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We study the spectral properties of a Schrödinger operator H0
modified by δ interactions and show explicitly how the poles of
the new Green’s function are rearranged relative to the poles of
original Green’s function of H0. We prove that the new bound
state energies are interlaced between the old ones, and the
ground state energy is always lowered if the δ interaction is
attractive. We also derive an alternative perturbative method of
finding the bound state energies and wave functions under the
assumption of a small coupling constant in a somewhat heuristic
manner. We further show that these results can be extended
to cases in which a renormalization process is required. We
consider the possible extensions of our results to the multi center
case, to δ interaction supported on curves, and to the case, where
the particle is moving in a compact two-dimensional manifold
under the influence of δ interaction. Finally, the semi-relativistic
extension of the last problem has been studied explicitly.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

We consider a self-adjoint Schrödinger operator or Hamiltonian H0 = −
h̄2
2m∆+V defined on some

ense domain D(H0) and assume that H0 admits a discrete or point spectrum σd(H) and a (purely
bsolutely) continuous real spectrum σc(H), which does not overlap with the discrete spectrum

(no embedded eigenvalues). We further assume that the discrete spectrum has no condensation
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point and the spectrum is bounded below. These conditions put some restrictions on the regularity
properties of the potentials, but this is the typical situation in most of the quantum mechanical
problems with physically reasonable potentials. The spectrum consists of eigenvalues En of H0 with
inite multiplicities,

H0φn = Enφn , (1.1)

here φn ∈ L2 are the eigenvectors (or eigenfunctions) corresponding to the eigenvalues En, and
he values λ in the continuous spectrum are the ‘‘generalized eigenvalues’’ corresponding to the
‘generalized eigenvectors’’ χλ (or generalized eigenfunctions), which is outside of L2. Here we omit
he degeneracy/multiplicity labels for simplicity. Althoughwe are not aiming for a completely rigorous
resentation in this work, we point out that the proper meaning of the generalized eigenfunctions
as been understood in the context of so-called Rigged Hilbert spaces [1–3] and the equation for
he generalized eigenvalues are given by H0χλ = λχλ in the sense of distributions. One may think of
non-zero tempered distribution χλ as a generalized eigenfunction associated with the eigenvalue
for H0 if and only if ⟨H0χ,ψ⟩ = ⟨χλ,H0ψ⟩ = λ⟨χλ, ψ⟩ for any infinitely differentiable rapidly
ecaying functions ψ (Schwartz functions), see e.g., [4] for a more elementary discussion. The
unction χλ(x) =

1
√
2π

eiλx/h̄ is the well-known generalized eigenfunction of the momentum operator
(Pψ)(x) = −ih̄ d

dxψ(x) in L2(R). Under relatively mild assumptions on the potential V for dimensions
≤ 3 case, it is known that the generalized eigenfunctions (of a Schrödinger operator) can actually
e selected as continuous functions [5,6]. This is extremely valuable for our computations as we

either evaluate them at a point or integrate them over a curve in this work.
According to one of the fundamental assumptions of quantum mechanics, we can formally

expand any function ψ ∈ L2(R) as (see e.g., page 48 in [7]):

ψ(x) =

∑
n

anφn(x) +

∫
Λ

a(λ)χλ(x) dµ(λ) , (1.2)

where

an =

∫
R
φn(x)ψ(x)dx , a(λ) =

∫
R
χλ(x)ψ(x)dx . (1.3)

The domain of integration in Eq. (1.2) is represented by Λ, which is a parameter space, a subset
of R or in general of Rn, constructed from the absolutely continuous spectrum σc(H0), see [8]
nd the relatively recent work [9]. The expression dµ(λ) in the above expansion is indeed a kind

of spectral measure associated with the self-adjoint operator H0. Typically, for most quantum
echanical problems, there is no singular continuous spectrum, which allows us to write the above
easure as dµ(λ) = dλ (by absorbing a possible positive measurable function into the definition of

eigenfunctions), instead of a more general one, if we interpret the integration as a direct integral [7].
If there is a degeneracy, we need to sum over those indices as well. Fourier transform is actually
a formal eigenfunction expansion of a function ψ in terms of the generalized eigenfunctions χλ of
the momentum operator P and the action of P on the function ψ is given by:

(Pψ)(x) =

∫
∞

−∞

λ

(∫
∞

−∞

ψ(ξ )χλ(ξ )dξ
)
χλ(x)dλ . (1.4)

The theory of such eigenfunction expansions was first described by Weyl [10] for ordinary
differential equations, and then developed partly by Titchmarsh [11] and by Kodaira [12]. This
is extended to the multidimensional case for elliptic self-adjoint differential operators in [5]. In
particular, such expansions in terms of generalized eigenfunctions are rigorously constructed, if
we impose the uniformly locally square integrability condition on the potential energy in the
Schrödinger operator H0 = −

h̄2
2m∆ + V , which is stated as Theorem 3 in [13]. In this paper, we

tacitly assume that these mild conditions for the eigenfunction expansions hold.
Our main interest here is to consider such Schrödinger operators H0 modified by a δ interaction

nd show explicitly how the eigenvalues and eigenfunctions change using the eigenfunction expan-
ions of the Green’s function for such generic H . The modification of the bound state spectrum in
0
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one dimension and d dimensional radial case, have been studied in the framework of path integrals
in an influential work of Grosche [14] for some exactly solvable potentials V . One of the simplest
hoices for H0 is the well-known harmonic oscillator problem in one dimension (as well as the
adially symmetric extension of it) and the effect of adding a δ interaction to harmonic oscillator
amiltonians has been studied by many authors [15–17] and the statistical properties of this system
ave been worked out in [18]. Moreover, its application to Bose–Einstein condensation has been
nvestigated in [19]. Another simple example is an infinite square well potential modified by δ
nteractions in one dimension and studied in [20]. A more sophisticated model is a one dimensional
-shaped quantum well modified by a point potential centered at the origin has been considered
n [21].

It is well-known that the description of point like δ interactions in two and three dimensions
equires renormalization and they have been studied in [22,23] in a mathematically rigorous
ay and in [24–28] as toy models in understanding of some quantum field theoretical concepts.
he higher dimensional version of the harmonic oscillator Hamiltonian with δ potential requires
enormalization as well and has been discussed in [29] and more recently in [30–32]. A more
nteresting exactly solvable example, having both discrete and continuous spectrum, is the so-called
eflectionless potential [14,33], and we wish to show how its spectral properties change under the
nfluence of δ interaction as a case study.

It turns out that eigenvalues of H0 modified by δ interactions change according to some algebraic
r transcendental equation and all the eigenvalues of H0 disappear unless some set of wave
unctions vanish at the support of the δ interaction or if the support of Dirac delta function is
hosen to be at the nodes of the wave function of the initial Hamiltonian H0. This result was not
ompletely illustrated for a generic Hamiltonian H0, but only shown for particular exactly solvable
ases [14,29]. In all these cases, the full Green’s function G of the modified system contains the
reen’s function G0 of H0 added to another term constructed again from G0. It is not at all obvious
hat the poles of G0 cancel with the poles of this additional term (which has G0 appearing in its
xpression in a nontrivial combination). This cancellation has only been pointed out for H0 being the
ne dimensional harmonic oscillator Hamiltonian in [15] and for higher dimensional harmonic and
inear potentials in [32]. In this paper, we prove this explicitly by using the eigenfunction expansion
f the full Green’s function by taking the generalized eigenfunction expansion into account and
tudying its pole structure for a general class of potentials. Moreover, we prove that if the support of
he δ interaction is not at the node of the bound state eigenfunction of H0, then the new eigenvalues
∗

k are interlaced between Ek−1 and Ek for an attractive δ interaction. We then develop a perturbative
method from a different perspective to compute order by order the new eigenvalues and wave
functions (in a somewhat heuristic way) under the assumption of small coupling, then compare the
results with the standard approach. All the results that we have found can easily be extended to
the multi center case, and to the case where we need to apply renormalization. Our perturbation
method applied to the problems which require renormalization yields different results from the
standard approach obtained by replacing the bare coupling constant α with the renormalized one
αR, as expected. We further show that similar conclusions can be drawn for the modification by
δ interactions supported on curves in the plane and for the problem, for which the particle is
intrinsically moving in a compact manifold under the influence of a δ interaction.

This paper is organized as follows. In Section 2, using the eigenfunction expansion of the Green’s
function we have explicitly shown that the poles of the Green’s function of H0 modified by δ
nteraction in one dimension cancels out the poles of the Green’s function of H0 under some mild
onditions and prove that the new bound state energies are interlaced between the old ones and
iscuss the results with an explicit exactly solvable reflectionless potential. Then, we develop a
ew perturbative way of finding the bound state energies and the bound state wavefunctions up
o the second order and compare them with the classical known results. Section 3 deals with
he extension of the results to the singular case, where the renormalization of the problem is
equired. Finally, Section 4 is devoted to the possible extensions of the results, e.g., N center case,
δ interaction supported on a curve in the plane, and the case where a particle is moving on a
compact manifold interacting with a point center. We generalize our arguments to a (possible)
semi-relativistic version of singular interaction. In Appendix A, we prove the sum

∑
∞ |φn(a)|2(E+µ2)

n=0 (En−E)(En+µ2)

3
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is convergent for particular class of Schrödinger operators and for free Schrödinger operators on two
dimensional compact manifolds. In Appendix B, we prove that there is indeed one single parameter
in the renormalized theory. In Appendix C, we prove that the sum

∑
∞

n=0
(E+µ2)|φn(a)|2

(En−E)(En+µ2)
is going to

−∞ as E → −∞ for particular class of Schrödinger operators and for free Schrödinger operators
on two dimensional compact manifolds. In Appendix D, we study our main problem here when
there is degeneracy.

2. Modifications by δ interactions in regular cases

Throughout the paper, we use some well-known properties of Green’s function. For convenience
of the reader, we state them here with our choice of notation. For instance, the integral kernel of
the resolvent RH0 (z) for the Schrödinger operator H0 = −

h̄2
2m

d2

dx2
+ V (x) or simply Green’s function

defined by(
RH0 (E)ψ

)
(x) = (R0(E)ψ) (x) =

(
(H0 − E)−1ψ

)
(x) =

∫
R
G0(x, y|E)ψ(y)dy , (2.1)

can be expressed as the following bilinear expansion

G0(x, y|E) =

∞∑
n=0

φn(x)φn(y)
En − E

+

∫
Λ

χλ(x)χλ(y)
λ− E

dµ(λ) . (2.2)

he Green’s function G0(x, y|E) is a square integrable function of x for almost all y and vice versa [34].
The above formulas still hold in higher dimensions as well.

Suppose that we first consider one dimensional problems in which H0 is modified by a δ function
interaction supported at the origin

H = H0 − αδ , (2.3)

where α ∈ R. There are different ways to make sense of the above formal expression of H . One
way is to consider the δ interaction as a self-adjoint extension of H0. A modern introduction to this
subject is the recent book by Gallone and Michelangeli [35] and the classic reference elaborating
this point of view is the monograph by Albeverio et all [22]. δ interactions can also be defined
through the strong limit of the resolvent of Hamiltonians with δ interaction replaced by some
scaled function, see [23,36] for the details. The formulation of the problem in this section can be
extended to higher dimensions as long as the co-dimension (dimension of the space - dimension of
the support of the δ interaction) is one. We will come back to this issue for possible generalizations
of the problem later on.

