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A B S T R A C T   

Objective: Parkinson’s disease (PD) patients generally exhibit an olfactory loss. Hence, psychophysical or elec-
trophysiological tests are used for diagnosis. However, these tests are susceptible to the subjects’ behavioral 
response bias and require advanced techniques for an accurate analysis. 
Proposed Approach: Using well-known feature extraction methods, we characterized chemosensory-induced EEG 
responses of the participants to classify whether they have PD. The classification was performed for different time 
intervals after chemosensory stimulation to see which temporal segment better separates healthy controls and 
subjects with de novo PD. 
Results: The performances show that entropy and connectivity features discriminate effectively PD and HC 
participants when olfactory-induced EEG signals were used. For these methods, discrimination is over 80% for 
segments 100–700 and 200–800 milliseconds after stimulus onset. 
Comparison with Existing Methods: We compared the performance of our framework with linear predictive coding, 
bispectrum, wavelet entropy-based methods, and TDI score-based classification. While the entropy- and 
connectivity-based methods elicited the highest classification performances for olfactory stimuli, the linear 
predictive coding-based method elicited slightly higher performance than our framework when the trigeminal 
stimuli were used. 
Conclusion: This is one of the first studies that use chemosensory-induced EEG signals along with different feature 
extraction methods to classify healthy subjects and subjects with de novo PD. Our results show that entropy and 
functional connectivity methods unravel the chemosensory-induced neural dynamics encapsulating critical in-
formation about the subjects’ olfactory performance. Furthermore, time- and frequency-resolved feature analysis 
is beneficial for capturing disease-affected neural patterns.   

1. Introduction 

The neurological disorders can alter the brain dynamics significantly 
[1–5]. These alterations may stem from a variation in the information- 
processing machinery of the brain, which demonstrates itself as a 

change in inter-regional functional connectivity and changes in complex 
dynamics of oscillatory activity in many brain regions [5–9]. Detecting 
these alterations due to neurodegenerative diseases is crucial for early 
diagnosis, which may help to maintain the patients’ quality of life via 
alternative treatments. 
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Parkinson’s disease (PD) is the second most common neurological 
disease that affects more than 10 million people worldwide [10]. A vast 
number of brain networks are affected due to PD, which may demon-
strate itself as motor and non-motor symptoms such as tremors, rigidity, 
postural instability, visual impairment, cognitive decline, dysphonia, 
depression, apathy, and impairments in swallowing and breathing 
[11–14]. These symptoms have been demonstrated to be due to 
nigrostriatal dopamine depletion and pathophysiological perturbations 
of the brain [15–18]. Besides these symptoms, olfactory abnormalities, 
one of the most critical non-motor symptoms of PD, appear as an early 
biomarker of PD [19,20]. In that context, psychophysical and electro-
physiological tests are critical for accurately examining chemosensory 
system performance for detecting PD or other neurological problems 
[21–23]. 

Detecting chemosensory abnormalities enable early treatment stra-
tegies that slow the disease progression [24]. Several studies have been 
conducted to understand the complex mechanism of olfactory function 
[25] and its relation to neurodegenerative disorders [23,26–29]. The 
results of these studies exhibit the importance of development of a 
diagnostic tool for chemosensory perception evaluation, especially for 
the diagnosis of PD. 

Psychophysical tests have been demonstrated not to be enough for 
detecting PD when they are used as a single test [30]. Contrary to this, 
electrophysiological measures help to observe the PD-related changes of 
sensorial processing dynamics in the brain response patterns which 
enable us to obtain more information about the progression of PD 
[31,32]. The classical electrophysiological method for the olfactory 
performance evaluation is calculating the averages of time-locked event- 
related potentials and analyzing the amplitude and latency of these 
averaged potentials in the post-stimulus time interval. These potentials 
reflect the neocortical processes of olfactory information, which may 
become invisible in the case of functional lesions and neuronal loss [33]. 
However, these potentials may not be visible in normosmic (i.e., healthy 
controls) subjects and could be visible even if the subjects suffer from PD 
[33–35]. In that context, analyzing the amplitude and latency of brain 
potentials may not provide enough information about olfactory sensa-
tion [36]. Even if these cortical potentials are absent, the olfactory 
function can be evaluated by analyzing these brain signals using 
advanced methods [37–40]. 

The trigeminal system, also known to be closely related to the ol-
factory system, is responsible for warmth, burning, stinging, and fresh-
ness sensations [29]. There are large conflicting outcomes about the 
trigeminal system responses of PD patients. Whilst some studies have 
shown that PD patients elicit electrophysiological brain responses with 
lower amplitudes and prolonged latencies in response to trigeminal 
stimulus compared to healthy subjects [41–43]; some of these studies 
show that the trigeminal sensation remains intact [29,44,45]. These 
conflicting results may point that the trigeminal sensitivity in PD pa-
tients has different characteristics from that of the patients with other 
non-PD-related olfactory loss and appeared the same in healthy controls. 

In the last decade, the studies were generally conducted via analysis 
of electrophysiological signals collected during resting, cognitive, and 
motor task states from healthy and PD subjects [17,46,47]. The neuro-
pathological findings of these studies do not always match with the pre- 
investigated spatio-temporal patterns of PD [48]. By now, very few 
studies have analyzed the chemosensory-induced EEG responses 
through signal processing methods to recognize the subjects with de 
Novo Parkinson’s (newly diagnosed patients with Parkinson’s disease 
and not receiving any L-dopa treatment) [40,49]. 

In the literature, various neural activity characterization methods 
have been mainly used for brain-computer interface (BCI) purposes 
[50–56]. The majority of the PD detection studies incorporate these 
characterization methods to detect the neural alterations [7,17,57,58]. 
By using these methods, extracting and using the chemosensory-induced 
neural features could be considered as valuable since the smell perfor-
mance decline is one of the first earliest symptoms of PD [30,59]. 

In the present study, we aimed to investigate the performances of 
different feature extraction methods for detecting abnormal 
chemosensory-induced EEG patterns in de novo PD patients. We used 
entropy, time-domain features, filter-bank common spatial patterns 
(FBCSP), and linear mutual information due to their success in previous 
studies [40,55,56,60–63]. To the best of our knowledge, this study is one 
of the initial attempts that incorporates different feature extraction 
methods to evaluate PD-related neural patterns obtained from 
chemosensory-induced EEG signals. 

This paper is organized as follows. In Section 2, we describe the 
datasets, the feature extraction methods, and the operational flow dia-
gram steps of the classification framework. In Section 3, the classifica-
tion performances, as well as the related biophysical outcomes, are 
presented. In Section 4, the results considering current biophysical 
findings are discussed. The final section concludes the paper. 

2. Materials and methods 

2.1. EEG dataset 

Twenty newly diagnosed (de Novo) Parkinson’s Disease (PD) patients 
(7 men, mean age: 53.92 ± 9.04 years) and 12 healthy age and gender- 
matched controls (HC) (7 men; mean age: 52.42 ± 7.69 years) were 
included in this study. This EEG dataset has recently been used in [64] 
and in [49]. Healthy participants did not have any neurological or 
psychiatric diagnosis according to a general examination at the 
neurology outpatient department. The local ethical committee of the 
Dokuz Eylul University approved this study. Before the EEG analysis, the 
olfactory function of the subjects of both groups was evaluated via 
Sniffin’ Stick Test [65]. The mean threshold scores (T) were 2.6 (±1.9) 
for PD and 5.2 (±2.0) for healthy controls, and the mean discrimination 
scores (D) were 9.8 (±2.4) for PD and 11.2 (±2.4) for healthy controls. 
Also, the mean identification scores (I) were 8.3 (±3.2) for PD and 12.1 
(±1.8) for healthy controls [49]. All the subjects were examined by the 
same ENT specialist before the olfactory testing to detect and exclude 
the subjects with any sinonasal pathologies. The control participants had 
no prior diagnosis of any neurological and/or psychiatric disorders. The 
informed consent was taken from subjects before they participate in the 
study. 

