antennas, whereas NOMA can support 2M devices during a single time

slot. Therefore, the overall sum data rate for OMA is given by;

ROMA
sum =

2∑
j=1

Rj,OMA. (2.44)

Here, the power allocation factors of the strong user set are selected as equal to

each other;

α1,1 = . . . = αm,1 = . . . = αM,1 = α1 (2.45)

Similarly, the power allocation factors of the weak user set are selected as equal

to each other;

α1,2 = . . . = αm,2 = . . . = αM,2 = α2 (2.46)

2.6.2. User-Set Selection for NOMA based MIMO Systems

In this section, we propose a user-set selection algorithm to improve the perfor-

mance of the uplink MIMO-NOMA system.
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As illustrated in Fig. 2.13, the proposed user-set selection algorithm selects totally

2M devices without affecting the transmission of strong users. We firstly determine the

strong and weak user sets considering their channel gains. Then, we select M devices

from each set based on both the channel gain and the correlation properties to mitigate

inter-set interference. After that, we determine the optimal power values α1 and α2 for

both strong and weak user sets, respectively.

Figure 2.13. Proposed user set selection for uplink NOMA based MIMO.

A total of M devices having higher channel gains in the strong users set are se-

lected. The devices in the weak users set cause inter-set interference to devices in the

strong users set. Therefore, the proposed user-set selection algorithm determines weak

users through an elimination procedure based on the channel correlation between strong

and weak user sets. In order to select M devices for weak users set, the BS compares

their orthogonality with the selected devices in strong users set. Details of the proposed

algorithm are explained in Algorithm 2.
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Algorithm 2 Proposed User-Set Selection Method

Step 1: Channel gains of K devices are sorted in descending order:

Sord = {‖hk‖ | ‖hk‖ > ‖hk+1‖ ; k ∈ {1, 2, . . . , K}} . (2.47)

Step 2: Utilizing Sord, BS classifies the K devices into two groups. The set of devices

with the higher channel gains is represented by Ss, whereas Sw includes the set of

devices with the lower channel gains.

Ss =
{‖h1‖ , . . . ,

∥∥h�K/2�
∥∥} , (2.48)

in here �. indicates the floor function.

Sw =
{∥∥h�K/2�+1

∥∥ , . . . , ‖hK‖
}
. (2.49)

Step 3: From Ss, strong users set is formed by selecting the first M devices,

H1 = {hm | hm ∈ Ss,m = 1, . . . ,M} . (2.50)

Step 4: BS determines the correlation coefficient βm,i between device m in strong users

set and the device i in set of Sw:

βm,i =

∣∣hH
mhi

∣∣
‖hm‖ ‖hi‖ , (2.51)

where m = 1, . . . ,M and i = �K/2 + 1, . . . , K. When βm,i is equal to zero, two

channel vectors are orthogonal to each other. When this value is closer to 1, two

channel vectors are in similar directions and then they are highly correlated.

Step 5: As in (Yılmaz and Özbek, 2020), a set of US i that satisfy the following criterion

for ith device in Sw is constructed:

US i = {i ∈ Sw | βm,i > β; ∀m} , (2.52)

where β is a fixed threshold holding a value between 0 and 1. As a result, US i

includes ith weak device that is correlated to the selected strong users.
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Step 6: For the ith device, if the set of US i is not empty, ith device is removed from the

set of Sw by,

Sw = Sw� {hi} , if Card (US i) �= 0. (2.53)

• Sw includes the set of weak devices that are orthogonal to the selected strong users.

Step 7a: If the cardinality of Sw is equal or higher than M , the proposed user set selection

algorithm selects the devices in the weak users set as follows:

H2 = {hk | hk ∈ Sw, k = 1, . . . ,M} . (2.54)

• The NOMA based MIMO transmission is performed for the selected devices in

(2.50) and (2.54).

Step 7b: If the cardinality of Sw is less than M , the devices in the weak users set are

selected from the set of Sord by,

H2 =

{
hi | hi ∈ Sord, i =

⌊
K

2

⌋
+ 1, . . . ,

⌊
K

2

⌋
+M

}
. (2.55)

• The OMA-based MIMO transmission is performed for the selected devices in (2.50)

and (2.55).

Power Allocation Scheme

We examine an optimal power allocation to find the coefficients of α1 and α2 . Our

objective function is to maximize the sum data rate of devices in NOMA based MIMO

system, defined by

f(α) = R1,NOMA +R2,NOMA (2.56)

where α = [α1, α2].

The sum data rate maximization problem subject to the data rate constraint based

on OMA-based MIMO system is given by

max
α

f(α) (2.57)

s.t. (2.57a)

(2.57b)

R1,NOMA ≥ R1,OMA,

R2,NOMA ≥ R2,OMA,

0< α1, α2≤ 1. (2.57c)
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Constraints (2.57a) and (2.57b) give the minimal data rate constraints in which the

achievable data rate in uplink NOMA should be no less than a conventional OMA system.

Constraint (2.57c) gives the interval of the α1 and α2.

The maximization function in (2.57) is equivalent to minimizing -f(.), thus the

corresponding optimization problem can be solved efficiently with the standard nonlinear

programming optimization tools (Grace, 1990). The minimum of a constrained nonlinear

multivariate function can be found using the interior-point method. As a result of the

interior-point method, the optimum output values are obtained as α1
∗ and α2

∗ to provide

the maximum sum data rate under the given constraints.

2.6.3. Performance Evaluations

This subsection presents the simulation results to evaluate the performances of

NOMA based MIMO system. The devices are uniformly placed in the cell area which

is placed between 30 m and 250 m from the BS. The noise power spectrum density is

-159 dBm/Hz, and the maximum transmit power and the bandwidth of each device are set

to 11 dBm and 200 kHz, respectively (Abozariba et al., 2019). The path loss is determined

by L = 128.1 + 37.6 log10(dm,j (km)) (Dai and Lyu, 2020) where dm,j is the distance

between the device m in the set j and the BS. In the OMA-based multi-user MIMO, the

strong devices are selected as in (2.50) while the weak devices are selected as either in

(2.54) or (2.55). After that, these selected devices establish transmission through two time

slots in OMA based systems whereas only one time slot is allocated for the NOMA based

multi-user MIMO.

We compare the performance of the proposed user set selection algorithm for

multi-user MIMO systems based on NOMA and OMA. The data rate of the strong users is

given for the proposed user set selection with NOMA based system and the sorting based

user set selection with NOMA. The effect of the number of devices, K, and the effect of

the threshold, β, on the sum data rate and on the data rate of the strong users are provided.

For all schemes, we determine the value of β up to 0.9 in order to implement the NOMA

system within the proper restriction.

In Fig. 2.14, the effect of the orthogonality threshold is investigated for N=2,

N=4 and N=8 regarding to the uplink NOMA based MIMO system. To find the optimum

threshold value, β, we consider all N values individually, since when we increase the N

value, OMA-based MIMO transmission is performed for the lower value of β according
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to the proposed user-set selection method given in Algorithm 2. The data rate of the strong

users for different threshold values is examined since the threshold value directly affects

the performance of the strong users set. It is observed that β = 0.8 provides the highest

data rate of the strong users for all the case N and different K values, and the weak

devices are selected as much as orthogonal to the strong devices. Then, the value of β

continues to increase, the data rate of the strong users decreases due to the increasing inter-

set interference with the selection of nearly non-orthogonal weak users. The optimized

β value, which is 0.8, is kept for each N for the remaining part of the simulation results.

Moreover, it is observed that selecting 2M users among a higher number of users, K,

improves the data rate.
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(c) N = 8.

Figure 2.14. Data rate of strong users for the proposed NOMA systems versus the

threshold β, for different K and N.
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Fig. 2.15 shows the sum data rate of the proposed user set selection through

NOMA and OMA for all N with β = 0.8 in the densely deployed devices. For the dif-

ferent number of devices and antennas at BS, it is observed that the NOMA based MIMO

system has superior performance than OMA based MIMO systems through the proposed

user set selection algorithm. Specifically, for N=2 and K=100, the proposed user set

selection with NOMA achieves approximately 23 bps/Hz, whereas the proposed user set

selection with OMA provides approximately 18 bps/Hz. For the case N=4 and K=100,

the proposed user set selection with NOMA achieves approximately 42 bps/Hz, while the

proposed user set selection with OMA attains approximately 34 bps/Hz. Similarly, for

the case N=8 and K=100, the proposed user set selection with NOMA achieves approxi-

mately 74 bps/Hz, while the proposed user set selection with OMA attains approximately

64 bps/Hz. When the K value is increased from 100 to 500, the proposed user set selec-

tion through NOMA achieves a higher sum data rate for both the systems with N=4 and

N=8 as 15%, and 13% for the system with N=2. Furthermore, the performance results

show that increasing number of BS antennas improves the sum data rate for both NOMA

and OMA based MIMO systems.
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Figure 2.15. The sum data rate of NOMA and OMA through the proposed user selection

algorithm for different N with β = 0.8.

For different number of BS antennas, the proposed user set selection algorithm is

compared to the sorting algorithm after determining the optimal power allocation factors
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in (2.57). The sorting algorithm determines the strong and weak users sets by considering

only their channel gains. Firstly, K devices are sorted based on the channel gains in

descending order and classified into two groups as in (2.48) and (2.49). Using (2.48), the

first M devices in Ss which have the highest channel gains are assigned to the strong users

set, while using (2.49), the first M devices in Sw which have the highest channel gains

are assigned to the weak users set.

As given in Fig. 2.16, the proposed user set selection algorithm for all N values

with β = 0.8 provides a better performance, in terms of the data rate of the strong users

than the sorting algorithm. The reason is that the proposed user set selection algorithm

considers the orthogonality between the weak users and the strong users, which reduces

inter-set interference. Specifically, as the N value increases, the performance gain of the

proposed user set selection algorithm decreases due to decreasing the variation of channel

gains.
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Figure 2.16. The comparison of user-set selection algorithms in NOMA based MIMO

systems for different N with β = 0.8.
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2.7. User Selection for NOMA based Massive MIMO Systems

In this section, we consider the user selection and power allocation scheme for an

uplink NOMA based massive MIMO system for a densely devices scenario. We perform

the massive MIMO implementation instead of MIMO as given in the uplink NOMA based

MIMO system model in Section 2.6. For the NOMA based massive MIMO system, the

2D channel model is used as given in (2.2).

The NOMA based massive MIMO system is composed of N -antenna BS and

K single-antenna devices. Among all of these K devices, U devices are selected to be

simultaneously served. Thus, we assume that N >> U >> 1. We select U users among

K users through Algorithm 2, thus there are U/2 users for the strong set and U/2 users

for the weak set. This implies that M=U/2 in the Algorithm 2.

2.7.1. Performance Evaluations

The simulation results are provided to compare the proposed user-set selection

algorithm for multi-user massive MIMO systems based on NOMA and OMA. The data

rate of the strong users is given for the proposed user-set selection with NOMA and the

sorting-based user-set selection with NOMA systems. The effect of the number of devices

K and the threshold β for the different number of antennas at the BS on the sum data rate

and the data rate of the strong users are investigated. The same simulation parameters are

used as given in Section 2.6.3. In figures, massive MIMO is abbreviated as "M-MIMO".

Fig. 2.17 investigates the optimum β values for different U at N=64 and N=128.

The data rate of strong users versus the threshold values, β, is given among different K

users. It is shown that β = 0.1 gives the highest data rate of strong users for different K

users at fixed N and U. Thus, β = 0.1 is selected as the optimum threshold value. For

each case, there is an SNR difference of about 23 dB between the strong and weak users

to perform NOMA effectively.

In Fig. 2.18, the sum data rate comparison of NOMA and OMA based massive

MIMO systems with the proposed algorithm is given, employing β = 0.1. The NOMA

based massive MIMO outperforms the OMA counterpart for Fig. 2.18(a) and Fig. 2.18(b).

Moreover, N=128 has a higher sum data rate than N=64 for each U among K users in

both NOMA and OMA systems. Specifically, the NOMA based massive MIMO system

with N=128 has increased the sum data rate by 73% compared to the OMA based mas-
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(b) N = 64, U = 16.
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(c) N = 128, U = 8.
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(d) N = 128, U = 16.

Figure 2.17. Data rate of strong users for the proposed NOMA based massive MIMO

systems versus the threshold β for different N and K.

sive MIMO system with N=128 while serving U = 8 among K users as in Fig. 2.18(a).

Similarly, the NOMA based massive MIMO system with N=64 has increased the sum

data rate by 76% compared to its OMA counterpart while serving U = 8 among K users.

When we increase the serving users to U = 16 as in Fig. 2.18(b), the sum data rates for

both NOMA and OMA increase compared to U = 8 for the same number of antennas

at BS. Compared to the OMA case, the NOMA based massive MIMO system improves

the sum data rate performance with a percentage of 56% and 68% while serving U = 16

among K users for N=64 and N=128, respectively.

Moreover, the NOMA based massive MIMO with N=128 has increased the sum

data rate by around 7 bps/Hz compared to N=64 for U = 8 among K users as in Fig. 2.18(a).

In addition to that, when we increase the serving users to U = 16 among K users as in

Fig. 2.18(b), the NOMA based massive MIMO with N=128 has increased the sum data

rate by around 31 bps/Hz compared to N=64.
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Figure 2.18. The sum data rate comparison of NOMA and OMA based massive MIMO

systems with the proposed algorithm for different U and N at β = 0.1.

Fig. 2.19 compares the proposed user-set selection and sorting algorithm with

NOMA based massive MIMO in terms of the data rate of strong users for the different

number of antennas at BS, N, and selected U users among K total users. Fig. 2.19(a) and

Fig. 2.19(b) show that the proposed user-set selection algorithm outperforms the sorting

algorithm for any N and K values. Specifically, the proposed algorithm provides 37% and

28% higher data rate of strong users than the sorting algorithm for N=64 and N=128,

respectively while serving U = 8 among K users in Fig. 2.19(a). On the other hand,

Fig. 2.19(b) demonstrates that the proposed algorithm achieves 51% and 46% higher data

rate of strong users compared to the sorting algorithm for N=64 and N=128, respectively

while serving U = 16 among K users.
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Figure 2.19. The comparison of user-set selection algorithms for different U and N at

β = 0.1.

39



2.8. Conclusion

In this chapter, we have presented background information about MIMO, massive

MIMO and NOMA systems. Then, we have proposed the user selection algorithm by

reconstructing the sparse channel of massive MIMO with the OMP to reduce the feedback

load. The proposed algorithm eliminates users according to the channel correlation to

improve the sum data rate performance. Also, the effects of feedback measurement and

sparsity level parameters have been provided through the simulations. Since the feedback

measurement and the sparsity level severely impact the channel reconstruction, the choice

of these parameters is important. The simulation results show that the proposed algorithm

outperforms the traditional approaches in terms of data rate, reduced feedback load and

low complexity.

Moreover, for the uplink NOMA based MIMO system, a user-set selection algo-

rithm that determines the devices incurring the least inter-set interference has been pro-

posed to improve the sum data rate. For the uplink NOMA based MIMO system, simula-

tion results have verified the advantage of the proposed user-set selection with power al-

location over conventional OMA systems. Moreover, in a densely deployed environment,

the same user-set selection and power allocation scheme methods have been extended to

the uplink NOMA based massive MIMO systems.
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CHAPTER 3

MASSIVE MIMO-NOMA BASED MEC SYSTEMS

In this chapter, an overview of mobile edge computing (MEC) system is given in

detail. Then, we present a framework for a MEC system integrated with massive MIMO

and NOMA technology to demonstrate the advantages of massive connectivity, higher

spectral efficiency and lower delay for delay-sensitive applications (Yılmaz and Özbek,

2023). We aim to minimize the overall computing and transmission delay under the users’

transmit power and MEC computing capability. Thus, multiple users in the system, in-

cluding the user at the cell-edge, can offload their tasks to the MEC server under an overall

delay constraint through the pairing scheme for massive MIMO-NOMA. Performance re-

sults are provided regarding to the sum data rate and overall system delay compared with

the OMA-massive MIMO and massive MIMO based MEC systems. Moreover, since the

system performance of massive MIMO-NOMA based MEC system depends on the user

selection approach, we apply a user selection for a densely deployed system to improve

the performance. Therefore, the overall transmission and computing delay in MEC can

be decreased significantly.

3.1. Mobile Edge Computing (MEC)

Recent advances in the next-generation wireless technologies have motivated sev-

eral computationally intensive and latency-critical applications such as virtual reality

(VR), augmented reality (AR), mobile online gaming, face recognition, autonomous driv-

ing, telesurgery, unmanned aerial vehicles (UAVs) and Internet of Things (IoT) (Liao

et al., 2020). These applications require ultra-low-latency communication, computation

and control among many wireless devices (Zeng et al., 2020a). Since the devices have

small physical sizes, limited computation capacities and limited power sources, it is chal-

lenging to handle intensive computation load at the user side. Moreover, this reduces the

quality of the user experience, resulting in excessive delay and power consumption.

