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İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by
Ege TAMCI

June 2023
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ABSTRACT

STABILITY ANALYSIS OF NONLINEAR DYNAMICAL SYSTEMS

WITH LÉVY TYPE PERTURBATIONS

In order to model the noise in power networks, generally, normal distribution is

used. However, normal distribution is not convenient in modelling noise which has sudden

peaks. Instead, combination of a continuous process and a jump processes is much more

suitable. With this idea in mind, in this thesis, the stability and control of two equations

used in modeling power grids is analyzed, under the assumption that they are exposed to

Lévy process noise which includes jumps. These equations are the swing equation and

the Kuramoto Model. The swing equation is used to model the single machine infinite

bus system (SMIBS). Kuramoto Model is used when a large number of generators are

considered as a network of coupled oscillators with their own natural frequencies.

In our stability control study in the SMIBS, the noise in the system has sudden and

finite changes is assumed and therefore should be modelled with a modified tempered

α-stable process obtained by adding a finite jump condition on the tempered α-stable

process when α < 1. The control functions depending on the mechanical power input

and damping parameters are designed in order to make the system stable in probability

and exponential stable at its equilibrium point. These theoretical results are supported by

numerical studies.

For Kuromato model, assuming that the power network consists of two layers,

namely oscillator, and control layers and that is affected with a general Lévy process

which has finite jumps, functions which provide the stability of phase and frequencies are

obtained, depending on oscillator and coupling strengths. In the light of the numerical

studies, the control of frequency and phase synchronization up to a certain noise intensity

level can be evaluated, but it is not possible beyond that level is concluded.
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ÖZET

LÉVY TİP PERTÜRBASYONLU DOĞRUSAL OLMAYAN DİNAMİK

SİSTEMLERİN KARARLILIK ANALİZİ

Güç sistemlerindeki gürültünün modellenmesinde sıklıkla normal dağılım kul-

lanılır. Halbuki normal dağılım, ani sıçramaları da içeren gürültüyü modellemek için

uygun değildir. Sistemdeki gürültünün sürekli bir süreç yanında, sıçramalı süreçler ile

modellenmesi çok daha uygundur. Bu tezde, güç sistemlerini modelleyen temel iki den-

klemin sonlu sıçramaları içeren Lévy süreçlerle etkilendiği zamandaki kararlılık anal-

izi ve kontrolünü çalışıldı. Denklemlerden ilki tek makine sonsuz bara güç sistemini

(TMSBS) modelleyen salıncak denklemi, diğeri ise çok sayıdaki jenarötörün, kritik bir

bağlantı değeri ile birbirine bağlı doğal frekanslara sahip osilatörler olarak kabul edildiği

Kuramoto Modelidir.

TMSBS’in kararlılık kontrolü için yapılan çalışmada sistemde yer alan gürültünün

ani ve sonlu değişikliğe sahip olduğu, bu nedenle α < 1 için temperlenmiş α-stabil

süreci üzerinde sonlu sıçrama şartı eklenerek elde ettiğimiz modifiye temperlenmiş α-

stabil süreçi ile modellenmesi gerektiği kabul edildi. Sistemin denge noktasının bu tip

bir gürültü altında temel kararlıklık çeşitlerinden olasılıksal kararlılık ve olasılıksal üstel

kararlığa sahip olması için mekanik güç ve sönüm parametrelerine bağlı olarak kontrol

fonksiyonları oluşturuldu. Elde edilen teorik sonuçları nümerik çalışmalar ile destek-

lendi. Kuramoto modeli için güç sisteminin osilatör ve kontrol katmanlarından oluşan

çift katlı bir yapıda olduğunu ve bu yapının sonlu sıçramalara sahip genel bir Lévy süreci

ile etkilendiği varsayımı altında bu ağın faz açılarının ve sıklığının kararlılığını sağlayan,

osilatör ve kontrol katmanlarındaki bağlantı kuvvetine bağlı fonksiyonlar elde edildi.

Nümerik çalışmalar ışığında Lévy sürecinin belirli bir gürültü şiddeti seviyesine kadar

frekans ve faz senkronizasyonunun kontrolünün yapıldığı, sonrasında ise bunun mümkün

olmadığı sonucuna varıldı.
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CHAPTER 1

INTRODUCTION

1.1. Overview

In this thesis, the stochastic stability analysis and control of two equations have

been investigated fundamental to the modeling of power grids, under the influence of Lévy

process noise. This represents an application of the modelling of nonlinear dynamical

systems subject to this type of perturbation. The thesis consists of the following chapters:

In this introduction, firstly, the mathematical theory needed for an understanding

of the relevant subjects is provided in a preliminary section, then introduce the three main

problems, together with their historical background.

In the second chapter, the analysis of the stochastic swing equation is presented,

which models the single machine infinite bus system (SMIBS) perturbed with a modified

tempered stable process, and provide a derivation of a control function for this equation.

The aim of the third chapter is to develop a control function which ensures the

stochastic stability of power grid systems, as modeled by the Kuramoto model under

Lévy-type perturbations, in asymptotic terms.

Finally, fourth chapter presents the conclusions of the thesis.

1.2. Preliminaries

This section provides the necessary definitions and theorems related to Lévy-type

stochastic differential equations and stochastic stability theory. More precisely, the sum-

mary of stochastic processes, the characteristic function of a random variable, infinite

divisibility and Lévy processes is given, mainly based on [1, 10]. The Lévy-Ito decom-

position formula are described given by Theorem 1.6 which is extremely important and

useful since it gives a unique representation to Lévy processes as the sum of continuous

and jump processes. Moreover, Poisson integration, α-stable random variables and pro-

cesses, Lévy type stochastic differential equations, infinitesimal generators, and finally

1



Ito calculus are summarized.

We start with introducing the notation used in this chapter as well as the rest of

the thesis.

1.2.1. Notations

The set of d × d real-valued matrices is denoted by Md×d(R). Rd stands for the

d-dimensional Euclidean space. The x-centered open ball with radius r in Rd is denoted

by Br(x) := {y ∈ Rd, |x − y| < r} and B̂ := B1(0), i.e., the unit disk. The space of

n-times differentiable functions from Rd to R with continuous derivatives is denoted by

Cn(Rd). The functions f −(x) and f +(x) are defined passively for the function f : Rd → R,

with f −(x) as the maximum of − f (x) and 0, and f +(x) as the maximum of f (x) and 0.

The σ-algebra, is a collection of subsets of a given set S that satisfies following three key

properties and denoted by σ(S ):

• The σ-algebra includes the entire set S .

• The σ-algebra’s closure under complementation ensures that if a subset A is in the

σ-algebra, then its complement S \ A is also in the σ-algebra.

• The σ-algebra is closed under countable unions. This means that if we have a

countable collection of subsets A1, A2, A3, . . . belonging to the σ-algebra, then their

union
⋃∞

i=1 Ai is also an element of the σ-algebra.

The Borel σ-algebra on a topological space S is defined as the smallest σ-algebra that

contains all open sets in S and it is presented by B(S ).

R≥0 is the set of non-negative real numbers. The Euclidean norm is used to refer

to the norm denoted by |.|. The inner product in d-dimensional Euclidean space is denoted

by (x, y) for two d-dimensional vectors x = [x1 x2 · · · xd]T , y = [y1 y2 · · · yd]T and defined

by the following calculation:

(x, y) =

d∑
i=1

xi · yi, i ∈ [1, 2, · · · , d].

2



1A(x) represents the indicator function of a set A on a given set S , such that

1A(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1 if x ∈ A,

0 if x � A,

In the indicator function, x belongs to set S , and A is a subset of S .

