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İzmir Institute of Technology
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ABSTRACT

ON THE RINGS WHOSE INJECTIVE MODULES ARE
MAX-PROJECTIVE

In this thesis, for some classes of rings including, local, semilocal right semi-

hereditary and right Noetherian right nonsingular, we obtain some conditions that equiv-

alent to being right max-QF. For example, for a semilocal right semihereditary ring, we

prove that, the ring is right max-QF if and only if it is a direct product of a semisimple

ring and a right small ring. A right Noetherian right nonsingular ring is right max-QF if

and only if every injective module can be expressed as a direct sum of an injective module

with no maximal submodules and a projective module. We show that, for a ring, being

max-QF and almost-QF are not left-right symmetric. An example is given in order to

show that max-QF and almost-QF rings are not closed under factor rings.
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ÖZET

İNJEKTİF MODÜLLERİ MAX-PROJEKTİF OLAN HALKALAR
ÜZERİNE

Bu tezde, yerel, yarı yerel sağ yarı kalıtsal ve sağ Noether sağ tekil olmayan

dahil olmak üzere halka sınıfları için sağ max-QF olma durumunu sağlayan bazı koşullar

elde edilmiştir. Örneğin, yarı yerel sağ yarı kalıtsal bir halka için, halkanın "sağ max-

QF" olması için gereken ve yeterli koşulun, yarı basit bir halka ile sağ küçük bir halkanın

doğrudan çarpımı olması olduğunu kanıtlıyoruz. Sağ Noether sağ tekil olmayan bir halka,

sağ max-QF ise ve ancak her injektif modül, maksimal alt modülleri olmayan bir injektif

modülle bir projektif modülün "doğrudan toplamı" olarak ifade edilebiliyorsa, sağ max-

QF olur. Bir halka için max-QF ve hemen hemen-QF olma durumunun sol-sağ simetrik

olmadığını gösteriyoruz. Max-QF ve hemen hemen-QF halkaların bölüm halkaları" al-

tında kapalı olmadığını göstermek için bir örnek verilmiştir.
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LIST OF ABBREVIATIONS

R an associative ring with unit unless otherwise stated

Z,N the ring of integers, the set of non-negative integers

C the set of all complex numbers

Q the field of rational numbers

HomR(M,N) all R-module homomorphisms from M to N

M ⊗R N the tensor product of the right R-module M and the left R-

module N

Ker( f ) the kernel of the map f

Im( f ) the image of the map f

Soc(M) the socle of the R-module M

Rad(M) the radical of the R-module M

E(M) the injective hull of a module M

J(R) the Jacobson radical of the ring R

annl(X) = {r ∈ R|rX = 0} = the left annihilator of a subset X of a left

R-module M

annr(X) = {r ∈ R|Xr = 0} = the right annihilator of a subset X of a

right R-module M

ExtR(C, A) = Ext1
R(C, A) set of all equivalence classes of short exact sequences starting

with the R-module A and ending with the R-module C

� isomorphic

≤ submodule

� small (=superfluous) submodule

E essential (=large) submodule
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CHAPTER 1

INTRODUCTION

Throughout this thesis, R denotes a ring with an identity element. The modules

which are considered here will be unital right modules, unless otherwise stated.

A right module M is said to be R-projective if each homomorphism f : M → R/I

factors through the canonical epimorphism π : R → R/I for any right ideal I of R. This

notion generalizes the notion of projectivity. For example, the abelian group Q is Z-

projective, but it is not projective as a Z-module. Sandomierski (F. Sandomierski, 1964)

proved that, over a right perfect ring, R-projectivity implies projectivity. More generally,

a ring R is said to be right testing if each R-projective right R-module is projective. Faith

asked when R-projectivity implies projectivity for all right R-modules. Recently, Trlifaj

proved that answer to the Faith’s question above is undecidable in ZFC (see, [24]).

In (Y. Alagöz and E. Büyükaşık, 2021), the authors investigate and study a gen-

eralization of R-projectivity. Namely, they call a right module max-projective if each

homomorphism f : M → R/I factors through the natural epimorphism π : R → R/I for

each maximal right ideal I of R. R-projective and max-projective right modules coincide

over the ring of integers and over right perfect rings.

It is well known that, over a QF-ring each injective right R-module is projective.

A natural question arose in this context: for what rings injective right R-modules are

R-projective (resp. max-projective)? This motivates the following definitions which are

studied in ( (Y. Alagöz and E. Büyükaşık, 2021)).

A ring R is said to be right almost-QF (respectively, max-QF) if each injective

right R-module is R-projective (respectively, max-projective). Some classes of almost-

QF and max-QF rings are investigated in ( (Y. Alagöz and E. Büyükaşık, 2021)).

In this thesis, we continue the investigation of almost-QF and max-QF rings. We

generalize some results of (Y. Alagöz and E. Büyükaşık, 2021). For a semilocal right

semihereditary ring we prove that R is right max-QF if and only if R = S × T , where S is

a semisimple ring and T is right small. In addition, if the ring is local, then R is max-QF

if and only if R is right small or a division ring. For an arbitrary local ring, we show that R

is max-QF if and only if R is right small or R is right self-injective and ExtR(E, J(R)) = 0

for each injective right R-module E, where J(R) is the Jacobson radical of R.

It is proved that both of almost-QF and max-QF rings are not left-right symmetric. An
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example is given in order to show that max-QF and almost-QF rings are not closed under

factor rings.
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CHAPTER 2

PRELIMINARIES

This chapter introduces various definitions and characterizations which will be

used throughout the study.

Definition 2.1 A ring is a set R equipped with two binary operations, usually denoted by

addition (+) and multiplication (·), such that the following conditions hold:

(1) (R,+) forms an abelian group.

(2) The operation "·" of multiplication is associative.

(3) The operation "·" is distributive over addition, i.e., for a, b, and c ∈ R, we have:

a · (b + c) = (a · b) + (a · c) and (b + c) · a = (b · a) + (c · a).

Example 2.1 (a) R = {0}

(b) Mn(R), the set of n × n matrices, is a noncommutative ring.

(c) Z,Q,R,C are all commutative rings with identity.

Throughout this thesis, each R will be a ring with identity.

Definition 2.2 An additive abelian group M is said to be a right R-module if there is a

binary operation (x, a) 7→ xa from M × R to M, satisfying the following conditions for all

x, y ∈ M and a, b ∈ R,

(x + y)a = xa + ya

x(a + b) = xa + xb

x(ab) = (xa)b

x1 = x.

Unless otherwise stated, modules will be right R-modules through this thesis.
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Definition 2.3 A nonempty subset N of M is said to be a submodule of M if N is a sub-

group of M and xa ∈ N for x ∈ N and a ∈ R.

Definition 2.4 A submodule N of M is said to be an essential submodule of M for if

N ∩ N′ = 0 then N′ = 0 for each submodule N’ of M.

Definition 2.5 The right annihilator of an R-module M, denoted r.ann(M) is the set of all

elements in R such that r.ann(M) = {r ∈ R|m.r = 0,∀m ∈ M}.

Lemma 2.1 (D. S. Dummit and R. M. Foote, 2003) If M and N are isomorphic right

R-modules, then they have the same annihilator.

Lemma 2.2 ( (P. E. Bland, 2011), Proposition 5.1.5) If N is a submodule of an R-module

M, then there is a submodule K of M such that K + N is essential in M and the sum is

direct.

Proof Let S be the set of submodules N′ of M such that N ∩ N′ = ∅. Then, since

the zero submodule of M is in S , S is nonempty. By Zorn’s Lemma, S has a maximal

element, say Nmax. Since Nmax ∈ S , then N ∩ Nmax = 0, i.e., the sum N + Nmax is direct.

Now claim that N + Nmax is essential in M. Let X be a nonzero submodule of M, and

suppose that N +Nmax∩X = 0. Since the intersection is empty, then X cannot be contained

in Nmax, i.e., Nmax properly contained in X + Nmax. Therefore, N ∩ (X + Nmax) , 0 since

Nmax is the maximal in S . Let 0 , z ∈ N∩ (X + Nmax), and choose x ∈ X and y ∈ Nmax such

that z = x + y. Then z − y = x ∈ (N + Nmax) ∩ X = 0 gives z = y so that z ∈ N ∩ Nmax = 0,

a contradiction. Thus N + Nmax ∩ X , ∅, i.e., N + Nmax is essential in M. �

2.1. Socle And Radical Of Module

Definition 2.6 An R-module M is said to be a simple module if 0 and M are the only

submodules of M.