To overcome these limitations, cloud computing offers one possible solution by

offloading computation-intensive tasks from users to the cloud. However, because of the

data propagation through wide area networks, the long propagation distances between the
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devices and the centralized cloud, cloud computing can cause excessive latency compu-

tation and heavy traffic loads at the backhaul networks (Pham et al., 2 019). Therefore,

cloud computing may not support latency-critical applications.

To mitigate the limitations and concerns of conventional cloud computing, MEC

has been a promising solution to enable computation-intensive and latency-critical ap-

plications. MEC utilizes powerful cloud-computing capabilities, such as a MEC server

integrated into the BS within the Radio Access Network (RAN) and eliminates the re-

quirement for traffic to be routed through the core network. Compared with cloud com-

puting, in MEC systems, users offload computation-intensive tasks to the powerful MEC

servers in proximity to BSs for execution, which avoids data delivery over the backhaul

networks and reduces latency (Zhang et al., 2019). MEC can significantly reduce com-

putation latency and traffic loads at backhaul networks (Wang et al., 2019). One of the

other benefits of the MEC system is that the energy consumption of the devices can be

significantly reduced by offloading computation-intensive tasks to a MEC server for ex-

ecution (Ren et al., 2018). Besides, since the tasks can be computed at the adjacent BS

instead of the remote cloud center, the congestion in the core network can be effectively

relieved. As a result, by moving the computing and storage features to the edge, MEC

also provides a distributed and decentralized service environment characterized by low

latency and high-rate access (Malik and Vu, 2020).

3.1.1. Offloading Scheme

In MEC systems, there are three different offloading schemes as shown in Fig. 3.1:

• Remote computing only,

• Binary offloading and,

• Partial offloading.

In remote computing only, all users offload their computing tasks to the MEC

server. In binary offloading, users’ tasks are inseparable, and users can either offload

their computational tasks to the MEC server or process them locally. This practically cor-

responds to highly integrated or relatively simple tasks, such as speech recognition and

natural language translation (Cao et al., 2019). On the other hand, in partial offloading,

the computational tasks of users are partitioned into two parts, with one processed locally

and the other offloaded for edge execution. This corresponds to applications with multiple

fine-grained procedures/components, e.g., AR applications. For binary offloading, users
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Figure 3.1. Offloading strategies in MEC: (a) remote computing only (b) binary of-

floading (c) partial offloading.
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prefer to offload when their connection to the MEC server is good, and the MEC server’s

computational resource is sufficient. For the case of partial offloading, the distribution

of the computational tasks is determined by a number of parameters, including the char-

acteristics of the computational tasks, the computing capabilities of the users and MEC

server and the wireless channel conditions (Zeng et al., 2020a).

A taxonomy of several existing MEC schemes is provided in Fig. 3.2 in terms

of offloading strategy, system objective and approach for the single antenna, MIMO and

massive MIMO systems.

Single antenna-based MEC systems: Many studies have analyzed single antenna-

based MEC systems with different multiplexing access techniques, such as TDMA, FDMA,

CDMA, NOMA and OFDMA. The papers of (Qiu et al., 2022) (Irum et al., 2022) have

performed the remote computing only. The binary offloading scheme has been used in

(Chen et al., 2016) (Ren et al., 2018) (Hmimz et al., 2019) (Wang et al., 2019) (Liang

et al., 2020), whereas the partial offloading scheme has been considered in (Ren et al.,

2018) (Sun et al., 2019) (Wang et al., 2019) (Tiwari et al., 2020) (Fang et al., 2020)

(Baidas, 2020) (Wang et al., 2021) (Chen et al., 2022). As another offloading scheme, the

cooperative computing scheme has been presented in (Huang and Liu, 2018) (Liu, 2019)

(Yao et al., 2019) (Cao et al., 2019) (Wen et al., 2020) (Tan et al., 2021) (Li et al., 2021)

(Pan et al., 2021) (Yılmaz and Özbek, 2022).

In terms of system objective, the energy consumption minimization has been in-

vestigated in (Huang and Liu, 2018) (Cao et al., 2019) (Yao et al., 2019) (Wang et al.,

2019) (Hmimz et al., 2019) (Wen et al., 2020) (Tan et al., 2021) (Li et al., 2021) (Wang

et al., 2021) (Qiu et al., 2022). While the papers of (Huang and Liu, 2018), (Wen et al.,

2020) and (Li et al., 2021) have formulated the energy consumption minimization for a

cooperative NOMA based MEC system, the papers of (Wang et al., 2019) (Qiu et al.,

2022) and (Wang et al., 2021) have provided the energy consumption minimization prob-

lem for NOMA-assisted MEC systems. The authors in (Cao et al., 2019) have considered

the user cooperation approach based on a four-slot cooperation protocol. However, in

(Yao et al., 2019), a computing architecture for cooperative computation offloading with

multi-source, multi-relay, and a single edge server has been proposed in an OFDMA

wireless network with four computing modes. Similarly, the authors in (Tan et al., 2021)

have investigated a joint offloading decision, collaboration decision, computing resource

allocation and communication resource allocation problem in the multi-user collabora-

tive mobile edge computing network (C-MEC) based on OFDMA to minimize the total

energy consumption under the delay constraint.
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Remote Computing Only (Huang et al., 2019) (Zeng et al., 2020) (Qiu et al., 2022) (Irum et al.,

2022) (Yılmaz and Özbek, 2023)

Binary Offloading (Chen et al., 2016) (Ren et al., 2018) (Hmimz et al., 2019) (Wang et al.,

2019) (Feng et al., 2020) (Liang et al., 2020) (Nguyen et al., 2021)

Partial Offloading (Ren et al., 2018) (Sun et al., 2019) (Wang et al., 2019) (Tiwari et al., 2020)

(Fang et al., 2020) (Baidas, 2020) (Lia et al., 2021) (Wang et al., 2021) (Lim and Hwang, 2022)

(Chen et al., 2022)

Cooperative Computation (Huang and Liu, 2018) (Liu, 2019) (Yao et al., 2019) (Cao et al.,

2019) (Wen et al., 2020) (Tan et al., 2021) (Li et al., 2021) (Pan et al., 2021) (Yılmaz and

Özbek, 2022) (Yılmaz et al., 2023)

Single antenna

TDMA (Ren et al., 2018) (Sun et al., 2019)

(Cao et al., 2019) (Wang et al., 2021)

FDMA (Liang et al., 2020) (Pan et al., 2021)

CDMA (Chen et al., 2016)

NOMA (Huang and Liu, 2018) (Liu, 2019)

(Wang et al., 2019) (Wen et al., 2020)

(Baidas, 2020) (Tiwari et al., 2020) (Li et al.,

2021) (Fang et al., 2020) (Wang et al., 2021)

(Qiu et al., 2022) (Chen et al., 2022) (Irum

et al., 2022) (Yılmaz and Özbek, 2022)

OFDMA (Yao et al., 2019) (Hmimz et al.,

2019) (Tan et al., 2021)

MIMO / massive MIMO

SDMA (Huang et al., 2019) (Zeng et al.,

2020) (Feng et al., 2020) (Nguyen et al.,

2021) (Lim and Hwang, 2022) (Yılmaz et al.,

2023)

TDMA (Lim and Hwang, 2022)

NOMA (Lia et al., 2021) (Yılmaz and

Özbek, 2023)

Energy Minimization (Huang and Liu, 2018) (Cao et al., 2019) (Yao et al., 2019) (Wang et al.,

2019) (Hmimz et al., 2019) (Wen et al., 2020) (Tan et al., 2021) (Li et al., 2021) (Nguyen et al.,

2021) (Wang et al., 2021) (Qiu et al., 2022)

Delay Minimization (Ren et al., 2018) (Huang et al., 2019) (Fang et al., 2020) (Zeng et al.,

2020) (Tiwari et al., 2020) (Feng et al., 2020) (Lia et al., 2021) (Irum et al., 2022) (Yılmaz et al.,

2023) (Yılmaz and Özbek, 2023)

Joint Energy and Delay Minimization (Chen et al., 2016) (Liang et al., 2020)

Cost Minimization (Pan et al., 2021) (Chen et al., 2022)

Offloading Data Maximization (Liu, 2019) (Yılmaz and Özbek, 2022)

Network Offloading Efficiency Maximization (Sun et al., 2019) (Baidas, 2020)

Energy Efficiency Maximization (Lim and Hwang, 2022)

Convex Optimization (Ren et al., 2018) (Huang and Liu, 2018) (Sun et al., 2019) (Wang et al.,

2019) (Cao et al., 2019) (Liu, 2019) (Wen et al., 2020) (Tiwari et al., 2020) (Fang et al., 2020)

(Li et al., 2021) (Lia et al., 2021) (Wang et al., 2021) (Irum et al., 2022) (Yılmaz and Özbek,

2022) (Yılmaz et al., 2023) (Yılmaz and Özbek, 2023)

Successive Convex Approximation (SCA) (Baidas, 2020) (Zeng et al., 2020) (Nguyen et al.,

2021)

Game Theory (Chen et al., 2016) (Liang et al., 2020)

Machine Learning (Tan et al., 2021) (Chen et al., 2022)

Bipartite Matching based Algorithm (Yao et al., 2019)

Improved Fruit Fly Optimization Algorithm (FOA) (Huang et al., 2019) (Feng et al., 2020)

Integer Constraints Relaxation-based Iterative Algorithm (ICRBI) (Pan et al., 2021)

Overall Energy Minimization by Resources Partitioning (OEMRP) (Hmimz et al., 2019)

Iterative Water-filling (IWF)-based rate allocation (Qiu et al., 2022)

Semi-definite relaxation (SDR) (Lim and Hwang, 2022)

Figure 3.2. A taxonomy of existing MEC schemes.
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On the other hand, the delay minimization problem has been formulated in (Ren

et al., 2018) (Fang et al., 2020) (Tiwari et al., 2020) and (Irum et al., 2022). In particular,

the task delay minimization problem has been investigated for NOMA-enabled multi-

user MEC systems in (Fang et al., 2020), (Tiwari et al., 2020) and (Irum et al., 2022).

However, the authors in (Ren et al., 2018) have investigated the joint communication and

computation resource allocation for a TDMA-based multi-user mobile edge computation

offloading (MECO) system to improve the quality of experience (QoE) for users by min-

imizing the weighted-sum delay of all devices.

The papers of (Chen et al., 2016) and (Liang et al., 2020) have considered the

joint energy and delay minimization. In (Chen et al., 2016), a game theoretic approach

has been presented for the computation offloading decision-making problem among mul-

tiple mobile device users for mobile-edge cloud computing with the CDMA technique. In

(Liang et al., 2020), the problem of interference-aware single-cell multi-user computation

offloading has been studied in the MEC. They have applied game theory and reinforce-

ment learning methods to achieve effective computation offloading.

The cost minimization problem has considered in (Pan et al., 2021) and (Chen

et al., 2022). In (Pan et al., 2021), a cooperative task computation framework has been

presented to exploit the computation resource in UEs to accomplish more tasks while

minimizing the power consumption of UEs. In the considered framework, the offloading

decision, the computational frequency and the offloading power for each UE have been

optimized jointly to minimize the system total cost, which consists of the cost charged

for the UE’s power consumption and the penalty caused by the unaccomplished tasks. In

(Chen et al., 2022), decentralized computation offloading in a NOMA based multi-user

MEC system has been investigated, where long-term average network computation cost

is minimized in terms of power consumption and buffering delay.

The offloading data maximization problem has been investigated in (Liu, 2019)

and (Yılmaz and Özbek, 2022). Specifically, cooperative edge computing has been stud-

ied in (Liu, 2019) for a basic three-node model, which exploits the parallel transmission

structure of NOMA over the whole resource block to maximize the sum offloading data

subject to the latency constraints. In (Yılmaz and Özbek, 2022), a cooperative MEC has

been presented that exploits the combination of NOMA and multiple helpers to maximize

the total offloading data subject to the latency constraints.

The network offloading efficiency maximization problem has been introduced in

(Sun et al., 2019) and (Baidas, 2020). The TDMA based MEC offloading is performed

for (Sun et al., 2019), whereas the problem is formulated in (Baidas, 2020) for a clustered
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NOMA-enabled MEC system.

MIMO and massive MIMO based MEC systems: Besides the single antenna-

based MEC systems, the integration of MIMO/massive MIMO technologies into the MEC

system has been considered with SDMA, TDMA and NOMA techniques, as in Fig. 3.2.

As an offloading s trategy, t he p apers o f ( Huang e t a l., 2 019) a nd ( Zeng e t a l., 2020)

consider remote computing only. The binary offloading h as b een p erformed i n (Feng

et al., 2020) (Nguyen et al., 2021), whereas (Lim and Hwang, 2022) and (Lia et al., 2021)

consider the partial offloading.

As system objective, the delay minimization problem has been formulated in

(Huang et al., 2019) (Zeng et al., 2020) (Feng et al., 2020) and (Lia et al., 2021). Specifi-

cally, the authors in (Huang et al., 2019) (Zeng et al., 2020) and (Feng et al., 2020) have

studied joint communication and computation resource allocation problem for a single

cell massive MIMO based MEC system to minimize the maximum offloading delay over

multiple users. However, the authors in (Lia et al., 2021) have applied massive MIMO-

NOMA technology to the MEC system.

On the other hand, the authors in (Nguyen et al., 2021) have studied the optimiza-

tion of computation task offloading and resource allocation in MIMO wireless systems

considering perfect and imperfect CSI estimation to minimize the maximum weighted

energy consumption. The paper of (Lim and Hwang, 2022) has considered the energy

efficiency (EE) maximization p roblem. In particular, energy-efficient beamforming and

resource allocation have been studied for multi-access edge computing systems consisting

of multi-antenna access points (APs) and single-antenna users.

3.2. Task Offloading for Delay Minimization in MEC

In MEC systems, several users may access the same server for task offloading,

which requires massive connectivity and a multiple-access strategy. Therefore, efficient

and stable wireless communication is needed to satisfy the seamless task offloading to

provide a transmission framework for improving system throughput and reducing overall

delay. The overall delay includes transmission and computing delays. Due to the real-time

processing requirements of MEC systems, it is promising to integrate massive MIMO and

NOMA with MEC.

The aforementioned studies in Fig. 3.2, such as (Baidas, 2020) (Fang et al., 2020)

(Tiwari et al., 2020) (Wang et al., 2021) (Qiu et al., 2022) (Chen et al., 2022) and
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(Irum et al., 2022) have analyzed single antenna-based MEC systems with NOMA tech-

nology to minimize energy consumption, network computation cost, and task delay or

maximize the network offloading efficiency. Nonetheless, all these studies consider sin-

gle antenna-based offloading with the NOMA.

On the other hand, the work in (Wang et al., 2019) has considered computation

offloading via multi-antenna NOMA to improve multi-user MEC systems’ performance,

in which the BS has four antennas. The weighted sum-energy minimization problem has

been formulated for partial offloading and binary offloading.

The following works consider MIMO or massive MIMO assisted MEC system.

The authors of (Nguyen et al., 2021) have considered a single-cell massive MIMO system

to minimize the maximum weighted energy consumption, while the paper of (Lim and

Hwang, 2022) has considered maximizing the EE of the MIMO based MEC system. The

following studies (Huang et al., 2019) (Zeng et al., 2020) and (Feng et al., 2020) have

considered the delay minimization for massive MIMO based MEC systems. Although

these studies improve MEC system performance through massive MIMO, they do not

consider the NOMA system, which improves spectral efficiency in massive MIMO based

MEC system.

The previous studies focused on only the NOMA or massive MIMO based MEC

systems, while we propose a massive MIMO and NOMA assisted MEC system for delay-

sensitive applications to minimize the overall computing and transmission delay for re-

mote computing in which all users in each cluster offload the computing tasks to the MEC

server, considering both offloading and computing phases (Yılmaz and Özbek, 2023). The

main motivation is to construct an efficient MEC mechanism where not only the users

with higher channel gain and computational-intensive tasks but also cell-edge users with

lower channel gain can offload their tasks through user pairing, offloading and computa-

tion scheme. The study of (Lia et al., 2021) has provided the massive MIMO and NOMA

based MEC system to reduce the overall delay among all users without considering the

cluster concept, while we apply in the same transmission delay for the users in the same

cluster in NOMA (Yılmaz and Özbek, 2023). In addition to that, a partial offloading

scheme has been adopted in (Lia et al., 2021), while we present an offloading for remote

computing scheme.