It is well-known that Green’s function for the Hamiltonian (2.3) is given by Krein’s type of
formula

G(x, y|E) = G0(x, y|E) +
G0(x, 0|E)G0(0, y|E)

Φ(E)
, (2.4)

here G0(x, y|E) is the Green’s function for H0 and

Φ(E) :=
1
α

− G0(0, 0|E) . (2.5)

Some of the books in the context of point interactions use the notation Γ for our choice Φ . Here
and subsequently, as emphasized in the introduction, we assume that H0 = −

h̄2
2m

d2

dx2
+V (x) satisfies

some conditions:

• H0 is self-adjoint on some dense domain D(H0) ⊂ L2(R),
• Spectrum of H0 is a disjoint union of discrete σd(H0) (set of eigenvalues) and (absolutely)

continuous spectrum σc(H0),
• The discrete spectrum has no accumulation point,
• For stability, we assume H has spectrum bounded below,
0

4
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and these assumptions are assumed to hold in higher dimensions as well. These conditions on the
spectrum put some mild restrictions on the potential V . Some of the possible classes of potentials
re listed in the classical work of Reed and Simon [37].
Then, we claim our first result about the spectral properties of the Hamiltonian (2.3):

roposition 2.1. Let φk(x) be the bound state wave function of H0 associated with the bound state
nergy Ek. Then, the bound state energy E∗

k , when H0 is modified (perturbed) with a δ function interaction
−αδ(x)), satisfies the equation

Φ(E) =
1
α

− G0(0, 0|E) = 0 , (2.6)

if φk(0) ̸= 0 for this particular k. If for this choice of k we have φk(0) = 0, the bound state energy does
not change, E∗

k = Ek. Moreover, the continuous spectrum of the Hamiltonian modified with δ interaction
is the same as that of H0.

Proof. We first explicitly show how the pole structure of the full Green’s function G(x, y|E) is
rearranged and the poles of G0(x, y|E), which explicitly appears as an additive factor in G(x, y|E)
actually are cancelled and new poles appear. Note that from the explicit expression of the full
Green’s function (2.4), one may expect that the poles of the full Green’s function may contain the
poles of G0 as well as the zeroes of the function Φ(E). Using the eigenfunction expansion of the
Green’s function (2.2) and splitting the term in the summation associated with the isolated simple
eigenvalue Ek of H0, we obtain

G(x, y|E) =
φk(x)φk(y)
Ek − E

(
1 −

(
1 −

(Ek − E)
|φk(0)|2

D(α, E)
)−1

)
+ g(x, y|E) + h(x, y|E)

+
(Ek − E)

(Ek − E)D(α, E) − |φk(0)|2

(
g(x, 0|E)g(0, y|E) + g(x, 0|E)h(x, 0|E)

+ g(x, 0|E)h(0, y|E) + h(x, 0|E)h(0, y|E)
)

+
1

(Ek − E)D(α, E) − |φk(0)|2

(
g(x, 0|E)φk(0)φk(y) + g(0, y|E)φk(x)φk(0)

+ h(x, 0|E)φk(0)φk(y) + h(0, y|E)φk(x)φk(0)
)
, (2.7)

here we have defined the following functions, which are regular near Ek, for simplicity

g(x, y|E) :=

∑
n̸=k

φn(x)φn(y)
En − E

, (2.8)

h(x, y|E) :=

∫
Λ

χλ(x)χλ(y)
λ− E

dµ(λ) , (2.9)

D(α, E) :=
1
α

−

∑
n̸=k

|φn(0)|2

En − E
−

∫
Λ

|χλ(0)|2

λ− E
dµ(λ) . (2.10)

The functions g, h at x = 0 and y = 0, and the function D are well-defined thanks to the fact
that the generalized eigenfunctions χλ in here have continuous representatives [5,6]. Except for the
first term in Eq. (2.7), it is easy to see that all terms are analytic in a sufficiently small disk around
E = Ek. If we choose E sufficiently close to Ek, i.e., if

|Ek−E|

|φk(0)|2
|D(α, E)| < 1, the first term in the above

quation becomes

−
φk(x)φk(y)
|φk(0)|2

⎛⎝ 1
α

−

∑ |φn(0)|2

En − E
−

∫
Λ

|χλ(0)|2

λ− E
dµ(λ)

⎞⎠+ O(1) , (2.11)

n̸=k

5
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so that G(x, y|E) is regular near E = Ek as long as φk(0) ̸= 0. Hence, the pole E = Ek of G0(x, y|E) is
ot a pole of G(x, y|E) if φk(0) ̸= 0. Then, the only poles of G(x, y|E) must come from the zeroes of
he function Φ(E).

Finally, it follows from Weyl’s theorem [37] that the continuous spectrum of the problem
oincides with the initial Hamiltonian since the difference between the resolvent of the Hamiltonian
nd the resolvent of the initial Hamiltonian is of finite rank thanks to the explicit formula

R(E) = R0(E) + (Φ(E))−1
⟨G(·, 0|E), ·⟩G(·, 0|E) , (2.12)

efined on its resolvent set. This formula should be understood by its action on a vector ψ , i.e.,

(R(E)ψ)(x) = (R0(E)ψ)(x) + (Φ(E))−1
(∫

∞

−∞

G(y, 0|E)ψ(y) dy
)
G(x, 0|E) . (2.13)

he formula (2.12) can be seen more naturally in Dirac’s bra-ket notation,

R(E) = R0(E) + (Φ(E))−1R0(E)|0⟩⟨0|R0(E) . □ (2.14)

emma 2.1. If α > 0 (attractive case) and φk(0) ̸= 0 for some k ≥ 1, then the new bound state
energies E∗

k are interlaced between the eigenvalues of H0:

Ek−1 < E∗

k < Ek . (2.15)

For the ground state (k = 0), we always have E∗

0 < E0.

Proof. Since the Green’s function G0 has poles at the eigenvalues E = En of H0 in the complex E
plane and has a branch cut along the generalized eigenvalues of H0, it is differentiable everywhere
except at its poles and along the branch cut. Then, by taking the derivative of G0(0, 0|E) with respect
to E under the summation and integral sign, we formally obtain

dG0(0, 0|E)
dE

=

∞∑
n=0

|φn(0)|2

(En − E)2
+

∫
Λ

|χλ(0)|2

(λ− E)2
dµ(λ) > 0 . (2.16)

his implies that G0(0, 0|E) is a monotonically increasing function of E between its poles as well as
etween the largest eigenvalue below the continuum branch cut and the infimum of the branch cut
which is typically zero). Moreover, by isolating the n = k term in the sum, it is easy to see that

lim
E→E−

k

∞∑
n=0

|φn(0)|2

En − E
+

∫
Λ

|χλ(0)|2

λ− E
dµ(λ) = ∞ , (2.17)

lim
E→E+

k

∞∑
n=0

|φn(0)|2

En − E
+

∫
Λ

|χλ(0)|2

λ− E
dµ(λ) = −∞ , (2.18)

or all k = 0, 1, 2, . . ., and by taking the limit under the summation and integral we have

lim
E→−∞

∞∑
n=0

|φn(0)|2

En − E
+

∫
Λ

|χλ(0)|2

λ− E
dµ(λ) = 0+ . (2.19)

hen, if α > 0 it follows from the above results that the roots, say E∗

k , of Eq. (2.6) must be located at
he points of intersection of 1/α and G0(0, 0|E), as shown in Fig. 1. This shows that the new bound
tate energies E∗

k are shifted downwards and interlaced between Ek−1 and Ek. Let E0 be the ground
state energy of H0. In contrast to excited states, the new ground state energy can be as small as
possible by choosing α sufficiently large. By the positivity of the ground state wave functions of
Schrödinger operators (thanks to Kato’s inequality [37]), having no nodes φ0(0) ̸= 0, it follows from
Proposition 2.1 that new ground state energy E∗

0 is always less than the original one. □

Remark 2.2. If α < 0 (repulsive case), then the bound state energies of H0 are shifted upward and
nterlaced as Ek < E∗

k < Ek+1 if φk(0) ̸= 0. This can be easily seen by moving the line 1/α below
he E axis in Fig. 1. Otherwise, bound state energies of H do not change.
0

6



K.G. Akbaş, F. Erman and O.T. Turgut Annals of Physics 458 (2023) 169468

a

R
δ
e
c
o
t
t

E
c
o

w

Fig. 1. The graph of 1/α and a typical behavior of the term
∑

∞

n=0
|φn(0)|2
En−E +

∫
Λ

|χλ(0)|2

λ−E dµ(λ) versus E for α > 0. The
intersection points give the bound state energies. Here E0, E1, E2, . . . represents the bound state energies of H0 and
E∗

0 , E
∗

1 , E
∗

2 , . . . represents the bound state energies of the Hamiltonian modified by δ interaction.

Remark 2.3. The above statements are still true if we consider the support of δ potential at x = a.
In this case, we have

G(x, y|E) = G0(x, y|E) +
G0(x, a|E)G0(a, y|E)

1
α

− G0(a, a|E)
, (2.20)

nd the bound state energies under the addition of δ interaction do not change if a is at one of
the nodes of the bound state wave function of H0, that is, φk(a) = 0. Otherwise, the bound state
energies are obtained from Φ(E) =

1
α

− G0(a, a|E) = 0.

emark 2.4. It is easy to see from Fig. 1 that the number of bound states increases by one if we add
interaction to H0. An extra pole is created below the ground state energy of H0 and all the other
igenvalues are interlaced. Moreover, the bound state energy of H0 is invariant under a particular
onfiguration of δ interaction added to H0, that is, if the support of the δ function is chosen to be at
ne of the nodes of the bound state wave function associated with the bound state energy Ek of H0,
hen this bound state energy Ek does not change under the addition (perturbation) of δ interaction
o H0.

xample 2.5. We can illustrate what we have stated above by working out an exactly solvable
ase for H0, whose spectrum includes both discrete and continuous parts. Consider the Schrödinger
perator associated with the reflectionless interaction V given by

(H0ψ)(x) = −
h̄2

2m
d2

dx2
ψ(x) −

h̄2

2m
κ2 N(N + 1)

cosh2(κx)
ψ(x) , (2.21)

here N ∈ N. In this case, the discrete spectrum is given by the set of eigenvalues En =

−
h̄2κ2
2m (N − n)2, where n = 0, 1, 2, . . . ,N − 1. The number of bound states is finite and equal to N ,

corresponding eigenfunctions are given by

φ(N)
n (x) =

√
κ

(
(N − n)

(2N + 1 − n)!
)1/2

Pn−N
N (tanh(κx)) , (2.22)
n!
7
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where Pνµ(x) is Legendre function, defined by Pµν (x) =
1

Γ (1−µ)

( 1+x
1−x

)1/2
2F1(−ν, ν + 1; 1 − µ;

1−x
2 )

in terms of hypergeometric functions 2F1. In this example, the continuous spectrum is the pos-
itive real axis, i.e, σc(H0) = [0,∞) and the generalized eigenfunctions are given by χ (N)

k (x) =

k
2 sinh(πk/κ)

)1/2
P ik/κ
N (tanh(κx)) with the generalized eigenvalues Ek =

h̄2k2
2m , with k ∈ R.

For simplicity, we choose N = 1. In this case, there is a single bound state and the associated
normalized eigenfunction, given by

E0 = −
h̄2κ2

2m
, (2.23)

φ0(x) =

√
κ

2
1

cosh(κx)
. (2.24)

ts generalized eigenfunction for this case (N = 1) is given by

χE(x) =

√
κ

2π
eikx

(
ik − κ tanh(κx)

κ + ik

)
, (2.25)

ith the generalized eigenvalues E =
h̄2k2
2m . The Green’s function of this potential problem in

ppropriate units has been found in [14] and its explicit formula in accordance with the conventions
nd units that we use here is given as

G0(x, y|E) =
1
h̄

(
m

−2E

)1/2

exp
(

−
|x − y|

√
−2 mE

h̄

)
−

κ

2 cosh(κx) cosh(κy)(E +
h̄2κ2
2m )

×

[
1 −

(
1 −

h̄κ
√

−2 mE

)
cosh

(
κ|x − y|

(
1 +

√
−2 mE
κ h̄

))]
. (2.26)

here is an extra h̄ factor between our convention for the Green’s function and the one introduced
n [14].

Since φ0 has no node, it follows from Proposition 2.1 that the new eigenvalue due to the addition
f δ interaction at the point a to H0 must satisfy the following equation

1
α

− G(a, a|E) =
1
α

−
1
h̄

(
m

−2E

)1/2

+
κ

2 cosh2(κa)(E +
h̄2κ2
2m )

(
h̄κ

√
−2 mE

)
= 0 . (2.27)

From this, one can see that G0 has a simple pole at E = −
h̄2κ2
2m and it is singular near the point

E = 0, where the continuous spectrum begins.
It is easy to see from Fig. 2 that as long as a ̸= 0, we have always two bound state energies,

one above −
h̄2κ2
2m and one below −

h̄2κ2
2m , as expected by our above analysis. It is important to notice

hat the Green function G0(a, a|E) blows up near its branch point at E = 0 (where the continuous
pectrum begins), which ensures the existence of two new bound states under the addition of δ
nteraction to the original problem. However, if a = 0, then G0(0, 0|E) vanishes at E = 0. This
implies that we have only one root and we have a single bound state energy below −

h̄2κ2
2m . This

is not a generic case as explained above and shown in Fig. 1. This case can be explained by the
following symmetry argument. Initially, we have a reflectionless potential having Z2 symmetry,
and it has a single bound state with even parity. If we include δ interaction to this potential, we
still keep Z2 symmetry if a = 0. Then, the excited state must have an odd parity since the systems
having such symmetries must have a definite symmetry and the excited state must be orthogonal to
the ground state having even parity by the positivity [37]. This implies that the excited state wave
function must vanish at x = 0, which removes the δ interaction term in the formal Hamiltonian.
However, the initial system H0 has only a single bound state, namely the ground state, so the new
system modified by δ interaction must have a single bound state energy level if a = 0.
8



K.G. Akbaş, F. Erman and O.T. Turgut Annals of Physics 458 (2023) 169468

2

Fig. 2. Graphical solution E of the equation 1
α

= G0(a, a|E), where G0(a, a|E) =
1
h̄

( m
−2E

)1/2
−

κ

2 cosh2(κa)(E+
h̄2κ2
2m )

(
h̄κ

√
−2 mE

)
.

Here we have chosen α = 1/2, h̄ = 2m = 1, κ = 1, and a = 1. Here the vertical asymptotes correspond to the bound
state energies of the initial Hamiltonian H0 or the point where the continuous spectrum of H0 begins.

When a ̸= 0, the bound state energies can be found explicitly and given by

E∗

0 = −

⎛⎝√ h̄2κ2

2m
+

mα2

8h̄2 +

√
mα2

8h̄2

⎞⎠2

, (2.28)

E∗

1 = −

⎛⎝√ h̄2κ2

2m
+

mα2

8h̄2 −

√
mα2

8h̄2

⎞⎠2

. (2.29)

.1. A different perspective for the perturbative estimates on the bound state energies

We now develop a perturbative approximation in finding the eigenvalues of H0 − αδ with a
different perspective. In the standard perturbation theory [33,38], we basically start with the so-
called Rayleigh–Schrödinger series expansion for the bound state energies and wave functions and
then substitute these into Schrödinger equation and solve each expansion term recursively (which
has been discussed more rigorously in [37,39]).

Here, we follow a somewhat more heuristic approach and assume that α ≪ 1 and φk(0) ̸= 0.
According to the previous analysis, new bound state energies will shift due to the addition of δ
interaction to H0. Let E = E∗

k = Ek + δEk, where Ek are the bound state energies of H0 and δEk is
the change in the bound state energy E . Then, according to Proposition 2.1 the new bound state
k

9
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energies E∗

k are given by the solutions of

1
α

−

∞∑
n=0

|φn(0)|2

En − (Ek + δEk)
−

∫
Λ

|χλ(0)|2

λ− (Ek + δEk)
dµ(λ)

=
1
α

−

∑
n̸=k

|φn(0)|2

En − (Ek + δEk)
+

|φk(0)|2

δEk
−

∫
Λ

|χλ(0)|2

λ− (Ek + δEk)
dµ(λ) = 0 . (2.30)

his is an exact equation determining the bound state energies but it involves the eigenfunctions
t x = 0. If we expand the terms in the summation and integral in the powers of δEk and multiply
he equation by α δEk, we get

δEk − α δEk
∑
n̸=k

|φn(0)|2

En − Ek

(
1 +

δEk
En − Ek

+ O(δE2
k )
)

−α δEk

∫
Λ

|χλ(0)|2

λ− Ek

(
1 +

δEk
λ− Ek

+ O(δE2
k )
)
dµ(λ) + α|φk(0)|2 + O(δE3

k ) = 0 . (2.31)

et us assume that δEk has a power series in α, that is, δEk = E(1)
k +E(2)

k +· · ·, where E(n)
k corresponds

to the change in the bound state energy of order αn. Then, solving E(1)
k and E(2)

k term by term, we
obtain

E(1)
k = −α|φk(0)|2 , (2.32)

E(2)
k = −α2

|φk(0)|2

⎛⎝∑
n̸=k

|φn(0)|2

En − Ek
+

∫
Λ

|χλ(0)|2

λ− Ek
dµ(λ)

⎞⎠ , (2.33)

hich are consistent with classical first and second order formulas in non-degenerate perturbation
heory [7,33], given by

E(1)
k = ⟨φk,−αδφk⟩ (2.34)

E(2)
k = −

∑
n̸=k

|⟨φk,−αδφn⟩|
2

En − Ek
−

∫
Λ

|⟨χλ,−αδφk⟩|
2

λ− Ek
dµ(λ) . (2.35)

he important point to note here is that we are looking for the solution δEk of (2.31) as the formal
ower series in α by assuming both α and δEk are small so that it is sufficient to use regular
erturbation theory [40]. Let us summarize what we have found as the following Proposition:

roposition 2.6. Let φk be the eigenfunctions associated with the eigenvalues Ek of H0 and χλ be the
eneralized eigenfunctions of H0. Then, under the addition of δ interaction with the coupling constant
α, the change in the bound state energies up to the first and second order in α are formally given by

he Eqs. (2.32) and (2.33).

.2. A different perspective for the perturbative estimates on the bound state wave function

Using a contour integral of the resolvent R(E) = (H − E)−1 around each simple eigenvalue E∗

k ,
we can find the projection operator onto the eigenspace associated with the eigenvalue E∗

k ,

Pk = −
1

2π i

∮
R(E) dE , (2.36)
Γk

10
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where Γk is the closed contour around each simple pole E∗

k , or equivalently

ψk(x)ψk(y) = −
1

2π i

∮
Γk

G(x, y|E) dE . (2.37)

rom the explicit expression of the Green’s function (2.4) and residue theorem, we obtain

ψk(x) =
G0(x, 0|E∗

k )(
dG0(0,0|E)

dE

⏐⏐⏐⏐
E=E∗

k

)1/2 . (2.38)

sing the eigenfunction expansion of G0, and E∗

k = Ek + δEk, we get

ψk(x) =

(∑
∞

n=0
φn(x)φn(0)

En−(Ek+δEk)
+
∫
Λ

χλ(x)χλ(0)
λ−(Ek+δEk)

dµ(λ)
)

(∑
∞

n=0
|φn(0)|2

(En−(Ek+δEk))2
+
∫
Λ

|χλ(0)|2

(λ−(Ek+δEk))2
dµ(λ)

)1/2 . (2.39)

f we split the n = k term in the sums and integrals, and then expand the above terms in powers
f δEk, then the wave function becomes

ψk(x) =

⎡⎣1 +
δE2

k

|φk(0)|2
∑
n̸=k

|φn(0)|2

(En − Ek)2
+

δE2
k

|φk(0)|2

∫
Λ

|χλ(0)|2

(λ− Ek)2
dµ(λ) + O(δE3

k )

⎤⎦−1/2

×

(
−
φk(x)φk(0)

|φk(0)|
+

⎛⎝∑
n̸=k

φn(x)φn(0)
(En − Ek)|φk(0)|

(
δEk +

δE2
k

(En − Ek)
+ O(δE3

k )
)⎞⎠

+

(∫
Λ

χλ(x)χλ(0)
(λ− Ek)|φk(0)|

(
δEk +

δE2
k

(λ− Ek)
+ O(δE3

k )
)
dµ(λ)

))
+ O(δE3

k ) , (2.40)

here we have assumed |
δEk

(En−Ek)
| < 1 and |

δEk
(λ−Ek)

| < 1. Keeping the terms in δEk up to the second
rder, we obtain

ψk(x) = φk(x)e−iθk+iπ
+

∑
n̸=k

φn(x)φn(0)
|φk(0)|

E(1)
k

En − Ek
+

∫
Λ

χλ(x)χλ(0)
|φk(0)|

E(1)
k

λ− Ek
dµ(λ)

−
1
2
φk(x)e−iθk+iπ

⎛⎝∑
n̸=k

|φn(0)|2

|φk(0)|2
(E(1)

k )2

(En − Ek)2
+

∫
Λ

|χλ(0)|2

|φk(0)|2
(E(1)

k )2

(λ− Ek)2
dµ(λ)

⎞⎠
+

∑
n̸=k

φn(x)φn(0)
(En − Ek)|φk(0)|

(
E(2)
k +

(E(1)
k )2

(En − Ek)

)

+

(∫
Λ

χλ(x)χλ(0)
(λ− Ek)|φk(0)|

(
E(2)
k +

(E(1)
k )2

(λ− Ek)

)
dµ(λ)

)
+ O(δE3

k ) , (2.41)

here φk(0) = |φk(0)|eiθk . Using the first order and second order results (2.34) and (2.35) for the
ound state energies, we finally obtain the bound state wave function for each order:

ψ
(0)
k (x) = e−iθk+iπφk(x) (2.42)

ψ
(1)
k (x) = α φk(0)e−iθk+iπ

∑ φn(x)φn(0)
En − Ek

+ α φk(0)e−iθk+iπ
∫

χλ(x)χλ(0)
λ− Ek

dµ(λ) (2.43)

n̸=k Λ

11
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ψ
(2)
k (x) = −

α2

2
φk(x)e−iθk+iπ

|φk(0)|2

⎛⎝∑
n̸=k

|φn(0)|2

(En − Ek)2
+

∫
Λ

|χλ(0)|2

(λ− Ek)2
dµ(λ)

⎞⎠
+α2φk(0)e−iθk+iπ

∑
n̸=k

φn(x)φn(0)
(En − Ek)

(∑
m̸=k

|φm(0)|2

Em − Ek
+

∫
Λ

|χλ(0)|2

λ− Ek
dµ(λ) −

|φk(0)|2

(En − Ek)

)

+α2φk(0)e−iθk+iπ
∫
Λ

χλ(x)χλ(0)
(λ− Ek)

(∑
m̸=k

|φm(0)|2

Em − Ek
+

∫
Λ

|χλ′ (0)|2

λ′ − Ek
dµ(λ′) −

|φk(0)|2

λ− Ek

)
dµ(λ) . (2.44)

emark 2.7. According to standard regular perturbation theory results, the normalized wave
functions for the bound states up to second order in α are given by

ψ
(0)
k (x) = φk(x) (2.45)

ψ
(1)
k (x) =

∑
n̸=k

⟨φn,−αδφk⟩

Ek − En
φn(x) +

∫
Λ

⟨χλ,−αδφk⟩

λ− Ek
χλ(x)dµ(λ) (2.46)

ψ
(2)
k (x) =

∑
n̸=k

∑
m̸=k

⟨φn,−αδφm⟩⟨φm,−αδφk⟩

(Ek − En)(Ek − Em)
φn(x) −

∑
n̸=k

⟨φn,−αδφk⟩⟨φk,−αδφk⟩

(Ek − En)2
φn(x)

−
1
2

∑
n̸=k

⟨φk,−αδφn⟩⟨φn,−αδφk⟩

(Ek − En)2
φk(x)

+

∫
Λ

⎛⎝∑
n̸=k

⟨φn,−αδχλ⟩⟨χλ,−αδφk⟩

(Ek − En)(Ek − λ)
φn(x)

⎞⎠ dµ(λ)

+

∫
Λ

⎛⎝∑
m̸=k

⟨χλ,−αδφm⟩⟨φm,−αδφk⟩

(Ek − Em)(Ek − λ)
χλ(x)

⎞⎠ dµ(λ)

+

∫
Λ

(∫
Λ

⟨χλ,−αδχλ′⟩⟨χλ′ ,−αδφk⟩

(Ek − λ)(Ek − λ′)
χλ(x)dµ(λ′)

)
dµ(λ)

−

∫
Λ

⟨χλ,−αδφk⟩⟨φk,−αδφk⟩

(Ek − λ)2
dµ(λ) χλ(x)

−
1
2

∫
Λ

⟨φk,−αδχλ⟩⟨χλ,−αδφk⟩

(Ek − λ)2
dµ(λ) φk(x) . (2.47)

hese are completely consistent with our results up to a phase factor e−iθk+iπ . (Second order
erturbation result for the normalized wave function only in the discrete case has been given in [41],
ut clearly it can be generalized as we have stated here).

Let us summarize our findings as

roposition 2.8. The bound state wave functions ψk(x) for the Hamiltonian H0 modified by the δ
nteraction are given by (2.38) in terms of the associated bound state energies E∗

k , which are the solutions
f 1
α

− G0(0, 0|E) = 0. The expansion of the bound state wave function ψk(x) in terms of the coupling
onstants α up to second order are given by (2.42), (2.43), and (2.44).

. Singular modifications by δ interactions

When the co-dimension (dimension of the space - dimension of the support of the δ interaction)
s greater than one (e.g., point δ interaction in two and three dimensions, δ interaction supported by
curve in three dimensions), we need to define δ interaction by a renormalization procedure. The
eason for this is essentially based on the singularity of the Green’s function for free Hamiltonians
12
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H0 in two and three dimensions. The history of the subject is rather rich and there has been a vast
amount of material in the physics literature, see e.g., [24–28]. The subject has been also discussed
thoroughly from a more mathematical point of view in classic monographs [22,23] as well as in
a more recent work [35]. Here we now consider the Schrödinger operators H0 with the same
ssumption discussed before and we study the spectrum of H0 modified by δ interactions.
It is useful to express the Green’s function G0 in terms of the heat kernel Kt (x, y) associated with

he operator H0 = −
h̄2
2m∆+ V , given by

G0(x, y|E) =

∫
∞

0
Kt (x, y)etEdt , (3.1)

here Re(E) < 0 and H0Kt (x, y) =
∂
∂t Kt (x, y) and defined for other values of E in the complex E plane

through analytical continuation. We note that the first term in the short time asymptotic expansion
of the diagonal heat kernel for any self-adjoint elliptic second order differential operator [42] in d
dimensions, is given by

Kt (x, x) ∼ t−d/2 . (3.2)

This gives rise to the divergence near t = 0 in the diagonal part G0(x, x|E):∫
∞

0

e−t|E|

td/2
dt , (3.3)

or d = 2, 3. In order to make sense of such singular interactions, one must first introduce a cut-off
ϵ > 0 and regularize the Hamiltonian. This could be done replacing the δ interaction by the heat
kernel Kϵ/2(x, 0), which converges to δ(x) as ϵ → 0 in the distributional sense. Then, we make the
coupling constant α dependent on the cut-off in such a way that the regularized Hamiltonian has
a non-trivial limit (in the norm resolvent sense) as we remove the cut-off. A natural choice for the
coupling constant is given by

1
α(ϵ)

=
1

αR(M)
+

∫
∞

ϵ

Kt (0, 0)etMdt , (3.4)

where M is the renormalization scale and could be eliminated in favor of a physical parameter by
imposing the renormalization condition. For instance, M , and therefore αR, can be related to the
bound state energy of the particle moving under the addition of δ interaction to H0, say −µ2 (this
requirement, in general, leads to a flow in the space of coupling constants αR [43]). A special choice
is to set 1

αR
= 0 while demanding M = −µ2, which is particularly convenient for bound state

alculations. For our purposes, we use αR and moreover set M = −µ2 (thinking of a bound state
below E0) for clarity of notation (The single parameter dependence of the model has been explicitly
shown in Appendix B).

Then, taking the formal limit as ϵ → 0, we obtain the integral kernel of the resolvent or Green’s
function, given by

G(x, y|E) = G0(x, y|E) +
G0(x, 0|E)G0(0, y|E)

1
αR

−
∑

∞

n=0
|φn(0)|2(E+µ2)
(En−E)(En+µ2)

−
∫
Λ

|χλ(0)|2(E+µ2)
(λ+µ2)(λ−E)

dµ(λ)
. (3.5)

This is exactly in the same form as the Krein’s formula given by (2.4), where the form of the function
Φ here is given by

Φ(E) =
1
αR

+

∫
∞

0
Kt (0, 0)

(
e−tµ2

− etE
)

dt

=
1
αR

−

∞∑
n=0

|φn(0)|2(E + µ2)
(En − E)(En + µ2)

−

∫
Λ

|χλ(0)|2(E + µ2)
(λ+ µ2)(λ− E)

dµ(λ) . (3.6)

Here we have used the eigenfunction expansion of the heat kernel. Such specific examples are
examined in [29] in the context of path integrals in two and three dimensions. However, there
13
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is no explicit derivation in this work, showing that the poles of the free resolvent are cancelled in
the final expression.

Following the same line of argument developed for the one-dimensional case, we can now
xplicitly show how the poles of the Hamiltonian H0 disappear with the addition of δ interaction
nder the same assumptions about the spectrum of H0 as in the one dimensional case.
To simplify our arguments, we assume a purely discrete spectrum, the generalization to include

a continuum with generalized eigenfunctions is fairly straightforward. We again split the term in
the eigenfunction expansion of the Green’s function associated with the isolated simple eigenvalue
Ek of H0:

G(x, y|E) =

∑
n̸=k

φn(x)φn(y)
En − E

+
φk(x)φk(y)
Ek − E

+

(∑
n̸=k

φn(x)φn(0)
En−E

)(∑
n̸=k

φn(0)φn(y)
En−E

)
1
αR

−
∑

n̸=k
|φn(0)|2(E+µ2)
(En−E)(En+µ2)

−
|φk(0)|2(E+µ2)
(Ek−E)(Ek+µ2)

+

(∑
n̸=k

φn(x)φn(0)
En−E

)(
φk(0)φk(y)

Ek−E

)
1
αR

−
∑

n̸=k
|φn(0)|2(E+µ2)
(En−E)(En+µ2)

−
|φk(0)|2(E+µ2)
(Ek−E)(Ek+µ2)

+

(
φk(x)φk(0)

Ek−E

)(∑
n̸=k

φn(0)φn(y)
En−E

)
1
αR

−
∑

n̸=k
|φn(0)|2(E+µ2)
(En−E)(En+µ2)

−
|φk(0)|2(E+µ2)
(Ek−E)(Ek+µ2)

+

(
φk(x)φk(0)

Ek−E

)(
φk(0)φk(y)

Ek−E

)
1
αR

−
∑

n̸=k
|φn(0)|2(E+µ2)
(En−E)(En+µ2)

−
|φk(0)|2(E+µ2)
(Ek−E)(Ek+µ2)

. (3.7)

If we combine the second and the last term in the above expression, we obtain

G(x, y|E) =
φk(x)φk(y)
Ek − E

⎛⎜⎝1 −

⎛⎝1 −
(Ek − E)
|φk(0)|2

⎛⎝ 1
αR

−

∑
n̸=k

|φn(0)|2

En − E
+

|φk(0)|2

Ek + µ2

⎞⎠⎞⎠−1
⎞⎟⎠

+

∑
n̸=k

φn(x)φn(y)
En − E

+ (Ek − E)

(∑
n̸=k

φn(x)φn(0)
En−E

)(∑
n̸=k

φn(0)φn(y)
En−E

)
(Ek − E)

(
1
αR

−
∑

n̸=k
|φn(0)|2(E+µ2)
(En−E)(En+µ2)

)
−

|φk(0)|2(E+µ2)
(Ek+µ2)

+

(∑
n̸=k

φn(x)φn(0)
En−E

) (
φk(0)φk(y)

)
(Ek − E)

(
1
αR

−
∑

n̸=k
|φn(0)|2(E+µ2)
(En−E)(En+µ2)

)
−

|φk(0)|2(E+µ2)
(Ek−E)(Ek+µ2)

+

(
φk(x)φk(0)

) (∑
n̸=k

φn(0)φn(y)
En−E

)
(Ek − E)

(
1
αR

−
∑

n̸=k
|φn(0)|2(E+µ2)
(En−E)(En+µ2)

)
−

|φk(0)|2(E+µ2)
(Ek+µ2)

. (3.8)

Except for the first term, it is easy to see that all terms are regular near E = Ek. For the first term,
if we choose E sufficiently close to Ek, i.e., if

|Ek−E|

|φk(0)|2

⏐⏐⏐ 1
αR

−
∑

n̸=k
|φn(0)|2
En−E +

|φk(0)|2

Ek+µ2

⏐⏐⏐ < 1, the first term
in the above equation becomes

−
φk(x)φk(y)
|φk(0)|2

⎛⎝ 1
αR

−

∑
n̸=k

|φn(0)|2

En − E
+

|φk(0)|2

Ek + µ2

⎞⎠+ O(|Ek − E|
2) (3.9)

o that G(x, y|E) is regular near E = Ek as long as φk(0) ̸= 0. If we assume the presence of a
ontinuous spectrum, this part of the spectrum does not change by the same reasoning as given
efore. Hence we have
14
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Proposition 3.1. Let φk(x) be the bound state wave function of H0 associated with the bound state
nergy Ek. Then, the bound state energies E∗

k for H0 modified (perturbed) with attractive δ interactions
atisfy the equation

1
αR

−

∞∑
n=0

|φn(0)|2(E + µ2)
(En − E)(En + µ2)

−

∫
Λ

|χλ(0)|2(E + µ2)
(λ− E)(λ+ µ2)

dµ(λ) = 0 , (3.10)

f φk(0) ̸= 0 for some this particular k. If for this choice of k we have φk(0) = 0, the bound state
nergies do not change, E∗

k = Ek. Moreover, the continuous spectrum of the Hamiltonian modified with
interaction is the same as that of H0.

In the renormalized case, the interlacing of the energy eigenvalues is exactly the same as the
ne in Lemma 2.1, where renormalization is not required, and if αR < 0, then all the bound state
nergies are shifted downward even further, which is not something obvious. Moreover αR → 0−

orresponds to infinitely strong coupling case, so in a sense 1
αR

is the true coupling constant. This
s due to the fact that the Green’s function is an increasing function of E and for E → −∞ we find
hat the renormalized sum goes to −∞, as we let E → −∞, hence there is always a solution below
µ2 (this is where the sum vanishes). We will illustrate this for a manifold in an Appendix C.

emark 3.2. Note that these results can be interpreted as a generalization of the well-known Sturm
omparison theorems to the singular δ interactions, it is remarkable that even the renormalized case
as this property.

Following the same line of arguments as in the regular problem, we now develop a perturbative
pproximation to the eigenvalues for H0 by the addition of the singular δ interaction. We assume
hat αR ≪ 1. Let E = E∗

k = Ek + δEk, where Ek are the bound state energies of H0. Then, the poles
f the Green’s function G(x, y|E) are given by the solutions of

1
αR

−

∞∑
n=0

|φn(0)|2(Ek + δEk + µ2)
(En + µ2)(En − (Ek + δEk))

−

∫
Λ

|χλ(0)|2(Ek + δEk + µ2)
(λ+ µ2)(λ− (Ek + δEk))

dµ(λ)

=
1
αR

−

∑
n̸=k

|φn(0)|2(Ek + δEk + µ2)
(En + µ2)(En − (Ek + δEk))

+
|φk(0)|2(Ek + δEk + µ2)

(Ek + µ2)(δEk)

−

∫
Λ

|χλ(0)|2(Ek + δEk + µ2)
(λ+ µ2)(λ− (Ek + δEk))

dµ(λ) = 0 . (3.11)

f we expand above expressions in the powers of δEk and multiply the equation by αRδEk, we get

δEk + αR|φk(0)|2 +
αR|φk(0)|2

Ek + µ2 δEk − αRδEk
∑
n̸=k

|φn(0)|2(Ek + µ2)
(En − Ek)(En + µ2)

(
1 +

δEk
En − Ek

+ O(δE2
k )
)

−αRδEk
∑
n̸=k

|φn(0)|2δEk
(En − Ek)(En + µ2)

(
1 +

δEk
En − Ek

+ O(δE2
k )
)

−αRδEk

∫
Λ

|χλ(0)|2(Ek + µ2)
(λ− Ek)(λ+ µ2)

(
1 +

δEk
λ− Ek

+ O(δE2
k )
)

dµ(λ)

−αRδEk

∫
Λ

|χλ(0)|2δEk
(λ− Ek)(λ+ µ2)

(
1 +

δEk
λ− Ek

+ O(δE2
k )
)

dµ(λ) + O(δE3
k ) = 0 . (3.12)

et us assume that δEk can be expandable in the power series of αR, that is, δEk = E(1)
k + E(2)

k + · · ·,
where E(n)

k corresponds to the change in the bound state energy of order αn
R . Then, solving E(1)

k and
E(2)
k term by term, we obtain

(1) 2
Ek = −αR|φk(0)| , (3.13)

15
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E(2)
k = α2

R |φk(0)|2

⎛⎝ |φk(0)|2

Ek + µ2 −

∑
n̸=k

|φn(0)|2(Ek + µ2)
(En − Ek)(En + µ2)

−

∫
Λ

|χλ(0)|2(Ek + µ2)
(λ− Ek)(λ+ µ2)

dµ(λ)

⎞⎠ . (3.14)

It is important to notice that the first order result in the bound state energy is the same as the case
where the renormalization is not required, except that α is replaced by the renormalized coupling
constant αR. However, the above second order result in the bound state energy is completely
different from the case where the renormalization is not required. For the wave function, we
formally obtain the same formula (2.41) for the wave function expansion in δEk. Substituting the
results for first and second order eigenvalues given above, we find

ψ
(0)
k (x) = e−iθk+iπφk(x) , (3.15)

ψ
(1)
k (x) = αRφk(0)e−iθk+iπ

⎛⎝∑
n̸=k

φn(x)φn(0)
En − Ek

+

∫
Λ

χλ(x)χλ(0)
λ− Ek

dµ(λ)

⎞⎠ , (3.16)

nd

ψ
(2)
k (x) = −

α2
R

2
φk(x)e−iθk+iπ

|φk(0)|2

⎛⎝∑
n̸=k

|φn(0)|2

(En − Ek)2
+

∫
Λ

|χλ(0)|2

(λ− Ek)2
dµ(λ)

⎞⎠
+ α2

R

∑
n̸=k

φn(x)φn(0)
(En − Ek)

φk(0)e−iθk+iπ

[∑
m̸=k

|φm(0)|2(Ek + µ2)
(Em − Ek)(Em + µ2)

+

∫
Λ

|χλ(0)|2(Ek + µ2)
(λ− Ek)(λ+ µ2)

dµ(λ)

−
|φk(0)|2(En + µ2)
(En − Ek)(Ek + µ2)

]

+ α2
R

∫
Λ

χλ(x)χλ(0)
(λ− Ek)

φk(0)e−iθk+iπ

[∑
m̸=k

|φm(0)|2

Em − Ek
+

∫
Λ

|χλ′ (0)|2

λ′ − Ek
dµ(λ′)

−
|φk(0)|2(λ+ µ2)
(λ− Ek)(Ek + µ2)

]
dµ(λ) . (3.17)

emark 3.3. We note that the perturbation theory results for the renormalized problem can be
ecovered from an approach inspired by field theory. For simplicity, we discuss a Hamiltonian H0
ith purely discrete spectrum, that could be for example a free particle moving on a manifold or a
armonic oscillator perturbed by a delta interaction. All the other cases discussed in this paper can
imilarly be shown.
We introduce a cut-off in the eigenvalues of H0, N and define δN (x, a) as our regularized

delta-interaction on a manifold. Here

δN (x, a) =

∑
n

e−n/Nφn(x)φn(a) . (3.18)

Clearly as N → ∞ we get δN (x, a) → δ(x, a) (in the weak sense). Let us define
1
α

=
1
αR

+ G0(a, a|−µ2
;N) , (3.19)

here

G0(a, a|−µ2
;N) =

∑
n

e−n/N
|φn(a)|2

En + µ2 , (3.20)

r equivalently,

α =
αR

. (3.21)

1 + αRG0(a, a|−µ2;N)

16
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Now, within the usual perturbative approach, we assume αR is a formal parameter, that can be made
rbitrarily small so as to organize our expansions accordingly. This means we should order everything

according to powers of αR and formally expand, which gives

α = αR − α2
RG0(a, a|−µ2

;N) + O(α3
R) . (3.22)

The formal δ-interaction term in the Hamiltonian now becomes,

−
[
αR − α2

RG0(a, a|−µ2
;N) + O(α3

R)
]
δN (x, a) . (3.23)

Hence, a standard perturbative expansion, organized according to the powers of αR will have mixed
terms as the interaction term now is a power series in the small parameter αR. (there is a sense in
which we can imagine αR as much smaller than any other quantity and then use some analytic
continuation arguments to take the limit N → ∞ while keeping the formulae intact). First order
perturbation now keeps only the first term of the interaction,

E(1)
N;k = −αR

∫
Rd

ddx φk(x)δN (x, a)φk(x) , (3.24)

here d = 2 or d = 3. The limit N → ∞ reproduces the answer (3.13). The second order term has
wo parts, one is from the interaction that should be treated at first order as it has α2

R and then the
eading term that should be treated at second order:

E(2)
k = α2

R

∑
m̸=k

∫
Rd ddxφk(x)δN (x, a)φm(x)

∫
Rd ddx′φm(x′)δN (x′, a)φk(x′)

Ek − Em

+α2
R

∑
m

e−m/N
|φm(a)|2

Em + µ2

∫
Rd

ddx φk(x)δN (x, a)φk(x) . (3.25)

n the limit N → ∞ leaving aside the convergence issues, we see that one gets,

E(2)
k = α2

R

∑
m̸=k

φk(a)φm(a)φm(a)φk(a)
Ek − Em

+ α2
R

∑
m

|φm(a)|2

Em + µ2 φk(a)φk(a)

= α2
R

(
|φk(a)|2(Ek + µ2)

∑
m̸=k

|φm(a)|2

(Ek − Em)(Em + µ2)
+

|φk(a)|2|φk(a)|2

Ek + µ2

)
,

where the last term comes from isolating the m = k term from the GN (a, a|−µ2) part. So our direct
approach essentially provides a sound basis for this regularized perturbation theory cancellations
and expansions.

4. Possible generalizations

4.1. N center case

It is possible to generalize our approach to N-pointlike δ interaction case. When there is no need
for renormalization, we will assume that all the couplings are actually positive (hence corresponds
to the attractive case). Let us enumerate these points as a1, a2, . . . , aN with ai ̸= aj whenever i ̸= j
and the associated couplings with α1, α2, . . . αN . We will proceed recursively, and suppose that
H0 has the same spectral properties discussed in Section 2. If some set of eigenfunctions satisfies
φk(a1) ̸= 0 then they lead to a shift of this eigenvalue to a new value E∗1

k in between Ek−1 and
Ek. For these, the eigenfunctions change to N0G0(x, a1|E

∗1
k ) where N0 is the normalization constant.

So, we have a new Hamiltonian H1 with a new set of discrete states φ(1)
k (and possibly a new set

of continuum states that we do not venture into calculating). We now are back to the initial case,
if we add the δ interaction at a2, the same construction is repeated, and new eigenvalues E∗2

k for
φ

(1)(a ) ̸= 0 fall in between E∗1 and E∗1 . The poles associated with the old eigenvalues are removed,
k 2 k−1 k
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and there are new wave functions given by N1G1(x, a2|E
∗2
k ). We can now proceed recursively, and

define HN = HN−1 − αNδ(x, aN ) and thus find the Green’s function [44,45]

GN (x, y|E) = GN−1(x, y|E) + GN−1(x, aN |E)Φ−1(E)GN−1(aN , y|E), (4.1)

with Φ(E) =
1
αN

− GN−1(aN , aN |E). By this recursive argument, the new eigenvalues E∗N
k are

n between the eigenvalues E∗N−1
k−1 and E∗N−1

k . The resulting eigenfunction φ
(N)
k (x) is given by

N−1GN−1(x, aN |E∗N
k ), note that GN−1(x, aN |E∗N

k ) = G0(x, aN |E∗N
k ) +

∑N−1
i,j=1 G0(x, ai|E

∗N
k )Φ−1

ij (E∗N
k )

G0(aj, aN |E∗N
k ), where Φij(E) =

1
αi
δij − G0(ai, aj|E) is the matrix formed by the point centers

1, . . . , aN−1.
Incidentally, the above derivation does not make use of the finiteness of the matrix Φ , even in case

he matrix Φ(E) requires a renormalization, our derivation remains valid.

.2. δ interaction supported on curves in plane

Note that none of the derivations actually rely on the interaction being concentrated at a point,
e can generalize to the curve case easily. In fact, by extending the above discussion, we can
ccommodate multiple non-intersecting curves and points cases easily. To make the discussion
impler we consider a single rectifiable curve Γ in the plane first, and assume that the spectrum
f H0 consists of only a discrete part. There are various ways to define the above Hamiltonian in a
athematically rigorous way. One way is to interpret the above formal interaction by the quadratic

orm ∫
R2

|∇ψ |
2d2x − α

∫
Γ

|ψ |
2ds , (4.2)

n the case where H0 is the Laplacian. Then, one can prove that there is a self-adjoint Hamiltonian
ssociated with this quadratic form [46–48]. The other way is to impose the continuity and the
ump discontinuity conditions of the normal derivatives at Γ , (see Remark 4.1 in [46,49]). The
ther methods are based on using scaled potentials [50], or direct construction of the resolvent
perator [46,51]. The physical motivation for studying such Hamiltonians is to give a realistic model
or trapped electrons due to interfaces between two different semiconductor materials, which are
nown as leaky graphs, curves or surfaces in the literature [52].
In this section, we consider rank one modification (perturbations) of H0 in the sense described

n [23] and the Hamiltonian is formally given by

H0 − α|Γ ⟩⟨Γ | , (4.3)

here H0 = −
h̄2
2m∆+ V and we have used the Dirac notation for the inner products, and the Dirac

elta function δΓ supported by the curve Γ with length L is defined by their action on test functions
[4]

⟨δΓ |ψ⟩ = ⟨Γ |ψ⟩ :=
1

L(Γ )

∫
Γ

ψ ds , (4.4)

where ds is the integration element over the curve Γ and |Γ ⟩⟨Γ | written in Dirac’s bra-ket notation
s ⟨δΓ , ·⟩δΓ .

It is well known that the resolvent of free Hamiltonians modified by δ interaction supported on
curve can be expressed by some explicit formulae involving the resolvent of the free Hamiltonian,
nd they are known as Krein’s formula in the literature [22,23,52]. Instead of free Hamiltonian we
ave here a general Schrödinger operator but the formula for the resolvent would be exactly the
ame as before. Hence, we obtain

R(E) = R0(E) +
1

R0(E)|Γ ⟩⟨Γ |R0(E) , (4.5)

Φ(E)
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where Φ(E) =
1
α

− G0(Γ ,Γ |E) and G0(Γ ,Γ |E) =
1
L2
∫∫
Γ×Γ

G0(γ (s), γ (s′))ds ds′. This can be
xpressed in terms of the Green’s functions as

G(x, y|E) = G0(x, y|E) +
1

Φ(E)
G0(x,Γ |E)G0(Γ , y|E) . (4.6)

Here G0(x,Γ |E) =
1
L

∫
Γ
G0(x, γ (s))ds. A generalization of such δ interactions supported on curves

embedded in manifolds is studied in [53].
Let us define g(x, y|E) =

∑
n̸=k φn(x)φn(y)(E − En)−1 as well as projections onto the curve as

⟨x|g(E)|Γ ⟩ =
∑

n̸=k φn(x)⟨Γ |φk⟩(E − En)−1. For clarity we only assume a discrete spectrum, since
generalizing to continuous spectrum is not difficult. These are holomorphic functions of E in a
sufficiently small neighborhood of Ek. By following the same steps as we have done before, and using
the expansion of the Green’s function we find

G(x, y|E) = g(x, y|E) +
φk(x)φk(y)
E − Ek

+

φk(x)⟨φk|Γ ⟩

E−Ek
⟨Γ |φk⟩φk(y)

E−Ek
1
α

− ⟨Γ |g(E)|Γ ⟩ − |⟨Γ |φk⟩|
2(E − Ek)−1

+

⟨x|g(E)|Γ ⟩
⟨Γ |φk⟩φk(y)

E−Ek
1
α

− ⟨Γ |g(E)|Γ ⟩ − |⟨Γ |φk⟩|
2(E − Ek)−1

+

φk(x)⟨φk|Γ ⟩

E−Ek
⟨Γ |g(E)|y⟩

1
α

− ⟨Γ |g(E)|Γ ⟩ − |⟨Γ |φk⟩|
2(E − Ek)−1

+
⟨x|g(E)|Γ ⟩⟨Γ |g(E)|y⟩

1
α

− ⟨Γ |g(E)|Γ ⟩ − |⟨Γ |φk⟩|
2(E − Ek)−1

. (4.7)

Here we have assumed that there is a continuous representative for each eigenvector, so that
the expression ⟨Γ |φk⟩ =

1
L

∫
Γ
φk(γ (s))ds is well defined, this is true even for the generalized

eigenvectors of a Laplacian modified by some potential which satisfies some conditions [6] (indeed
for the free Hamiltonian, the domain of H0 is the Sobolev space and these expressions for arbitrary
vectors in the domain are always well-defined by the Sobolev embedding theorem [54]). Just as
before, multiplying by (E−Ek) the numerators and denominators, and expanding around Ek, we see
the cancellation of the pole at Ek, as long as ⟨Γ |φk⟩ ̸= 0.

In this case we have the new wave functions given by

ψk(x) = NG0(x,Γ |E∗

k ) = N
∫
Γ

G0(x, γ (s)|E∗

k )ds . (4.8)

Eigenvalues and eigenvectors, for multiple curves and points are now constructed by iterating the
above set of arguments for each additional rank one perturbation.

Remark 4.1. In all our discussions, it is essential to have elliptic operators with some special prop-
erties (typically a summability condition on the potentials) to allow for generalized eigenvectors
with certain regularity properties, as we evaluate them at a point or integrate them over a curve.

4.3. A particle in a compact manifold under the influence of a δ interaction

Another possibility for H0 could correspond to a system where a particle is intrinsically moving
on a two or three dimensional compact and connected manifold M with the metric structure g:

(H0ψ)(x) = −
h̄2

2m

⎛⎝ 1
√
det g

d∑
i,j=1

∂

∂xi

(√
det gg ij ∂ψ(x)

∂xj

)⎞⎠ , (4.9)

here x = (x1, . . . , xd) are the local coordinates, and g ij are the components of inverse of the
etric g . Then it is well known [55,56] that there exists a complete orthonormal system of C∞

igenfunctions {φn}
∞

n=0 in L2(M) and the spectrum σ (H0) = {En} = {0 = E0 ≤ E1 ≤ E2 ≤ . . . }, with
n tending to infinity as n → ∞ and each eigenvalue has finite multiplicity: H0φn = Enφn. Some
igenvalues are repeated according to their multiplicity. The multiplicity of the first eigenvalue

= 0 is one and the corresponding eigenfunction is constant.
0
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When we add a point like δ interaction on such Schrödinger operator H0, physically we model
particle moving intrinsically in a two dimensional compact manifold M (without boundary) and

nteracting with a δ source located at some point a in M. This problem requires renormalization
ue to the short distance singular behavior of the free Green’s function on a manifold, which can be
imilarly seen from the short time expansion of the heat kernel Kt (a, a) ∼ 1/t as t → 0+ and the
ormula (3.1) for Riemannian manifolds [57]. This is the same singular structure of the diagonal free
reen’s function and the reason for this is based on the fact that the divergence here appears due to
he short time behavior of the heat kernel and the manifold M locally looks like a flat space around
he point where the δ interaction is located. This has been discussed in our previous works [58–61]
or finitely many δ centers. Then, the Green’s function can be similarly expressed as

G(x, y|E) = G0(x, y|E) +
G0(x, a|E)G0(a, y|E)

1
αR

−
∑

∞

n=0
|φn(a)|2(E+µ2)
(En−E)(En+µ2)

, (4.10)

or any points x, y and a inM. Note that this expression is formally the same as our previous formula
or a two dimensional problem without the need for a continuous spectrum. Then, all the results
hat we have obtained for previous problems follow easily in this case as well. Consequently, we do
ot repeat our arguments, instead in the next section we concentrate on a slightly different model
n a compact manifold, and there we provide some more details. The convergence of the series

∞

n=0
|φn(a)|2(E+µ2)
(En−E)(En+µ2)

will be shown in Appendix A.

4.4. A semirelativistic model on a two dimensional compact manifold

In our previous work [62], a possible relativistic model of δ interactions on a two dimensional
compact Riemannian manifold (M, g) is proposed, in a second quantized language the model
Hamiltonian is written as

H =
1
2

∫
M

d2gx : φ†(−∇
2
g + m2)φ + π2

: −α φ(−)(a)φ(+)(a) , (4.11)

here d2gx =
√
det g dx1 dx2 and (x1, x2) is the local coordinates. The positive and the negative

frequency part of the bosonic field φ is denoted by φ(−) and φ(+), respectively. They can be expanded
in terms of the creation and annihilation operators indexed by n, that is,

φ(+)(x) =

∞∑
n=0

fn(x)
√
2ωn

an, (4.12)

φ(−)(x) =

∞∑
n=0

fn(x)
√
2ωn

a†
n (4.13)

here fn(x) are the eigenfunctions of the Laplace Beltrami operator ∇
2
g =

1
√
det g

∑2
i,j=1

∂

∂xi(
g ij√det g ∂

∂xj

)
:

−∇
2
g fn(x) = e2nfn(x) , (4.14)

nd ωn =
√
e2n + m2, note that we use units where h̄ = 1 and c = 1. Therefore ωn and energy

has the same units. We remark that the index n plays the same role as momentum k in flat space,
although there is no relation with a (possible) translation symmetry in general. If we restrict our
model to a one particle sector

|ψ⟩ =

∞∑
ψn

a†
n

√
2ω

|0⟩, (4.15)

n=0 n
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and following the same steps as in [62] we will find the Green’s function restricted to one-particle
sector. To find the Green’s function, we need to solve in the eigenfunction basis,

(H − E)|ψ⟩ = |χ⟩ , (4.16)

or a given state |χ⟩. As a result, the one-particle sector Green’s function can be found by solving,(√
e2n + m2 − E

)
ψn − α

∞∑
l=0

fn(a)
√
ωl

fl(a)
√
ωl
ψl = χn . (4.17)

he solution ψn of this equation is given by

ψn =
1

(ωn − E)
χn +

1
(ωn − E)

fn(a)
[
1
α

−

∞∑
l=0

|fl(a)|2

ωl(ωl − E)

]−1 ∞∑
r=0

fr (a)
ωr

1
(ωr − E)

χr . (4.18)

o read the Green’s function, notice that
∞∑
n=0

fn(x)
ψn

√
ωn

= ψ(x) =

∞∑
n=0

∫
M

d2gy
fn(x)fn(y)
(ωn − E)

χ (y)

+

∞∑
n=0

fn(x)
(ωn − E)

fn(a)
√
ωn

[
1
α

−

∑
l

|fl(a)|2

ωl(ωl − E)

]−1∑
r

∫
M

d2gy
fr (a)
√
ωr

fr (y)
(ωr − E)

χ (y) , (4.19)

here we have used χn =
√
ωn
∫
M d2gx χ (x)fn(x) and orthogonality of eigenfunctions fn. We can

hen write this as an equation,

ψ(x) =

∫
M

d2gy G0(x, y|E)χ (y) + G̃0(x, a|E)Φ(E)−1
∫

dy G̃0(a, y|E)χ (y) , (4.20)

here

G0(x, y|E) =

∞∑
n=0

fn(x)fn(y)
(ωn − E)

(4.21)

G̃0(x, y|E) =

∞∑
n=0

fn(x)
(ωn − E)

fn(y)
√
ωn

(4.22)

Φ(E) =
1
α

−

∞∑
n=0

|fn(a)|2

ωn(ωn − E)
. (4.23)

hen we can find the Green’s function as

G(x, y|E) = G0(x, y) + G̃0(x, a|E)Φ−1(E)G̃0(a, y|E). (4.24)

ote that to demonstrate the cancellation of original poles, we need to carefully look at the analytic
tructure of G(x, y).