1.2.2. Stochastic Processes

A probability space (Ω,F ,P) is a mathematical construction that provides a model

of a random process, called an experiment. A probability space consists of the following

three elementsApplebaum (2009):

Ω: a sample space, that is, the set of all possible outcomes ω of a random experi-

ment. The sample space of a random experiment includes all possible outcomes

F : an event space which is a σ-algebra generated with Ω. The pair (Ω,F ) is

called a measurable space, and a set in F is called a measurable set. The elements in F
are referred to as events.

P: a probability measure, a measure that assigns each event in the event space F
a probability, which is a number between 0 and 1 with P(Ω) = 1.

• A collection of sub-algebras (Ft, t ≥ 0) of F is called a filtration if the following

condition is satisfied:

Fs ⊂ Ft, 0 ≤ s ≤ t.

• A probability space (Ω,F ,P) is called a filtered probability space if it is equipped

with Ft.

• A mapping f : S 1 → S 2 between measurable spaces (S i,Fi), i = 1, 2, is called

(F1,F2)-measurable if f −1(A) ∈ F1 for all A ∈ F2. A (F ,B(R))-measurable map-

ping between the probability space (Ω,F ) and the Borel measure space (Rd,B(Rd))

is called a random variable.

• A collection of random variables X(t) : (Ω,F ) → (Rd,B(Rd), for each t ≥ 0

defined on the same probability space (Ω,F ,P) is called a stochastic process. A

stochastic process X(t) defined on a filtered probability space (Ω,F ,P) is called

3



adapted if X(t) is measurable on Ft for each t ≥ 0.

The distribution or law of random variable X is a Borel probability measure pX on Rd, and

is defined as follows:

pX = P ◦ X−1.

The Borel probability measure pX is an important tool characterizing stochastic processes.

It is also used in integration. The expectation operator, E, is the integral of a random

variable X with respect to the probability measure P on the probability space (Ω,F ,P),
defined as follows:

E(X) =

∫
Ω

X(ω)P(dω) =

∫
Rd

xpX(dx). (1.1)

The expectation E(X) defines the mean (m) of the random variable X if it is finite. E(Xn)

is called the nth moment of the random variable X and is generally represented by αn.

Another way to calculate the integral is via the density function fX which is the Rodon-

Nikodym derivative of the probability measure pX with respect to the Lebesgue measure

dx on Rd, as defined by the following theorem:

Theorem 1.1 (Radon Nikodym)Applebaum (2009) If a σ-finite measure μ and a finite

measure ν are defined on arbitrary measure space (S ,F ), and they satisfy the following

condition

μ(A) = 0⇒ ν(A) = 0, f or all A ∈ F (1.2)

then there is a measurable function g, unique in the almost everywhere sense, that satisfies

the following integral representation:

ν(A) =

∫
A

g(x)μ(dx) (1.3)

Here, the measurable function g is called the Radon–Nikodym derivative of νwith respect

to μ and denoted as g = dν/dμ. Thus, to compute the moment in (1.1), the Radon-

Nikodym derivative of the probability measure pX with respect to the Lebesgue measure

dx can be used as follows:

αn = E(Xn) =
∫
Rd xn fX(x)dx.
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E((X−m)n) is called the nth central moment and denoted by μn. In particular, the variance

is the 2nd central moment of a random variable, and is denoted by σ2. The standard

deviation is the square root of the variance of a random variable X. Moreover, when two

random variables X1, X2 are independent, their joint probability P(X1 = A, X2 = B) =

P(X1 = A)P(X2 = B), for all A, B ∈ Rd.

The following Lemma 1.1 will be used in the definition of infinitely divisible

processes, to be given in the following section.

Lemma 1.1 Applebaum (2009) Let X1, . . . , Xn be a sequence of independent random

variables on (Ω,F ,P). Then the following equality is satisfied:

E(X1X2 · · · Xn) = E(X1)E(X2) · · ·E(Xn), i ∈ [1, 2, · · · , n].

1.2.3. Conditional Expectation

Let (Ω,F ,P) be a probability space and the conditional expectation of a random

variable X given an event A ∈ F , be defined as Grigoriu (2002):

E[X|A] =

∫
X(ω)PA(dω) (1.4)

If P(A) > 0 then the conditional probability measure is defined as follows:

PA(·) = P(A ∩ (·))
P(A)

(1.5)

The conditional expectation of a random variable can be considered as the average value

of X over the set A. Furthermore, the conditional expectation of a random variable on a

σ-algebra is a random variable defined such that; Let {An} be a countable collection of

measurable sets An that partition Ω such that
∑

n An = Ω, An ∩ A
′
n = 0 for n � n

′
, and

An ∈ F . Let G be the sub σ-field of F , generated by {An}. The conditional expectation of

a random variable X on G, denoted as E[X|G] : Ω → R, is evaluated when P(An) > 0 as

follows:
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E[X|G] =
∑

n

E[X|An]1An(ω). (1.6)

Processes can also be defined using their characteristic functions. In the preliminary sec-

tion, one important transformation is made where the linearly time-varying state structure

for the process (bt, At, tν) is achieved. One of the issues that must be explained in the pre-

liminary section is how the Lévy-Ito decomposition can be obtained, demonstrating that

processes can be decomposed into continuous and discontinuous processes using their

characteristic functions.

1.2.4. Characteristic Function

Here briefly describe the characteristic function and the related Kac’s Theorem

are described.

Definition 1.1 Applebaum (2009); Soong (1973) Let X be a random variable defined on

(Ω,F ,P) and its range takes the values in Rd. The Fourier transform of the probability

law/probability measure pX is called the characteristic function of X, and is defined by

φX(u) = E(ei(u,X)) =

∫
Ω

ei(u,X(ω)
P(dω) =

∫
Rd

ei(u,y)) pX(dy),

for each u ∈ Rd.

If X = (X1, · · · , Xd) and E(|Xn
j |) is finite, the nth moments of components of the

random variable can be generated via its characteristic function as follows:

E(Xn
j ) = (−i)n ∂

n

∂un
j
φX(u)|u=0, 1 ≤ j ≤ d.

Theorem 1.2 (Kac’s Theorem) Applebaum (2009) The random variables X1, . . . , Xn are

independent if and only if the following equality is satisfied for all u1, . . . , un ∈ Rd:

E

⎛⎜⎜⎜⎜⎜⎜⎝exp

⎡⎢⎢⎢⎢⎢⎢⎣i
n∑

j=1

(
uj, Xj

)⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ = φX1

(u1) · · · φXn (un) .
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If the Xi are independent then the eiXi are independent for each i ∈ N, so Kac’s theorem is

a natural consequence of Lemma 1.1.

1.2.5. Infinite Divisibility

Infinite divisibility means having a nth root, in the convolutional sense of a prob-

ability measure for each n ∈ N. Here some related definitions and tools are given.

Definition 1.2 [Convolution of Measures]Applebaum (2009) The convolution of two prob-

ability measures μ1, μ2 ∈ M(Rd) is defined by the following integral:

(μ1 ∗ μ2)(A) =

∫ ∫
Rd×Rd

1A(x + y)μ1(dy)μ2(dx). (1.7)

Proposition 1.1 Applebaum (2009)By Fubini’s Theorem, this definition 1.2 is equivalent

to the following equality:

(μ1 ∗ μ2)(A) =

∫
Rd
μ1(A − x)μ2(dx) =

∫
Rd
μ2(A − x)μ1(dx).

