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ABSTRACT 

MATERIAL MODEL CALIBRATION OF FIBER REINFORCED 

CONCRETE USING DEEP NEURAL NETWORK 

The numerical modeling of fiber reinforced concrete (FRC) structures is quite 

challenging due to the material's heterogeneous and anisotropic nature. The majority of 

material models that are suitable for regular concrete are not able to account for 

the FRC material’s increased tensile capacity and ductility. In this study, a calibration 

method is proposed that is simple and effective for modeling FRC structures 

using a selected concrete material model. The Karagozian and Case (K&C) material 

model in LS-DYNA is capable of representing the ductile nature of FRC, and its 

parameters related to tensile behavior were calibrated to reflect the tensile-softening 

behavior.  

The calibration process was executed using the uniaxial direct tension test 

results of two different FRC mixtures. In addition, single element numerical 

models were constructed using LS-DYNA under uniaxial tension. The tensile 

parameters of K&C were varied over a wide range using single elements to form a 

database. Then, a Deep Neural Network (DNN) was constructed to pass the database 

through and find the K&C parameters that best matched the experimental uniaxial test 

results.  

The proposed methodology was tested under static and high-strain rate 

loading conditions, and the results were compared to the experimental 

findings. The performance of the DNN-achieved parameters was found to be 

satisfactory. The results showed that the DNN-calibrated parameters were able to 

accurately predict the behavior of FRC structures under static and dynamic loading 

conditions. 
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ÖZET 

 

DERİN SİNİR AĞI KULLANILARAK LİF TAKVİYELİ BETON 

MALZEME MODELİ KALİBRASYONU 

 

Fiber takviyeli beton yapıların sayısal modellemesi, normal betona göre daha 

zordur. Normal beton için uygun olan malzeme modellerinin çoğu, fiber takviyeli beton 

malzemenin yüksek çekme kapasitesini ve arttırılmış sünek davranışını hesaba katamaz.  

Bu çalışmada, fiber takviyeli beton yapılarının modellenmesi için basit ve etkili 

bir malzeme modeli kalibrasyon yöntemi önerilmiştir. Bunun için LS-DYNA'daki 

normal beton malzeme modeli olan Karagozian ve Case (K&C) malzeme modeli 

seçilmiştir. Fiber takviyeli betonun sünek doğasını yansıtabilecek çekme davranışıyla 

ilgili K&C parametreleri, çekme yumuşatması davranışını yansıtacak şekilde kalibre 

edilmiştir. 

Kalibrasyon işlemi, iki farklı fiber takviyeli beton karışımının direk çekme testi 

sonuçları kullanılarak gerçekleştirilmiştir. Ayrıca, LS-DYNA ile direk çekme gerilimi 

altında tek eleman sayısal modelleri oluşturulmuştur. Bir veri tabanı oluşturmak amacı 

ile K&C'nin çekme parametreleri geniş bir aralıkta değiştirilmiştir. Veri tabanı, 

oluşturulan Derin Sinir Ağı’ndan geçirilip deneysel tek eksenli test sonuçlarına en iyi 

uyan K&C parametrelerini bulunmuştur.  

Önerilen metodoloji statik ve yüksek şekil değiştirme yükleme koşulları altında 

test edilmiş ve sonuçlar deneysel bulgularla karşılaştırılmıştır. Derin Sinir Ağı 

tarafından elde edilen parametrelerin performansının kabul edilebilir olduğu 

bulunmuştur. Sonuçlar, Derin Sinir Ağı ile kalibre edilen parametrelerin, statik ve 

dinamik şekil değiştirme yükleme koşulları altında fiber takviyeli beton yapılarının 

davranışını doğru bir şekilde tahmin edebildiğini göstermiştir. 
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CHAPTER 1  

 

INTRODUCTION 

 

As a heterogeneous and anisotropic material, predicting the behavior of concrete 

has always been a challenge. Specifically, concrete’s weaker and brittle behavior under 

tensile stresses makes the analytical and numerical modeling of concrete structures 

more difficult compared to ductile and isotropic materials such as metals. Despite these 

difficulties, there has been considerable progress in this area over the years. Numerous 

analytical and numerical methodologies were developed for modeling the behavior of 

reinforced concrete structures, some of which proved to be quite successful. However, a 

relatively new development in the industry posed a new challenge in this area. To 

improve the tensile behavior characteristics of reinforced concrete, the use of fibers, 

steel, natural or synthetic, started to gain popularity in concrete structures. Research at 

the material level in this area had gone a long way over the past two decades, and fiber 

reinforced concrete (FRC) is increasingly finding new application areas to improve the 

durability, ductility, and energy absorption capacity of reinforced concrete structures. 

On the other hand, numerical modeling of fiber reinforced concrete structures lacked 

behind those developments in the industry. The majority of the material models that 

were proved to be satisfactory for ordinary reinforced concrete were not suitable for 

direct inclusion of the increased tensile capacity and ductility of FRC. Hence, 

considerable new research was required to either develop new models or adapt existing 

models to include the characteristics of FRC.  

Developing entirely new models for FRC is a challenging issue since the 

mechanical behavior of FRC varies considerably depending on fiber properties and 

proportions. The use of different types and ratios of fibers in the same concrete mix, 

called hybrid fiber reinforced concrete (HYFRC), even further complicates the problem, 

since this type of usage virtually yields infinite number of possibilities for the material. 

Therefore, manipulating existing concrete models by calibrating its parameters 

according to a specific FRC mix of interest can be considered a more practical way to 

model FRC structures. However, calibrating the parameters of a concrete model has its 

own challenges. Some concrete models may have certain numerical parameters that 
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were determined for ordinary concrete through experience and extensive experimental 

data collected over years of research, while others may require complicated testing 

systems to determine its parameters. Moreover, these concrete models may have several 

parameters that may require calibration, each of which may have a significant effect on 

the outcome. As a result, complicated and quite costly parameter determination efforts 

may be required for modeling FRC, which need to be repeated for every different FRC 

material. 

In this study, a simpler and more effective calibration methodology is proposed 

for a selected concrete material model to model FRC structures. For this purpose, 

Karagozian and Case (Malvar et al., 1997) (K&C) concrete model, available in finite 

element software LS-DYNA, was selected. Parameters of K&C model directly related 

to the tensile behavior of concrete were calibrated to model the tension-softening 

behavior of FRC. To facilitate the calibration procedure, uniaxial direct tension test 

results of two different FRC mixes were used. A single element model was built in LS-

DYNA and subjected to tensile stresses. Related tensile parameters were changed over a 

wide range and the tensile stress-displacement behavior of each model was obtained. 

Later, a Deep Neural Network (DNN) methodology was developed to obtain the most 

suitable parameter set that gives a tensile stress-displacement behavior that is closest to 

experimentally obtained ones through uniaxial tension tests. By this methodology, 

calibrated parameters were obtained using results obtained from a simple test method 

and a numerical analysis procedure that can be extensively automatized.  

At the following stage of the study, parameter sets obtained through the 

mentioned parameter calibration procedure were employed in different structural 

elements under different loading conditions to test their applicability. Results of an 

experimental program conducted by Aloui (2020) were used to test the performance of 

the calibration procedure under static loading conditions. In this study, one-way FRC 

panels cast with the same mixes used for calibration were tested under four-point 

bending loads. These bending tests were modeled in LS-DYNA using K&C concrete 

model with parameters found from DNN calibration and results were compared with 

experimental results. To test the performance of the DNN calibrated parameters under 

high strain rate conditions, two-way panels tested under blast loads using a shock tube 

by Alkabbani (2021) were used. These panels were also modeled in LS-DYNA using 

K&C concrete model with parameters found from DNN calibration and obtained results 

were compared with experimental results. Through these studies, efficiency of this 
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calibration methodology was tested and verified for different FRC members under 

different loading scenarios.         

Following chapter of this thesis presents a literature review outlining current 

practice in numerical modeling of FRC structures. In Chapter 3, the basic principles of 

used DNN methodology were presented along with the developed parameter calibration 

methodology of K&C concrete model for selected FRC mixes. Chapter 4 presents 

verification studies of the found parameter sets under static loading conditions, whereas 

Chapter 5 presents similar verification studies conducted for high strain rate conditions. 

Overall discussions and conclusions were presented in Chapter 6. 
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CHAPTER 2  

 

LITERATURE REVIEW 

 

2.1. Introduction 

 

Fiber-induced concrete has a high tensile capacity under direct tension loading 

and can exhibit strain-hardening behavior under bending. The need for numerical 

investigation of these materials is usually met by performing large amounts of 

experimental tests to obtain a full numerical representation to write a new material 

model. Another method is to calibrate an existing material model that can represent this 

behavior; however, concrete materials are pressure sensitive, and experiments under 

varying pressures are required. With machine learning algorithms, material model 

calibration can be done without complex experimental testing. In this Chapter, a 

literature review regarding the material model used for fiber reinforced concrete, and 

the parameter search methodology with machine learning is presented. The numerical 

modeling of fiber reinforced concrete under high-strain loading conditions is 

investigated here as well. 

 

2.2. Modeling FRC with Karagozian and Case Material Model  

 

The FRC material improves tensile and flexural strength and increases energy 

absorption and impact resistance (Naaman and Reinhardt 2007; Martinelli, Caggiano, 

and Xargay 2015; Rahmani et al., 2012). The numerical simulation of fiber-reinforced 

concrete requires fracture properties (Farnam, Mohammadi, and Shekarchi 2010; Lin 

and Gravina 2017). To investigate this, researchers have generally used uniaxial 

tension, and four-point bending tests (Sorelli, Meda, and Plizzari 2005; Maalej et al., 

2005; Li, Wang, and Wu 2001). 

The Karagozian and Case (K&C) material model in LS-DYNA is a capable 

material model that can represent the ductile nature of FRC. The current version is the 

third release (Material 72 - Release III) of the Karagozian and Case material model and 

it has the ability to include strain-rate effects (Magallanes et al., 2010). Another 
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improvement made to the new release is to handle strain-softening without mesh 

dependency. Additionally, the K&C material model includes an automatic parameter 

generator that calculates the required parameters through interpolation given the 

compressive strength.  

The K&C was explicitly developed for concrete material. Levi-Hevroni et al. 

(2018) used K&C for regular concrete but modified it with dynamic tension 

experimental tests. For that purpose, they have used a novel vertical tension split 

Hopkinson bar. L. Y. Xu, Xu, and Wen (2019) aimed to numerically represent the 

penetration and perforation of reinforced concrete targets using modified K&C. 

Experimental impact tests were conducted to determine the performance of the modified 

K&C material model. Additionally, the Holmquist Johnson Cook (HJC) concrete 

material model was used in the numerical modeling. The predicted impact crater sizes 

and residual projectile velocities were in agreement with the experimental findings for 

both numerical material models. 

Some researchers selected to modify it to fit concrete-like material. Kucewicz et 

al. (2022) and Kucewicz et al. (2020) modified the material model to fit the brittle 

fracture behavior of dolomite rock. Mardalizad et al. (2017) and Mardalizad et al. 

(2019) used modified K&C to model quasi-brittle material Pietra Serena sandstone. 

Under high-strain rates, fiber reinforced concrete (FRC) can exhibit different 

ductility, strain hardening, and energy absorption behavior compared to regular 

concrete. Numerical modeling is an efficient tool to investigate the structural behavior 

of FRC material. The numerical prediction of ultra-high performance concrete behavior 

under low-velocity impact loading was done by (S. Xu, Wu, and Wu (2020). For this 

purpose, K&C was calibrated through experimental data fitting. Triaxial compression 

tests were used to modify the material model. Calibrated material model was validated 

with drop-weight experimental tests.   

Mao et al. (2014) examined the ultra-high performance concrete behavior under 

field blast loading with a modified version of the K&C and an accompanying 

experimental test for verification. The strain rate and strain-softening effects were 

considered during the calibration process, as the original material model is for regular 

concrete. The calibrated version of the K&C was found to be successful in generating 

the maximum deformation and damage aspects of the experimental blast test. 

