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ABSTRACT 

 

FUNCTION SYNTHESIS OF 2-LOOP AND/OR 2-DOF MECHANISMS 

 

Kinematic synthesis problems are important in mechanism and machine science. 

This thesis focuses on function synthesis. The synthesis of different mechanisms with 1 

and 2 degrees-of-freedom (dof) are issued by using least squares and Chebyshev 

approximations. There are various studies with these approaches in the literature. 

However, there are not many studies of function synthesis of 2-dof mechanisms in the 

literature. The aim is to study function synthesis of 2-loop and 2 dof mechanisms. 2-dof 

planar 5R mechanism, 1-dof Bennet 6R mechanisms, 2-dof 7R double-spherical 

mechanism and finally 7R planar 2-dof mechanism are worked out for function synthesis. 

It is shown that the function synthesis problems can be solved analytically and semi 

analytically. The formulations are applied using MS Excel and the results were verified 

using Solidworks software. It is seen that the numerical results give reliable results and 

construction parameters are successfully determined. 
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ÖZET 

 

İKİ DEVRELİ VE/VEYA İKİ SERBESTLİK DERECELİ 

MEKANİZMALARIN İŞLEV SENTEZİ 

 

Mekanizma biliminin önemli yapı taşlarından biri kinematik sentez 

problemleridir. Bu çalışma işlev sentezine odaklanmaktadır. İşlev sentezi çalışmalarında 

özellikle en küçük kareler ve Çebişev yaklaşım yöntemleri kullanılarak 1 ve 2 serbestlik 

dereceli (sd) mekanizmaların sentezi çalışılmıştır. Literatürde bu yaklaşım yöntemleri 

kullanılarak 1-sd mekanizmaların işlev sentezi ile ilgili pek çok çalışma mevcuttur. Ancak 

literatürde 2-sd mekanizmaların işlev sentezi ile ilgili çok fazla çalışma 

bulunmamaktadır. Bu çalışmanın amacı 2 devreli ve 2-sd mekanizmaların işlevsel 

sentezini formüle etmektir. 2-sd düzlemsel 5R mekanizması, 1-sd Bennett mekanizması, 

2-sd 7R çift-küresel mekanizma ve son olarak 2-sd düzlemsel 7R mekanizması işlev 

sentezi problemleri ele alınmıştır. Problemlerin analitik ve yarı analitik çözümleri 

sunulmuştur. Sayısal çalışmalar MS Excel'e yürütülmüş ve Solidworks çizim programı 

ile sonuçlar doğrulanmıştır. Sayısal sonuçların güvenilir sonuçlar verdiği ve tasarım 

parametrelerinin istenen şekilde belirlenebildiği görülmektedir. 
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  CHAPTER 1  

 

INTRODUCTION 

 

Kinematic synthesis is a well-studied topic in mechanisms machine science. 

Function synthesis of single loop and single degree-of-freedom (dof) mechanisms are 

widely studied in the literature. However, there are not much work on function synthesis 

of multi-loop and multi-dof mechanisms.  

This thesis work is on function synthesis of some 2-loop and 2 degree-of-freedom 

mechanisms. In the following parts, the kinematic synthesis of mechanisms and their 

types are discussed. Then, the synthesis of function formation is explained. Then the 

motivation and purpose of this thesis are stated. Finally, the outline of this thesis is 

presented. 

 

 Kinematic Synthesis of Mechanism 

 

The kinematic and structural analysis and synthesis of mechanisms are 

fundamental problems in mechanism and machine science.  

Two converse problems in the kinematics of mechanisms involve kinematic 

analysis and synthesis. In kinematic analysis the structure and the link dimensions of the 

mechanism are known and motions of the links (displacement, velocity & acceleration 

etc.) are determined for given inputs to the mechanism. Whereas kinematic synthesis 

deals with the determination of the structure and dimensions of a mechanism for a 

specified task. Kinematic synthesis is divided to dimensional and structural synthesis. 

Structural synthesis is also examined in two categories (Figure 1.1). 

Type of synthesis is defined for a given task to be produced by mechanism as to 

find the type of mechanism that will best perform the task, such as a linkage, a cam 

mechanism, a gear train or a combination thereof (Angeles & Bai, 2022). Second phase 

is the number synthesis, where the number of links and joints are determined for a given 

type of mechanism in order to achieve the desired motion of the mechanism. These two 

phases constitute the structural synthesis of the mechanism and can be considered as part 

of the conceptual design. Lastly, dimensional synthesis 
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Figure 1.1. Kinematics of Mechanisms 

 

Lastly, dimensional synthesis is synthesis of the metric properties of the 

mechanisms. In dimensional synthesis, desired motion characteristics of some links 

(displacement, velocity & acceleration etc.) and the structure of the mechanism are 

known, whereas the link dimensions of the mechanism are to be determined for given 

inputs to the mechanism. The kinematic synthesis and analysis are summarized in the 

Figure 1.2. 

 

 

Figure 1.2. a) Kinematic Analysis, b) Kinematic Synthesis  

(Source: Lee & Russell, 2018) 
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 Tasks of Kinematic Synthesis 

 

There are 3 main tasks used in kinematic synthesis of planar mechanisms: path 

generation, motion generation and function generation (Figure 1.3). The main subject of 

thesis is function generation. 

 

 

Figure 1.3. a) Motion Generation, b) Path Generation, c) Function Generation 

(Source: Sandor and Erdman, 1984) 

 

Path generation occurs when a point on a link is desired to follow a specific path. 

The problem is to find the dimensions of the mechanism for a certain location on a moving 

link that is intended to follow a predetermined course. Motion generation synthesis is also 

called the body guidance where a body is to be moved from one pose to another (Figure 

1.4). 

 

 

Figure 1.4. Body guidance in a transport machine  

(Source: Sandor and Erdman, 1984) 
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1.2.1. Function Generation Synthesis 

 

In function generation, the function to be generated might have single or multiple 

inputs or outputs. For a two-input single-output function let the function to be generated 

be z = f(x, y) for xmin  x  xmax , ymin  y  ymax and xmin  x  xmax and zmin  z  zmax. 

The function inputs x and y should be related to the mechanism inputs  and  and the 

function output z should be related to the mechanism output . ,  and  are in ranges 

min    max, min    max, min    max and typically the limits can be arbitrarily 

chosen. One can linearly relate x to input  y to input  and z to output  as 

 

 min min min min min min

max min max min max min max min max min max min

x x y y z z
 ,  , 

x x y y z z

     
  

        
 (1.1) 

 

Then desired ,  and  values for given x, y and z are found as follows: 

 

 

   

 

max min max min
min min min min

max min max min

max min
min min

max min

x x , y y ,
x x y y

z z
z z

   
     

 

 
  



 (1.2) 

 

and conversely 

 

 

   

 

max min max min
min min min min

max min max min

max min
min min

max min

x x y y
x x , y y ,

z z
z +z

 
     
   


 
 

 (1.3) 

 

Eq. (1.2) is used when determining the design points  
N

i 1
 ,  

N

i 1
  and  

N

i 1
  in 

terms of  
N

i 1
x ,  

N

i 1
y  and     

NN

i i i1 1
z f x ,y . The design points (xi, yi) can be selected with 

equal spacing on the rectangular domain given by xmin  x  xmax and ymin  y  ymax, such 

that  i min max min

i 1
x x x x

N 1


  


and  i min max min

i 1
y y y y

N 1


  


 for i = 1, 2,…,N. 

Eq. (1.3) is used after the synthesis is performed, to check the error in between the 
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desired z = f(x, y) and the generated z with the mechanism. At this step, one shall 

determine the output values of the mechanism loops for several given input values by 

solving the I/O relationship. 

 

 Spacing of Design Point 

 

The main spacing type for design points is the equal spacing in which the design 

points are equally spaced in their domain. Equal spacing is one of the most commonly 

used type of spacing. Another well-known type of spacing for a single variable is the 

Chebyshev spacing.  

 

a)  

b)  

Figure 1.5. a) Schematic of the function generation for 4 design points with equal spacing 

b) Schematic of the function generation for 4 design points with Chebyshev 

spacing (Source: Sandor and Erdman, 1984) 

 

Computationally the design points of equal spacing in Eq. (1.4) and Chebyshev 

spacing in Eq. (1.5) can be found as follows: 
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 n
i

1 0
n 0

x x
x for i 1...n

n
x 




   (1.4) 

 

 
 n 1 0 n 1 0

i

2i 1x x x x
cos for i 1...nx

2 2 2n

 
  

   (1.5) 

 

 Theory of Function Approximation 

 

Three main approximation methods are interpolation approximation, least square 

approximation and best (Chebyshev) approximation.  

During the approximation process, if exists, nonlinear system of equations may 

be linearized using Lagrange parameters.  

 

1.4.1. Interpolation Approximation 

 

In interpolation approximation, an approximation function  F C,x  is used to 

approximate a function  F x  such that the difference  F C,x  –  F x  in certain points, 

called the precision points, is set to zero. Here, x  is the set of function inputs and C  are 

the construction parameters of the approximator. The aim is to determine the C  

parameters. 

 

 

Figure 1.6. Interpolation approximation  

(Source: Sandor and Erdman, 1984) 
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In Figure 1.6, 

yd =  F x  : given function 

ym =  F C,x  : generated function 

  x =  F C,x  –  F x  : structural error at x  

Assume that  F C,x can be expressed in the following polynomial form: 

 

    
n

gen j j

j 1

y F C, Pf


 x x  (1.6) 

 

where Pj are functions of the construction parameters C  and fi are linearly 

independent continuous functions. At the precision points x, i = 1, …, n have 
g dy y ; 

 

    
n

d i j j j

j 1

for j  1,...,ny F Pf x


 x  (1.7) 

 

Eq. (1.7) is a linear set of equations in Pi as shown in Eq. (1.8)  and Pi can be 

computed as in Eq. (1.9); 

 

 

     

     

     

 

 

 

1 1 2 1 n 1 1 1 1

1 2 2 2 n 2 2 2 2

1 n 2 n n n n n n

...

...

... ... ... ... ... ...

.

f x f x f x P F x

f x f x f x P F x

f x f x .. f x P F x

    
    
    
    
    
       

 (1.8) 

 

 

     

     

     

 

 

 

1 1 1 2 1 n 1 1 1

2 1 2 2 2 n 2 2 2

n 1 n 2 n n n n

1

n

.

P

x

...

...

... ... ... ... . .

f x f x f x F x

P f x

.

f x f x F

.

x

P f x f f

..

..x F x



    
    
    
    
    
        

 (1.9) 

 

1.4.2. Least Square Approximation 

 

In least square approximation, the number of design points, n, have to be strictly 

larger than the number of construction parameters, m. In this type of approximation, the 
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aim is to minimize the sum of the squares of the structural errors, at the design points 

given xi for i = 1, …, n. For 

 

    
m

j j i i

j 1

for j  1,..., nP f F 0


    x x  (1.10) 

 

The sum of the squares of the structural errors is given by 

 

    
2

m m m
2

i ii j j

j 1 i 1 j 1

S P f F
  

 
    

 
   x x  (1.11) 

 

We equate the derivatives of S with respect to Pj to zero to find its minimum: 

 

      
n m

i i ij j j

i 1 j 1j

1 dS
f P f F 0

2 dP  

 
   

 
 x x x  (1.12) 

 

Eqs. (1.12) are linear in Pj’s: 

 

 

           

           

           

n n n

i i i i i i1 1 1 2 1 m

i 1 i 1 i 1

n n n

i i i i i i2 1 2 2 2 m

i 1 i 1 i 1

n n n

i i i i i im 1 m 2 m m

i 1 i 1 i 1

f f f f ......... f f

f f f f ......... f f

........ .......... ......... .........

f f f f ......... f f

  

  

  

 
 
 
 
 
 
 
 

 

  

  

  

x x x x x x

x x x x x x

x x x x x x

   

   

   

n

i i1

i 1

1 n

i i2 2

i 1

m n

i im

i 1

f F

P

P f F

......

P

f F







 
 
  
  
   
  
  
  

  
   







x x

x x

x x

 (1.13) 

 

Eqs. (1.13)  are linear in Pj, hence Pj can be determined uniquely. However, there 

are some restrictions on Pj in order to obtain a mechanism. If Pj’s are greater than the 

number of the construction parameters, then Pj can be solved with Lagrange parameters. 