Proof By fixing x in the first integral, the following is obtained:

∫
Rd

1A(x + y)μ1(dy) =

∫
Rd

1A−x(y)μ1(dy) = μ(A − x). (1.8)

�

Proposition 1.2 Applebaum (2009) Let μ1, μ2 ∈ M(Rd) and f ∈ Bb(Rd). Then the fol-

lowing equality is satisfied:

∫
Rd

f (y)(μ1 ∗ μ2)(dy) =

∫
Rd

∫
Rd

f (x + y)μ1(dy)μ2(dy).

Corollary 1.1 For two random variables X1 and X2 defined on (Ω,F ,P), the following

equality is satisfied:

E( f (X1 + X2)) =

∫
Rd

f (y)(μ1 ∗ μ2)(dy),

for each f ∈ Bb(Rd).
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Definition 1.3 Applebaum (2009) A probability measure is called a convolution of the

nth root of μ ∈ M if μ is represented as follows:

μ = μ1/n ∗ μ1/n · · · ∗ μ1/n,

where μ1/n ∈ M is the nth root in the convolution sense.

Definition 1.4 (Infinite divisibility) Applebaum (2009) A random variable X is called

infinitely divisible if its distribution has the following representation for any given n ∈ N,

with i.i.d. random variables Y1, ...,Yn:

X d
= Y1 + ... + Yn, , n ≥ 2. (1.9)

With the help of this definition, it can be seen that the characteristic function of the random

variable X provides the following equation:

E(ei(u,X)) = E(ei(u,Y1+...+Yn)) = E(ei(u,Y1))n.

Since each E(ei(u,Y1)) defines a characteristic function, the characteristic function of X is

called infinitely divisible. According to the following proposition, if a probability mea-

sure is infinitesimal divisible, then any nth root of its characteristic function is also a

characteristic function.

Proposition 1.3 Applebaum (2009) The probability law μ ∈ M
(
R

d
)

is infinitely divisible

if and only if, for each n ∈ N there exists μ1/n ∈ M
(
R

d
)

for which

φμ(u) =
[
φμ1/n(u)

]n
, φμ(u) =

∫
Rd

ei(u,x)μ(dx),

for each u ∈ Rd.

In the light of the information given above, the following proposition is reached.

Proposition 1.4 Applebaum (2009) For a given random variable X with probability mea-

sure μX, the following expressions are equivalent:
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1) X is an infinitely divisible random variable, such that X d
= Y1 + ...+Yn, n ≥ 2, i.i.d.

random variables Y1, ...,Yn.

2) The probability measure of X is infinitely divisible, such that μ = μ1/n∗μ1/n · · ·∗μ1/n,

where μ1/n ∈ M is the convolution of the nth root.

3) The characteristic function of X is infinitely divisible, such that E(ei(u,Y1)) = E(ei(u,X))1/n,

where E(ei(u,X))1/n is a characteristic function.

Proof

• (1) → (2): If X d
= Y1 + ... + Yn, t ≥ 0, n ≥ 2 then the probability measure of X(t)

can be evaluated as μX = μY1
∗ μYn

2
∗ · · · ∗ μYn . Therefore, the desired nth root μ1/n

can be taken as the common probability measure μYi of Yi.

• (2) → (3): If the f (x) = exp(iux) for each u ∈ Rd in Proposition1.2 are taken, this

can be evaluated as

φX =

∫
· · ·

∫
ei(u,y1+...+yn)μ1/n

X (dy1) · · · μ1/n
X (dyn) = ΨY(u)n,

where ΨY(u) =
∫
Rd eiu, y(μX)1/n(dy). This implies that the nth root of φX defines a

characteristic function, ΨY(u).

• (3)→ (1): If φX is infinitely divisible, then it can be represented as follows:

E(ei(u,X)) = E(ei(u,Y1))n.

For independent copies of Y1, Y2, · · · Yn, by Theorem 1.2 the following equality

holds:

E(ei(u,Y1))n = E(ei(u,Y1+...+Yn)).

Equivalently

E(ei(u,X)) = E(ei(u,Y1+...+Yn)). (1.10)

Using (1.10), the definition of infinite divisibility of a random variable are obtained,

as follows:

X d
= Y1 + ... + Yn, n ≥ 2.

�
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An n-dimensional vector which consists of random variables is called an n-dimensional

random vector. The following are some examples of infinitely divisible random variables

important for our thesis:

Definition 1.5 (Gaussian Random Vector) Grigoriu (2002) A random vector X ∈ Rd is

called a Gaussian / normal random vector if its probability density function f (x) can be

written in the following general form:

fX(x) =
1

(2π)d/2
√

det(A)
exp

[
−1

2

(
x − m, A−1(x − m)

)]
,

where the mean m ∈ Rd is an n-dimensional vector, and the covariance matrix A =

E

(
(X − m)(X − m)T

)
is strictly positive definite symmetric d × d for all x ∈ Rd.

The characteristic function of a Gaussian random vector can be represented as

φX(u) = exp

[
i(m, u) − 1

2
(u, Au)

]
, u ∈ Rd. (1.11)

The random vector X is infinitely divisible with Yj ∼ N(m/n, (1/n)A) for each 1 ≤ j ≤ n,

as can be seen from the equation above. Here, N(m, A) represents a normal distribution

of X, that is, a distribution whose density function is fX.

The nth root of (1.11),

[
φX(u)

]1/n
= exp

[
i
(m

n
, u

)
− 1

2

(
u,

1

n
Au

)]
,

has a similar distribution. That is, taking the nth root of a characteristic function also

gives a characteristic function Yj. If m =
→
0 and A = I, then X is called a standard normal

distribution, and X d
= N

(
0, σ2I

)
are shown for some σ > 0. Another definition of standard

normal distribution is constructed via the central limit theorem.

Theorem 1.3 (Central Limit Theorem) Grigoriu (2002) Let Xis be a i.i.d sequence with

mean m and variance σ2, the sum of the Xis define the random variable X, i.e. X =∑n
i=1 Xi. If the normalized random variable Y is defined as

Y = (X − nm)/σn1/2,
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then the distribution of the random variable Y converges to the standard normal distribu-

tion as n→ ∞.

Definition 1.6 (Poisson Random Variable) Applebaum (2009) A nonnegative integer val-

ued random variable X is called a Poisson random variable if there exists λ > 0 such that

P(X = n) =
λn

n!
e−λ.

The distribution of the Poisson random variable X is denoted by π(λ), with the parameter

λ representing the average or expected frequency of occurrences. i.e. X ∼ π(λ). Also

E(X) = Var(X) = λ, and the characteristic function of the Poisson random variable is

given as follows:

φX(u) = exp
[
λ
(
eiu − 1

)]
. (1.12)

As can be seen from the equation above, this is infinitely divisible, with Yj ∼
π(λ/n), where 1 ≤ j ≤ n, n ∈ N.

Definition 1.7 (Compound Poisson Random Variable) Applebaum (2009) X is called

a compound Poisson random variable if it can be represented as

X =
N∑

n=0

Dn,

where {Dn}n∈N is a sequence of i.i.d. random variables taking values in Rd, with the

probability measure μDn, and N ∼ π(λ) is a Poisson random variable that is independent

of the Dn. Distribution of the compound process X is presented as X ∼ π(λ, μD).

Proposition 1.5 Applebaum (2009) The characteristic function of the compound Poisson

random variable X given in 1.12 for each u ∈ Rd is represented as follows:

φX(u) = exp

[∫
Rd

(
ei(u,y) − 1

)
λμD(dy)

]
.

Proof Let φX be the characteristic function of X. Dn and N are independent random
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variables, so

φX(u) =

∞∑
n=0

E(exp[i(u,D(1) + · · · + D(N))] | N = n)P(N = n)

=

∞∑
n=0

E(exp[i(u,D(1) + · · · + D(n))])e−λ
λn

n!

= e−λ
∞∑

n=0

[
λφD(u)

]n

n!