Thai, Nguyen, and Nguyen (2020) used modified K&C for fiber reinforced 

concrete and calibrated it for static and high-strain rate loadings. Material model 
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parameters were acquired through axial and triaxial experimental tests. The 

performance of the modified K&C material model was tested on compression, bending, 

and blast loading. The achieved results were found to be in a good agreement with the 

experimental data. 

Overall, K&C is a capable material model for a variety of materials including 

FRC under static and dynamic loading conditions. However, it can be complicated for 

the average user. The variety of parameters provides the experienced user a way to 

modify the material model through trial-and-error with the data acquired by 

experimental tests. Opting out of complex experimental testing was aimed by the author 

of this thesis and the calibration process was performed through a simple test direct 

tension. The novel approach of parameter investigation with machine learning was 

applied.  The following subsection includes the machine learning applications, and how 

they can be applied to material model calibration.  

2.3. Machine Learning Applications 

Machine learning algorithms can be used in many ways. In the manufacturing 

industry, machine learning applications are preferred for optimizing product quality and 

process (Weichert et al., 2019; Hürkamp et al., 2021). For the case of metal sheet 

forming, many complex deformation cases and the material characterizations for the 

finite element modeling process can be done with convolutional neural network 

algorithm (Chamekh, Bel Hadj Salah, and Hambli 2009; Hamouche and Loukaides 

2018; Cekić and Çavdar 2022; S. Wu, Zhao, and Ji 2022). Misaka et al. (2020) have 

used experimental metal-cutting image measurements as output for deep learning 

schemes using convolutional neural networks.  

Another sector machine learning has become popular is the automotive industry. 

The data-driven learning methods for crashworthiness, fuel, and battery efficiency are 

becoming very important (S. Wu, Zhao, and Ji 2022; Yoo, Park, and Lee 2022; Kohar et 

al., 2021; Liusko 2021; Kaur et al., 2021). Numerical designs using finite element 

methods are considered to have higher computational costs compared to deep learning 

applications (van de Weg et al., 2021). However, the training of learning networks can 

be time-consuming and expensive to begin with, and experimental validation cases are 

still required for accurate predictions. Overall, finite element methods are still the gold 
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standard for crashworthiness analysis, and data-driven methods can be used as a 

complementary tool. 

In the structural health monitoring domain, machine learning applications can 

provide a faster way to process data. Deep learning systems can predict and classify 

data and even can locate irregularities and defects (Entezami et al., 2022; Sarmadi et al., 

2022; Sarmadi and Karamodin 2020). Some caveats in structural health monitoring such 

as deterministic approaches of the finite element analysis, adaptive capability based on 

the predictions, and vulnerability to noise can be surpassed.  Image recognition, time-

series analysis, feature extraction, and damage identification can be used with deep 

learning algorithms to make it automated and improve the accuracy of structural health 

monitoring applications.   

Karypidis (2019) aimed to build an anomaly detection system for a reinforced 

concrete beam. Deep learning was applied to strain data acquired from the bending of 

RC beams. Optic fiber systems were used to monitor the strain distribution along the 

steel reinforcements. Entezami et al. (2022) used unsupervised learning to develop a 

non-parametric approach in anomaly detection for early damage detection. The 

methodology was verified with two full-scale bridges, and compared with other 

anomaly detection techniques. Abbassi et al. (2022) intended to detect and locate the 

position of the damage while considering temperature variations. Intact and damaged 

carbon fiber reinforced polymer plates were investigated at varying temperatures. The 

acquired data was processed with unsupervised learning algorithms, where the 

performance of the autoencoder was found to be best. 

Deep learning methods are a powerful tool, but they are not a magic wand. 

Relying solely on machine learning systems can cause problems, as the quality of the 

learning architecture depends on the quality of the data and the appropriateness of the 

learning architecture. However, combining them with finite element methods can 

provide accurate and computationally fast results. With regard to the numerical and 

experimental outcomes, the machine learning model can provide insight and give out 

nonlinear relationships as a grey box.  
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2.4. Estimating Material Properties with Machine Learning  

 

The Deep Neural Network (DNN) is deep learning method more complex than 

artificial neural networks because it contains multiple hidden layers. More detailed 

explanation of DNN architectures is presented in Chapter 3.  

DNN can be used in numerical and experimental investigations of concrete-like 

materials owing to their heterogeneity. DNN applications are widely used with concrete 

materials especially for compression strength estimations (Chou et al., 2014). The 

variations in the experimental test results for regular concrete, and FRC can be sorted 

using machine learning algorithms.  

The compressive strength of materials such as geopolymer concrete (Gupta and 

Rao 2022), hybrid fiber reinforced self-compacting concrete (Kina, Turk, and Tanyildizi 

2022), lightweight concrete (Nguyen 2019), fiber reinforced concrete (Zheng et al., 

2022), ultra-high performance reinforced fiber concrete (Al-shawafi et al., 2023), 

recycled coarse concrete (Ahmad et al., 2021), and supplementary concrete (with 

cement replacement) (Mahajan, Bhagat, and Struct 2022) can be estimated using DNN 

or other deep learning applications as well other material properties. 

Kina et al. (2022) aimed to develop a method for estimating the mechanical 

properties of fiber-induced self-compacting concrete without comprehensive 

experimental tests. They have used deep learning and support vector regression models 

to estimate the compressive, splitting tensile, and flexural strengths of 24 design 

mixtures. The models were trained on the data points generated by 648 experimental 

tests and then compared with the experimental results. Deep learning performed better 

in terms of accuracy than support vector regression.  

To predict the flexural strength of fiber-reinforced concrete, Zheng et al. (2022) 

developed a method using supervised machine learning algorithms. A database of 

flexural strengths was obtained from the literature. The gradient boosting model 

performed best compared to extreme gradient boosting, and random forest learning 

algorithms in terms of accuracy. The machine learning algorithms provide an easy and 

efficient way for material property prediction, particularly on-site in the construction 

sector. 

In addition to material model properties, behavior under dynamic loading 

conditions can also be examined with machine learning applications. Ibrahim et al. 
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(2011) developed an artificial neural network scheme to predict the blast cratering size 

of reinforced concrete panels. A numerical model of a reinforced concrete panel was 

generated using the Winfrith material model in LS-DYNA, and the numerical procedure 

was verified using a blast field test. A set of data was produced through numerical 

modeling with varying parameters of blast charge weight, standoff distance, and slab 

thickness. Artificial neural networks were trained on 125 numerically produced data 

points. The numerical and artificially produced results were compared with existing 

design charts and were found to be agreeable. Additionally, the blast crater size found 

with artificial neural networks was verified by numerical modeling on a few parameters. 

Yuan et al. (2022) used artificial neural networks to predict interface bond 

strength with 601 data points of normal-strength and ultrahigh-performance concrete. 

Four interface strength factors were investigated. These are compressive strength, 

interface roughness, normal stress level, and casting sequence. The casting sequence 

was explored further and an explicit formula was generated. The generated formula was 

compared to other calculation methods of interface strength. It was found that the 

trained artificial neural network produced results in higher accuracy compared to the 

empirical formulation; nevertheless, the proposed equation was found to be more 

advantageous compared to existing models. 

A maximum crack width estimation of steel material was done by Shehata et al. 

(2018) using artificial neural networks. To train the algorithm, 79 crack segments were 

recorded through a laser scanning microscope, and pixel crack data was converted to 

binary segments of crack width versus segment number. The performances of feed-

forward and cascade forward-back propagation artificial neural networks were 

compared on additional data points. Feed forward back propagation algorithm was 

found to be performing better in terms of the calculated cost function. 

Elshafey et al. (2013) aimed to estimate the crack width within serviceability 

limits for thick concrete members for ACI 318-08. Thick and thin reinforced concrete 

plates with compressive stresses varying between 33 to 70 MPa were used as data 

points to radial basis and feed forward back propagation neural networks. Structural 

element type, element, thickness, cover length, rebar size, and spacing were investigated 

as the parameters of the study. The radial basis neural network achieved the best 

accuracy, whereas existing building codes performed poorly to estimate the crack width. 

Aiming to reduce the discrepancies between the impact resistance of ultra-high-

performance fiber reinforced concrete, Al-shawafi et al. (2023) used artificial neural 
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networks and multilinear regression model to estimate the impact absorption capacity at 

the failure crack stage for U-shaped specimens. The researchers conducted experimental 

drop-weight tests and used the data to train the machine learning models. Artificial 

neural network outperformed the regression model in predicting energy absorption 

capacity with the lowest error.   

2.5. Parameter Investigation with Machine Learning 

Machine learning applications for material model parameter investigation are a 

useful method and have been used by many researchers. Parameter identification can be 

seen as a non-linear inverse problem where unknown system parameters are need to be 

determined (Passarello 2018). The neural network methodology can produce fast 

estimation compared to optimization or inverse fitting methods provided (Pitz, Rooney, 

and Pochiraju 2023). However, there are some challenges, such as computational 

requirements, a big data pool, and technical expertise to overcome problems, such as 

overfitting, when machine learning algorithms are used.  

 Schulte et al. (2022) have used artificial neural networks to investigate the 

material model parameter identification process for the initial guess of the parameters to 

capture large deformations between isotropic damage and isotropic plasticity under 

tensile, compression, and torsion conditions. Meißner et al. (2022) have used neural 

networks-based material parameter investigation with GISSMO in LS-DYNA to take 

failure into account. Achieved results were compared with classical material parameter 

investigation with LS-OPT using various FE models such as quasi-static tensile, strain-

rate dependent tensile, compression, three-point bending, punch, and shear. Koch and 

Haufe (2019) have used supervised learning for the material characterization process to 

predict yield curves using a shell under direct tension. 

For structural simulation of additive processed thermoplastics with the least 

amount of effort and accuracy, Meißner et al. (2020) used neural networks and 

compared them with conventional iterative optimization methods. Parameter 

investigation for the acrylonitrile butadiene styrene material was done with elasto-

plastic material model in LS-DYNA. Data was generated with shell specimens under 

uniaxial tension. Damage mechanisms and strain-rate dependencies were neglected to 
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reduce the number of parameters. Compared to the common iterative optimization 

method (LS-OPT), the neural network algorithm was found to perform better.  

The parameter investigation with deep neural networks provides efficiency 

compared to parameter fitting by trial-and-error. Current study uses a simple 

experimental test, uniaxial direct tension, to calibrate K&C for FRC material, and 

instead of other optimization method, a novel DNN scheme was constructed for 

parameter investigation. Following chapter presents the DNN algorithm and the process 

of K&C calibration. 
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CHAPTER 3 

CALIBRATION OF KARAGOZIAN AND CASE 

MATERIAL MODEL THROUGH DEEP NEURAL 

NETWORK FOR FIBER REINFORCED CONCRETE 

3.1. Introduction 

In this chapter, the details of the Karagozian and Case (K&C) material model 

are presented. Deep neural networks were used for the calibration of K&C damage 

parameters, and the specifics of the investigation age are also presented. Several 

researchers have used similar approaches to model the behavior of concrete-like 

materials. However, the methodology given below proposes an easier calibration 

process for the FRC, while providing a certain level accuracy. 

3.2. Neural Networks 

Describing complex materials with constitutive models requires a lot of 

experimental calibration for the material response. Micromechanical simulations can be 

helpful here. However, its computational cost is high especially when nonlinear finite 

element solutions are used with fracture or damage conditions (Masi et al., 2021; 

Kurumatani et al., 2016; Goyal, Johnson, and Dávila 2004). 

Machine Learning is a promising approach where a computer program improves 

its performance P, on a task T, if it’s able to produce more accurate results for the same 

task with experience E, according to Mitchell (1997). The machine learning system 

learns from the training data set and its predicted error is measured then minimized.  

There are three main categories in machine learning systems. These are 

supervised/unsupervised learning, batch/online learning, and instance-based/model-

based learning depending on the supervision amount, the capability to learn adaptively 

in real-time, and comparing and detecting new data points through pattern detection, 

respectively (Géron 2017). The nature of the problem, data and time-availability effects 
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which categories are to be used. Industries such as automotive, transportation, finance, 

and healthcare are significantly affected by advances in machine learning and data 

science (Grigorescu et al., 2019; Ali et al., 2021; Gu, Kelly, and Xiu 2018; Vellido 

2020). 

An Artificial Neural Network, inspired by the biological neurons in our brains, 

can manage large and complex data for various problems. The ANNs are versatile and 

scalable, thus they are at the hearth of Deep Learning. Image recognition, natural 

language processing, autonomous vehicles, and personalized product recommendations 

are some of the fields in which ANN are used. With the increase in computational 

power and advancements in solution algorithms, the training of large networks takes 

less time. Additionally, when compared to other machine learning techniques, ANN 

performs exceptionally when big data is concerned (Géron 2017).  

The presence of multiple hidden layers in an ANN is called a Deep Neural 

Network (DNN). A DNN is a simplified version of a human cerebral cortex. The 

artificial neurons are stacked to form a DNN, which was deemed impossible in the late 

1990s (Géron 2017).  

Figure 3.1. A Dense Neural Network scheme with four input parameters, three hidden 

layers and an output layer 

The data set in DNN training is mostly handled in batches and each pass here is 

called an epoch or iteration. During the forward pass, each batch is passed through from 

input layer to the first hidden layer and an output is calculated. Then this output is 

passed to the other hidden layers. This progress is continued until the batch has been 
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through the last layer which is the output layer. At the end of this forward pass, an error 

is calculated between the actual output and the output of the first pass, using a loss 

function. Henceforth, a backpropagation algorithm with chain rule is applied to 

determine the contribution of each layer to the calculated error. An error gradient is 

calculated for each neuron connection in each layer. The weights of the connections 

have random initial values during the first forward pass, and are then reappointed with 

backpropagation according to the calculated error gradient. The initial weights and 

biases are appointed randomly to introduce asymmetry and avoid non-zero neurons. 

Introducing zero or identical weights terms causes backpropagation to appoint the same 

values throughout progress, even for a complex neural network scheme with hundreds 

of layers. A general Deep Neural Network scheme with four input parameters, three 

hidden layers and an output layer with single parameter is given in Figure 3.1. 

Figure 3.2. Schematic view of a Neural Network 

The neuron in a DNN evaluates multiple input signals to decide whether to 

activate based on the weighting of those signals via an activation function. How well the 

algorithm is doing is evaluated by a cost function, calculated between the predicted and 

the actual output data. An optimization algorithm is used to minimize the cost function. 

The minimized cost function corresponds to a global optimum and the algorithm’s 

convergence to a global optimum is done by calculating the gradients of the cost 

function with respect to the weights. The nonlinearity of a DNN with feed-forward 

architecture comes from the backpropagation and the activation function. Schematic 

view of a Neural Network is given in Figure 3.2. 

The optimizer in the neural networks helps to find the appropriate weights that 

minimize the cost function. The speed of the used optimizer is a problem when dealing 

with large data sets. The most used optimizer is gradient descent however its 
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convergence speed is an issue for large models. Momentum-based optimizers can be 

handy here such as stochastic gradient descent (SGD), Adam (Adaptive Moment 

Estimation) (Kingma and Ba 2015) and Nadam (Nesterov-accelerated Adaptive 

Moment Estimation) (Dozat 2016). Additionally, a learning rate is prescribed to the 

optimizer function to decide on the size of the step when reaching the global optimum. 

The prescribed learning rate can be a linear, exponential, or step based (changing after 

certain epochs/iterations) function. 

Figure 3.3. Sigmoid, tanh, ReLu and ELU activation functions 

Popular activation functions given in Figure 3.3 are exponential linear (ELU), 

rectified linear (ReLU), logistic (Sigmoid) and hyperbolic tangent activation functions. 

The ReLU is a continuous function, but it is non-differential at z=0, and its derivative at 

z<0 is 0. These characteristics can cause some difficulties with certain optimizers such 

as vanishing or exploding gradients (Ribeiro et al., 2019). However, it is a fast 

activation function so its commonly chosen in many neural network architectures. 

Another advantage of ReLU is that does not have a maximum value which allows it to 

work effectively with Gradient Descend optimization. The sigmoid function is 

continuous and differentiable. The s-shaped function gives values between 0 and 1. 

Additionally, the derivatives of the sigmoid function are non-zero for all input values. 

The hyperbolic tangent function is s-shaped like the sigmoid functions, differentiable 

and continuous. Its output is between -1 and 1, which makes the output of each layer 

more centered around 0 making it a fast optimizer. The ELU activation function is a 

variation of the ReLU activation function. The key differences are that the ELU has 
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negative values when z<0 and it has nonzero gradients at z<0. Additionally, the shape 

of the ELU function is smooth which helps with the optimizer’s speed. 

The complexity of the NN depends on the problem at hand. There are a number 

of different options when constituting a DNN with different hyperparameters including 

how many hidden layers, neurons and dropouts to employ, and which activation, and 

cost function, optimizer and learning rate to use. Above mentioned are hyperparameters 

and a grid search or randomized search option could be employed to see which works 

best for the used data set. TensorFlow framework can be used here which is an open-

source platform that includes the common training models (Abadi et al., 2016). 

Before the input data set is put through the DNN algorithm, it is organized. 

Normalization is applied to the input parameters by removing the mean value and 

scaling the unit variance. This makes sure the convergence points in the correct 

direction, toward the global optimum, and so that it does not take too much time during 

the optimization. Ready-to-use Python library Scikit-learn can be used for this purpose. 

The normalization is done to each feature separately. Predictions of the fitted DNN 

model require a scale-back function thus each parameter is returned to its sort. After 

normalization, the data set is split into training, validation and test sets. Splitting 

progress can be done using the Scikit-learn library as well.  

Machine learning organizations for parameter investigation are a useful method 

and have been used by many researchers. Schulte et al. (2022) have used artificial 

neural networks to investigate the material model parameter identification process for 

the initial guess of the parameters to capture large deformations between isotropic 

damage and isotropic plasticity under tensile, compression and torsion conditions. 

Meißner et al. (2022) have used neural networks-based material parameter investigation 

with GISSMO in LS-DYNA to take failure into account, then compared the results with 

classical material parameter investigation with LS-OPT using various FE models such 

as quasi-static tensile, strain-rate dependent tensile, compression, three-point bending, 

punch, and shear. Misaka et al. (2020) have used experimental metal cutting image 

measurements as output for deep learning schemes using convolutional neural networks. 

Koch and Haufe (2019) have used supervised learning for the material characterization 

process to predict yield curves using a shell under direct tension. 

Compared with classical optimization-based iterative parameter investigation, 

machine learning applications can provide a faster and more automated approach. 

However, there are some challenges, such as computational requirements, a big data 
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pool, and technical expertise to overcome problems, such as overfitting, when machine 

learning algorithms are used. The DNN scheme can be used in numerical and 

experimental investigations of concrete-like materials for categorizing purposes. The 

variations in the experimental test results for regular concrete, and FRC can be sorted 

using machine learning algorithms.  

The current study uses Deep Neural Networks to calibrate a material model in 

LS-DYNA to utilize it when modeling FRC with varying steel fiber and polyvinyl 

alcohol synthetic fiber additions. Subsequently, the strain-softening behavior of FRC 

materials under tension-dominated conditions was used for calibration and validation. 

Direct tension and four-point bending tests were chosen as the tension-dominated 

conditions.  

The main aim in this study is to use a simple test, such as direct tension, during 

material model calibration and use the calibrated material model for complex loading 

conditions. Thus, other extensive experimental tests were made redundant, other than 

the simple compressive and tension strength tests. The tensile strength is more critical 

because its lower than its compressive strength, thus compression-dominated behavior 

was not investigated. As a future study, FRC material’s behavior with primary stresses 

in compression can be studied through material model parameter investigation using 

DNN. 

The K&C material model in LS-DYNA was selected to represent the ductile 

nature of FRC. The damage function of (λ & η) and the tensile damage parameter (b2) 

were selected to be investigated with the DNN scheme. Single elements under uniaxial 

tension were generated to form the input database. Single element numerical testing is a 

cost-effective way to demonstrate the behavior of given material model parameters. 

The output feature of the DNN was selected as a single parameter. This single 

parameter is a ratio that represents the ductility behavior of FRC material during direct 

tension testing. It was selected as the ratio of the numerical to experimental 

displacement values corresponding to 70 % of maximum tensile strength from single 

element numerical analysis and direct tension experimental test results (Figure 3.6, from 

Çetin, 2020). Thus, the DNN learns the relationship between the numerical input and 

how well the numerical input is doing compared to experimental behavior. An 

important factor here was to use a database generated by the numerical analysis and an 

experimental characteristic as output. The numerical input and experimental output 

parameter investigation method is a novel approach to the author's knowledge. The 
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nonlinear relationship formed by the DNN scheme provides an important insight into 

the context of FRC modeling.  

3.3. Karagozian and Case Material Model 

Karagozian and Case (K&C) is a material model initially used for concrete 

impact, blast, and large deformation modeling (Malvar et al., 1997). Originally 

modified from the material model MAT_16, the currently used version of K&C material 

model is the third version, labeled as K&C (Release 3). The new release of K&C 

incorporates an automatic parameter generator that relies on the uniaxial compression 

strength of concrete given by the user. Thus, the complete set of 49 parameters of the 

K&C material model can be acquired. Current study calibrates 27 parameters of K&C 

with DNN that are presented in Table 3.1 to represent FRC behavior. Other parameters 

and their brief definitions are provided in Table 3.2.  

Table 3.1. K&C parameters that were calibrated with DNN for FRC behavior 

Parameter Description 

b2 Tensile damage parameter 

λ1 through λ13 
Damage function, 

1 through 13 

η1 through η13 
Internal damage parameter, 

1 through 13 
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Table 3.2. Other K&C parameters and brief definitions 

Parameter Description 

ρ Mass density 

ν Poisson's ratio 

ft Uniaxial tensile strength 

a0 
Maximum failure surface parameter, or  

compressive strength for parameter generator (-fc) 

a1 Maximum failure surface parameter 

a2 Maximum failure surface parameter 

a1f Residual failure surface parameter 

a2f Residual failure surface parameter 

a0y Yield surface parameter 

a1y Yield surface parameter 

a2y Yield surface parameter 

w (omega) Associativity Parameter 

b1 Compressive damage parameter 

b3 Triaxial tension damage parameter 

sλ Stretch factor 

 𝛿 Scaled damage measure 

edrop Post peak dilatancy decay 

rsize Unit conversion factor for length 

ucf Unit conversion factor for stress 

lcrate Curve for strain-rate effects 

Lw (locwidth) Three times the maximum aggregate diameter 

npts Number of points in 𝜆 versus 𝜂 damage relation 

K&C was explicitly developed for concrete material. However, some 

researchers selected to modify it to fit concrete-like material. Kucewicz et al. (2020) 

modified K&C to model brittle material dolomite rock while Mardalizad et al. (2019) 

used modified K&C to model quasi-brittle material Pietra Serena sandstone. L. Y. Xu et 

al. (2019) used default parameters and their modified versions of K&C for modeling 

penetration and perforation of reinforced concrete under impact. S. Xu et al. (2020) 

used modified K&C for ultra-high-performance concrete under low-velocity impact 

loading. Thai et al. (2020) used modified K&C for fiber reinforced concrete and 

calibrated with static and high strain rate loadings.  

There are three failure surfaces in K&C. These are yield, maximum and residual 

surfaces. As pressure increases, the yield surface is the first one reached. After that, the 

existing surface is found by interpolating the yield and maximum surfaces. The location 

of the existing surface depends on the λ; modified effective plastic strain, or internal 

damage parameter. As λ increases and becomes equal to λm, maximum or critical 
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effective plastic strain (calibrated from experimental data of (Y. Wu, Crawford, and 

Magallanes 2012)), the maximum surface is reached. λ continues to increase, and the 

current surface is interpolated between maximum and residual surfaces. 