The brain responses are recorded via the 64-channel electroen-
cephalography (EEG) system (Neuroscan 4.3, Synamps, USA) in an 
electromagnetically and acoustically isolated room. Embedded Micro-
controller Stimulation Unit (EMISU) [66], an air dilution olfactometer 
(Om2b, Burghardt, Germany), and additional equipment such as a video 
recording system were used to track the subject’s condition and move-
ments during recordings. The olfactometer, which provides a continuous 
airflow (approximately 8 L/min) with a relative humidity of around 80% 
and a fixed temperature (36 ◦C), was used to deliver the stimuli to the 
participant’s nose. In this study, carbon dioxide (CO2) and 2-phenyl-
–ethyl-alcohol (PEA) were used as specific trigeminal and olfactory 
stimulants, respectively [28,30]. The former stimulant is used to analyze 
the responses that mainly stem from the trigeminal system, and the 
latter is for analyzing responses that mainly arise from the olfactory 
system. The intensities of the stimuli were 60% (v/v percent) for PEA; 
50–60% (v/v percent) for CO2. The inter-stimulus interval (ISI) was 
determined between 15 and 17 s randomly. 

The EEG caps of appropriate size (Quik Cap, Neuromedical Supplies, 
USA) were placed on the head of the participants according to the in-
ternational 10–20 electrode positions system [67]. The two earlobes 
were linked (A1+A2

2 ) with Ag/AgCl electrodes for the references. The EEG 
signals were recorded at a sampling rate of Fs = 1 kHz, which means 
each epoch has 64 × 3001 signal samples. The independent electrodes 
were placed 1 cm away from the outer regions of both canthi to mini-
mize the interference of eye movements. The impedance of the elec-
trodes was kept at approximately ≤ 5kΩ during the recordings which 
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was quite lower than the recommended impedance (below 50 k Ω) for 
the EEG amplifiers. On the average, we used 24.9 ± 5.1 trials for PEA 
and 26.2 ± 2.66 trials for CO2 stimulations. Please note that due to the 
large-amplitude artifacts (i.e., exceeding 50 μV) observed in their most 
of the EEG epochs collected during CO2 (trigeminal stimuli) presenta-
tion sessions (approximately 18.31 ± 3.49 trials were labeled as noisy), 
two HC and one PD subjects’ EEG recordings were excluded from the 
further analyses. Thus, we had 32 and 29 subjects’ EEG signals for PEA 
and CO2 stimulation sessions, respectively. 

The timings and the corresponding stimulus-induced EEG responses 
of each chemosensory stimulus were marked and registered by the 
EMISU (Embedded Interactive Stimulation Unit) [66]. 

2.2. EEG preprocessing 

Before feature extraction, we first re-referenced the EEG signals via 
common average reference (CAR) to accentuate the region-specific 
neural patterns and attenuate the volume conduction and non-neural 
artifacts [68–70]. Then, the EEG channel signals were filtered using a 
high-pass filter with a cut-off frequency of 0.2 Hz to remove the low 
frequency voltage drifts. Thereafter, we filtered the EEG signals with a 
filter bank structure consisting of twelve 4th order Butterworth filters to 
capture and use the frequency-resolved cortical activities, which is 
beneficial to elucidate the chemosensory stimulus-induced differences 
between subject groups [37]. Note that in this study, two-pass filtering 
(i.e., forward plus reverse filtering) was adopted to prevent the neural 
dynamics from phase shift due to filtering [57,71]. The frequency ranges 
of each filter in the bank structure are given in Table 1. These fre-
quencies were selected according to previous neural activity charac-
terization studies [55,72]. In those studies, the authors used nine 
frequency bands starting from four hertz, corresponding to the theta (θ) 
band. Here, we included three more filters into the bank structure to 
capture the chemosensory-related neural patterns embedded in lower 
and higher frequency bands since olfaction induces dynamic changes 
encoded in low as well as high-frequency bands [28,49,63,73,74]. 

After filtering, the epochs were extracted from the continuous EEG 
signals according to the chemosensory stimulus onset (t = 0). Each 
epoch started from 1000 milliseconds before the stimulus onset and 
lasted up to 2000 milliseconds after the stimulus onset. The timing di-
agram of an epoch were illustrated in Fig. 1. 

2.3. Feature extraction methods 

In this study, different feature extraction methods were used to 
characterize the EEG signals collected during chemosensory stimuli 
presentation. The details of the feature extraction are provided below. 
We evaluated the characterization performance of the features extracted 
from four different 600 ms-long time segments in the post-stimulus 
period as in [75]. The time windows that we used here: tw1 comprises 
the temporal region [100,700] milliseconds starting from stimulus onset 
(t = 0), tw2 the [200,800] milliseconds, tw3 the [300,900] milliseconds, 
and tw4 the [400,1000] milliseconds. We used these time windows to 
determine the time interval at which the brain provides the most 
distinctive features for PD versus HC subject classification. For the 

mathematical expression of each feature extraction method, we used the 
notation stw

i,f = si,f (t)
⃒
⃒
t∈tw which represents the signal segment obtained 

from the temporal region tw of channel i that was filtered in frequency 
band f . Throughout this study, we used the sampled version of the EEG 
signals ̃stw

i,f . The mathematical expression of feature extraction methods is 
expressed by using the discrete signal expression ̃stw

i,f (n). 

2.3.1. Entropy 
We used the Kozachenko-Leonenko method for estimating the en-

tropy, which was proposed in [76] and used in [40], to quantify the 
complexity of EEG signals. The entropy of the signal s̃tw

i,f (n) can be 
calculated using the formula. 

MEntropy
(

s̃tw
i,f (n)

)

= − ψ(k)+ψ
(

Ns̃tw
i,f

)

+ logcd +
d

Ns̃

∑Ns̃∊s̃tw
i,f
(p)

p=1 (1) 

where ψ(⋅) denotes the digamma function, Ns̃tw
i,f 

denotes the total 

number of samples of the signal s̃tw
i,f (n), cd is the volume of the 

d-dimensional unit sphere, and d denotes the dimension of the signal 
s̃tw
i,f (n), and ∊s̃tw

i,f
(p) is the twice distance between pth sample of the signal 

and its kth neighborhood. 

2.3.2. Time domain features 
We used Hjorth parameters, namely, Activity, Mobility, and 

Complexity. The Activity feature calculates the signal power, the Mobility 
the mean frequency, and the Complexity the changes in the frequency of 
the signal ̃stw

i,f (n) [54]. These features can be calculated using. 

MActivity
(

s̃tw
i,f (n)

)

= var
(

s̃tw
i,f (n)

)

MMobility
(

s̃tw
i,f (n)

)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

MActivity

(

D
(

s̃tw
i,f (n)

))

MActivity

(

s̃tw
i,f (n)

)

√
√
√
√
√
√
√

MComplexity
(

s̃tw
i,f (n)

)

=

MMobility
(

D
(

s̃tw
i,f (n)

))

MMobility

(

s̃tw
i,f (n)

) (2) 

where D(⋅) represents the first-order forward difference operator. In 
addition to the Hjorth parameters, extra time-domain features namely, 
normalized first difference and normalized second difference were used. 
These features quantify the self-similarity structure of signals [62,77]. 
The 1st difference feature of the signal segment ̃stw

i,f (n) is calculated as. 

MFD
(

s∼
tw
i,f (n)

)

=
1

Ns∼
tw
i,f
− 1

∑N s∼− 1

k=1

⃒
⃒
⃒
⃒s
∼tw

i,f (k + 1) − s∼
tw
i,f (k)

⃒
⃒
⃒
⃒ (3) 

The normalized version of the 1st difference can then be expressed as 

MNFD
(

s̃tw
i,f (n)

)

=

MFD
(

s̃tw
i,f (n)

)

σs̃tw
i,f

(4) 

where σs̃tw
i,f 

denotes the standard deviation of s̃tw
i,f (n). The 2nd differ-

ence can be calculated as 

MSD
(

s∼
tw
i,f (n)

)

=
1

Ns∼
tw
i,f
− 2

∑
N

s∼
− 2

k=1

⃒
⃒
⃒
⃒s
∼tw

i,f (k + 2) − s∼
tw
i,f (k)

⃒
⃒
⃒
⃒ (5) 

The normalized 2nd difference is obtained as 

Table 1 
The frequency bands of each 4th order Butterworth filter in the filter-bank 
structure. We presented the names and the respective frequency ranges of the 
twelve filters in the filter-bank structure here.  

Filter Name Frequency Band Filter Name Frequency Band 

f1 0–4 Hz f7 24–28 Hz 
f2 4–8 Hz f8 28–32 Hz 
f3 8–12 Hz f9 32–36 Hz 
f4 12–16 Hz f10 36–40 Hz 
f5 16–20 Hz f11 40–44 Hz 
f6 20–24 Hz f12 44–48 Hz  
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MNSD
(

s̃tw
i,f (n)

)

=

MSD
(

s̃tw
i,f (n)

)

MFD

(

s̃tw
i,f (n)

) (6)  

2.3.3. Filter-Bank common spatial patterns (FBCSP) 
We used the filter-bank common spatial patterns method to recog-

nize the subjects with Parkinson’s disease from their olfactory EEG re-
sponses. During obtaining frequency-specific spatial filters, we used all 
epochs of the training subjects to calculate the covariance matrices of 

healthy control (HC) and PD categories. Let S̃
tw
f (n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃tw
1,f (n)

s̃tw
2,f (n)

⋮
s̃tw
M,f (n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

rep-

resents the M-channel EEG signal. The mean spatial covariance matrices 
ΣHC,tw

f and ΣPD,tw
f are calculated using all the training epochs of HC and 

PD subjects. The frequency-specific spatial filter matrix Wtw
f can be 

constructed using the eigenvectors that maximizing the criterion func-

tion J
(

wtw
f

)
expressed as [78,79]. 

J
(

wtw
f

)
=

wtwT
f PD,tw

f wtw
f

wtwT
f PC,tw

f wtw
f

(7) 

where PD,tw
f and PC,tw

f denote the frequency-specific discriminative 
and common activity terms which are obtained as [80]. 

PD,tw
f = ΣHC,tw

f − ΣPD,tw
f  

PC,tw
f = ΣHC,tw

f +ΣPD,tw
f (8) 

Here, we selected three eigenvectors from both ends of the eigen-
vector spectrum (2m = 6) as in [80]. We thus obtained spatial filter 
Wtw

f ∈ RNch×2m for each frequency band f . 
After constructing the frequency-specific spatial filters, for each 

training subject, the log-variance features of spatially and spectrally 
filtered the epochs were calculated for each frequency band as. 

MFBCSP
(

S̃
tw
f

)

= log

⎛

⎜
⎜
⎝

diag
(

WtwT

f S̃
tw
f S̃

twT

f Wtw
f

)

tr
(

WtwT
f S̃

tw
f S̃

twT

f Wtw
f

)

⎞

⎟
⎟
⎠ (9) 

where the diag(⋅) function returns the diagonal elements and the tr(⋅)
function returns the sum of the diagonal elements [79]. 

2.3.4. Brain connectivity 
We used linear mutual information to quantify the synchronization 

(i.e., connectivity) between the signals collected from different brain 
regions. Briefly, linear mutual information calculates the second-order 
correlation between signals. For a channel pair (i, j), the linear mutual 
information can be calculated using [56,61]. 

MLinearMI
(

s̃tw
i,f (n), s̃

tw
j,f (n)

)

= −
1
2

log
(

1 −
(

ρtw
i,j,f

)2
)

(10) 

where ρtw
i,j,f denotes the correlation coefficient of the signals ̃stw

i,f (n) and 
s̃tw
j,f (n). 

Note that in the brain connectivity analysis during feature extraction 
step, we calculated the linearized mutual information of the 600 ms-long 
signals of the channel pairs indexed by (i, j) for each stimulus segment in 
the dataset 

Note also that we calculated the synchronizations for all (64×63
2 =

2016) channel pairs during our analysis. 
For entropy and time-domain features, the feature vector ξtw for any 

epoch can be obtained as. 

ξtw =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M
(

s̃tw
1,f1

)

M
(

s̃tw
2,f1

)

⋮

M
(

s̃tw
64,f1

)

M
(

s̃tw
1,f2

)

M
(

s̃tw
2,f2

)

⋮

M
(

s̃tw
64,f12

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11) 

As for the FBCSP method, the log-variance feature vector for any 
epoch can be obtained as. 

ξtw =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

MFBCSP
(

S̃
tw
f1

)

MFBCSP
(

S̃
tw
f2

)

⋮

MFBCSP
(

S̃
tw
f12

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12) 

And for the linear mutual information method. 

Fig. 1. The timing diagram of the EEG epochs. Each epoch started from the 1000 ms before the stimulus onset (t = 0) and lasts up to 2000 ms after the stim-
ulus onset. 
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ξtw =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

MLinearMI
(

s̃tw
1,f1 (n), s̃

tw
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(13) 

Please note that, after constructing the feature vectors for each 
epoch, we calculated the average of the feature vectors across all epochs 
to obtain a unique representative feature vector for each subject. These 
representative vectors were used for classifier training and test purposes. 

In this study, three different classifiers were used in a leave-one- 
subject-out cross-validation framework. The classifiers that we used here 
are: Fisher’s linear discriminant [81], linear and nonlinear support 
vector machines (SVM) [82]. The kernel size ϛ of the nonlinear SVM was 
determined as [56]. 

ϛ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
L(L − 1)

∑L− 1

i=1

∑L

j=i+1
‖ξi − ξj‖

2

√
√
√
√ (14) 

where L is the total number of training feature vectors. 

2.4. Proposed classification framework 

The operational diagram of the training phase of the classification 
framework is given in Fig. 2. 

In the EEG Pre-processing block, first, the EEG signals of each training 
subject were re-referenced through a CAR filter and then filtered with 
the filter-bank structure. Next, we extracted the epochs from the filtered 
EEG signals. In the Feature Extraction block, the features were extracted 
from all channels and all frequency bands for each epoch. These features 
were then concatenated to form a feature vector for each epoch. Next, in 
the Averaging Feature Vector Across Epochs block, we averaged the feature 
vectors of all epochs to obtain a unique representative feature vector for 
each training subject. In the Classifier Training block, the representative 
feature vectors and their respective class information were used to train 
the classifier for testing purposes. 

We presented the flow diagram of the test phase of our framework in 
Fig. 3. Similar steps in the training phase were performed but the clas-
sifier training. Here, in the Classification block, we determined the 
category of the test feature vector by using the trained classifier. 

2.5. Comparative analysis 

We used linear predictive coding (LPC) [17], wavelet entropy [83], 
and higher-order spectra [57] as benchmark methods to evaluate the 
performance of our framework. These methods were previously used to 
disclose the neural patterns peculiar to the early stage of Parkinson’s 
disease [84]. These benchmark methods were used with slight modifi-
cations. For the first method, the EEG signals were filtered into a 2.5–14 
Hz frequency band, which elicited the most distinctive spectral char-
acteristics for PD and healthy subjects [17,85]. Before the calculation of 
LPC features, we used the Akaike information criterion (AIC) to deter-
mine the optimum model order [86]. We determined the model order as 
12 since most of the channels at each training epoch elicited their 
minimum AIC value at this model order. The LPC features of each 
channel were calculated via Burg’s method according to the selected 
model order and then concatenated to form a column feature vector. 

The second method is the wavelet entropy analysis which is 
frequently used in neural activity analysis studies [83,87,88] and PD 
diagnosis studies [84]. Before the wavelet decomposition, the EEG sig-
nals were filtered into 0.5–48 Hz. frequency band. Next, we applied 7- 
level Haar wavelet decomposition for each channel to extract the 

Fig. 2. Operational diagram of the training phase of the classification framework.  
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dominant physiological EEG rhythms (i.e., δ : 0.5–4 Hz., θ : 4–8 Hz., α :

8–13 Hz., β : 13–30 Hz., and γ : 30–48 Hz.) [63,83]. We used the level-7 
approximation (A7), and levels-4, 5, 6, and 7 detail coefficients (D4, D5, 
D6, and D7) to calculate the wavelet entropy features of each channel. 
The resulting wavelet entropy-based feature vectors were obtained for 
each epoch by concatenating all the channel entropies. 

The third method calculates the higher-order spectral features from 
each channel [57]. The EEG signals were initially filtered into 0.5–48 
Hz. frequency band through a 4th order Butterworth filter. Next, we 
used the Hanning window with a length of 0.4 s with %75 overlap to 
obtain the Fourier spectrum of signals. Then, we calculated the bispec-
trum of the neural signals using B(f1, f2) = E{X(f1)X(f2)X*(f1 + f2) }
formula. Here, B(f1, f2) denotes the bispectrum calculated for a fre-
quency pair (f1,f2), X(f1) represents the spectral coefficients of the signal 
x(t) at frequency f1 , and * indicates the complex conjugate. The bis-
pectrum values for each frequency pair (f1, f2) within [0.5 48] Hz. were 
used to calculate the Hlogsum(B(f1, f2) ) =

∑
f1 ,f2∈[0.548]log|B(f1, f2) | for 

each channel [89]. Finally, we concatenated the Hlogsum values calcu-
lated for each channel to form a feature vector for each epoch. 

Note that the resulting feature vectors were averaged to obtain a 
representative feature vector for each subject. For these benchmark 
methods, we applied feature selection to determine and use the most 
informative features before the classification analysis. 

As a fourth method, we used the subjects’ TDI scores, obtained 
through the Sniffin’ Sticks test, for classification purposes. We deter-
mined whether the subject has PD or not by comparing their TDI scores 
with the threshold that was set according to the previous clinical studies 
[90]. Here, a subject was determined as HC if his/her TDI score indi-
cated a normosmia. On the contrary, if his/her TDI score indicated either 
hyposmia or anosmia, he/she was determined as PD. 

3. Results 

In this section, we presented the classification performances as well 
as biophysical outcomes of the proposed classification framework. 

3.1. Performance results 

We performed the leave-one-subject-out cross-validation to evaluate 
the characterization performance of each feature extraction method. At 

each cross-validation cycle, one subject’s EEG data were excluded as test 
set, and data of the remaining subjects were used as training set. In the 
training phase, we constructed the representative feature vectors for 
each subject and then, these representative vectors were used to train 
the classifiers. Next, the data of excluded test subject was used to 
construct the test feature vector to test the classifier. At each cross- 
validation cycle, we determined if the classifier correctly identified the 
category of the test feature vector. Then, the overall classification per-
formance is determined by. 

Performance (%) = 100 ×
# of correctly classified subjects

# of total subjects
(15) 

Note that we calculated the Fisher ratio of each individual feature 
across training feature vectors to select the most discriminative features 
at each cross-validation cycle. The Fisher ratio for the feature indexed by 
ρ can be calculated as. 

F(ρ) =
⃒
⃒μHC

ρ − μPD
ρ
⃒
⃒

σHC
ρ + σPD

ρ
(16) 

where μA
ρ and σA

ρ denotes the mean and standard deviation of the 
feature calculated across training feature vectors of category 
A ∈ {HC,PD}. Here, HC and PD represent the healthy control and Par-
kinson’s disease categories. We selected the features which had the 
Fisher ratio higher than the mean plus two times the standard deviation 
of the Fisher ratio of all features [91]. The performance results of each 
different feature extraction method and different time intervals are 
presented in Figs. 4 and 5 for PEA and CO2 stimuli, respectively. 

The performance results in Fig. 4 show that the entropy and con-
nectivity features extracted from the 100–700 and 200–800 ms temporal 
segments elicited greater classification accuracies (81.25%) than other 
feature extraction methods for the PEA stimulus, respectively. Also, the 
entropy feature attained its maximum subject classification performance 
(100–700 ms. with linear SVM) earlier than connectivity feature 
(200–800 ms. with FLD). This timing difference of the maximal per-
formances might be due to the algorithmic differences of linear SVM and 
FLD classifiers. The sensitivity and specificity values corresponding to 
the patients and healthy subjects were found as 90% and 66.67% for 
entropy, and %100 and %76.87 for connectivity features. 

As regards the CO2 stimulus (see Fig. 5), the normalized 1st difference 
feature elicited 75.86% accuracy in the 100–700 ms time interval for 

Fig. 3. The flow diagram of the test phase of the classification framework.  
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FLD and the 400–1000 ms for nonlinear SVM. Besides, the connectivity 
feature elicited 72.41% performance in the 100–700 ms time interval 
with linear SVM classifier. The sensitivity and specificity values were 
66.67% and 90.91% for the normalized 1st difference feature and 80% 
and 76.87% for the connectivity feature, respectively. Note that the 
sensitivity and specificity values for both PEA and CO2 stimulus were 

calculated in the condition where the maximum classification perfor-
mances were achieved. These performances indicate that PEA-induced 
neural patterns are more informative than CO2-induced ones in diag-
nosing subjects with PD. 

In our analysis, we decomposed EEG activity into several compo-
nents via band pass filters with 4 Hz bandwidth since many cognitive, 

Fig. 4. The recognition performances of our diagnosis framework for PEA stimulus. We adopted leave-one-subject-out cross-validation during performance evalua-
tions. We presented the performances for each different time window, feature extraction method, and classifier. The dot-dashed-framed performances indicate the 
highest ones. 

Fig. 5. The recognition performances of our diagnosis framework for CO2 stimulus. We adopted leave-one-subject-out cross-validation during performance evalua-
tions. We presented the performances for each different time window, feature extraction method, and classifier. The dot-dashed-framed performances indicate the 
highest ones. 
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motor, and sensory events evoke neural processes encapsulated in 
several frequency bands [92–96]. To further highlight the importance of 
using a filter-bank structure, we conducted an extra entropy-based 
classification analysis by excluding the filter-bank structure. To that 
end, we re-referenced the EEG signals into the common average and 
filtered the signals (two-pass filtering) into 0.5–48 Hz using a 4th order 
Butterworth filter. Thereafter, we calculated the entropies of the PEA- 
induced EEG signals within 100–700 ms. We averaged the entropy 
features across trials and then aligned the features according to their 
Fisher scores and used the first 6, 13, 19, 26, 32, 38, 45, 51, 58, and 64 
features for both (with and without using filter-bank) cases. The leave- 
one-subject-out classification performances of three classifiers are pre-
sented in Fig. 6. The results in Fig. 6 show that the performances ob-
tained using the filter-bank structure match and exceed the 
performances obtained without using the filter-bank structure for all 
different feature vector dimensionalities and classification methods. 
This suggests that using a frequency-resolved spatio-temporal feature 
analysis is beneficial in capturing the neuronal pathologies, which were 
demonstrated to be localized in certain sub-bands rather than distrib-
uted across the frequency bands [84,97–99]. 

3.2. Biophysical results 

We determined the channels and respective frequency bands of the 
frequently selected univariate features (entropy for PEA and normalized 
1st difference for CO2) across all cross-validation cycles. The most 
frequently selected sixteen channels and their respective frequency 
ranges were presented in Table 2. Our findings in Table 2 show that the 
frequently selected entropy feature was mainly obtained from right 
central (C2) and right frontocentral (FC2) channels for the PEA stimulus. 
For the C2 channel, the frequently selected entropies calculated from the 

spectrum consists of the entire sub-bands except for the alpha band 
(8–12 Hz.). As for the FC2 channel, entropy of beta (20–24 Hz. and 
24–28 Hz.) and gamma (36–40 Hz., 40–44 Hz., 44–48 Hz.) band EEG 
signals were the most frequently selected features among others. 

The frequently selected normalized 1st difference features, which 
were found within theta (4–8 Hz.) and gamma (36–40 Hz.) bands for 
CO2 stimulation, revealed that the discriminative channels were 
distributed throughout the brain regions, unlike the PEA stimulus case. 

We also performed the similar analyses for the linear mutual infor-
mation (bivariate) method. The results of this analysis presented in 
Table 3 show that the statistical interactions between frontal, temporal, 

Fig. 6. The classification performances for both with and without using the filter-bank (FB) structure for PEA stimulus. The blue and red bars indicate the per-
formances with and without using the filter-bank structure, respectively. We used different number of features while evaluating the performance. Note that this 
classification analysis was performed using the neural features calculated by the Kozachenko-Leonenko entropy estimator of the electrophysiological signals only 
from 100 to 700 ms time interval. The upper part of the figure represents the performances of linear SVM, the middle the nonlinear SVM, and the lower the 
FLD method. 

Table 2 
The frequently used entropy and normalized 1st difference features of sixteen 
channels and their respective frequency bands for olfactory (PEA) and trigemi-
nal (CO2) stimuli. The left and right sides of this table provide the channels and 
respective frequency bands of entropy and normalized 1st difference features for 
PEA and CO2 stimulation, respectively. Both entropy and normalized 1st dif-
ference features were obtained from the neural activity in 100–700 ms time 
interval.  

PEA Stimulation 
(Entropy → 81.25%) 

CO2 Stimulation 
(Normalized 1st Difference → 75.86%) 

Channels (Freq. Bands) 
(100–700 ms) 

Channels (Freq. Bands) 
(100–700 ms) 

C2 (0–4 Hz.) C2 (28–32 Hz.) TP8 (4–8 Hz.) P4 (4–8 Hz.) 
C2 (4–8 Hz.) C2 (32–36 Hz.) F4 (4–8 Hz.) P6 (4–8 Hz.) 
C2 (12–16 Hz.) C2 (36–40 Hz.) F8 (4–8 Hz.) AF7 (4–8 Hz.) 
C2 (16–20 Hz.) FC2 (36–40 Hz.) FT7 (4–8 Hz.) FPz (4–8 Hz.) 
C2 (20–24 Hz.) C2 (40–44 Hz.) F3 (4–8 Hz.) O1 (36–40 Hz.) 
FC2 (20–24 Hz.) FC2 (40–44 Hz.) Fp2 (4–8 Hz.) P8 (36–40 Hz.) 
C2 (24–28 Hz.) C2 (44–48 Hz.) F7 (4–8 Hz.) FC4 (36–40 Hz.) 
FC2 (24–28 Hz.) FC2 (44–48 Hz.) Fp1 (4–8 Hz.) C3 (36–40 Hz.)  
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and central brain regions are mostly occurred at gamma frequency range 
for both PEA and CO2 stimulation cases. 

The results in Figs. 4 and 5 showed that the PEA stimulation elicited 
better subject discrimination performance than that of the CO2 stimulus 
for both entropy and linear mutual information methods. To that end, 
we first calculated the entropy and synchronization feature vectors for 
each subject. Then, we performed a statistical t-test analysis between the 
features of healthy control and PD subjects for PEA stimuli. The P-values 
in Table 4 shows that all the frequently selected entropy and linear 
mutual information features appeared as statistically significant. Please 

note that none of these features reached the significance level 
(PFDR < 0.05) when we carried out the Benjamini-Hochberg (B-H) 
method for correcting multiple comparison problems [100]. This may be 
due to an insufficient number of subjects used in this study. 

3.3. Benchmark performance comparison results 

The performance comparison results of the electrophysiological and 
clinical benchmark methods are given in Table 5. The results show that 
our entropy-based framework elicited the same performance with 
wavelet entropy method and outperforms the LPC method for the PEA 
stimulus case. 

As for CO2, our framework exceeded the performance of the wavelet 
entropy method, however, the performance of LPC and Sniffin’ Stick- 
based discrimination methods slightly exceeded the performance of 
our framework. The sensitivity and specificity values of TDI scores were 
calculated as 50% and 95%, respectively. It means that TDI scores could 
not discriminate the healthy controls reliably. The performance of the 
bispectrum-based method remained modest. 

4. Discussion 

The neuroelectrical responses of the brain to chemosensory stimuli 
involve many complex neuronal processes [101,102]. Deciphering these 
complex processes requires advanced mathematical analysis methods 
[5,103]. Most of the PD versus HC discrimination studies utilize salient 
features from resting-state and cognitive/motor task-based experiments 
[5,7,17,57,60,104]. These studies achieved remarkable discrimination 
performances by showing considerable changes in neural dynamics in 
PD patients. However, very few studies have analyzed chemosensory- 
induced EEG signals in an automatized manner for PD detection pur-
poses so far. The techniques for detecting PD patients are based on 
analysis of the chemosensory-induced ERP amplitude and latencies, 
spectrum analysis [49], and global field power analysis [30]. In this 
study, we suggest that investigating the spatial, spectral, and temporal 
characteristics of the chemosensory-induced brain activity may provide 
crucial information about complex neuronal activation/communication 
dynamics [63]. In that context, the chemosensory-induced EEG signals 
were characterized by several features to identify healthy subjects and 
subjects with Parkinson’s disease. We evaluated the characterization 
performances of these features in a leave-one-subject-out cross-valida-
tion scheme. The discussion related to the performances and biophysical 
findings is below. 

4.1. Performance analysis 

The results in Fig. 4 show that using PEA stimulus resulted in 

Table 3 
The frequently used linear mutual information features of sixteen channel pairs 
and their respective frequency ranges for olfactory (PEA) and trigeminal (CO2) 
stimuli. The left and right sides of this table provide the channel pairs and 
respective frequency bands of linear mutual information features for PEA and 
CO2 stimulation, respectively. Note that the features were obtained from the 
neural activity in 200–800 ms and 100–700 ms time interval for PEA and CO2 
stimuli, respectively. We also provided these connectivity patterns graphically 
(please see Supplementary Fig. 3).  

PEA Stimulation 
(81.25%) 

CO2 Stimulation 
(72.41%) 

Channel Pairs (Freq. Bands) 
(200–800 ms.) 

Channel Pairs (Freq. Bands) 
(100–700 ms.) 

FC5-P5 (0–4 Hz.) P5-T7 (0–4 Hz.) F2-FC1 (44–48 
Hz.) 

T7-P8 (24–28 Hz.) 

FT7-T7 (24–28 
Hz.) 

P8-Oz (36–40 Hz.) FC5-Cz (40–44 
Hz.) 

FC1-CP4 (44–48 
Hz.) 

TP7-O1 (4–8 Hz.) AF7-FT8 (28–32 
Hz.) 

FT8-T8 (24–28 
Hz.) 

FC3-Cz (40–44 
Hz.) 

P3-P4 (0–4 Hz.) AF7-PO5 (40–44 
Hz.) 

FT8-O2 (24–28 
Hz.) 

CP5-T7 (40–44 
Hz.) 

P5-F3 (0–4 Hz.) PO6-FT8 (40–44 
Hz.) 

FT7-CPz (40–44 
Hz.) 

FC5-C3 (40–44 
Hz.) 

TP7-T8 (32–36 
Hz.) 

FP2-FC4 (16–20 
Hz.) 

P5-FT8 (24–28 
Hz.) 

F1-Cz (40–44 Hz.) 

P5-FCz (0–4 Hz.) AF7-PO4 (40–44 
Hz.) 

C1-F3 (40–44 Hz.) FC6-FC3 (8–12 
Hz.) 

F8-CP3 (0–4 Hz.) T8-TP8 (16–20 
Hz.) 

FT7-P3 (40–44 
Hz.) 

FCz-CPz (44–48 
Hz.)  

Table 4 
The uncorrected P-values of the entropy and linear mutual information features. 
The left and right sides of this table provide the P-values obtained by comparing 
the entropy and linear mutual information values between control subjects and 
subjects with Parkinson’s disease, respectively. The time window of 100–700 ms 
was selected for the entropy and 200–800 ms for the linear mutual information 
methods. Odorant stimulation was PEA for which the maximum discrimination 
(81.25%) was obtained for both feature extraction methods.  

Entropy 
(100–700 ms.) 

Linear Mutual Information 
(200–800 ms.) 

Channel 
(Freq. Band) 

P-Value Channel Pair 
(Freq. Band) 

P-Value 

C2 (0–4 Hz.) 0.0227 FC5-P5 (0–4 Hz.) 2.1× 10− 6 

C2 (4–8 Hz.) 0.0080 FT7-T7 (24–28 Hz.) 2.83× 10− 6 

C2 (12–16 Hz.) 0.0051 TP7-O1 (4–8 Hz.) 6.7× 10− 6 

C2 (16–20 Hz.) 0.0039 P3-P4 (0–4 Hz.) 1.4× 10− 5 

C2 (20–24 Hz.) 0.0023 P5-F3 (0–4 Hz.) 1.8× 10− 5 

FC2 (20–24 Hz.) 0.0150 TP7-T8 (32–36 Hz.) 4.71× 10− 5 

C2 (24–28 Hz.) 0.00141 P5-FCz (0–4 Hz.) 4× 10− 5 

FC2 (24–28 Hz.) 0.012 F8-CP3 (0–4 Hz.) 1.59× 10− 4 

C2 (28–32 Hz.) 0.0013 P5-T7 (0–4 Hz.) 1.34× 10− 4 

C2 (32–36 Hz.) 9.71× 10− 4 P8-Oz (36–40 Hz.) 4.71× 10− 5 

C2 (36–40 Hz.) 0.0012 AF7-FT8 (28–32 Hz.) 1.23× 10− 4 

FC2 (36–40 Hz.) 0.02 AF7-PO5 (40–44 Hz.) 5.5× 10− 5 

C2 (40–44 Hz.) 7.55× 10− 4 PO6-FT8 (40–44 Hz.) 2× 10− 4 

FC2 (40–44 Hz.) 0.02 FP2-FC4 (16–20 Hz.) 9.61× 10− 5 

C2 (44–48 Hz.) 6.18× 10− 4 AF7-PO4 (40–44 Hz.) 7.3× 10− 5 

FC2 (44–48 Hz.) 0.0157 T8-TP8 (16–20 Hz.) 1.44× 10− 4  

Table 5 
Performance comparison with benchmark methods. We used the leave-one- 
subject-out cross-validation procedure when obtaining the performances. The 
second and third row of the table provides the performances (%) obtained for 
PEA and CO2 stimulations, respectively. The last column shows the classification 
result using the TDI scores of the subjects.  

Used 
Stimulus 

Proposed 
Framework 

Linear 
Predictive 

Coding 
[17] 

Wavelet 
Entropy 

[83] 

Bispectrum- 
based 
[57] 

TDI 
Scores 

(Sniffin’ 
Sticks’) 

PEA 81.25% 
(Entropy, 
100–700 

ms) 

75% 
(200–800 

ms) 

81.25% 
(400–1000 

ms) 

71.87% 
(100–700 

ms) 

78.13% 

CO2 75.86% 
(Norm 1st 

Diff., 
100–700 

ms) 

79.31% 
(100–700 

ms) 

65.51% 
(100–700 

ms) 

72.41% 
(200–800 

ms)  
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improved detection of subjects with Parkinson’s disease (PD) from 
electrophysiological signals when using entropy and linear mutual in-
formation used for feature extraction. Specifically, our analysis revealed 
significantly higher values of EEG entropy within the 100–700 ms in-
terval, as well as higher brain connectivity within the 200–800 ms in-
terval, among healthy individuals exposed to the PEA stimulus when 
compared with PD subjects (refer to Supplementary Figs. 1 and 2). These 
observations state that the entropic separability of neural signals evoked 
by PEA may signify alterations in the nonlinear dynamical characteris-
tics of neural activity, and a decline in connectivity suggests an atten-
uated olfactory information processing due to PD [27,29,46,97,105]. 
Furthermore, when considering the PEA stimulus, the outcomes pre-
sented in Table 5 indicate that the wavelet entropy measure demon-
strated comparable performance to our framework in classifying PD 
subjects and healthy individuals. 

As regards the CO2 stimulus (please see Fig. 5), the normalized 1st 

difference feature derived from the 100–700 ms interval after the 
stimulus onset exhibited superior performance when compared with 
other methods. This finding suggests that the mean of instantaneous 
changes in the amplitude of EEG activity resulting from trigeminal 
stimulation plays a crucial role in determining the subjects’ neurological 
conditions. Furthermore, when comparing the performance of our 
framework with benchmark methods for the CO2 stimulus, it is worth 
noting that the linear predictive coding method displayed slightly better 
performance than our framework. 

The performance results of power-based (i.e., variance-based) 
methods such as FBCSP, Activity, Mobility, and Complexity, as pre-
sented in Figs. 4 and 5, indicate their limitations in capturing the al-
terations associated with Parkinson’s disease (PD), unlike entropy- and 
connectivity-based methods. These performance disparities highlight 
that relying solely on the oscillatory power of EEG activity is insufficient 
to determine whether individuals are affected by PD [5,48,99,106–108]. 
This observation suggests that entropy and connectivity analysis 
methods can potentially reveal the underlying dynamical structure of 
brain activity that cannot be unveiled by second-order signal charac-
teristics [5]. 

In a broader context, the EEG signals triggered by the PEA stimulus 
exhibited more distinct features that facilitated the diagnosis of PD, 
aligning with previous literature [37]. This notable separability may 
underscore the impairment of the olfactory information processing 
mechanism in PD, including the reduced volume of the olfactory bulb 
[71,109,110]. Consequently, PD-related deterioration primarily affects 
the dynamics of olfactory information processing rather than trigeminal 
information processing. 

Psychophysical tests have demonstrated that trigeminal sensitivity 
mainly remains intact in individuals with Parkinson’s disease (PD) 
[44,111]. This indicates that evaluating the trigeminal sensation 
through psychophysical tests alone is not useful for identifying PD 
subjects. Despite the preserved characteristics of the trigeminal system, 
our framework based on electrophysiological feature extraction suc-
cessfully extracted discerning features from CO2-induced EEG signals, 
enabling the detection of PD subjects. These features can be a supportive 
tool for determining whether individuals have PD. 

The electrophysiological dynamics induced by a PEA stimulus are 
reliable for diagnosing PD patients, according to the obtained sensitivity 
and specificity values, whereas CO2-induced neural activity showed 
accurate detection of healthy control subjects. Furthermore, we found 
that TDI scores could diagnose PD but could not identify healthy control 
participants. According to these results, olfactory stimulation evokes 
electrophysiological patterns that contain information regarding brain 
alterations due to Parkinson’s disease. 

When the number of features is much larger than the number of 
samples, likewise in our study, overfitting becomes a significant 
concern. To mitigate this problem, we applied a Fisher ratio based 
feature selection to identify the most informative feature subset to 
attenuate the overfitting prior to the classification [112,113]. 

We also tested the reliability and generalizability of our framework 
by using a leave-one-subject-out cross validation scenario, which is widely 
adopted for testing against overfitting [114,115]. Both our classification 
and sensitivity–specificity performances given in the Results section 
indicated that our framework achieved considerable success in diagnosis 
of PD. 

Nevertheless, a larger dataset is required to assess the model’s 
robustness and usefulness in which we raised this issue in the “Limita-
tion of Study” section to encourage further research to address in this 
direction. 

4.2. Using independent component analysis (ICA) as Pre-Processing 

The ICA method, which we did not incorporate in our framework, 
maybe a crucial alternative to reveal the underlying latent dynamics 
from the EEG signals with poor spatial resolution [116,117]. The poor 
resolution and artifacts of EEG signals posits that the extracted infor-
mation from the activity is lesser than it should be. Our performances, as 
well as biophysical results, highlights that our framework can unravel 
chemosensory-induced EEG dynamics to a great extent. 

To show how ICA affect the diagnosis performance of our frame-
work, we applied the KMAR algorithm [118] as preprocessing, which 
automatically finds and removes the artifacts from EEG signals with the 
help of ICA. During our analysis, we performed the same algorithmic 
steps to our stimulus epochs, as illustrated in Algorithm-1 in [118]. We 
selected entropy and connectivity as feature extraction methods and also 
PEA as odorant stimulus during evaluation since this combination pro-
vided outperforming diagnosis performance. 

The performance results are presented in Table 6. These perfor-
mances suggest that while the ICA-based preprocessing (artifact rejec-
tion) could improve the PD diagnosis accuracy of our entropy-based 
framework, the diagnostic performance remains the same for the brain 
connectivity-based framework. 

Another significant observation from Table 6 is that the temporal 
dynamics elicited after ICA-based artifact removal are somewhat 
different than that of the EEG signals without artifact rejection since the 
time intervals of maximal performances are slightly different from each 
other. Considering these two outcomes , using ICA for our entropy-based 
PD diagnosis framework seems beneficial, albeit with a computational 
cost. 

4.3. Using linearized mutual information for brain connectivity analysis 

To assess the synchronization between EEG channels, we used the 
linearized mutual information approach [61,119]. This method utilizes 
the correlation coefficient for calculating the inter-channel synchroni-
zation. Previous research has demonstrated the successful application of 
linear methods in characterizing the interaction dynamics of brain ac-
tivity [56]. Moreover, linear methods have been preferred in various 
studies due to their practicality and computational efficiency [120]. 

It is important to acknowledge that the intrinsic nonlinear dynamics 
of brain activity may lead to the oversight of higher-order statistical 
correlation terms when employing simple linear correlation methods for 

Table 6 
The performances obtained using ICA and without ICA.  

Methods Performances (%) 
(using PEA as odorant) 

Without 
ICA 

(our framework) 

Entropy 81.25% 
(achieved at 100–700 ms) 

Connectivity 81.25% 
(achieved at 200–800 ms) 

With ICA 
[118] 

Entropy 84.38% 
(achieved at 200–800 ms) 

Connectivity 81.25% 
(achieved at 200–800 ms)  
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calculating the inter-channel synchronizations. In such circumstances, 
using generalized correlation calculation methods, such as mutual in-
formation [121–123] or correntropy [124,125], may prove advanta-
geous when they are used with linear methods [123]. Nonetheless, our 
findings reveal that the linearized mutual information attained a clas-
sification accuracy of 81.25%. This suggests that, to some extent, the 
assumption of linear correlation between EEG channels can unveil 
distinctive synchronization patterns between healthy controls and PD, 
particularly in the presence of chemosensory stimuli. 

4.4. Biophysical findings 

The frequently selected features were provided in Tables 2 and 3 for 
entropy and connectivity methods, respectively. The entropy features 
extracted from the right frontocentral and central regions were consis-
tently selected for classification at each cross-validation cycle. These 
two regions, which play a crucial role in motor-related functions, 
strongly interact with the left putamen. It was previously shown that 
olfactory bulb volume, which is used as an indicator of proper olfactory 
functioning [110], strongly correlated with the volume of the left pu-
tamen [126]. It may be possible that the altered functionality of the left 
putamen disrupts the neural information processing mechanism during 
olfaction and during other cognitive, sensory, and motor tasks 
[99,127,128]. This suggests that reduced olfactory performance can be 
correlated with the deterioration of neural activities of motor-related 
structures [32,129]. Considering all these biophysical findings, the 
change in neural activity characteristics in motor-related areas parallel 
to the abnormalities in olfactory-related areas is not surprising. The 
entropy changes in these two regions have been considered as a po-
tential marker caused by PD, which may explain the sensory-related 
cortical network degeneration [99]. 

Furthermore, the right central and frontocentral electrodes mostly 
reflect the electrical activity of the right medial frontal gyrus and right 
angular gyrus, which take place in default mode network operations 
[130], attention re-orientation towards top-down processing [131], and 
multisensory information integration [30]. The olfactory information 
processing relies on the top-down processes [132], which emerged as 
the suppression of the default mode network [133]. The altered neural 
activity patterns of these regions reflect the deterioration of attention- 
and default-mode network-related processes due to PD which may 
indicate deteriorated chemosensory information processing mechanism. 
Furthermore, the consistently selected central and frontocentral chan-
nels were right-lateralized which may be due to asymmetric dopamine 
levels due to PD [30]. 

Besides the right central and frontocentral regions, our feature se-
lection analysis selected the left parietal, temporal, and right frontal 
regions, which are known to participate in motor- and sensory-related 
functions, with slightly reduced observation frequencies in PEA stim-
ulus case [134–136]. These regions have also been demonstrated to 
involve in olfactory-stimulus-related information processing [137]. 

The connectivity patterns in Table 3 indicate the importance of the 
left parietal and frontal brain regions for PEA stimulus. It was previously 
shown that some regions of the left hemisphere participate in a func-
tional network that plays a crucial role in many sensory, emotional, and 
cognitive processes [138–140]. This suggests that olfactory dysfunction 
in PD is due to disruption in the functional connectivity among these 
regions. 

The connectivity patterns observed for PEA stimuli predominantly 
emerged in delta and gamma bands. Besides, the frequently selected 
connectivity patterns for CO2 stimuli were mainly in the gamma band. 
The gamma-band neural activity has been shown to carry important 
information about the identity of the chemosensory stimuli [63,74,141]. 
The connectivity patterns in the delta band could classify PD and HC 
subjects [49,142–144]. 

As for the CO2 stimulus case, the frequently selected normalized first 
difference features were mainly related to the right and left frontal, left 

temporal, right parietal, and left central regions. Previous studies 
showed that trigeminal stimulation activates these cortical regions 
[145]. 

Given the presented biophysical outcomes, our findings may raise 
doubts that the biophysical results presented above mainly arise from 
PD subjects’ resting or postural tremors since previous studies have 
pointed to significant cortico-muscular coherence at the frequency range 
mainly between 8 and 12 Hz. [146,147]. In addition, some studies 
argued that the cortical activity within the β frequency range presum-
ably reflects the resting tremor [84,148]. Notwithstanding, our results 
from the PEA stimulus show that the significant entropy features were 
derived from a wide range of frequency bands, excluding only the 8–12 
Hz band. We show in Table 2 that our CO2-induced results are related to 
4–8 Hz and 36–40 Hz band activities. If the tremor-dominant situation 
were the case, both α and β frequency-dominant features would be 
apparent in both PEA and CO2 results. Besides, considering the findings 
of previous studies [147,149], observing tremor-related cortical activity 
within a wide frequency range and the cortical area is impossible. All in 
all, the obtained significant features could not entirely relate to tremor- 
related cortical activity. 

4.5. Importance of using Chemosensory-Induced EEG signals 

This study aimed to evaluate the possible difference in 
chemosensory-induced neural patterns between PD and HC subjects 
since olfaction-based diagnosis can be more suitable for elderly partic-
ipants who could not attend intense cognitive or physical experiments 
[73]. Here, our classification performances indicate that successful 
subject discrimination is possible using the chemosensory-induced EEG 
patterns extracted via BCI feature extraction methods. This may open a 
new avenue for developing advanced analysis methods to detect PD 
from olfactory-related neural disruptions [49,150]. Another merit of 
using chemosensory-induced EEG signals rather than rest-state EEG 
signals is that the subjects could perform several cognitive tasks during 
the resting state, which may influence the reliability of the PD detection 
framework [151]. The cognitive actions performed by subjects during 
the resting state may influence neural patterns and hinder PD detection 
accuracy. Another critical point of using chemosensory-induced EEG 
signals is diagnosing the PD subjects before other symptoms emerge. In a 
resting state de novo PD diagnosis study, it was mentioned that bivariate 
(inter-channel connectivity) changes appear earlier than univariate 
changes in de novo PD cases [48]. Contrary to this, we showed that 
chemosensory stimulation evokes critical patterns that can be captured 
by entropy and normalized 1st difference features. Most PD-related 
studies use the diagnosed and medicated subjects to demonstrate the 
validity of their methods. The current study used de novo PD subjects 
who were newly diagnosed and not medicated. 

4.6. Limitations of the study 

Here, we studied a classification approach that extracts and uses the 
features from chemosensory-induced EEG oscillations to classify PD and 
healthy subjects. We evaluated the classification ability of each different 
feature type extracted from different 600 ms-long time segments. The 
performance obtained for the PEA stimuli showed that as linear mutual 
information and entropy methods elicited the maximal recognition 
performances, the other methods did not. This performance difference 
among the methods may be due to the insufficient sample size since each 
method require a different number of samples for an accurate brain 
activity characterization [152]. 

In this study, we assume that the discriminating features emerge and 
vanish at the same time interval for each channel and frequency band. In 
our previous connectivity-based study [56], we demonstrated that the 
initiation and duration parameters of activity-specific short-lived syn-
chronizations vary dramatically for each different EEG channel pair. Our 
classification performances may be improved by finding the optimum 
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time interval for each channel and frequency band. 
Another possible limitation of this study was the number of healthy 

and PD subjects and the number of epochs collected from each subject. 
Our approach should be validated in participant groups with larger sizes 
as well as in prospective studies to capture the possible PD patients from 
the data bank of idiopathic olfactory dysfunction. 

We used four different 600 ms-long time windows to calculate the 
features from chemosensory-induced EEG signals. A similar time 
window-based ERP analysis approach was used in [75]. In that study, 
the authors stated that the significant peaks emerged between 200 and 
800 ms temporal region. It may be possible to obtain more significant 
neural patterns and improved recognition performances by evaluating 
different temporal regions after the stimulus onset. 

In addition, we used spectrally non-overlapping twelve band pass 
filters with 4-Hz bandwidth, which means we analyzed the stimulus- 
induced EEG signals with a relatively coarse frequency resolution. 
Using more advanced and finer spectral decomposition methods could 
allow the extraction of more informative PD-related patterns from 
neural activities [153,154]. 

5. Conclusions 

In clinical research, there is a strong interest in identifying reliable 
biomarkers for diagnosing Parkinson’s disease. Assessing the olfactory 
functioning of subjects using clinical tools is a common approach to 
reveal their neurological states, although these tests can be biased due to 
subjective evaluation (rater-dependency) [155]. Alternatively, electro-
physiological methods have been proven to be effective in evaluating 
neurological health. 

Many electrophysiology data analysis studies focus on analyzing 
resting-state EEG activity to identify specific patterns associated with 
Parkinson’s disease for diagnosis [156]. However, the diagnostic accu-
racy of Parkinson’s disease using EEG features during the resting state 
may be compromised due to potential interference from subjects’ 
cognitive processes or variations in their sleepiness/wakefulness. 
Another approach involves evaluating electrophysiological features 
while individuals engage in walking or pedaling experiments [157]. 
However, capturing physical impairments associated with Parkinson’s 
disease poses a challenge, as motor symptoms typically appear in the 
later stages of the disease. 

In the context of Parkinson’s disease (PD), one of the initial func-
tional impairments observed is a decline in olfactory function [158]. 
Accordingly, our primary goal is to design a robust framework for an 
accurate diagnosis of Parkinson’s disease by evaluating the subjects’ 
neurological condition and capturing the key patterns from 
chemosensory-induced neural activities. In our framework, in addition 
to the spatial and spectral analysis used in most EEG-based studies 
[159,160], we incorporate a time-resolved EEG analysis [159,160] 
using short-lived sliding time windows. This approach allows us to 
better capture the PD-related patterns encapsulated in the EEG activity 
induced by chemosensory stimuli. 

We performed subject discrimination utilizing well-known EEG 
signal features extracted from chemosensory-induced neural activities. 
Our results indicate that entropy and connectivity features calculated 
within specific time intervals (100–700 ms and 200–800 ms) are more 
effective in classifying Parkinson’s disease versus healthy subjects when 
the PEA stimulus is used. However, the discrimination performance is 
slightly lower for CO2, possibly due to intact trigeminal sensitivity in 
Parkinson’s disease subjects [45]. 

Detecting early signs of Parkinson’s disease is a challenging yet 
essential task. Our performance and biophysical results highlight that 
olfactory stimulation evokes brain patterns containing critical infor-
mation about the subjects’ neurological condition. From this perspec-
tive, our study represents an initial step towards the early diagnosis of 
Parkinson’s disease by utilizing chemosensory-induced EEG signals to 
determine the altered neural patterns resulting from impaired olfactory 

functioning. The proposed approach can be an alternative or supportive 
avenue to current clinical approaches to early PD diagnosis [161–163]. 

In our framework, we assumed that each brain region and frequency 
band react to chemosensory stimulus simultaneously and isochronously, 
presumably not the actual case [159]. For the follow-up study, we are 
studying a robust PD diagnosis framework that captures the latency and 
duration of chemosensory-induced EEG responses in each brain region 
and frequency band for improved discrimination between Parkinson’s 
disease and healthy control participants. Additionally, we consider 
incorporating deep learning strategies as classification methods into our 
chemosensory-based diagnosis framework. 

Our study evaluated various feature extraction methods to charac-
terize impairments in olfactory stimulus-induced EEG signals [56,164]. 
Functional connectivity and entropy analysis provided valuable insights 
into the functionality and configuration of brain networks during ol-
factory stimulation, likely encapsulating distinctive patterns associated 
with neurological diseases. Tracking the evolution of these patterns 
through longitudinal experiments can offer insights into disease pro-
gression and the likelihood of developing Parkinson’s disease. Advanced 
spatial–temporal information fusion and prediction techniques, such as 
graph convolutional networks [165] and LSTM models [166,167], could 
enable the prediction of disease development by analyzing longitudinal 
EEG data. 

In summary, the novelties of our study are as follows:  

• We propose a framework that evaluates the subjects’ neurological 
condition or Parkinson’s disease diagnosis using chemosensory 
stimulus-induced EEG signal features, providing a more objective 
evaluation than clinical assessment and a more robust evaluation 
than amplitude and latency analysis of CSERP. 

• To our knowledge, this is one of the first studies to extract electro-
physiological features by using olfactory and trigeminal stimulation 
to diagnose Parkinson’s disease.  

• Diverging from existing analysis approaches, we analyze 
chemosensory-induced EEG oscillations using short-lived sliding 
time windows to determine which time segments after chemosensory 
stimulation contain more informative signatures for Parkinson’s 
disease diagnosis. 
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