= exp
[
λ (φD(u) − 1)

]

where φD(u) =
∫
Rd ei(u,y)μD(dy). �

This proposition implies that the characteristic function of the compound Poisson

random variable is infinitely divisible. This can be shown by considering the random vari-

ables as Yj
d
= π(λ/n, μD), where 1 ≤ j ≤ n and n ∈ N. Consequently, we can represent the

compound process as X = Y1,Y2, ...,Yn.

Lévy-Khintchine theorem is essential to this thesis. It gives information about the condi-

tions for a probability measure to be infinitely divisible.

Theorem 1.4 (Lévy-Khintchine formula) Applebaum (2009) If a measure μ ∈ M(Rd)

has a Fourier transform with the following integral representation

φμ(u) = exp

{
i(b, u) − 1

2
(u, Au) +

∫
Rd−{0}

(ei(u,y) − 1 − i(u, y)1B̂(y))ν(dy)

}
, (1.13)

then it is infinitely divisible.

Formula (1.13) is called the Lévy-Khintchine formula. In this, b ∈ Rd is a con-

stant vector, A is a positive definite symmetric matrix and ν is a measure satisfying the

following condition:

∫
Rd−{0}

(1 ∧ ‖y‖2)ν(dy) < ∞. (1.14)

A measure ν satisfying condition (1.14) is called the Lévy measure. Also, (b, A, ν) is

called a Lévy triplet.

We will now give some important infinitely divisible processes. In the following

sections, a combination of these processes gives the general form of the Lévy process,

with the help of the Lévy-Khintchine theorem, will be shown.
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Definition 1.8 (Brownian Motion) An adapted process is called a standard Brownian

motion, denoted B(t), if it has the following properties:

1) B(t) d
= N(0, tI) for each t ≥ 0,

2) Bt − Bs is independent of Fs, with stationary increments B(t) − B(s)
d
= B(t − s), for

0 ≤ s < t < ∞,

3) B(t) has almost surely everywhere continuous sample paths or continuous trajecto-

ries.

Here N(0, tI) is a normal distribution. A Gaussian processes C(t), with distribution

N(tb, tA) in Rd, can be constructed from Brownian motion in Rd as follows:

C(t) = bt + σB(t),

where A is the d × d positive definite symmetric matrix, σ × σT = A, and σ and b are

d-dimensional vectors.

Definition 1.9 (Martingale) Applebaum (2009) An adapted, right continuous with left

limits (cadlag) process X(t) defined on a filtered probability space (Ω,F ,P) is called a

martingale if it satisfies the following conditions:

1) E(|X(t)|) < ∞, 0 ≤ t < ∞,

2) E(X(t)|Fs) = X(s), a.s. 0 ≤ s ≤ t.

Definition 1.10 (Poisson Process) Applebaum (2009) A counting process {N(t), t ∈ [0,∞)}
is called a Poisson process with rate λ, if the following conditions hold:

1) N(0) = 0,

2) N(t) has independent increments,

3) the count in any interval of length t > 0 has the following distribution:

P(N(t) = n) =
(λt)n

n!
e−λt, E(N(1)) = λ.

The compensated Poisson process Ñ(t) is a martingale obtained over the Poisson process,

and is defined as follows:

Ñ(t) = N(t) − λt.
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Here λ can be considered as the probability of making a jump at the moment, as can be

seen from the following equation:

lim
Δt→0

P(N(Δt) = 1)

Δt
=

(λΔt)
Δt
= λ, λΔte−λΔt � λΔt

Definition 1.11 (Compound Poisson Process) Grigoriu (2002) A process C(t) is called

a compound Poisson process if it is defined as follows:

C(t) =
N(t)∑
n=1

Yn, t > 0, (1.15)

where N(t) is a Poisson process with intensity λ and Yn is a i.i.d. sequence of random

variables with common probability law μY.

1.2.6. Lévy Processes

An adapted, cadlag stochastic process defined on a filtered probability space (Ω, {Ft},P)
is called a Lévy process if the following conditions are satisfied Applebaum (2009):

1) X(0) = 0 a.s.,

2) Random variables of the sequence {X(ti+1) − X(ti)}, 0 ≤ t1 < t2, ..., tn < ∞, n ∈ N
are independent,

3) The distribution of X(t) satisfies X(t+ s)−X(s)
d
= X(t) (this property is called having

stationary increments),

4) X(t) satisfies the following property such that for each pair ε > 0 and s ≥ 0

lim
t→s
P( ω | ‖X(t)(ω) − X(s)(ω)‖ > ε) = 0 (1.16)

this property is called stochastic continuity.

Definition 1.12 (Poisson Random Measure) Applebaum (2009) Let A ∈ B(S ) for S ∈
R

d − {0} and U = R+ × S . If an integer-valued stochastic process N(t, A) satisfies the
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following conditions, it is called a Poisson random measure on U:

1) N(t, A) is a Poisson process distributed with intensity measure defined as λ(A) =

E(N(1, A)) for each A ∈ B(S ),

2) N(t, A1), ...,N(t, An) are independent for mutually disjoint sets A1, ..., An ∈ B(Rd −
{0}).

The jump behavior of Lévy processes X(t) is modeled with a related Poisson random

measure. The following Poisson random measure N(t, A) gives the number of jumps of

Lévy process X(t), whose jumps are located in each A ∈ Rd − {0} and t ≥ 0:

N(t, A)(ω) = �(0 < s < t, X(s) − X(s−) ∈ A) =
∑

0≤s≤t

1A(ΔX(s)),

where the jump process related to the Lévy process is given by

ΔX(t) = X(t) − X(t−).

A Borel measure, ν(.) which is defined via random measure as ν(.) = EN(1, .), defines

the distribution of the jumps of Lévy process X(t), and is also the intensity measure of

the Poisson random measure N(t, A). The compensated Poisson process obtained over

the Poisson process, which models the small jumps in Lévy processes, is a martingale

whenever ν(A) < ∞, and is defined as:

Ñ(t, A) = N(t, A) − ν(A)t. (1.17)

Below, the general definition of the Poisson integral is given. This will be useful in the

calculation of the total distance jumped by the Lévy process.

1.2.7. Poisson Integration

Let A be bounded below, N(t, A) be a Poisson random measure connected to a

Lévy process X = (X(t)) and f be a Borel measurable function fromRd toRd. The Poisson

integral of f can be defined as a random finite sum for t > 0 as follows Applebaum (2009):
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∫
A

f (x)N(t, dx) =
∑

0≤s≤t

f (ΔX(s))1(ΔX(u)∈A),

where 0 ≤ s ≤ t.

Here, x defines the length of the jump and N(t, dx) gives the number of jumps

falling inside the interval [x, x + dx] up to time t. In particular, if f (x) = x is defined, the

distance X(t) is found takes up to time t.

Theorem 1.5 Applebaum (2009) The characteristic function of the Poisson integral
∫

A
f (x)N(t, dx)

has the following form for each u ∈ Rd:

E

(
exp

[
i
(
u,

∫
A

f (x)N(t, dx)

)])
= exp

[
t
∫
Rd

(
ei(u,x) − 1

)
ν f ,A(dx)

]
,

where ν f ,A(B) = ν
(
A ∩ f −1(B)

)
and f ∈ L1(A, ν(A)) , for each B ∈ B

(
R

d
)
.

As this is an important theorem in our studies, its proof is provided below.