To be specific, in this section, we present a massive MIMO-NOMA assisted MEC

system for remote computing. Specifically, the users with relatively higher channel gains

are called as strong and the users at the cell-edge are called as weak. While pairing the

weak users with the strong ones in each cluster, the weak users can offload a portion
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of their data to the MEC. In each cluster, the strong user determines the transmission

delay to offload its data, while a portion of the weak user’s data is also offloaded during

this transmission. We formulate the problem of minimizing the overall computing and

transmission delay over the massive MIMO based NOMA system under the computing

capability and transmit power constraints. Then, the optimization problem is transformed

into a linear problem and solved with a convex optimization tool, i.e., the interior-point

method.

3.2.1. System Model

As shown in Fig. 3.3, we consider an uplink massive MIMO-NOMA assisted

MEC system for remote computing in which a BS is equipped with an antenna array of

N elements and serves K single-antenna users, under the assumption that K << N .

The sets of users and antennas are denoted as K = {1, . . . , K} and N = {1, . . . , N},

respectively. We consider the case of two users in each cluster for NOMA having totally

M clusters with M ≤ N and m ∈ {1, . . . ,M}. Then, the number of clusters, M , is

determined as K/2. Accordingly, in the proposed system, an efficient user clustering is

applied.

Figure 3.3. The massive MIMO-NOMA assisted MEC system.
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We apply the High-High channel gain user pairing strategy for the proposed frame-

work to pair these K users (Rauniyar et al., 2020). Specifically, the channel gains of K

users are sorted in descending order. Then, these K users are divided into two sets, each

including M users. The set of the first M users with the higher channel gains is defined by

the strong users set, while the weak users set includes the set of remaining M users with

lower channel gains from M+1 to K. Then, the two-user cluster is formed by pairing the

users from each set. Accordingly, the first cluster is formed by pairing the first user of the

strong users set with the first user of the weak users set, and so on through the High-High

channel gain users pairing strategy. Specifically, the first cluster includes the 1st user and

M + 1th user, and the M th cluster contains the M th user and Kth user.

The uplink channel vectors, hm,j , belonging to jth set and mth cluster are given

as (2.1), in Subsection 2.6.1. The channel matrices belonging to the strong users set, H1,

and weak users set, H2, in all clusters are given in (2.28) and (2.29), respectively.

In the proposed framework, the delay mainly includes transmission time and com-

puting time in a remote computing scheme. We focus on the uplink transmission and do

not consider the required time to transmit the computing data from the MEC server to the

user in the downlink phase.

Transmission Scheme: The proposed framework includes both offloading phase

and computing phase. Firstly, we provide the offloading phase where the users transmit

their tasks to the MEC server.

The received signal at the BS is given by (2.30) and (2.31). Here, we assume

that the power allocation factor of the strong user in each mth cluster is different from

each other. Similarly, the power allocation factor of the weak user in each mth cluster is

different from each other. Accordingly, the power allocation factors of the strong users in

the mth cluster are given as [α1,1 . . . αm,1 . . . αM,1] and the power allocation factors of the

weak users in the mth cluster are given by [α1,2 . . . αm,2 . . . αM,2] with m ∈ {1, . . . ,M}.

The average data rate of the user in the jth set and the mth cluster, Rm,j , is defined

in (2.40). Then, the sum data rate in the system is given by RNOMA
sum as in (2.42).

3.2.2. Problem Formulation and Proposed Solution

In this section, we propose the computation scheme for the massive MIMO-NOMA

assisted MEC system. Then, we present the optimization problem and give the solution

based on the interior-point algorithm to tackle the problem of minimizing overall delay.
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Computation Scheme: The main objective of the proposed system is to execute

the data belonging to strong users under delay constraints while offloading a portion of

weak users’ data to MEC at the same transmission time. Accordingly, the strong user

determines the transmission delay in each cluster, m, to offload its data to the MEC. The

total task size for the strong user is initially defined as Dm,1. The transmission time to

offload Dm,1 for the strong user in the mth cluster is given by;

T t
m,1 =

Dm,1

Rm,1

(3.1)

Since the transmission delay in each cluster is determined by the strong user, we

calculate the offloaded data by the weak user as follows;

T t
m,1 Rm,2 = Dm,2 (3.2)

When the users’ data is received, the MEC server allocates its computing resources

to the tasks and the computing is performed for each cluster. The computing time at the

MEC server belonging to mth cluster is expressed as;

T c
m =

(Dm,1 +Dm,2)Cmec

fmec
m

(3.3)

where Cmec denotes the number of CPU cycles required to calculate one bit in the MEC

server, which is also named the computation intensity. fmec
m denotes the CPU frequency

allocated to the mth cluster by MEC.

Finally, the total time to perform the task in the mth cluster is expressed as;

Tm = T t
m,1 + T c

m (3.4)

Our aim is to minimize the overall computing and transmission delay in all clusters

by jointly optimizing the users’ transmit power and MEC computing capacity. Then, we

define the optimization problem as follows;
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min
α,F

max
m

(Tm) (3.5)

s.t. 0 < αm,j ≤ 1, j = {1, 2} , m ∈ {1, . . . ,M} (3.5a)

M∑
m=1

fmec
m ≤ Fmax (3.5b)

R̂m,2 < Rm,2, m ∈ {1, . . . ,M} . (3.5c)

where α = [α1,1, . . . , αm,1, . . . , αM,1, α1,2, . . . , αm,2, . . . , αM,2], F = [fmec
1 , . . . , fmec

M ]

and the available computing resource at the MEC server defined by the maximum CPU

operating frequency is Fmax. R̂m,2 is the data rate of the mth weak user for OMA system

and is expressed as;

R̂m,2 =
B

2
E

{
log2

(
1 +

P |wm,2hm,2|2
‖wm,2‖2 σn

2

)}
. (3.6)

The constraint (3.5a) shows the range of power allocation factors for each user in

the jth set and mth cluster. The constraint (3.5b) gives the total computing resources. The

constraint (3.5c) gives the minimum data rate requirement, in which the data rate of the

weak user in the mth cluster should be higher than the OMA data rate.

In order to reduce the computing time T c
m, we can use all available CPU computing

resources and then the constraint (3.5b) is re-defined as;

M∑
m=1

fmec
m = Fmax (3.7)

Accordingly, we share the computing resources among the clusters equally as fol-

lows;

fmec
m =

Fmax

M
(3.8)

To solve the optimization problem (3.5), we transform the min-max problem into

a minimization problem by introducing an auxiliary variable ν as follows;
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min
α

ν (3.9)

s.t. (3.5a) (3.5c) and (3.8),

Tm ≤ ν, m ∈ {1, . . . ,M} . (3.9a)

Thus, we have transformed the non-convex problem (3.5) into a convex problem

(3.9) using the auxiliary variable. On this basis, the solution to the problem (3.9) is found

by applying the interior-point method subject to the nonlinear inequalities constraints.

In the interior-point method, a log-barrier term is used for the inequality con-

straints, and the problem with inequality constraints can be reduced to having only equal-

ity constraints (Waltz et al., 2006). Barrier functions are usually a logarithmic function

and can be used to transform a constrained problem into a sequence of unconstrained

problems. These functions avoid the iterates from leaving the feasible region by acting as

a barrier.

In this way, we reformulate the objective function in (3.9) as an auxiliary function

with a barrier parameter μ by;

Sμ(x) = ν + μ P (x) (3.10)

where P (.) is an interior penalty function as;

P (x) = −
K∑
i=1

log [−Gi(x)] , for Gi(x) < 0 (3.11)

where the nonlinear inequality constraints in (3.5c) and (3.9a) are rearranged so that

R̂m,2 − Rm,2 < 0 and Tm − ν ≤ 0 for m ∈ {1, . . . ,M}, respectively. Then, each of

these nonlinear inequalities is represented by G = [G1, G2, . . . , GK ].

Algorithm 3 outlines the detailed steps of the interior-point method. In the mini-

mization problem, x is determined as a vector of the following components; x = [αm,j, ν],

∀m, j. A feasible solution to Problem (3.9) is the vector x satisfying all the constraints.

The initial values, x1, are decided by determining the lower and upper bounds range for

each component αm,j, ν in x. For this method, the initial values of power allocation fac-

tors, αm,j , and the overall delay, ν, are defined to satisfy the constraints.
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Algorithm 3 Minimization of the Overall Delay Through Interior-Point Algorithm

Input: x = [αm,j, ν], f
mec
m , Dm,1, hm,j for j = {1, 2} and m ∈ {1, . . . ,M}.

• Initialization Step:

1: Select a growth parameter, ζ > 1.

2: Select a stopping parameter, ε > 0.

3: Set u=1.

4: Select an initial value of the barrier parameter μu > 0.

5: Rearrange the inequality constraints in (3.5c) and (3.9a) as

G = [G1, G2, . . . , GK ], Gi (.) ≤ 0, i = 1, 2, . . . , K.

6: Choose initial feasible points xu with G(xu) < 0.

7: Reformulate the objective function as an auxiliary function by,

Sμu(x) = ν + μuP (x)

where

P (x) = −
K∑
i=1

log [−Gi(x)]

• Iteration Step:

8: Starting from xu, use an unconstrained search technique such as an iterative descent

method applicable to unconstrained problems including steepest descent or Newton’s

method to find the point that minimizes Sμu(x) and call it as the new starting point,

xu+1

• Stopping Criterion Step:

9: if ‖xu+1 − xu‖ < ε, stop then

10: xu+1 is an estimate of the optimal solution

11: else

12: μu+1 = ζμu

13: Reformulate the Sμu+1(x) with u = u+ 1

14: Go to iteration step

15: end if

Output: α∗and ν∗
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After finding the optimized solutions through Algorithm 3, α∗and ν∗, we calcu-

late the total data of strong users, D1, and the total data of weak users, D2, over all clusters

as given below, respectively.

D1 =
M∑

m=1

Dm,1 (3.12)

D2 =
M∑

m=1

Dm,2 (3.13)

Thus, the total executed data in the MEC system is given by;

D = D1 +D2. (3.14)

The complexity of the interior-point method in Algorithm 3 can be determined as

O (√
n 1

ε

)
iterations, where n is the number of variables in the problem, depending on

mainly the number of users, K, in the system (Lesaja, 2009). Thus, the number of users

and the choice of the convergence tolerance, ε, affect the complexity. In the algorithm,

convergence tolerance, ε, is selected as 10−6.

OMA-massive MIMO based MEC scheme: The system performance is compared

with the OMA-massive MIMO based MEC scheme (Kim et al., 2015) as in Fig. 3.4.

We serve the same number of users within two-time slots and equally share computing

resources among the users.

Figure 3.4. Time slot allocation for OMA-massive MIMO based MEC scheme.
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The average data rate of the mth weak user, R̂m,2, is given in (3.6). Then, the

average data rate of the mth strong user, R̂m,1, is given by;

R̂m,1 =
B

2
E

{
log2

(
1 +

P |wm,1hm,1|2
‖wm,1‖2 σn

2

)}
. (3.15)

Thus, the sum data rate for OMA-massive MIMO based MEC scheme is given by;

ROMA
sum =

M∑
m=1

2∑
j=1

R̂m,j. (3.16)

Under these circumstances, the transmission time and the computing time are cal-

culated and rearranged. The transmission time to offload Dm,1 for the mth strong user is

given by;

T̂ t
m,1 =

Dm,1

R̂m,1

(3.17)

The computing time at the MEC server to compute data belonging to mth strong

user is expressed as;

T̂ c
m,1 =

Dm,1 Cmec

fmec
(3.18)

where fmec = Fmax

K
.

Then, the total time for mth strong user in the OMA-massive MIMO based MEC

scheme is given as T̂m,1 = T̂ t
m,1 + T̂ c

m,1.

Similarly, the transmission time to offload Dm,2 for the mth weak user is given by;

T̂ t
m,2 =

Dm,2

R̂m,2

(3.19)

The computing time at the MEC server to compute data belonging to mth weak

user is expressed as;

T̂ c
m,2 =

Dm,2 Cmec

fmec
(3.20)

56



The total time for the mth weak user in the OMA-massive MIMO based MEC

scheme is given as T̂m,2 = T̂ t
m,2 + T̂ c

m,2.

The overall delay for the OMA-massive MIMO based MEC scheme is given;

Ttdma = max
∀m

{
T̂m,1

}
+max

∀m

{
T̂m,2

}
. (3.21)

Massive MIMO based MEC system: The system performance is also compared

with the massive MIMO based MEC system. The instantaneous SINR is defined by;

∼
SINRk =

αkP |vk hk|2
K∑

i=1,i �=k

αiP |vkhi|2 + ‖vk‖2 σn
2
, ∀k ∈ K. (3.22)

where vk is the normalized ZF postcoder vector with the size 1 × N and the ZF post-

coding matrix is V = HH(HHH)−1. The normalized ZF postcoding vector is given as

vk =
Vk

‖Vk‖ , where Vk is the kth row of V. Here, the channel matrix is H = [H1 H2]

including hk that is the kth column of H with size N × 1 represents either strong or weak

user channel vector. αk is the power allocation factor, which represents either strong or

weak user power allocation factor.

Then, the average data rate of the kth user is calculated as follows;

R̃k = B E
{
log2

(
1 +

∼
SINRk

)}
, ∀k ∈ K. (3.23)

Thus, the sum data rate for massive MIMO based MEC system is expressed as;

Rm-MIMO =
K∑
k=1

R̃k (3.24)

The transmission time to offload D̃k for the kth user is given by;

T̃ t
k =

D̃k

R̃k

(3.25)

where D̃k is the total task size which represents either strong or weak user task size.
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The computing time at the MEC server to compute data belonging to kth user is

expressed as;

T̃ c
k =

D̃k Cmec

fmec
(3.26)

Then, the total time for kth user in the massive MIMO based MEC scheme is given

as; T̃k = T̃ t
k + T̃ c

k .

Thus, the overall delay the massive MIMO based MEC scheme is expressed as;

Tm-MIMO = max
∀k∈K

T̃k. (3.27)

3.2.3. Performance Evaluations

This section provides the simulation results to illustrate the performance of the

proposed massive MIMO-NOMA assisted based MEC framework compared with the

massive MIMO based MEC and the OMA-massive MIMO based MEC systems.

Table 3.1. Simulation parameters.

Parameter Value

K 16

B 1 MHz

P 10 dBm

Fmax 20 GHz

Cmec 100 cycles/bit

Dm,1 1 Mbits

νmax 5 sec

For the massive MIMO based MEC system, the same transmit powers as in the

proposed scheme are used, while for the OMA-massive MIMO based MEC the power of

all users is chosen as P, as in (Kim et al., 2015). Consequently, the OMA-massive MIMO
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based MEC uses approximately 63% higher average transmit power than the proposed

massive MIMO-NOMA based and massive MIMO based MEC schemes. In figures, mas-

sive MIMO is abbreviated as "M-MIMO".

The system parameters are given in Table 3.1. The users are uniformly located

in the considered area within a radius of 300 m. The noise power spectral density is

-174 dBm/Hz. The path loss is determined by Lm,j = 30.6 + 36.7 log10(dm,j (m)) where

dm,j corresponds to the distance between the user and the BS (Zeng et al., 2020).

Fig. 3.5 provides the sum data rate of MEC systems for the different numbers of

antennas at the BS for K=16. As shown in the figure, the proposed massive MIMO-

NOMA based MEC achieves a higher sum data rate than the massive MIMO based

MEC and OMA-massive MIMO based MEC for all N values. Specifically, for N=128,

the proposed massive MIMO-NOMA based MEC achieves 65 Mbps, while the massive

MIMO based MEC provides 62 Mbps and the OMA-massive MIMO based scheme en-

ables 26 Mbps. Similarly, for N=512, the proposed MEC achieves around 8 Mbps and

47 Mbps higher sum data rates than its counterparts with the massive MIMO based MEC

and the OMA-massive MIMO based MEC, respectively. The simulation results show the

advantages of NOMA in the MEC system based on achievable data rates.
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Figure 3.5. The sum data rate versus the number of antennas, N, for K=16, M=8 and

P=10 dBm.
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Fig. 3.6 presents the overall delay versus the number of antennas at the BS for

K=16. The overall delay decreases as the number of antennas increases since the data

rates of strong users are increased in the massive MIMO system, which reduces the trans-

mission delay. Specifically, the proposed MEC with N=512 reduces the overall delay by

16% compared with the case of N=128 by serving multiple users simultaneously. More-

over, the proposed massive MIMO-NOMA based MEC outperforms the massive MIMO

based MEC and the OMA-massive MIMO based MEC in terms of the overall delay for all

N values, e.g., the proposed framework reduces the overall delay by 263 ms and 227 ms

compared with the OMA-massive MIMO based MEC for N=128 and N=512, respec-

tively. Accordingly, the proposed massive MIMO-NOMA based MEC reduces the over-

all delay by 5% and 10% compared with the massive MIMO based MEC for N=128 and

N=512, respectively. These performance results confirm the benefits of the proposed joint

massive MIMO and NOMA based MEC system in terms of the overall delay.
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Figure 3.6. The overall delay versus the number of antennas, N, for K=16, M=8 and

P=10 dBm.