The general formulation of these surfaces can be defined as such: 

𝐹𝑖(𝑝) = 𝑎0𝑖 +
𝑝

𝑎1𝑖 + 𝑎2𝑖 𝑥 𝑝

Where 

p is the pressure  

aij ( j = 0, 1, 2) are the parameters of failure surfaces generated from 

experimental tests 

Fi (p) is the surface definition 

Interpolations between maximum-yield and maximum-residual surfaces can be 

expressed as the following equation: 

𝐹(𝐼1, 𝐽2, 𝐽3) = {
𝑟(𝐽3) [η(λ) (𝐹𝑚(𝑝) − 𝐹𝑦(𝑝)) + 𝐹𝑦(𝑝)] , λ ≤  λ𝑚

𝑟(𝐽3)[η(λ)(𝐹𝑚(𝑝) − 𝐹𝑟(𝑝)) + 𝐹𝑟(𝑝)], λ >  λ𝑚

Where 

η is a user-defined damage function, a function of λ 

F ( I1 , I2 , I3) is the failure surface 

r( J3 ) is the scale factor in the form of the William-Warnke equation 

λ is an ever-increasing parameter. However, η the damage function, is limited 

between the values of 0 and 1. λ and η both begin at the value of 0. As λ increases and 

becomes equal to λm, η is equal to 1. After this point, λ continues to increase. However, 

η begins to decrease until the value of 0. The default λ & η graph is presented in Figure 

3.4.  

(2)

(1)
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Figure 3.4. Default material model damage function distribution 

The material card of K&C requires 26 values for λ & η. Calculation of λ is given 

at the following function; 

λ =  

{

𝑑휀𝑝

r𝑓 (1 +
𝑝
r𝑓f𝑡

)
𝑏1

𝜀𝑝

0

,    𝑝 ≤ 0 

∫
𝑑휀𝑝

r𝑓 (1 +
𝑝
r𝑓f𝑡

)
𝑏2

𝜀𝑝

0

, 𝑝 < 0 

Where 

r𝑓 is the strain rate enhancement factor 

f𝑡 is the concrete tensile strength 

𝑑휀𝑝 is the increment of the effective plastic strain 

𝑏1 & 𝑏2 are the compressive and tensile damage parameters  

Damage monitoring is also possible for K&C by the quantity “scaled damage 

measure, δ” as labeled in LS-DYNA Manual II (LSTC 2007), with the formulation 

given below;  

δ =  
2λ

λ + λ𝑚

Scaled damage measure can be observed from Effective Plastic Strain (EPS) 

fringe plots within a range of 0 to 2. The transition from 0 to 1 happens when the 

existing surface is between yield and maximum surfaces. When the maximum surface is 

(3)

(4)
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reached and surpassed, it is between 1 and 2, between the maximum and residual 

surfaces.  

Additionally, K&C includes an Automatic Parameter Generator (APG). 

Generated parameters are based on experimental uniaxial compression and tension tests 

and triaxial compression tests of a concrete sample with 47 MPa compressive strength 

(Malvar et al., 1997). These experimental tests were done under different levels of 

confinement and hydrostatic pressure. Only density, uniaxial compression strength, and 

SI to Imperial unit conversion factors for stress and length must be entered for the APG 

to be used. The APG calculates the values for the given compression strength in 

proportion with the tested calculated strength of 47 MPa. A default set of λ & η can be 

used from the APG. Compressive, tensile, and triaxial tension damage parameters (b1, 

b2, and b3, respectively) can be determined from the APG as well.  

K&C controls shear dilatancy behavior with “w”, associativity parameter. w = 0 

gives a non-associative behavior, yet a fully associative model is achieved with w = 1. 

K&C developers (Y. Wu and E.Crawford 2015) recommend values between 0.5 and 0.9 

for w to capture concrete’s expansion through shear dilatation. For well-confined and 

ultra-high to high strength concretes with fine aggregates, w parameter values between 

0.8 and 0.9 can be used.  

K&C requires an equation of state (EOS) card to be added to handle pressure 

and volumetric strain properties. The APG produces the EOS parameters according to 

the given compressive strength, density, and unit conversion factors. 

K&C promotes to be a non-mesh-dependent material model between the mesh 

sizes of 4 and 25 mm. This is done by relating the fracture energy and localization 

width. However, the non-mesh-dependency is only provided with the analyses where 

the automatically generated parameters are used. 

Between material parameters of K&C, fracture zone length is chosen together 

with material parameter b2, damage parameter in tension. Parameter b1 controls the 

softening in compression, while b2 and b3 govern the softening in tension. Lw 

parameter is identified as three times the maximum aggregate size in LS-DYNA 

Manual II (LSTC 2007). However, according to Malvar et al. (1997), if localization 

occurs in one element, element size is equal to localization width (or crack width, where 

it is 1-6 times the aggregate size). According to Kong et al. (2017), for the correct 

presentation of concrete surface crabbing and cratering, element size needs to be smaller 
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than fracture length. Tu and Lu (2009) and Kong et al. (2016) have used Lw as the 

element size.  

3.4. Tensile Damage Parameter and Damage Distribution Calibration 

The damage distribution and directly the λ & η calibration is a process done by 

several researchers to represent concrete-like materials like rock, ultra-high-

performance concrete, fiber-reinforced concrete, and strong concrete. Table 3.3 

summarizes the coefficients used for the damage distribution. The works of the 

researchers in Table 3.3 are briefly mentioned. 

Table 3.3. Literature investigation of the coefficients of the damage distribution (λ and 

η) in K&C Material Model 

(Kong et al., 

2017) 

(Thai, Nguyen, 

and Nguyen 2020) 

(S. Xu, Wu, 

and Wu 2020) 

(Markovich, 

Kochavi, and 

Ben-Dor 2011) 

a 3 3 

η = aebλ 

exponentially 

decreasing 

(No equation) 

c 0.29 0.29 

d 1.86 1.86 

λm 8.70E-05 6.00E-04 8.41E-05 9.00E-05 

Kong et al. (2017) modified the K&C material model to improve its ability to 

predict concrete’s capability to show tensile failure such as scabbing and cratering after 

dynamic loading. Certain K&C characteristics were aimed to be altered; the sensitivity 

of the high-pressure behavior was not fully reflected in the limit loading conditions. The 

material model did not provide an erosion criterion and an external card is needed to be 

provided. The increase in tensile fracture strain observed in experimental findings 

(Schuler, Mayrhofer, and Thoma 2006; Weerheijm and Van Doormaal 2007) under 

high-strain-rate loading was not reflected in the K&C numerical results in terms of 

fracture strain and fracture energy. In light of these shortcomings, modifications were 

made by Kong et al. (2017) to the damage distribution of K&C model and as well as to 

the strength surfaces, dynamic increase coefficients, and tensile damage accumulations.  

The damage distribution which was given as a 13-pair data point (λ & η), was redefined 

as the equation (5).  
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η(λ) =  

+ (3 − 2𝑎) (
λ

λ𝑚
)
2
+ (𝑎 − 2) (

λ

λ𝑚
)
3
, λ ≤ λ𝑚 , 𝑠𝑡𝑟𝑎𝑖𝑛 ℎ𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔 

λ

λ𝑚

𝑐(
λ

λ𝑚
−1)

𝑑
+

λ

λ𝑚

, λ < λ𝑚 , 𝑠𝑡𝑟𝑎𝑖𝑛 𝑠𝑜𝑓𝑡𝑒𝑛𝑖𝑛𝑔 

The coefficients in the proposed damage distribution function by Kong et al. 

(2017) are achieved based on trial-and-error. The given coefficients in the Table 3.3 are 

obtained by matching numerical and experimental uniaxial stress-strain curves. 

Analytical formulations developed by Attard and Setunge (1996) were used to find the 

coefficients of the damage distribution. Single element numerical models were used to 

show the capability of the modified damage distribution. 

Additionally, Kong et al. (2017) compared the uniaxial stress-strain curves 

found from the original and modified K&C material model results. The results indicated 

that the original K&C damage distributions reflected a stiffer loading phase and has a 

larger softening phase compared to modified K&C and the experimental results. Also, 

the stress capacity was found to be higher in the original K&C material model.  

Same Kong et al. (2017) study used the modified K&C material model and used 

it for projectile impact to show the cratering and scabbing capabilities. Even though the 

primary objective is to catch the experimental damage distribution under perforation, 

displacement, acceleration and velocity profiles were found to be a good match with the 

modification made to K&C material model.  

Thai et al. (2020) used the K&C damage distribution of Kong et al. (2017) to 

simulate a calibration model for FRC under static and dynamic loading conditions. The 

performance of the modified K&C material model parameters was investigated with 

static bending and single element compression numerical results, as well as dynamic 

blast loading. 

Thai et al. (2020)’s need to modify the K&C material model has risen from its 

inability to reflect different concrete-like materials without alterations. Calibration was 

done in accordance with axial and tri-axial experimental tests under tension, 

compression and high-strain-rate loading conditions. Failure surface, the dynamic 

enhancement factors, damage function, and evolution, and equation of state parameters 

were calibrated. 

(5)

{
 
 

 
𝑎 λ

 λ𝑚
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Thai et al. (2020) used Kong et al. (2017)’s damage distribution function and 

changed the coefficients of strain hardening and softening curves by trial-and-error. The 

damage distribution of (Kong et al., 2017) provides convenience even for FRC.  

Researchers of S. Xu et al. (2020) have modified K&C material model to reflect 

the Ultra-High Performance Concrete behavior under low-velocity impact loading. 

Experimental tri-axial compression tests were carried out to use for the modification 

process.  

S. Xu et al. (2020) used single element numerical tests to show the default

damage distribution curve (λ & η) has a very steep softening phase under compression 

and tension. These characteristics were found to be unlike UHPC behavior, and a 

gradually decreasing exponential curve was prescribed to the strain-softening phase of 

the damage distribution. The curve’s equation is given in Table 3.3. The coefficients of 

the exponentially decreasing curve were generated by trial-and-error through 

experimental data fitting. Additionally, strength surface, equation of state and strain-rate 

parameters of K&C were derived during this process as well. 

In addition, S. Xu et al. (2020) generated validation cases with single elements 

under tri-axial compression tests to reflect the modified parameters’ performance. Also, 

the performance of the modified K&C parameters with UHPC was investigated with 

drop weight tests. The deflection profile and damage patterns of beam and column 

UHPC members were shown to be in good agreement with the experimental findings. 

However, the period of the UHPC column member under forced vibration has been 

found to be underestimated.  

Markovich et al. (2011) have modified K&C material model's damage 

distribution to reflect strong concrete with compression strengths between 50 and 100 

MPa. Calibration of the damage parameters was done by matching the experimental tri-

axial compression test results of Attard and Setunge (1996) with their numerical 

counterparts. Strength surface coefficients, damage scaling parameter for compression 

(b1), and equation-of state parameters of K&C were calibrated as mentioned.   

Researchers continue their investigation process (Levi-Hevroni et al., 2018) with 

an additional study on the dynamic tensile properties with K&C parameter calibrations. 

Split-Hopkinson bar test results were used for the numerical modeling and parameter 

adjustments. Levi-Hevroni et al. (2018) revealed that the damage distribution 

parameters required additional recalibration when the compressive loading conditions 

were changed to dynamic tensile loading. 
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In the current study, the damage distribution proposed by Kong et al. (2017) 

given with the equation (5) was selected as an appropriate representation for FRC. The

c, d, and λm strain softening parameters in the Kong et al. (2017) damage distribution 

proposition were selected to be part of the K&C material model parameter investigation 

study in the DNN algorithm. “a” strain hardening parameter in the proposed function 

was kept constant as proposed by Kong et al. (2017) as the value of 3 as seen in Table 

3.3. Figure 3.5 represents the damage distribution proposed by Kong et al. (2017). with 

the a, c, d, and λm parameters proposed by Kong et al. (2017). 

Figure 3.5. Default and Kong et al. damage distribution functions (Kong et al., 2017) 

K&C damage distribution can be defined by a 13-pair curve represented by λ & 

η values. Damage distribution equations of c, d, λm parameters were selected to be part 

of this study. Schulte et al. (2022) have used artificial neural networks for scanning 

through initial parameter determination and to select an interval range for each 

parameter search. Such examination was omitted for the current study. The parameter 

ranges for λm were selected from the literature, and c and d parameters were selected 

according to the shape of the material model damage distribution. 

Even though the material model parameter search is easy with the proposed 

DNN method, the algorithm can derive many local maxima that are irrelevant to the 

desired behavior. The researcher applying this methodology must select reasonable and 

efficient ranges for the input parameters. This comes from getting familiar with the 

selected material model and its possible capabilities. Thus, the b2, c, d and λm 

parameters were selected keeping the mentioned in mind.  
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The ranges of λm parameter are limited between 5E-5 and 5E-4. The first λm 

value is the default value. Increasing λm too many yields unrealistic behavior results for 

the FRC material investigated here. The latter λm was selected according to literature 

research (Table 3.3).  

K&C material model also includes a tensile damage parameter of b2, with a 

default value of 1.35, and its effect on the damage distribution is highly important. For 

that reason, b2 parameter was selected as an input parameter of the DNN algorithm for 

the data-driven model.  

 

3.5. Application of Deep Neural Network 

 

DNN input data was selected as K&C parameters that highly affect the damage 

distribution and energy absorption capacity. The output of DNN was selected as an 

experimentally derived output instead of a numerical output. The purpose of this is to 

generate a material model parameter set that fits the required experimental behavior, 

and not to use DNN instead of numerical analysis. By including an experimentally 

derived (Figure 3.6) output, accuracy and complexity of the K&C material model 

parameter investigation method were increased. Additionally, using a single parameter 

as the output feature increases the DNN algorithm’s speed. DNN input parameters to 

reflect FRC behavior were selected as b2, c, d and λm. The material properties of the 

investigated FRC mixtures were given in Table 3.4. 
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a) 

 

b) 

Figure 3.6. Experimental direct tension result of the a) DT-M2 and b) DT-M1+PVA 

material (Çetin, 2020) 
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Table 3.4. Mixture properties of FRC mixtures of Çetin (2020) 

Specimen Name 

Steel 

Fiber 

Ratio 

(%) 

Steel Fiber 

Type 

PVA 

Ratio 

(%) 

Compressive 

Strength 

(MPa) 

DT-M2 0.75 65/60 3D - 30.98 

DT-M1+PVA 0.75 35/45 3D 0.25 30.02 

 

Data for the DNN was generated with single element numerical model under 

direct tension loading. Repeated analyses were done on a single cube element with a 

length of 10 mm and symmetrical boundary conditions as given in Figure 3.7. Data 

generation was proceeded following the steps displayed in Figure 3.8. K&C material 

model requires the entry of an λ & η curve with 13 pairs. The required curve was 

generated with the Numpy library of Python, using the selected c, d, λm parameters. 

Thus, even though only 3 inputs were selected for the damage distribution, a total of 26 

parameters were altered in each analysis file. Tensile damage parameter b2 was also 

changed in each analysis file. As a result, a total of 27 material model parameters were 

replaced with each analysis file for each FRC mixture.  

 

 

Figure 3.7. Single element numerical model under direct tension 
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Figure 3.8. Workflow on the DNN  

 

String formatting was done with the Python OS module to generate numerical 

analysis files in specific folders. Additionally, a batch file was prepared with Python 

scripting to enter the folder in the directory and initialize LS-DYNA analysis, then 

return to the main directory, following this sequence for the whole range of parameters.  

The postprocess of the study required generating a stress-displacement curve for 

each analysis. A MATLAB script was written for this purpose that automatically goes 

into each folder in the working directory and saves the resulting stress-displacement 

into a comma-separated values (csv) file in each folder for visual observation. Thus, 

MATLAB figures were used to observe a general orientation and select the input 

parameters accordingly as mentioned in Chapter 3.3.  

To generate the outputs for the DNN algorithm, MATLAB scripts were used. 

The displacement corresponding to 70 % of the maximum stress was recorded from 

each folder and divided into the experimentally acquired displacement corresponding to 

70 % of the maximum stress. The purpose here was to prepare enough data for the DNN 

algorithm that gives the 1 as a numerical to experimental displacement ratio at 70 % of 

the maximum force for accurate prediction.  

DNN algorithm was generated with approximately 1500 data points (examples) 

in each FRC mixture. Even though there were 3 times more data points that were 

initiated, the numerical to experimental displacement ratios were far from the desired 

range of 1. The DNN data fitting was only done between the numerical to experimental 

displacement ratio outputs of 0.5 and 1.5.  

DNN algorithm was generated with Python Tensorflow library. The data to be 

progressed through DNN scheme was normalized within each parameter range and 

shuffled. The organized data were randomly divided into training, validation, and test 
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sets. Data organization, normalization, and splitting procedures were done with Python 

Scikit-learn library. DNN hyperparameters of hidden layers, neuron numbers, dropout 

percentages, selected activation, and cost functions, optimizer and learning rate 

functions were prescribed with Tensorflow library. The hyperparameters were selected 

through a grid search for both mixtures. Detailed descriptions of hyperparameters are 

given in the Chapter 3.1. 

Fitting of the DNN algorithm was checked to see if overfit or underfit has 

occurred. Overfit occurs when algorithm cannot generalize the predictions for overall 

data and can only give true predictions for the data on the training set. Underfit is when 

the algorithm has not learned enough to make predictions with small enough errors.  

Generalized and accurate prediction through DNN scheme can come from 

neither overfit or underfit. The errors of the validation and training should get closer 

with each iteration (epochs) and the training and validation data set errors should be 

close to each other at the end. As seen from Figure 3.9, the training and validation set 

errors are at small loss values for the hyperparameters given in Table 3.5. Thus, the 

current DNN algorithms can give accurate predictions on a varying data set. 
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a) 

 

b) 

Figure 3.9. DNN cost function progress with respect to epochs (iterations) for a) DT-M2 

and b) DT-M1+PVA mixture 

 

The DNN prediction accuracy was checked with numerical analysis as well. 

After a low-cost generating DNN was constituted, the model was predicted with a range 

of b2, c, d, λm parameters and outputs yielding numerical to experimental displacement 

ratio of 1 were recorded. The recorded output ranges of b2, c, d, λm were used for LS-
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DYNA single element analysis file generation to make sure the DNN produced correct 

predictions. The input parameter ranges were kept approximately the same during the 

DNN learning and prediction phases.  

 

Table 3.5. Properties of the current DNN Hyperparameters 

Hyperparameters 
Used Setting 

For DT-M2 

Used Setting 

For DT-M1+PVA 

Neurons 128 64 

Activation Function Elu Elu 

Hidden Layers 7 7 

Early Stopping 

Patience 
10 10 

Maximum Epochs 5000 10000 

Cost Function Mean Square Error Mean Square Error 

Optimizer Adam 
Stochastic Gradient 

Descent 

Learning Rate 
Step Decay: 

0.1359E-4 * 0.99 ** (step / 10) 

Step Decay: 

0.001359 * 0.99 ** (step / 10) 

 

The disclosed procedure of generating analysis files, doing the single element 

analysis and getting outputs, putting all the data into DNN to fit the model, and then 

generating outcomes yielding the numerical to experimental displacement ratio of 1 was 

repeated until the DNN generated numerical to experimental displacement ratio of 1 

output were actually gives the ratio of 1 from the numerical analysis.  
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Table 3.6. DNN predicted parameters that yield the numerical to experimental 

displacement ratio of 1 for DT-M2 and DT-M1+PVA mixture 

Specimen Name b2 c d λm 

DT-M2 -11.98 0.666 2.3 4.099E-4 

DT-M1+PVA -9.211 1.184 2.5 5.6E-5 

 

The data points were increased with each disclosed procedure because DNN-

generated outcomes were used for numerical analysis. After their outcomes were 

recorded, they were put into the DNN algorithm as input examples. As mentioned 

previously, approximately 1500 examples were used for the DNN fitting. The 

hyperparameters for the numerical to experimental displacement ratio of 1 yielding 

DNN are in Table 3.3. The single element numerical analysis result is in Figure 3.9 

while the DNN-predicted material model parameters are in Table 3.4. 

 

Table 3.7. Lambda-Eta parameters found from DNN for DT-M2 mixture 

DT-M2 Lambda Eta 

1 0.00E+00 0 

2 1.03E-04 0.5781 

3 2.05E-04 0.875 

4 3.07E-04 0.9844 

5 4.10E-04 1 

6 1.33E-03 0.4323 

7 2.25E-03 0.2073 

8 3.16E-03 0.1266 

9 4.08E-03 0.088 

10 5.00E-03 0.0661 

11 1.00E+00 0 

12 1.00E+01 0 

13 1.00E+06 0 
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Table 3.8. Lambda-Eta parameters found from DNN for DT-M1+PVA mixture 

 

 

 

 

 

 

 

 

 

 

 

 

 

It could be said that there was already 1 resulting numerical to experimental 

ratios from the numerical analysis and can discuss the role of the DNN scheme here. 

There are several local maxima where a numerical outcome corresponds with an 

experimental result with a discrete parameter set. The DNN prediction precision is 

higher than random trial and error material model parameter selection. 

The representation of FRC with numerical models includes difficulties, even 

more for the case of damage or fracture. This study employs a novel method to 

numerically represent FRC with an experimentally fitted DNN. The fitted DNN was 

used to make predictions that give the exact results for the single element numerical 

models. As a validation case, FRC four-point bending experimental test was modeled 

using the same DNN-acquired material model parameters. Four-point bending was 

selected as a validation case because it can capture the indirect tension behavior. The 

same FRC properties, as in fiber types and volume ratios, from the direct tension 

experimental tests, were selected for the bending case. The results were found to be 

quite similar considering the complex fracture mechanism of FRC material. 

 

 

DT-M1+PVA Lambda Eta 

1 0.00E+00 0 

2 1.40E-05 0.5781 

3 2.80E-05 0.875 

4 4.20E-05 0.9844 

5 5.60E-05 1 

6 1.04E-03 0.0119 

7 2.03E-03 0.0041 

8 3.02E-03 0.0022 

9 4.01E-03 0.0014 

10 5.00E-03 0.001 

11 1.00E+00 0 

12 1.00E+01 0 

13 1.00E+06 0 
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a) 

 

b) 

Figure 3.10. Single element result of the numerical analysis of a) DT-M2 and b) DT-

M1+PVA mixture  

Displacement 

Corresponding to 70 % of 

Maximum Stress 1.316 MPa 

corresponding to 4.73 mm 

Displacement 

Corresponding to 70 % of 

Maximum Stress 1.26 MPa 

corresponding to 0.98 mm 
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CHAPTER 4  

 

FOUR POINT BENDING TESTS 

 

4.1. Introduction 

 

The fiber reinforced concrete material improves the tensile and flexural strength, 

and increases energy absorption and impact resistance (Herrmann et al., 2019; Caggiano 

et al., 2016; Chasioti and Vecchio 2017; Saatçi and Batarlar 2017; Çankaya and Akan 

2023). The numerical simulation of fiber-reinforced concrete requires fracture 

properties (Wang, Wu, and Wang 2010; Wille, El-Tawil, and Naaman 2014). To 

investigate this, researchers have generally used uniaxial tension, and four-point 

bending tests (Kucewicz et al., 2022; Leutbecher and Rebling 2019; Mudadu et al., 

2019; Oettel, Schulz, and Haist 2022; Tayfur, Saatcı, and Alver 2018) 

In the previous chapter, uniaxial tension tests were used for the material model 

parameter search using Deep Neural Networks. Four-point bending numerical analysis 

was used as a verification of these material model parameters and the performance of 

Deep Neural Networks achieved parameters were investigated in this chapter. 

Experimental force-displacement, absorbed energy and damage behaviors were 

compared with the numerical results.    

 

4.2. Four Point Bending Tests 

 

Four-point bending tests on FRC panels were done by Aloui (2020). They have 

tested 1.25x0.5x0.05 m specimens with different fiber content under quasi-static 

bending loading. General view of the four-point bending test setup is presented in 

Figure 4.1. Loading at a rate of 1.5 mm/min was applied via two rollers on top with a 

350 mm distance. Bottom supports were arranged to have simply supported boundary 

conditions with 900 mm clear space between them as presented in Figure 4.2. Load was 

applied by a displacement-controlled hydraulic actuator. Displacement was measured 

with two linear resistive position transducers at the midspan. Experimental tests were 
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done with a single specimen for each mixture. Material properties of the specimens are 

in Table 4.1.  

 

 

Figure 4.1. Four-point bending test setup of (Aloui, 2020) 

 

 

Figure 4.2. Dimension of the four-point bending experimental test setup 

 

Table 4.1. Mixture properties of FRC mixtures of Aloui (2020) 

Specimen 

Name 

Steel Fiber 

Ratio (%) 

Steel Fiber 

Type 

PVA 

Ratio 

(%) 

Compressive 

Strength 

(MPa) 

FB-M2 0.75 65/60 3D - 38.52  

FB-M1+PVA 0.75 35/45 3D 0.25 39.87 

 

 

 

Top Rollers

Bottom Rollers
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4.3. Numerical Modelling 

 

The bending behavior of the beam was modeled with Karagozian and Case (K&C) 

material model in LS-DYNA. The parameters of the K&C material model were taken 

from the Deep Neural Network parameter search and the same parameters were used in 

the four-point bending modeling of FB-M2 and FB-M1+PVA specimens. The list of the 

individual parameters is given in Table 3.5 and Table 3.8 in Chapter 3. The omega and 

the localization width parameters used in the DNN search were used in the bending 

analysis.  

 

Figure 4.3. The illustration of four-point bending model 

 

The dimensions and simply supported boundary conditions of the four-point 

bending tests were modeled exactly like the experimental tests using LS-PREPOST 

software. The complete numerical model in Figure 4.3 was presented for illustrative 

purposes. 

 

Figure 4.4. Symmetric boundary and the loading nodes of the bending numerical model 
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The presented numerical investigation and the results were done using a half 

four-point bending numerical model with symmetrical boundary conditions. Thus, the 

computational time was decreased by almost 50 % by cutting the model in half. The 

half model can be found in Figure 4.4. Eight-node 5 mm hexahedron elements were 

used to model the beam specimen which has the dimensions of 625x500x50 mm.  

In the experimental tests, the distance between the top rollers was 350 mm and 

between the bottom rollers was 900 mm. The dimensions in the symmetrical model 

were taken as 175 from the top rollers to the symmetric boundary conditions, and 450 

mm from the bottom rollers to the symmetric boundary conditions. MAT_ELASTIC 

card was prescribed to the top and bottom rollers with steel material properties.    

LS-DYNA explicit solver has been used for the quasistatic bending analysis. 

The loading was applied in terms of velocity as 0.05 mm/ms. The method of time-

scaling was applied to decrease to computational time. Mass scaling was not applied to 

the explicit analysis.  

The BOUNDARY_ PRESCRIBED_ MOTION card in LS-DYNA helps impose 

rotational or translational velocity, acceleration, or displacement to a specified set of 

nodes (Manual 2013). A curve must also be prescribed for the motion. The top rollers 

were prescribed in a downward direction with the BOUNDARY_ PRESCRIBED_ 

MOTION card.  

The contact card AUTOMATIC_SURFACE_TO_SURFACE is a two-way 

treatment contact that checks for penetration on the slave and master segments. It was 

prescribed between the panel and the rollers, as slave and master segments, respectively. 

The contact stiffness is generally represented by linear springs between the 

adjacent slave and master segments. The default (SOFT = 0) contact stiffness in LS-

DYNA is affected by the material properties of contacting sides, global time step size, 

and the mesh size. Thus, due to dissimilarities between the contacting materials in the 

four-point bending models, a soft constraint-based approach (SOFT = 2) (Belytschko 

and Neal 1991) was used for contact stiffness calculation. The soft-constraint method 

uses the nodal masses and the global time step size to calculate the contact stiffnesses.  

Static and dynamic frictions were provided with contact definitions. High 

friction coefficients, 0.9 for both, were selected due to rough interaction surfaces 

between the steel boundary elements and the FRC surfaces (Tian et al., 2021; 

Kucewicz, Baranowski, and Małachowski 2020; Y. Wu et al., 2014; Rasmussen et al., 

2020, Mardalizad et al., 2019). 
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To compare the force-displacement results with Aloui (2020), the 

CONTACT_FORCE_ TRANSDUCER card was adopted with the 

DATABASE_RCFORC card. Midpoint displacement was acquired with 

DATABASE_HISTORY_NODE and DATABASE_ NODOUT cards.  

 

 

Figure 4.5. Force displacement graph of 4, 5 and 10 mm mesh sizes 

 

Mesh sensitivity is an issue for concrete-like materials, and the behavior can 

change with the selected mesh size. As mentioned in Chapter 3.2, K&C material model 

proposes to be non-mesh dependent when its parameters are automatically generated. 

Such a process is done by regularizing the fracture energy by scaling the damage 

function according to Magallanes et al. (2010). However, because the K&C damage 

parameters were altered, the effect of mesh sizes at various values was tried and results 

are presented in Figure 4.5. Mesh sensitivity study, especially at smaller mesh values, is 

quite costly in terms of computational time. Thus, it was concluded for the mixture FB-

M1+PVA, and 5 mm mesh size was selected for both FB-M1+PVA and FB-M2 

mixtures.  
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4.4. Numerical Results 

 

The following section contains the numerical results from the four-point bending 

analysis of FB-M2 and FB-M1+PVA mixtures in terms of force-displacement graphs, 

absorbed energy values and damage distributions in terms of tensile strains. The 

numerical and experimental results were evaluated to determine the performance of 

material parameter search using Deep Neural Networks with FRC material. 

 

4.4.1. Displacement Histories 

 

The experimental and numerical force-displacement graphs of four-point bending 

are given in Figure 4.6 and Figure 4.7. The maximum force values in numerical analysis 

and experimental tests are presented in Table 4.2 for FB-M2 and FB-M1+PVA 

mixtures.  

 

 

Figure 4.6. Force displacement graph of experimental and numerical four-point bending 

of FB-M2 mixture 
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Figure 4.7. Force displacement graph of experimental and numerical four-point bending 

of FB-M1+PVA mixture 

 

The numerical force-displacement results adequately reflect the experimental 

FRC bending behavior. Nevertheless, both FB-M2 and FB-M1+PVA mixtures’ 

experimental force-displacement behavior show a stiff increase at the initial phase 

which lasts till a deflection of 4mm. The force values begin to drop slightly at the 

beginning of cracking due to the presence of fibers making the behavior ductile. This 

way, specimens show increased energy consuming capacity.  

 

Table 4.2. The maximum force values in numerical analysis and experimental tests 

Specimen 

Name  

Numerical 

Maximum 

Force 

(kN) 

Experimental 

Maximum 

 Force (kN) 

Max 

Force 

Difference  

in % 

Numerical 

Max. Force 

Displacement 

(mm)  

Experimental 

Max. Force 

Displacement 

(mm) 

FB-M2 5.0 5.13 2.5% 4.68 1.6 

FB-M1+PVA 6.28 5.98 5% 4.28 4.58 

 

The experimental maximum force result for the FB-M1+PVA mixture is 6.28 

kN at 4.28 mm. The numerical analysis maximum force is 5.98 kN at 4.58 mm which 

shows a 5 % difference compared to maximum experimental value. The corresponding 

instances of the maximum force is really close for the numerical and the experimental 

case.  

The maximum force in FB-M2 mixture goes up to 5 kN in the numerical 

analysis and displays a 3 % difference compared to experimental tests. However, the 
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corresponding displacement for the maximum force is quite different with 4.68 mm in 

the numerical analysis and 1.6 mm in the experimental result. The FB-M2 force -

displacement graph in Figure 4.6 shows that there is a steep increase in the experimental 

result until 1.6 mm, then a strain-softening phase is observed due to multiple cracking in 

fiber hybridization. The location of the numerical maximum force value corresponds to 

4.68 mm and the experimental value there is 4.87 kN which shows a 3 % discrepancy 

with the maximum numerical force.  

There are quite a few reasons why experimental and numerical bending results 

may differ. Mainly, the shrinkage effects are present in the concrete during the drying 

and handling process and this causes microcracks in the concrete (Özcan et al., 2009). 

Said effect is not included in the numerical modeling process. Another reason could be 

the interaction between the fibers and mortar cause slipping and multiple cracking in the 

experimental tests. The numerical model takes a smeared approach and neglects these 

finer cracks. 

 

4.4.2. Experimental and Numerical Absorbed Energy 

 

The absorbed energy was calculated from the area under the force-displacement 

graphs. During the bending experiments of FB-M2, the maximum deflection was 

recorded as 8 mm. For consistency, the consumed energies of both the FB-M2 and FB-

M1+PVA mixtures were investigated until 8 mm of deflection. The numerical and 

experimental energy absorptions of FB-M2 and FB-M1+PVA mixtures are listed in 

Table 4.3.  

 

Table 4.3. The absorbed energy of FB-M2 and FB-M1+PVA mixtures at 8 mm 

deflection 

Specimen 

Name  

Numerical Absorbed 

Energy (Joule) 

Experimental 

Absorbed Energy 

(Joule) 

Difference % 

FB-M2 35.5 34.0 4.2 % 

FB-M1+PVA 40.5 41.0 1.2 % 

 

The numerical analysis of the FB-M2 mixture over approximates the absorption 

capacity by 4.4 %. On the other hand, the FB-M1+PVA mixture’s numerical energy 
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absorption capacity underestimates it by 1.2 %. The observations show that the 

numerical analysis is very capable of capturing the energy absorption capacity. 

 

 

a) 

 

b) 

Figure 4.8. Absorbed energy-displacement graph of a) FB-M2 and b) FB-M1+PVA 

mixture 

 

Figure 4.8 shows the absorbed energy as a function of displacement for mixture 

FB-M2 and FB-M1+PVA. For both mixtures the numerical absorbed energy is quite 

similar to the experimentally achieved energy levels.  

The initial absorbed energy is higher for the numerical model, because the 

numerical results include a stiff initial phase. The difference closes after 2 mm of 

displacement for FB-M2 mixture. However, for the FB-M1+PVA mixture the slight 
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difference between the numerical and experimental energies continues until 6mm of 

displacement. Nevertheless, the absorbed energy progress is quite parallel and even 

overlaps in certain locations. It could be said that the numerical models are quite 

capable of catching the absorbed energy levels.  

 

4.4.3. Experimental and Numerical Damage Distributions  

 

The experimental crack paths and the numerical damage distributions of the four-

point bending tests were compared in the following section. The strain in the direction 

of the x axis was selected to be compared with the experimental crack paths. The x-

direction strain corresponds to tension and shows distinct damage distributions. While 

the K&C material model is capable of showing the damage through the “Effective 

Plastic Strain” fringe, the individual cracks observed in the experiments were too 

smeared with the Effective Plastic Strain fringe.  

 

 

Figure 4.9. Tensile strains and crack paths of FB-M2 mixture, a) Crack path from the 

front view, b) Tensile strain localization at the side, c) Crack path from the 

bottom view, d) Tensile strain localization at the bottom 
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The FB-M2 specimen failed due to a large crack forming under the top during 

the experiments. Figure 4.9.a and Figure 4.9.c show multiple crack paths starting from 

the load applying pin towards the underneath of the specimen. Multiple cracking has 

given some ductility to the flexural behavior of FB-M2 specimen as seen from the 

force-displacement graph. 

The numerical damage distribution shows a close fit to the experimental crack 

paths for the FB-M2 mixture. The strain in the x-direction shows the tensile strain 

localizations, which can be observed in Figure 4.9.b. The numerical model accurately 

captures the large crack formation under the top roller.  The microcracks in the 

experiments were reflected on the side and bottom of the numerical damage 

distributions as well. 

 

 

Figure 4.10. Tensile strains and crack paths of FB-M1+PVA mixture, a) Crack path 

from the front view, b) Tensile strain localization at the side, c) Crack path 

from the bottom view, d) Tensile strain localization at the bottom 

   

The four-point bending experiment of the FB-M1+PVA specimen has failed 

with a large crack occurring at the constant moment region. The experimental 

observations show no multiple cracking. The force-displacement graph of the FB-
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M1+PVA bending test (Figure 4.7) displays a very ductile behavior even though no 

multiple cracking has occurred. The ductility could have occurred due to the 

hybridization effect which happens when more fiber types show their positive attributes 

in one mixture. The numerical strain localization on the FB-M1+PVA specimen occurs 

in the constant moment region which is consistent with the experimental observations in 

Figure 4.10. The Figure 4.10.b shows that the crack path and the tensile strain 

localization are very compatible from the front angle. The numerical damage under the 

FB-M1+PVA specimen shows the single cracked line which matches the bottom of the 

FB-M1+PVA specimen in the experimental tests.  

The experimental bending tests were done with single specimen for each 

mixture type. Thus, some possible irregularities have to be considered when 

experimental results are inspected such as uneven fiber distribution, cracking due to 

transportation or microcracks due to shrinkage effect. These irregularities are 

evident underneath the specimens in the experimental crack paths.  The crack 

paths at the bottom side are ragged and don’t coincide while the numerical damage 

localizes more like a straight line underneath the specimen. 

In general, it can be said that DNN-acquired material model parameters yield 

decent results for loading conditions that they have not been trained for. The reason for 

the similarity between experimental and numerical results in bending can be attributed 

to the fact that the bending indirectly reflects the behavior of tension. Further study will 

investigate the DNN-acquired material model parameters on dynamic loading cases. 
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CHAPTER 5  

 

SHOCK TUBE TESTS 

 

5.1. Introduction 

 

Under high-strain rates, fiber reinforced concrete (FRC) can exhibit different 

ductility, strain hardening, and energy absorption behavior compared to regular 

concrete. Numerical modeling is a good tool to investigate the structural behavior of 

FRC material. Current study verifies the numerical model of FRC panels subjected to 

impulsive blast loads generated by a shock tube. Employed concrete material model 

parameters were explicitly investigated with deep neural networks to reflect the fiber 

reinforced concrete behavior. Acquired experience enables the analysis and design of 

fiber reinforced concrete panels under blast loading through numerical modeling.  

 

5.2. Shock Tube Tests 

 

Using a shock tube to assess the blast performance of structural specimens is a 

reliable method that is also cost-effective and safe. Compared to open-field explosions, 

the shock tube test design enables more data acquisition during the blast phase and is 

reproducible. Depending on the test setup, shock tube tests can be performed on 

columns (Lloyd, 2011), beams (Jacques and Saatcioglu, 2020), walls (Bruhl, 2015) and 

slabs specimens (Kristoffersen et al., 2016; Jacques, Lloyd, and Saatcioglu, 2013; 

Thiagarajan et al., 2015) just to name a few. Researchers have used shock tube blast 

testing to investigate the behavior of steel fiber reinforced concrete columns (Burrell 

2012), steel fiber reinforced concrete beams (Lee et al., 2018), reinforced concrete 

columns retrofitted with carbon fiber reinforced polymer (Lloyd, 2011), and ultra-high 

performance fiber-reinforced concrete jacketing with reinforced concrete columns (Lee 

et al., 2020).  

In order to investigate the FRC panel behavior under blast loading, Alkabbani 

(2021) used concrete panel specimens with hybrid synthetic and steel fibers. 

1900x1900x50 mm panel specimens were tested under blast load using a shock tube test 
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device (Figure 5.1). Specimens ST-M1+PVA (Shock Tube Mix 1 with PVA) and ST-

M2 (Shock Tube Mix 2) mixture properties are given in Table 5.1.  

 

Table 5.1. Mixture properties of FRC mixtures of (Alkabbani, 2021) 

Specimen 

Name 

Steel 

Fiber 

Ratio 

(%) 

Steel Fiber 

Type 

PVA 

Ratio 

(%) 

Compressive 

Strength 

(MPa) 

ST-M2  0.75 65/60 3D - 46.8 

ST-M1+PVA  0.75 35/45 3D 0.25 47.1 

 

The panel specimens were provided with simply supported boundary conditions 

on the test frame of the shock tube test setup. Three holes were drilled on specimen’s 

each side to pass steel rods through. Rods were then connected to a rigid setup frame 

with spherical washers that provide rotational freedom to the specimen but restrict 

movement in the normal direction. Detail of the support point with spherical washer is 

in Figure 5.2. 

 

 

a) 

 

b) 

Figure 5.1. General view of the shock tube, a) back view, b) top view  
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Figure 5.2. Detail of the support point with spherical washer (Alkabbani, 2021) 

 

 

Figure 5.3. Shock tube sections (all dimensions in mm) 

 

The shock tube test setup is capable of simulating blast loads in laboratory 

conditions. It is comprised of driver, expansion, and end frame sections (Figure 5.3). 

The high-pressure air is filled to the air-tight driver section by a compressor. The driver 

section has various length options, to vary the total generated impulse, with a maximum 

length of 6.3 m. Driver can be pressurized up to 11 bars. At the end of the driver 

section, aluminum sheets are attached to divide the driver from the expansion section. 

When these sheets rupture at their predetermined strengths, high-pressure air goes 

through the expansion section and hits the specimen. The expansion section provides a 

uniform pressure instead of a spherical pressure wave. Panel specimen is mounted to the 

far end of the expansion section, equipped with 12 loadcells, 5 resistive linear position 

transducers (RLPT), 8 accelerometers, and 2 surface pressure gages. During the 

experiment, data was gathered with a high-speed data acquisition system that can save 

data at a speed of 250000 data/channel/second.  

Pressure sensors on the specimens recorded reflected pressures at the middle and 

corner points of the specimens. Both recordings generally gave almost identical results, 

indicating a uniform pressure distribution on specimens. Recorded reflected pressure – 



52 

 

time graphs are presented in Figure 5.4 for ST-M2 and ST-M1+PVA blasts. Displayed 

pressure data is the average of two surface pressure gages that was set through low-pass 

filter at 400 Hz.  

 

 

  a) 

 

b) 

Figure 5.4. Reflected pressure-time graphs of the a) ST-M2 blast b) ST-M1+PVA blast  



 53 

 

Subsequently, the chapter investigates the numerical analysis of FRC panels 

under blast loads using the Karagozian and Case (K&C) material model parameters that 

were calibrated through Deep Neural Networks (DNN). For that process, an idealized 

linearly decreasing triangular pressure profile was not preferred, as this 

oversimplification approach neglected the negative pressure effect of the experiment. 

Thus, the current numerical process includes the complete reflected pressure-time data 

as blast loading. This way, higher accuracy was achieved in the numerical simulation.  

 

     

Figure 5.5. RLPT locations on the specimen (all dimensions in mm) 

 

The displacement profile of FRC specimens were recorded through 5 RLPTs 

displayed in Figure 5.5. Displacements achieved from the experimental tests are given 

in Figure 5.6 and Figure 5.7. In some cases, RLPTs’ capacity was exceeded during blast 

tests, and the full displacement profile was not captured. As a consequence, the 

acceleration recording was converted to a displacement value by the direct integration 

method. The maximum midpoint displacement of ST-M1+PVA specimen was 

calculated with the mentioned method as 117 mm. 
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Figure 5.6. Experimental displacement profiles of ST-M2 

Figure 5.7. Experimental displacement profiles of ST-M1+PVA 
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5.3. Numerical Modelling 

 

Numerical modeling is a good tool to investigate the blast load of FRC panels. 

Kristoffersen et al. (2018) have used LS-DYNA to model concrete slabs under shock 

tube induced blast load and included a parametric study with tensile and compressive 

strength variants. Nawar et al. (2015) investigated the shock-tube tested laminated 

glazing using LS-DYNA. Sherif et al. (2022) demonstrated the performance of ultra-

high performance fiber reinforced concrete under shock-tube induced blast loading with 

numerical modeling. Maazoun et al. (2018) numerically investigated the carbon fiber 

reinforced polymer retrofitting to reinforced concrete slabs with LS-DYNA. 

The previously described shock tube tests of Alkabbani (2021) were numerically 

investigated below. FRC panel specimens were modeled with the finite element 

program LS-DYNA. 1900x1900x50 mm specimen was constructed with 10x10x10 mm 

eight-node hexahedron elements.  

During the experimental specimen manufacturing process, voids were left in the 

formwork for anchoring transportation hooks. These voids were generated in the 

numerical model as well, as seen in Figure 5.8, since experimental crack paths have 

shown that damage initiates from these locations. 

 

 

Figure 5.8. General view of the numerical model 
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The panel specimens were provided with simply supported boundary conditions. 

Corresponding to the support points of the experimental test setup, 10x10 cm steel 

plates were modeled on the top and bottom of the panel. 3 mm distance was kept 

between the steel plates and the panel to prevent any prestressing condition during blast 

loading. Massless rivets were defined between the node pairs of top and bottom steel 

plates (Figure 5.9) using CONSTRAINED_RIVET card. Thus, the distance between the 

top and bottom steel plates was kept constant during loading while allowing rotations. 

The top middle points of the steel plates were restricted in translational movement but 

rotations were allowed. MAT_ELASTIC was assigned to the top and bottom steel plates 

with steel material properties. 

The Karagozian and Case (K&C) material model was used for the reinforced 

concrete panels. FRC mixtures’ material properties were taken as identical to the 

parameter set found from the DNN calibration in Chapter 3 Table 3.5 and Table 3.8. 

The Tabulated Compaction Equation of State was selected for the mixtures as well, and 

their parameter set was selected equal to DNN calibration. LCRATE parameter in the 

K&C material model was changed to “-1” to incorporate the strength enhancement 

under high-strain rate effects (Y. Wu and E.Crawford 2015). The omega and the 

localization width parameters were taken as 0.9 and 55, respectively. A sensitivity study 

was done to select these values. 

Between the steel plates and panel specimen, the CONTACT_AUTOMATIC_ 

SURFACE_ TO _SURFACE contact card was assigned, with static and dynamic 

friction coefficients of 0.9 and 0.9. The contact card and friction coefficients specified 

in this study are consistent with the numerical modeling details of the FRC four-point 

bending numerical analysis presented in Chapter 4. 

Reflected pressure-time data, as presented in Figure 5.4, was applied to panel 

surface nodes as force. LOAD_NODE card was used to apply the force to the nodes. 

CONTROL_ENERGY and CONTROL_HOURGLASS cards are also added to the 

numerical model as control cards. 

Five nodes were prescribed to the DATABASE_HISTORY_NODE and 

DATABASE_ NODOUT cards at RLPT locations as displayed in Figure 9. Due to 

technical problems, the midpoint displacement (RLPT1) of ST-M1+PVA mixture was 

not captured. Thus, only the maximum displacement value calculated from acceleration 

data was used for comparison for this location.  
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a) 

 

b) 

Figure 5.9. a) Boundary properties with close-up and b) applied load details of the 

numerical model 
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5.4.Numerical Results  

 

The experimental and numerical displacement results are given in Figure 5.10 

through Figure 5.18. The maximum displacements and their corresponding times are 

given in Table 5.2 and Table 5.3 with the differences between the numerical and 

experimental values. The damage distribution from the numerical analysis and the 

experimental crack paths are shown in Figure 5.19 through Figure 5.26. 

 

5.4.1. Displacement Histories 

 

The RPLT results of experimental and numerical displacements fit well in terms 

of initial stiffness. The estimation of maximum displacements with the numerical 

analysis gives acceptable results. The best estimation is RLPT 5 in ST-M2 mixture with 

2 % discrepancy, whereas the discrepancy for RLPT 3 and 4 reached up to 48%. The 

peak displacement instances of the experimental and the numerical results fit very well.  

 

Table 5.2. ST-M2 Numerical and experimental differences in peak displacements 

 

Numerical 

Maximum 

Displacement 

(mm) 

Experimental 

Maximum 

Displacement 

(mm) 

Displacement 

Difference in 

% 

Numerical 

Max. 

Displacement 

Time 

(ms) 

Experimental 

Max. 

Displacement 

Time 

(ms) 

 

RLPT1 85.6 62.3 37% 50.4 49.3 

RLPT2 69 54.7 26% 50.4 49.3 

RLPT3 70.3 >47.5 - 50.4 50.9 

RLPT4 61.3 41.5 48% 50.4 48.9 

RLPT5 16 16.3 2% 47.6 48.6 
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Table 5.3. ST-M1+PVA Numerical and experimental differences in peak displacements 

 

Numerical 

Maximum 

Displacement 

(mm) 

Experimental 

Maximum 

Displacement 

(mm) 

Displacement 

Difference in 

% 

Numerical 

Max. 

Displacement 

Time 

(ms) 

Experimental 

Max. 

Displacement 

Time 

(ms) 

 

RLPT1 132 117 13% - - 

RLPT2 117 >79.1 - - - 

RLPT3 111 >69.2 - - - 

RLPT4 102 >49.3 - - - 

RLPT5 30.2 38.5 22% 64.4  63.5  

 

During experimental tests, some RLPT capacities were exceeded, as presented 

in Figure 5.12, Figure 5.15, Figure 5.16, and Figure 5.17. The initial stiffness of the 

experimental displacement results fit well with the numerical findings. Additionally, the 

RLPT 1 record of the ST-M1+PVA specimen was not obtained because its capacity was 

exceeded. The maximum midpoint was calculated as 117 mm through direct integration 

of the acceleration data.  

 

Figure 5.10. ST-M2 specimen’s numerical and experimental displacements at RLPT 1 
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Figure 5.11. ST-M2 specimen’s numerical and experimental displacements at RLPT 2 

 

 

Figure 5.12. ST-M2 specimen’s numerical and experimental displacements at RLPT 3 
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Figure 5.13. ST-M2 specimen’s numerical and experimental displacements at RLPT 4 

 

 

Figure 5.14. ST-M2 specimen’s numerical and experimental displacements at RLPT 5 
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Figure 5.15. ST-M1+PVA specimen’s numerical and experimental displacements at 

RLPT 2 

 

 

Figure 5.16. ST-M1+PVA specimen’s numerical and experimental displacements at 

RLPT 3 
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Figure 5.17. ST-M1+PVA specimen’s numerical and experimental displacements at 

RLPT 4 

Figure 5.18. ST-M1+PVA specimen’s numerical and experimental displacements at 

RLPT 5 
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5.4.2. Numerical Damage Distribution  

 

The K&C material model is capable of providing effective plastic strain fringe 

plots, which indicate each element’s damage levels. 0 to 1 indicates the failure surface 

reaching the maximum strength surface, and 1 to 2 means reaching the residual strength 

surface. Below, the numerical damage distributions were discussed, followed by the 

experimental crack and numerical damage comparisons.  

 

 

Figure 5.19. Numerical damage distributions of ST-M2 specimen’s front face, at 67 ms, 

300 ms, and 450 ms  

 

The blast loading was applied directly to the specimen’s front side as a normal 

force. The numerical damage distributions on ST-M2 specimen’s front side show a 

circular shape during the loading phase (Figure 5.19). The holding places on the 

specimen cause additional crack paths leading to diagonal cracks. The middle part on 

specimen’s front side shows dispersed damage levels though not complete damage. At 
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450 ms, specimen’s front side shows approximately unified large areas of damage, 

although the middle of the specimen still shows dispersed in complete damage. The 

steel plates, which were used as the boundary elements in the experimental phase, cause 

stress concentration beginning from peripheral sides towards the middle of the 

specimen. 

The numerical damage at specimen’s front face displays the damage is mainly 

caused by boundary locations. The full scope of specimen’s capacity is not used, which 

corresponds with experimental tests where another blast loading was done to the 

specimen.  

 

 

Figure 5.20. Numerical damage distributions of ST-M2 specimen’s back face, at 67 ms, 

300 ms, and 450 ms 

 

ST-M2 Specimen’s back side shows explicit damage localized around boundary 

locations and specimen’s mid-point (Figure 5.20). The back side of the specimen is 
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where tensile stresses were dominant, especially at the instance of loading. Thus, the 

middle of the specimen displays a widely damaged area focused on a rectangle shape. 

After 300 ms, damage did not progress further at specimen’s back face. 

 

   

a) 42 ms                   b) 67 ms  

    

     c) 100 ms                   d) 400 ms  

Figure 5.21. Numerical damage distributions of ST-M1+PVA specimen’s front face, at 

a) 42 ms, b) 67 ms, c) 100 ms, and d) 400 ms  

 

ST-M1+PVA specimen’s front face was the side where the blast load was 

applied. The numerical damage distribution shows that the boundary locations are 

where the damage localizes then the damage moves toward the edges (Figure 5.21). An 

asymmetrical damage distribution is present due to the nature of the explicit analysis. 

The middle part of the specimen’s front side shows damage at the later stages of blast 

loading towards 100 ms. At 400 ms, the specimen’s front side is fully damaged. This 

founding corresponds with the experimental test phase as only one blast load was done 

to the ST-M1+PVA specimen. 
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a) 42 ms                   b) 67 ms  

   

     c) 100 ms                   d) 400 ms  

Figure 5.22. Numerical damage distributions of ST-M1+PVA specimen’s back face, at 

a) 42 ms, b) 67 ms, c) 100 ms, and d) 400 ms  

 

  ST-M1+PVA specimen’s back face (Figure 5.22) shows more symmetrical 

damage distribution compared to specimen’s front side (Figure 5.21). At 42 ms, the 

corners and the boundary locations show localized damage leading toward specimen’s 

middle. The numerical damage in the middle and along the diagonal path is more 

dispersed at the beginning of the blast loading. After 100 ms, these diagonal paths are 

fully damaged, and after 400 ms, specimens full back side is fully damaged as well. 

Again, the back side of the ST-M1+PVA specimen’s numerical damage distribution 

shows the specimen is fully damaged after the first blast loading and energy capacity of 

the specimen is finalized, which corresponds with the experimental tests.  
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5.4.3. Numerical Damage and Experimental Crack Distribution  

          Comparison  

 

The experimental crack paths of ST-M2 and ST-M1+PVA specimens are given 

below. The blast was loaded at the front side of the specimen. The front side of ST-M2 

specimen was not photographed after the first blast test.  

 

 

a)                             b) 

Figure 5.23. Experimental crack profile of ST-M2 specimen, a) front (blast-loaded), and 

b) back faces (Alkabbani, 2021) 

 

The experimental crack profile of ST-M2 specimen is presented in Figure 5.23. 

ST-M2 specimen was subjected to a blast loading resulting in a peak pressure of 43 kPa 

(Figure 5.4.a). Specimen’s displacement time graphs were recorded and given in Figure 

10 through Figure 14. Large diagonal cracks were observed after the blast load along 

with some hairline cracking. To test the full scope of ST-M2 specimen’s blast 

resistance, another blast load with a peak pressure of 63 kPa was applied to the 

specimen. Only the first loading was used in the numerical study. The considered 

numerical results show that in conjunction with the experimental results, the specimen 

could endure another loading as it was not fully damaged after the first one. The front 

face of the specimen was photographed after the second blast loading.  
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a)                             b) 

Figure 5.24. Experimental crack profile of ST-M1+PVA specimen, a) front (blast-

loaded), and b) back faces (Alkabbani, 2021) 

 

ST-M1+PVA specimen’s blast test was concluded with one blast loading where 

the peak pressure was recorded as 47 kPa given in Figure 5.4.b. At the midpoint, the 

RLPT capacity was exceeded and the midpoint displacement of 117 mm was calculated 

through direct integration of the acceleration data. Wide diagonal cracks were observed 

as seen in Figure 5.24. Another blast load was not applied because of the high damage 

levels of the ST-M1+PVA specimen.  
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The experimental crack distribution was converted to crack paths with translucent 

bases with grey/black lines. Then, the translucent crack paths were placed on top of the 

final numerical damage for comparison. The crack distribution of the ST-M2 

specimen’s front side was captured after the second blast load. That was taken into 

account in the comparison process. 

 

 

a)                             b)  

 

Figure 5.25. ST-M2 specimen’s a) front and b) back face damage and crack 

distributions at the final stage at 450 ms 

 

ST-M2 specimen’s front face shows a circular damage distribution which 

coincides with the experimental circular crack paths (Figure 5.25). The wide diagonal 

cracks in the middle of the front face from experimental observations were not 

explicitly reflected in numerical damage distribution, though some damage could be 

from the second blast loading. 

Diagonal cracks and the numerical damage fit well at the back face of the ST-

M2 specimen. In the middle, numerical damage accumulates to a square section 

whereas the crack paths are more individual and wider. Overall, the damage is well 

represented at the back face compared to the front face which could be because of the 

lack of front crack paths after the first blast test. Additionally, the numerical damage is 

not excessive, like the experimental results, and the specimen could sustain another 

blast load as well.  
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a)                             b) 

 

Figure 5.26. ST-M1+PVA specimen’s a) front and b) back face damage and crack 

distributions at the final stage at 42 ms 

 

ST-M1+PVA specimen’s crack and damage distribution was compared at 42 ms 

due to the substantial damage that had already occurred in the specimen by 400 ms. The 

numerical damage distribution of specimen’s front side shows peripheral damage which 

coincides with the experimental crack paths (Figure 5.26). The diagonal cracks were 

observed in the numerical results in the later stages of the loading though not visible at 

42 ms. ST-M1+PVA specimen’s back face very clearly represents the diagonal cracks, 

coming from the boundary locations to the midpoint. The numerical damage 

distribution shows, in Figure 5.21 and Figure 5.22, that the specimen’s blast resistance 

after the first blast loading is low and another blast test cannot be applied to the 

specimen. The same conclusion was reached with the experimental tests as well. 
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CHAPTER 6 

CONCLUSIONS AND OUTLOOK 

Current thesis proposes a new methodology for the numerical representation of 

fiber reinforced concrete (FRC) materials. A calibration method for fiber reinforced 

concrete (FRC) using Karagozian and Case (K&C) material model was presented. 

While the calibration method for a FRC material is very complex and laboursome, the 

current study uses a simpler and more effective methodology combining uniaxial direct 

tension test results and Deep Neural Networks (DNN). Calibrated K&C parameters 

were validated with experimental tests under static and dynamic conditions.  

The following conclusions were drawn. 

• The proposed methodology offers a practical and accurate representation

of the FRC calibration method that can be used under different loading

conditions. The use of a simple experimental test as DNN output and

Python automation scripts provides fast and accurate calibration practice.

• The quasi-static and strain-rate influenced the behavior of FRC can be

represented with a calibrated K&C material model. The parameters of

the K&C material model offer flexibility to the user and the DNN

approach replaces the need for experimental data fitting of these

parameters. The tensile damage (b2) and damage distribution (λ and η)

parameters of K&C can provide the tensile strain-softening behavior of

the FRC.

• Additional load and mass scaling studies could be concluded to eliminate

the scattered behavior in force-displacement diagrams under bending

loading.  However, the proposed methodology gives the FRC damage,

energy and force distribution very similar to experimental observations

with a mesh size of 5 mm where here, the element size was selected with

a mesh sensitivity study.

• K&C calibration with the proposed methodology can reflect the

displacement and damage distribution under shock tube-induced blast
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loading even though there are some discrepancies between the maximum 

displacement values.  

• The calibration of a material model using a simple experimental test and 

DNN scheme can be used for varying the fiber types and percentages of 

FRC and hybrid fiber reinforced concrete materials. Additionally, other 

capable concrete material models can be calibrated with the proposed 

methodology. 

• The K&C damage distribution of the FRC behavior was explicitly 

changed to reflect strain-softening behavior. Thus, the presence of strain-

hardening behavior requires additional recalibration.  

• Future study recommendations can be given for the calibration of the 

strain-hardening behavior of FRC through the DNN methodology.  

• Additional future study recommendations could include applying the 

calibration method to the K&C strength surface and compression damage 

parameters, as well as other multiparameter material models in LS-

DYNA. 
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