Proof Let f be a simple function defined by f =
∑n

j=1 c jχA j , for each c j ∈ Rd and

disjoint Borel subsets Aj ∈ A; then:

E

(
exp

[
i
(
u,

∫
A

f (x)N(t, dx)

)])
= E

⎛⎜⎜⎜⎜⎜⎜⎝exp

⎡⎢⎢⎢⎢⎢⎢⎣i
⎛⎜⎜⎜⎜⎜⎜⎝u,

n∑
j=1

c jN
(
t, Aj

)⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ ,

which, by Theorem 1.2,

=

n∏
j=1

E

(
exp

[
i
(
u, c jN

(
t, Aj

))])
,

and by considering the characteristics of the compound random variable and E(N(t, Aj)) =

tν(Aj)

=

n∏
j=1

exp
{
t
[
exp

(
i
(
u, c j

))
− 1

]
ν
(
Aj

)}

= exp

[
t
∫

A
{exp[i(u, f (x))] − 1}ν(dx)

]
.

For each given f ∈ L1(A, ν(A)), a series of simple functions that converge to f in L1 may

be constructed, using the dominated convergence theorem.

�
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Definition 1.13 (Characteristic Function of Lévy Process) Applebaum (2009) The char-

acteristic function of the Lévy process is given as follows:

φX(t)(u) = exp t
{

i(b, u) − 1

2
(u, Au) +

∫
Rd−{0}

(ei(u,y) − 1 − i(u, y)1B̂(y))ν(dy)

}
.

Here, vector b ∈ Rd describes the deterministic part of the motion, called the drift, and A

is a positive definite d × d matrix.

When A � 0 and ν = 0, this is equivalent to a Gaussian process with mean vector bt

and covariance matrix At. The Lévy measure ν, which characterizes the behaviour of

the discontinuous part in Lévy processes, gives their average number of jumps. A Lévy

process is determined by its "Lévy-Khintchine triplet" (a, A, ν). From the characteristic

function of the Lévy process above, it can easily be seen that this expression represents

the characteristic function of the sum of the independent drift vector bt, Gaussian process

BA, compensated Poisson integral
∫

0<‖x‖<1
xÑ(t, dx) and Poisson integral

∫
‖x‖>1

xN(t, dx),

obtained from definition1.5 and Theorem 1.5.

The existence of the Lévy-Ito Decomposition, described below, is clearly appar-

ent, given the previous definition.

Theorem 1.6 (Lévy-Ito Decomposition) Sato (2000) Let X(t) be a Lévy Process. Then

X(t) has the following representation for each t ≥ 0:

X(t) = bt + BA(t) +
∫

0<‖x‖<1

xÑ(t, dx) +

∫
‖x‖>1

xN(t, dx), (1.18)

where b ∈ Rd, BA is a Brownian motion with covariance matrix A, and N is an indepen-

dent Poisson random measure on R+ × (Rd − {0}).

Theorem 1.6 allows us to present the Lévy process as the sum of continuous and discon-

tinuous parts; the discontinuous part consists of a mixture of small and large jumps.

1.2.8. α-Stable Random Variables and Processes

In order to understand α-stable processes, it is necessary to begin with the diffu-

sion equation; the idea of the α-stable process evolved from this. First, transition prob-
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ability related to the diffusion equation is defined, then shows that the solution of the

diffusion equation has the structure of a transient density function.

Definition 1.14 (Transition probabilities) Gawarecki and Mandrekar (2011)Let X(t) be

a stochastic process; its transition probability density functions are defined as the proba-

bility function X(t + s), with that X(t) = y for given time variables t, s ∈ R≥0.

If the process is Brownian motion, the density function of the increment of the process,

denoted G, is defined as follows:

G(x, y, s) =
1√
2πs

e(x−y)2/2s (1.19)

Here, G represents the Green’s function, and the increment process X(t + s) − X(t) is a

Gaussian with variance s and mean y. The function G can also be defined as the solution

of the diffusion process with initial value φ(x) denoted by p, as follows Samoradnitsky

and Taqqu (1994); Baeumer (2010):

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ∂t p = ∂2
x p, if t > 0

p(0, x) = φ(x)

The diffusion equation ∂t p = ∂2
x p defines the transition densities of a Brownian motion

B(t); its solutions spread at the rate t1/2 in time. The solution of the space fractional

equation ∂t p = ∂αx p for 0 < α < 2 is called the density function of totally skewed α-stable

Lévy motion S (t). The evolution of process S (t) in time is given by S (ct) = c1/αS (t)

for any time scale c. Another definition of totally skewed α-stable Lévy motion S (t)

is given by the general central limit theorem, as follows: the scaling limit of a random

walk with power-law jumps (Lévy Flight), c1/α(X1 + · · · + X[ct]) → S (t) in distribution

as time scale (c → ∞). The distribution of independent jumps Xi satisfies P(X > r) ≈
r−α. Therefore, moments of S (t) larger than α do not exist. In order to overcome this,

Mantegna and Stanley proposed a modification of α-stable Lévy motion, truncated Lévy

flights. Tempered Lévy motion takes a different approach, however, applying exponential

tempering to the probability of large jumps Mantegna and Stanley (1994, 1995). This

modification to the α stable process guarantees the existence of all moments, unlike α-

stable processes which lack moments larger than α.
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Definition 1.15 (Stable Random Variable) Samoradnitsky and Taqqu (1994) A random

variable X is called a stable random variable in Rd if for any given positive numbers

A, B, there exists a positive number C and a real number D that satisfy the following

distribution.

AX1 + BX2 = CX + D,

where X1, X2 are independent copies of i.i.d. random variable X.

Another expression of a stable random variable is given with its characteristics, as follows.

E(ei(u,X(t))) = exp

(
t
{

i(b, u) − 1

2
(u, Au) +

∫
R−{0}

(ei(u,x) − 1 − i(u, x)1‖x‖<1)ν(dx)

})
.

Here, the vector b ∈ Rd determines the deterministic part of the motion, called the drift,

and A is a positive definite d × d matrix. When A � 0 and ν = 0, the process is equivalent

to a Gaussian process with mean vector bt and covariance matrix At. The Lévy measure

ν, which characterizes the behaviour of the discontinuous part in Lévy processes, gives

the average number of jumps of the process; a Lévy process is determined by its "Lévy-

Khintchine triplet" (a, A, ν).

Definition 1.16 (Stable Random Variable) (equivalent to definition (1.15)Samoradnitsky

and Taqqu (1994) A random variable X is called stable if its distribution has the following

representation:

E(exp(iθX)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ −σ
α|θ|α(1 − iβsign(θ) tan(πα

2
)) + iμθ) if α � 1,

−σ|θ|(1 + iβ 2
π
sign(θ) ln |θ|) + iμθ) if α = 1.

Here, the index of the distribution, 0 < α ≤ 2, specifies its asymptotic behavior. The scale

parameter σ ≥ 0, the skewness parameter, −1 ≤ β ≤ 1, is a measure of its asymmetry,

and μ ∈ R is the shift parameter. Together these fully characterize the random variable.

The distribution of a stable random variable is denoted S α(σ, β, μ). When α = 2, the

stable random variable defines a Gaussian random variable with mean μ and variance

σ2, denoted by S 2(σ, 0, μ). The Cauchy distribution is denoted S 1(σ, 0, μ), and the Lévy

distribution S 1/2(σ, 1, μ).

Definition 1.17 (Stable Random Vector) Samoradnitsky and Taqqu (1994) A random

vector X = (X1, X2, · · · Xd) is called a stable random vector in Rd if, for any positive num-
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bers A, B, there exist a positive number C and a real vector D ∈ Rd satisfy the following

distribution:

AX1 + BX2 = CX + D,

where X1, X2 are independent copies of i.i.d. random vector X.