In Fig. 3.7, the overall delay versus the maximum transmit power, P, is shown

for N=256 and K=16. When the maximum transmit power is increased, the data rate

of strong users significantly increases, resulting in a reduction in transmission delay and,

thus overall delay. The proposed MEC framework reduces the overall delay by 9% at

P=0 dBm and 8% at P=10 dBm compared with the massive MIMO based MEC scheme.
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Similarly, the overall delay of the proposed system is reduced by 62% at P=0 dBm and

60% at P=10 dBm compared with the OMA-massive MIMO based MEC.
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Figure 3.7. The overall delay versus the maximum transmit power, P for N=256,

K=16, M=8.

Table 3.2 gives the average transmit power per strong user, Ps, and per weak

user, Pw, for the different number of antennas at P=10 dBm. It is observed that the

average transmit power of strong user is higher than those of weak user. Furthermore, the

average transmit power belonging to strong users increases when the number of antennas

is increased, resulting in an increased data rate of the strong users and, thus reducing

transmission delay.

Table 3.2. The average transmit power per strong user and per weak user for N and

K=16, M=8, P=10 dBm.

N Ps [dBm] Pw [dBm]

128 8.48 -3.14

256 8.50 -4.63

512 8.56 -6.16
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Fig. 3.8 investigates the effect of the number of users, K, on the overall delay for

N=256. With the increasing number of users, the CPU frequency allocated by MEC to

the mth cluster for the proposed massive MIMO-NOMA based MEC and kth user for the

OMA-massive MIMO based MEC and massive MIMO based MEC systems decreases.

This causes an increasing computing delay at the MEC server. Thus, it results in a higher

overall delay. In particular, the proposed framework reduces the overall delay by 207 ms

and 308 ms compared with the OMA-massive MIMO based MEC when K=8 and K=32,

respectively. Accordingly, the proposed massive MIMO-NOMA based MEC reduces the

overall delay by 6% and 10% compared with the massive MIMO based MEC when K=8

and K=32, respectively.
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Figure 3.8. The overall delay versus the number of users, K for N=256 and P=10 dBm.

3.3. User Selection for Delay Minimization in MEC

Apart from the previous section, in this section, we perform a user selection ap-

proach to reduce the overall delay significantly and implement 2D channel model as given

in (2.2). Our aim is to demonstrate the effect of the user selection method on the delay

minimization for the massive MIMO-NOMA based MEC system.
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We consider the uplink massive MIMO-NOMA assisted MEC system for remote

computing in which a BS is equipped with an antenna array of N elements and K single-

antenna users, as given in Fig. 3.3. As the proposed user-set selection method, we apply

Algorithm 2. Here, the only difference in the algorithm is that the NOMA based mas-

sive MIMO transmission is performed in Step 7b for the selected users instead of the

OMA-based MIMO transmission. Thus, the selection of U users among K total users is

determined under the assumption that U << N , and these U users form two sets, includ-

ing U/2 users in each. After we select the U users, we consider the case of two users

in each cluster for NOMA having totally M clusters with m ∈ {1, . . . ,M}. Then, the

number of clusters, M , is determined as U/2. Accordingly, in the proposed system, the

High-High channel gain user pairing strategy is applied to pair these U users.

3.3.1. Performance Evaluations

This section provides the simulation results to show the performance of the pro-

posed massive MIMO-NOMA based MEC framework compared with the massive MIMO

based MEC and the OMA-massive MIMO based MEC systems. The same system param-

eters are implemented as in Section 3.2.3. We perform the user selection algorithm among

K=300 users.

Fig. 3.9 explores the effects of the different threshold β on the sum data rate for

the proposed massive MIMO-NOMA based MEC system versus the different number of

antennas at the BS. It is shown that β =0.1 has the highest sum data rate for all N values.

Besides, it is observed that utilizing higher number of antennas increases the sum data

rate by achieving antenna gain.

Fig. 3.10 compares the average sum data rate of the proposed massive MIMO-

NOMA based MEC, the massive MIMO based MEC and the OMA-massive MIMO based

MEC systems for β =0.1 and U=16. The proposed massive MIMO-NOMA based MEC

significantly outperforms the conventional schemes. For example, at N=128, the pro-

posed system achieves about 90 Mbps, while the massive MIMO based MEC and the

OMA-massive MIMO based MEC systems only achieve 71 Mbps and 35 Mbps, respec-

tively. In addition, the proposed algorithm provides a 20 Mbps and 58 Mbps higher sum

data rate than the massive MIMO based MEC and the OMA-massive MIMO based MEC,

respectively, when N=512.
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Figure 3.9. The sum data rate for the proposed massive MIMO-NOMA based MEC

system versus the threshold β for different N, U=16, K=300, P=10 dBm.
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Figure 3.10. The sum data rate versus the number of antennas, N, for U=16, K=300,

β =0.1 and P=10 dBm.
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In Fig. 3.11, we investigate the impact of the user selection strategy on the over-

all delay in the proposed massive MIMO-NOMA based MEC system for the different

numbers of BS antennas, N. We observe that for different N, the proposed MEC system

with user selection significantly reduces overall delay compared to the case U=16, K=16.

For example, when N=128, the overall delay with the user selection decreases by 99 ms;

when N=512, that reduces by 61 ms compared to the case U=16, K=16. Thus, it is ob-

served that applying the user selection algorithm improves the MEC performance in terms

of the overall delay.
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Figure 3.11. The effect of the user selection on the overall delay for the proposed mas-

sive MIMO-NOMA based MEC with different N at P=10 dBm.

Fig. 3.12 demonstrates the overall delay versus the number of antennas at the BS

for the proposed massive MIMO-NOMA based MEC, the massive MIMO based MEC

and the OMA-massive MIMO based MEC systems with the selected U=16 users among

K=300. The overall delay decreases as the number of antennas increases since the data

rates of strong users are improved, which reduces the transmission delay. Specifically,

the proposed MEC with N=512 reduces the overall delay by 5% compared to N=128 by

simultaneously serving the same number of users. Furthermore, the proposed massive

MIMO-NOMA based MEC outperforms the massive MIMO based MEC and the OMA-

massive MIMO based MEC in terms of the overall delay for all N values. In particular,

the proposed framework reduces the overall delay by 168 ms and 30 ms compared with
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the OMA-massive MIMO based MEC and the massive MIMO based MEC for N=128,

respectively. When the number of antennas is increased from 128 to 512, the overall

delay in the proposed MEC system decreases by 154 ms and 27 ms compared with the

OMA-massive MIMO based MEC and the massive MIMO based MEC, respectively.
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Figure 3.12. The overall delay versus the number of antennas at the BS, N for U=16,

K=300 and P=10 dBm.

Table 3.3 presents the average transmit power per strong user, Ps, and per weak

user, Pw, considering the different number of antennas for U=16, K=300 and P=10 dBm.

The average transmit power of strong user is higher than those of weak user. Moreover,

the average transmit power of strong users increases when the number of antennas is

incremented from N=128 to N=512. Thus, it results in an increased data rate for strong

users and reduces transmission delay.

Table 3.3. The average transmit power per strong user and per weak user for N and

U=16, K=300, P=10 dBm.

N Ps [dBm] Pw [dBm]

128 8.64 -2.49

256 8.65 -5.05

512 8.67 -6.74
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In Fig. 3.13, we compare the performance of the overall delay when the number

of the selected users, U, is varied at K=300 and N=256. The figure shows that the overall

delay increases with the number of selected users among K=300. The reason is due to

the increasing computing delay at the MEC server. Thus, the larger number of selected

users results in a higher overall delay. Compared with the schemes in the massive MIMO

based MEC and the OMA-massive MIMO based MEC, the proposed scheme achieves a

lower overall delay for the different numbers of selected users. Specifically, for U=8, the

proposed MEC reduces the overall delay by 14 ms and 124 ms compared to the massive

MIMO based MEC and the OMA-massive MIMO based MEC, respectively. When U=32,

the proposed MEC reduces the overall delay by 33 ms and 240 ms compared with the

massive MIMO based MEC and the OMA-massive MIMO based MEC, respectively.
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Figure 3.13. The overall delay versus the number of selected users, U for K=300,

N=256 and P=10 dBm.

3.4. Conclusion

In this chapter, the joint NOMA and massive MIMO assisted MEC system with a

remote computing scheme has been proposed for delay-sensitive applications. We have

shown that the combination of MEC with NOMA improves the system performance by
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simultaneously serving K users with N antennas. Moreover, by combining massive MIMO

and MEC technologies, more users can offload computational-intensive tasks simultane-

ously to the MEC while reducing the overall delay. We have formulated the overall com-

puting and transmission delay minimization problem for massive MIMO NOMA assisted

MEC systems. As a result, the proposed framework enables both cell-center and cell-

edge users to offload their tasks to the MEC server by applying an efficient user pairing,

offloading and computation scheme. The simulation results verify the benefits of the pro-

posed joint massive MIMO and NOMA with the MEC system. Furthermore, the proposed

algorithm has been extended to the densely deployed scenario for the NOMA and massive

MIMO assisted MEC system, and a user selection algorithm has been applied. Thus, the

overall delay has been reduced through the user selection approach.
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CHAPTER 4

COOPERATIVE MEC SYSTEMS

In this section, cooperative MEC systems are introduced for the cell-edge users

far from the MEC server to improve the offloading performance of these users. The cell-

center users in the system ensure cooperation by offloading cell-edge users’ tasks to the

MEC server and computing some parts of them locally. Following this idea, cooperative

NOMA-MEC systems are proposed with a single antenna to maximize the total offloading

data (Yılmaz and Özbek, 2022) and with massive MIMO to minimize the overall delay

while ensuring security (Yılmaz et al., 2023).

4.1. Multi-helper NOMA for Cooperative MEC

The next-generation wireless systems are expected to support a number of com-

putation intensive and delay-sensitive applications. Since many devices are computation

and power limited, MEC has been deemed as a promising way to enhance computation

service. However, there are some main cases that need to be overcome. Firstly, the com-

putation resource at the BS cannot be always sufficient to support all devices in densely

deployed scenario. Secondly, there could be no strong direct transmission link to the BS.

Considering the above issues, in this section, we propose a novel cooperative MEC

that exploits the combination of NOMA and multiple helpers (Yılmaz and Özbek, 2022).

The motivation of employing the NOMA technology is to reduce the offloading latency

and improve the performance of the MEC based systems. Therefore, these two commu-

nication techniques, MEC and NOMA, can be combined to provide gains in terms of the

total offloading data and the latency performance.

In the proposed system including a user, multiple helpers and a BS, the user can

simultaneously offload its computation-intensive tasks to the helpers using NOMA when

there is no strong direct transmission link between the user and the BS. Then, the helpers

can compute and offload these tasks through NOMA. Thus, in the proposed scheme, the

computation and offloading modes at the helpers are determined with respect to the op-

timized task offloading decision factor. The simulation results show that the proposed

NOMA based cooperative MEC significantly increases the total offloading data under the
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latency constraints compared to the benchmark schemes including one helper with strong

direct transmission link.

State-of-the-art on Computation Offloading in MEC:

Recently, several works have been published addressing the issue of latency mini-

mization, task offloading, resource management and energy consumption in MEC-enabled

systems.

Motivated by the performance gains of applying NOMA over OMA, both NOMA

uplink and downlink transmissions have been applied in (Ding et al., 2019a) to reduce the

latency and energy consumption considering NOMA based MEC offloading. The offload-

ing delay and energy minimization have been respectively optimized in (Ding et al., 2018)

and in (Ding et al., 2019b) for the different users with different computation requirements

in NOMA based MEC systems. In (Ye et al., 2019), a problem has been formulated to

maximize the probability of successful computation by jointly optimizing the offloading

time consumption, the power allocation and the offloading ratios for NOMA based MEC

network, where two users may offload their computation tasks to a MEC server. However,

in (Ding et al., 2018) (Ding et al., 2019a) (Ding et al., 2019b) (Ye et al., 2019), only one

cluster of two users has been considered and the resource allocation among the different

clusters of users forming NOMA has been ignored.

Since each resource is suggested to be multiplexed by a small number of users

due to decoding complexity and error propagation, the importance of resource allocation

among the different clusters of users forming NOMA has been stated in (Zafar et al.,

2013) (Wan et al., 2019). Thus, the completion time and the total energy consumption

minimization problem have been studied in (Yang et al., 2019a) for an uplink NOMA

based MEC system by considering resource allocation for the different clusters with two

users to perform NOMA. In (Pan et al., 2019), the total energy consumption has been

minimized considering the NOMA based transmission in both task uploading and down-

loading. In addition, the authors in (Mao et al., 2019) have presented a total energy

consumption minimization problem while achieving the computation latency constraint

for a NOMA-assisted MEC system.

Although the above studies have demonstrated the effectiveness of MEC through

NOMA in enhancing the computation performance of wireless networks, the computa-

tion resource at the BS cannot be always sufficient to support all devices in a densely

deployed scenario, there may be a cell-edge user with computationally intensive tasks

suffering from a low SNR, or there may not be a strong direct transmission link to the

BS. To deal with this issue, a potential solution is to offload part of the computationally
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intensive tasks to helpers via NOMA. In the light of this solution, in (Cao et al., 2019),

a cooperative edge computing in both computation and communication has been given

for a basic three-node MEC system consisting of one user node, one helper node and

one AP node with a MEC server integrated. The main objective is to minimize the total

energy consumption while satisfying the user’s computation latency constraint based on

the TDMA transmission protocol. In (Liu, 2019), a basic three-node MEC with NOMA

based cooperative edge computing has been presented to maximize sum offloading data

subject to the latency constraints. Similarly, the authors of (Li et al., 2021) have rep-

resented a NOMA-aided user cooperation scheme in a three-node MEC wireless power

transfer (WPT) system based on the energy consumption minimization problem. The only

difference between the system models in (Liu, 2019) and (Li et al., 2021) is the available

computation tasks at the helper. The helper does not have computation tasks in (Li et al.,

2021). However, these studies (Cao et al., 2019) (Liu, 2019) (Li et al., 2021) are based

on only one helper scenario. In addition to that, the user can directly offload its own tasks

to the BS in these three-node MEC systems. On the other hand, different from the basic

three-node MEC system, a cooperative task computation framework has been considered

in (Pan et al., 2021) with the purpose of maximizing the number of accomplished tasks

and minimizing the power consumption of users. In this cooperative task computation

system between the user and the BS, one user can help the other user for task computa-

tion via D2D transmissions.

Figure 4.1. The scenario of the cooperative MEC based on NOMA with multiple

helpers.
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Motivated by the above discussions, as shown in Fig. 4.1, the user can have

computation-intensive mobile applications, such as augmented reality, virtual reality, au-

tonomous driving, gesture recognition and three-dimension (3D) modeling. Also, these

tasks can also be executed under latency constraints. Therefore, it is a challenging task for

the devices to handle these intensive computation loads with the latency requirements. If

there were a strong direct transmission link between the user and the MEC server namely

the three-node MEC system, the user would offload its computation-intensive and delay-

sensitive tasks to a nearby MEC server for remote task execution. However, for the user

which is at the cell edge, there is no strong direct transmission link between the user

and the MEC server. Therefore, the cell-edge user chooses to offload its computationally

intensive and latency-critical tasks to the server through the aid of helpers.

In this section, by considering the state-of-the-art work listed above, we propose

a new paradigm of cooperative MEC with multiple helpers based on NOMA. In the pro-

posed framework, a user simultaneously offloads its tasks using NOMA to many helpers

at the first slot. Then, the helpers can both compute and offload the user’s tasks at the

second slot. NOMA is adopted for offloading in both time slots to increase the total of-

floading data. Furthermore, since the distances between the user and the helpers affect

the maximization of the total offloading data, adjusting the distances is important while

achieving latency constraints of the user’s applications. As a result, the communication

resource optimization is performed to improve the user computation experience through

emerging MEC systems.

To be specific, we propose a multi-helper cooperative MEC system based on

NOMA to maximize the total offloading data under the latency and power constraints

while in the literature (Cao et al., 2019), (Liu, 2019) and (Li et al., 2021), only one helper

case for the MEC system has been considered and the NOMA scheme is only applied for

the link between the user and the helper while it is not used for the link between the helper

and the BS. Afterward, we analyze the proposed framework under the optimum distances

of the multiple helpers to maximize the total offloading data. We provide simulation re-

sults to show the superiority of the proposed framework in terms of the total offloading

data compared with the benchmarking solutions in (Cao et al., 2019), (Liu, 2019) and (Li

et al., 2021).
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4.1.1. System Model

We consider a NOMA based cooperative MEC system which consists of a BS

integrated with a MEC server, one user and K helpers, as illustrated in Fig. 4.2. Let

K = {1, 2, . . . , K} denote the set of helpers. In the system, all helpers have the same

hardware specifications. These helper nodes can be a laptop, or a tablet, which have

certain computation and communication resources.

Figure 4.2. The proposed cooperative MEC based on NOMA with K helpers.

We assume that the user has individual computation tasks with data size, L, to

complete successfully under a common latency constraint, but the helpers, Helperk ∀k ∈ K,

do not have computation tasks. The BS is integrated with the MEC server to execute the

computation-intensive tasks offloaded by the helpers. It is assumed that there is no strong

direct transmission link between the user and the MEC server since the user is at the cell

edge. The user sends a certain part of its tasks to the MEC server through the helpers.

Besides, these helpers are at the cell-center.

We consider the partial computation offloading operation mode that assumes the

computational tasks can be divided into two independent parts. One part is executed

locally, while the other part is offloaded to the helpers. In Fig. 4.2, the user simultaneously

offloads �k part of its own data L, to kth helper and locally computes the rest of the data.
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Each helper computes and offloads the tasks received from the user. The Helperk uses task

offloading decision factor αd
k to decide the fraction of the offloading and the computing

modes. That is, for a particular time instant, the Helperk can have 0 < αd
k < 1 to act the

double modes. In the system, αd
k is obtained through the optimization algorithm and can-

not be 0 or 1, which leads to the helpers working in cooperative mode while executing a

certain portion of the tasks and establishing transmission to offload the remaining portion

of the tasks.

For a cooperative edge computing system, the cooperation between the user and

the helpers is essential. The main motivation of the proposed cooperative MEC system is

that, for a common latency constraint T, the user offloads its own tasks to the MEC server

with the aid of K helpers. Latency constraint, T, is divided into two time slots such as

tu and th as shown in Fig. 4.3. In the first time slot, tu, the user offloads the tasks to the

helpers. Then, the helpers offload and compute a certain part of the user’s tasks in the

second time slot, th.

Figure 4.3. Latency constraint scheme.

In the first time slot which performs NOMA downlink transmission, without loss

of generality, K helpers are sorted as g1 ≥ g2 ≥ . . . ≥ gK where gk is the channel gain

between the user and the Helperk, ∀k ∈ K. The channel amplitude is modeled by using

Rayleigh distribution with a variance of distance-dependent path loss coefficient. The

corresponding CSI is assumed to be available at each receiving node.

In the first time slot tu, the offloaded data from the user to the Helperk is calculated

as �k = tuR
D
k , and the average data rate RD

k is given by (Manglayev et al., 2016) (Huang

and Liu, 2018) (Liu, 2019) (Zhu et al., 2019) (Glei and Belgacem Chibani, 2019) (Huang

et al., 2020) (Zhu et al., 2020) and defined as follows;
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RD
k = B E

⎧⎪⎪⎪⎨⎪⎪⎪⎩log2

⎛⎜⎜⎜⎝1 +
PD
k gk

gk
k−1∑
j=1

PD
j + σ2

d

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.1)

where PD
k denotes the downlink transmit power for the Helperk, and σ2

d is a variance

of zero-mean complex AWGN, where σ2
d = N0 B with N0 is the noise power spectral

density.

In the second time slot which performs NOMA uplink transmission, depending

on αd
k values, all helpers simultaneously offload their data, �k,o = αd

k (�k), to the BS re-

lying on the uplink NOMA scheme. Under this scheme, the helpers are sorted based on

their channel gains, namely gK,o ≥ gK−1,o ≥ . . . ≥ g1,o where gk,o is the channel gain be-

tween the Helperk and the BS. Then, the BS utilizes the SIC technique to decode the data

coming from the helpers. According to the principle of the SIC, the BS first decodes the

information from the helper with the larger channel gain and then removes it from the

other helpers’ signals. Therefore, the average data rate of the Helperk is given by (Zuo

and Tao, 2017) (Yang et al., 2018) (Mao et al., 2019) (Azam et al., 2019);

RU
k = B E

⎧⎪⎪⎪⎨⎪⎪⎪⎩log2

⎛⎜⎜⎜⎝1 +
PU
k gk,o

k−1∑
j=1

PU
j gj,o + σ2

u

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.2)

where PUk is the uplink transmit power of the Helperk. σ2
u is a variance of zero-mean

complex AWGN, where σ2
u = N0 B.

4.1.2. Proposed Framework and Problem Formulation

In this section, a total offloading data (TOD) maximization problem with given

constraints is formulated for the proposed cooperative MEC based on NOMA with the

K helpers. In the proposed framework, since there is no strong direct transmission link

between the cell-edge user and the MEC server, the user sends a certain part of its tasks

to the MEC server through the cell-center helpers. The helpers do not act as a pure relay

since they can compute some portions of the offloaded tasks from the cell-edge user and
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also offload some portions of these computation tasks to a MEC server. In the proposed

approach, we only focus on the offloading part at the user side rather than computing

since our aim is to maximize TOD.

The objective function is TOD that is sum of the user’s and helpers’ offloading

data and defined as function w(.) given below

w(t,P) =
K∑
k=1

(
tuR

D
k + thR

U
k

)
(4.3)

Since the data αd
k

(
tuR

D
k

)
will be offloaded from the Helperk to the BS in the

uplink transmission, the function w(.) can be rewritten as the following function f(.);

f(t,P,αd) =
K∑
k=1

(
tuR

D
k + αd

k(tuR
D
k )
)

(4.4)

Accordingly, TOD maximization problem subject to the latency constraints and

power allocation factors is given by

max
t,P,αd

f(t,P,αd) (4.5)

s.t. RD
k ≥ RD

th,k, ∀k ∈ K (4.5a)

K∑
k=1

PD
k ≤ Pu (4.5b)

PU
k ≤ PU

max, ∀k ∈ K (4.5c)

tu + th ≤ T (4.5d)(
1− αd

k

)
tu R

D
k θ

fk
≤ T − tu, ∀k ∈ K (4.5e)

0 < αd
k < 1, ∀k ∈ K. (4.5f)

where t = [tu, th], P =
[
PD
1 , . . . , PD

K , PU
1 , . . . , PU

K

]
and αd =

[
αd
1, α

d
2, . . . , α

d
K

]
, Pu is

the maximum total transmit power of the user, and PU
max is the maximum transmit power

of each helper. θ is the density/complexity of the task computing (i.e., the number of

CPU cycles/bit) and represents the amount of CPU cycles needed for computing one bit.
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fk represents the local computation capability of each Helperk, also known as the CPU

frequency.

Constraint (4.5a) gives the minimum data rate constraints in downlink that should

not be less than a given threshold rate RD
th,k. Constraints (4.5b) and (4.5c) represent the

power constraints in NOMA downlink and NOMA uplink transmissions, respectively.

Constraint (4.5d) shows the total offloading time constraint for both the user and the

helpers. Constraint (4.5e) represents the local computing time constraint of each helper.

Constraint (4.5f) indicates the range of the task offloading decision factor for each helper.

In the proposed approach, we firstly investigate the optimum distances of the

helpers which maximize TOD assuming there is no energy restriction on the helpers.

After determining the optimum distances, we select the helpers having these distances.

Then, the optimization algorithm is applied to find the optimal time, power allocation

factors and the task offloading decision factor.

4.1.3. Problem Solution

In this section, we derive the solution to Problem (4.5) for the proposed system

with the K helpers NOMA based cooperative MEC. Firstly, we give the solution for the

case of K=2 and then generalize to the K helpers. Since the Problem (4.5) is a constrained

nonlinear multivariable problem, we apply the interior point method. In this method,

violation of inequality constraints is prevented by adding a barrier term to the objective

function that ensures the optimal unconstrained values to be in the feasible space.

NOMA downlink transmission: Since Problem (4.5) is an increasing function

with respect to PD
k , the constraint associated with the downlink transmit power can be

written as PD
1 + PD

2 = Pu to maximize the objective function. Thus, in the downlink

transmission, ξ ∈ (0, 1) is the power allocation factor and becomes one of the optimiza-

tion parameters in the Problem (4.5). Then, the allocated downlink transmit power, PD
1 ,

for the Helper1 is determined by ξPu while the allocated downlink transmit power, PD
2 ,

for the Helper2 is calculated as (1− ξ)Pu.

The average achievable rate of the Helperk in an OMA system (Zhu et al., 2019)

is given by;

ROMA
k =

B

2
E

{
log2

(
1 +

Pu gk
σ2
d

)}
(4.6)
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where the factor 1
2

is due to the fact that conventional OMA results in a multiplexing loss

of 1
2
.

In the downlink transmission, the achievable rate in the NOMA system should be

no less than in the OMA system (Zhu et al., 2019). In this case, RD
th,k is set as ROMA

k .

Then, the range of ξ can be obtained from the constraint (4.5a) directly as follows;

R1
D ≥ R1

OMA

log2

(
1 +

ξPu g1
σ2
d

)
≥ 1

2
log2

(
1 +

Pu g1
σ2
d

)

ξ ≥

(√
1 + Pug1

σ2
d

− 1
)
σ2
d

Pu g1

(4.7)

R2
D ≥ R2

OMA

log2

(
1 +

(1− ξ)Pu g2
ξPu g2 + σ2

d

)
≥ 1

2
log2

(
1 +

Pu g2
σ2
d

)

ξ ≤

(√
1 + Pug2

σ2
d

− 1
)
σ2
d

Pu g2

(4.8)

Thus, the range of ξ is given by;

(√
1 + Pug1

σ2
d

− 1
)
σ2
d

Pu g1
≤ ξ ≤

(√
1 + Pug2

σ2
d

− 1
)
σ2
d

Pu g2
(4.9)

k

Then, we can extend the downlink power allocation factors to the K helpers. As-

sume that n, k represent the index of each helper, which provides cooperation between

the user and the MEC server. The superscript of ξn,k denotes the indices of the pairing
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helpers and the upper bound of ξn,kk is given as zk (Zhu et al., 2019). Thus, it is written as;

ξ1,22 =

(√
1 + Pug2

σ2
d

− 1
)
σ2
d

Pu g2
� z2

ξ1,33 =ξ2,33 =

(√
1 + Pug3

σ2
d

− 1
)
σ2
d

Pu g3
� z3

.

.

.

ξ1,KK =ξ2,KK = . . . = ξK−1,K
K =

(√
1 + PugK

σ2
d

− 1
)
σ2
d

Pu gK
� zK

(4.10)

Considering the magnitude of the channel gain in the downlink transmission, the

order of zk in (4.10) for ∀k ∈ K is given as;

z1 ≤ z2 ≤ . . . ≤ zK (4.11)

where z1 =

(√
1+

Pug1
σ2
d

−1

)
σ2
d

Pu g1
.

In this way, the range of the power allocation factors, ξk, of each helper is deter-

mined as;

zk−1 ≤ ξk ≤ zk+1 (4.12)

where 1 ≤ k ≤ K − 1, K ≥ 3 and z0 denotes 0.

Hence, the downlink transmit power for each helper is written as ξkPu, while the

downlink transmit power for the HelperK is found from the expression as Pu −
(

K−1∑
k=1

ξkPu

)
.

It can be noticed that Problem (4.5) is non-decreasing with respect to tu. In order

to maximize the total offloading data, the total latency constraint, T, is the sum of tu and

th since the range of tu is given in 0 < tu < T . Thus, the constraint (4.5d) becomes;

tu + th = T (4.13)
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Accordingly, the constraint (4.5e) can be rewritten as

(
1− αd

k

)
tu R

D
k θ

fk
≤ th, ∀k ∈ K (4.14)

NOMA uplink transmission: In the second time slot th since the data αd
k

(
tuR

D
k

)
will be offloaded from the Helperk to the BS with data rate RU

k , we can obtain the follow-

ing equations;

αd
1

(
tuR

D
1

)
= (T − tu)B log2

(
1 +

PU
1 g1,o
σ2
u

)
(4.15)

αd
2

(
tuR

D
2

)
= (T − tu)B log2

(
1 +

PU
2 g2,o

PU
1 g1,o + σ2

u

)
(4.16)

On the other hand, the uplink transmission power must be lower than or equal

to PU
max in the uplink as shown in constraint (4.5c). Thus, we can derive the nonlinear

constraints related to the optimization Problem (4.5) for the uplink transmission powers,

PU
1 and PU

2 , using (4.15) and (4.16) as follows;

(
2

αd
1 (tuRD

1 )
th − 1

)
σ2
u

g1,o
≤ PU

max (4.17)

(
2

αd
2 (tuRD

2 )
th − 1

)(
2

αd
1 (tuRD

1 )
th

)
σ2
u

g2,o
≤ PU

max (4.18)

Then, we can extend the uplink transmission powers given in constraint (4.5c) to

the K helpers, ∀k ∈ K as;

(
2

αd
k (tuRD

k )
th − 1

)
k−1∏
i=1

(
2

αd
i (tuRD

i )
th

)
σ2
u

gk,o
≤ PU

max (4.19)
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Furthermore, the range of the task offloading decision factor for each helper is de-

termined to provide better cooperation through the helpers in the system. Thus, constraint

(4.5f) is redefined as follows;

0.3 ≤ αd
k ≤ 0.7, ∀k ∈ K. (4.20)

Accordingly, the optimization Problem (4.5) can be rewritten as follows;

max
t,P,αd

f(t,P,αd) (4.21)

s.t. (4.12), (4.14), (4.19), (4.20). (4.22)

It is also equivalent to minimizing -f(.), thus the corresponding optimization prob-

lem can be efficiently solved by using some standard nonlinear programming optimization

tools (Grace, 1990). The minimum of a constrained nonlinear multivariate function can

be determined using the interior-point method.

The details of the interior-point algorithm are summarized in Algorithm 4 for the

multi-helper scenario. In the minimization problem, x is defined as a vector of the com-

ponents; x =
[
tu, ξk, α

d
k

]
, ∀k ∈ K. The vector x satisfying all the constraints is called a

feasible solution to the Problem (4.21). The initial values, x1, are determined by defining

lower and upper bounds range for each component tu, ξk and αd
k in x.

Then, the auxiliary function with a barrier parameter μ is given as;

Sμ(x) = −f(x) + μ P (x) (4.23)

where P(.) is given by;

P (x) = −
2K∑
i=1

log [−Gi(x)] , for Gi(x) < 0 (4.24)

where G = [G1, G2, . . . , G2K ] represents the nonlinear inequality constraints in (4.14)

and (4.19).
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Algorithm 4 Optimizing TOD Based on Interior-Point Algorithm for K Helpers

Input: gk, gk,o , x =
[
tu, ξk, α

d
k

]
; ∀k ∈ K

1: Rearrange the inequality constraints in (4.14) and (4.19) as G = [G1, G2, . . . , G2K ],

Gi (.) ≤ 0, i = 1, 2, . . . , 2K.

2: Reformulate the objective function as an auxiliary function by,

Sμj
(x) = −f(x) + μjP (x)

where P (x) is given (4.24).

3: Call Algorithm 3

Output: t∗u, ξ∗k, αd
k
∗
; ∀k ∈ K

As a result of Algorithm 4, the optimum output values as t∗u, ξ
∗
k, α

d
k
∗
, ∀k ∈ K are

obtained in order to provide maximum total offloading data under the constraints.

4.1.4. Performance Evaluation

In this section, we present the simulation results to evaluate the performance of

the proposed system. The simulation parameters are listed in Table 4.1.

Table 4.1. Simulation parameters.

Parameter Value

Carrier frequency, fc 3.5 GHz

Transmission bandwidth, B 1 MHz

Noise variance, σ2
d, σ2

u -159 dBm

CPU frequency, fk 1 GHz

Required CPU cycles of tasks, θ 1000 cycles/bit (Li et al., 2021)

Maximum total transmit power of the user, Pu 0.5 W (Liu, 2019)

Maximum transmit power of the helper, PU
max 0.8 W (Liu, 2019)

For both the user and helpers, the channel is modeled by using Rayleigh fading

components with distance-dependent path loss, whose parameters depend on whether the

receiver is the BS or the helper.
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When the receiver is the BS, the path loss model conforms to "3GPP TR 36.814,

Table B.1.2.1-1, B.1.2.1-2, UMi (3GPP, 2010)" for the distance between the kth helper

and the BS, dk,BS[m].