For example, consider the case where there are four construction parameters, but 

six Pj’s. Then, Pm+1 and Pm+2 can be defined in terms of the other Pj’s and two Lagrange 

parameters  = Pm+1 and  = Pm+2 are introduced as two more construction parameters. 

In order to linearize the system, let Pj = ℓj + mj1 + nj2 for j = 1, 2,…, n. Eqs. (1.10) 

become; 
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          
m

j j 1 j 2 j 1 m 1 2 m 2

j 1

m n f f f F 0 



        x x x x  (1.14) 

 

Eqs. (1.14) should be satisfied for all design points, hence the coefficients of 1, 

2 and the rest can be dissected as follows: 

 

    
m

j j

j 1

f F 0


  x x  (1.15) 

 

    
m

j j m 1

j 1

m f f 0



  x x  (1.16) 

 

    
m

j j m 2

j 1

n f f 0



  x x  (1.17) 

 

In least squares approximation the number of design points, n, is necessarily 

greater than the number of construction parameters and the aim is to minimize the square-

sum of the errors at these design points. At each design point i, the square sum of the 

errors corresponding to Eqs. (1.15)-(1.17) are defined as 

 

  
2

n m

j ji i

i 1 j 1

S f F
 

 
  

 
  x  (1.18) 

 

 

2
n 4

m j ji m 1

i 1 j 1

S m f f 

 

 
  

 
   (1.19) 

 

 

2
n m

n j ji m 2

i 1 j 1

S n f f 

 

 
  

 
   (1.20) 

 

where      ji j i 5i 5 i 6i 6 if f , f f , f f  x x x  and  i iF F x . In order to find the 

minimum of the square sums, the derivatives of Eqs. (1.18)-(1.20) with respect to ℓj, mj, 

nj are set to zero to obtain 
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  
n

1i 1 2i 2 mi m i ji

i 1j

dS1
f f ... f F f 0 for j 1,2...m

2 d 

        (1.21) 

 

 
n

1i 1 2i 2 mi m (m 1)i ji

i 1j

dS1
f f ... f f f 0 for j 1,2...m

2 d




          (1.22) 

 

 
n

1i 1 2i 2 mi m (m 2)i ji

i 1j

dS1
f f ... f f f 0 for j 1,2...m

2 d




          (1.23) 

 

i, mi and ni are linearly fund as  

 

  

           

           

           

n n n

i i i i i i1 1 1 2 1 m

i 1 i 1 i 1

n n n

i i i i i i2 1 2 2 2 m

i 1 i 1 i 1

n n n

i i i i i im 1 m 2 m m

i 1 i 1 i 1

f f f f ......... f f

f f f f ......... f f

........ .......... ......... .........

f f f f ......... f f

  

  

  

 
 
 
 
 
 
 
 

 

  

  

  

x x x x x x

x x x x x x

x x x x x x

   

   

   

n

i i1

i 1

1 n

i i2 2

i 1

m n

i im

i 1

f F

f F

......

f F







 
 
  
  
   
  
  
  

  
   







x x

x x

x x

 (1.24) 
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f f f f ......... f f

f f f f ......... f f

........ .......... ......... .........

f f f f ......... f f

  

  

  

 
 
 
 
 
 
 
 

 

  

  

  

x x x x x x

x x x x x x

x x x x x x

   

   

   

n

i i1

i 1

1 n
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i 1

m n

i im

i 1

f F

m

m f F

......
.........

m

f F







 
 
  
  
   
  
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  

  
   







x x

x x

x x

 (1.25) 
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n f F

......
......
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f F


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 
  
  
   
  
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 (1.26) 
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1.4.3. Chebyshev Approximation 

 

In this section a review of the polynomial approximation methods first studied by 

Chebyshev (1854, 1859) are presented. Let f(x) be a continuous function defined on x ∈ 

[a, b]. A polynomial Pn(x) of degree n is called the best approximation of f(x) if L= 

max|f(x) – P(x)| is minimum. The alternation theorem of Chebyshev states that for a given 

function f(x) and order n the best approximation is unique and the extremum values L are 

attained n + 2 times on [a, b] alternately with opposite signs (Figure 1.7). 

 

 

Figure 1.7. Best (Chebyshev) Approximation 

 

Although this theorem guaranties the unique existence of the best approximation 

of a function, neither it, nor its proof leads to a method to find the best approximation. An 

iterative method is proposed by Remez (1932). The Remez algorithm is as follows 

(Temes, 1967): 

1. Select design points xi
0 ∈ [a, b], i = 0, .., n + 1 (usually x0 = a, xn+1 = b) and 

linearly solve for the coefficients of an approximation polynomial Pn
0 (x) and 

L from the n + 2 equations Pn
0(xi

0) – f(xi
0) = (–1)iL 

2. Find the n + 2 local extrema xi
1 of E0(x) = Pn

0(xi
0) – f(xi

0) in [a, b]. 

3. Repeat steps 1 and 2 by replacing xi
j by xi

j +1 until the design points stabilize. 

Convergence is not guaranteed in this iterative algorithm. In function synthesis of 

mechanisms, it is necessary to derive the input/output (I/O) relationship which is a 

function of the construction parameters (link dimensions) of the mechanism and input 

and output joint variables. The I/O equation is written in a polynomial form, where Pj are 

functions of the construction parameters and fj are the functions of the input and output 

variables represented by x. If the number of coefficients Pj (= n) is equal to the number 

+L

-L

+
+

--

y= F(x)

ym= F(C,x)

y

x

xi xm
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of construction parameters, then given n + 1 many design points  
n 1

i 1


x , the coefficients 

 
n

j 1
P and the Chebyshev error L are linearly solved from 

 

      
n

i 1

j j

j 1

for i  1, ..., n 1Pf F 1 L




     i i
x x  (1.27) 

 

Once  
n

j 1
P  are solved, the construction parameters are determined from  

n

j 1
P . If 

the number of coefficients Pj (= n) is greater than the number of construction parameters, 

it means that the coefficients Pj are interrelated. For illustration, consider the case where 

there are n – 1 construction parameters, but there are n Pj’s. Then a coefficient is chosen, 

say, Pn, which is expressed in terms of the others. Let Pn = , 
j j jP m    for j = 1, …, n 

– 1 and L m   .  Eq. (1.27) can be reformulated as 

 

            
n 1

i 1

j j j n

j 1

for i  1, , nm f f F 1 m






         i i i
x x x  (1.28) 

 

The multipliers of  may be collected in Eq. (1.28): 

 

            
n 1 n 1

i 1 i 1

j j j j n

j 1 j 1

i  1, ,nf F m f f 1 1 m,
 

 

 

 
         

 
 i i i ix x x x  (1.29) 

 

Equating the coefficients of  and the remaining parts in Eq. (1.29)  

 

            
n 1 n 1

i i

j j j j n

j 1 j 1

, f i  1, , nf 1 F   and  m 1 m f
 

 

      i i i i
x x x x  (1.30) 

 

Eq. (1.30) is a set of 2n linear equations with unknowns  
n 1

j 1


,  

n 1

j 1
m


, ℓ and m. 

After the unknowns are determined, since there is a relationship between Pn =  and some 

other coefficients,  is solved from this relationship. 
i j jP m    for j = 1, …, n – 1 and 

L m    are determined. The n – 1 construction parameters are solved from  
n 1

j 1
P


. 
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If there are n – 2 construction parameters for n many Pj’s, let Pn-1 = 1, Pn = 2, 

j j j 1 j 2P m n      for j = 1, ..., n – 2 and 1 2L m n     . Pn-1 and Pn depend on other 

coefficients. Eq. (1.27) becomes 

 

 
             

n 2
i 1

j j 1 j 2 j 1 n 1 2 n 1 2

j 1

for i 1, ..., 

1

n 1

m n f f f F m n








      







      i i i ix x x x
 (1.31) 

 

Equating the coefficients of  and the remaining parts in Eq. (1.31): 

 

 

           

     

n 2 n 2
i i

j j j j n 1

j 1 j 1

n 2
i

j j n

j 1

i  1, ..., n –1

f 1 F , m f 1 m f  and 

n f 1 n f   

 



 







     

  

 



i i i i

i i

x x x x

x x

 (1.32) 

 

 
n 2

j 1


,  

n 2

j 1
m


,  

n 2

j 1
n


, , m and n are solved linearly from Eq. (1.32). Then 1 

and 2 are solved from the relationship in between Pn-1, Pn and the other coefficients. 

j j j 1 j 2P m n      for j = 1,...,n – 2 and 1 2L m n      are determined. The n – 2 

construction parameters are solved from  
n 1

j 1
P


. 

 

 Aim of the Thesis 

 

Kinematically deficient manipulators are popular in applications because of 

structural simplicity, low cost, and ease of use and there are not many studies of 2-dof 

function generation synthesis in the literature. The aim of this thesis is to examine the 

function synthesis of 2-loop and 2-dof mechanisms using least squares and Chebyshev 

approximation methods. 

 

  Outline of the Thesis  

 

This thesis comprises 7 chapters: Introduction, Literature Survey, Function 

Synthesis of the Planar 5R Mechanism using Least-Square Approximation, Function 
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Synthesis of Bennet 6R Mechanisms Using Chebyshev Approximation, Function 

Generation Synthesis with a 2-DoF Over-constrained Double-Spherical 7R Mechanism 

Using the Method of Decomposition and Least Square Approximation, Function 

Synthesis of a Family Of 2-Dof Planar Linkages Using Least Squares Approximation, 

and Conclusions. In Chapter 2, literature review and explanatory information on 

kinematics and calculations related to kinematic synthesis. Chapters 3-to-6 present 

approximate function generation solutions for different types of planar mechanisms. In 

Chapter 7 the results of the thesis are summarized and possible problems for future studies 

are discussed. 
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  CHAPTER 2  

 

LITERATURE SURVEY 

 

In this Chapter, review on kinematic synthesis of mechanisms is presented briefly. 

Then, literature survey on function generation synthesis of planar and spherical 1- and 2-

dof mechanisms is presented. 

 

 Over-Constrained Bennet 6R Mechanisms 

 

The first example of a  = 5 (motion space dimension) mechanism is the Sarrus 

(1853) linkage. The Sarrus linkage is a spatial 6R linkage (R: revolute joint) obtained by 

assembling two planar dyads in perpendicular planes. Later, Bennett (1905) generalized 

the Sarrus linkage such that the angle between the planes of the dyads is arbitrary (Figure 

2.1a). For this linkage, no link has a rotational motion about the axis along the intersection 

of the planes of the dyads, so the linkage belongs to an RRPPP (P: prismatic) type of  = 

5 subspace. The generalized Sarrus linkage can be considered as the combination of two 

planar slider-crank mechanisms in intersecting planes such that the fixed link and the 

slider link is common to both of mechanisms. The sliding direction is along the 

intersection of the planes. In such an assembly, the linkage remains mobile with single 

dof even if the prismatic joint is removed. Hence a single loop 6R linkage is obtained. 

The removed prismatic joint is defined as a passive joint (Selvi, 2012). 

 

 

Figure 2.1. a) Double-planar 6R (generalized Sarrus) linkage, b) double-spherical 6R 

linkage, c) plano-spherical 6R linkage with their passive joints 

 

 

c) 

O1 O2 

a) b) 

O1 
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Along with the generalized Sarrus linkage, Bennett (1905) introduced two more 

 = 5 mechanisms. One of these mechanisms is the double-spherical 6R mechanism 

which is obtained by merging two spherical four-bar linkages with two common links and 

then removing the joint connecting the common links. The removed revolute joint is the 

passive joint of this linkage and its axis is along the line connecting the centers of the 

spherical four-bars (Figure 2.1b). It is an RRRPP type of  = 5 subspace, where none of 

the links can translate along the line connecting the two spherical centers. The other 

mechanism is the plano-spherical 6R mechanism, which is obtained by merging a planar 

four-bar linkage and a spherical four-bar linkage with two common links. Once again, the 

revolute joint connecting the common links is removed to obtain the 6R linkage (Figure 

2.1c). The axis of this passive joint passes through the center of the spherical four-bar and 

it is in the same direction as all the axes of the planar four-bar. No link has a translational 

motion along the direction of axes of the planar four-bar, hence the linkage belongs to an 

RRRPP type of  = 5 subspace. 

 

 Kinematic Synthesis of Mechanisms 

 

Due to constructional simplicity, low cost, ease of use and stiffness capabilities, 

kinematically deficient manipulators are popular in applications (Huang and Ding, 2012) 

(as an example see (Vaida et al., 2014)). Some researchers use the deficient term as a 

substitute to under-actuated, however what we mean by a deficient manipulator is a 

manipulator with less dof than the motion space dimension (). Although analytical 

synthesis methods for single dof mechanisms are widely studied (Sandor and Erdman, 

1984, 1997; McCarthy and Soh, 2010). Synthesis of spherical four-bar mechanism is also 

widely studied. Hartenberg and Denavit (1964) and Zimmerman (1967) have respectively 

presented the three and four precision-point function generation of the synthesis of 

spherical four-bar mechanism. Rao et al. (1973), Farhang et al. (1988, 1999), Alizade et 

al. (1994, 2005) and Murray and McCarthy (1995) used polynomial approximation 

method for three, four and five precision points for the function synthesis of the spherical 

four bar mechanism. Cervantes et al. (2009a) worked on formulation of the function 

synthesis problem of the spherical four-bar mechanism for three and four precision points 

and further presented formulations for five and six precision points (Cervantes et al. 

(2009b). Suixian et al. (2009) worked on the optimal selection of precision points. Alizade 
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and Gezgin (2011) have applied interpolation, least squares and Chebyshev 

approximation methods to solve the six-precision-point function synthesis of the spherical 

four-bar mechanism with Chebyshev spacing. Maaroof and Dede (2013, 2014) worked 

on the synthesis of the double-spherical 6R linkage using interpolation approximation. 

Levitskii and Sarkisian (1968) and Alizade and Kilit (2013) applied least-square 

approximation model with Chebyshev spacing.   

Although analytical synthesis methods for single-dof mechanisms are widely 

studied, mostly optimization methods are utilized for determining link length dimensions 

of multi-dof mechanisms (or instance see (Alizade et al., 1975)). An exceptional study is 

analytical motion synthesis of a 3-RPS manipulator (Kim, 2003). There are a few studies 

on analytical synthesis methods for multi-dof systems. Two major studies are by Svoboda 

(1965) and Davitashvili (2000), who have worked on synthesis of 2-dof mechanisms. 

Kiper et al. (2013) worked on function synthesis of a planar 5R mechanism. Kiper and 

Bilgincan (2013) worked on a spherical 5R mechanism with Chebyshev approximation, 

where one of the fixed joints is an input, the mid-joint is the second input and the 

remaining fixed joint is the output. The reason of choosing the mid-joint as an input 

instead of a joint adjacent to a fixed joint is that this selection leads to linear set of 

equations. 

Numerical optimization techniques are mostly used to design planar 2-dof 7-link 

planar mechanisms. According to Svoboda (1965) the synthesis of planar 7-bar 

mechanisms is done in two steps. At each stage, the two loops of the 7-bar mechanism 

are fixed together, in other words a joint angle is fixed. The resulting 1-dof 6 bar 

mechanism is discussed. Svoboda (1965) developed geometric tools for designing planar 

mechanisms to perform functions such as simple two-input addition, multiplication, and 

division. Balli and Chand (2003) synthesized motion between two dead-center positions 

with a 7-bar mechanism. Daivagna and Balli (2010) studied a 2-dof planar 6R1P 

mechanism for function synthesis. Gadad et al. (2012) discussed the synthesis of 2-dof 

planar 7-bar mechanisms using dyads. Lakshminarayana and Ramaiyan (1970, 1973, 

1976) worked on higher-order synthesis with 7-bar and 9-bar planar mechanisms for two-

inputs with position and velocity zero-defect points. Mruthyunjaya (1972a, 1972b) 

developed a graphical method, which they call “point position reduction” with six zero-

defect points using rotary input/output and sliding input/output. Kohli and Soni (1973) 

studied the synthesis of function, trajectory and motion of 2 dof 7-bar mechanisms, where 

the equation set obtained by subtracting the loop closure equations is solved by numerical 
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methods. They used a 2RRR-RR planar parallel mechanism with 13 zero-defect points 

for the function synthesis problem. 

In the following Chapter, novel function generation synthesis methods for 2-dof 

and 2-loop mechanisms are presented. 
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  CHAPTER 3  

 

FUNCTION SYNTHESIS OF THE PLANAR 5R 

MECHANISM USING LEAST SQUARE 

APPROXIMATION1 

 

In this section, the problem of function generation synthesis of planar 5R 

mechanism is studied using the least square approximation method. The study represents 

a case study for function generation of multi-dof systems. The studied planar 5R 

mechanism is designed with a fixed input joint and a moving input joint adjacent to the 

first input, whereas the remaining fixed joint is the output joint. The objective function of 

the planar 5R mechanism is expressed in polynomial form with four unknown 

construction parameters. The objective function involves nonlinearities hence the 

synthesis problem is solved semi-analytically. Finally, the construction parameters of the 

mechanism are determined. The present study differs from (Kiper and Bilgincan, 2013) 

in selection of one of the inputs, and also a different synthesis method is utilized. 

 

 Formulation 

 

In this study, the input variables  and  for the planar 5R mechanism are 

associated with one of the fixed joints and the adjacent floating joint (Figure 3.1). The 

output variable  is associated with the remaining fixed joint. In practice, an extra 

parallelogram loop can be employed in order to actuate the mechanism at fixed joints. 

Since the scale of the mechanism does not affect the I/O relationship, without loss of 

generality it can be assumed that the fixed link length is 1. The construction parameters 

are a, b, d and e. 

The I/O relationship for the mechanism is obtained as follows: 

 

    
2 2 2CD AE ED AB BC ac bc 1 ec as bs es d               (3.1) 

                                                 
1 The main content of this chapter is published by Kiper et al. (2014). 
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Figure 3.1. The construction and joint variables of the 5R mechanism 

 

Rearranging Eq. (3.1) in polynomial form: 
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where x represents the inputs and  
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 (3.3) 

 

There are four construction parameters, but six Pj’s. Therefore, the P5 and P6 are 

defined in terms of the other Pj and two Lagrange parameters  = P5 and  = P6 are 

introduced as two more construction parameters. In order to linearize the system, let Pj = 

ℓj + mj1 + nj2 for j = 1, 2, 3, 4. Eq. (3.2) becomes 

 

          
4
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        x x x x  (3.4) 
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Eq. (3.4)should be satisfied for all design points, hence the coefficients of 1, 2 

and the rest can be dissected as follows: 

 

    
4

j j

j 1

f F 0


  x x  (3.5) 

 

    
4

j j 5

j 1

m f f 0


  x x  (3.6) 

 

    
4

j j 6

j 1

n f f 0


  x x  (3.7)

 

 

In least squares approximation the number of design points, N, is necessarily 

greater than the number of construction parameters and the aim is to minimize the square-

sum of the errors at these design points. At each design point i, the square sum of the 

errors corresponding to Eqs. (3.5)-(3.7) are defined as 
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S m f f
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 
  

 
   (3.9) 

 

 

2
N 4

n j ji 6i

i 1 j 1

S n f f
 

 
  

 
   (3.10) 

 

where      ji j i 5i 5 i 6i 6 if f , f f , f f  x x x  and  i iF F x . In order to find the 

minimum of the square sums, the derivatives of Eqs. (3.8)-(3.10) with respect to ℓj, mj, nj 

are set to zero to obtain 

 

  
N

1i 1 2i 2 3i 3 4i 4 i ji
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  
N

m
1i 1 2i 2 3i 3 4i 4 5i ji
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dS1
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  
N
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i 1j

dS1
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Eq. (3.11) is a linear set of 4 equations in unknowns ℓ1, ℓ2, ℓ3, ℓ4 and similarly 

Eqs. (3.12) and (3.13) are respectively linear in m1, m2, m3, m4 and n1, n2, n3, n4. Writing 

Eqs. (3.11)-(3.13) in matrix form: 
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where jkA    is the 44 coefficient matrix with 
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jb   , jc    and jd   are 41 matrices with 
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N N N

j i ji j 5i ji j 5i ji

i 1 i 1 i 1

b .1Ff  c f f, ,    for j  ,  2,  3,  4d f f
  

         (3.18) 

 

ℓj, mj, nj for j = 1,2,3,4 are solved from Eqs. (3.14)-(3.16) by inverting jkA   . As 

ℓj, mj, nj are determined, 1 and 2 are solved as follows: 


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1 can be solved from Eq. (3.20): 


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1
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Substituting Eq. (3.21) in Eq. (3.19): 
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 (3.22) 

 

Eq. (3.22) is a degree 4 polynomial in 2. There may be 4, 2 or no real solutions 

for 2. If exists, once one of the solutions for 2 is selected, 1 is determined from Eq. 

(3.21). 

Pj = ℓj + mj1 + nj2 for j = 1, 2, 3, 4 are determined and the construction 

parameters are solved from Eq. (3.3) as 
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P
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 (3.23) 

 

 The Function Synthesis Problem 

 

Let the function to be generated be z = f (x, y) for xmin  x  xmax and ymin  y  

ymax. The independent variables x and y should be related to the mechanism inputs  and 

, and the dependent variable z should be related to the mechanism output . ,  and  

are in ranges min    max, min    max, min    max and the limits can be 

arbitrarily chosen. One can linearly relate x to input  y to input  and z to output  as 

 

 min min min min min min

max min max min max min max min max min max min

x x y y z z
 ,  , 

x x y y z z

     
  

        
 (3.24) 

 

Then desired  and  values for given input  are found as follows: 

 

 

   

 

max min max min
min min min min

max min max min

max min
min min

max min

x x , y y ,
x x y y

z z
z z

   
     

 

 
  



 (3.25) 

 

 and conversely 
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Eq. (3.25) is used when determining the design points  
N

i 1
 ,  
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N
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y  and     

NN

i i i1 1
z f x ,y . The design points (xi, yi) can be selected with 

equal spacing on the rectangular domain given by xmin  x  xmax and ymin  y  ymax, i.e.  

 



 

25 

 

    i min max min i min max min

i 1 i 1
x Nx x x y y y y

N
1 and   for i  , 2, ,

1 N
 

1

 
  

 
    (3.27) 

 

Eq. (3.26) is used after the synthesis is performed, to check the error in between 

the desired z = f(x, y) and the generated z with the mechanism. At this step, one shall 

determine the output values of the mechanism loops for several given input values by 

solving the I/O relationship. 

 

 Case Study 

 

The formulations in the previous sections were implemented in MS Excel and a 

case study was worked out for a function z = f(x, y) = x1.1y1.4  for 5  x  9 and 1  y  4. 

Limits for the mechanism input and output angles are selected as ° ≥  ≥ 30°, 80°   

 130°, 120°    170°. Actually, several different limit values were employed, but the 

final selection is done according to a small maximum error and good link length ratios. 

The design points are selected with equal spacing of 30 intervals for both x and y. That 

is, there are totally 900 design points.  

As a result of computations, the maximum percentage error is found as  

100(computed–desired)/desired = 1,33%. The variation of the percentage error over the 

domain of x and y is illustrated in Figure 3.2. The construction parameters were calculated 

as a = 2.382, b = 1.636, d = 2.671, e = 1.577. 

 

 

Figure 3.2. Percentage error variation  
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  CHAPTER 4  

 

FUNCTION SYNTHESIS OF BENNETT 6R 

MECHANISMS USING CHEBYSHEV APPROXIMATION2 

 

This study focuses on approximate function synthesis of the three types of over-

constrained Bennett 6R mechanisms using Chebyshev approximation. The three 

mechanisms are the double-planar, double-spherical and the plano-spherical 6R linkages. 

The single-loop 6R mechanisms are dissected into two imaginary loops and function 

synthesis is performed for both loops. First, the link lengths are employed as construction 

parameters of the mechanism. Then extra construction parameters for the input or output 

joint variables are introduced in order to increase the design points and hence enhance the 

accuracy of approximation. The synthesis formulations are applied computationally as 

case studies. The case studies illustrate how a designer can compare the three types of 

Bennett 6R mechanisms for the same function. Also, a comparison of the spherical four-

bar with the double-spherical 6R mechanism is done and it is showed that the accuracy is 

improved when the 6R linkage is used. 

 

 The Objective Functions 

 

The I/O relationships of the Bennett 6R mechanisms are derived in (Alizade et al., 

2013). The objective functions are formulated based on the I/O relationships. 

 

4.1.1. The Double-Planar 6R Mechanism with 6 Parameters  

 

Together with the passive prismatic joint, the double-planar 6R linkage may be 

considered to be composed of a pair of slider-crank mechanisms. Let  be the input angle, 

 be the output angle and s be the passive joint variable of the double-planar 6R 

mechanism shown in Figure 4.1. For the time being, assume 0, s0 and 0 to be zero. The 

relationship between the input  and the output  does not change if the mechanism 

                                                 
2 The main content of this chapter is published by Alizade et al. (2014). 
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dimensions are scaled, so without loss of generality the fixed link length can be assumed 

as g = 1.   

 

Figure 4.1. Kinematic representation of the double-planar 6R linkage 

 

For the double planar 6R mechanism the I/O equation for the imaginary loop ABC 

is given by (Alizade et al., 2013) 

 

    
2 22 2 2 2 2b a cos s asin c a b c 2ascos 2acsin s           (4.1) 

 

This I/O relationship contains three construction parameters, namely a, b, c. 

Together with the Chebyshev error L, there are four parameters to be determined. 

Therefore, the function synthesis may be performed for four design points. Rewriting Eq. 

(4.1) in polynomial form 
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 i i,s ix  represents the ith design point and  i L ix  is the error. The reason 
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for selecting the objective function as   2F six  is that this function solely comprises the 

output s and the error  i ix  better represents the error in the output. Given the design 

points  i i,s ix  for i = 1,...,4, P1, P2, P3 and L are determined via the Remez algorithm. 

Once P1, P2, P3 are determined, the construction parameters a, b and c are found from Eq. 

(4.3) as follows:  

 

2 23
2 1

P
a P , c , b P a c

a
         (4.4) 

 

If any of a or c turns out to be negative, or if b is not real, the limits for i and/or 

si shall be altered. For the imaginary loop DEF (Alizade et al., 2013) 
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Eq. (4.5), once again, contains three construction parameters: d, e, f. Note that Eq. 

(4.1) and Eq. (4.5) have similar form. Again, there are four parameters to be determined 

and hence four design points are required. The polynomial form in Eq. (4.2) can be used, 

but this time 
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 (4.6) 

 

Given the design points  i is , ix  for i = 1,...,4, P1, P2, P3 and L are solved via 

Remez algorithm. The construction parameters d, e and f are determined from Eq. (4.6) 

as follows:  
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2 3
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P 2P f
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4.1.2. The Double-Planar 6R Mechanism with 7, 8 and 9 Parameters 

 

When the input and output angles are not measured from the same reference (x-

axis in Figure 4.1), extra construction parameters can be defined as the location of the 

reference geometry with respect to the fixed frame. In this sense the input angle may be 

measured from an initial angle 0. In this case, Eq. (4.1) can be modified as 

 

      2 2 2 2

0 0 0 0a b c 2ascos cos 2assin sin 2accos sin 2acsin cos s             (4.8) 

 

rewriting Eq. (4.8) in polynomial form 
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x x

x x

x x x

 (4.10) 

 

P2, P3, P4 and P5 are dependent such that 

 

 P3P4 = P2P5 (4.11) 

 

Let P5 =  ,
j j jP m   for j = 1,...,4 and L m  . After finding 

j
and mj as 

explained in Section 1.4.3,  is determined as follows: 
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   
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 
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2

3 4 2 3 4 3 4 2 3 4

2

3 4 3 4 2 3 4 3 4 2 3 4 3 4 2

3 4 2

P P P P m m m

m m m m m 0

m m m m m m 4m m

2

     

       

      




 (4.12) 
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Note that there are two   solutions. The designer can choose the solution, which 

yields the less error in the end. After determining , 
j j jP m   for j = 1,...,4 and 

L m   are determined. Using Eq. (4.10) the construction parameters a, b, c and  0 in 

terms of Pj are found as follows: 

 

  
2 2

4 52 2 2 2

0 2 3 2 3 1

P P
atan2 P ,P , a P P , c , b P a c

a


         (4.13) 

 

Note that all the construction parameters are determined uniquely and the solution 

is guaranteed provided that P1 + a2 + c2  0. Similarly, one can introduce s0 in Eq. (4.1): 

 

 
   

222

0

2 2 2 2 2

0 0 0

b acos s s asin c

a b c s 2acsin 2ascos 2s s 2as cos s

    

        
 (4.14) 

 

Eq. (4.14) can be written in the polynomial form given in Eq. (4.9) where 

 

 
     

     

2 2 2 2

1 0 1 2 2 i 3 3 i i

2

4 0 4 i 5 0 5 i i

P a b c s , f 1, P ac, f 2sin , P a, f 2s cos , 

P s , f 2s , P as , f 2cos , F s

          

     

i i i

i i i

x x x

x x x
 (4.15) 

 

Note that 

 

 P5 = P3P4 (4.16) 

 

Once again, let P5 =, 
j j jP m   for j = 1,...,4 and L m  . After finding 

j
 

and mj as explained in Section 1.4.3,  is determined as follows: 

 

 

    

   

2

3 4 5 3 3 4 4 3 4 3 4 3 4 3 4

2

3 4 3 4 3 4 3 4 3 4 3 4

3 4

P P P m m m m 1 m m 0

m m 1 m m 1 4 m m

2

          

     


 (4.17) 

 

There are two  solutions. Having found, 
j j jP m   for j = 1,...,4 and 
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L m  . The construction parameters are solved uniquely from Eq. (4.15) as: 

 

 
2 2 2

3 0 4 2 1 0a P , s P , c P a, b P a c s        (4.18) 

 

The solution is feasible if P2, P3, P4  0 and P1 + a2 + c2 + s0
2  0. 

Similar to introducing 0, the output  can be measured from a different reference 

with an initial angle of 0 as shown in Figure 4.1. Then Eq. (4.5) yields 

 

 
   

 

22 2 2

0

0 0 0

d e f 1 s 2d 1 s cos cos

2d 1 s sin sin 2df sin cos 2df cos sin 0

       

       
 (4.19) 

 

Eq. (4.19) can be written in the polynomial form given in Eq. (4.9) where 

 

    

         

       

2 2 2
2

1 1 2 2 i 3 3 i i

0 0

0
4 0 4 i 5 5 i i i

d e f 1 1
P , f 1, P , f 1 s , P , f 1 s cos ,

2df cos 2df cos f

tan
P tan , f cos , P , f 1 s sin , F sin

f

 
        

 


         

i i i

i i i

x x x

x x x

 (4.20) 

 

Again P5 = P3P4 and P5 =  can be solved using Eq. (4.17). 
j j jP m   for j = 

1,...,4 and L m   are determined and the construction parameters are solved from Eq. 

(4.20) as: 

 

 1 2 2

0 4 0 1

3 2 0

1 1
tan P , f , d , e = d f 2df cos P

P 2P f cos

      


 (4.21) 

 

Also it is possible to consider inclusion of s0 to loop DEF. However, inclusion of 

s0 can be done to either of the loops, not both. The next step is to include of both 0 and 

s0 to loop ABC. In that case, Eq. (4.8) can be modified as 

 

 
   

2 2 2 2

0 0 0 0

2

0 0 0 0 0 0

a b c s 2s s 2ascos cos 2assin sin

2a s cos csin cos 2a s sin ccos sin s

         

        
 (4.22) 

 

Eq. (4.22) can be written in polynomial form as 
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        
6

i 1

i j j

j 1

for i  1,...,6F Pf 1 L




     i i i
x x x  (4.23) 

 

where 

 

      

     

     

     

2 2 2 2

1 0 1 2 0 2 i 3 0 3 i i

4 0 4 i i 5 0 0 0 5 i

2

6 0 0 0 6 i i

P a b c s , f 1, P s , f 2s , P a cos , f 2s cos ,

P asin , f 2s sin , P a s cos csin , f 2cos ,

P a s sin ccos , f 2sin , F s

          

         

      

i i i

i i

i i

x x x

x x

x x

 (4.24) 

 

There are 5 construction parameters, but 6 polynomial coefficients. The 

dependency in between Pj is obtained by eliminating c from; 

 

 5 2 3 4 6 2 4 3P P P cP and P P P cP     (4.25) 

 

  2 2

3 5 4 6 2 3 4P P P P P P P    (4.26) 

 

Let P2 =  (any of P3, ..., P6 may also be selected as ), 
j j jP m   for j = 1, 3, .., 

6 and L m  L m  . 
j
 and mj can be solved linearly as explained in Section 1.4.3. 

Then, Eq. (4.26) is a cubic equation in terms of  and the three solutions for  can be 

found analytically. It is guaranteed that at least one of the solutions is real. In case of three 

real solutions, the designer can pick the solution which yields lesser error. 

As an alternative, it is possible to introduce s0 and 0 simultaneously to loop DEF. 

This case is similar to loop ABC and again it is necessary to solve a cubic equation. 

 

4.1.3. The Double-Spherical 6R Mechanism with 8 Parameters 

 

A double-spherical 6R mechanism is shown in Figure 4.2. The imaginary 

spherical 4-bar loops ABCD and AEFG share the common passive joint axis A, which is 

along the line connecting the spherical loop centers O1 and O2. The x-axis of the fixed 

coordinate system is chosen along O1O2 and the y-axis is selected such that the O1B 

revolute joint axis remains on the xy-plane. ,  and  are the respective input, passive 

joint and output angle. O1D and O2E axes are in general skew with a twist angle of . The 
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radii of the spheres do not affect the I/O relationship, so without loss of generality, assume 

both radii as 1. Also, notice that the distance |O1O2| has no effect on the I/O relationship. 

For the time being assume 0 =  = 0 = 0. 

 

 

Figure 4.2. Kinematic representation of the double-spherical 6R linkage 

 

For the imaginary loop ABCD the I/O equation reads (Alizade et al., 2013) 

 

 
1 2 4 3 1 2 4 1 2 4

1 2 4 2 4

cos cos cos cos sin sin cos cos sin cos sin cos

cos sin sin cos cos sin sin sin sin 0

             

         
 (4.27) 

 

Eq. (4.27) contains four construction parameters: , , , . Together with the 

Chebyshev error L, there are five parameters to be determined. The function synthesis 

may be performed for five design points. Writing Eq. (4.27) in polynomial form: 

 

        
4

i 1

i j j

j 1

for i  1,...,5F Pf 1 L




     i i i
x x x  for (4.28) 

 

Where 
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   

     
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1 1 2 2 i

1 2 4 4

2 2
3 3 i i 4 4 i i i

1 1

cos cos cos cos tan
P , f 1, P , f cos ,
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tan tan
P , f cos cos , P , f sin sin , F cos

tan sin

     
    

   

 
         

 

i i

i i i

x x

x x x

 (4.29) 

 

 i i,  ix  represents the ith design point. Pj are solved linearly from Eq. (4.28) 

using the Remez algorithm and then the construction parameters are solved from Eq. 

(4.29) as follows: 

 

 
 

 

1 1 13 2
1 2 3 1 4

4 2

1

3 1 2 4 1 1 2 4

P tan
cos , tan P tan , tan ,

P P

cos cos cos cos P sin cos sin

  




      

        

 (4.30) 

 

Notice that the solution for the construction parameters is not unique. For 

example, there are two alternative solutions for 1: cos-1(P3/P4) and –cos-1(P3/P4). In Eq. 

(4.30) three are 16 possible solutions. The solution/solutions which yield the desired 

function generation should be determined by either constructing a virtual/actual model of 

the mechanism or checking the input/output values. 

For loop AEFG the I/O equation for  = 0 is given by (Alizade et al., 2013) 

 

    
5 7 8 6 5 7 8 5 7 8

5 7 5 7 8

cos cos cos cos sin cos sin cos sin sin cos cos cos

sin sin sin sin cos sin sin cos 0

              

        
 (4.31) 

 

Eq. (4.31) can be written in polynomial form given in Eq. (4.28) where 
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 
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x x

 (4.32) 

 

For given 5 design points,  i i,  ix , Pj are solved linearly from Eq. (4.28) using 

the Remez algorithm and then, the construction parameters are solved from Eq. (4.32) as 

follows: 
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1

6 5 7 8 1 5 7 8

P tan
cos , tan P tan , tan ,

P P

cos cos cos cos P cos sin sin

  



 
         

 

        

 (4.33) 

 

4.1.4. The Double-Spherical 6R Mechanism with 9, 10 and 11 

Parameters 

 

When extra construction parameter is added into Eq. (4.27): 

 

 

1 2 4 3 1 2 4 0

1 2 4 0 1 2 4

1 2 4 0 1 2 4 0

2 4 0 2 4 0
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          

 (4.34) 

 

Eq. (4.34) can be written in polynomial form as 
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where 
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 
i ix x

 (4.36) 

 

There are five construction parameters, i.e. 1, 2, 3, 4 and 0, however there 

are seven Pj. Indeed, two of the Pj can be represented in terms of other as 

 

 P6 = –P2P4 and P7 = P4P5 (4.37) 
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Let P6 = , P7 = , j j j 1 j 2P m n      for j = 1,...,5 and 1 2L m n     . 
j
, mj 

and nj are found as explained in Section 1.4.3. Writing Eq. (4.37) in terms of  and 2: 
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        

        

        

 (4.38) 

 

As shown in (Alizade, Kilit, 2005), when 2 is eliminated from Eq. (4.38) a degree 

3 polynomial equation in terms of 1 is obtained and it can be solved analytically. At this 

point, it should be emphasized that the Pj in Eq. (4.36) are selected as such on purpose so 

that Eq. (4.37) is obtained and hence, there are three solutions. For other cases, the degree 

4 term, which appears after elimination in Eq. (4.38), does not vanish, and it is possible 

that there are no real solutions. 

After determining 1 and 2, j j j 1 j 2P m n      for j = 1,...,5 and 1 2L m n    

are determined. From Eq. (4.36) the construction parameters 1, 2, 3, 4 and 0 are 

found as follows:  
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1
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
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 (4.39) 

 

When the twist angle  in between O1D and O2E in Figure 4.2 is taken into account 

Eq. (4.27) becomes 
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      (4.40) 

 

Eq. (4.40) can be written in polynomial form in Eq. (4.35) where 
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 (4.41) 

 

P6 and P7 depend on other Pj’s as 

 

 P6 = –P3P4 and P7 = P4P5 (4.42) 

 

Which has the same form as in Eq. (4.37) and yield 3 solutions similar to the 

previous case. The construction parameters are obtained from Eq. (4.41) as follows:  
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 (4.43) 

 

The twist angle  can also be included in Eq. (4.31) to replace  by  + : 
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 (4.44) 

 

Writing Eq. (4.44) in polynomial form Eq. (4.35), the Pj are selected as 
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 (4.45) 
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P6 and P7 depend on other Pj’s as 

 

 P6 = –P2P3 and P7 = P3P5 (4.46) 

 

which has the same form as in Eq. (4.37) and yield 3 solutions. The construction 

parameters are obtained from Eq. (4.45) as follows:  
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 (4.47) 

 

Next, the extra parameter 0 can be introduced in order to replace  by 0 + in 

Eq. (4.31) 
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 (4.48) 

 

Writing Eq. (4.48) in polynomial form Eq. (4.35), the Pj’s are selected as 
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     (4.49) 

 

P6 and P7 depend on other Pj’s as 

 

 P6 = –P3P5 and P7 = P3P4 (4.50) 
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Which has the same form as in Eq. (4.37) and yield 3 solutions. The construction 

parameters are obtained from Eq. (4.49) as follows:  
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 (4.51) 

 

It is also possible to include both of 0 and  in loop ABCD and both of  and 0 

in loop AEFG. This case is already studied in (Alizade, Gezgin, 2011), where it is 

necessary to define six nonlinear parameters k for k = 1,...,6. The solution for k 

necessitates numerical solution. 

 

4.1.5. Plano-Spherical 6R Mechanism with 7 Parameters 

 

A plano-spherical 6R linkage is depicted in Figure 4.3, where  is the input and  

is the output, or vice versa. The link length definitions for the spherical and planar parts 

are the same as for the corresponding imaginary loops of the double-planar and double-

spherical linkages. In general, there is a twist angle  in between O1D' and AE directions. 

The x-axis direction of the fixed coordinate system is selected to be parallel to the joint 

axis directions of the planar loop. The y-axis is selected such that the xy-plane includes 

the O1B axis of the spherical loop and the z-axis is along the common normal of O1B and 

G rotation axes. For the time being assume 0 =  = 0 = 0. 

 

 

Figure 4.3. Kinematic representation of the plano-spherical 6R linkage 
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The I/O relationship for the spherical loop is the same as for the first loop of 

double-spherical 6R linkage and is given by Eq. (4.27). All links of the planar loop move 

parallel to the yz-plane, so the x coordinates are irrelevant when analyzing this loop. 

Scaling all the link lengths of the planar four bar mechanism has no effect on the function 

synthesis task, so without loss of generality one can assume a5 = 1. For  = 0, the I/O 

equation for the planar loop can be derived as (Alizade et al., 2013): 

 

  2 2 2

6 7 8 8 7 7 81 a a a 2a sin 2a cos 2a a sin 0          (4.52) 

 

This I/O relationship contains three construction parameters: a6, a7, a8. Together 

with the Chebyshev error L, there are four parameters to be determined. Therefore, the 

function synthesis may be performed for four design points. Eq. (4.52) can be written in 

the polynomial form of Eq. (4.2), where 

 

 

   

     

2 2 2

6 7 8
1 1 2 2 i

7 8 7

3 3 i i i

8

1 a a a 1
P , f 1, P , f sin ,

2a a a

1
P , f cos , F sin

a

  
    

     

i i

i i

x x

x x

 (4.53) 

 

Pj are solved linearly from Eq. (4.2) using the Remez algorithm and then the 

construction parameters are solved from Eq. (4.53) as follows: 

 

 2 2

7 8 6 7 8 1 7 8

2 3

1 1
a , a , a 1 a a 2Pa a

P P
       (4.54) 

 

4.1.6. Plano-Spherical 6R Mechanism with 8, 9 and 10 Parameters 

 

When we include the twist angle  is included to the planar loop Eq. (4.52) 

becomes 
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 (4.55) 

 



 

41 

 

Eq. (4.55) can be written in polynomial form in Eq. (4.9) where 
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 (4.56) 

 

The dependency in between Pj’s is the same as Eq. (4.11). Let P5 = , 
j j jP m   

for        j = 1,...,4 and L m  . After finding 
j
 and mj as explained in Section 1.4.3,  

is determined as in Eq. (4.12). The construction parameters are determined as 
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P P

 
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When 0 +  is used instead of  in Eq. (4.52), one obtains 
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 (4.58) 

 

Eq. (4.55) can be written in polynomial form in Eq. (4.9) where 
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 (4.59) 

 

The dependency in between Pj’s is the same as Eq. (4.16). Let P5 = , 
j j jP m   

for        j = 1,...,4 and L m  . After finding 
j
 and mj as explained in Section 1.4.3,  

is determined as in Eq. (4.17). The construction parameters are determined as 
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Finally, both of  and 0 can be added to Eq. (4.52) to obtain 
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 (4.61) 

 

Eq. (4.61) can be written in polynomial form in Eq. (4.23) where 
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 (4.62) 

 

There are five construction parameters, whereas there are six Pj’s. The relationship 

between Pj’s can be found to be 

 

  3 2 5 4 6 4 5 2 6P P P P P P P P P     (4.63) 

 

Let P6 = , 
j j jP m   for j = 1,...,5 and L m  . 

j
 and mj can be solved 

linearly as explained in Section 1.4.3. Eq. (4.63) is a cubic equation in terms of  and can 

be solved analytically. The construction parameters are solved from Eq. (4.62) as 
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 The Function Synthesis Problem 

 

Let the function to be generated be z = f(x) for xmin  x  xmax and zmin  z  zmax. 

The independent variable x should be related to the mechanism input  and the dependent 

variable z should be related to the mechanism output . However, since the method of 
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decomposition is used, there is an intermediate joint variable  for the double-spherical 

and plano-spherical mechanisms and s for the double-planar mechanism. Let y = g(x) for 

ymin  y  ymax such that z = h(y) and hence f(x) = h(g(x)). Depending on the application 

some or all of z = f(x), xmin, xmax, zmin and zmax may be demanded by the specific task. 

However, the designer can freely select y = g(x), ymin and ymax. The design may be 

enhanced via different selection of the function g and also the boundaries of y. One can 

linearly relate x to  y to  (or s) and z to  as 
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 (4.65) 

 

Then desired  and  values for given input  are found as follows: 
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 (4.66) 

 

and conversely 
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Eq. (4.66) is used when determining the design points  
n

i 1
 ,  

n

i 1
  and  

n

i 1
  from 
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i 1
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nn

i i1 1
y g x  and     

nn

i i1 1
z f x . Selection of  

n

i 1
x  may be done with equal 

spacing, Chebyshev spacing, or any other type of spacing depending of the application. 

The experience of the author is that the Remez algorithm converges faster (in 3 or 4 

iterations) when the initial spacing is selected as the Chebyshev spacing. 

Eq. (4.67) is used after the synthesis is done and one needs to check the error in 

between the desired z = f(x) and the generated z with the mechanism. At this step, one 
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shall determine the output values of the mechanism loops for several given input values, 

say 100 values, by solving the I/O relationship.  

 

 Numerical Examples 

 

All the formulations in the previous sections are implemented in MS Excel and 

several different function synthesis tasks are performed. Here some of the results are 

presented for illustration. 

First, power functions of type z = xp are worked out. As an example, consider z = 

x0.5 for 1  x  5, which is decomposed as y = x0.6, z = y5/6. For 130°   50° input range 

and 210°   270° output range, synthesis is performed for all of the double-planar, 

double-spherical and plano-spherical 6-R linkages with no extra parameters 0, 0, etc. in 

order to compare the resultant error. The intermediate joint variable limits are chosen as 

0.3  s 0.9 for the double-planar linkage and 110°   200° for the double-spherical 

and the plano-spherical linkages. The initial design points in between the limits are 

determined using Chebyshev spacing. The percentage error variation in the z values 

defined as 

 

 desired mechanism

desired

z z
%Error 100

z


   (4.68) 

 

is given in Figure 4.4. 

 

 

Figure 4.4. Percentage error variations for z = x0.5 

 

As seen from Figure 4.4, the lowest percentage error values are obtained with the 

double-spherical linkage. The maximum error magnitude is 0.123% for the double-
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spherical linkage, 0.291% for the plano-spherical linkage and 1.54% for the double-planar 

linkage. So, for z = x0.5 it seems like the double-spherical linkage provides the best 

approximation. Of course, it is possible to change the intermediate function y = f(x) and 

the boundaries for the input, output and intermediate joint variables. For different 

selections, another linkage may be better than the others. The designer similarly may test 

several different conditions for the same function in order to determine the best-suited 

mechanism for that specific function. 

It is important to note that not every function can be generated with all of the 

Bennett linkages for arbitrary selections of the joint variable limits. In the above example, 

a proper set of joint variable limits are found so that the synthesis can be performed for 

all of the three linkages. If one is to work on just one of the linkages for a specific function, 

it is possible to decrease the maximum error to the levels of 0.01%. For example, for the 

same function as above, i.e. for z = x0.5 for 1  x 5, if y(x) = x0.8, 126°   59°, 193° 

  260° and 94°   199°, the maximum absolute error is as low as 0.0074%. 

The second function that is worked on is z = sin(x) function for 45°  x  60°, 

which is decomposed as y =  tan(x/2) and z = 2y/(1+y2). The reason for such a short range 

for x is to be able to compare the three linkages for the same function and same joint 

variable limits. In this case, the extra parameters 0 and 0 are employed for the input and 

output angles, respectively. The same joint variable limits as above are used: 130°   

50°, 210°   270°, 0.6  s 0.9 and 110°   200°. In this case, the error values for 

all mechanisms are very low, so it is not necessary to present the error variation graph.  

The results are summarized in  

 

 

Table 4.1. The maximum error magnitude is 9.310-4% for the double-spherical 

linkage, 9.210-3% for the plano-spherical linkage and 0.042% for the double-planar 

linkage. As expected, as the number of design points increases, the accuracy of 

approximation increases. The construction parameters designed for the function 

generation of z = x0.5 and z = sin(x) are listed in  
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Table 4.1. Note that some link lengths for the plano-spherical linkage turn out to 

be negative. This does not mean that the construction of the mechanism is not possible. 

Referring to Figure 4.4, a8 is a directed dimension, so it can be negative, anyway. On the 

other hand, a7 being computed negative means that the angle of this link should not be 

measured from +y direction to GF direction as in Figure 4.4, but in the opposite direction. 

Practically this does not cause any problems. One can simply extend this link and get the 

measurement from the extension. 

 

 

 

Table 4.1. Designed construction parameters for generation of z=x0.5 and z=sin(x) 

Linkage Function  0 Link lengths |%Error|max 

Double- 

planar 
z = x0.5 - - 

a = 0.45044, b = 0.6757, c = 0.65565, 

d = 0.32562, e = 0.575, f = 0.23706,      

g = 1 

1.54% 

Double- 

spherical 
z = x0.5 - - 

1 = 158.40°, 2 = 129.13°, 3 = 65.34°, 

4 = 94.45°, 5 = 150.67°, 6 = 82.36°, 

7 = 93.03°, 8 = 159.25°

0.123% 

Plano-

spherical 
z = x0.5 - - 

1 = 158.40°, 2 = 129.13°, 3 = 65.34°, 

4 = 94.45°, a5 = 1, a6 = 1.1770, a7 = –

0.5488, a8 = –0.1790                                    

0.291% 

Double- 

spherical* 
z = x0.5 - - 

1 = 156.20°, 2 = 274.79°, 3 = 77.03°, 

4 = 323.18°, 5 = 351.84°, 6 = 93.15°, 

7 = 279.21°, 8 = 172.37° 

0.0074% 

Double- 

planar 
z = sin(x) 90.96° –13.84° 

a = 0.3854, b = 1.4708, c = 1.0943, 

d = 0.0708, e = 4.0310, f = 3.9615, g = 1 
0.042% 
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In  

 

 

Table 4.1 the first three rows correspond to synthesis of different linkages for the 

same range of input/output variables for comparison reasons, whereas row 4 corresponds 

to synthesis of a double-spherical linkage for further minimized error by changing the 

input/output ranges. 

The last case study is a function used in Alizade and Kilit (2005) for comparison. 

In the paper, the authors generate z = x0.6 for 1  x 5 by means of a spherical four-bar 

mechanism with five construction parameters: the four link lengths , , ,  and the 

extra parameter 0 for the output angle. They used interpolation approximation with 

equally spaced five precision points and the limits are selected as 8°   80°, 5°   

160° for the input and the output joint variables, respectively. The variation in the 

percentage error is depicted in Figure 4.5 In this case, the maximum absolute percentage 

error is 2.229%. 

 



Double- 

spherical 
z = sin(x) 172.88° 43.25° 

1 = 194.54°, 2 = 62.24°, 3 = 126.61°, 

4 = 51.52°, 5 = 174.46°, 6 = 171.44°,                  

7 = 172.04°, 8 = 175.94°

9.310-4% 

Plano-

spherical 
z = sin(x) 172.88° 135.52° 

1 = 194.54°, 2 = 62.24°, 3 = 126.61°, 

4 = 51.52°, a5 = 1, a6 = 1.3908, a7 = 

0.4618, a8 =-0.0899                                    

9.210-3% 



 

48 

 

Figure 4.5. Percentage error variation for z = x0.6 for spherical four-bar mechanism with 

interpolation approximation 

 

When Chebyshev approximation is used for the same function z = x0.6 for 1  x 

5 with the spherical four-bar mechanism with same joint variable limits and five 

construction parameters, relatively lower error values are obtained as shown in Figure 

4.6. In this case, the maximum absolute error is 1.28%. 

 

 

Figure 4.6. Percentage error variation for z = x0.6 for spherical four-bar mechanism with 

Chebyshev approximation 

When the Chebyshev approximation is applied with the double spherical 

mechanism for the same function with the same input-output joint limits and for y = x0.75 

and 75°   160°, the error variation in Figure 4.7 is obtained. The maximum absolute 

error is 0.016%. 

 

 

Figure 4.7. Percentage error variation for z = x0.6 for double-spherical 6R mechanism with 

Chebyshev approximation 

 

The designed construction parameters for the spherical four-bar and double-

spherical 6R linkages are listed in Table 4.2. 

Table 4.2. Designed construction parameters for generation of z = x0.6 

Linkage Approximation  0 Link lengths |%Error|max 
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Spherical 4R Interpolation - 11.03° 
1 = 10.75°, 2 = 294.90°, 3 = 

30.46°, 4 = 270.47° 
2.23% 

Spherical 4R Chebyshev - 9.96° 
1 = 271.92°, 2 = 87.00°, 3 = 

34.01°, 4 = 142.30°
1.28% 

Double- 

spherical 
Chebyshev 52° –4.91° 

1 = 10.75°,2 = 114.9°,3 = 

28.34°,4 = 93.17°, 

5 = 337.74°,6 = 203.92°,7 = 

355.24°,8 = 185.03°

0.016% 

 

The construction parameter values in  

 

 

Table 4.1 and Table 4.2 are used to construct solid models of the mechanisms 

and these models are tested to satisfy the input/output joint values. 
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  CHAPTER 5  

 

FUNCTION GENERATION SYNTHESIS WITH A 2-DOF 

OVER-CONSTRAINED DOUBLE-SPHERICAL 7R 

MECHANISM USING THE METHOD OF 

DECOMPOSITION AND LEAST SQUARES 

APPROXIMATION3 

 

This study addresses the approximate function generation synthesis with an over-

constrained 2-dof double spherical 7R mechanism using least squares approximation with 

equal spacing of the design points on the input domain. The 7R mechanism is a con-

structed by combining a spherical 5R mechanism with a spherical 4R mechanism with 

distant centers and a common moving link and then removing the common link. This 

construction allows the analysis and synthesis of the resulting single-loop mechanism by 

decomposing it into fictitious 5R and 4R loops. The two inputs to the mechanism are 

provided in the 5R loop and the output is in the 4R loop. The fictitious output of the 5R 

loop is an input to the 4R loop. This intermediate variable is used to also decompose the 

function to be generated. This decomposition provides the designer extra freedom in 

synthesis and enables decreasing the error of approximation. A case study is presented at 

the end of the study where the 7R design is com-pared with an equivalent spherical 5R 

mechanism; hence the advantage of the 7R mechanism is demonstrated.  

 

 The Double-Spherical 7R Mechanism 

 

The double spherical 7R mechanism in Figure 5.1 is constructed by combining the 

spherical 5-bar ABCDE and the spherical 4-bar AFGH and then removing the common 

joint A. The inputs of the mechanism are the angles  and  in the fictitious 5-bar and the 

output is the angle  associated to link 8. In applying the method of decomposition, the 

output  of the 5-bar is treated as the input to the 4-bar. For a function synthesis problem, 

                                                 
3 The main content of this chapter is published by Kiper and Bağdadioğlu (2015). 
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without loss of generality, the radii of the spheres can be taken as 1. The construction 

parameters are the spherical link lengths 1, …, 9 and the twist angle . To simplify the 

formulation let us assume  = 0. See (Alizade et al., 2014) for the general case. 

 

 

Figure 5.1. The double-spherical 7R mechanism 



The starting point is deriving the input/output (I/O) relationship for the loops. 

Coordinates of B, C and E: 

 

          
21 2

1 2 1 2 5

2

1 5

1 2 5

5

1 c c s s c 1 c

C Z X Z 0 s c c s c , E X Z 0 s c

0 s s 0 s s

        
       

            
       
              

 (5.1) 

 

where X(.) and Z(.) are 33 rotation matrices about x- and z-axes, respectively, ck 

= cosk, sk = sink, c = cos, etc. Let CE = .  depends on 3, 4 and the joint variable 

 via the spherical cosine theorem for triangle CDE: 

 

 3 4 3 4c c s s c c     (5.2) 

 

On the other hand, the scalar product of C  and E  from Eq. (5.1) yields 

 

 25 1 2 5 5 11 2 1 22 5 5C E c c c c s s c c s c s c c s s c c s s s s c             (5.3) 
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Combining Eqs. (5.2)-(5.3) and rearranging 

 

 5 3 4 3 4 1 2 5 5 1 2 52 2 1 2 51c c c c c s s c s s c c s s s s c s s c c s c s c 0          (5.4) 

 

Eq. (5.4) can be written in the following polynomial form 

 

    
m

j j

j 1

P f F 0


  x x  (5.5) 

 

where m = 5, x = {, , } and  
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cand F


   

        





    



x x x x x

x

 (5.6) 

 

for tk = tank. Pj’s are determined using least squares approximation. After Pj’s 

are solved, the construction parameters of the mechanism are determined from Eq. (5.6) 

as 

 

   2
5 3 4

1 1 15
1 2 4 1

4 3

P t A B A B
cos ,  tan  P s an   ,  ,

P P 2 2
,  t  


          (5.7) 

 

      1 1

2 1 5 1 2 1 5 2 1 5 1 2 1 5A cos c c c P P s s and B cos c c c P P s s              (5.8) 

 

Notice from  Figure 5.1 and Eq. (5.2) that interchanging 3 and 4 does not affect 

the I/O relationship. For the spherical 4-bar AFGH, the coordinates of joints F and G are 

 

          
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6 9 8 8
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8

8 996

6
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       

            
       
               

 (5.9) 

 

Evaluating the scalar product of F  and G  and manipulating: 
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 96 7 6 6 8 9 6 98 8 69 8 8c c c c s c s c s s c c c s s s s c s s c 0         (5.10) 

 

Eq. (5.10) can be written in polynomial form of Eq. (5.5), but m = 4, x = {, } 

and 

 

 

         

6 7 6 6 6
2 3 4

6 8 9 8 9 9

8 9
1
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
  
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 (5.11) 

 

After Pj’s are linearly solved, the construction parameters are determined from 

Eq. (5.11) as 

 

    1 1 1 13 6
9 6 4 9 8 7 8 9 1

4

6 6 9

2

8

P t
cos , tan P s , tan c, co cs c s P

P
c s

P

            (5.12) 

 

 Function Generation Synthesis 

 

Let the function to be generated be z = f(x, y) for xmin  x  xmax and ymin  y  ymax. 

The independent variables x and y should be related to the mechanism inputs  and  and 

the dependent variable z should be related to the mechanism output . Via method of 

decomposition the intermediate joint angle  should be related to an intermediate variable 

w such that w = g(x, y) and z = h(w) = f(x, y). , ,  and  can be chosen in arbitrary 

ranges min    max, min    max, min    max, min    max. One can linearly 

relate x, y, w and z to , ,  and  as 

 

 

min min min min

max min max min max min max min

min min min min

max min max min max min max min

x x y y
,  ,

x x y y

w w z z
 and 

w w z z

   
 

     

    
 

     

 (5.13) 

 

Then desired  and  values for given inputs  and  are found as follows:  
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 (5.14) 

 

and conversely 
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min min
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 (5.15) 

 

Eq. (5.14) is used for determining the design points i, i, i and i from xi, yi,  wi 

is equal g(xi, yi) and zi = f(xi, yi). Selection of xi and yi may be done with equal spacing, 

Chebyshev spacing, or any other type of spacing. 

In least squares approximation the number of design points, n, should be more 

than the number of construction parameters m (= 5 for the 5-bar and 4 for the 4-bar 

mechanism) and the aim is to minimize the square sum of the errors at the design points 

xi for i = 1, …, n. Due to the generation error, Eq. (5.5) is not exactly satisfied, but there 

is an error i. In order to find the minimum of the square sum, the square sum is 

differentiated with respect to coefficients Pj and equated to zero: 

 

    
2

n m

j j i i

i 1 j 1j

d
P f F 0 for j 1,...,m

dP  

   
    

   
  x x  (5.16) 

 

Eqs. (5.16) are linear in Pj’s, hence Pj’s can be determined uniquely. However, 

there are some restrictions on Pj’s in order to obtain a mechanism. For instance, from 

Eq. (5.7) it is seen that |P5|  |P4| in order to be able to compute cos-1. 

The maximum percentage error is defined as 

 

 
desired generated

max

desired

z z
% E max 100

z

  
   

 
 (5.17) 
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During the computations %|E|max is monitored and the freely chosen parameters that 

are associated with selection of the intermediate function w and the limits of the 

input/output joint variables are tuned in order to minimize the maximum error. 

 

 Case Study 

 

As an example, consider the function z = x0.6y0.2 for 5  x  10 and 14  y  17. 