G(x, y) =

∞∑
n=0

fn(x)fn(y)
(ωn − E)

+

∞∑
n=0

fn(x)
(ωn − E)

fn(a)
√
ωn
Φ−1(E)

∞∑
r=0

fr (a)
√
ωr

fr (y)
(ωr − E)

(4.25)

ndeed, the sum in the definition of Φ is divergent. This can be seen by following the same line of
rguments discussed in [62]. We will summarize it for the sake of completeness. First we rewrite
he expression 1

ωn(ωn−E) as

1
ωn(ωn − E)

= −
1
E

(
1
ωn

−
1

ωn − E

)
= −

1
E

∫
∞

0
e−sωn (1 − esE) ds , (4.26)

here we assume that Re (ωn − E) > 0. The later formulae defining the resolvent in terms of
he heat kernel is often assumed to be analytically continued onto the complex plane. Using the
21
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subordination identity

e−sA
=

s
2
√
π

∫
∞

0
e−s2/(4u)−uA2 du

u3/2 , (4.27)

nd the eigenfunction expansion of the heat kernel associated with the Laplace–Beltrami operator
n Riemannian manifolds [55]

Ku(x, y) =

∞∑
n=0

e−ue2n fn(x)fn(y) , (4.28)

e obtain
∞∑
n=0

|fn(a)|2

ωn(ωn − E)
= −

1
E

∫
∞

0

(∫
∞

0
Ku(a, a)e−um2

+s2/(4u) du
u3/2

)
(1 − esE)s

2
√
π

ds . (4.29)

sing integration by parts and scaling the integration variable, we find
∞∑
n=0

|fn(a)|2

ωn(ωn − E)
=

1
√
π

∫
∞

0

(∫
∞

0
Ku(a, a)e−um2

+sE
√
u du

)
e−s2/4 ds . (4.30)

Due to the short ‘‘time’’ asymptotic behavior of the diagonal heat kernel Ku(a, a) ∼
1
u for two

imensional Riemannian manifolds, the integral over u is divergent. For this reason, we apply the
dea of renormalization and introduce a short ‘‘time’’ cut off ϵ in the lower limit of u integral. This
orresponds to the sum over τ up to a cut off N . Then we choose the coupling constant depending
n this cut off in such a way that

1
α(N)

=
1
αR

+

N∑
n=0

|fn(a)|2

ωn(ωn + µ2)
, (4.31)

here −µ2 can be related to the experimentally measured bound state energy of the particle below
he lowest eigenvalue ω0 (in the presence of single Dirac δ center) as we will see. To this end we
remove the cut off by sending N → ∞ in Φ and get the renormalized Φ

ΦR =
1
αR

+

∞∑
n=0

[
|fn(a)|2

ωn(ωn + µ2)
−

|fn(a)|2

ωn(ωn − E)

]

=
1
αR

+

∞∑
n=0

|fn(a)|2
(−E − µ2)

ωn(ωn + µ2)(ωn − E)

=
1
αR

− (E + µ2)
∞∑
n=0

|fn(a)|2

ωn(ωn + µ2)(ωn − E)
. (4.32)

his expression when the real part of ω0 − E is positive can be shown to be finite by using heat
ernel estimates (which is done in [62]), one can furthermore show than as long as E ̸= ωn this

expression is well-defined and analytic. We take E around Ek and isolate this particular pole in our
expressions,∑

n̸=k

fn(x)fn(y)
(ωn − E)

+
fk(x)fk(y)
(ωk − E)

+

(∑
n̸=k

fn(x)
(ωn − E)

fn(a)
√
ωn

+
fk(x)

(ωk − E)
fk(a)
√
ωk

)
×

1
1
αR

− (E + µ2)
[∑

r ̸=k
|fr (a)|2

ωr (ωr+µ2)(ωr−E)
+

|fk(a)|2

ωk(ωk+µ2)(ωk−E)

]
×

(∑ fl(a)
√
ωl

fl(y)
(ωl − E)

+
fk(a)
√
ωk

fk(y)
(ωk − E)

)
. (4.33)
l̸=k
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Note that here the singular part comes from,

fk(x)fk(y)
(ωk − E)

−
|fk(a)|2fk(x)fk(y)

ωk(ωk − E)2
[
(E + µ2) |fk(a)|2

ωk(ωk−E)(ωk+µ2)
+ regular terms

] + regular terms . (4.34)

We now use E + µ2
= E − ωk + ωk + µ2 in the numerator and reduce this to

fk(x)fk(y)
(ωk − E)

−
|fk(a)|2fk(x)fk(y)

ωk(ωk − E)2
(

|fk(a)|2

ωk(ωk−E) + regular terms
) + regular terms . (4.35)

Following our previous arguments, it is seen that the pole at ωk is now cancelled. As a result, we
see that the interaction we propose has the same property as in the Sturm–Liouville interlacing
theorem, the picture we have for the two dimensional non-relativistic problem applies equally well
here. In Appendix C, we prove that there is always a bound state below ω0 for all choices of αR, albeit
one should be cautious not to push the bound state below −m for internal consistency of the model.

Final remarks

In this work, we have studied the spectral properties of the Schrödinger operators H0 with δ
nteractions, where H0 satisfies some mild conditions, which are usually assumed to hold in most
f the quantum systems. In contrast to the typical works in the literature, we work out the pole
tructure of G and explicitly show that poles of the initial Green function G0 are removed (as long
as the original eigenfunction does not vanish at the location of the δ function) from G, through the
se of eigenfunction expansions. We show that new bound state energies can be found by solving
quation Φ(E) = 0, where Φ is explicitly defined in terms of the diagonal Green’s function if the

center of the δ function is not located at one of the nodes of the initial eigenfunction φk. These
results are established in one dimension for point like δ interactions and the reflectionless potential
for H0 is studied as an example. A different kind of perturbative approach in finding eigenvalues and
eigenfunctions of the full system is presented up to second order in a heuristic way. These ideas
are then extended to the case, where the renormalization procedure is needed. In that case, we
obtained similar results, except that the perturbative calculations differ at the second order of the
coupling constant of δ interaction. Finally, we summarize some possible further extensions of our
results to the more general δ interactions (supported on curve) and multi-center case, and to the
case in which a particle is moving on a compact two dimensional manifold, and to a semi-relativistic
model on a compact manifold.
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ppendix A. Convergence of the series
∑∞

n=0
|φn(a)|2(E+µ2)
(En−E)(En+µ2)

We verify that Green’s function is finite apart from the obvious poles we claim, that is, we would
like to prove that

lim
N→∞

N∑
n=0

|φn(a)|2

(En − E)(En + µ2)
< ∞ . (A.1)

On a compact manifold, the Laplace–Beltrami operator −∇
2
g has a discrete spectrum 0 ≤ E0 ≤ E1 ≤

2... ≤ En → ∞, and with finite multiplicity. For simplicity, let us first consider the case where
E ∈ R+. We then choose a finite M sufficiently large that EM > 2

(
E +

µ2

2

)
and note that En ≥ EM

or n > M . Then, it is easy to see that for n ≥ M , (with obvious requirement N > M as N → ∞

ventually), we have

|φn(a)|2

(En − E)(En + µ2)
< 2

|φn(a)|2

(En + µ2)2
. (A.2)

his implies that

N∑
n≥M

|φn(a)|2

(En − E)(En + µ2)
< 2

N∑
n=0

|φn(a)|2

(En + µ2)2
. (A.3)

he right hand side can be expressed as

N∑
n=0

|φn(a)|2

(En + µ2)2
=

N∑
n=0

∫
∞

0
dt t |φn(a)|2e−(En+µ2)t , (A.4)

and using the eigenfunction expansion of the heat kernel (4.28) we obtain in the limit N → ∞

∞∑
n=0

|φn(a)|2

(En + µ2)2
=

∫
∞

0
dt t Kt (a, a)e−µ2t . (A.5)

The upper bounds of the diagonal part of the heat kernel on compact manifolds is given by (see [43])

Kt (a, a) <
(

1
V (M)

+
C
t

)
, (A.6)

here V (M) is the volume of M and C is a constant depending only on the geometric properties
of M. This upper bound shows that

∑
∞ |φn(a)|2 is convergent.
n=0 (En−E)(En+µ2)
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For the complex values of E = ER + iEI with EI ̸= 0, we can also show that the above series is
bsolutely convergent since

∞∑
n=0

|φn(a)|2

|(En − ER − iEI )|(En + µ2)
=

∞∑
n=0

|φn(a)|2√
(En − ER)2 + E2

I (En + µ2)

≤
√
2

∞∑
n=0

|φn(a)|2

(|En − ER| + |EI |)(En + µ2)
(A.7)

≤

∞∑
n>M

√
2|φn(a)|2

(En + µ2)(|En − ER| + |EI |)
+

√
2

|EI |

∑
n≤M

|φn(a)|2

(En + µ2)
< ∞

hoosing an M such that for n > M we have En > 2|ER| we see that all the terms become finite.
ence in all possible cases we have finite expressions.
One can similarly show that the same sum is convergent for Schrödinger operators with locally

ntegrable potentials using the upper bound for the heat kernel Kt (a, a) ≤
1

4π t , given in example
.1.9 in [63].

ppendix B. A single parameter dependence for the renormalized theory

It is interesting to note that the renormalized theory, actually have a single parameter dependence
even though it seems to allow for two parameters αR and µ2 in our formulae. This is of course
well-known from the theory of self-adjoint extensions, yet we would like to verify explicitly that
the zeros of Φ(E) will not change if we allow for a special dependence of αR on µ. Let us consider
a compact two dimensional manifold, and demand the function Φ(E) to be invariant under the
change of µ by adjusting αR accordingly (we can also demand the zeros of Φ to remain invariant
as we change µ, being a meromorphic function with fixed pole structure, we can then see that the
function Φ remains invariant). This will lead to a differential equation;

µ
∂

∂µ

1
αR

= 2µ2
∞∑
n=0

|φn(a)|2

(En − E)(En + µ2)
− (E + µ2)

∞∑
n=0

2µ2
|φn(a)|2

(En − E)(En + µ2)2
= 2µ2

∞∑
n=0

|φn(a)|2

(En + µ2)2

= 2µ2
∫

∞

0
dt t Kt (a, a)e−µ2t (B.1)

hich clearly shows that the left side has no dependence on E and a well-defined function of µ2,
ence can be integrated to find αR as a function of µ, it is a kind of flow equation. Incidentally,
his flow equation for the beta function was previously observed in [59] for a restricted region of E
alues. In the same way, our relativistic model similarly depends on a single parameter, if we adjust
he flow of αR accordingly. Indeed if we compute

∂

∂µ

1
αR

=

∞∑
n=0

|fn(a)|2

ωn(ωn + µ)2
. (B.2)

The expression on the right is a positive finite quantity and we observe a similar flow expression,
demonstrating single parameter dependence of the theory. (Its relation to the heat kernel can be
found if desired using the method in Appendix C)

Appendix C. The behavior of the sum
∑∞

n=0
(E+µ2)|φn(a)|2

(En−E)(En+µ2) as E → −∞

In order to show that
∞∑ (E + µ2)|φn(a)|2

(E − E)(E + µ2)
→ −∞ as E → −∞ (C.1)
n=0 n n
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on a compact manifold, we resort to a well known inequality for the heat kernel due to Cheeger
and Yau [64]

Kt (x, y) ≥ K κt (dg (x, y)) , (C.2)

nder the assumption that the Ricci curvature as a 2-form is bounded from below by −κg(., .),
hich is often a reasonable condition. Here K κt is the heat kernel of the simply connected complete

two dimensional manifold of constant sectional curvature and dg (x, y) is the geodesic distance
between x and y on the manifold. In particular, we can choose K κt (x, y) as the heat kernel of the two
imensional hyperbolic manifold. Thanks to the work of Davis-Moundavalis [65], there is a lower
ound on the hyperbolic two dimensional manifold for the diagonal heat kernel, CDM

e−κt/4

t(1+κt)1/2
where

DM is a constant, depending on dimension. This bound can even be simplified to (see [66])

Kt (a, a) ≥ CDM
e−3κt/4

t
. (C.3)

sing the Feynman parametrization for the term 1/(En − E)(En + µ2)

1
AB

=

∫ 1

0

du
(Au + (1 − u)B)2

, (C.4)

and exponentiating the denominator via

1
(Au + (1 − u)B)2

=

∫
∞

0
e−t(Au+(1−u)B) t dt (C.5)

and then using the eigenfunction expansion of the heat kernel (4.28), we can find the following
upper bound for the sum

∞∑
n=0

(|E| − µ2)|φn(a)|2

(En + |E|)(En + µ2)
=

∞∑
n=0

(|E| − µ2)
∫ 1

0

|φn(a)|2du
[En + u|E| + (1 − u)µ2]2

= (|E| − µ2)
∫ 1

0
du
∫

∞

0
dt t Kt (a, a)e−(t(1−u)µ2

+u|E|)

≥ CDM (|E| − µ2)
∫ 1

0

du
3κ/4 + (1 − u)µ2 + u|E|

= CDM ln
(

|E| + 3κ/4
µ2 + 3κ/4

)
, (C.6)

hich demonstrates that the limit goes to ∞, hence there is always a solution for 1/αR < 0.
here are other bounds with less restrictive conditions but they are more technical, the result
oes not change. In a similar spirit, we can use lower bounds for the heat kernel associated with
he uniformly elliptic Schrödinger operators on R2 (see, e.g., theorem 3.3.4 in [63]). If we have a
onsingular potential (strictly speaking V belongs to Kato class, which also guarantees the self-
djointness of the Schrödinger operator), there is a natural lower bound for the diagonal heat kernel
iven by C/t , so we get the same result.
For our semirelativistic model, we can show again that the expression for Φ(E) when we choose
< ω0 always has a root between −µ2 and ω0 for positive αR. For internal consistency we do not
ant our model to develop zeroes below −m, yet, in any case we should show that for αR < 0 there
re solutions. To achieve this, we should verify that Φ(E) is monotonically increasing from −∞ to
as we change E from −∞ to ω−

0 . It is easy to see that Φ(E) is monotone increasing in E as before,
n between the poles, however it takes some work to show that it goes to −∞ as E → −∞.

To this aim, we estimate the sum from below assuming E < 0,
∞∑ |fn(a)|2

ω (ω + µ2)(ω + |E|)
>

∞∑ |fn(a)|2

(ω + µ2)2(ω + |E|)
. (C.7)
n=0 n n n n=0 n n
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Using the Feynman parametrization

1
(ωn + µ2)2(ωn + |E|)

= 2
∫ 1

0

u[
ωn + uµ2 + (1 − u)|E|

]3 du , (C.8)

nd exponentiating the denominator

1[
ωn + uµ2 + (1 − u)|E|

]3 =

∫
∞

0
s2 e−s

[
ωn+uµ2

+(1−u)|E|

]
ds, (C.9)

and then using the subordination identity (4.27), we can express the sum in terms of the heat kernel
thanks to the eigenfunction expansion of the heat kernel (4.28). Then again applying the Cheeger-
Yau bound for the heat kernel, assuming R(., .) > −κg(., .), we finally get an lower bound for the
sum

∞∑
n=0

e−ω2
n t |fn(a)|2 = e−m2tKt (a, a) > CDM

e−(m2
+3κ/4)t

t
. (C.10)

lugging these results back into the original expressions, we find
∞∑
n=0

|fn(a)|2

ωn(ωn + µ2)(ωn + |E|)

>
1

√
π

∫ 1

0
u

[∫
∞

0
s3
(∫

∞

0

e−(m2
+3κ/4)t−s2/4t

t5/2
dt

)
e−s

(
uµ2

+(1−u)|E|

)
ds

]
du . (C.11)

e recognize that the integral with respect to t is the integral representation of the modified Bessel
function [67]

K3/2(z) =
1
2

( z
2

)3/2 ∫ ∞

0

e−t−z2/4t

t3/2+1 dt , (C.12)

and the modified Bessel function of order half-integer can be further simplified to the function

K3/2(z) =

√
2
πz

e−z
+

√
2
π

e−z

z3/2
. (C.13)

t would be sufficient to concentrate on the second term in Eq. (C.13) for our purpose. Here
= s

√
m2 +

3κ
4 . This term after the integration with respect to s in (C.11) becomes

(|E| − µ2)
∞∑
n=0

|fn(a)|2

ωn(ωn + µ2)(ωn + |E|)

> Cst (|E| − µ2)
∫ 1

0

u
((m2 + 3κ/4)1/2 + uµ2 + (1 − u)|E|)

du

> Cst (|E| − µ2)
∫ 1

0

u
((m2 + 3κ/4)1/2 + µ2 + (1 − u)|E|)

du

= Cst (|E| − µ2)
∫ 1

0

(1 − u)
((m2 + 3κ/4)1/2 + µ2 + u|E|)

du

= Cst
|E| − µ2

|E|

(
|E| + (m2

+ 3κ/4)1/2 + µ2

|E|
ln

|E| + [m2
+ 3κ/4]1/2 + µ2

µ2 + [m2 + 3κ/4]1/2
− 1

)
, (C.14)

ence proving again that the sum goes to ∞ as |E| → ∞. Here the first term in (C.13) gives positive
and regular contribution to the sum, which do not change our conclusion.
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Appendix D. Degenerate case

Here we consider the possibility of degeneracy in the eigenstates, for clarity of our presentation,
e only look into the two-dimensional compact manifold case. More general cases can be done using
xactly the same idea. In this case assume that there is an eigenvalue Ek which is d-fold degenerate
for a manifold it is known to be finite for every state, and for its generalization to other cases, it is
lways assumed to be a finite degeneracy). We choose a set of orthonormal vectors φαk to span this

space. In our Green’s function formula, assuming E is around Ek, we can explicitly write the leading
terms with Ek poles;

G(x, y|E) = g(x, y|E) +

d∑
α=1

φαk (x)φ
α
k (y)

Ek − E
+

[
g(x, a|E)

+

d∑
α=1

φαk (x)φ
α
k (a)

(Ek − E)

]
1

1
αR

− k(a, a|E) −
∑d

α=1
φαk (a)φαk (a)(E+µ)
(Ek−E)(Ek+µ)

[
g(a, y|E) +

d∑
β=1

φ
β

k (a)φ
β

k (y)
Ek − E

]
, (D.1)

ere αR refers to the renormalized coupling constant and

g(x, y|E) :=

∞∑
n̸=k

φn(x)φn(y)
En − E

k(x, y|E) :=

∞∑
n̸=k

φn(x)φn(y)(E + µ)
(En − E)(En + µ)

. (D.2)

e now rewrite the pole term in the denominator,

φαk (a)φ
α
k (a)(E + µ)

(Ek − E)(Ek + µ)
=
φαk (a)φ

α
k (a)(E + µ− Ek + Ek)
(Ek − E)(Ek + µ)

=
φαk (a)φ

α
k (a)

(Ek − E)
−
φαk (a)φ

α
k (a)

(Ek + µ)
, (D.3)

here the pole term is isolated with other part being regular. In our expression, the crucial part is
he product of the two poles terms and then we move one of Ek − E terms into the denominator to
et a leading order term plus a power series in Ek − E:

G(x, y|E) = f (x, y|E) +

d∑
α=1

φαk (x)φ
α
k (y)

Ek − E

+
1

Ek − E

d∑
α=1

φαk (x)φ
α
k (a)

1

−
∑

γ φ
γ

k (a)φ
γ

k (a) + (E − Ek)h(a, a|E)

d∑
β=1

φ
β

k (a)φ
β

k (y) , (D.4)

here

f (x, y|E) = g(x, y|E) +
g(x, a|E)g(a, y|E)

1
αR

− k(a, a|E) −
∑d

α=1
φαk (a)φαk (a)(E+µ)
(Ek−E)(Ek+µ)

+
g(x, a|E)

(Ek − E)
(

1
αR

− k(a, a|E)
)

−
∑d

α=1
φαk (a)φαk (a)(E+µ)

(Ek+µ)

d∑
β=1

φ
β

k (a)φ
β

k (y)

+
g(a, y|E)

(Ek − E)
(

1
αR

− k(a, a|E)
)

−
∑d

α=1
φαk (a)φαk (a)(E+µ)

(Ek+µ)

d∑
β=1

φ
β

k (x)φ
β

k (a) , (D.5)

and

h(a, a|E) = k(a, a|E) −
1
α

−

d∑ |φαk (a)|
2

E + µ2 . (D.6)

R

α=1 k
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c
r

L∑

T

Note that here, f (x, y|E) is regular around Ek and in the denominator, we have a leading finite
term and then a regular function multiplied with E − Ek, which can be made sufficiently small.
We now assume that at least one of the wave functions φαk (a) is nonzero. Then, we can expand this
ombination in the denominator and combine them with the regular function f and call it new
egular function by l. Hence, we find

G(x, y|E) = l(x, y|E) +

d∑
α=1

φαk (x)φ
α
k (y)

Ek − E

−
1

Ek − E

d∑
α=1

φαk (x)φ
α
k (a)

1∑d
γ=1 φ

γ

k (a)φ
γ

k (a)

d∑
β=1

φ
β

k (a)φ
β

k (y) . (D.7)

et us define Aαβ = φαk (a)φ
β

k (a), which is a manifestly Hermitian matrix, with trace TrA =
d
α=1 φ

α
k (a)φ

α
k (a) =

∑d
α=1 |φαk (a)|

2 Moreover, if we think of φαk (a) as components of a vector in d
dimensions, A has only one non-zero eigenvalue, which is TrA, with eigenvector φγk (a). As Aαβvβ = 0
for all the vectors v orthogonal to single vector φβk (a), we have d− 1 zero eigenvalues. Aαβ being a
Hermitian matrix, can be diagonalized by a unitary Uαβ matrix:

U†AU = diag(0, 0, . . . , Tr(A)) . (D.8)

Consider
∑d

β=1 Uαβφ
β

k (x) = ψα
k (x), U being unitary in the d dimensional subspace, we get

orthogonal vectors again in Ek subspace. Note that the combination with the pole structure goes
over to

d∑
α=1

φαk (x)φ
α
k (y)

Ek − E
=

d∑
α=1

ψα
k (x)ψ

α
k (y)

Ek − E
. (D.9)

he other part instead

−
1

Ek − E

d∑
α=1

φαk (x)φ
α
k (a)

1∑d
γ=1 φ

γ

k (a)φ
γ

k (a)

d∑
β=1

φ
β

k (a)φ
β

k (y) =

= −
1

Ek − E
1

Tr(A)

d∑
α=1

φαk (x)Aαβφ
β

k (y) =

= −
1

Ek − E
1

Tr(A)

[
ψ1

k (x) · 0 · ψ1
k (y) + · · · + ψd−1

k (x) · 0 · ψd−1
k (y) + ψd

k (x)Tr(A)ψ
d
k (y)

]
= −

1
Ek − E

ψd
k (x)ψ

d
k (y) . (D.10)

Thus we see that there is a single cancellation, the wave function that corresponds to TrA, ψd
k (x)

terms cancel, and we end up with a d−1 dimensional subspace with a pole Ek. Degeneracy is lifted
by removing one of the properly chosen eigenstates. As one can see, the crux of the argument is
this diagonalization process, and it applies equally well in all other cases when there is degeneracy.
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