Definition 1.18 (Stable Process) Samoradnitsky and Taqqu (1994) A process X(t)(ω) de-

fined on (Ω,F ,P) is called stable if it follows finite dimensional distributions whose ran-

dom vectors

Ad(ω) = [X(t1)(ω) X(t2)(ω) ... X(td)(ω)]T , t1, t2, ..., td ∈ T, d ≥ 1,

are stable where Ad(ω) ∈ Rd.

An α-stable process is a real-valued Lévy process. Therefore, its characteristic function

is expressed in terms of the Lévy exponent, η, as follows:

φX(u) = E(ei(u,X)) = etη

where

η =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−σα|θ|α(1 − iβsign(θ) tan(πα

2
)) + iμθ) if α � 1,

−σ|θ|(1 + iβ 2
π
sign(θ) ln |θ|) + iμθ) if α = 1.

Thus, the time-dependent variation of the parameters of the stable process is as follows:

X(t) ∼ S α(σt, β, μt).

The stable process is called α-stable Lévy motion if parameter μ equals to zero.

Definition 1.19 (Tempered Stable Processes ) Mantegna and Stanley (1994, 1995) A pro-

cess is called a tempered stable process if its characteristic function with Lévy measure ν
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is defined as follows:

ϕ(z) = exp

(
i(b, z) +

∫
Rd−{0}

(
eizx − 1

)
ν(dx)

)
, z ∈ Rd

where

ν(dx) =

(
r+

x1+α+
e−λ

+x1(0,∞)(x) +
r−

|x|1+α− e−λ
−|x|1(−∞,0)(x)

)
dx.

Here, the parameters are r+, λ+, r−, λ− ∈ (0,∞); α+, α− ∈ (0, 2) and r+, r− are called

tempering parameters. The process’s Lévy-Ito decomposition is given as follows:

L(t) = bt +
∫
‖x‖≥0

xN(t, dx). (1.20)

In the literature, the following specific cases are given:

• If the parameters r− = r+ and α− = α+, the distribution is called a CGMY-distribution

(here CGMY stands for the names Carr, Geman, Madan and Yor who worked on

that type of process), or a classical tempered stable distribution.

• If r− = 0 in CGMY-distribution, then it is called a totally positively skewed tem-

pered α-stable distribution.

1.2.9. Lévy Type Stochastic Differential Equations

In order to expound the theory of stochastic analysis, some basic tools related

to this subject are necessary. Calculation of Lévy type integrals is done over mappings,

measurable with respect to sigma algebras formed by left-continuous mappings. This

type of mappings is called predictable Applebaum (2009); Siakalli (2009). Furthermore,

two spaces consisting of predictable mappings are needed to be defined under certain

conditions. One of them is denoted P2(T, E) for E ∈ B(Rd − {0}) and 0 < s < T . In the

space P2(T, E), functions are defined as H : [0,T ] × E × Ω → Rd. The other is P2(T ),

where the functions are defined as F : [0,T ] × Ω → Rd. The conditions required for

mappings to belong to these classes are given below.

Let predictable mappings Y2 ∈ P2(T, E) and Y1 ∈ P2(T ) satisfy the following

conditions by definition:
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i) P
[∫ T

0

∫
E
|Y2(s, x)|2ν(dx)ds < ∞

]
= 1,

ii) P
[∫ T

0
|Y1(s)|2ds < ∞

]
= 1

A d-dimensional Lévy type stochastic differential equation is defined as follows:

dX(t) = f (X(t))dt + g(X(t))dB(t) +
∫
‖y‖<c

H(X(t), y)Ñ(dt, dy)

+

∫
‖y‖>c

K(X(t), y)N(dt, dy), (1.21)

where f , g ∈ P2(T ) and H,K ∈ P2(T, E) which are called the drift and diffusion coef-

ficients, respectively. Next, the necessary conditions will be seen for the existence and

uniqueness of the solution of SDE (1.21).

1.2.9.1. Existence and Uniqueness Conditions

If the coefficient functions in equation (1.21) satisfy the following inequalities,

which are called Lipschitz conditions, then the solution of the equation is unique Apple-

baum (2009).

1) Lipschitz Conditions: there exists a positive constant L, in relationship to the coef-

ficient functions in equation (1.21), such that for all x1, x2 ∈ Rd,

‖ f (x1) − f (x2)‖ ≤ L‖x1 − x2‖, ‖g(x1) − g(x2)‖ ≤ L‖x1 − x2‖∫
‖y‖<c
‖H(x1, y) − H(x2, y)‖ν(dy) ≤ L‖x1 − x2‖.

If the coefficient functions in equation (1.21) satisfy the following inequalities, which are

called growth conditions, then the solution of the equation exists.

2) Growth Conditions: For all x, there exists a positive constant K such that

‖ f (x)‖2 ≤ K(1 + ‖x‖2), ‖g(x)‖2 ≤ K(1 + ‖x‖2),

∫
‖y‖<c
‖H(x, y)‖2ν(dy) ≤ K(1 + ‖x‖2).
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3) Big Jumps Condition: K(x, y) ∈ C(Dc), where Dc = {(x, y)|x, y ∈ Rd, ‖y‖ ≥ c}.

Theorem 1.7 Applebaum (2009) If coefficient functions in the stochastic equation (1.21)

satisfy conditions (C1-C3), then the equation (1.21) has a unique, cadlag, adapted process

solution.

In the following section, definitions and theorems are given related to the stability anal-

ysis of stochastic differential equations in the form (1.21). Stochastic processes have no

derivatives in the classic sense, so classical Lyapunov theory cannot be applied for the sta-

bility analysis of stochastic differential equations. Therefore, stability analysis for SDEs

uses the infinitesimal operator, which exists for the semi-martingale class, instead of the

classical derivative operator. Since the Lévy process is also a semi-martingale, the in-

finitesimal operator in the stability analysis of equation (1.21) is used. Now, definitions

related to the infinitesimal operator are provided.

1.2.10. Ito Calculus

The Ito formula is a form of the change of variable formula belonging to classical

calculus, extended to stochastic integrals with semi-martingale integrators and adapted,

caglad integrands. The application of the Ito formula requires a semi-martingale process

involving Lévy processes (see Applebaum (2009) for further information related to semi-

martingale processes). Therefore, the system must be transformed into a semi-martingale

by integration of the SDE (1.21), as follows Applebaum (2009); Siakalli (2009):

X(t) = X0 +

∫ t

t0
f (X(t))dt +

∫ t

t0
g(X(t))dB(t) +

∫ t

t0

∫
‖y‖<c

H(X(t), y)Ñ(dt, dy)

+

∫ t

t0

∫
‖y‖>c

K(X(t), y)N(dt, dy) (1.22)

on t0 ≤ t ≤ T , with initial value X (t0) = X0, X0 ∈ Rd and c ∈ R+.
Before defining the Ito formula, note that the following condition on the jump

function H must hold:

sup
0≤s≤t

sup
0<‖y‖<c

|H(s, y)| < ∞ a.s., t ≥ 0. (1.23)
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Theorem 1.8 (Ito’s Formula) Applebaum (2009); Siakalli (2009) Let f ∈ C2(Rd) and X

be the solution of the Lévy type stochastic integral (1.22). Then the following equality is

satisfied with probability 1:

V(X(t)) − V(X(0)) =

∫ t

0

∂iV(X(s−))
[
f i(X(−s))ds + gi j(X(−s))dBj(s)

]
+

1

2

∫ t

0

∂i∂ jV(X(s−))d
[
g(X(−s))g(X(−s))T

]ik
ds

+

∫ t

0

∫
‖y‖≥c

[V(X(s−) + K(s, y)) − V(X(s−))]N(ds, dy)

+

∫ t

0

∫
‖y‖<c

[V(X(s−) + H(s, y)) − V(X(s−))]Ñ(ds, dy)

+

∫ t

0

∫
‖y‖<c

[V(X(s−) + H(s, y)) − V(X(s−))

− Hi(s, y)∂iV(X(s−))]ν(dy)ds,

where V ∈ C(Rd), X ∈ Rd and c ∈ R+.