Definition 2.7 The socle of an R-module M is the sum of all simple submodules of M and

is denoted by Soc(M).

Definition 2.8 An R-module is M said to be semisimple if Soc(M) = M.

Proposition 2.1 (F. W. Anderson and K. R. Fuller, 1992) Let R be a ring and M a right

R-module. Then following holds for M.
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(1) For any submodule N of M, Soc(N) = N ∩ Soc(M).

(2) ⊕i∈I Soc(Mi) = Soc(⊕i∈I Mi).

(3) Soc(M) coincides with the intersection of essential submodules of M.

Definition 2.9 The radical of a module M is the intersection of all maximal submodules

of M and is denoted by Rad(M). Also, when M = R for a ring R, it is also called the

Jacobson radical and is denoted by J(R).

Proposition 2.2 ( (P. E. Bland, 2011), Proposition 6.1.8) Let R be a ring. Then following

hold.

(1) J(R) is the intersection of the right annihilators of all the simple right R-modules.

(2) J(R)={x ∈ R|1 − xr has right inverse ∀r ∈ R}.

2.2. Injectivity And Projectivity of Modules

In this section, we recall the definition of injective and projective modules and

give some characterizations.

Definition 2.10 A right R-module M is injective if every row exact diagram of the form

0 N1 N2

M

h

f
g

where f : N1 → M, h : N1 → N2 are R-module homomorphisms, and N1,N2 are R-

modules can be completed by an R-module homomorphism g : N2 → M.

In particular, suppose M is an injective right R-module and f extends to g. Let g(1)=x for

x ∈ M. Then f (a) = g(a) = g(1.a) = g(1)a = xa for every a ∈ N1.

Baer showed that it is enough to check injectivity for the right ideals of R.

Theorem 2.1 (Baer’s Criteria) An R-module M is injective if and only if every R-module

homomorphism f from an ideal I of R to M can be extended to an R-module homomor-

phism g from R to M, i.e., g(a) = f (a) for every a ∈ I.
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This criterion is useful in characterizing injective modules.

Definition 2.11 A submodule N of M is said to be closed in M if N E X ≤ M where X is

a submodule of M, then N = X.

Definition 2.12 Let R be a ring and M a right R-module. The singular submodule of M

is the set Z(M) = {m ∈ M|annr(m)ER}. If Z(M) = M, M is said to be singular submodule

and if Z(M) = 0 M is said to be nonsingular.

Lemma 2.3 (K. R. Goodearl, 1976) Let N be a submodule of an R-module M. If

Z(M/N) = 0, then N is closed in M.

Proof Let N′ be an essential extension of N in M, and let x ∈ N′. Then, I = {r ∈

R|xr ∈ N} is a large ideal, of R and I is a large ideal in R. Since I is large in R and

x + N ∈ Z(M/N) = 0, x ∈ N so that N = N′, i.e., N is closed in M. �

Definition 2.13 Let R be a ring and M a right R-module. M is p-injective if ∀aR ⊆ R the

following diagram commutes

aR R

M

f

where f : aR→ M is a homomorphism.

Definition 2.14 A right R-module M is projective if every row exact diagram of the form

M

N1 N2 0

fg

h

f : M → N1, h : N2 → N1 are R-module homomorphisms and N1,N2 are R-modules can

be completed by an R-module homomorphism g : M → N2.

Proposition 2.3 ( (P. E. Bland, 2011), Proposition 3.2.7) A short exact sequence

0 N1 M N2 0
f g

splits if and only if one of the following three conditions holds.

6



(1) Im( f ) is a direct summand of M.

(2) Ker(g) is a direct summand of M.

(3) M � N1 ⊕ N2.

Theorem 2.2 ( (P. E. Bland, 2011), Problem Set 5.2(1)) A right R-module M is projective

if and only if each short exact sequence of the form

0 N1 N2 M 0

splits.

Definition 2.15 A ring R is called right p.p. ring if each principal right ideal of R is

projective.

Proposition 2.4 (T. Y. Lam, 1999) Let R be a ring. Then R is right p.p. ring if and only

factors of p-injective right modules are p-injective.

Proof First, suppose that R is a right p.p. ring, and consider the diagram

aR

E E/K 0

f

π

where π is the canonical epimorphism, and f : aR→ E/K.

Since R is a right p.p. ring, there is a homomorphism g : aR → E such that π ◦ g = f .

Then we got the diagram

aR R

E E/K 0

f
g

ι

π

where ι : aR → R is an injection. Since R is projective, there exists h : R → E such that

π ◦ g = f .

Now, we got h ◦ ι⇒ (π ◦ h) ◦ ι = π ◦ g = f . Thus π ◦ h extends f , i.e., E/K is p-injective.

For the converse, suppose that factors of p-injective right modules are p-injective, and
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consider the diagram

aR R

E E/K 0

f

ι

π

.

Since factors of p-injective right modules are p-injective, there is a homomorphism g :

R → E/K such that g ◦ ι = f , and since R is projective, there exists a homomorphism

h : R→ E such that π ◦ h = g.

Now, π ◦ (h ◦ ι) = g ◦ ι = f , so h ◦ ι lifts f , i.e., aR is projective. �

Lemma 2.4 A right p.p. ring is right nonsingular.

Proof Let x ∈ Z(RR) = {x ∈ R|r.ann(x) E R}. Then r.ann(x) = IR E R so that xI = 0.

Now, let f : R → xR be a homomorphism, then Ker( f ) = {r ∈ R|x.r = 0}. Consider the

sequence

0 I R xR 0
f

.

Since R is a right p.p. ring, the sequence splits so that there exists a homomorphism

g : xR → R and R = Ker( f ) ⊕ Im(g) = I ⊕ Im(g). Then Im(g) = 0 since I is essential so

that g = 0 and I = R = annr(x). Therefore, x = 0, i.e., Z(RR) = 0. �

Corollary 2.1 (F. W. Anderson and K. R. Fuller, 1992) Let R be a right hereditary ring,

then R is right nonsingular.

Proof Proof of the corollary is similar to the Lemma 2.4 �

2.2.1. Injective Hull

This section introduces injective hull of module and give important characteriza-

tions which will be used throughout the study.

Definition 2.16 An injective hull of an R-module M is an injective module E(M) such

that E(M) is an essential extension of M. It is the largest essential extension of M and

also the smallest injective module containing M.

Proposition 2.5 ( (P. E. Bland, 2011), Proposition 7.1.5) The following properties hold

for injective hulls.

(1) If M is a submodule of an injective R-module E, then E � E(M) ⊕ E′ for some

injective submodule E′ of E.

8



(2) If M is an essential submodule of an R-module N, then E(M) � E(N).

(3) If {Mα}α∈M is a family of R-modules, then ⊕ME(Mα) embeds in E(⊕MMα).

Direct summand of an injective module is injective but direct sum of injective

modules is not always injective. Following theorem shows that, on a right Noetherian

ring, direct sum of injective modules is injective.

Proposition 2.6 (Z. Papp, 1959) The following are equivalent for a ring R.

(1) Every direct sum of injective R-modules is injective.

(2) If {Mα}α∈M is a family of R-modules, then ⊕ME(Mα) � E(⊕MMα).

(3) R is a right Noetherian ring.

Definition 2.17 A submodule N’ of an R-module M is small in M if whenever N′+X = M,

then X = M where X is a submodule of M. Similarly a ring R is called small ring if it is

small in its injective hull.

Proposition 2.7 ( (V. S. Ramamurthi, 1982), 3.3) Let R be a ring, and let E(R) be the

injective hull of RR. Then the following conditions are equivalent.

(1) R is a left small ring.

(2) Rad(M) = M for every injective left R-module M.

(3) Rad(E(R)) = E(R).

Since injective hull is the essential extension of module, we got the following

result for closed submodules of injective modules.

Proposition 2.8 (T. Y. Lam, 1999) Closed submodule of an injective module is a direct

summand.

Proof Let X be a closed submodule of an injective module E. Since E(X) is the injective

hull of X, X E E(X) ≤ E, and since X is closed in E, X = E(X). Hence, X is injective, i.e.,

X is direct summand of E. �

9



Definition 2.18 A ring R is right self-injective if RR is injective.

Definition 2.19 Let I = E(M), and let H = End(IR). We define

Ẽ(M) = {i ∈ I : ∀h ∈ H, h(M) = 0⇒ h(i) = 0}.

We call Ẽ(M) the rational hull of M. We also denote this ring by Qr
max(M) and call it the

maximal ring of quotients of R.

Following theorem shows that for a right module M, rational hull ofM, Qr
max(M),

and the injective hull of M, E(M) coincides over right nonsingular ring.

Theorem 2.3 ( (T. Y. Lam, 1999), 13.36, Johnson’s Theorem) For any ring R, the follow-

ing are equivalent.

(1) R is right nonsingular.

(2) IR = E(RR) is a nonsingular R module.

(3) H = End(IR) is Jacobson semisimple.

(4) Q = Qr
max(M) is Von Neumann regular.

If these conditions hold, then Q = I and Q � H are right self injective rings.

Definition 2.20 An epimorphism f : A → B is called small epimorphism if Ker( f ) is

small in A.

Lemma 2.5 Let A, B and C be right R-modules and consider the diagram

C

A B 0

g
h

f

where f is a small epimorphism and g is an epimorphism. Then h is an epimorphism.

Proof Let a ∈ A. Then, since g is an epimorphism, there exists c ∈ C such that f (a) =

g(c). The diagram is commutative, so we get ( f ◦ h)(c) = f (h(c)) = g(c) = f (a) gives that

f (h(c)) = f (a), i.e., f (a − h(c)) = 0. Then a − h(c) ∈ Ker( f ), and so a ∈ h(c) + Ker( f ).

Now, A = h(c) + Ker( f ), and since Ker( f ) is small in A, we get h(c) = A so that h is an

epimorphism. �

10



2.3. Pure submodules, pure-injective modules, and absolutely pure

modules

Definition 2.21 Let R be a ring. A short exact sequence 0 → AR → BR → CR → 0 of

right R-modules is pure if the induced sequence of abelian groups

0→ AR ⊗ RE → BR ⊗ RE → CR ⊗ RE → 0

is exact for every left R-module E.

A submodule A of a right R-module B is a pure submodule of B if the canonical exact

sequence 0→ A→ B→ B/A→ 0 is pure.

Definition 2.22 A right R-module MR is called pure-injective if the sequence

0→ CR ⊗ MR → BR ⊗ MR → AR ⊗ MR → 0

is exact for every pure exact sequence 0→ AR → BR → CR → 0.

Proposition 2.9 ( (A. Facchini, 1998), Corollary 1.36) If ϕ : R → S is a ring homomor-

phism, then every pure injective right S-module is pure-injective as a right R-module.

The following is an immediate consequence of the Proposition 2.9.

Corollary 2.2 (A. Facchini, 1998) If R is either commutative or semilocal, then every

simple left or right R-module is pure-injective.

Definition 2.23 A right R-module M is absolutely pure if it is pure in every module con-

tanining it as a submodule.

It is easy to see that if a right R-module M is absolutely pure and pure injective,

then it is injective.

2.4. Semihereditary and Hereditary Rings

Definition 2.24 A ring R is said to be right hereditary if every right ideal of R is projec-

tive. We call R right semihereditary if every finitely generated right ideal of R is projective.

11



Theorem 2.4 ( (C. Megibben, 1970), Theorem 2) For a ring R, the following conditions

are equivalent.

(1) R is right semihereditary.

(2) Each finitely generated submodule of a projective right R-module is projective.

(3) The homomorphic image of an absolutely pure right R-module is absolutely pure.

The following theorem shows that over a right hereditary ring, submodules of

projective modules are projective and injective modules are closed under factor modules.

Theorem 2.5 ( (J. Rotman, 1979), Theorem 4.19) For a ring R the following conditions

are equivalent.

(1) R is right hereditary.

(2) Each submodule of a projective right R-module is projective.

(3) Factor module of an injective R-module is injective.

2.5. Local and Semilocal Rings

Definition 2.25 A nonzero ring R is local if R has a unique maximal right ideal. Also R

is said to be semilocal if R/J(R) is a semisimple ring.

Definition 2.26 Let R be a ring. Then U(R) is the group of units of R.

Theorem 2.6 ( (T. Y. Lam, 1991), Theorem 19.1) For any nonzero ring R, the following

statements are equivalent.

(1) R is a local ring.

(2) R has a unique maximal right ideal.

(3) R/Rad(R) is a division ring.

(4) R \ U(R) is an ideal of R.

(5) R \ U(R) is a group under addition.

(6) For any n, a1 + a2 + · · · + an ∈ U(R) implies that some ai ∈ U(R).

12



(7) If a ∈ R, then either a or 1 − a is a unit.

2.6. Semiperfect and Perfect Rings

Definition 2.27 A ring R is called semiperfect if R is semilocal, and idempotents of

R/Rad(R) can be lifted to R.

Example 2.2 (a) Local rings are semiperfect.

(b) Division rings are semiperfect.

(c) Right artinian rings are semiperfect.

Corollary 2.3 ( (F. W. Anderson and K. R. Fuller, 1992), Corollary 27.9) If a ring R is

semiperfect, then so is every factor ring of R.

Definition 2.28 A projective cover of an R-module M is projective R-module P(M) with

an epimorphism φ : P(M)→ M such that Ker(φ) is small in P(M).

We can characterize right semiperfect rings with projective cover as the following.

Proposition 2.10 ( (P. E. Bland, 2011), Definition 7.2.10) A ring R is said to be a semiper-

fect ring if every finitely generated right R-module has a projective cover.

Note that semiperfect rings are left-right symmetric.

Definition 2.29 A subset A of a ring R is called right T-nilpotent if, for any sequence of

elements {a1, a2, . . . } ⊆ A, there is an integer n ≥ 1 such that an · · · a2.a1 = 0.

Definition 2.30 A ring R is called right perfect is R/J(R) is semisimple and J(R) is right

T-nilpotent.

Proposition 2.11 ( (H. Bass, 1960), Theorem P) The following are equivalent for a ring

R.

(1) R is a right perfect ring.

(2) R/J(R) is semisimple and every nonzero R-module contains a maximal submodule.

(3) R/J(R) is semisimple and J(R) is right T-nilpotent.
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Proposition 2.12 ( (H. Bass, 1960), Theorem P) The following are equivalent for a ring

R.

(1) R is a right perfect ring.

(2) R satisfies the descending chain condition on principal left ideals.

(3) Every flat R-module is projective.

(4) R contains no infinite set of orthogonal idempotents and every nonzero left R-

module contains a simple submodule.

2.7. Quasi-Frobenius Rings

Definition 2.31 A ring R is Quasi-Frobenius if R is left or right Noetherian and R is left

or right self-injective.

Proposition 2.13 ( (P. E. Bland, 2011), Proposition 10.2.14) A ring R is said to be QF if

and only if it satisfies one of the equivalent conditions.

(1) R is a right Noetherian and satisfies the conditions

(a) annr(annl(A)) = A for all right ideals A of R and

(b) annl(annr(A)) = A for all left ideals A of R.

(2) R is right Noetherian and right self-injective.

(3) R is left Noetherian and right self-injective.

Proposition 2.14 ( (T. Y. Lam, 1999), Theorem 15.9) Let R be a ring. Then the following

are equivalent.

(1) Every injective right R-module is projective.

(2) Every projective right R-module is injective.

(3) R is QF-ring.
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2.8. Pseudo-Frobenius Rings

Definition 2.32 A right R-module M is said to be cogenerated by a set of right R-modules

{Mα}α∈∆ if M can be embedded in
∏

∆Mα. We say that a ring R is cogenerator ring if RR

and RR are both cogenerators.

Definition 2.33 An injective R-module M is an injective cogenerator for the category of

right R-modules if every right R-module is cogenerated by M.

Additionaly, we define Kasch rings in a similar way.

Definition 2.34 A ring R is said to be a right Kasch if each simple right R-module can be

embedded in R.

If the ring R satisfies the Definition 2.33, then we get the following definition.

Definition 2.35 R is a right PF ring if RR is an injective cogenerator for the category of

right R-modules.

R is a projective generator for the category of right and left R-modules because

every right or left module is an epimorphic image of a free right or left R-module.

2.9. Dual Goldie Torsion Theory

Let X be the class of right R-modules closed under isomorphism and submodules.

Consider the following two classes:

F(X) = {M ∈ Mod − R|Hom(X,M) = 0,∀X ∈ X}

T(X) = {N ∈ Mod − R|Hom(N,M) = 0,∀M ∈ F(X)}

Then the pair (T(X),F(X)) is called a torsion theory.

Let R− small be the class of right small R-modules. For X =R− small, the torsion theory

(T(R− small),F(R− small)) is studied by V.S. Ramamurthi in (V. S. Ramamurthi, 1982).

This torsion theory is called dual Goldie torsion theory.

A torsion theory (T(X),F(X)) is said to be splitting if T(X) = Mod − R and F(X) = 0.
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CHAPTER 3

MAX-PROJECTIVITY OF MODULES

In this chapter we give some characterizations of max-projective modules.

Definition 3.1 A right R-module M is R-projective if every row exact diagram of the form

M

R R/I 0

f
g

h

f : M → R/I, h : R → R/I are R-module homomorphisms and I is a right ideal, can be

completed by an R-module homomorphism g : M → R.

If we consider the case for the maximal ideals of R, then we got the following

definition.

Definition 3.2 A right R-module M is max-projective if every epimorphism f : R → R/I

with I which is a maximal right ideal and every homomorphism g : M → R/I, there exits

a homomorphism h : M → R such that f h = g.

Following ones are examples of max-projective modules.

Example 3.1 (a) Projective modules.

(b) Modules with Rad(M) = M.

Definition 3.3 Given modules M and N, M is said to be N-projective if for every epimor-

phism g : N → T and for every homomorphism f : M → T, there exists a homomorphism

h : M → N such that gh = f .

This definition generalizes the notion of projectivity. Also, a right R-module M

is called projective if M is relative projective for every right R-module N. The following

proposition shows that relative projectivity is closed under factor modules, direct sums,

and direct summands.
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Proposition 3.1 ( (F. W. Anderson and K. R. Fuller, 1992), Proposition 16.10) The fol-

lowing statements hold.

(1) If M is N-projective and K is a submodule of N, then M is N/K-projective.

(2) If A � B, then M is A-projective if and only if M is B-projective.

(3) If M is Mi-projective for all i = 1, 2, . . . , n, then M is ⊕n
i=1Mi-projective.

(4) A direct sum ⊕n
i=1Mi of modules is N-projective if and only if each Mi is N-projective.

(5) If A � B, then for any right R-module N, A is N-projective if and only if B is N-

projective.

We define max − N − pro jectivity as follows.

Definition 3.4 Given modules M and N, M is said to be max-N-projective if for every

epimorphism g : N → S with S simple and for every homomorphism f : M → S , there

exists a homomorphism h : M → N such that gh = f .

Proposition 3.2 The following statements hold.

(1) If M is max-N-projective and K is a submodule of N, then M is max-N/K-projective.

(2) If A � B, then M is max A-projective if and only if M is max-B-projective.

(3) If M is max−Mi− pro jective for all i = 1, 2, . . . , n then M is max-⊕n
i=1Mi-projective.

(4) A direct sum ⊕n
i=1Mi of modules is max-N-projective if and only if each Mi is max-

N-projective.

(5) If A � B, then for any right R-module N, A is max-N-projective if and only if B is

max-N-projective.

Lemma 3.1 ( (Y. Alagöz and E. Büyükaşık, 2021), Lemma 1) The following conditions

are true.

(1) A direct sum ⊕i∈IAi of modules is max-projective (resp., R-projective) if and only if

each Ai is max-projective (resp., R-projective).

(2) If 0 → A → B → C → 0 is an exact sequence and M is B-projective, then M is

projective relative to both A and C.
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Definition 3.5 Let M and N be R-modules for ring R. M is said to be N-subprojective if

for every homomorphism f : M → N and for every epimorphism g : B→ N, there exists

a homomorphism h : M → B such that gh = f .

Lemma 3.2 ( (Y. Alagöz and E. Büyükaşık, 2021), Lemma 2) For an R-module M, the

following are equivalent.

(1) M is max-projective.

(2) M is S-subprojective for each simple R-module S .

(3) For every epimorphism f : N → S with S simple and homomorphism g : M → S ,

there exists a homomorphism h : M → N such that f h = g.

Proposition 3.3 ( (Y. Alagöz and E. Büyükaşık, 2021), Proposition 1) Let 0→ A→ B→

C → 0 be a short exact sequence. If M is A-subprojective and C-subprojective, then M is

B-subprojective.

Corollary 3.1 ( (Y. Alagöz and E. Büyükaşık, 2021), Corollary 2) A Z-module M is max-

projective if and only if M is Z-projective.

Corollary 3.2 ( (Y. Alagöz and E. Büyükaşık, 2021), Corollary 3) Let M be an R-module

with finite composition length. If M is max-projective, then it is projective.

Proposition 3.4 Let R be a right nonsingular ring and E a singular injective right R-

module, i.e., Z(E) = E. Then E is max-projective if and only if Rad(E) = E.

Proof Suppose Rad(E) , E. Then there is a maximal submodule K of E. Then E/K �

R/I for some maximal ideal I of R.

Let f : E → R/I be a nonzero homomorphism. Since E is max-projective, there is an

R-module homomorphism g : E → R such that π ◦ g = f .

Since E is singular, then homomorphic image of E, g(E), is singular too, but g(E) ⊆ R

and R is right nonsingular, i.e., g(E) = 0. Thus, f = 0, which gives contradiction. Thus,

there is no maximal submodule K of E, i.e., Rad(E) = E. �

Proposition 3.5 (P. E. Bland, 2011) Let R be a nonsingular ring. Then R is finite di-

mensional if and only if for every nonsingular injective right R-module is a direct sum of

indecomposable modules.

Lemma 3.3 Let R be a right nonsingular ring and E an indecomposable nonsingular

injective right R-module. Then E is max-projective if and only if E is projective and

cyclic or Rad(E) = E.
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Proof (⇒) Suppose Rad(E) , E, and let us show that E is projective. Since Rad(E) ,

E, then there exists a maximal submodule K of E and the corresponding simple factor

module E/K. Since E/K is simple, then E/K � R/I where I is a maximal right ideal

of R. Thus, there exists a nonzero homomorphism f : E → R/I. Since E is max-

projective, by assumption, there is a nonzero homomorphism g : E → R such that f = πg

where π : R → R/I is the canonical epimorphism. By the First Isomorphism Theorem,

E/Ker(g) � Im(g) ⊆ R, so that E/Ker(g) is nonsingular since RR is nonsingular.

As the closed submodules of the injective module E are direct summands, and Ker(g) is

a closed submodule of E, we have E � Ker(g) ⊕ E′ for some submodule E′ of E. Now,

since E is indecomposable, Ker(g) = 0 or E′ = 0. If E′ = 0, then Ker(g) = E so that

g = 0, a contradiction. Thus, Ker(g) = 0, and so E = E′, and g is monic. Since g is

monic, g(E) � E is injective. So, R = g(E) ⊕ J for some right ideal J of R. Now, since

R is projective and g(E) is direct summand of R, g(E) � E is cyclic and projective. This

proves the necessity.

(⇐) Clear. �

Lemma 3.4 Let R be a right nonsingular ring and E a singular injective right R-module.

Then E is max-projective if and only if Rad(E) = E.

Proof Sufficiency is clear. To prove the necessity, assume that Rad(E) , E. Then E

contains maximal submodules, and so there is a nonzero homomorphism f : E → R/I

for some right ideal I of R. Since E is singular, and R is nonsingular Hom(E, R) = 0.

Thus the map f can non be lifted to a homomorphism from E to R. Hence E is not max-

projective. This proves the necessity. �

Lemma 3.5 Let R be a ring and M a right R-module. If M/Rad(M) is max projective,

then M is max-projective.

Proof Let f : M/Rad(M) → R/I be homomorphism, where I is a maximal right ideal

of R. Then f ◦η : M → R/I is a homomorphism, where η : M → M/Rad(M) is the natural

epimorphism. Now Rad(M) ⊆ Ker( f ), so by the First Isomorphism Theorem, there exists

a homomorphism f̄ : M/Rad(M) → R/I such that f̄ ◦ η = f . Since M/Rad(M) is

max projective, there exist a homomorphism g : M → R such that π ◦ g = f̄ ◦ η where

π : R → R/I is the natural epimorphism. Now, compose π ◦ g = f̄ with η from the right

we got π ◦ (g ◦ η) = f̄ ◦ η = f .

Hence g ◦ η lifts f , i.e. M is max-projective. �
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Theorem 3.1 ( (R. D. Ketkar and N. Vanaja, 1981), Theorem 2) Let R be a ring satisfying

a.c.c. on left ideals which are direct summands of R. Let Q be a left R-module satisfying

(1) every finitely generated factor module of Q has a projective cover, (2) Q is R-projective

and (3) J(Q) is small in Q. Then Q is a direct sum of cyclic indecomposable projective

modules.

Proof Let x ∈ Q, x < J(Q). Then since x < J(Q), there is a maximal submodule M

of Q such that x < M. Then Q = Rx + M. By (1), Q/M has a projective cover. Since

Q/M is simple, projective cover is cyclic indecomposable. Thus we can write Q = P⊕Q1

where P ⊆ Rx and P is a cyclic indecomposable projective module. Then Rx = Ry1 ⊕Rx1

where x = y1 + x1, P = Ry1 Rx1 = Rx ∩ Q1 and Q1 also satisfies the conditions (1), (2),

and (3). Now if x1 < Q1 we can repeat this process to write Q1 = Ry2 ⊕ Rx2, Rx2 cyclic

indecomposable projective direct summand of Q contained in Rx1, x1 = y2 + x, such that

Rx1 = Ry2⊕Rx2 where Rx2 = Rx1∩Q2. If this process can be repeated not only for finitely

many times, we obtain an infinite direct sum Ry1 ⊕ Ry2 ⊕ · · · ⊕ Ryn ⊕ . . . inside Rx such

that for each n, Ry1 +Ry2 + · · ·+Ryn is cyclic projective generated by y1 +y2 + · · ·+yn. Let

gn : R→ R(y1 +y2 + · · ·+yn) be the maps defined by gn(l) = y1 + · · ·+yn. These maps split

and Ker(gn) = annr(y1 +y2 + · · ·+yn). Therefore, Ker(g1) ⊇ Ker(g2) ⊇ · · · ⊇ Ker(gn) ⊇ · · ·

form a decreasing sequence of summands of R. Hence we can get an increasing sequence

L1 ⊆ L2 ⊆ · · · ⊆ Ln ⊆ · · · of summands of R such that Ln � R(y1+y2+· · ·+yn). By a.c.c. on

these summands, Ln = Ln+1 for some n. Hence Ry1+Ry2+· · ·+Ryn � Ry1+Ry2+· · ·+Ryn+1.

But this cannot happen since each Ry1, is a non-zero indecomposable module.

Now let A = {y|y ∈ Q, y , 0,Ry is cyclic indecomposable projective direct summand of Q}.

Then the previous arguments with the fact that J(Q) is small in Q show that Q =
∑

y∈ARy.

Let A be the family of subsets B of A satisfying the conditions: (a)Q =
∑

y∈BRy is a di-

rect sum and (b) for y1 · · · yn ∈ B, Ry1 + Ry2 + · · · + Ryn is a direct summand of Q. A is

non-empty and by Zorn’s there is a maximal element. Let B0 be a maximal element in A.

Then P =
∑

y∈B0
Ry = ⊕y∈B0Ry projective. To claim P = Q, it is sufficient to prove that

A ⊆ P + J(Q) since Q =
∑

y∈ARy and J(Q) is small in Q. Let y ∈ A. We consider two

cases:

Case 1. P ∩ Ry = 0

Then B0 ( B0 ∪ U{y} ⊆ A. By maximality of B0 we can find y1, . . . , yn in B0 such

that Ry1 ⊕ Ry2 ⊕ · · · ⊕ Ryn ⊕ Ry is not a direct summand of Q. By condition (b)

on B0, we can write Q = (Ry1 ⊕ Ry2 ⊕ · · · ⊕ Ryn) ⊕ Q1. Then Ry1 ⊕ Ry2 ⊕ · · · ⊕

Ryn ⊕ Ry = (Ry1 ⊕ Ry2 ⊕ · · · ⊕ Ryn) ⊕ ((Ry1 ⊕ Ry2 ⊕ · · · ⊕ Ryn) ⊕ Q1). This implies

(Ry1⊕Ry2⊕· · ·⊕Ryn⊕Ry)∩Q1 � Ry. Let (Ry1⊕Ry2⊕· · ·⊕Ryn⊕Ry)∩Q1 � Rz. Then
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Rz is cyclic indecomposable submodule of Q1 and Rz cannot be a direct summand

of Q1. Hence it is clear from the previous arguments that z ∈ J(Q1) ⊆ JQ. It follows

that y ∈ P + J(Q).

Case 2. P ∩ Ry , 0.

If y ∈ P then we are done so assume that y < P. Let 0 , sy = x ∈ P ∩ Ry.

annr(y) of R since Ry is non-zero and projective so let annr(y) = Rt. Now, for a

finite subset B ⊆ B0 such that x ∈
∑

z∈BRz,
∑

z∈BRz is a direct summand of Q. Let

h : Q →
∑

z∈BRz be the natural projection and let y′ = h(y), then t(y − y′) = 0.

Also, s(y − y′) = 0 since sy′ = sh(y) = h(sy) = h(x) = x = sy. Thus annr(y) $

annr(y− y′). Let us show that R(y− y′) does not contain a non-zero projective direct

summand. Assume that R(y− y′) contain a non-zero projective direct summand and

N be the projective direct summand of R(y − y′). Since annr(y) $ annr(y − y′),

y → (y − y′) defines an epimorphism f : Ry → R(y − y′). Then g ◦ f : Ry → N

is an epimorphism and since Ry is indecomposable, g ◦ f is an isomorphism. This

implies that annr(y − y′) $ annr(y) which is a contradiction. Thus R(y − y′) does

not contain a non-zero projective direct summand and so y − y′ ∈ J(Q). Hence

y ∈ P + J(Q).

Then the proof follows. �

Theorem 3.2 ( (R. D. Ketkar and N. Vanaja, 1981), Theorem 1) Let R be a semiperfect

ring, and let M be a right R-module such that

(1) M is R-projective, and

(2) Rad(M) is small in M.

Then, M is projective.

Proof Proof follows from Theorem 3.1. �

Over a right perfect ring, every right R-module has a small radical. Since right perfect

rings are semiperfect, we have the following corollary.

Corollary 3.3 Let R be a right perfect ring and M a right R-module. Then the following

are equivalent.

(1) M is projective.

(2) M is R-projective.
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(3) M is max-projective.

3.1. Max-Projectivity on Dual-Kasch Rings

Recall that a ring R is right Kasch if every simple right R-module embeds into R.

Similarly, in (E. Büyükaşık, C. Lomp and H. B. Yurtsever, 2022), we considered the dual

case and defined Dual-Kasch rings.

Definition 3.6 A ring R is called right dual-Kasch if every simple right R-module is iso-

morphic to a factor module of an injective module.

Proposition 3.6 ( (E. Büyükaşık, C. Lomp and H. B. Yurtsever, 2022), Proposition 2.13)

The following conditions are equivalent for a ring R.

(1) R is right self-injective.

(2) R is right dual Kasch and E(R) is projective.

Moreover, if R is semilocal, then the following condition is also equivalent:

(3) R is right dual Kasch and E(R) is max-projective.

Corollary 3.4 ( (E. Büyükaşık, C. Lomp and H. B. Yurtsever, 2022), Corollary 2.14) The

following statements are equivalent for a ring R.

(1) R is a QF ring.

(2) R is one-sided Noetherian, right dual Kasch and E(R) is projective.

(3) R is one-sided Noetherian, right dual Kasch, semilocal and E(R) is max-projective.

If, moreover, R is commutative, then the following condition is also equivalent:

(4) R is perfect and E(R) is max-projective.
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CHAPTER 4

MAX-QF AND ALMOST-QF RINGS

In this chapter we generalize some results from (Y. Alagöz and E. Büyükaşık,

2021) and give new characterizations of max-QF and almost-QF rings. Also we show

that being max-QF and almost-QF is not left right symmetric and need not to be closed

under factor rings.

Definition 4.1 A ring R is called max-QF if every injective right R-module is max-projective.

Definition 4.2 A ring R is called almost-QF if every injective right R-module is R-projective.

In the following theorem from (Y. Alagöz and E. Büyükaşık, 2021), the authors

prove that on a right hereditary and right Noetherian ring, being right almost-QF and right

max-QF are equivalent conditions.

Theorem 4.1 ( (Y. Alagöz and E. Büyükaşık, 2021), Theorem 1) Let R be a right heredi-

tary and right Noetherian ring. The following statements are equivalent.

(1) R is right almost-QF.

(2) R is right max-QF.

(3) Every injective right R-module E has a decomposition E = A⊕B where Rad(A) = A

and B is projective and semisimple.

(4) R = S × T, where S is a semisimple Artinian ring and T is a right small ring.

Generalizing (2), (3) of Theorem 4.1 by replacing right hereditary and right Noetherian

with finite dimensional and right nonsingular leads us to the following corollary.

Corollary 4.1 Let R be a finite dimensional right nonsingular ring. Then the following

are equivalent.

(1) R is right max-QF.

(2) For every injective module E, where E = E1 ⊕ E2, Rad(E1) = E1 and E2 = ⊕eiR is

projective where each ei is idempotent.
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Proposition 4.1 ( (Y. Alagöz and E. Büyükaşık, 2021), Lemma 4) Let R1 and R2 be rings.

Then R = R1 ×R2 is right almost-QF (respectively, right max-QF) if and only if R1 and R2

are both right almost-QF(respectively, right max-QF).

Proposition 4.2 Let R be a semilocal right semihereditary ring. Then the following state-

ments are equivalent.

(1) R is right max-QF.

(2) R = S × T, where S is semisimple Artinian, and T is a right small ring.

(3) Every simple injective right module is projective.

(4) Every singular injective right module is max-projective.

(5) Dual Goldie torsion theory splits.

Proof (1) ⇒ (2) Let S be the sum of the injective minimal right ideals of R. The S is

an ideal of R. Clearly S ∩ J(R) = 0 because J(R) does not contain injective submodules.

Thus S embeds in R/J(R), and so S is finitely generated and injective. Then R = S × T .

Since R is right max-QF, T is right max-QF as well.

Suppose T is not right small. Let K be a maximal submodule of E = E(TT ). Then E/K

is absolutely pure by Theorem 2.4. Since R is semilocal, E/K is also pure injective by

Corollary 2.2. This implies that E/K is an injective T-module. Then E/K is also injective

as a right R-module. As T is right max-QF, E/K is a max-projective T-module. Thus

T = X ⊕ Y for some right ideals X, Y such that X � E/K. We obtain that, X is a simple

injective right R-module and S ∩ X = 0, a contradiction. Hence T is a right small ring.

This proves (2).

(2)⇒ (1) by Proposition 4.1.

(2)⇔ (3)⇔ (5) clear by ( (C. Lomp, 1999), Theorem 4.6).

(1)⇔ (4)⇔ (3) is clear by ( (Y. Alagöz and E. Büyükaşık, 2021), Theorem 2).

Now, we only need to prove (3)⇒ (1).

Let E be an injective right R-module and f : E → S with S simple. If f = 0, then there

is nothing to prove, so assume that f , 0. In this case, f is an epimorphism since S is

simple. Since R is semihereditary, f (E) � S is FP-injective. On the other hand, since R is

semilocal, S is pure-injective by Corollary 2.2. Thus, S is injective, and so is projective

by (3). Hence π splits, i.e., there exists π′ : S → R such that ππ′ = 1S . Then, ππ′ f = f ,

and so E is max-projective. �
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Corollary 4.2 Let R be an indecomposable semilocal right semihereditary ring. Then R

is right max-QF if and only if R is semisimple Artinian or right small. In particular, if R

is a local ring, then R is right max-QF if and only if R is right small or a division ring.

Lemma 4.1 ( (Y. Alagöz and E. Büyükaşık, 2021), Proposition 14) Let R be a local right

max-QF ring. Then R is either right self-injective or right small.

Proposition 4.3 Let R be a local ring. Then the following are equivalent.

(1) R is right max-QF.

(2) (a) R is right small; or

(b) R is right self injective and ExtR(E, J(R)) = 0, for each injective right R-

module E.

Proof (1) ⇒ (2) By Lemma 4.1, R is right small or right self-injective. Suppose R is

right self injective and E an injective right R-module. Consider the short exact sequence

0 J R R/J 0ı π

where J = J(R), the Jacobson radical of R. Applying HomR(E,−), we obtain

0 HomR(E, J) HomR(E,R) ...
ı∗ π∗

... HomR(E,R/J) Ext1
R(E, J) Ext1

R(E,R) = 0

Since R is right self-injective, Ext1
R(E,R) = 0. We know that R is right max-QF. Thus,

the map π∗ : HomR(E,R) → HomR(E,R/J) is onto. Therefore Ext1
R(E, J) = 0. This

proves (2).

(2) ⇒ (1) Suppose (a), that is R is right small. Then Rad(E) = E for each injective right

R-module. Since R/J(R) is simple, Rad(R/J(R)) = 0. As f (Rad(M)) ⊆ Rad(N) for each

right modules M, N, and f ∈ HomR(M,N), we have HomR(E,R/J(R)) = 0. Therefore, E

is trivially max-projective, and so R is right max-QF.
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Now, assume (b). Then for each injective right R-module E, the short exact sequence

0 J R R/J 0ı π

induces the sequence

0 HomR(E, J) HomR(E,R) HomR(E,R/J) Ext1
R(E, J)ı∗ π∗

where J = J(R). By (b) we have Ext1
R(E, J) = 0. Thus π∗ is onto, and so E is max-

projective. Hence R is right max-QF. �

Proposition 4.4 Let R be a local nonsmall right max-QF ring. Then R is a right self-

injective ring and R satisfies one of the following conditions:

(1) (i) R is a right PF ring, and (ii) every injective right module E has a decomposition

E = E1 ⊕ E2, where E1 has essential socle, Rad(E2) = E2 and Soc(E2) = 0.

(2) R is right self-injective, and every injective right R-module has a decomposition as

E = E1 ⊕ E2, where Soc(E1) is essential in E1, Rad(E1) = E1, and Soc(E2) = 0.

Proof Since R is right max-QF and nonsmall, it is right self injective by Lemma 4.1.

(1) Assume Soc(RR) , 0. As R is local, it is indecomposable. Thus, R is right uniform as

it is right self-injective. Therefore, Soc(RR) is simple, and so R is a right PF ring. Let E be

an injective right R-module. Let E1 = E(Soc(E)). Then E = E1 ⊕ E2 with Soc(E2) = 0.

Let us show that Rad(E2) = E2.

Assume that Rad(E2) , E2. Let f : E2 → R/J(R) be a nonzero homomorphism. Since

E2 is max-projective, there is a homomorphism g : E → R such that f = π ◦ g, where π :

R → R/J(R) is the natural epimorphism. As f is injective and π is a small epimorphism,

g is an epimorphism. Then g splits because R is projective. So E2 � R ⊕ Ker(g). This

isomorphism and Soc(RR) , 0 imply that Soc(E2) , 0, a contradiction. Thus, Rad(E2) =

E2, and so E has the desired decomposition.

This proves (1).

(2) Soc(RR) = 0. As in the first case, for any injective right module E, we have E =

E1 ⊕ E2, where E1 = E(Soc(E)). Clearly E1 has essential socle, because every module

is essential in its injective hull. Also, Soc(E2) = E2. Let us show that Rad(E1) = E1.

Assume that Rad(E1) , E1. Let f : E1 → R/J(R) be a nonzero homomorphism. By
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similar arguments as in Case I, we have E1 � R ⊕ Ker(g) for some homomorphism g :

E1 → R. This isomorphism implies that E1 has a nonzero submodule, say X, isomorphic

to R. Since Soc(R) = 0, we also have Soc(X) = 0. Thus X∩Soc(E1) = 0. This contradicts

with the fact that Soc(E1) is essential in E1. Therefore, we must have Rad(E1) = E1.

This proves (2). �

Recall that, for every right module M, if M/Rad(M) is max-projective, then M is

max-projective for Hereditary rings, so this leads us to the following theorem.

Proposition 4.5 Let R be a right Hereditary ring. Then following statements are equiva-

lent.

(1) R is right max-QF.

(2) For every injective right module E, the module E/Rad(E) is max-projective.

(3) Every injective right module E with Rad(E) = 0 is max-projective.

4.1. Noetherian almost-QF and max-QF rings

In this section, we will give characterizations of almost-QF and max-QF rings

on right Noetherian right nonsingular and right finite-dimensional rings. It is well known

that on a right Noetherian ring, injective modules are direct sum of their indecomposable

submodules.

Theorem 4.2 (E. Matlis, 1958) For any ring R, the following statements are equivalent.

(1) R is right Noetherian.

(2) Any injective module MR is a direct sum of indecomposable submodules.

This well known characterization by E. Matlis yields us some characterizations of

max-projective modules and max-QF rings over Noetherian rings.

Proposition 4.6 (K. R. Goodearl, 1976) Let N be a submodule of a module N′. If N is

essential in N′, then N′/N is singular.

Proof Consider the short exact sequence

0 N N′ N′/N 0
f g g
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where f : N → N′ is an essential monomorphism. Then since N is an essential submodule

of N′, f (A) is essential. Thus, by ( (K. R. Goodearl, 1976), Proposition 1.20) N′/N is

essential. �

Lemma 4.2 Let R be a right Noetherian right nonsingular ring. Then, the following are

equivalent for an injective right module E.

(1) E is R-projective.

(2) E is max-projective.

(3) E = E1 ⊕ E2 where Rad(E1) = E1 and E2 is projective.

Proof (1)⇒ (2) is clear.

(2) ⇒ (3) Since R is right Noetherian, every injective right R-module is a direct

sum of indecomposable injective right R-modules. Thus, E = ⊕i∈IEi, where I is an index

set, and Ei is indecomposable for each i ∈ I. As E is max-projective and R is right

nonsingular, Ei is projective, or Rad(Ei) = Ei for each i ∈ I by Proposition 4.2. Let J =

{i ∈ I | Rad(Ei) = Ei}. Then ,for E1 = ⊕i∈JEi and E2 = ⊕i∈I\JEi, we have Rad(E1) = E1

and E2 is projective. Thus, (3) follows.

(3) ⇒ (1) Let Q be an injective right R-module. Then, by (3), Q = Q1 ⊕ Q2,

where Rad(Q1) = Q1 and Q2 is projective. Since R is right Noetherian, R/I is Noetherian

for each right ideal I of R. Thus, Hom(Q1,R/I) = 0 for each right ideal I of R. So, Q1

is R-projective. Projective modules are trivially R-projective, and so Q2 is R-projective.

Hence Q = Q1 ⊕ Q2 is R-projective as a direct sum of R-projective modules. �

Proposition 4.7 Let R be a right Noetherian right nonsingular ring. Then the following

are equivalent.

(1) R is almost-QF.

(2) R is max-QF.

(3) Every injective right module E has a decomposition E = E1 ⊕E2, where Rad(E1) =

E1 and E2 is projective.

Proof (1)⇒ (2) is clear.

(2)⇒ (3) By Lemma 4.2.

(3) ⇒ (1) Every projective module is R-projective, and each module N with

Rad(N) = N is R-projective over a right Noetherian ring. Hence (3) implies (1). �
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Proposition 4.8 Let R be a right finite-dimensional right nonsingular ring. Then the

following are equivalent.

(1) R is right max-QF.

(2) E(RR) is max-projective and Rad(E) = E for every singular injective right R-

module.

(3) For every injective module E can be decomposed E = E1⊕E2, where Rad(E1) = E1

and E2 is projective.

(4) Every nonsingular injective right R-module is max-projective and Rad(E)=E for

every singular injective right R-module.

Proof (1)⇒ (2) is clear.

(2)⇒ (3) Let E be an injective right R-module. Since R is right nonsingular, E =

Z(E) ⊕ K for some submodule K of E. Note that K is right nonsingular injective right R-

module, and Rad(Z(E)) = Z(E) by Lemma 3.4. Then K is a direct sum of indecomposable

injective modules by ( (K. R. Goodearl, 1976), Example 3.5), that is K = ⊕i∈IKi, where

each Ki is indecomposable and injective. Then for each i ∈ I, Ki is projective or Rad(Ki) =

Ki by Lemma 3.3. Then K can be expressed as K = K1 ⊕K2, where Rad(K1) = K1 and K2

is projective. For E1 = Z(E) ⊕ K1, and E2 = K2, E has the desired decomposition in (3).

(3)⇒ (1) is clear.

(4) ⇒ (1) Since R is right nonsingular, every injective right module Q can be

written as Q = Z ⊕ N, where Z is the singular submodule of Q and N is nonsingular. By

(4), Rad(Z) = Z, hence it is max-projective. As N is nonsingular, N is max-projective

again by (4). Hence Q is max-projective, and so R is right max-QF.

(1)⇒ (4) Clearly (1) implies that nonsingular injective right R-modules are max-

projective. By Lemma 3.4, we have Rad(E) = E for every singular right R-module. �

Lemma 4.3 Let R be a right nonsingular ring and Q an indecomposable nonsingular

injective right R-module. Then Q embeds in E(RR).

Proof Let 0 , x ∈ Q. Then xR � R/I for some closed right ideal I of R. Let J be

a complement of I in R. Then J � (J ⊕ I)/I is essential in R/I. Thus, xR contains an

essential submodule, say K, isomorphic to J. Since Q is indecomposable and injective, it

is uniform. Therefore, K is essential in Q. Therefore, Q = E(K) � E(J) ⊆ E(RR). Hence,

Q embeds in E(RR), and this completes the proof. �
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For a right R-module M, let P(M) =
∑
{N ≤ M|Rad(N) = N}. Then Rad(P(M)) =

P(M) for every right R-module M.

Lemma 4.4 Let R be a right nonsingular right max-QF ring with P(E(RR)) = 0. Then

every indecomposable nonsingular injective right R-module is projective.

Proof Let K be an indecomposable nonsingular injective right R-module. Then K is

max-projective by the hypothesis, and so K is projective or Rad(K) = K by Lemma 3.3.

On the other hand, K embeds in E(RR) by Lemma 4.3. As E(RR) = 0 by the hypothesis,

Rad(K) = K is not possible. Therefore K is projective. �

We obtain the following corollary by Proposition 4.8 and Lemma 4.4.

Corollary 4.3 Let R be a right finite dimensional right nonsingular ring with P(E(RR)) =

0. The following are equivalent.

(1) R is right max-QF.

(2) E(RR) is projective and Rad(E) = E for every singular injective right R-module.

(3) For every injective module E, where E = E1 ⊕ E2 where Rad(E1) = E1 and E2 is

projective.

(4) Every nonsingular injective right R-module is projective and Rad(E) = E for every

singular injective right R-module.

4.2. Symmetry of Max-QF and Almost-QF Rings

In this section, we will give an example in order to show that being almost-QF

and max-QF is not left-right symmetric for a ring R.

Proposition 4.9 Let R be the ring

Z Q0 Q

. Then R has the following properties.

(1) R is right Noetherian.

(2) R is not left Noetherian.

(3) R is right hereditary.

(4) R is not left hereditary.
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(5) R is left semihereditary.

Proof The proofs of (1) and (2) follows from ( (T. Y. Lam, 1991), 1.22) and the proofs

of (3),(4) and (5) follows from ( (T. Y. Lam, 1999), 2.33). �

Lemma 4.5 The map φ :

Z Q0 Q

 → Q given by φ(

a b

0 c

) = c is a ring epimorphism,

and Ker(φ) =

Z Q0 0

 is a (two sided) maximal ideal of R.

Proof Let x =

a b

0 c

, y =

a′ b′

0 c′

 ∈
Z Q0 Q

. Then

φ(

a b

0 c

 .
a′ b′

0 c′

) = φ(

aa′ ab′ + bc′

0 cc′

) = c.c′ = φ(

a b

0 c

)φ(

a′ b′

0 c′

)
and also

φ(

a b

0 c

 +

a′ b′

0 c′

) = φ(

a + a′ b + b′

0 c + c′

) = c + c′ = φ(

a b

0 c

) + φ(

a′ b′

0 c′

 .

We can also find

a b

0 c

 ∈
Z Q0 Q

 for every c ∈ Q so that φ is a ring epimorphism. The

first isomorphism theorem and the fact that Q is a field, implies that Ker(φ) is a maximal

ideal of R. �

Lemma 4.6 With the notations in Lemma 4.5, the left R-module S = R/Ker(φ) is singular

and injective.

Proof Set L = Ker(φ). Since L maximal left ideal, it is essential or a direct summand

of R. Assume that L ⊕ K = R for some left ideal of R. Then l + k =

1 0

0 1

 for some l ∈ L

and k ∈ K. Thus, K contains an element of the form

a b

0 1

, where a ∈ Z and b ∈ Q. Then0 1

0 0

 ·
a b

0 1

 =

0 1

0 0

 ∈ K ∩ L, a contradiction. Therefore L is an essential left ideal of

R, and so S = R/L is singular by ( (K. R. Goodearl, 1976), Proposition 1.20(b)).
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Now let us prove that S is an injective left R-module. For this purpose, we shall

use the Baer’s Criteria for injectivity. First note that by ( (T. Y. Lam, 1999), 2.33) the left

ideals of R are of the following form:

N1 =

Z Q0 Q

 (n , 0)

N2 =

0 Q

0 Q


NV = {

x y

0 0

 : (x, y) ∈ V ( a subgroup of Z ⊕ Q)}

I: We claim that Hom(N1, S ) = 0. Suppose there is a nonzero homomorphism

f : N1 → S . Since S is a simple left ideal and f is nonzero, Im( f ) = S . Then Ker( f ) is a

maximal submodule of N1. It is easy to check that, maximal submodules of N1 are of the

form:

Kp =

pnZ Q

0 Q


K =

nZ Q0 0


If Ker( f ) = Kp, then N1/Kp � S . But

annl(N1/Kp) =

pZ Q0 Q

 ,
Z Q0 0

 = annl(S ).

This is a contradiction. Therefore, Hom(N1, S ) = 0.

If Ker( f ) = K, then for

nk a

0 b

 ∈ N1 we have

f

nk a

0 b

 = f

nk a

0 0

 + f

0 0

0 b

 = f

0 0

0 b

 =

0 0

0 b

 · f

0 0

0 1


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Let f

0 0

0 b

 =

0 0

0 s

 +

Z Q0 Q

. Then, it is easy to check that

f

nk a

0 b

 =

nk a

0 b

 · f

0 0

0 1

.
That is f is the right multiplication by f

0 0

0 1

. Thus, the map g : R → S defined by

g

1 0

0 1

 = f

0 0

0 1

 extends f .

In conclusion, we see that each homomorphism f : N1 → S extends to a homo-

morphism g : R→ S .

II: Consider the left ideal N2 =

0 Q

0 Q

, and let f : N2 → S be a homomorphism.

Since

RR =

Z Q0 Q

 =

Z 0

0 0

 ⊕
0 Q

0 Q

 ,
N2 is a direct summand of R. Let π : R → N2 be the projection homomorphism and

i : N2 → R the inclusion homomorphism. Then the homomorphism g = f ◦ π. : R → S ,

clearly extends f .

III: Consider the left ideal NV = {

x y

0 0

 : (x, y) ∈ V (V is a subgroup of Z ⊕ Q)}.

Since

n q1

0 q2

 ·
x y

0 0

 =

nx ny

0 0

, the left multiplication on NV is determined by Z.

Therefore the lattice of left submodules of NV and that of V are isomorphic. Therefore,

for each maximal submodule K of NV , NV/K � Zp for some prime integer p. Hence, as S

is infinite, Hom(NV , S ) = 0. This means that, any homomorphism from NV → S extends

trivially to a homomorphism R→ S .

Thus, by Baer Criteria, S is an injective simple left R-module. �

Lemma 4.7 R=

Z Q0 Q

 is not left small in M2(Q)=

Q Q

Q Q

.
Proof Consider X =

Q 0

Q 0

. X is a proper left submodule of M2(Q) and R+X = M2(Q).

Thus, by Definition 0.6, R is not left small in M2(Q). �

Lemma 4.8 R =

Z Q0 Q

 is right small in TR=

QZ QQ
QZ QQ

.
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Proof Right R-submodules of T are of the form:

NU = {

x Qy Q

 : (x, y) ∈ U(U is a subgroup of Q ⊕ Q)

QZ Q0 0

,
 0 0

QZ Q

,
0 Q

0 0

,
0 0

0 Q

.
Thus, R + X , T for each proper submodule X of T . Hence R is right small

submodule of T . �

Lemma 4.9 Let R=

Z Q0 Q

. Then RR is essential in the right R-module W=

Q Q

Q Q

.
Proof Let

a b

c d

 be a nonzero element of W.

Case I: If a , 0 or c , 0, then

a b

c d

.
0 1

0 0

 =

0 a

0 c

 is a nonzero element of R.

Case II: If b , 0 or d , 0, then

a b

c d

.
0 0

0 1

 =

0 b

0 d

 is a nonzero element of R.

Therefore, RR is essential in W. �

Lemma 4.10 Let R=

Z Q0 Q

. Then E(RR), is the injective hull of R as a right R module

over itself, is M2(Q) =

Q Q

Q Q

.
Proof By Lemma 4.9, RR is essential in M2(Q). Also M2(Q) is a semisimple ring.

Then, M2(Q) = Qr
max(R). Since R is right nonsingular, Qr

max(M) = E(RR) by Theorem 2.3.

Therefore, E(RR) = M2(Q). �

Proposition 4.10 Let R=

Z Q0 Q

. Then the following statements hold.

(1) R is right max-QF, but not left max-QF.

(2) R is right almost-QF, but not left almost-QF.

Proof (1) By, Lemma 4.8 and Lemma 4.10, R is a right small ring. Thus, R is right

max-QF. Consider the simple left module S =

Z Q0 Q

 /

Z Q0 0

. Then S is singular and

injective by Lemma 4.6. Since R is left nonsingular, the identity map 1S : S → S can

not be lifted to a homomorphism S → R, that is there is no homomorphism g : S → R

34



such that πg = 1S , where π : R → S is the natural epimorphism. Thus, the injective left

R-module S is not max-projective. Therefore, R is not a left max-QF ring.

(2) Since R is right Hereditary and right Noetherian, being right almost-QF and right

max-QF coincide. Thus R is right almost-QF by (1). Again by (1), R is not left max-QF,

so it is not left almost-QF. �

4.3. Super max-QF rings

In this section, we show that max-QF and almost,QF need not to be closed under

factor rings and define super almost-QF and super max-QF rings.

In the following example, we show that max-QF rings are not closed under factor rings.

Example 4.1 ( (T. Y. Lam, 1999), page 420, Ex. 5) The ring R = k[x, y]/(x2, y2) is a local

QF ring. For the ideal I = (x2, xy, y2)/(x2, y2), the ring

S = R/I � k[x, y]/(x2, xy, y2)

is not QF because it is not self-injective.

The ring R is max-QF. But its factor ring S is not max-QF. Because S is Artinian

as a factor ring of an Artinian ring and Artinian ring is max-QF iff it is QF.

Thus, quotient rings of max-QF rings need not be max-QF.

Note that the example above also shows that factor rings of almost-QF rings need

not be almost-QF.

Definition 4.3 R is said to be right super almost-QF (respectively, super max-QF) if every

quotient ring of R is right almost-QF (respectively, max-QF).

Recall that a ring R is super QF if every factor ring of R is QF. Since being

QF is left-right symmetric, a ring R is left super-QF if and only if R is right super QF.

Every super QF ring is left-right super almost-QF, and every right super almost-QF ring

is super max-QF.

Lemma 4.11 Let R be a PID which is not a field. Then, R is super almost-QF, but not

QF.
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Proof Every domain is small, and so almost-QF. Every proper factor ring of PID is

QF. Thus every PID is super almost-QF. As R is a domain which is not a field, R is not

QF. �

Over a right Artinian ring, the notions of projectivity, R-projectivity and max-

projectivity coincide. Hence, we have the following:

Proposition 4.11 Let R be right Artinian ring. The following are equivalent.

(1) R is right super almost-QF.

(1’) R is right super max-QF.

(2) R is super QF.

(3) R is left super almost-QF.

(3’) R is right super max-QF.

Proposition 4.12 If R is a commutative ring, then R/P is a max-QF ring for each prime

ideal P.

Proof Note that, an ideal of P of a commutative ring R is prime if and only if the

factor ring R/P is an integral domain. Every integral domain is max-QF. Thus, the proof

follows. �
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CHAPTER 5

CONCLUSION

This thesis is motivated by the paper (Y. Alagöz and E. Büyükaşık, 2021) and

the aim was to give further characterizations of max-QF rings and address some ques-

tions that are mentioned in (Y. Alagöz and E. Büyükaşık, 2021). We obtain some new

characterizations of max-QF rings over right nonsingular, right Hereditary, right finite

dimensional and right Noetherian rings.

We prove that being max-QF and almost-QF rings are not left-right symmetric.

We also show that almost-QF and max-QF rings are not closed under factor rings. This

motivates us to define super almost-QF and super max-QF rings as the rings whose factor

rings are almost-QF and max-QF, respectively.
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