L(dk,BS)[dB] = 36.7 log10 (dk,BS) + 22.7 + 26 log10 (fc) (4.25)

When the receiver is the helper, the path loss model conforms to "3GPP TR

36.843, A.2.1.2, UMi (3rd Generation Partnership Project, 2014)" for the distance be-

tween the user and the corresponding Helperk, du,k[m].

L(du,k)[dB] = max(PL(du,k), PL_B(du,k)) (4.26)

where

PL = 20 log10 (du,k) + 46.4 + 20 log10 (fc/5) (4.27)

PL_B = (44.9− 6.55 log10 (hMS)) log10 (du,k)+5.83 log10 (hMS)+14.78+34.97 log10 (fc)

(4.28)

where hMS is the device antenna height (Kyösti et al., 2008) (Meinilä et al., 2010).

The performance results of the proposed scheme are compared with the one helper

based MEC systems in (Cao et al., 2019) and (Li et al., 2021). In Figures 4.6 and 4.7, the

proposed system is labeled as "two helpers with NOMA", whereas the benchmark systems

studied in (Cao et al., 2019) is labeled as "one helper with TDMA" and (Li et al., 2021) is

labeled as "one helper with direct link". Moreover, TDMA based cooperative offloading

scheme is also performed for the two helpers case, namely, "two helpers with TDMA". In

the TDMA scheme, four time slots are needed to offload the user’s tasks to the BS through

the two helpers.

The distance between the user and the BS, d, is selected at 750 meters. Accord-

ingly, the cell-center helpers are deployed between d
3

and 2d
3

. It is assumed that the helpers

cannot be close to the user and the MEC server from a distance of 50 meters. In the pro-

posed system, the distances between the user and the helpers are determined according to

TOD results. On the other hand, in the one helper systems in (Cao et al., 2019) and (Li

et al., 2021), the helper is located in the middle of the user and BS, which is 375 meters.
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TOD is obtained for various distances using Algorithm 4 by dividing d into 50

meters intervals. In this way, we decide where the helpers should be located to maximize

TOD. The total offloading data is shown in Fig. 4.4 as a function of different choices of

du,1 and du,2 for T= 50 ms. In the figure, du,1 is the distance between the user and the

Helper1, whereas du,2 denotes the distance between the user and the Helper2. According

to Fig. 4.4, the possible distance pairs giving the highest total offloading data are the case

of fixed du,1 = 250 m or du,2 = 500 m which are plotted in detail in Fig. 4.5.

Figure 4.4. Average total offloading data versus du,1 and du,2, T= 50 ms.

Fig. 4.5 illustrates the total offloading data versus the different du,1 and du,2 dis-

tance pairs for the proposed system for T= 50 ms. The increasing curve in Fig. 4.5(a)

represents du,1 = 250 m is fixed and du,2 is changing through the x-axis. On the other

hand, the descending curve in Fig. 4.5(b) represents du,2 = 500 m is fixed and du,1 is

changing through the x-axis. Fig. 4.5(a) indicates that the closer the Helper2 is to the BS,

the higher the total offloading data. Fig. 4.5(b) shows that the closer the Helper1 is to the

user, the higher the total offloading data. In other words, when the channel gain between

the user and the Helper1 becomes stronger in the downlink transmission and the channel

gain between the Helper2 and the BS becomes stronger in the uplink transmission, we

obtain the maximum total offloading data.

By considering TOD results given in Fig. 4.5, the optimum distance pair, [du,1, du,2],

is chosen to have the maximum total offloading data as [250, 500]. For the remaining part

of the simulation results, the optimum distance pair [250, 500] is utilized.
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Figure 4.5. The average total offloading data versus fixed du,1 and du,2 distance pairs,

T= 50 ms.

In Fig. 4.6, we provide the total offloading data results considering the latency

constraints. The latency, T, is a scalable value depending on applications, in this system,

it is taken as between 50 ms and 80 ms. Increasing T stretches the latency constraint since

the tasks of the user and the helpers can be executed more flexibly. As shown in Fig. 4.6,

the system performance is improved in all systems when T increases since more user tasks

are offloaded to the helpers. It is observed that two helpers case with NOMA or TDMA

schemes outperforms the one helper systems. Furthermore, TOD results demonstrate that

the proposed two helpers with NOMA system provides the best performance. This is due

to the fact that the user’s computation-intensive tasks are distributed between two helpers

instead of offloading to the BS directly and two helpers can offload more tasks to the BS

using NOMA. The total offloading data in the proposed system increases dramatically

comparing with the one helper with direct link in (Li et al., 2021) system as 0.14 Mbits at

T= 50 ms and 0.23 Mbits at T= 80 ms. Besides, the proposed two helpers with NOMA

system achieves higher total offloading data performance on around 17% compared to the

two helpers with TDMA scheme. The proposed two helpers with NOMA system provides

a 0.29 Mbits higher TOD at T= 50 ms and 0.47 Mbits higher TOD at T= 80 ms compared

to the one helper with TDMA in (Cao et al., 2019).
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Figure 4.6. The average total offloading data versus latency.

We also investigate the effect of the maximum transmit power of the user, Pu,

on the total offloading data and the downlink power allocation factor, ξ, for T= 50 ms.

Fig. 4.7 shows that when Pu increases, the total offloading data increases for all schemes

due to increasing in the downlink transmission rates, RD
m. Specifically, the proposed two

helpers with NOMA system achieves 24% and 18% improvement in TOD over the one

helper with direct link in (Li et al., 2021) system by using the same transmit power of the

user, Pu = 0.1 W and Pu = 0.8 W, respectively. Besides, the proposed algorithm with

NOMA outperforms its TDMA counterpart by 24% and 16% in TOD for Pu = 0.1 W and

Pu = 0.8 W, respectively. It is shown that the proposed two helpers with NOMA system

can provide 60% and 47.3% higher TOD than the one helper with TDMA in (Cao et al.,

2019) for Pu = 0.1 W and Pu = 0.8 W, respectively.

Fig. 4.8 illustrates that larger Pu results in a smaller ξ. The reason is that increasing

Pu leads to allocate more power to the Helper2. Then, the offloading data, �1 and �2 are

allocated fairly in the proposed system.

The performance results based on uplink transmit powers, downlink transmit pow-

ers, the amount of the offloading data at the user and the helpers side and TOD are given

in Table 4.2 for the different distance pairs for T= 50 ms and Pu = 0.5 W. Table 4.2 im-

plies that there is an optimization between time constraints; th is lower than tu so that the

user can offload more data to the helpers. Furthermore, the uplink transmit powers, PU
k ,

are allocated proportionally to the channel gain between the Helperk and the BS.
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Figure 4.7. The average total offloading data versus maximum transmit power of user,

T= 50 ms.
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Figure 4.8. The power allocation factor, ξ, versus the maximum transmit power of

user, du,1 = 250 m, du,2 = 500 m, and T= 50 ms.
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In Table 4.2, the distance pair of [250, 300] provides more user data offloaded

to the helpers, while less data is offloaded to the BS due to longer distance between

the helpers and the BS. This inference is easily comprehended from the optimized task

offloading decision factor, αd*. Thus, it results in less TOD compared to the optimum

distance pair of [250, 500]. Furthermore, although the optimized task offloading decision

factor, αd* takes the maximum value, TOD is lower for the distance pair of [450, 500].

The reason is that since the user has to complete the computation-intensive tasks under

the latency constraint, when the helpers are far away from the user, less data will be

offloaded to the helpers to meet the latency constraint.

Table 4.2. Performance results for different du,1 and du,2 distance pairs, for T= 50 ms,

Pu = 0.5 W.

du,1

[m]

du,2

[m]
t*
u [ms] αd

1
∗

αd
2
∗ PD

1

[dBm]

PD
2

[dBm]

PU
1

[dBm]

PU
2

[dBm]

�1

[Mbits]

�2

[Mbits]

�1,o

[Mbits]

�2,o

[Mbits]

TOD

[Mbits]

250 300 33.5 0.53 0.51 6.3 27 16.5 29 0.33 0.24 0.17 0.12 0.85

250 400 32.4 0.63 0.6 8.3 27 19.4 29 0.33 0.21 0.20 0.13 0.86

250 500 32.5 0.67 0.66 9.9 26.9 22.6 29 0.34 0.19 0.23 0.13 0.88

300 350 32.4 0.64 0.62 7.8 27 15.7 29 0.29 0.22 0.18 0.13 0.83

350 400 32.4 0.68 0.67 9 27 14.7 29 0.28 0.20 0.19 0.14 0.81

350 500 33.3 0.69 0.69 10.3 26.9 18.3 29 0.29 0.19 0.20 0.13 0.82

450 500 34.2 0.7 0.7 11.1 26.9 14.8 29 0.26 0.19 0.18 0.13 0.77

We also discuss the total computing data since it is important to execute the

amount of the user’s task. This variable indicates that how much of the user’s data is

cooperatively executed at both the BS and helpers side under the latency constraint. For

the fixed optimum distance pair [250, 500] and T= 50 ms, the proposed two helpers with

cooperation scheme achieves higher total computing data performance on around 18%

compared to the without cooperation case where the optimized αd*
values equal to 1

and the helpers act as a relay. This result indicates that the cooperation becomes more

important to execute more user’s data.

The performance of TOD is compared through multiple helpers for the cases K=2

and K=3. The optimum distances for K=3 are determined as du,1 = 250 m, du,3 = 300 m

and du,2 = 500 m to maximize TOD. Thus, we show that K=3 provides a gain of about

15 kbits on TOD compared to K=2 case for T= 50 ms. The contribution of adding one

helper to the proposed framework is affected by power constraints.
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4.2. Massive MIMO based Cooperative MEC with Secure Offloading

In the MEC system, the achievement of edge computing operations depends on

transmission data rates. One of the key technologies for wireless systems to achieve high

data rates is massive MIMO, which is being increasingly adopted in different frameworks.

The massive MIMO based MEC strategy has greatly assisted the offloading in the MEC

system due to the significant gains in both spectral and energy efficiencies (Zeng et al.,

2020a). The massive MIMO can yield higher transmission rates for offloading in MEC.

Besides, since massive MIMO can simultaneously support a larger number of users in

offloading, the wireless data transmission delay, especially in the uplink, is reduced.

Apart from massive MIMO and MEC technology, the combination of NOMA and

massive MIMO yields great potential in MEC systems, such as higher spectral and energy

efficiencies, massive connectivity and lower delay.

While the advantages of MEC technology are in decreasing computation latency

and traffic loads on the backhaul networks, secure offloading in MEC systems is of criti-

cal importance. Due to the broadcast nature of wireless communications, the computation

tasks offloaded from users to the MEC server may be overheard by nearby eavesdroppers,

leading to security threats to users (Mao et al., 2022). Without proper security mecha-

nisms, the advantages of MEC technology will be diminished by the damage caused by

eavesdroppers (Elgendy et al., 2020). Therefore, a secure task offloading scheme is es-

sential for successfully completing computing tasks (Wang et al., 2020). To address this,

the physical layer security (PLS) technique has been a promising solution to ensure the

security of task offloading in MEC systems. Specifically, PLS exploits the nature of wire-

less channels to achieve secure information transmission with affordable complexity (Xu

et al., 2021).

4.2.1. Related Works

In this subsection, we present the literature review on massive MIMO-assisted

MEC systems and the secure task offloading scheme in MEC systems.

Massive MIMO assisted MEC Systems:

Many works have focused on energy consumption and energy efficiency for mas-

sive MIMO based MEC systems. The authors of (Hao et al., 2019) have considered

an energy minimization problem for a massive MIMO enabled heterogeneous network

(HetNet) with MEC to show that the energy consumption can be reduced by employing
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massive MIMO with a maximum-ratio combing detector. In (Malik and Vu, 2019) and

(Malik and Vu, 2020), the authors have formulated an energy optimization problem at

both the users and the MEC server for a delay constrained massive MIMO based MEC

system. Furthermore, the authors of (Mukherjee and Lee, 2020) have explored an edge

computing-enabled, cell-free multicell massive MIMO system. They have analyzed the

impact of the successful computation probability on the total energy consumption using

queuing theory and stochastic geometry. In the paper of (Zhao et al., 2020b), the mini-

mization of the user’s total energy consumption has been considered by jointly optimizing

the user’s offloading data, transmission power and offloading rate for a massive MIMO

based MEC system.

The delay minimization problem has been investigated in the following studies for

massive MIMO based MEC systems. As given in Fig. 3.2, the authors of (Huang et al.,

2019) have investigated a delay minimization problem for a single-cell, massive MIMO

assisted MEC system. It is shown that the delay can be reduced by employing massive

MIMO with a maximum-ratio combing detector. In (Zeng et al., 2020), the overall delay

minimization among all users has been studied for a massive MIMO assisted MEC system

with a joint allocation of wireless and computational resources considering the perfect and

imperfect CSI cases. The authors of (Feng et al., 2020) have designed a single-cell multi-

user massive MIMO MEC system based on the joint resource allocation to minimize the

maximum delay consisting of pilot transmission delay, data transmission delay and server

computation delay.

Secure MEC Systems:

Since the offloading data may be intercepted and overheard by eavesdroppers due

to the broadcast nature of wireless communications, the MEC system brings security chal-

lenges. Thus, some studies have focused on designing a secure task offloading scheme

to avoid information leakage. In (Lin et al., 2019), the computation efficiency maximiza-

tion problem has been studied in a multi-user NOMA-enabled MEC system with PLS.

The secure computation efficiency problem has been formulated by jointly optimizing the

transmission power and the CPU frequency of local computing. The authors in (Yang

et al., 2019b) and (Wang et al., 2020) have considered a multi-user uplink offloading

scenario with one eavesdropper. The authors have examined a joint optimization of the

computing task allocation, local CPU frequency, offloading power and time slots to min-

imize the total energy consumption. In (Xiao et al., 2020), the authors have examined a

deep reinforcement learning-based mobile offloading scheme for edge computing against

jamming attacks and interference. A safe reinforcement learning has been used to avoid
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choosing the risky offloading policy that fails to meet the computational latency require-

ments of the tasks. Moreover, in (Zhang et al., 2021), an optimization problem has been

introduced to minimize the weighted sum of the execution latency and energy consump-

tion subject to communication and computation resource constraints for a MEC system

consisting of one MEC server, multiple mobile devices and one eavesdropper. In (Xu

et al., 2021), secure computation offloading has been studied for multi-user multi-server

MEC-enabled IoT. The joint optimization of communication and computation resource

allocation, a partial offloading ratio have been performed to maximize the total secrecy of-

floading data considering offloading latency and secrecy constraints. In (Wu et al., 2022),

a NOMA-assisted secure computation offloading has been investigated under the eaves-

dropping attack, in which a wireless user forms a NOMA pair with an edge-computing

user to provide cooperative jamming to the eavesdropper while gaining the opportunity

of sending its data.

The following studies have investigated the latency minimization problem for se-

cure offloading MEC system. Specifically, in the study of (Wang et al., 2019a), an uplink

NOMA based MEC system has been considered with one eavesdropper. The task comple-

tion time minimization problem has been studied subject to the worst-case secrecy rate,

the transmit power and secrecy outage probability constraints. A secure and low-latency

offloading MEC system with one eavesdropper has been presented in (Zhou et al., 2020).

The minimization of total latency has been formulated by jointly optimizing the users’

transmit power, computing capacity allocation and user association subject to security

and computing resource constraints. Furthermore, in (Sun et al., 2020), a power alloca-

tion algorithm has been provided to achieve an optimal secure data rate and reduce the

whole task latency of both communication and computation. The authors in (Wang et al.,

2022) have investigated PLS in a NOMA based MEC system with hybrid SIC decoding.

A latency minimization problem has been formulated by jointly designing computational

resource allocation, task assignment and power allocation.

Motivated by the above background, we present an overall delay minimization

problem in the massive MIMO-NOMA based cooperative MEC system for the scenario

as shown in Fig. 4.9 where there is a cell-edge user with a computation-intensive and

latency-critical task (i.e., AR, VR, real-time online gaming, or remote healthcare applica-

tions) (Yılmaz et al., 2023). The cell-edge user may experience a low SINR or there may

not be a strong direct transmission link to the BS. Hence, it is needed to execute this cell-

edge user’s computation-intensive task with low latency. In this case, all cell-center users,

termed helpers, assist in executing this task using a cooperative communication strategy
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Figure 4.9. The scenario of massive MIMO based cooperative MEC system model.
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based on massive MIMO and NOMA technologies. In this framework, the overall delay

is determined by taking into account both downlink and uplink transmissions. NOMA is

performed in the downlink transmission between the cell-edge user and helpers. On the

other hand, a massive MIMO channel is employed for the uplink transmission, including

data transmission between helpers and the MEC server. In addition to that, we consider

the computation delay at the MEC server by executing the offloaded tasks. Furthermore,

these computation-intensive and latency-critical tasks may include private, financial and

identity information such as medical records or payments. Thus, secure offloading in the

MEC system is investigated in uplink transmission, where the eavesdropper might intend

to overhear the offloaded tasks from the helpers. Different from the existing works, we

present a cooperative MEC system including secure offloading. In the proposed frame-

work, we aim to minimize both offloading and computing delay by providing cooperation

through massive MIMO and NOMA while satisfying security constraints.