1.2.11. Infinitesimal Generators

Definition 1.20 (C0-Semigroup) Gawarecki and Mandrekar (2011) A family (T (t))t>0

of bounded linear operators on a Banach space V is called a strongly continuous C0-

semigroup, if the following conditions are satisfied:

1) T(0)=I,

2) T (s + u) = T (u)T (s), for every s, u > 0; this equality is called the semigroup

property,

3) limt→0+ T (t)x = x in norm for every x ∈ V; this equality is called the strong conti-

nuity property.

Definition 1.21 (Infinitesimal Operator) Gawarecki and Mandrekar (2011) Let X be a

Banach space, T (t) be a semigroup on it and A be a linear operator. Then

Ax = lim
t→0+

T (t)x − x
t

(in norm)
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is called the infinitesimal generator of the semigroup T (t), when the domain of A is given

by:

D(A) =

{
x ∈ X : lim

t→0+

T (t)x − x
t

exists
}
.

.

1.2.12. Stability Types for Stochastic Differential Equations

An equilibrium point or steady state X = Xc, Xc ∈ Rd of the SDE given by (1.21)

is defined as a point which has the property f (Xc) = 0, g(Xc) = 0, H(Xc, y) =
→
0 for all

‖y‖ ≤ c, and K(Xc, y) =
→
0 for all ‖y‖ ≥ c. When Xc = 0, X(t) = 0 is obtained, it is defined

as the trivial solution, and this corresponds to the initial value X(t0) = 0.

In stability analysis of Lévy-type stochastic processes, the infinitesimal operator

is used due to the lack of classical derivatives. Lévy processes belong to the class of Feller

processes. The infinitesimal operator for Feller semigroups is defined as follows Siakalli

(2009):

(LV)(X) = f i(X)(∂iV)(X) +
1

2
[g(X)g(X)T ]ik(∂i∂ jV)(X)

+

∫
‖y‖<c

[V(X + H(X, y)) − V(x) − Hi(X, y)(∂iV)(x)]ν(dy)

+

∫
‖y‖≥c

[V(X + K(X, y)) − V(x)]ν(dy), (1.24)

where V ∈ C2(Rd), X ∈ Rd and c ∈ R+.
For more details on Feller processes, see Applebaum (2009); Siakalli (2009). Just

two types of stability are used, namely stable in probability and pth moment exponentially

stable, defined below.

Definition 1.22 (Stable in Probability) Siakalli (2009) The trivial solution of the solu-

tion of (1.21) is called stable in probability, if there exists δ = δ(ε, r, t0) such that for any

pair ε ∈ (0, 1) and r > 0,

P( ‖X(t)‖ < r for all t ≥ t0) ≥ 1 − ε

holds, whenever the initial solution ‖X(t0)‖ < δ.
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Definition 1.23 (pth Moment Exponentially Stable) Siakalli (2009) The trivial solution

of the solution (1.21) is called pth moment exponentially stable, if for a given constant

p > 0, there exist two positive constants, λ and C, which satisfy the following inequality:

E(‖X(t)‖p) ≤ C‖X0‖p exp(−λ(t − t0)), X0 ∈ Rd, t > t0.

1.2.13. Stability Theorems for Lévy Type Stochastic Differential

Equations

In this section, two theorems are presented which give conditions on the following

Lévy type differential equation such that the trivial solution is stable in probability or pth

moment exponentially stable Siakalli (2009)

dX(t) = f (X(t))dt + g(X(t))dB(t) +
∫
‖y‖<c

H(X(t), y)Ñ(dt, dy) (1.25)

with initial value X(t0) = X0 ∈ Rd. Here the conditions on the functions f , g ∈ P2(T ) and

H,K ∈ P2(T, E) are presented in equations (1.21) and (1.23).

The integral form of the stochastic differential equation (1.25) is written as fol-

lows:

X(t) = X0 +

∫ t

t0
f (X(t))dt +

∫ t

t0
g(X(t))dB(t) +

∫ t

t0

∫
‖y‖<c

H(X(t), y)Ñ(dt, dy).

(1.26)

Here, the theorems are given which Siakalli proved for this model in her thesis Siakalli

(2009) in chapter 3.

Theorem 1.9 Siakalli (2009)(Chapter 3, Theorem 3.3.2, pp. 48) Assume that Bh = {x ∈
R

d, ‖x‖ ≤ h} is a ball with radius h satisfying h > 2c, where c is the maximum jump size

in (1.26). If the infinitesimal generator of L with respect to (1.26) satisfy the following
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condition:

LV < 0,

where V : Bh → R+ is positive definite function, then the trivial solution of (1.26) is stable

in probability.

Theorem 1.10 Siakalli (2009)(Chapter 3, Theorem 3.5.1, pp. 64) If there is a function

V ∈ C2(Rd;R≥0), which satisfy the following conditions with respect to (1.26):

1) a1‖X‖p ≤ V(X) ≤ a2‖X‖p, a1, a2 ∈ R+

2) LV(X) ≤ −a3V(X), a3 ∈ R+,

then the following inequality is satisfied:

E(‖X‖p) ≤ a2

a1

‖X0‖p exp(−a3(t − t0)) f or all t ≥ t0,

and the trivial solution of (1.26) is pth moment exponentially stable.

Theorem 1.11 Applebaum (2009)Let X be a Lévy process with bounded jumps, then all

moments of the process E(‖X(t)‖m) are finite for all m ∈ N.

Theorem 1.12 Applebaum (2009) Let X be a Lévy process. Then the moments of the

process E(|X(t)|n) are bounded for given each n ∈ N and all t > 0 if and only if the Lévy

measure of the process satisfies the integral inequality
∫
‖x‖>1
|x|nν(dx) < ∞.

1.3. Stability Analysis of Nonlinear Dynamical Systems with Lévy

Type Perturbations - An Application to Electrical Power Grids

Over the past decades, there has been a drastic increase in interest in Lévy pro-

cesses. Having independent increments and stationary properties gives Lévy processes

many applications, in areas such as macro-level engineering, economics and micro-level

quantum physics. In fact, one of the essential property of Lévy processes, the stationary

property, has been known since the introduction of infinite divisibility in the late 1920s

by Lévy and KhincineLévy (1934); Khinchine (1937). Furthermore, Lévy processes were

used to called as processes with stationary and independent increments in the 1960s and

1970s. Extension of stochastic calculus to Lévy processes was started with Khasminski,
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KushnerKhasminski (1969); Kushner (1967) and later on Mao Mao (2007). In 1980s, the

current definition of a Lévy process was done by Finetti, Kolmogorov, Lévy and Ito Ito

(1984).

Stable processes, also known as α-stable processes, are a subclass of Lévy pro-

cesses with special importance. They were originally developed to explain anomalous

diffusion, a relatively rare phenomenon that occurs in nature. Stable processes including

pure jump processes are also non-Gaussian, due to the lack of a continuous process in their

structure. α-stable processes have essential characteristic functions. These are very im-

portant and have applications in many areas of science. There exist two essential param-

eters in the characteristic function of an α-stable process: α and the skewness parameter.

These parameters model the asymptotic behaviour and the skewness of the process dis-

tribution, respectively Samoradnitsky and Taqqu (1994). An α parameter takes its value

between 0 and 2. The smaller α value models the slower decay, so results in the heavier

tail in the distribution. Moreover, α-stable processes do not have moments larger than

the α parameter. To overcome this, Mantegna and Stanley introduced tempered α-stable

process Mantegna and Stanley (1994, 1995). Tempered α-stable process is produced by

multiplying α-stable processes with a decreasing exponent on each half of the real axis.