Let the intermediate variable as w = xayb such that z = wc, where c can be chosen freely, 

a = 0.6/c and b = 0.2/c. 25 design points are employed as equally spaced 5 by 5 grid for 

the inputs x and y. The limits of the inputs  and , the passive joint variable  and the 

output  of the mechanism are also free to choose. Therefore, there are 9 free parameters 

in this synthesis problem. After several trials on the free parameters, a solution with 

relatively low error is determined for c = 0.9, 145° ≤  ≤ 300°, 100° ≥  ≥ 80°, 105° ≤  

≤ 185° and 250° ≥  ≥ 185°. The maximum percentage error is found as 0.656%. The 

maximum percentage error can be further decreased; however, Percentage error variation 

is depicted in Figure 5.2. For comparison, also the synthesis with a spherical 5R 

mechanism is worked out for the same function and maximum percentage error is found 

as 0.834%. 

The construction parameters of the designed 7R mechanism are found as                

1 = 126.13°, 2 = 31.61°, 3 = 127.69°, 4 = 17.89°, 5 = 86.65°, 6 = 28.47°,                    

7 = 171.52°, 8 = 35.52° and 9 = 166.74°. It is verified that the mechanism successfully 

generates the desired function by means of a CAD model which is given in Figure 5.3. 

 

 

Figure 5.2. Percentage error variation for generation of z = x0.6y0.2 
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

Figure 5.3. CAD model of the designed 7R mechanism 
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  CHAPTER 6  

 

FUNCTION SYNTHESIS OF A FAMILY OF 2-DOF 

PLANAR LINKAGES USING LEAST SQUARES 

APPROXIMATION4 

 

In this study, function synthesis problem with planar 2-dof five-link and seven-

link linkages by using least squares approximation method is addressed in this study. 

While five-link linkages have single loop, seven link mechanisms have two independent 

loops. RPRRR, RRRRR, 2RPR-RRR, RPR-RRR-RRR, 2RRR-RRR, PRRRR, PPRRR, 

PRR-RRR-RRR, PRR-PRR-RRR mechanisms are examined, where R stands for a 

revolute joint and P stands for a prismatic joint. The formulations are implemented in 

computer and many computational examples are worked out. One of the computational 

studies is presented as an example. 

 

 Problem Definition and General Formulation 

 

It is required to generate a continuous function z = f(x, y) via a 2-dof planar 

linkage which includes an RRR chain. The RRR part of the mechanism is illustrated in 

Figure 6.1. The rest of the mechanism is to be attached to the revolute joint designated by 

point P.  

The following alternative link groups are considered for the rest of the 

mechanism: a) an RP chain, b) an RR chain, c) an RPRPR loop, d) an RPRRR loop and 

e) an RRRRR loop, where _ represents an input joint. These additions result in the 

following mechanisms (Figure 6.2): a) RPRRR, b) RRRRR, c) 2RPR-RRR, d) RPR-

RRR-RRR and e) 2RRR-RRR. All these mechanisms will have their respective two 

inputs as prismatic and/or revolute inputs, however all problems will be united such that 

the lower part of the mechanism somehow positions point P so that the problem can be 

recast as find output  for given polar coordinates Sei.   

                                                 
4 The main content of this chapter is published by Kiper and Bağdadioğlu (2015). 
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a)          b)  

Figure 6.1. a) General view of 2 dof mechanism b) RRR part of the mechanism 

 

 

a)  b)  c)   

d)   e)  

Figure 6.2. a) RPRRR, b) RRRRR, c) 2RPR-RRR, d) RPR-RRR-RRR and e) 2RRR-RRR 

mechanisms 
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For further simplification of the problem, it is assumed that the link length 

dimensions of the lower part of the mechanism are already selected and it is needed to 

design the remaining four of the link lengths shown in Figure 6.1: a1, a2, Cx and Cy.  
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 (6.1) 

 

where c and s stand for cosine and sine, respectively. Eq. (6.1) can be written in 

polynomial form: 

 

    
6
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j 1

P f x F x 0


   (6.2) 

 

where x  represents the input and output variables (S, , ) and 
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 (6.3) 

 

In Eq. (6.2) there are four construction parameters (a1, a2, Cx and Cy), but six Pj’s. 

P5 and P6 can be represented in terms of the other Pj’s as 

 

 5 3 4 6 2 4P P P    and   P P P   (6.4) 

 

Let P5 = 1 and P6 = 2 and Pj = j + mj 1  + nj 2  for j = 1,..,4. Eq. (6.2) becomes 

 

          
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j 1

m n f x f x f x F x 0


         (6.5) 

 

Coefficients of 1, 1 and 2 in Eq. (6.5) can be separated as 
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    
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For least squares approximation with N (>4) design points ix  for i = 1,..,N, let 
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 
   (6.9) 

 

 

2
N 4

m j ji 5i

i 1 j 1

S m f f
 

 
  

 
   (6.10) 

 

 

2
N 4

n j ji 6i

i 1 j 1

S n f f
 

 
  

 
   (6.11) 

 

where      ji j i 5i 5 i 6i 6 if f x , f f x , f f x    and  i iF F x . Partial derivatives of 

Eqs. (6.9)-(6.11) with respect to j, mj and nj are to be equated to zero to find the minimum 

of the sum of squares:  

 

  
N

1i 1 2i 2 3i 3 4i 4 i ki

i 1k

dS1
f f f f F f 0 for k 1,2,3,4

2 d 

        (6.12) 

 

  
N

m
1i 1 2i 2 3i 3 4i 4 5i ki

i 1k

dS1
f m f m f m f m f f 0 for k 1,2,3,4

2 dm 

        (6.13) 

 

  
N

n
1i 1 2i 2 3i 3 4i 4 6i ki

i 1k

dS1
f n f n f n f n f f 0 for k 1,2,3,4

2 dn 

        (6.14) 
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Eqs. (6.12)-(6.14) each represent four linear equations in four unknowns: 1, 2, 

3, 4; m1, m2, m3, m4 and n1, n2, n3, n4, respectively. Eqs. (6.12)-(6.14) in matrix form:  

 

 

 

N N N N N

1i ki 1 2i ki 2 3i ki 3 4i ki 4 i ki

i=1 i=1 i=1 i=1 i=1

kj j k

f f + f f + f f + f f = Ff

A = b for k 1,2,3,4

       
       
       

       

    
 (6.15) 

 

 

 

N N N N N

1i ki 1 2i ki 2 3i ki 3 4i ki 4 5i ki

i=1 i=1 i=1 i=1 i=1

kj j k

f f m + f f m + f f m + f f m =- f f

A m = c for k 1,2,3,4

       
       
       

       

    
 (6.16) 

 

 

 

N N N N N

1i ki 1 2i ki 2 3i ki 3 4i ki 4 6i ki

i=1 i=1 i=1 i=1 i=1

kj j k

f f n + f f n + f f n + f f n =- f f

A n = d for k 1,2,3,4

       
       
       

       

    
 (6.17) 

 

where kjA    is a 44 coefficient matrix with  

  

 

 

N

kj ki ji

i 1

T

j 1 2 3 4

T

j 1 2 3 4

T

j 1 2 3 4

A f f

m m m m m

n n n n n





  

  

  



 (6.18) 

 

 kb ,  kc  and  kd are 41 column matrices with 

 

 
N N N

k i ki k 5i ki k 5i ki

i 1 i 1 i 1

    for j,  k  1,.., 4b Ff , c f f , d f f
  

        (6.19) 

 

j, mj and nj can be linearly solved from Eqs. (6.15)-(6.17). 1 and 2 are 

determined in terms of j, mj and nj as follows: 
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  

 

   

1 3 4 3 3 1 3 2 4 4 1 4 2

2 2

3 4 1 3 4 2 3 4 3 4 1 2

3 4 3 4 1 3 4 3 4 2 3 4

P P m n m n

m m n n m n n m

m m 1 l n n l 0

          

       

        

 (6.20) 

 

 

  

 

   

2 2 4 2 2 1 2 2 4 4 1 4 2

2 2

2 4 1 2 4 2 2 4 2 4 1 2

2 4 2 4 1 2 4 2 4 2 2 4

λ =-P P =- +m λ +n λ +m λ +n λ

m m λ +n n λ + m n +n m λ λ

+ m +m 1 λ + n +n λ + =0





 (6.21) 

 

2 is eliminated from Eqs. (6.20)-(6.21) and a degree 3 polynomial equation in 

terms of 1 is obtained. The details of this equation are presented in (Alizade and Kilit, 

2005). When solving this equation, there may be one or three real solutions. In case of 

three real solutions, one should take the solution which provides less error and also 

feasible link dimensions. Once 1 and 2 are found, Pj = j + mj1+ nj2 for j = 1,..,4 are 

determined and the construction parameters are solved from Eq. (6.3) as 

 

 
2 2 2

x 3 y 2 2 4 1 1 2 x yC P , C P , a P , a P a C C        (6.22) 

 

Notice that P1 + a2
2 + Cx

2 + Cy
2 should be non-negative in order to get a real 

solution. The following sections present how S and  are found for the five different 

mechanisms in Figure 6.2 and explain how the function synthesis problem is formulated. 

 

 RPRRR and RRRRR Mechanisms 

 

For the RPRRR mechanism illustrated in Figure 6.3a the input joint parameters  

and S are directly equal to the polar coordinates of point P, hence the formulations above 

directly apply. For this mechanism there is no need to assume any link dimensions. 

For the RRRRR mechanism illustrated in Figure 6.3b, the inputs are the angles  

and . The function synthesis of the RRRRR mechanism with least squares 

approximation is presented in (Kiper et al., 2014), where it is assumed that |AC| = 1 (due 

to scalability of the mechanism without affecting the input/output (I/O) relationship) and 

all of a1, a2, a3, a4 are solved for. Due to selection of |AC| = 1, only one of Cx or Cy is 

independently found, but two more construction parameters are designed (a3 and a4). 



 

63 

 

Notice that the angle between the x axis in Figure 6.3b and the AC direction serves as an 

initial angle 0 which can be assumed or determined depending on the formulation. 

 

a)   b)  

Figure 6.3. a) RPRRR and b) RRRRR mechanisms 

 

For the RRRRR mechanism, alternatively one can keep Cx and Cy as design 

parameters and assume a3 and a4 values. One of a3 and a4 may be selected as 1 due to the 

scalability of the mechanism. In this case, for given inputs  and , the polar coordinates 

S and  can be simply determined as follows: 

 

      

 

i i i

3 4

2 2 2 2

3 4 3 4 3 4 3 4

3 4 3 4

AB BP AP a e a e Se

S a c a c a s a s a a 2a a c  ,

atan2 a c a c ,a s a s

      

          

    

 (6.23) 

 

 2RPR-RRR Mechanism 

 

For the 2RPR-RRR mechanism shown in Figure 6.4 the inputs are the two 

prismatic joint variables S and S2. The link length a3 needs to be assumed. The first 

prismatic input directly gives S, but it is necessary to determine  in terms of both of the 

inputs S and S2. Using cosine theorem in triangle PAB:  

 

 

2 2 2
2 2 2 1 3 2

2 3 3

3

a S S
S a S 2a Sc cos

2a S

  
     (6.24) 
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Figure 6.4. The 2RPR-RRR Mechanism 

 

 RPR-RRR-RRR Mechanism 

 

For the RPR-RRR-RRR mechanism shown in Figure 6.5a the inputs are the 

prismatic joint variable S and the revolute joint variable . The link lengths a3, a4 and a5 

need to be assumed. Once again, the prismatic input directly gives S, but it is necessary 

to determine  in terms of both S and . This relationship can be obtained as follows: 

 

    

 

i i

3 4 5

2 2 2

3 4 4 5

2 2 2 2

3 4 4 5 3 4 3 4

BD AB AP DP AP BD AB Se a a e a

Sc a a c Ss a s a

2 a a c Sc 2a Ss s a a a S 2a a c

           

       

          

 (6.25) 
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Eq. (6.25) is in the form Ac + Bs = c and can be solved for  using the tangent 

of the half angle substitution. Note that there will be two solutions and either of the 

solutions can be selected in favor of the designer. 

 

a)    b)  

Figure 6.5. a) RPR-RRR-RRR and b) 2RRR-RRR mechanisms 

 

 2RRR-RRR Mechanism 

 

For the 2RRR-RRR mechanism shown in Figure 6.5b the inputs are the two 

revolute joint variables  and . Notice that for this mechanism scale of the link lengths 

does not affect the I/O relationship and without loss of generality let |AB| = 1. The other 

four link lengths of the AEPDB loop, i.e. a4, a5, a6 and a7 are to be assumed. Given the 

inputs  and  the coordinates of E and D are a6ei and 1 + a4ei, respectively. From link 

lengths a5 and a7 one can write  

 

 
   

2 2i 2

x y 6 7 x 6 y 6 7

2 2 2 2

x y 6 7 6 x 6 y

PE P iP a e a P a c P a s a

P P a a 2a c P 2a s P 0

          

        
 (6.26) 

 

 
   

 

2 2i 2

x y 4 5 x 4 y 4 5

2 2 2 2

x y 4 4 5 4 x 4 y

PD P iP 1 a e a P 1 a c P a s a

P P 1 a 2a c a 2 1 a c P 2a s P 0

            

           
 (6.27) 

 

Px and Py should be solved from Eqs. (6.26)-(6.27). Subtracting Eq. (6.26) from 

Eq. (6.27) 
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   2 2 2 2

6 7 4 4 5 4 6 x 4 6 y

y x

a a 1 a 2a c a 2 1 a c a c P 2 a s a s P 0

P mP n

            

  
 (6.28) 

where 

 
2 2 2 2

4 6 6 7 4 4 5

4 6 4 6

1 a c a c a a 1 a 2a c a
m and n

a s a s 2(a s a s )

       
 

   
 (6.29) 

 

  Substituting Eq. (6.28) in Eq. (6.26): 

 

   

   

   

      

22 2 2

x x 6 7 6 x 6 x

2 2 2 2 2

x 6 6 x 6 7 6

2 2 2 2 2

6 6 6 6 6 7 6

x 2

P mP n a a 2a c P 2a s mP n 0

1 m P 2 mn a c ma s P n a a 2na s 0

mn a c ma s mn a c ma s 1 m n a a 2na s
P

1 m

         

          

             
 



 (6.30) 

 

The ± sign in Eq. (6.30) is due to the two alternative assembly modes of the dyad 

EPD. Both signs can be selected in favor of the designer. Once Px is determined, Py is 

found from Eq. (6.28). S and  in terms of Px and Py requires conversion from Cartesian 

coordinates to polar coordinates:  

 

  2 2

x y x yS P P    and   atan2 P ,P    (6.31) 

 

 PRRRR and PPRRRR Mechanisms 

 

PRRRR mechanism is illustrated in Figure 6.6a the joint variables are S1 and . 

In this mechanism link length a3 can be chosen arbitrarily.  

S and  can be found in terms of S1 and  as 

 

 
   

i i

1 3 1 3 3

2 2 2

1 3 3 1 3 3

S a e S a cos ia sin Se

S S a cos a sin    and   atan2 S a cos , a sin

     

         
 (6.32) 

 

For the PPRRR mechanism shown in Figure 6.6b the two prismatic joints are 

inputs and  
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  i 2 2

1 2 1 2 1 2S iS Se S S S    and   atan2 S ,S       (6.33) 

 

a)    b)  

Figure 6.6. a) PRRRR and b) PPRRR mechanisms 

 

 PRR-RRR-RRR Mechanisms 

 

The prismatic joint variable S1 and revolute joint variable  are the inputs for 

PRR-RRR-RRR mechanism shown in Figure 6.7. In this mechanism a3, a4, a5 and a6 can 

be chosen arbitrarily.  

 

Figure 6.7. PRR-RRR-RRR mechanism 
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When S1 and  are given, the joint locations of A and D will be known, hence 

 

 
   

2 2 2

x y 1 6 x 1 y 6

2 2 2 2

x y 1 x 1 6

AP P iP S a P S P a

P P 2S P S a 0

       

     
 (6.34) 

 

 
   

 

2 2i 2

x y 3 4 5 x 3 4 y 4 5

2 2 2 2 2

x y 3 4 x 4 y 3 4 5 3 4

DP P iP a a e a P a a c P a s a

P P 2 a a c P 2a s P a a a 2a a c 0

            

           
 (6.35) 

 

In order to solve for Px and Py, Eq.(6.35) is subtracted from Eq.(6.34) 

 

  2 2 2 2 2

3 4 5 6 1 3 4 3 4 1 x 4 ya a a a S 2a a c 2 a a c S P 2a s P 0            (6.36) 

 

Py can be obtained in terms of Px from Eq. (6.36) as 

 

 
y xP mP n   (6.37) 

 

where 

 

 

2 2 2 2 2

3 4 1 3 4 5 6 1 3 4

4 4

a a c S a a a a S 2a a c
m and n

a s 2a s

       
 

 
 (6.38) 

 

 Substituting Eq. (6.37) in Eq. (6.34) and solving for Px:  

 

  
    2 2 2 2 2

2 1 1 1 62 2 2

x x 1 x 1 6 x 2

S mn S mn 1 m S a n
P mP n 2S P S a 0 P

1 m

      
       


(6.39) 

 

Py is found via Eq. (6.37). S and  in terms of Px and Py are found via Eq. (6.31) 

 

 PRR-PRR-RRR and PRR-RPR-RRR Mechanisms 

 

For the PRR-PRR-RRR mechanism shown in Figure 6.8a, prismatic joint 

variables S1 and S2 are the inputs. The link lengths a3 and a4 can be chosen freely.  
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a)  b)  

Figure 6.8. a) 2PRR-RRR and  b) PRR-RPR-RRR mechanisms 

 

Writing cosine theorem in triangle PAB: 

 

    
 

 

22 2
22 2 1 4 2 1 3

3 4 2 1 4 2 1

4 2 1

a S S a
a a S S 2a S S c cos

2a S S


   

       
  

 (6.40) 

 

 
   

i i

1 3 1 3 3

2 2 2

1 3 3 1 3 3

S a e S a cos ia sin Se

S S a cos a sin    and   atan2 S a cos , a sin

     

         
 (6.41) 

 

For the PRR-RPR-RRR mechanism shown in Figure 6.8b, prismatic joint 

variables S1 and S2 are the inputs. The link lengths a3 and a4 can be chosen freely. Writing 

cosine theorem in triangle PAB:  

 

    
 

 

22 2
2 4 3 1 22 2 1

2 4 3 1 4 3 1

4 3 1

a a S S
S a a S 2a a S c cos

2a a S


   

       
  

 (6.42) 

 

 
   

i i

1 4 1 4 4

2 2 2

1 4 4 1 4 4

S a e S a cos ia sin Se

       S S a cos a sin    and   atan2 S a cos , a sin

     

         
 (6.43) 
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6.9. The Function Synthesis Problem 

 

The function synthesis problem for any of the above-mentioned mechanisms is 

formulated as follows: 

1. Given the design points xi, yi and zi for i = 1,..,N > 4 the design points are linearly 

related to the inputs q and r and the output  of the mechanism: 

 

 i 1 i 1 i 1 i 1 i 1 i 1

N 1 N 1 N 1 N 1 N 1 N 1

x x q q y y r r z z
   ,      and   

x x q q y y r r z z

      
  

      
 (6.44) 

 

q and r are S and  for RPRRR;  and  for RRRRR; S and S2 for 2RPR-RRR; S 

and  for RPR-RRR-RRR and  and  for 2RRR-RRR mechanism. Which of the 

inputs is q and which one is r does not matter. The limits q1, qN, r1, rN, 1 and N 

are arbitrarily chosen and the designer can play with them to decrease the amount 

of error and/or find a mechanism with more feasible link lengths. 

2. Si and i are determined in terms of the inputs as explained in the above sections.  

Table 6.1 summarizes the dependencies of S and  to the inputs. 

3. The synthesis of the mechanism is performed with least squares approximation as 

explained in the first section. The percentage error variation between the desired 

and generated z values is plotted and the error is decreased by changing the 

assumed link lengths and/or input/output joint limits. 

 

Table 6.1. Dependency of S and  to the inputs 

Mechanism Input S 

RPRRR S and  S 

RRRRR  and   2 2

3 4 3 4a a 2a a c     3 4 3 4atan2 a c a c ,a s a s     

2RPR-RRR S and S2 S    1 2 2 2

3 2 3cos a S S 2a S      

RPR-RRR-RRR S and  S Equation (6.25) 

2RRR-RRR  and  Equation (6.28)-(6.31) 

PRRRR S1 and   
2 2 2

1 3 3S a cos a sin      1 3 3atan2 S a cos , a sin    

PPRRR S1 and S2 2 2

1 2S S     1 2atan2 S ,S  

PRR-RRR-RRR S1 and  Equation (6.39) and Equation  (6.31) 

2PRR-RRR  S1 and S2  
2 2 2

1 3 3S a cos a sin      1 3 3atan2 S a cos , a sin    

PRR-RPR-RRR S1 and S2  
2 2 2

1 4 4S a cos a sin      1 4 4atan2 S a cos , a sin    
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 Case Study 

 

All the formulations in the previous sections are implemented in MS Excel and 

several different function synthesis tasks are performed. Here some of the results are 

presented for illustration. As an example, in function generation of PRR-RRR-RRR 

mechanism, consider the function z = x1.2y0.2 for 3  x  6 and 4  y  5. The choice of 

this function does not imply an application and has been studied purely for academic 

purposes. x and y definition intervals were divided into 30 equal intervals, that is, the 

synthesis was made with a total of 900 design points. In the PRR-RRR-RRR mechanism, 

the size of the four links can be selected freely. Therefore, by changing the limits of these 

link dimensions and input/output parameters, a mechanism design with a low maximum 

error value has been made. The absolute percent error used as a design criterion is shown 

below; 

 

 
desired computed

desired

z z
%Error 100

z


   (6.45) 

 

After several trials on the free parameters, a solution with relatively low error is 

determined for a3 = 6, a4 = 4.5, a5 = 5, a6 = 4, 1 ≤ S ≤ 5, 75° ≤ ≤ 110° and 110° ≤  ≤ 

165°. The maximum percentage error is found as 2.436%. Percentage error variation is 

depicted in Figure 6.9. The construction parameters of the designed mechanisms are a1 = 

3.827, a2 = 6.649, Cx = 6.022 and Cy = 4.083. 

 

  

Figure 6.9. The percentage of the error variation for generation of z = x1.2y0.2 
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  CHAPTER 7  

 

CONCLUSIONS 

In this thesis, studies with different approaches to different function generation 

synthesis problems for various mechanisms are issued. The synthesis problems are 

mathematically formulated and analytical and semi-analytical solutions of the problems 

are presented. 

In   CHAPTER 3, function generation problem for a planar 5R mechanism is 

addressed using semi analytical solution for given design point set. The problem is 

formulated starting with analytically defining the objective function from the I/O 

relationship and solving for the Lagrange terms with numerical techniques. A 

computational example is presented and the error variation is given. 

In   CHAPTER 4, the single-loop Bennett 6R mechanisms possess much more 

construction parameters than the single-loop planar four-bar, spherical four-bar or planar 

slider-crank mechanisms and hence, they may be used for function approximation 

purposes with a relatively better accuracy. The method of decomposition makes it 

possible to analytically formulate the function synthesis problem for mechanisms with 

many construction parameters. The easy computer implementation of the formulation 

enables the designer to quickly work on several alternative designs and come up with an 

accurate function generator mechanism. The case studies illustrate how a designer can 

compare the three types of Bennett 6R mechanisms for the same function. Also, the 

comparison of the spherical four-bar mechanisms with the double-spherical 6R 

mechanism clearly shows that the accuracy is improved when the 6R linkage is used for 

generating the same function. 

  CHAPTER 5 focuses on formulation of function generation synthesis of an over-

constrained 2-dof 7R mechanism using least squares approximation and method of 

decomposition. The inputs of the mechanism are chosen such that the resulting synthesis 

equations are linear. Several case studies are performed and one of them is presented. The 

case study shows that the maximum error may be decreased by using a 7R mechanism 

instead of a spherical 5R mechanism. 
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In   CHAPTER 6, a common design method is presented for the synthesis of two-

input functions using many different planar 2-dof mechanisms involving only rotary and 

sliding joints. For the synthesis formulation to be based on analytical calculation instead 

of time-consuming numerical optimization methods, some limb dimensions were freely 

chosen and the design of the remaining limb dimensions was studied. The least squares 

approximation method was chosen as the synthesis method, which allows to select as 

many design points as desired on the domain. In practice, the methods in this study can 

be applied for a particular mechanism, or if the designer has the freedom to choose the 

mechanism to fulfill a particular function, it is also possible to select the mechanism that 

gives the best result by working on all mechanisms. 

Future studies involve applying these approximation methods for other multi-loop 

and multi-dof mechanisms and comparing the results.
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