In this section, massive MIMO and NOMA are introduced into a cooperative MEC

system to minimize the overall delay. In particular, we investigate a secure massive MIMO

based cooperative MEC by considering the overall delay, including both offloading and

computing. In the overall system, NOMA and massive MIMO communication are per-

formed in the downlink and uplink transmission, respectively. We propose efficient al-

gorithms for both the downlink and uplink transmission in the proposed framework. The

overall delay minimization problem is formulated in the secure MEC system considering

both the secrecy rate and the uplink delay. The performance results show that the proposed

massive MIMO-NOMA based cooperative MEC system significantly reduces the overall

delay through multiple helpers. Furthermore, massive MIMO and NOMA technologies

facilitate secure offloading in a cooperative MEC framework.

4.2.2. System Model

We consider a massive MIMO based cooperative MEC system model consisting

of one BS with N antennas, K single-antenna helpers, and one user with a single-antenna,

under the assumption of N >> K >> 1, as illustrated in Fig. 4.10. NOMA is applied

in the downlink transmission between the user and the helpers. On the other hand, in the

uplink transmission between the helpers and the BS, a massive MIMO is employed.

It is assumed that the perfect CSI between all nodes is available at the BS. The BS

is connected to a MEC server by an optical fiber link to provide computing service for
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the users in its coverage. In massive MIMO, a ULA antenna model where neighboring

antennas are spaced by D = λ/2.

Figure 4.10. The proposed massive MIMO based cooperative MEC system model with

K helpers.

The user has computation tasks with a data size of L. It is assumed that there is

no strong direct transmission link between the user and the MEC server since the user is

at the cell edge. Thus, for the offloading phase, the user sends a certain part of its tasks

to the MEC server through the helpers. It is assumed that these helpers are at the cell-

center as shown in Fig. 4.10. The BS is integrated with the MEC server to execute the

computation-intensive tasks that are offloaded by the helpers. Upon receiving the data,

the MEC server applies computing to these tasks.

We consider partial offloading on the helper side, where helpers’ resources are

partitioned into two parts: one part is processed locally and the remaining is offloaded to

the MEC server. In the proposed framework, these computational tasks, which depend on

various parameters, are partitioned based on offloading decision factor, αd
k. After the user

simultaneously offloads a certain part of its own data, L, to the helpers, the Helperk uses

αd
k factor to decide the portion of data offloading and data computing.

In downlink transmission, NOMA based scheme is used to offload the cell-edge

user’s tasks to the K helpers simultaneously. Then, the average data rate RD
k is given as

in (4.1).
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In the uplink transmission, in the massive MIMO system, K helpers simultane-

ously transmit their symbols to the BS. Then, the received data vector y ∈ CN×1 at the

BS is given by;

y =
K∑
k=1

√
PU
k hksk + z (4.29)

where s = [s1, . . . , sk, . . . sK ]
T ∈ CKx1 is the transmitted symbol vector, ∀k ∈ K. PU

k is

the uplink transmit power of the Helperk, hk ∈ CN×1 is the channel vector between the

kth helper and the BS, and the 2D massive MIMO channel model is implemented as in

(2.2). z is the AWGN vector with zero mean and σ2
u variance, CN (0, σ2

u).

The average data rate Rk for Helperk is defined as;

Rk = B E {log2 (1 + γk)} (4.30)

where γk is the received SINR for the kth helper after applying linear detector.

The uplink sum data rate of K helpers is computed as;

R =
K∑
k=1

Rk (4.31)

The minimum mean-squared error (MMSE) detection scheme is used at the BS to

detect the uplink data. To compute γk for each helper, a linear MMSE detector scheme is

employed by;

VMMSE =
(
HHH+ σ2

uIK
)−1

HH (4.32)

where VMMSE � [v1,v2, . . . ,vK ] ∈ CK×N is the MMSE matrix and the channel matrix

is given by H � [h1,h2, . . . ,hK ] ∈ CN×K .

We detect the data symbol for the kth helper by;

sk = vky (4.33)

where vk is the kth row vector of VMMSE.
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We obtain the received symbol belonging to the kth helper as;

sk =
√
PU
k vkhksk +

K∑
i=1,i �=k

√
PU
i vkhisi + vkz (4.34)

where the first term represents the received data symbol of the kth helper, while the second

and the third terms represent the interference from other helpers and noise, respectively.

Thus, the SINR of the kth helper at the MMSE detector output can be calculated

as;

γk =
PU
k |vkhk|2

K∑
i=1,i �=k

PU
i |vkhi|2 + ‖vk‖2 σ2

u

(4.35)

4.2.3. Proposed Framework and Problem Formulation

In this section, we first introduce the offloading and computing scheme within

the scope of the proposed framework and then formulate the corresponding optimization

problem. Then, we investigate the secure offloading in the proposed MEC system. In

the proposed framework, the cell-center helpers assist the cell-edge user in offloading the

user’s tasks to the MEC server since there is no strong direct transmission link between

the cell-edge user and the MEC server. We cannot consider the helpers as pure relays

since they can compute some parts of the offloaded tasks from the cell-edge user and at

the same time, they can offload the remaining parts of these computation tasks to the MEC

server. Moreover, we assume that there is no energy restriction on the helpers.

Figure 4.11. Overall delay scheme for offloading and computing.
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Fig. 4.11 shows the overall delay scheme for offloading and computing in the

system. The overall delay, Tk, consists of the downlink data offloading, tuk , uplink data

offloading, tk, and computing at the MEC server, tck, for each helper.

Accordingly, the overall delay for each helper can be expressed as follows;

Tk = tuk + tk + tck (4.36)

The downlink transmission delay for the user to offload a certain part of its data,

L, to the K helpers can be expressed as;

tuk =
�k
RD

k

(4.37)

where �k =
L
K
, ∀k ∈ K.

The required uplink transmission delay for offloading data from each helper to the

MEC server is given by;

tk =
αd
k �k
Rk

(4.38)

For a given offload task αd
k �k by the kth helper, the delay of computing this task

at the MEC server is given by;

tck =
αd
k �k θ

fk,s
(4.39)

where the computing resource assigned to kth helper is fk,s by the MEC server.

Since the helpers have to wait for all downlink data to perform computation and

offloading, the uplink transmission is performed after the downlink transmission is com-

pleted. The solution to minimization of the downlink transmission delay, t∗u, is obtained

through Algorithm 5, which is given in the following section.

The aim of optimization in a massive MIMO based cooperative MEC system is

to minimize the overall delay for both offloading and computing. Towards this end, we

jointly optimize the offloading decision factors, transmit powers and the MEC server’s

computing resources to minimize the overall delay.

The overall delay of offloading and computing for each helper can be expressed

by wk(.) as a function of PD,PU , f ,αd as follows;
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wk(P
D,PU , f ,αd) = Tk (4.40)

where PD =
[
PD
1 , . . . , PD

K

]
, PU =

[
PU
1 , . . . , PU

K

]
, f = [f1,s, . . . , fK,s] and αd =

[
αd
1, . . . , α

d
K

]
.

Hence, our optimization problem can be formulated as the minimization of the

overall delay subject to the given constraints as;

min
PD,PU ,f ,αd

max
k

wk(P
D,PU , f ,αd) (4.41)

s.t. RD
k ≥ RD

th,k, ∀k ∈ K (4.41a)

K∑
k=1

PD
k ≤ Pu, (4.41b)

K∑
k=1

fk,s ≤ Fmax, (4.41c)

(
1− αd

k

)
�k θ

fk
≤ Tk − tuk , ∀k ∈ K, (4.41d)

0 < PU
k ≤ PU

max, ∀k ∈ K, (4.41e)

0 < αd
k < 1, ∀k ∈ K. (4.41f)

where Pu is the maximum total transmit power of the cell-edge user. At the MEC server,

its computational capacity, Fmax, is shared among all helpers.

Constraint (4.41a) gives the minimum data rate constraint that the achievable rate

in downlink transmission should be equal to or higher than a given threshold rate RD
th,k.

Constraint (4.41b) represents the power constraints in the NOMA downlink transmission.

(4.41c) is the computing resource constraint of the MEC server. (4.41d) denotes the re-

quired time for the local computation of the remaining tasks at Helperk. (4.41e) represents

the maximum transmit power of Helperk. (4.41f) shows the range of αk
d, which gives the

ratio of tasks offloaded to the MEC server and computed locally at each helper.

4.2.3.1. Problem Solution

In this section, we derive the solution to Problem (4.41) for the proposed frame-

work with K helpers massive MIMO based cooperative MEC.

98



The constraint (4.41c) can be rearranged as the sum of the computing resources

allocated to helpers is equal to the maximum CPU operating frequency of the MEC server

as;

K∑
k=1

fk,s = Fmax, (4.42)

Accordingly, the computing resources allocated to each helper are shared equally, such as

fk,s =
Fmax

K
, ∀k ∈ K.

Furthermore, αd
k shows the ratio of tasks offloaded to the MEC server and the

tasks executed locally at each helper. For the case of αd
k is 0 or 1, the tasks can be

executed either at the helpers or at the MEC server without any cooperation. In order

to guarantee cooperation in the proposed MEC framework, the value of αd
k in (4.41f) is

determined between 0.3 and 0.7. In this way, the helpers execute some tasks regarding

their computing resources while offloading the remaining tasks to the MEC server. Then,

we re-write the constraint (4.41f) as;

0.3 ≤ αd
k ≤ 0.7, ∀k ∈ K. (4.43)

Accordingly, in order to solve the optimization problem (4.41), the auxiliary vari-

able τ is introduced. In this way, it is considered that the overall delay Tk for each helper

is equal to each other and denoted by τ . Thus, the optimization Problem (4.41) becomes

the minimization of τ and can be rearranged as follows;

min
PD,PU ,αd

τ (4.44)

s.t. (4.41a), (4.41b), (4.41e), (4.42), (4.43),(
1− αd

k

)
�k θ

fk
≤ τ − tuk , ∀k ∈ K, (4.44a)

{tuk + tk + tck} ≤ τ, ∀k ∈ K. (4.44b)

Constraint (4.44b) shows that the overall delay for each helper should be equal to

or less than a constant, τ .

Firstly, we give the solution for the case of K=2 and then generalize it to the K

helpers.
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In this way, firstly, we focus on the solution for the downlink transmission part.

The constraint (4.41b) associated with the downlink transmit power for helpers can be

written as PD
1 + PD

2 = Pu. Thus, ξ ∈ (0, 1) is determined as the power allocation factor

and becomes one of the optimization parameters. Then, the allocated downlink transmit

power, PD
1 , for the Helper1 is determined by ξPu while the allocated downlink transmit

power, PD
2 , for the Helper2 is calculated as (1− ξ)Pu.

The achievable rate of the Helperk in an OMA system is given by ROMA
k as in

(4.6). We define RD
th,k as ROMA

k . Then, the range of ξ can be obtained directly from the

constraint related to the new optimization problem (4.44), (4.41a), as given previously in

(4.9).

Then, we can extend the downlink power allocation factors to the K helpers as

given in (4.10), (4.11) and (4.12).

In order to minimize the overall delay in (4.44), firstly, the maximum downlink

transmission delay, tuk , is minimized for a given range of the power allocation factors, ξ;

min
ξ

max
k

tuk (4.45)

s.t. (4.12)

where ξ = {ξ1, . . . , ξK−1}.

To solve the Problem (4.45), we convert min-max problem to a minimum prob-

lem by defining the auxiliary variable, tu. Accordingly, this implies that the downlink

transmission delay tuk for each helper is equal to each other and denoted by tu.

min
ξ

tu (4.46)

s.t. (4.12),

tuk ≤ tu, ∀k ∈ K. (4.46a)

Constraint (4.46a) indicates that the downlink transmission delay for each helper

should be equal to or less than a constant, tu.

Thus, the minimum of a constrained nonlinear multivariate function of (4.46) can

be obtained using the interior-point method. Here, x is defined as a vector of the
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components; x = [tu, ξ]. The vector x satisfying all the constraints is called a feasible

solution for the Problem (4.46). The initial values, x1, are determined through lower and

upper bounds for each component in x.

Then, the auxiliary function with a barrier parameter μ is expressed as;

Sμ(x) = tu + μ P (x) (4.47)

where P (x) is given in (3.11) with G = [G1, G2, . . . , GK ] representing the nonlinear in-

equality constraints in (4.46a) such as tuk − tu ≤ 0; ∀k ∈ K.

Once the ξ values have been obtained, we find the downlink transmit power for

helper k, PD
k

∗
. The details of the solution for the downlink transmission delay, t∗u for K

helpers are summarized in Algorithm 5.

Algorithm 5 Solution of the Downlink Transmission Delay based on Interior-Point Al-

gorithm for K Helpers

Input: x = [tu, ξ], gk, �k; ∀k ∈ K
1: Rearrange the inequality constraints in (4.46a) as G = [G1, G2, . . . , GK ],

Gi (.) ≤ 0, i = 1, 2, . . . , K.

2: Reformulate the objective function as an auxiliary function by,

Sμj
(x) = tu + μjP (x)

where P (.) is expressed as in (3.11).

3: Call Algorithm 3

Output: t∗u, PD
k

∗

After the downlink transmission delay, t∗u, is determined through Algorithm 5, we

focus on the uplink transmission to solve the corresponding optimization Problem (4.44)

efficiently by using standard nonlinear programming optimization tools (Grace, 1990).

Accordingly, the constraint (4.44a) is rewritten as;

(
1− αd

k

)
�k θ

fk
≤ τ − t∗u, ∀k ∈ K, (4.48)
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Similarly, we can also write the overall delay constraint (4.44b) for each helper;

{t∗u + tk + tck} ≤ τ, ∀k ∈ K (4.49)

Then, we reformulate the Problem (4.44) for the uplink transmission part as the

minimization of τ under PU ,αd with the constraints (4.41e), (4.42), (4.43), (4.48) and

(4.49). Thus, the minimum of a constrained nonlinear multivariate function can be ob-

tained using the interior-point method.

The interior-point method for the solution of the overall delay is given in Al-

gorithm 6. In this minimization problem, x is defined as a vector of the components;

x =
[
τ, αd

k, P
U
k

]
, ∀k ∈ K. The vector x satisfying all the constraints is called a feasible

solution for the Problem (4.44). The initial values, x1, are defined through lower and up-

per bounds for each component τ, αd
k and PU

k in x. As a result of Algorithm 6, the output

values are obtained as αd
k
∗
, PU

k
∗
, ∀k ∈ K to obtain minimum overall delay, τ ∗, under the

given constraints.

Algorithm 6 Solution of the Overall Delay based on Interior-Point Algorithm for K

Helpers

Input: x =
[
τ, αd

k, P
U
k

]
, gk,hk; ∀k ∈ K and t∗u

1: Rearrange the inequality constraints in (4.48) and (4.49) as

G = [G1, G2, . . . , G2K ], Gi (.) ≤ 0, i = 1, 2, . . . , 2K.

2: Reformulate the objective function as an auxiliary function by,

Sμj
(x) = τ + μjP (x)

where P (.) is given in (4.24).

3: Call Algorithm 3

Output: τ ∗, PU
k

∗
, αd

k
∗
; ∀k ∈ K

Thus, the uplink delay, th, is calculated as the summation of uplink transmission

delay, t∗, and computing delay at the MEC server, t∗c as;

th = t∗ + t∗c (4.50)
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where the uplink transmission delay and computing delay at the MEC server are given,

respectively;

t∗ = max
∀k∈K

tk, (4.51)

t∗c = max
∀k∈K

tck. (4.52)

4.2.4. Secure Offloading in MEC System

As shown in Fig. 4.12, we consider a secure MEC offloading scenario where an

eavesdropper with a single antenna near the BS can overhear the messages transmitting

from helpers to the BS (Sun et al., 2020). Specifically, this eavesdropper is passive and

never transmits signal and attempts to intercept communications between helpers and the

MEC server. Thus, the eavesdropper passively listens to uplink communications. The

aim of the helpers is to offload their computation tasks to the MEC server partially while

satisfying secrecy constraints. Therefore, we consider PLS technology to ensure that the

computing tasks are securely offloaded to the MEC server.

Figure 4.12. The proposed massive MIMO based cooperative MEC system model with

secure offloading.
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With the partial offloading, αd
k �k bits of computing tasks are securely offloaded

to the MEC server and the Helperk can compute the remaining (1 − αd
k) �k bits locally.