After this smoothing application, small jumps in the behaviour of the process retain their

initial α-stable-like behaviour, while large jumps become much less violent. Hence Lévy

processes find more application areas with tempered α-stable process.

One important application of Lévy processes is at modeling perturbations in power

networks. In this thesis, the probabilistic synchronization and the stability control of

an electricity power network under Lévy type stochastic perturbations are investigated.

There are two essential types of stability relevant to power systems. These are the rotor

angle stability and the frequency stability. Rotor angle stability refers to the ability of

interconnected synchronous machines of a power system to maintain consistent generator

rotor angles after perturbation. Frequency stability refers to the ability of a power system

to maintain consistent frequency after perturbation. This depends on the balance between

generation and consumption in the system.

The synchronization of the rotor angle is critical for the electrical connection of the

power grids. As the rotor angle difference between the two regions increases, the voltage

on the lines between them tends to drop. Larger rotor angle differences can result in more

serious problems( blackouts). A lot of work has been done in order to minimize such

problems. An efficient approach is to model the oscillations in the system with stochastic

processes.
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We investigate the rotor angle stability and frequency stability for two important

equations used to model electrical power networks. These are the swing equation, which

models the single machine infinite bus system (SMIBS), and the Kuramoto Model which

models a large number of generators as coupled oscillators.

1.3.1. Model I: Swing Equation

The swing equation models the relationship between the mechanical power input

and the electrical power output in a single machine connected to an infinite bus (SMIB)

power system Kundur (1993). The deterministic swing equation is defined as follows:

δ̇ = ω

Mω̇ = −Dω + Pm − Pe.

Here, variables δ and ω are respectively the relative rotor angle of the synchronous ma-

chine, and the rotor speed with respect to the synchronous reference. M,D are the moment

of inertia and the damping constant, respectively. Pm is the mechanical input power and

Pe = Pmax sin(δ) is the electrical output power. Pmax represents the maximum power

output of the synchronous machine.

Much research on rotor angle stability has focused on the Single Machine Infinite

Bus System (SMIBS). In stability study of the SMIBS, this was initially considered as a

deterministic model. The stabilization of linearised models started with the first DeMello

and Concordia deMello and Concordia (1969). Then Yang for the same structure H∞ op-

timization method is used to develop control function Yang (1997). In Canizares (1995),

the load was taken as bifurcation parameter. The chaotic behaviour of the system was

analysed through system parameters by the Melnikov method. According to the research,

it was observed that small perturbations in the load caused an unstable situation for the

generator. Wang studied the dynamic properties of the SMIBS for periodic load distur-

bance X. Wang and Song (2015).

Other studies have used stochastic models. Demarco modelled stochastic noise

using the Wiener process DeMarco and Bergen (1987). Wei and Luo established the nec-

essary conditions on system parameters for a linearized SMIBS system to be stable under

Gaussian noise Wei and Luo (2009). Stability analysis for small Gaussian oscillations of
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the system parameters was then performed for the linearised SMIBS system J. Y. Zhang

and Wu (2012). Subsequently, the p-moment stability of linearized SMIBS under small

Gaussian excitation was established Z. Lu and Li (2015). Another stochastic stability

analysis on SMIBS was performed based on the Fokker-Plank equations. The effects of

system parameters were observed for nonlinear stochastic systems with Gaussian type

noise Wang and Crow (2013).

Later, Savacı and Yılmaz modelled the SMIBS system with noise from an alpha

stable process Yılmaz and Savacı (2017). This idea was based on Weron’s method of

modeling electricity prices Weron (2009). In Yılmaz and Savacı (2017), changes in de-

mand/supply cause sudden jumps in electricity prices. This suggests that load should be

taken into account as an effective factor in electricity prices. Under α-stable process noise,

changes in the basin of attraction and limit cycle of the stable equilibrium point(SEP), de-

pendent on the parameters of the process, were observed. In another study, a control rule

for the linearized SMIBS was created Savacı and Yılmaz (2020). In previous studies on

stochastic models, the effect of noise on the system has just been observed that stabiliza-

tion has been done for a limited range of system parameters, or stability control has been

obtained on linearized models that is inefficient for modelling. In this thesis, the control

function for the nonlinear model independently of the parameters have been constructed,

and the control functions for the nonlinear model has three types of stability: stability in

probability and pth moment exponential stability. Since the impact of big jumps is nearly

zero is assumed, the modified tempered alpha stable process evaluated with an assuming

finite jump condition on the tempered α-stable process for α < 1 is considered to model

the noise. According to our study with this model in the second chapter, using this con-

trol function, probability stability and 2-moment stability of the equilibrium points of the

SMIBS were achieved. The validity of the theoretically obtained control function was

obtained with the theoretical results.

1.3.2. Model II:Kuramoto Model

In complex power grids, a large number of generators are considered as coupled

oscillators. First Winfree Winfree (1967), then Kuramoto also analyses the behaviour

of systems whose state can be summarised by a single scalar variable θ, and in addition

Kuramoto’s formulation assumes conservation of the total phase. Kuramoto’s systems

can be modelled with a set of N coupled ordinary differential equations as follows:
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θi(t)
dt
=

⎡⎢⎢⎢⎢⎢⎢⎣ωi +
K
N

N∑
j=1

ai j sin
(
θ j(t) − θi(t)

)⎤⎥⎥⎥⎥⎥⎥⎦ , i, j ∈ [1, · · ·N]. (1.27)

Here, θi is the voltage phase angle, ωi = 2π ( fi − fR) is the angular velocity, fi is the fre-

quency of the oscillators i = 1, . . . ,N and fR is the reference frequency for fR = 50 Hz or

fR = 60 Hz values and t represents time. Equation (1.27) describes a system describing

the phase velocity of the ith oscillator. The quantity K is the coupling strength, repre-

senting the overall strength of connections between the oscillators. 1
N is a normalization

constant. The ai j are the weights of the adjacency matrix A which describes the (undi-

rected) Kuramoto network. Specifically, ai j = aji = 1 (for i � j) if there exists an edge

between oscillator i and oscillator j, and ai j = 0 otherwise.

The first stability studies related to the deterministic Kuramoto model were ex-

amined its system parameters. Kuramoto derived system parameters for synchronization

of his model consisting of an infinite number of oscillators. Subsequently, Jadbabaie ex-

tended this work to models with a finite number of oscillators, a model more applicable

to real life, and calculated the critical coupling value and order parameter for this struc-

ture Jadbabaie and Barahona (2004). Later Chopra and Spong also relaxed the constraints

on the critical coupling for the synchronization of Jadbabe’s system Chopra and Spong

(2009). A similar study has been done for the multi rate Kuramoto model, including

second and first order Kuramoto models, by Dofler and Bullo Dörfler and Bullo (2019).

However, in these stability studies based on system parameters, initial conditions were

assumed to be taken from the interval (−π/2, π/2). This strict conditions reduce the ap-

plicability of the model to real life. It has been possible to relax conditions on the system

with the introduction of pacemakers, which act as a kind of control function Li (Li). In

the further studies carried out with control function construction, systems with multiple

control layers to generate control functions, were modelled. These were able to reach

stability in a finite and precise time Wu and Li (2019a). Guo and Rao then developed

control functions to achieve this type of stability in systems with help of pacemaker dy-

namics. Rao (2022). In finite and fixed time stabilization studies, continuous control

functions have been used because of the chattering problems caused by non-continuous

control functions J. