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Examining Committee Members:

Prof. Dr. Berna ÖZBEK
Department of Electrical and Electronics Engineering,
Izmir Institute of Technology

Prof. Dr. Barış ATAKAN
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ABSTRACT

MACHINE LEARNING BASED RESOURCE ALLOCATION FOR MASSIVE
MIMO SYSTEMS

Cell-free massive MIMO communication systems is a promising technology that
uses access-points(APs) deployed throughout the coverage area instead of usual cellular
systems with centralized BS to serve multiple users simultaneously. By exploiting the large
number of antennas and adopting advanced signal processing techniques, cell-free massive
MIMO can mitigate inter-user interference and enhance the overall system performance.
Optimal power allocation plays a crucial role in maximizing the spectral and energy
efficiency of wireless networks. By intelligently allocating transmit power to different
users, a balance between maximizing the system throughput and minimizing the total
energy consumption can be achieved. In addition, user-centric clustering(UCC) is also
a key technique to improve the performance of cell-free massive MIMO systems. This
technique aims to pair user equipments (UEs) with appropriate APs to facilitate efficient
resource allocation and interference management.

In this thesis, cell-free mMIMO communication system is investigated through
user-centric clustering and power allocation. The power allocation optimization problem is
formulated to maximize energy efficiency of cell-free mMIMO systems and solved by using
interior-point algorithm. User-centric clustering algorithm is proposed by disabling the non-
master APs that are serving only one user. This additional feature aims to reduce total power
consumption of the system without sacrificing the advantages of the cell-free mMIMO
communication systems. Additionally, we propose a machine learning(ML) approach to
reduce the computation time required for power allocation optimization. Through extensive
simulations, we demonstrate the effectiveness of the proposed algorithms in achieving
significant gains in spectral and energy efficiency in cell-free massive MIMO systems. The
results highlight the importance of optimal power allocation and user-centric clustering to
design an efficient cell-free mMIMO systems through machine learning approach.
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ÖZET

MASSIVE MIMO SİSTEMLERİ İÇİN MAKİNE ÖĞRENMESİ TABANLI
KAYNAK TAHSİSİ

Hücresiz masif çok-girişli çok-çıkışlı haberleşme sistemleri günümüzde kul-
lanılan baz istasyonu merkezli hücresel haberleşme sistemlerinin aksine, kapsama alanına
dağıtılmış erişim noktaları kullanarak çok sayıda kullanıcıya eş zamanlı olarak hizmet
verebilen gelecek vaat eden bir teknolojidir. Bu sistemler çok sayıda anten ve ileri düzey
sinyal işleme tekniklerini kullanarak kullanıcılar arası girişimi azaltabilir ve sistem perfor-
mansını arttırabilir. Optimal güç tahsisi enerji ve spektral verimlilik maksimizasyonunda
çok önemli rol oynamaktadır. Her kullanıcı için uygun iletim gücü tahsisi yapılarak sistem
veri hızı maksimizasyonu ile toplam enerji kullanımı arasındaki denge sağlanabilir. Sistem
performansını arttırmanın bir diğer anahtar tekniği de kullanıcı-merkezli kümelemedir.
Kullanıcı-merkezli kümelemenin amacı kullanıcıları uygun erişim noktaları ile eşleştirerek
verimli kaynak tahsisi ve girişim yönetimi sağlamaktır.

Bu tezde, hücresiz masif çok-girişli çok-çıkışlı haberleşme sistemlerinin perfor-
mansı kullanıcı-merkezli kümeleme ve güç tahsisi üzerinden incelenmektedir. Enerji ver-
mimliliğini maksimize etmek için bir güç tahsisi optimizasyon problemi formüle edilmekte
ve bu problem iç-nokta algoritması ile çözülmektedir. Ayrıca, ana erişim noktası olmayan
ve az sayıda kullanıcıya hizmet veren erişim noktalarını devre dışı bırakmayı öneren yeni
bir kullanıcı-merkezli kümeleme algoritması önerilmektedir. Bu ek özellik, hücresiz masif
çok-girişli çok-çıkışlı sistemlerin avantajını kaybetmeden toplam kullanılan enerjiyi azalt-
mayı amaçlamaktadır. Ayrıca, güç tahsisi optimizasyonu için gereken hesaplama sürelerini
azaltmak amacıyla makine öğrenmesi tabanlı güç tahsisi yaklaşımı önerilmektedir. Geniş
simülasyon ve analizler ile, bu tezde hücresiz masif çok-girişli çok-çıkışlı haberleşme
sistemlerinde önerilen metodolojilerin spektral ve enerji verimliliğinde önemli kazanımlar
sağladığını göstermektedir. Sonuçlar optimal güç tahsisi, kullanıcı-merkezli kümeleme ve
makine öğrenmesi yaklaşımının hücresiz masif çok-girişli çok-çıkışlı haberleşme sistem-
lerinde kullanılmasının önemini vurgulamaktadır.
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CHAPTER 1

INTRODUCTION

In order to meet the increasing demands for higher data rate and higher number of
connected devices across large geographical areas, one of the most promising methods is to
employ massive multiple-input-multiple-output (MIMO) communication systems, where
each base station (BS) is equipped with multiple antennas to simultaneously serve many
users in the same time-frequency resource block. Massive MIMO offers high throughput,
reliability and increased energy efficiency. Traditionally, large areas are covered by dividing
them into cells and performing communication within each cell. However, cellular systems
have several drawbacks as high computational complexity, limited spatial diversity and
most commonly, boundary effects which can be simply explained as UEs located at cell
edges experience high path loss and interference from other BSs or APs, resulting in a low
signal-to-interference-and-noise ratio (SINR) and poor performance.

To overcome these issues, cell-free massive MIMO is one of a promising technique;
in which, the transmitting antennas are distributed over the area as APs where each is
capable of serving multiple users simultaneously and UEs are served by group of selected
APs, called cooperation clusters. According to (Zhang et al., 2019), cell-free massive
MIMO has lower deployment costs, better uniform coverage capability which eliminates
the boundary effects, higher energy efficiency, and more spatial diversity compared to
centralized massive MIMO. There are two types of cell-free massive MIMO as centralized
and distributed manner. In centralized systems, the precoding and power allocation(PA)
are performed in a central processing unit (CPU), while in distributed systems, these
processes are performed in each AP locally. Centralized systems have better performance
since the channel state information (CSI) between all UEs and all APs are available
at the CPU. However, the backhaul load to connect each AP to the CPU and transfer
CSI , precoding and power allocation coefficients is higher than the distributed systems.
In distributed systems, each AP has only local CSI and performs precoding and power
allocation locally. Therefore, the backhaul load is lower than the centralized systems.
However, the performance of distributed systems is poorer than the centralized systems
due to the lack of global CSI at each AP.

In this thesis, we focus on centralized cell-free massive MIMO systems with the
objective of maximizing energy efficiency while taking into account users’ experience
and limitations of APs so that the thesis’ outcomes could be applicable in real-world
scenarios. The maximization of energy efficiency will be achieved by finding optimal
UE-AP pairs and optimal power allocation coefficients for each pair. The UE-AP pairs are
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determined based on user-centric clustering algorithm and the power allocation coefficients
are determined by solving the optimization problem. The results are provided in terms
of energy efficiency. The thesis proposes a machine learning approach with the objective
of reducing the computational time of user-centric clustering and power allocation. The
proposed machine learning approach based on deep neural networks (DNN) determines
UE-AP pairs and power allocation coefficients. This approach is compared with the
analytical approach in terms of energy efficiency and computational time.

Throughout the thesis, the centralized cell-free massive MIMO communication
system is assumed to have perfect CSI at the CPU. The users are randomly located over
outdoor environment and their positions are assumed to be stationary.

The thesis is organized as follows:
• Chapter 2 gives literature review and provides a detailed information of the

system model and channel characteristics of cell-free massive MIMO networks in the
context of downlink systems. Furthermore, this chapter presents the proposed UE-AP
pairing algorithm with extensive performance evaluations of the various precoding schemes
along with UE-AP pairing schemes, from the perspective of energy efficiency. In addition,
we define energy efficiency optimization problem and constraints for downlink cell-free
massive MIMO communication system. Finally, the performance evaluations of the UE-AP
pairing algorithms are presented and compared in terms of energy efficiency maximization
performance and computational complexity.

• Chapter 3 introduces a machine learning approach for maximizing energy ef-
ficiency. The chapter begins with a brief background information of ML and DNNs.
Then, the proposed machine learning approach along with the network architecture is
presented for user-centric clustering and power allocation. Finally, the chapter presents the
performance evaluation of the proposed machine learning approach and compares it with
the analytical approach in terms of energy efficiency performance and computational time
requirements.

• Chapter 4 concludes the thesis and provides a summary of the interpretation of
the research outcomes.

2



CHAPTER 2

ENERGY EFFICIENCY MAXIMIZATION IN CELL-FREE
MASSIVE MIMO

This chapter provides an in-depth analysis of the concept of energy efficiency
maximization in centralized cell-free massive MIMO communication through a downlink
system. The chapter gives the literature review about cell-free massive MIMO , the system
model and the channel model, which includes path loss, shadowing, and multi-path effects.
Additionally, the linear precoding schemes and user-centric clustering algorithms that
have been examined in the literature for centralized cell-free massive MIMO are reviewed.
Then, the proposed user-centric clustering algorithm is provided and a power allocation
problem for energy efficiency optimization is formulated based on power consumption and
minimum acceptable data rate constraints. Then, the performance evaluations of linear
precoding schemes and user-centric clustering algorithms are provided through simulations.
The goal of this evaluations is to reveal the impact of precoding schemes on the overall
performance of the system and to provide comparison of user-centric clustering algorithms
in cell-free massive MIMO systems.

2.1 Literature review for downlink cell-free massive MIMO

In the literature, various spectral efficiency and energy efficiency maximization
approaches on cell-free massive MIMO have been examined for different scenarios as
summarized in Table 2.1. In (Mai et al., 2022) and (Ngo et al., 2018), energy efficiency
maximization was performed by analytical optimization approach for centralized and
distributed cell-free systems respectively. Similarly, authors of (Ngo et al., 2017) worked
on energy efficiency optimization with second order cone problems approach under the
assumption of each AP serves all UEs. In (Björnson and Sanguinetti, 2020), the authors
performed downlink spectral efficiency maximization by adjusting power coefficients and
optimal UE-AP pairing, while (Chen et al., 2022) targeted energy efficiency maximization
instead of spectral efficiency maximization. In (Zhao et al., 2020), spectral efficiency
maximization was achieved in centralized cell-free massive MIMO systems using central-
ized deep neural network (DNN) approach under assumption of each UE served by all
APs. Similar assumptions are used in (Zaher et al., 2021), where the spectral efficiency
maximization performed for distributed cell-free systems using distributed deep neural
networks. The article (Chakraborty et al., 2019) expanded the optimization parameters by
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adding UE-AP pairing for centralized cell-free network approach, suggesting the determi-
nation of precoding vectors locally at each AP using locally trained DNNs. In (Biswas and
Vijayakumar, 2021), the authors used a machine learning approach for spectral efficiency
maximization with UE-AP pairing in centralized architecture in DL. They set the power
allocation to be a function instead of optimization problem and allowed ML to determine
which UEs would be served by which APs. The comparison of different power allocation
algorithms for downlink cell-free massive MIMO systems was given in (Chakraborty et al.,
2021).

Even though there are several works focused on spectral efficiency, energy ef-
ficiency, and rate maximization for cell-free massive MIMO systems, as given in the
Table 2.1, there is no work in the literature that consider energy efficiency maximization
under the power and spectral efficiency constraints by using machine learning approach
for UE-AP pairing and power allocation jointly.

Table 2.1. Literature Review

Reference Objective Parameters Approach Architecture
(Mai et al., 2022) EE PA APG Centralized
(Ngo et al., 2018) EE PA SOCP Distributed
(Ngo et al., 2017) EE PA SOCP Distributed

(Björnson and Sanguinetti, 2020) SE PA & UCC Analytical Distributed
(Chen et al., 2022) EE PA & UCC MINLP Distributed
(Zhao et al., 2020) SE PA ML Centralized
(Zaher et al., 2021) SE PA ML Distributed

(Chakraborty et al., 2019) SE PA & UCC ML Cent. & Dist.
(Biswas and Vijayakumar, 2021) SE UCC ML Centralized

(Chakraborty et al., 2021) SE PA Analytical Distributed

2.2 System Model

In this thesis, we consider cell-free Massive-MIMO system with L APs, each
equipped with N antennas and K single-antenna UEs in an urban area where LN ≫ K.
The UEs are distributed randomly over the area while the APs are distributed over the
area with equal spacing in wrap-around topology. The channel is assumed to be block
fading channel where the time-varying wide-band channels are divided into time-frequency
coherence blocks such that channels are static and frequency-flat within coherence blocks.

The signal transmitted from AP l will be exposed to path loss, shadowing and multi-
path effects. According to (3GPP, 2017), for the case where the distance vkl between AP l

and UE k satisfies 10m < vkl < 2000m, AP antenna height of 10m and UE antenna height
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between 1-2.5m the path loss(PL) between AP l and UE k in non line-of-sight(NLOS)
urban area is modeled as

PL(dB) = 22.7dB + α10log10(vkl) + 26log10(fc) (2.1)

where α is the path loss exponent, vkl is the distance between UE and AP and fc is the
carrier frequency in GHz. For 2GHz carrier frequency and path loss exponent 3.67, the
path loss can be further simplified as

PL(dB) = 22.7 + 36.7log10(vkl) + 7.827

≈ 30.5 + 36.7log10(vkl)
(2.2)

The propagation channel between UE k and AP l is denoted as hkl ∈ CNx1 and
modeled by correlated Rayleigh fading such that hkl ∼ NC(0,Rkl) where Rkl ∈ CNxN

is the spatial correlation matrix. Here, the small-scale fading is modeled by the complex
Gaussian distribution, while the large-scale fading, which incorporates factors such as
geometric path loss, shadowing, antenna gains, and spatial channel correlation, is described
by the positive semi-definite correlation matrix Rkl. The normalized trace βkl =

1
N

tr(Rkl)

accounts for the average channel gain from an antenna at AP l to UE k.
According to (Björnson et al., 2017) spatial correlation matrix elements modeled

as

[R]l,m = βkl

∫ ∞

−∞
ej2πdant(l−m) sin (θ+δ) 1√

2πσθ

e
−δ2

2σ2
θ dδ (2.3)

where σθ is angular standard deviation in radians, θ is angle from AP l to UE k, δ is the
integration variable and dant is antenna spacing between adjacent antennas on same AP in
terms of wavelength.

The average channel gain βkl is defined in terms of path loss and shadowing as

βkl = 10(
−(PL(dB)+SF(dB))

10
) (2.4)

where shadow fading is represented as

SF ∼ N (0, σ2
sf ) (2.5)

and σ2
sf is the variance of shadow fading.

Let xl denote the signal transmitted by AP l. The received signal at UE k can be
expressed as

yk =
L∑
l=1

hT
klxl + nk (2.6)

Let sk denote the independent unit-power data signal intended for UE k where
E{|sk|2} = 1, k = 1, ..., K. Then, the transmitted signal xl ∈ CN×1 at AP l can be
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expressed as

xl =
√

Pt

K∑
i=1

√
ηildilwilsi (2.7)

where Pt is the maximum transmit power of AP in Watts, ηkl is the power allocation
coefficient for AP l and UE k, dkl indicates if the UE k is served by the AP l and
wkl ∈ CN×1 is the precoding vector for UE k and AP l.

dkl =


1 UE k is served by AP l

0 UE k is not served by AP l (2.8)

By substituting (2.7) into (2.6) we obtain general form of the received signal at UE k as

yk =
√

Pt

L∑
l=1

hT
kl

√
ηkldklwklsk +

√
Pt

K∑
i=1
i ̸=k

L∑
l=1

hT
kl

√
ηildilwilsi + nk (2.9)

The term nk is the additive white Gaussian noise (AWGN) at UE k with zero mean and
variance σ2. We define the channel matrix H ∈ CK×LN as

H = [h1,h2, . . . ,hK ] (2.10)

where hk = [hk1 hk2 . . . hkL] ∈ C1×LN and hkl = [hkl1 hkl2 . . . hkLN ] ∈ C1×N

represents the channel between UE k and the antennas of the AP l.
The precoding matrix W ∈ CLN×K is defined as

W = [w1 w2 . . . wK ] (2.11)

where wk = [wk1,wk2, . . . ,wkL] ∈ CLN×1 is the precoding vector for UE k.

Spectral Efficiency

Spectral efficiency is a measure of the amount of information that can be transmitted
per unit of bandwidth or frequency spectrum in a communication system. It is defined
as the ratio of the information rate to the bandwidth and expressed in bits per second per
Hertz (bps/Hz). The rate of the UE k can be expressed as

Rk = Blog2(1 + γk) (2.12)

where B is the bandwidth of the system and γk is the signal to interference and noise ratio
(SINR) at UE k is defined as the ratio of the power of the desired signal to the power of
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the interference and noise

γk =

|
L∑
l=1

√
Pt
√
ηklh

T
kldklwkl|2

K∑
i=1

|
L∑
l=1

√
Pt
√
ηilh

T
kldilwil|2 − |

L∑
l=1

√
Pt
√
ηklh

T
kldklwkl|2 + Pn

(2.13)

where, Pn is the noise power at UE k expressed as

Pn = ThermalNoise + 10log10(B) + NF (dBm) (2.14)

where NF is the noise figure of the receiver. Then, the sum data rate is determined as

Rsum =
K∑
k=1

Rk (2.15)

and the spectral efficiency of UE k can be expressed as

SEk = log2(1 + γk) (2.16)

Energy Efficiency

Economic and environmental concerns have led to the development of energy
efficient wireless communication systems. Energy efficiency is a measure of the trade-off
between the energy required to transmit information over a communication channel and
the amount of information that is transmitted. Therefore, it is one of the most critical
concerns in the design and deployment of large scale wireless communication systems.
The energy efficiency of the system can be expressed as

EE =
Rsum

Ptotal

(2.17)

where Rsum is the sum data rate of the system in Equation (2.15) and Ptotal is the total
power consumption of the system.

The total power consumption can be broken down several components that can be
summarized in three main parts as transmit power (Ptx), AP internal power consumption
Pint and backhaul power consumption Pbh(Björnson et al., 2015),(Zuo et al., 2017). Trans-
mit power consumption is the power consumed to transmit the intended signal including
the signal power as well as power consumed at power amplifier to transmit the signal with
required power. AP internal power consumption covers digital signal processing units
such as FPGAs and ASICs, RF chains that includes mixers, filters and oscillators, cooling
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systems and power management units. Backhaul power consumption is the power con-
sumption related to the structure between APs and CPU. This structure includes network
processing components such as the switches and routers that are responsible for routing
and forwarding data packets, signal boosters for long backhaul links, protocol converters,
traffic managers, security and fault detection, recovery components in general.

Ptotal = Ptx + Pint + Pbh (2.18)

The total transmit power Ptx can be expressed as

Ptx =
L∑
l=1

1

αdl

(
K∑
k=1

Ptηkldkl||wkl||2
)

(2.19)

where αdl represents power amplifier efficiency. This power consumption is higher than
the total transmitted signal power due to the power amplifier efficiency.

Total internal power consumption of APs Pint can be expressed as

Pint = LNPac +
L∑
l=1

RlPtc (2.20)

where Pac represents the fixed circuit power consumption at each antenna such as con-
verters, mixers and filters attached to each antenna at APs. Ptc stands for load dependent
power consumption of APs such as coding.

Lastly, total power consumption at backhaul links between CPU and APs is denoted
as Pbh. As Pint, backhaul power consumption Pbh has traffic dependent and fixed terms
that can be expressed as

Pbh = LP0 +
L∑
l=1

RlPbt (2.21)

where P0 is the fixed power consumption of each backhaul due to infrastructural compo-
nents, Pbt is the traffic-dependent power consumption of backhaul and

Rl =
K∑
k=1

Rkdkl (2.22)

is the data transfer rate of the backhaul l. The number of APs that serve UE k is determined
by

dk =
L∑
l=1

dkl (2.23)

In real systems, AP and backhauls consume small amount of power even when
they are on sleep mode. Since they are smaller than hundredth of the power consumptions
in active state, the consumptions on sleep mode will be neglected for simplicity.
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2.3 Linear Precoding Schemes

Linear precoding involves the manipulation of signals at the transmitters to allow
multiple users to share the same frequency resources without causing significant interfer-
ence by exploiting the spatial domain. This technique is particularly useful in cell-free
massive MIMO, where the base stations are not confined to a specific area and can be
deployed anywhere in the network.

In this thesis, we refer to three linear precoding schemes such as maximum ratio
transmission (MRT), zero forcing precoding (ZF) and regularized zero forcing precoding
(RZF). We will examine the performance of these schemes considering the number of UEs
and APs and thresholds of user-centric clustering algorithm schemes in terms of energy
efficiency.

2.3.1 Maximum Ratio Transmission Precoding

The idea behind maximum ratio transmission (MRT) precoding is to transmit user
signals in such a way that it is received with the maximum power possible at the user
equipments. This goal is achieved by multiplying the signal with a precoding vector that
are obtained from complex inverse of the channel matrix.

One advantage of MRT is that it is simple to implement and does not require
any additional information, such as the interference covariance matrix, to calculate the
precoding vector. However, MRT may suffer from inter-user interference, as it does not
take into account the interference from other users. Therefore, MRT is typically preferred
over ZF and RZF in scenarios where the SINR is high and the system requires a simple
and computationally efficient precoding scheme. The MRT precoding matrix W

′

MRT is
defined as complex conjugate of the channel matrix and expressed as

W
′

MRT = HH (2.24)

where W
′

MRT = [w
′
1,w

′
2, . . . ,w

′
K ] ∈ CLN×K

To eliminate precoding effects on transmit power, the precoding matrix is normal-
ized such that

wk =
w

′

k

||w′
k||

(2.25)
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2.3.2 Zero Forcing Precoding

The main goal of zero forcing (ZF) precoding is to eliminate inter-user interference,
which is one of the main challenges in cell-free massive MIMO, by designing such that the
signal intended for one user does not interfere with the signals intended for other users.
This is achieved by orthogonalization of the signals at the receive terminals, effectively
eliminating the interference.

The significant advantage of ZF precoding is that it can effectively eliminate inter-
user interference, leading to improved system performance. However, ZF precoding also
amplifies the noise, therefore it may result reduced SINR compared to MRT. Therefore,
ZF precoding is typically preferred over MRT in scenarios where the channel matrix is
well conditioned and the potential inter-user interference is higher than the noise power.

The ZF precoding matrix W
′

ZF is defined as

W
′

ZF = HH(HHH)−1 (2.26)

where W
′

ZF = [w
′
1,w

′
2, . . . ,w

′
K ] ∈ CLN×K

The resulting precoding vectors are normalized as in Equation (2.25).

2.3.3 Regularized Zero Forcing Precoding

Regularized zero forcing (RZF) precoding is an extension of the ZF precoding
technique. As mentioned above, ZF has a disadvantage in the low SNR cases compared to
MRT. The main goal of regularized zero forcing (RZF) precoding is balancing the trade-off
between inter-user interference elimination and noise amplification. This is achieved by
adding a small amount of noise to the channel matrix, which is known as regularization.
The regularization parameter λ is a positive real number that controls the trade-off between
the SNR and the inter-user interference. If λ is set to zero, the precoding matrix become
identical to the ZF precoding matrix and if λ is set to infinity, the precoding matrix become
identical to the MRT precoding matrix (Bobrov et al., 2022).

The RZF is typically preferred over ZF and MRT in low SNR cases, since it can
effectively balance the trade-off between inter-user interference elimination and noise
amplification. Also when there is a high correlation between the antennas or the channel
matrix is close to singular, the inverse matrix used in ZF may be ill-conditioned, leading to
numerical instabilities. In this case, RZF can be used to provide a more stable solution
(Bobrov et al., 2022),(Krishnamoorthy and Schober, 2023).

The RZF precoding matrix W
′

RZF is calculated as
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W
′

RZF = HH(HHH + λIK)
−1 (2.27)

where W
′

RZF = [w
′
1,w

′
2, . . . ,w

′
K ] ∈ CLN×K , λ is the regularization parameter and

IK is the identity matrix with dimension K × K. The resulting precoding vectors are
normalized as in Equation (2.25).

2.4 User Equipment & Access Point Pairment

Centralized cell-free massive MIMO systems require more backhaul connections
(the link between AP and the central processing unit) to transfer data between APs and CPU
compared to colocated massive MIMO systems. These backhaul connections increases
with the number of APs L. It can easily be seen from (2.18) and (2.21) that backhaul
power consumption is directly related to the number of backhaul links and data transfer
rate of each link. As given in (2.17), to improve overall energy efficiency, we need to
reduce the total power consumption. One way to reduce power consumption is reducing
the number of backhaul links and data transfer rates per link. Without using any UE-AP
pairing schemes, all UEs in the network would be served by all APs. This means that each
AP’s backhaul would need to transfer all of the UEs’ data, which results a high amount of
data transfer on the backhaul links. This, in turn, leads to excessive power consumption on
backhaul links due to load dependent power consumptions. To address this issue, there are
several UE-AP pairing schemes in literature that can be used to reduce the amount of data
on the backhaul links. One of the pairing schemes in (Björnson and Sanguinetti, 2020) is
user-centric clustering, will be considered in this thesis.

2.4.1 User-centric Clustering Algorithm

User-centric clustering algorithm is based on how does additional APs contribute
in communication performance and how much power is consumed in exchange. APs that
located far from UEs generally has low channel gains and does not contribute communica-
tion performance significantly in terms of spectral efficiency improvement but they still
transfer data for those UEs over their backhauls. Therefore overall power consumption
will be increased even though there is no significant improvement on spectral efficiency. In
stationary UE case, the UE-AP matching process is performed every time when a new UE
is joined to or an existing UE left from the cell-free network. To overcome this problem and
improve overall energy efficiency, UEs should not be served by APs that has no significant
contributions. In the user-centric clustering algorithm in (Björnson and Sanguinetti, 2020),
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Figure 2.1. Representation of User-Centric Clustering.

APs will serve UEs only if the channel gain between UE-AP pair is higher than the channel
gain between the UE and its master AP with a given threshold. This algorithm is given in
Algorithm 1.

Algorithm 1: User-centric clustering algorithm in (Björnson and Sanguinetti,
2020)

Input: Channel gains between all UEs and all APs as βkl, UE-AP pairing
threshold λ1 ≥ 0

Output: Cooperation clusters formed by APs to serve UEs
Initialization: dkl = 0; ∀k = 1, 2, . . . , K and ∀l = 1, 2, . . . , L

foreach UE k do
Find AP with highest channel gain and assign it as master AP
l ← arg maxl βkl

dkl ← 1
β∗
kl ← βkl

end
foreach AP l do

foreach UE k do
if βkl ≥ β∗

kl + λ1 then
dkl ← 1

end
end

end

As a first step, each UE chooses a master AP that has the highest channel gain.
Then, APs need to form cooperation clusters by deciding which UEs they will serve. Each
AP will check each UE’s channel gain. If the channel gain for the selected UE is higher
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than the channel gain between selected UE and its master AP by threshold λ1 or more, the
AP will serve that UE. If the channel gain for the selected UE is less than the channel gain
between selected UE and it’s master AP by this threshold, the AP will not serve that UE.

As discussed before, non-master APs should serve UEs only if it contributes to the
system performance of UEs by reasonable amount. However, these contributions depends
on many different parameters such as channel gains, the number of UEs served by the
AP, the number of APs in the system and additional interference caused by those APs.
Therefore, channel gain alone may not be enough to justify additional power consumptions
of those APs and decide whether to serve a UE or not. However, considering all those
parameters on the decision is a complex task. Therefore, a simple and efficient algorithm
is needed to decide whether to serve a UE or not.

In this context, we propose a novel energy efficiency focused user-centric clustering
algorithm. The proposed algorithm is based on the idea of minimizing the number of APs
that are on active mode by refusing to serve only a few UEs if the AP is not the master
AP of those UEs by introducing a threshold value λ2. The proposed algorithm is given in
Algorithm 2.

Algorithm 2: The proposed user-centric clustering algorithm
Input: Channel gains between all UEs and all APs as βkl, UE-AP pairing

threshold λ1 ≥ 0, AP disabling threshold λ2 ≥ 0

Output: Cooperation clusters formed by APs to serve UEs
Initialization: dkl = 0; ∀k = 1, 2, . . . , K and ∀l = 1, 2, . . . , L

foreach UE k do
Find AP with highest channel gain and assign it as master AP
l ← arg maxl βkl

dkl ← 1

β∗
kl ← βkl

end
foreach AP l do

foreach UE k do
if βkl ≥ β∗

kl + λ1 then
dkl ← 1

end
end
dl ←

∑K
k=1 dkl

if dl < λ2 and AP l is not master AP of any UE then
Set dkl = 0; ∀ k = 1, 2, . . . , K

Disable AP l
end

end
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The threshold λ2 is a empirical value that determines the minimum number of UEs
that non-master APs should serve. If the number of UEs that non-master APs serve is less
than λ2, the AP will be disabled and will not serve any UE. Therefore, the total power
consumption and the computational complexity of the power allocation will be reduced.

2.5 Energy Efficiency Maximization

As mentioned in Section 2.2, energy efficiency is a crucial aspect in the design
and operation of communication systems, particularly in the context of cell-free massive
MIMO networks. According to (Andrae and Edler, 2015), even though 22% annual energy
efficiency improvement is included, by 2030, energy consumption of 5G data networks is
expected to reach nearly the total energy consumption of all 2G/3G voice and 2G/3G/4G
data networks combined at 2020. This highlights the increasing demand for energy in
communication systems and the need to develop more energy-efficient technologies to
sustain the growth of data networks. Minimizing energy consumption in cell-free massive
MIMO systems can reduce the operating costs of the network, moreover, it also may reduce
the carbon footprint of the network which can help to mitigate the effects of climate change
and make the world wide communications more sustainable. The aim of this research is
maximizing energy efficiency of the cell free massive MIMO systems while satisfying the
users’ data rate requirements.

2.5.1 The Optimization Problem

In general, energy efficiency maximization in wireless communication systems can
be formulated as an optimization problem which takes into account different constraints
such as rate, maximum transmit power, fairness etc. The convexity of the optimization
problem depends on the specific formulation of the objective function and the constraints.

In the context of this thesis, objective of the optimization problem is maximizing
the energy efficiency by adjusting power allocation coefficients in a way that satisfies
certain constraints. The constraints are guaranteed that all UEs are connected to at least
one AP, the data rate should be above a certain threshold, and the total transmit power per
AP should be below the maximum available power. These constraints are critical to ensure
that the system operates reliably and does not exceed the power limits.

Non-convex optimization problems are generally more difficult to solve than convex
optimization problems since they can have multiple local optima, which can make it
challenging to find the global optimum. Solving this problem requires the use of advanced
optimization techniques, such as interior point methods, semi-definite programming, or
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alternating optimization. These are powerful optimization methods that can handle non-
convex optimization problems, but they can also be computationally intensive and require
expertise to implement.

The optimization problem in this thesis is non-convex and we formulate it as
follows:

(P) :



max
{ηkl}

EE

s.t. Rk ≥ Rth ∀k = 1, 2, ..., K

K∑
k=1

ηkl ≤ 1 ∀l = 1, 2, ..., L

dk > 0 ∀k = 1, 2, ..., K

(2.28)

Where, Rth is the minimum data rate required for each UE to provide a satisfactory
level of service to the user.

In this thesis, MATLAB’s fmincon solver is used with the interior point method
to solve the optimization problem. The interior point method is a type of optimization
algorithm used to solve non-convex optimization problems. The interior point method
approach is based on the idea of transforming the original optimization problem into a
sequence of convex optimization problems, each of which has a strictly feasible interior
point. It works by constructing a sequence of points that are strictly inside the feasible
region of the optimization problem, and gradually moving towards the optimal solution
while satisfying a set of constraints. The method can be computationally intensive, espe-
cially for large-scale problems and it may be sensitive to the choice of the initial point used
in the algorithm.

Power Constraints

Due to regulatory and physical limitations, transmit power of the access points
cannot be higher than a certain amount. In order to obtain real-world applicable solutions,
the optimization problem must obey these power constraints. The transmit power of AP l

is

Pl = Pt

K∑
k=1

ηkldkl||wkl||2 (2.29)

Since E{||wkl||2} = 1; ∀k = 1, .., K, the equation (2.29) can be further simplified as

Pl = Pt

K∑
k=1

ηkldkl (2.30)
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Since Pln ≤ Pt by definition, the power constraint can be expressed as

K∑
k=1

ηkl ≤ 1 (2.31)

Data Rate and Availability Constraints

In a wireless network, the goal of maximizing energy efficiency may cause trade-off
with maintaining high levels of data rates or availability. For example, reducing the number
of active APs in the network can save energy, but it may also reduce the coverage and
increase the congestion in the network, resulting in a lower data rate and coverage for the
end users. To ensure a reliable and stable wireless communication system, it is essential to
satisfy both data rate and availability constraints.

The availability constraint ensures that each UE in the network will always be
served by at least one AP. This guarantees that every UE has access to the network. The
UE-AP paring is managed by dkl values and if dk given in Equation (2.23) is greater than
zero, it means that there exists at least one AP that connected and serving to the UE k.

The data rate constraint, on the other hand, guarantees that the downlink data rate
of each UE will never fall below a predefined threshold Rth. This threshold represents
the minimum data rate required for each UE to provide a satisfactory level of service and
should be set based on the specific requirements and applications. By ensuring that the
downlink data rate remains above this threshold, the data rate constraint helps to guarantee
a high level of performance and a reliable user experience.

2.6 Performance Evaluations

In the simulation environment, we consider a downlink cell-free massive MIMO
system with L APs and K single-antenna UEs. Each AP has N antennas and uniformly
distributed over the 1500m× 1500m area and each UE is located at a random position in
the area. The required data rate is arbitrarily chosen to be 40Mbps which corresponds to 2
bps/Hz spectral efficiency for 20MHz system bandwidth. The disabling threshold λ2 in
Algorithm 2 is set to 2.

In (Zaher et al., 2021) and (3GPP, 2017), the maximum downlink transmit power
per AP is set to 30dBm. In power allocation optimization performance evaluations, equal
power allocation is used as ηkl = 0.25; ∀l = 1, 2, ..., L and ∀k = 1, 2, ..., K as a baseline
solution.
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By using Equation (2.14), noise power can be calculated as

Pn = ThermalNoise + 10log10(B) + NF (dBm)

= −174 + 10log10(20× 106) + 7 (dBm)

≈ −94dBm

(2.32)

where the thermal noise at the receiver under room temperature can be approximated as
-174 dBm/Hz (Papazafeiropoulos et al., 2020) and NF is the noise figure of the receiver
in dB. The noise figure of the receiver is the ratio of the noise power at the input of the
receiver to the noise power at the output of the receiver and taken as 7dB according to
(Demir et al., 2021).

The simulation parameters are summarized in Table 2.2 (Ngo et al., 2018), (Zuo
et al., 2017), (Ngo et al., 2017). The results are obtained through Monte Carlo simulations
over 2500 randomly generated setups unless otherwise stated.

Table 2.2. Simulation Parameters

Parameter Value
Area 1500m× 1500m

Number of antennas per AP, N 4
System bandwidth, B 20MHz

Noise figure, NF 7dB
Standard deviation of shadow fading , σsf 4dB

UE-AP pairing threshold, λ1 -10dB
AP disabling threshold, λ2 2

Height of APs 10m
Height of UEs 1.5m

Path loss exponent , α 3.67
Angular standard deviation of the UE, σθ 20◦

Power amplifier efficiency, αdl 0.4
Maximum transmit power per AP, Pt 1W

Internal power consumption per antenna, Pac 0.2W
Fixed power consumption at each backhaul, P0 0.825W

Traffic-dependent power consumption at each backhaul, Pbt 0.25 W/Gbps
Traffic-dependent power consumption at each AP, Ptc 0.1 W/Gbps

For performance comparison, we consider the case of equal power allocation for
all UEs as a base value. The simulations discussed in this paper were implemented on an
Apple M1 Pro 3.2GHz 10-core CPU with 16 GB RAM and computational complexity of
the optimization problem is measured using MATLAB’s time command in terms of time
spent for the optimization process.

The simulations discussed in this paper were implemented on an Apple M1 Pro
3.2GHz 10-core CPU with 16 GB RAM.
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Spectral Efficiency

To investigate the effect of the number of access points and user equipments on
spectral efficiency the simulations included both fixed number of UEs and varying number
of APs, as well as fixed number of APs and varying number of UEs under the assumption
of each UE being served by all APs are performed.

The first set of simulations are involved a fixed number of UEs (K = 7) and
different numbers of APs as L = 3, 5, 7, 9, 11, 13. The results are given in Figure 2.2,
which represents the cumulative density function(CDF) of the resulting spectral effi-
ciency. The average spectral efficiency values for L = 3, 5, 7, 9, 11, 13 are obtained as
1.61, 3.34, 4.76, 5.71, 6.64, 7.32 bps/Hz respectively. It can be clearly seen from the Fig-
ure 2.2 and the given average spectral efficiency values that, as the number of AP is
increased, the spectral efficiency is also increased. Since each UE is being served by more
APs, it results in a higher level of spatial diversity, an improved precoding capability.

Figure 2.2. CDF of spectral efficiency for different number of APs, for K=7 and N = 4.

The second set of simulations are involved a fixed number of APs (L = 9) with
different number of UEs K = 3, 5, 7, 9, 11, 13 and the average spectral efficiencies are
obtained as 7.73, 6.88, 6.29, 5.81, 5.38, 5.02 bps/Hz respectively. The results are given
in Figure 2.3 shows that, the spectral efficiency is decreased as the number of UEs is
increased. This decrease in spectral efficiency is due to the increased interference and the
reduced transmit power per UE as a result of adding more UEs to the network.

The results of the simulations on spectral efficiency in a cell-free massive MIMO
system shows that increasing the number of APs led to an improvement in spectral
efficiency, while increasing the number of UEs led to a decrease in spectral efficiency.
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Figure 2.3. CDF of spectral efficiency for different number of UEs, for L=9 and N = 4.

Energy Efficiency

As in previous section, to investigate the effect of the changes in the number of
access points and user equipments on energy efficiency, the same set of simulations are
conducted with both fixed numbers of UEs and varying numbers of APs, as well as fixed
numbers of APs and varying numbers of UEs under the assumption of each UE being
served by all APs.

Figure 2.4. CDF of energy efficiency for different number of UEs, for L=9 and N=4.

The first set of simulations is involved a fixed number of APs (L = 9) and different
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numbers of UEs (K = 3, 5, 7, 9, 11, 13). The results are given in Figure 2.4 as CDF of the
energy efficiency. The corresponding average energy efficiency values are calculated as
12.0, 17.5, 22.0, 25.8, 28.9, 31.6 Mb/J respectively.

Figure 2.5. CDF of energy efficiency for different number of APs, for K=7 and N=4.

The second set of simulations is involved a fixed number of UEs (K = 7) and
different numbers of APs (L = 3, 5, 7, 9, 11, 13). The results are given in Figure 2.5
as CDF of the energy efficiency. The corresponding average energy efficiency values
are calculated as 17.8, 21.8, 21.8, 20.1, 18.9, 17.6 Mb/J respectively. Unlike the spectral
efficiency results, the average energy efficiency values are not monotonically increasing or
decreasing by the number of APs.

The reason is that, both the fixed and load dependent power consumptions are
increased approximately by 1

L
when an additional AP is joined to the system with L active

APs. However, as mentioned in Section 2.2, the data rate does not increase at the same
rate.

To examine this behavior, the changes on spectral efficiency, power consumption
and energy efficiency relative to previous case for fixed number of UEs (K = 7) and
different numbers of APs (L = 3, 5, 7, 9, 11, 13) are calculated. Increasing L from 3 to 5 is
increased the spectral efficiency by 106.9% while the power consumption is increased by
70.7%. This results in an increase in energy efficiency by 21.8%. Similarly, increasing L
from 5 to 7 is increased the spectral efficiency by 42.3% and power consumption by 42.3%
resulting negligible increase on energy efficiency. Contrarily, increasing L from 7 to 9 is
increased the spectral efficiency by 20.1% while power consumption is increased by 30.3%
which results in a decrease in energy efficiency by 7.6%.
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Precoding Performance

In this section, the energy efficiency of each precoding scheme is inspected for
different scenarios as shown in Figure 2.6. First of all, the simulation results for different
AP and UE ratios are evaluated with equal power allocation and allocating all APs to all
UEs. After that, we evaluate the performance of the power allocation optimization process
in terms of energy efficiency and computational complexity for three different precoding
schemes including MRT, ZF and RZF. In order to evaluate the performance of the power
allocation optimization, the simulations are also performed for three different user-centric
clustering scenarios such as Algorithm 1, Algorithm 2 and the baseline scheme where all
UEs are served by all APs.

Figure 2.6. Precoding performance comparison for different number of UEs, for L=9 and
N=4.

As seen in the Figure 2.6, ZF precoding scheme provides the best performance in
terms of energy efficiency. Then, to further investigate the performance of ZF precoding
scheme, we provide results on user-centric clustering and power allocation as given in
Figure 2.7. It can clearly be seen that the energy efficiency of the system increases with
both user-centric clustering and power allocation optimization. The user-centric clustering
has more significant effect on energy efficiency than power allocation optimization. The
reason is that the user-centric clustering reduces the number of active APs and therefore
reduces the total power consumption. However, since the transmit power corresponds to a
small portion of the total power consumption, power allocation optimization does not have
significant impact on total power consumption. Also, since the ZF precoding eliminates the
interference, power allocation optimization has limited effect on SINR and consequently
on the energy efficiency.
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Figure 2.7. Energy efficiency of ZF precoding for equal and optimized power allocations,
for K=4, L=9, N=4.

For the case of no user-centric clustering, the power allocation optimization on
ZF precoding is increased the energy efficiency of the system by 32.54% relative to the
equal power allocation case. However, for the user-centric clustering, the energy efficiency
of the system increased by 8.26% and 9.07% by using Algorithm 1 and Algorithm 2,
respectively. This infers that, the proposed user-centric algorithm is more effective than the
Algorithm 1 in terms of energy efficiency improvement by power allocation optimization.
The energy efficiency improvement of the system with joint user-centric clustering and
power allocation optimization is 84.06% and 138.52% for Algorithm 1 and Algorithm 2,
respectively. One of the key outcomes of this result is that, the proposed UCC algorithm
even without power allocation optimization achieves higher energy efficiency performance
than the Algorithm 1 with power allocation optimization. This is because, the proposed
user-centric clustering algorithm is designed to minimize the active APs and reduce the
power consumption while compromising some robustness to the different setup topologies.

The Figure 2.8 represents the effect of data rate constraint on the power allocation
optimization performance for the systems with no user-centric clustering, Algorithm 1 and
Algorithm 2. The data rate constraint is defined as the minimum required data rate for each
UE. It can be seen from the Figure 2.8 that as the minimum required data rate increases,
the energy efficiency gain from the power allocation optimization slightly reduces and
the most significant reduction is observed with the Algorithm 2. The reason is that, the
proposed algorithm has lowest number of connected APs per UE and therefore, there are
lower amount of optimizable parameters to satisfy data rate requirements.

To further investigate the performance of RZF precoding scheme, we provide
results on user-centric clustering and power allocation as given in Figure 2.9. As seen in
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Figure 2.8. Effect of data rate constraints on the performance using ZF precoding, for K=4,
L=9, N=4.

the Figure 2.9, the user-centric clustering and power allocation with RZF precoding has
higher energy efficiency gains compared to the ZF precoding. The gap between user-centric
clustering and power allocation gains become narrower with RZF precoding. Also, the
gap between equal power allocation and power allocation optimization become wider. The
reason is that, RZF precoding does not eliminate the interference completely and therefore,
power allocation optimization has more impact on the interference and consequently on
the energy efficiency.

Figure 2.9. Energy efficiency of RZF precoding for equal and optimized power allocations,
for K=4, L=9, N=4.
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For the case of no user-centric clustering, power allocation optimization on RZF
precoding increased the energy efficiency of the system by 79.89% relative to the equal
power allocation case. However, for the user-centric clustering, the energy efficiency of
the system increased by 22.63% and 24.27% for the setups by using Algorithm 1 and
Algorithm 2, respectively. The energy efficiency improvement of the system with joint
user-centric clustering and power allocation optimization is 159.01% and 237.33% for
Algorithm 1 and Algorithm 2, respectively.

Figure 2.10. Effect of data rate constraints on the performance using RZF precoding, for
K=4, L=9, N=4.

As seen in the Figure 2.10 the effect of data rate constraint on the energy efficiency
performance of the system with RZF precoding is higher than the ZF precoding case.

As the last of precoding performance evaluations, to further investigate the perfor-
mance of MRT precoding scheme, we provide results on user-centric clustering and power
allocation as given in Figure 2.11. As seen in the Figure 2.11, the user-centric clustering
and power allocation with MRT precoding has higher energy efficiency gains compared to
the ZF and RZF precoding schemes. The MRT precoding results narrowest gap between
user-centric clustering and power allocation gains. Also, the gap between equal power
allocation and power allocation optimization is wider than the ZF and RZF precoding. The
reason is that, MRT precoding does not eliminate the interference and therefore, power
allocation optimization has more impact on the interference than ZF and RZF precoding
schemes.

For the case of no user-centric clustering, power allocation optimization on MRT
precoding increased the energy efficiency of the system by 98.58% relative to the equal
power allocation case. For the user-centric clustering, the energy efficiency of the system
increased by 30.38% and 32.97% for the setups with Algorithm 1 and Algorithm 2,

24



Figure 2.11. Energy efficiency of MRT precoding for equal and optimized power
allocations, for K=4, L=9, N=4.

respectively. The energy efficiency improvement of the system with joint user-centric
clustering and power allocation optimization is 187.23% and 273.86% for Algorithm 1
and Algorithm 2, respectively.

Figure 2.12. Effect of data rate constraints on the performance using MRT precoding, for
K=4, L=9, N=4.

As seen in the Figure 2.12 the effect of data rate constraint on the energy efficiency
performance of the system with MRT precoding is higher than the ZF and RZF precoding
cases.
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2.6.1 User-centric Clustering Performance Results

Monte Carlo simulations are performed to evaluate the impact of different pairing
thresholds on system performance. The first set of simulations with equal power allocation
carried out on 100,000 randomly generated setups using Algorithm 1 to provide a compre-
hensive assessment of the network’s behavior under different threshold values. The results
of the simulations are presented in Table 2.3 in terms of the percentage change relative to
the baseline case where all UEs are served by all APs. The results indicated that, as the
threshold value increases, the average number of connected UEs per AP decreases. This
reduction in the number of connected APs leads to a decrease in the overall data transfer on
the backhaul links, which reduces the load on the network and increases the probability of
having non-serving APs and their corresponding backhaul links to be put into sleep mode.
This, in turn, helps in saving power. However, serving UEs with less APs also reduces
the spatial diversity which leads to a decrease in spectral efficiency. Therefore, there is a
need to strike a balance between power consumption and spectral efficiency. To achieve
this balance, the threshold must be set at an appropriate value that maximizes spectral
efficiency while minimizing power consumption.

Table 2.3. Threshold effects on user-centric clustering relative to non-clustered case

Threshold λ1 EE Gain Power Cons. Reduction SE Loss Active AP Reduction
-5dB 104.11% 70.96% 44.61% 48.92%
-10dB 70.42% 59.94% 37.42% 32.64%
-15dB 38.86% 44.86% 28.83% 14.76%
-20dB 18.74% 28.97% 19.22% 3.51%
-25dB 9.47% 16.61% 11.03% 0.42%
-30dB 5.12% 8.87% 5.81% 0.03%
-35dB 2.87% 4.62% 2.99% 0.00%
-40dB 1.61% 2.40% 1.54% 0.00%

No Clustering Baseline Baseline Baseline Baseline

The results in Table 2.3 show that the threshold value has a significant impact on
the performance of the network. For λ1 ≤ −15dB, user-centric clustering becomes less
efficient as it tends to serve all UEs with all APs, resulting increased power consumption
without significant contribution to spectral efficiency. On the other hand, for λ1 ≥ −15dB,
only few APs cooperate, leading to reduced spatial diversity.

The performance of the proposed user-centric clustering algorithm under equal
power allocation is evaluated in terms of energy efficiency, power consumption, spectral
efficiency, and the number of active APs for different threshold λ1 values and constant λ2

that is set to 2. Simulation results are given in Table 2.4 compared to the Algorithm 1.
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Table 2.4. Performance of the proposed algorithm relative to Algorithm 1

Threshold λ1 EE Gain Power Cons. Reduction SE Loss Active AP Reduction
-5dB 14.15% 22.40% 7.92% 24.13%
-10dB 28.27% 30.29% 9.62% 34.09%
-15dB 31.35% 24.61% 6.62% 30.04%
-20dB 17.73% 10.98% 2.47% 15.21%
-25dB 5.33% 2.65% 0.53% 4.17%
-30dB 1.11% 0.44% 0.08% 0.75%
-35dB 0.18% 0.06% 0.01% 0.11%
-40dB 0.03% 0.01% 0.00% 0.01%

The results in Table 2.4 shows that, by the proposed algorithm, spectral efficiency,
number of active APs and total power consumption is further reduced compared to the
Algorithm 1. Consequently, energy efficiency is also increased.

The energy efficiency improvement of the proposed algorithm is higher for the
threshold values above -20dB and the highest energy efficiency improvement is obtained
by -15dB threshold. However, highest active AP reduction is achieved by -10dB threshold.
Threshold values higher than -10dB results lower UE-AP connections, which reduces
the number of active APs that serves less than λ2 UEs. Therefore, active AP reduction
performance of the proposed algorithm relative to Algorithm 1 is reduced. Threshold
values lower than -10dB results higher UE-AP connections, which increases the number of
active APs that serves more than λ2 UEs. Therefore, active AP reduction performance of
the proposed algorithm is reduced.

Figure 2.13. Energy efficiency comparison for different user-centric clustering algorithms
and precoding schemes, for L=9, K=4, N=4.
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The performance results for both Algorithm 1 and Algorithm 2 under different
precoding schemes along with the no UE-AP pairing case are shown in Figure 2.13. The
results indicates that the proposed algorithm outperforms the Algorithm 1 in terms of
energy efficiency for all precoding schemes and ZF precoding has the best overall energy
efficiency results among the three precoding schemes.
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CHAPTER 3

MACHINE LEARNING BASED POWER ALLOCATION
OPTIMIZATION

Machine learning is a rapidly growing technology that allows the systems to
learn from provided data and make predictions. Machine learning has vast range of
applications and it revolutionized various fields from health to military and communication
to logistics. The fundamental concept behind the machine learning is that deep feedforward
neural networks are proved to be universal function approximators, which means they
can approximate functions as relations between input and output data without being
explicitly programmed (Hornik et al., 1989). The main motivation of this chapter is to take
advantage of both the prediction capability and low computational complexity of machine
learning while performing user-centric clustering and finding the optimal power allocation
coefficients for a centralized cell-free massive MIMO system.

The chapter begins with explaining the concept and the key components of deep
neural networks. Then, an application of DNN to perform user-centric clustering and power
allocation in cell-free massive MIMO systems is proposed. At the end, the performance
evaluations of the proposed DNN based user-centric clustering and power allocation are
provided through simulations.

3.1 Deep Neural Networks

Neural networks are a class of machine learning algorithms that are inspired by the
human brain and they are well-known for the capability of learning complex patterns in
data which makes them suitable for a wide range of applications. The neural networks that
consists of multiple hidden layers are classified as deep neural networks. Each layer of a
neural network consists of multiple neurons, which are the basic computational units of the
neural networks. The representation of a neuron is shown in Figure 3.1. Each neuron has
at least one connection to the neurons of the previous layer with a weight that determines
the strength of the connection. The output of each neuron is computed by applying the
activation function of the layer to the weighted sum of the inputs and the bias. The resulting
output of each layer is then used as the input of the next layer.

Each layer in the neural network has its own activation function which can be
determined according to the learning targets and data type. The first layer of the neural
network is called as input layer, as it receives raw input data and the last layer is called
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Figure 3.1. Visualization of a neuron.

the output layer, as it gives the resulting prediction. The layers in between are called
hidden layers, as their outputs are not directly visible. The number of hidden layers and
the number of neurons in each layer are hyperparameters that can be tuned to improve
the performance of the model. The representation of a deep neural network is shown in
Figure 3.2.

Figure 3.2. Visualization of a Deep Neural Network.

There are several types of deep neural networks, each with its own field of applica-
tion due to their strengths and weaknesses. The most common types are:

1. Feedforward Neural Networks: These are the simplest type of DNN, where the
data flows in one direction through the layers, without any loops or feedback connections.
If outputs of each neuron in the previous layer is connected to the input of each neuron
of the next layer, it is called fully connected neural network. They are commonly used
for classification and regression tasks, where the goal is to predict the class or value of an
input based on its features.

2. Convolutional Neural Networks: These are designed specifically for image
recognition tasks, where the goal is to classify images based on their content. They use
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a special type of layer called a convolutional layer. This layer uses a small filter and
computes the dot product between the filter and the input pixels by sliding the filter over
the input image. This process results a feature map that captures the presence of certain
patterns in the image.

3. Recurrent Neural Networks: These are designed for sequential data, where the
order of the inputs matters. They have a feedback connection that allows them to use the
information from previous inputs while making the predictions about the current input.
These systems are well-suited for the tasks with a sequence like speech recognition and
natural language processing.

3.1.1 Batch Size & Epoch Number

The size of each batch is a hyperparameter that is set before the beginning of
training process. It determines how many samples from the dataset will be used in each
iteration of training process. The resulting loss values of each sample in the batch is
averaged and the backpropagation is performed once for each batch with the resulting
average. A larger batch size can speed up the training process, as more samples are
processed in parallel, but it requires more memory and may result slower convergence
since it averages many samples and update weights less often. On the other hand, a smaller
batch size may result in slower training but can lead to better generalization since it updates
the parameters more frequently with smaller and more diverse samples.

Epoch number is another hyperparameter that determines the number of times the
DNN repeats the entire training dataset. Each epoch consists of one pass through the entire
dataset. Increasing the number of epochs can improve the accuracy of the DNN, but it
can also lead to overfitting. Overfitting is a common problem in machine learning where
the trained model memorize the training data instead of learning the underlying mapping
and consequently have poor generalization to unseen data. Easiest way to determine
overfitting is to check training and validation accuracy. If the model has high training
accuracy but low validation accuracy, it means that the model is memorizing the training
data rather than learning the underlying patterns that generalize to new data. In this thesis,
batch randomization is used so that in each epoch, the batches will have different training
samples. Therefore, averaging on error will performed over different set of samples and
may reduce the overfitting probability.

In practice, the optimal batch size and epoch number depends on the dataset features
and architecture of the neural network, and is often chosen by trial and error.
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3.1.2 Learning Rate

The learning rate is a hyperparameter that controls the step size of the DNN while
updating the weights in response to the loss during training. The effect of the learning rate
is given in Figure 3.3.

Figure 3.3. Effect of the learning rate.

A high learning rate may cause the DNN to overshoot the optimal weights and
bounce around, while a low learning rate may cause the DNN to take a long time to converge
to the optimal weights. In most DNN applications, variable learning rate technique is used
where the learning rate is set to a higher value at the beginning of training and reduced
gradually over epochs. As in batch size and epoch number, the optimal learning rate
depends on the specific DNN architecture and the dataset being used, and is typically
determined through trial and error.

3.1.3 Training Process

The main feature of deep neural networks is their ability to learn complex patterns
from data. The training process of a DNN can be simply explained as minimizing the
difference between the predicted output and the actual output given in the training data by
iteratively adjusting the parameters of the model.

The training process starts with randomly initializing the weights and biases of
the neural network. The input data is then passed through the network, and the predicted
output is compared to the actual output. The difference between the predicted output and
the actual output is measured by a loss function, which quantifies the error of the model.
Then, the weights and biases of the neural network is adjusted according to the resulting
loss.
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Forward Pass

The forward pass is also referred as the forward-propagation is the process of
calculating the output of the neural network for given input data. The input data is fed
through the input layer and the output of the layer is calculated by applying the activation
function the layer to the weighted sum of the inputs. The output of layer is then used as
the input of the next layer. This process is applied layer by layer until the output layer is
reached. Output of each neuron can be represented as

olj = f

(
J∑

j=0

wl
i,j o

l−1
j + blj

)
(3.1)

where f is the activation function, olj is the output of the jth neuron of lth layer, wl
i,j is the

weight between ith neuron of previous layer and jth neuron of lth layer and blj is the bias
of the jth neuron of lth layer.

Backpropagation

The backpropagation is an iterative process that enables the learning of deep neural
networks during training phase. The process starts from the last layer, computes the
gradients of the network parameters such as weights and biases with respect to a given loss
function and propagates the gradients backward through the neural network. The gradients
are then used by an gradient-based optimizer to update the parameters of the network in
order to minimize the loss function. This process is repeated at the end of each batch by
using the gradients of the average loss with respect to each parameter.

3.2 Loss Functions

One of the key component of training a deep neural network is defining a loss
function, which measures the performance of the neural network on a given task. The
choice of loss function depends on the specific task and the nature of the data. The loss
function is used to calculate the error between the predicted power allocation coefficients
and the actual power allocation coefficients.

In literature, there are many different loss functions that can be used in deep
neural networks. However, not all loss functions are appropriate for all types of problems.
Different problems may require different loss functions to accurately capture the nature of
the data and optimize the model’s performance. For example, some loss functions may be
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more suitable for classification problems where the goal is to assign input data to discrete
categories, while others may be better suited for regression problems where the goal is
to predict continuous values. In this section, loss functions that are commonly used for
regression problems will be presented.

Mean Squared Error (MSE)

Mean squared error (MSE) is a commonly used loss function for regression prob-
lems. It is calculated by taking the average of the squared difference between the predicted
value and the actual value for each predicted output. The MSE loss function is defined as
follows:

MSE =
1

n

n∑
i=1

(ôi − oi)
2 (3.2)

where n is the number of predicted values at output, oi is the actual value and ôi is the
predicted value.

The MSE loss function is convex and continuously differentiable function, which
makes it easy to optimize using gradient-based methods such as gradient descent. However,
MSE is highly sensitive to outliers, if predicted value is significantly different from the
target value, the squared loss will increase significantly and can lead to overfitting if the
model is too complex. Throughout this thesis, MSE loss function is used to train the neural
network since the dataset does not contain any outliers and MSE is well-suited to use with
gradient-based methods.

Mean Absolute Error (MAE)

Mean absolute error (MAE) is another commonly used loss function for regression
problems. It is calculated by taking the average of the absolute difference between the
predicted value and the actual value for each predicted output. The MAE loss function is
defined as follows:

MAE =
1

n

n∑
i=1

|oi − ôi| (3.3)

The MAE loss function is used as an alternative to MSE when the dataset contains
large number of outliers. It is less sensitive to outliers than MSE since it does not square
the difference between the predicted value and the actual value. However, MAE is not
differentiable at zero and does not perform properly as the average distance approaches
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to zero. Therefore, it becomes more difficult to optimize using gradient-based methods.
Also the gradient of MAE stay same throughout the losses, this means the gradient will
be large even for small loss values and may result in poor learning performance due to
overshooting. To fix this problem, variable learning rate can be used.

Huber Loss

Huber loss is a loss function that combines MSE and MAE. It is less sensitive to
outliers than MSE and less sensitive to small errors than MAE. Huber loss is defined as
follows:

HL =


1
n

n∑
i=1

(oi − ôi)
2 for |oi − ôi| ≤ δ

1
n

n∑
i=1

δ(|oi − ôi| − 1
2
δ) otherwise

(3.4)

where δ is hyperparameter that controls the threshold at which the loss function changes
from quadratic to linear. Huber loss is quadratic for small values of (oi − ôi) and linear for
large values of (oi − ôi). The hyperparameter δ is usually set to 1, which means that the
loss function is quadratic for |oi − ôi| ≤ 1 and linear for |oi − ôi| > 1.

Root Mean Squared Error (RMSE)

RMSE is a commonly used loss function for regression problems. It is very similar
to MSE loss function and is calculated by taking the square root of the average of the
squared difference between the predicted value and the actual value for each predicted
output. Like MSE, the RMSE loss function is continuously differentiable and convex,
which makes it easy to optimize using gradient-based methods. The RMSE loss function
is defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(oi − ôi)2 (3.5)

The main difference between MSE and RMSE is square root term. Taking the
square root ensure that the loss is in the same unit as the data, which makes it easier to
interpret. However, square root term in RMSE reduces the impact of regular prediction
errors relative to outliers on loss and makes it less robust to outliers than MSE.
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Log-Cosh Loss

Log-cosh loss is another loss function that is commonly used for regression prob-
lems. It is calculated by taking the average of the logarithm of the hyperbolic cosine of the
difference between the predicted value and the actual value for each predicted output. The
log-cosh loss function is defined as follows:

LCL =
1

n

n∑
i=1

log(cosh(ôi − oi)) (3.6)

Even though it is still sensitive to outliers, the log-cosh loss function is more
robust than MSE and MAE. Furthermore, unlike the Huber loss function, log-cosh is also
continuously differentiable.

3.3 Activation Functions

Activation functions are one of the most critical components of a neural network
as they introduce non-linearity into the model that allows the neural network to learn
complex patterns and relationships in the data. In addition to introducing non-linearity,
activation functions also help to smooth the gradient during backpropagation. This is
particularly important in deep neural networks with many layers, where the gradient can
quickly become unstable and cause the model to fail to converge.

Each activation function has its own set of advantages and disadvantages which
may impact the performance of the neural network significantly. Therefore, it is important
to choose the right activation function for the specific problem at hand. In this section, we
will discuss some of the most commonly used activation functions and their characteristics
for our problem.

Linear Activation Function

The linear activation function is one of the simplest activation functions, defined as

f(x) = x (3.7)

and the derivative of the linear activation function is

f ′(x) = 1 (3.8)
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It is a linear function that does not introduce any non-linearity into the model, and its
output is proportional to its input. The linear activation function is primarily used in output
layers of regression problems, where the goal is to predict a continuous value. In these
problems, the output of the neural network needs to be a linear combination of the input
features, so a linear activation function is suitable for this task. In most cases, the linear
activation function is not used in deep neural networks except the output layer because it
does not allow the model to learn complex patterns and relationships in the data.

Sigmoid Activation Function

The sigmoid activation function is one of the most commonly used activation
function in neural networks. It is a non-linear function that maps any input value to a value
between 0 and 1, and is defined as follows:

f(x) =
1

1 + e−x
(3.9)

The derivative of the sigmoid function is

f ′(x) = f(x)(1− f(x)) (3.10)

where x is the input to the neuron. The output of the sigmoid function is always in the
range of [0, 1]. This makes the sigmoid function well-suited for applications where the
predicted value represents a probability or a binary decision. Therefore, it is often used in
the output layer of binary or multi-class classification problems where the output needs
to be a probability value for each class. However, the sigmoid function has two major
drawbacks. First one is that its output saturates at either 0 or 1 for large positive or negative
input values, which may cause the gradients during training to become very small, leading
to slow convergence or vanishing gradients. This phenomenon is known as the vanishing
gradient problem. Second issue with the sigmoid function is that it is not zero-centered,
which can lead to slower convergence during training. To address these issues, other
activation functions such as the Rectified Linear Unit (ReLU) and its variants have been
invented and widely used in practice.
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ReLU Activation Function

The Rectified Linear Unit (ReLU) function is one of the most popular activation
functions used in deep neural networks today and defined as

f(x) = max(0, x) (3.11)

and the derivative of the ReLU function is

f ′(x) =

1 if x > 0

0 if x ≤ 0
(3.12)

where x is the input to the neuron.
As seen in Equation (3.11), the ReLU function is a piecewise linear function that

gives the same value for the positive inputs, and outputs zero if it is negative. Since it is a
non-linear function, it allows the neural network to learn complex patterns and relationships
between the input and output. ReLU is computationally efficient and helps to alleviate the
vanishing gradient problem. However, it can suffer from the problem of "dead neurons",
where a neuron has large negative bias and therefore, always outputs zero. This constant
zero output leads to a zero gradient and no learning. This problem can be mitigated by
using variants of the ReLU function, such as the leaky ReLU or the parametric ReLU,
which allow some output for negative input values.

Leaky ReLU Activation Function

The Leaky ReLU function is a modified version of the ReLU function that avoids
the problem of dead neurons. It introduces a small positive slope for negative input values,
allowing neurons to activate even when the input is negative and defined as follows:

f(x) = max(αx, x) (3.13)

and the derivative of the Leaky ReLU function is

f ′(x) =

1 if x > 0

α if x ≤ 0
(3.14)

where alpha is a hyperparameter that controls the slope of the negative part of the function.
The value of α is typically set to a small value such as 0.01.
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Tanh Activation Function

The Tanh function is a non-linear function that maps the input values to output
values between -1 and 1. The Tanh function is defined as:

f(x) =
ex − e−x

ex + e−x
(3.15)

and the derivative of the Tanh function is

f ′(x) = 1− f 2(x) (3.16)

Unlike the sigmoid function, the Tanh function is symmetric around the origin, which
means that it can output both positive and negative values, making it suitable for tasks such
as classification where the output may be either positive or negative. Furthermore, the tanh
function also has a steeper gradient compared to the sigmoid function, which can help the
neural network learn more quickly during the initial stages of training. However, like the
sigmoid function, it is also susceptible to the vanishing gradient problem.

ELU Activation Function

The Exponential Linear Unit (ELU) is an activation function that was introduced as
an alternative to the Rectified Linear Unit (ReLU) activation function. The ELU function
is similar to the ReLU function in that it is also piecewise linear, with a linear slope for
positive values of x. However, it differs from ReLU in that it has a smooth and non-zero
slope for negative values of x, which can help alleviate the dead neurons problem. The
ELU function is defined as follows:

f(x) =

x, if x > 0

α(ex − 1), if x ≤ 0
(3.17)

and the derivative of the ELU function is

f ′(x) =

1, if x > 0

f(x) + α, if x ≤ 0
(3.18)

where α is a hyperparameter that controls the slope of the negative part of the function. The
ELU function has been shown to improve the performance of neural networks on a variety
of tasks, including image classification and speech recognition. It is also computationally
efficient, with similar or better performance compared to other activation functions such
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as ReLU and its variants. Overall, the ELU activation function is a promising alternative
to the widely used ReLU function, providing a smooth and non-zero slope for negative
inputs and helping to alleviate the "dying ReLU" problem during training.

Softmax Activation Function

The Softmax activation function is a commonly used activation function in neural
networks, especially for classification tasks with multiple classes. It is a generalization of
the sigmoid function and maps the input values to a probability distribution over the output
classes that sums to one.Each output represents the probability of the input belonging to a
particular class. The Softmax function is defined as:

f(xi) =
exi∑k
j=1 e

xj

, for all j = 1, 2, . . . , k (3.19)

and the derivative of the Softmax function is

f ′(xi) = f(xi)(1− f(xi)), for all j = 1, 2, . . . , k (3.20)

where k is the total number of classes, and xi is the input value corresponding to the ith

class.
The main disadvantage of the Softmax function is that it can be sensitive to outliers

in the input values, which can cause numerical stability issues during computation. To
address this, techniques such as scaling or shifting the input values are often used.

Swish Activation Function

The Swish function is a relatively new activation function in literature that has
shown promising results in deep neural networks. It was introduced by researchers at
Google in 2017 and has been shown to improve the performance of neural networks on
certain tasks (Ramachandran et al., 2017). The Swish function is defined as:

f(x) = x sigmoid(βx) =
x

1 + e−βx
(3.21)

and the derivative of the Swish function is

f ′(x) = βf(x) +
1

1 + e−βx
(1− βf(x)) (3.22)
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where beta is a scalar parameter that controls the shape of the function. When beta = 1, the
Swish function reduces to a smoothed version of the ReLU function.

The Swish function has been shown to perform well on a variety of tasks, including
image classification, language modeling, and speech recognition. It has been suggested
that the Swish function is particularly effective when used in the intermediate layers of a
neural network, where it can help to introduce non-linearity and improve the expressive
power of the network.

One potential disadvantage of the Swish function is that it can be computationally
expensive compared to other activation functions such as the ReLU. However, recent
advances in hardware and software optimizations have made it possible to use the Swish
function in practical applications.

The activation functions in deep neural networks, including the sigmoid, tanh,
ReLU, Leaky ReLU, ELU and Swish function and their derivatives are shown in Figure 3.4
where the hyperparameters are chosen to obtain distinguishable lines on graph.

(a) Activation function graph. (b) Derivative of activation functions graph.

Figure 3.4. Activation Functions.

Each of these functions has its own advantages and disadvantages, and there is
no single activation function that is best for all tasks. The choice of activation function
depends on the task and the type of neural network being used. The reason of the mentioned
vanishing gradient problem can be seen in Figure 3.4b where the derivative of the sigmoid
function is close to zero for most of the input values, which can cause the gradient to
vanish during backpropagation.
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3.4 Optimizers

Optimizers play a crucial role in training deep neural networks. The goal of an
optimizer is to minimize the loss function of the DNN by updating the parameters of the
network. The optimization problem is typically non-convex, high-dimensional, and noisy,
making it challenging to find the global minimum of the loss function.

There are several optimization algorithms used in DNNs, and the choice of opti-
mizer can have a significant impact on the training process and the performance of the
model. In this section, we will discuss some of the most commonly used optimizers in
DNNs.

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a widely used optimization algorithm in
DNNs. It updates the weights of the model based on the gradient of the loss function with
respect to the weights. The update rule involves multiplying the gradient by a learning rate
and subtracting it from the current weight. The learning rate determines the step size of
the update and is typically set to a small value. SGD is a simple algorithm that is easy
to implement and work well for small datasets. However, it can be slow to converge and
may get stuck in local minima for larger datasets or more complex models and it requires
careful tuning of the learning rate to prevent oscillations or divergence.

Adagrad

Adagrad is classified as adaptive optimization algorithm since it adjusts the learning
rate based on the historical gradient information. It accumulates the squared gradient over
time and scales the learning rate accordingly. Adagrad is well-suited for sparse data and
can handle different scales of gradients. However, Adagrad can be sensitive to the initial
learning rate and can suffer from diminishing learning rates over time, which can slow
down the convergence of the model.

Adadelta

Adadelta is a variant of Adagrad that seeks to reduce the aggressive and monoton-
ically decreasing learning rate of Adagrad. It uses a sliding window to keep a running
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average of the gradients and updates the learning rate based on this average. Adadelta does
not require an initial learning rate and can handle different scales of gradients.

RMSprop

RMSprop is another adaptive optimization algorithm that scales the learning rate by
a running average of the squared gradient. It is similar to Adagrad but uses an exponentially
decaying average of the gradient squared instead of accumulating all past squared gradients.
RMSprop is less sensitive to the initial learning rate than Adagrad and can be more robust
to noisy gradients. However, as in SGD, it can also suffer from oscillations or divergence
if the learning rate is not properly tuned.

Adam

Adam is one of the most popular optimization algorithms that computes adaptive
learning rates for each parameter. It combines the benefits of both AdaGrad and RMSProp
by adapting the learning rate based on the first and second moments of the gradients.
Furthermore, it maintains a moving average of the gradient and the squared gradient, which
are then used to compute the adaptive learning rates. Adam is an efficient and robust
optimization algorithm that can handle noisy or sparse gradients. It is also computationally
efficient and has been shown to converge faster than other optimization algorithms on
many datasets. However, sometimes it may overfit the training data, especially for small
datasets and it requires more memory than SGD.

The Adam algorithm is given in Algorithm 3 (Kingma and Ba, 2014) where the gt

is the gradient of the loss function with respect to the parameters θ at time step t, ϵ is a
small constant to prevent division by zero, and λ is the learning rate. The first moment
vector mt is an exponentially decaying average of the gradients, and the second moment
vector vt is an exponentially decaying average of the squared gradients. The first and
second moment vectors are then used to compute the adaptive learning rates m̂t and v̂t,
which are then used to update the parameters θt at time step t.

In this thesis, we used Adam optimizer to train the neural network since it combines
the benefits of both AdaGrad and RMSProp and has been shown to perform well on a
variety of tasks. Adam optimizer is used with default parameters, which are β1 = 0.9,
β2 = 0.999 and ϵ = 10−8.
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Algorithm 3: Adam Optimizer (Kingma and Ba, 2014)
Input: Learning rate λ, decay rate for the first moment estimates β1, decay rate for

the second moment estimates β2

Initialization: Set first moment vector m0 = 0, second moment vector v0 = 0,
time step t = 0

foreach batch do
t← t+ 1
Compute gradients gt

mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g
2
t

m̂t ← m
1−βt

1

v̂t ← v
1−βt

2

θt ← θ − λ m̂√
v̂+ϵ

end

3.5 Data Scaling

Data scaling is a data transformation technique that is often used to improve the
performance of machine learning algorithms by fitting the data in a consistent scale without
distorting the differences in the range of values. Scaling can help to stabilize the training
process by preventing the gradients from becoming too large or too small. This can help to
prevent the model from overfitting or underfitting the training data. Additionally, scaling
also helps to ensure that all of the samples are on a similar scale and making the model
more robust to noise and outliers in the data. In this section, we will discuss different
normalization techniques and their effects on the performance of DNNs.

Mean Normalization

First and simplest scaling technique given in Equation (3.23) is called mean nor-
malization by subtracting the mean of the data from each data point.

β1 = β − µ (3.23)

where µ is the mean of β. Since all the data points are shifted by the same amount, the
mean of the normalized data is zero and the variance of the normalized data is equal to the
variance of the original data.
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Min-Max Normalization

Second scaling technique given in Equation (3.24) is called min-max normalization
by scaling the data to a specific range. By subtracting the minimum value of the data, it
ensures the data samples will have values equal or greater than zero. And dividing by the
range of the data, the samples will have values equal or less than one.

β2 =
β −min(β)

max(β)−min(β)
(3.24)

By this normalization, the data is scaled to the range of 0 ≤ β2 ≤ 1. However, the
mean and variance of the normalized data are also scaled and different from the original
data.

Standardization

Last scaling technique considered in the thesis given in Equation (3.25) is called
standardization by scaling the data to have zero mean and unit variance. By subtracting
the mean of the data and dividing by the standard deviation of the data, it ensures the data
samples will have zero mean and unit variance.

β3 =
β − µ

σ
(3.25)

where µ is the mean of β and σ is the standard deviation of β.
The mentioned scaling techniques are applied to the channel gain β given in

Section 2.2. In each case, the normalized data has the same distribution type as the original
data. However, the mean and variance of the normalized data are different from the original
data.

3.6 Machine Learning Based Resource Allocation Approach

In this section, the proposed DNN architectures for user-centric clustering and
power allocation are introduced and the dataset preparation process is explained.

The block diagram of the proposed machine learning based approach is given in
Figure 3.5. The input data is the channel gains between the APs and UEs. The output of
the user-centric clustering part is passed to the power allocation part along with channel
gains. The output of the power allocation part is the power allocation coefficients for the
active AP-UE pairs.
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Figure 3.5. Block diagram of the proposed machine learning based resource allocation
approach for cell-free massive MIMO systems.

3.6.1 Model Architecture

The DNN architecture is designed in two parts as user-centric clustering and power
allocation. The user-centric clustering part is a binary classifier that determines the state
of UE-AP pairs as active or inactive. The power allocation part is a regression model
that predicts the power allocation coefficients for the active UE-AP pairs. These parts
are trained separately and then cascaded to each other. The first training process will
be more time consuming since it will be done in two separate DNNs. However, in this
architecture, user-centric clustering algorithm can be changed by training a new user-
centric clustering DNN in parallel and replacing only that part instead of re-training whole
network. Therefore, it is more modular and time efficient in long run. Also, the loss
function and optimizer can be assigned independently for each part, which makes the
architecture more controllable.

The proposed architecture also reduces the complexity of the problem since user-
centric clustering part performs only binary predictions and the power allocation part
considers only active AP-UE pairs while making regression predictions. The most sig-
nificant advantage of this architecture is that it reduces the number of layers by dividing
the network into two parts. This helps avoiding vanishing gradient problem since each
network will be more shallow. For both parts, the number of hidden layers are determined
empirically by trial and error. The final number of hidden layers are chosen heuristically.

DNN Approach for User-Centric Clustering

The DNN for user-centric clustering is a binary classifier that determines the state
of UE-AP pairs as active or inactive. The DNN is designed to be fully connected DNN that
has an input layer with 360 neurons, 7 hidden layers and an output layer with 36 neurons.
The input data consists of the channel gains for each AP-UE pairs. Each output of the

46



360 neurons at the input layer corresponds to the linear combinations of the channel gains
between the AP-UE pairs with trainable weights. Each output of the 36 neurons at the
output layer corresponds to the user-centric clustering decision as a binary state for the
AP-UE pairs.

The activation function of input layer is chosen as linear activation function to
expand the data with linear combinations and passing these combinations to hidden layers.
The activation functions of the hidden layers are determined as ReLU, Tanh, and ELU by
trial and error.

The output of the user-centric clustering is either 0 or 1. Since the Sigmoid
activation function maps the input values between 0 and 1, it is chosen as the activation
function of the output layer. Since the Sigmoid function is used as the loss function of
output, the network is designed to have low amount of hidden layers such as 7 to prevent
vanishing gradient problem and overfitting.

The DNN architecture for user-centric clustering is given in Table 3.1.

Table 3.1. DNN architecture for user-centric clustering

Layer Size Activation Function
Input 360 Linear

Layer 1 360 ReLU
Layer 2 360 Tanh
Layer 3 360 ELU
Layer 4 180 Tanh
Layer 5 180 ELU
Layer 6 180 ReLU
Layer 7 180 Tanh
Output 36 Sigmoid

DNN Approach for Power Allocation

The DNN for power allocation is a regression model that predicts the power
allocation coefficients for the active UE-AP pairs. The DNN is designed to be fully
connected DNN that has an input layer with 360 neurons, 5 hidden layers and an output
layer with 36 neurons. The input data consists of the channel gains for the active AP-UE
pairs and zeros for deactivated AP-UE pairs. Each output of the 360 neurons at the input
layer corresponds to the combinations of the channel gains between the AP-UE pairs with
trainable weights and each output of the 36 neurons at the output layer corresponds to the
predicted power allocation coefficients for the AP-UE pairs.

The activation function of input layer is chosen as linear activation function as in
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DNN of user-centric clustering to expand the data with linear combinations and passing
these combinations to hidden layers. The activation functions of the hidden layers are
chosen as ELU to prevent dead neurons problem and the vanishing gradient problem. The
activation function of the output layer is chosen as Sigmoid since it maps the input values
between 0 and 1 and the power allocation coefficients are defined to have values between
the same interval. As in user-centric clustering part, the network is designed to have low
amount of hidden layers such as 5 to prevent vanishing gradient problem and overfitting.
The resulting DNN architecture for power allocation is given in Table 3.2.

Table 3.2. DNN Architecture for Power Allocation

Layer Size Activation Function
Input 360 Linear

Layer 1 360 ELU
Layer 2 360 ELU
Layer 3 180 ELU
Layer 4 180 ELU
Layer 5 180 ELU
Output 36 Sigmoid

3.6.2 Dataset Preparation

Training of the DNN for user-centric clustering and power allocation with high
accuracy requires a large dataset. To generate dataset, simulations are performed over 106

randomly generated setups using the same system model and procedure as in Section 2.6
for Algorithm 1 and the proposed algorithm. In the cases where the optimization is failed
to reach local minima, the power allocation coefficients are set as equal power allocation.
The channel gains of the generated setups, the user-centric clustering results and the
corresponding power allocation coefficients are combined to form a dataset. Since the
power allocation coefficients and user-centric clustering decisions are valued between 0
and 1, we use min-max normalization on average channel gains to scale them into the same
range as discussed in Section 3.5.

The resulting datasets are split into training, validation and test sets as 90%, 5%
and 5% respectively. The training set is used to train the DNN, the validation set is used
to tune the hyperparameters of the DNN such as learning rate and batch size and the test
set is used to evaluate the performance of the DNN based approach for user selection and
power allocation.
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3.7 Performance Evaluations

In this section we provide the performance of the proposed DNN approach for
user-centric clustering and power allocation in terms of the energy efficiency and required
computation time.

3.7.1 DNN Results for User-Centric Clustering

The performance of the proposed DNN approach for user-centric clustering is
evaluated in terms of the energy efficiency and the decision error that is defined as the
percentage of the AP-UE pairs that are misclassified by the DNN. Given that the user-
centric clustering results are restricted to have values 0 or 1 and the input data is normalized
to eliminate outliers as discussed in Section 3.5, the robustness to outliers is not considered
in this thesis. The appropriate loss function is chosen as MSE. The training set is randomly
split into mini-batches of size 500 at each epoch to speed up the training process which
is performed using the Adam optimizer over 250 epochs with a learning rate of 0.001.
In post-processing, the predicted values are set as 0 or 1 to obtain the binary state of the
AP-UE pairs by using threshold 0.5.

Figure 3.6. Energy efficiency of DNN based user-centric clustering using Algorithm 1, for
K=4, L=9, N=4.

The proposed DNN architecture for user-centric clustering is trained using the
training set and the resulting decision error for the user-centric clustering algorithm in
Algorithm 1 is calculated as 1.58% while the resulting decision error for the proposed
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user-centric clustering algorithm is calculated as 1.46%. These error percentages indicates
that the DNN to misclassifies an AP-UE pair approximately in every two setups. The
difference between the decision error percentages of the Algorithm 1 and the proposed
user-centric clustering algorithm is that the proposed user-centric clustering algorithm
results less active AP-UE pairs and therefore the DNN needs to learn less relationships on
top of predicting the pairs as inactive.

The CDF graphs of the energy efficiency under equal power allocation for Al-
gorithm 1 and DNN trained by Algorithm 1 are given along with the case that all UEs
are served by all APs in Figure 3.6. It can be seen that, the proposed DNN approach
for user-centric clustering achieves almost same energy efficiency performance as the
Algorithm 1 and the proposed algorithm. The average energy efficiency for the proposed
DNN trained by Algorithm 1 is 0.326% lower than the Algorithm 1 which is negligible in
most use cases.

The CDF graphs of the energy efficiency under equal power allocation for the pro-
posed user-centric clustering algorithm using the proposed algorithm and DNN approaches
are given along with the case that all UEs are served by all APs in Figure 3.7.

Figure 3.7. Energy efficiency performance of DNN based user-centric clustering using the
Algorithm 2, for K=4, L=9, N=4.

The Figure 3.7 indicates that the proposed DNN approach for user-centric clustering
achieves almost the same energy efficiency performance as the Algorithm 2. The average
energy efficiency for the proposed DNN trained by Algorithm 2 is 0.523% lower than the
Algorithm 2 which is also negligible in most use cases.

Even though the proposed user-centric clustering algorithm achieves better in terms
of the decision error, the impact of the decision error on energy efficiency is higher than
the Algorithm 1. This can be explained by the fact that the proposed user-centric clustering
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algorithm results less active UE-AP pairs and therefore, each misclassified UE-AP pair has
higher chances to activate a deactivated AP and therefore has more impact on the energy
efficiency performance.

3.7.2 DNN Results for Power Allocation

The performance of the proposed DNN approach for power allocation is evaluated
in terms of the achieved energy efficiency and the computational time required to find
power allocation coefficients. As in the user-centric clustering part, the power allocation
part is also trained using the Adam optimizer over 250 epochs with a learning rate of
0.001. The training process is performed using the MSE loss function and the training
set is randomly split into mini-batches of size 500 at each epoch to speed up the training
process.

The time requirements are measured in terms of the time passed during the process
in seconds and given in three parts. First is the time required for power allocation using
MATLAB’s fmincon solver with 5 parallel workers on a computer with Apple M1 Pro
processor and 16GB RAM. Second is the time required for predicting the power allocation
coefficients using the trained DNN on a computer with NVIDIA GTX 1060 GPU and
16GB RAM. The last one is the time required for training the DNN on the same computer
setup.

The average time required for training the DNN using the dataset contains 900000
setups is measured as 1971 seconds. On average, the power allocation requires 0.54
seconds per setup for Algorithm 1 and 0.78 seconds per setup for the proposed user-centric
clustering algorithm while the DNN approach requires 0.0001 seconds per setup for both
algorithms. Equal time requirements for both user-centric clustering algorithms means that
the proposed DNN approach eliminates the time requirement disadvantage of the proposed
user-centric clustering algorithm. Also the results indicates that the DNN approach reduced
the required computational time by 99.9%. However, the time required for training the
DNN is not included in this comparison since it is a one-time process and the trained DNN
can be used for multiple setups.

The energy efficiency performance of the proposed DNN approach for power
allocation is evaluated seperately for Algorithm 1 and the proposed user-centric clustering
algorithms. The simulation results for Algorithm 1 are given in Figure 3.8 as equal power
allocation, power allocation using Algorithm 1 and DNN based power allocation. As it
can be seen in the Figure 3.8, the proposed DNN power allocation achieves almost the
same performance in terms of energy efficiency using Algorithm 1. The achieved average
energy efficiency for the proposed DNN approach is 0.28% lower than the Algorithm 1
which is considered to be negligible in most use cases.
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Figure 3.8. Energy efficiency of the DNN for power allocation using Algorithm 1, for
K=4, L=9, N=4.

Furthermore, the simulations are shown for the proposed user-centric clustering
algorithm and the equal power allocation, power allocation using Algorithm 2 and DNN
power allocation in Figure 3.9. The power allocation performance for the DNN approach
is almost the same as the Algorithm 2, with less than 0.01% reduction in energy efficiency.
The energy efficiency difference between the Algorithm 2 and DNN approach using
Algorithm 2 is considerably lower than the one using Algorithm 1, which indicates that the
proposed user-centric clustering algorithm achieves better energy efficiency performance.

Figure 3.9. Energy efficiency of DNN for power allocation using Algorithm 2, for K=4,
L=9, N=4.
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3.7.3 DNN Results for Joint User-Centric Clustering and Power Alloca-
tion

The DNN performance of the joint user-centric clustering and PA is evaluated in
terms of the energy efficiency. First, the user-centric clustering is performed using the
trained DNN. Then, the output of the DNN is used as the input of the power allocation DNN
along with the channel gain information. The resulting energy efficiency for Algorithm 1
and the proposed user-centric clustering algorithms are given in Figure 3.10.

Figure 3.10. Energy efficiency of DNN for joint power allocation and user-centric
clustering, for K=4, L=9, N=4.

The simulation results indicates that the proposed DNN approach for joint user-
centric clustering and power allocation achieves the same performance as the Algorithm 1
and Algorithm 2. The energy efficiency performance of the proposed DNN trained by
Algorithm 1 is 0.597% lower than the Algorithm 1 and DNN trained by Algorithm 2
0.212% is lower than the Algorithm 2. Even though the DNN approach achieves better
user-centric clustering performance with Algorithm 1, the proposed user-centric clustering
algorithm has better overall energy efficiency performance.

In this chapter, we proposed a DNN approach for user-centric clustering and power
allocation in cell-free massive MIMO systems. The proposed DNN approach consists of
two parts as user-centric clustering part and power allocation part to achieve modular and
controllable network. The individual performance of the user-centric clustering part is
evaluated in terms of the decision accuracy and the energy efficiency. The results indicates
that the proposed DNN approach decides the binary state of the AP-UE pairs with 1.58%
error and achieves 0.326% lower energy efficiency when trained by Algorithm 1 while
the proposed user-centric clustering algorithm achieves 1.46% decision error and 0.523%
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lower energy efficiency. The reason can be explained as low AP-UE pairing errors has
smaller probabilities to activate a disabled APs and therefore, does not affect the total power
consumption significantly. Also, the precoding scheme ZF has the ability of eliminating
the inter-user interference which results that the AP-UE pairing errors does not cause
inter-user interference. The proposed user-centric clustering algorithm results less active
AP-UE pairs and therefore, each misclassified AP-UE pair has more impact on the energy
efficiency performance than the Algorithm 1.

Then, the individual performance of the power allocation is evaluated in terms
of the energy efficiency and the computational time required to find power allocation
coefficients. The time measurements indicates that the proposed DNN approach requires
99.9% less computational time on average for both Algorithm 1 and Algorithm 2. The
energy efficiency results indicates that the average energy efficiency for the proposed DNN
approach is 0.28% lower for Algorithm 1 and 0.01% lower for the proposed user-centric
clustering algorithm.

Finally, the performance of the joint user-centric clustering and power allocation
using DNN approach is evaluated in terms of the energy efficiency. The results indicates
that the proposed joint DNN approach achieves almost the same performance as the for
Algorithm 1 and Algorithm 2. The energy efficiency performance of the proposed DNN
approach is 0.597% lower for Algorithm 1 and 0.212% lower for the proposed user-
centric clustering algorithm. Even though the DNN approach achieves better user-centric
clustering performance using Algorithm 1, the proposed algorithm has better overall energy
efficiency performance.

The results of the joint resource allocation for cell-free massive MIMO concludes
that the proposed DNN approach achieves the accuracy and time requirements by providing
almost the same performances.
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CHAPTER 4

CONCLUSION

In this thesis, the resource allocation algorithms for cell-free massive MIMO
communication system has been examined for maximizing the energy efficiency and
reducing the computation time.

The novel user-centric clustering algorithm has been proposed that allows disabling
the non-master APs that are serving few amount of users. This additional feature aims
to reduce total power consumption of the system without sacrificing the advantages of
the cell-free massive MIMO communication systems. The performance of user-centric
clustering has been examined for different AP-UE pairing thresholds under equal power
allocation by performing user-centric clustering instead of serving all UEs by all APs. The
proposed user-centric clustering algorithm provided higher energy efficiencies than the
Algorithm 1. This concludes that disabling the APs with non-significant contributions
to the system performance is a promising approach to improve the energy efficiency of
cell-free massive MIMO systems.

Then, the power allocation optimization problem has been formulated to maximize
the energy efficiency in the cell-free massive MIMO systems and solved by using interior-
point algorithm. The performance of the power allocation has been evaluated in terms of
the achieved energy efficiency improvement compared to the equal power allocation.

The machine learning based power allocation approach has been proposed to reduce
the computation time of user-centric clustering and power allocation. In this approach,
the trained DNN model approximates the optimal solution with sufficient accuracy and
significantly less computation time compared to the interior-point algorithm. The proposed
DNN architecture has two parts as user centric clustering and power allocation. These parts
are trained separately and then cascade-connected to each other. The performance results
indicate that the DNN approach for joint user-centric clustering and power allocation
achieves almost the same performance as the analytical approach. The achieved energy
efficiency performance of the DNN approach is less than 1% lower compared to the
interior-point algorithm while the required computational time is reduced by more than
%99.9. This concludes that the proposed DNN approach is suitable for cell-free massive
MIMO systems having significantly less computation time.

As the future works, the proposed user-centric clustering algorithm and DNN
architecture can be extended to the distributed cell-free massive MIMO systems.
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