During the uplink transmission, where the helpers send their data to the BS, the received

signal at the eavesdropper is given by;

ye =
K∑
k=1

√
PU
k he,k sk + n (4.53)

where he,k is the channel between the kth helper and the eavesdropper, which is modeled

by the Rayleigh distribution with a variance of distance-dependent path loss coefficient

and n is AWGN with zero mean and σ2
e = N0 B variance.

The achievable secrecy rate of each helper, Rk,s, is given by;

Rk,s = max {Rk −Rk,e, 0} , ∀k ∈ K (4.54)

where Rk is defined in (4.30) and Rk,e denotes the data rate belonging to kth helper at the

eavesdropper;

Rk,e = B E

{
log2

(
1 +

PU
k |he,k|2
σ2
e

)}
(4.55)

Then, the sum secrecy rate is given by;

Rs =
K∑
k=1

Rk,s (4.56)

In order to avoid information leakage to the eavesdropper, the PLS technique is

adopted in the offloading process. The achievable secrecy rate of any helper should be

non-negative; otherwise, this helper would stop offloading tasks to the MEC server. When

the channel gain of the helper is higher than the channel gain of the eavesdropper, secure

transmission is guaranteed. Otherwise, the helper does not offload its computation task

to the MEC server since the channel gain of the helper is lower than the channel gain of

the eavesdropper. Specifically, if Rk ≤ Rk,e, we cannot ensure secure transmission, and

(4.54) results in the value of 0. Thus, we assume that the channel gain of the helper is

higher than the channel gain of the eavesdropper.
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While designing a secure offloading mechanism in the proposed MEC framework,

we define a constraint based on secrecy rate to diminish the offloading information leak-

age to the eavesdropper. According to (Yang et al., 2019b) (Sun et al., 2020) (Wang

et al., 2020) and (Zhang et al., 2021), the transmission delay by considering the security

constraint is expressed as follows;

tk =
αd
k �k
Rk,s

, ∀k ∈ K. (4.57)

Thus, we change the uplink transmission delay for offloading, tk, in (4.38) into

(4.57) as uplink secure transmission delay. The uplink delay, th, is calculated as in (4.50)

where tk is given in (4.57).

As a result, we reformulate the MEC optimization problem in (4.44) by minimiz-

ing the overall delay based on secure transmission as follows;

min
PU ,αd

τ (4.58)

s.t. (4.41e), (4.42), (4.43), (4.48), (4.49)

Rk,e < Rk, ∀k ∈ K. (4.58a)

For the Problem in (4.58) with its given constraints, we perform Algorithm 6 to

determine the uplink transmission delay under secrecy constraints.

4.2.5. Performance Evaluation

In this section, the performance of the proposed framework is evaluated through

the simulation parameters listed in Table 4.3. The distance between the cell-edge user

and the BS, d, is set at 750 meters. The cell-center helpers are located at du,1 = d
3

and du,2 = 2d
3

for the K=2 case. We assume that helpers are at least 50 meters away

from the cell-edge user and the MEC server. For the case of K=3 and K=4 helpers,

their distances are distributed between du,1 = d
3

and du,2 = 2d
3

. The channel is modeled

using Rayleigh fading components with distance-dependent path loss, whose parameters

depend on whether the receiver is the BS as given in (4.25) or the helper as given in (4.26).
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As performance metrics, the overall delay performance for different number of

helpers, K, different number of antennas, N, and different amount of user’s offloaded data,

L are provided. In addition, the uplink sum data rate is obtained for different parameters.

Table 4.3. Simulation parameters.

Parameter Value

N 32,64,128,256

K 2,3,4

Carrier frequency, fc 2 GHz

B 1 MHz (Zeng et al., 2020a)

Noise power spectral density, N0 -174 dBm/Hz

Pu 0.5 W

PU
max 0.8 W

θ 1000 cycles/bit (Cao et al., 2018)

τmax 1000 ms

Fmax 20 GHz (Zeng et al., 2020)

fk 2 GHz

hMS 1.5 m

Path number 35

ε 10−6

ζ 2

Performance Results of Cooperative MEC:

The uplink delay performance for the different numbers of antennas and the num-

ber of helpers at the fixed data amount of L=1.4 Mbits is shown in Fig. 4.13. As the

number of BS antennas, N , increases, the offloading delay decreases. The reason is that

since the data rate of helpers increases with the number of antennas, the uplink transmis-

sion delay for offloading reduces. It results in a lower uplink delay since the decrease

in uplink transmission delay is more dominant than the computing delay at the MEC

server with the increasing number of antennas at the BS. Moreover, the higher number of

helpers, K=4, reduces the uplink delay by an average of 32% and 14% compared to K=2

and K=3, respectively.
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Figure 4.13. The uplink delay versus the number of antennas and helpers for

L=1.4 Mbits.
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Figure 4.14. The overall delay versus the offloaded data for different number of helpers

for N=32.
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Fig. 4.14 illustrates the overall delay performance versus the user’s offloaded data,

L, which is equally distributed to each helper for the different number of helpers and

N=32. The overall delay increases with an increase in the amount of the user’s offloaded

data, L. The reason is that the higher amount of offloaded data leads to an increased

transmission delay. In addition, the computing delay increases due to the higher amount of

data that needs to be processed by the same server computing resources. The cooperative

MEC with K=4 reduces the overall delay by 21.2 ms and 6.3 ms compared to the cases

of K=2 and K=3, respectively for L=1.1 Mbits. On the other hand, for L=1.4 Mbits,

this difference increases and the cooperative MEC with K=4 reduces the overall delay by

57.8 ms and 20.5 ms compared to the cases of K=2 and K=3, respectively.

Fig. 4.15 provides the uplink sum data rate performance of the different number

of helpers and antennas for L=1.4 Mbits. When we increase the number of antennas, the

sum data rate of all schemes increases. Besides, the cooperative MEC with K=4 has the

highest sum data rate for all cases. Specifically, the cooperative MEC with K=4 achieves

86% and 97% higher sum data rates compared to the case of K=2 at N=32 and N=256,

respectively.
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Figure 4.15. The average sum data rate versus the number of antennas and helpers for

L=1.4 Mbits.
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To further investigate the downlink and uplink delays in detail, Table 4.4 gives

the overall delay, τ ∗, downlink transmission delay, t∗u, and uplink delay, th, as a result of

the proposed algorithm for different K and N values at a fixed L=1.4 Mbits. It is shown

that downlink transmission results in a higher delay than uplink transmission due to the

downlink power constraints and the higher amount of offloaded data. In addition, the

computing delay at the MEC server, t∗c , decreases with the increased number of helpers

for fixed N. The reason is that the offloading decision factor, αd
k
∗
, and offloaded data �k

reduce with K. When we increase the number of antennas at the BS, N, the computing

delay at the MEC server, t∗c , increases slightly because of the increment in αd
k
∗
. It is

observed that the cooperative MEC with K=4 has a lower overall delay and when the

number of antennas is increased from N=32 to N=256, the uplink delay decreases due to

the increasing sum data rate.

Table 4.4. The delay performance for different number of antennas and helpers for

L=1.4 Mbits.

K N t∗u [ms] t∗ [ms] t∗c [ms] th [ms] τ ∗ [ms]

2 32 427.4 55.9 48.5 104.4 537.8

3 32 419 34.9 47 81.9 500.5

4 32 408.9 26.2 44.3 70.5 480

2 256 427.4 42.8 48.9 91.7 533.1

3 256 419 26.3 48.1 74.4 494.4

4 256 408.9 18.7 45.8 64.5 473

Table 4.5. The comparison of with respect to αd
k
∗

and P values for the different num-

ber of helpers at L=1.4 Mbits and N=32.

K αd
1
∗

αd
2
∗

αd
3
∗

αd
4
∗

PD
1

∗
PD
2

∗
PD
3

∗
PD
4

∗
PU
1

∗
PU
2

∗
PU
3

∗
PU
4

∗

2 0.69 0.69 - - 18.5 26.3 - - 27.6 26.2 - -

3 0.66 0.67 0.67 - 14.4 20.6 25.5 - 28.6 27.1 26.3 -

4 0.61 0.62 0.62 0.63 11.4 18.8 20.7 24.7 27.9 27.4 26.9 26.3
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Table 4.5 shows the outputs of the proposed algorithms including αd
k
∗
, PD

k
∗
[dBm],

PU
k

∗
[dBm], ∀k ∈ K for N=32 and L=1.4 Mbits. It is observed that the value of αd

k
∗

is

slightly decreased when the number of helpers are increased. This indicates that K=4

tends to compute more data locally at each helper than K=2 case due to the decreasing

amount of �k. Also, the downlink and uplink transmit powers of helpers are allocated

inversely proportional to their distances to the users and the MEC server, respectively.

Performance Results for Secure Offloading in MEC System:

The performance results of the secure offloading MEC system are obtained for

the case of K=2 helpers. The eavesdropper is positioned at two different distances from

the helpers. Table 4.6 shows the distances between the helpers and the eavesdropper, in

which de,1 is the distance to the Helper1 and de,2 denotes the distance to the Helper2.

Table 4.6. The distance between the helpers and eavesdropper.

Case # de,1 [m] de,2 [m]

1 550 300

2 750 500

We provide simulation results to evaluate the uplink delay for the proposed frame-

work in various locations of the eavesdropper. In addition to that, we provide comparison

results with the Secure full offloading where all helpers offload all their tasks to the MEC

server for computing. In the system model, it corresponds to the case of αd
k = 1, ∀k ∈ K.

In order to provide fair comparison results, the same uplink transmit power of each helper

is used in both the proposed secure MEC and secure full offloading systems. Then, the

average sum secrecy rate for both the partial and the full offloading MEC systems will be

the same.

In Table 4.7, the uplink delay performance versus the number of antennas is de-

picted for Case 1 and Case 2 with L=1.4 Mbits. It is shown that we provide secure task

offloading at the expense of increasing uplink delay. As the distance between the helpers

and the eavesdropper is increased for Case 2, the uplink delay reduces accordingly. The

proposed cooperative MEC outperforms the secure full offloading for any number of an-

tennas, which shows the efficiency of the partial offloading in secrecy.

Fig. 4.16 demonstrates the average sum secrecy rate versus the number of antennas

for the proposed secure MEC scheme at L=1.4 Mbits. It is shown that Case 2 has a higher

sum secrecy rate compared to Case 1 since the wireless channel deteriorates when the

distance between the helpers and the eavesdropper is increased.
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Table 4.7. The uplink delay performance for the proposed secure MEC and the secure

full offloading, L=1.4 Mbits with the different number of antennas.

Comparing schemes

Case 1 Case 2

The uplink delay th, [ms] The uplink delay th, [ms]

N=32 N=64 N=128 N=256 N=32 N=64 N=128 N=256

Secure full offloading 168.4 154.1 144.1 136 154.9 146.1 137.4 132.1

Proposed secure MEC 117.3 107.8 100.8 95.2 107.9 102.2 96.1 92.5

Proposed MEC 103.8 99 94.4 91.3 103.8 99 94.4 91.3
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Figure 4.16. The average sum secrecy rate versus the number of antennas for the pro-

posed secure MEC, L=1.4 Mbits.
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4.3. Conclusion

In this chapter, we first focus on cooperative MEC systems to improve the offload-

ing performance of cell-edge users through helpers. Accordingly, we have proposed the

multi-helper NOMA based cooperative MEC system, where the helpers compute and of-

fload the user’s computational tasks. Specifically, we have developed the efficient frame-

work to maximize the total offloading data subject to the latency constraints. Furthermore,

the optimum distances of the helpers have been determined to obtain the maximum to-

tal offloading data. The importance of cooperation has been discussed through the total

computing data which indicates the amount of user’s executed data in the system. The

simulation results have demonstrated that the proposed system has better performance

compared to the one helper systems in terms of the total offloading data. Through the

proposed framework, we have shown that both the total offloading and computing data

under latency constraints are improved by employing more than one helper in the NOMA

based cooperative MEC system.

On the other hand, to investigate the delay performance of the cooperative MEC

systems, we have proposed a massive MIMO based cooperative secure MEC system

where cooperation is established through the cell-center helpers. The overall system has

been investigated as downlink transmission by applying NOMA technology and the up-

link transmission by performing massive MIMO communication. We have formulated the

overall delay minimization for the proposed framework under computing capability and

transmit power constraints. In addition, we have investigated the proposed algorithm for

a secure offloading MEC system. The simulation results have indicated that the overall

delay is reduced when the number of antennas and helpers is increased in the proposed

framework, which also achieves secure offloading. Moreover, the proposed secure MEC

system decreases the uplink delay compared to the secure full offloading scheme while

having the same secrecy rate, which shows the superiority of cooperative schemes. As

a result, we have demonstrated that massive MIMO and NOMA technologies facilitate

secure offloading in cooperative MEC systems.
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CHAPTER 5

CONCLUSION

In this thesis, we have focused on the resource allocation algorithms for massive

MIMO systems to improve the system performance of wireless communications.

In the first part of the thesis, we have introduced MIMO, massive MIMO and

NOMA based communications systems. Since user selection strategies are important to

maximize spectral efficiency in these systems, we have proposed user selection algorithms

for densely deployed scenarios. The proposed algorithm eliminates users based on chan-

nel correlation by employing the CS algorithm, which reduces the feedback load in the

system. The simulation results have shown that the proposed algorithm outperforms tradi-

tional user selection schemes in terms of data rate per user and computational complexity.

Furthermore, we have proposed a user-set selection for the densely deployed scenario to

improve the sum data rate of the NOMA based MIMO systems. The proposed algorithm

has been designed to determine the devices incurring the least inter-set interference. For

the uplink NOMA based MIMO system, the simulation results have shown that the pro-

posed user-set selection with power allocation outperforms conventional OMA systems.

Furthermore, we have performed the proposed user-set selection algorithm for an uplink

NOMA based massive MIMO system to achieve a higher sum data rate than OMA based

massive MIMO systems.

In the second part of the thesis, we have examined MEC systems to allow mo-

bile devices to offload delay-sensitive and computation-intensive tasks to the nearby edge

servers. We have investigated the integration of NOMA and massive MIMO into MEC

systems to facilitate offloading and improve the delay performance of MEC. We have

proposed the NOMA and massive MIMO assisted MEC system for delay-sensitive ap-

plications to minimize the overall computing and transmission delay under the users’

transmit power and MEC computing capability. Through the pairing scheme for massive

MIMO-NOMA, the users with the higher channel gain can offload all their data, while the

users with the lower channel gain can offload a portion of their data to the MEC. The sim-

ulation results have shown that the sum data rate and overall system delay of the proposed

system outperform the OMA-massive MIMO based and massive MIMO based MEC sys-

tems. The proposed system enables more users to offload computationally intensive tasks

to the MEC while reducing the overall delay. Besides, we have examined the effect of
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the user selection algorithm for the massive MIMO-NOMA based MEC system in terms

of the overall delay. We have shown that user selection improves system performance by

reducing the overall delay.

To further improve the MEC performance, we have presented the cooperative

MEC system through helpers. In the proposed NOMA based MEC, which includes a

cell-edge user and multiple helpers, the user can simultaneously offload its computation-

intensive tasks to the helpers since there is no strong direct transmission link between the

user and the MEC. Then, the helpers can both compute and offload these tasks. In the

proposed scheme, the computation and offloading modes at the helpers are determined

with respect to the optimized task offloading decision factor. The simulation results have

shown that the proposed NOMA based cooperative MEC significantly increases the total

offloading data under the latency constraints compared to the benchmark schemes with

one helper with a strong direct transmission link. Furthermore, we have investigated the

delay performance of the cooperative MEC system. Towards this end, we have presented

a novel framework for a cooperative MEC system by employing massive MIMO and

NOMA technologies, including security aspects. The proposed algorithm has minimized

the overall delay in downlink and uplink transmission while satisfying security constraints

under computing capability and transmit power constraints. The simulation results have

demonstrated that massive MIMO based NOMA improves the performance of the secure

MEC system by employing more than one helper.

As future works, the potential integrations of the MEC system could be addressed

to further improve the system performance. The MEC system with the assistance of digi-

tal twins (DT) could be investigated to enable intelligent resource allocation and network

management while creating real-time digital representation of the physical equipments.

The reconfigurable intelligent surface (RIS)-assisted MEC systems could be considered to

further reduce the overall delay. The low-complexity resource allocation algorithms based

on Artificial Intelligence (AI)/Machine Learning (ML) could be employed in DT enabled

MEC systems. Furthermore, secure offloading transmission schemes under the existence

of multiple eavesdroppers could be considered in massively deployed MEC system sce-

narios. In addition to that, practical constraints such as asynchronous UL-NOMA and

channel estimation errors in offloading schemes could be addressed in massive MIMO-

MEC systems.
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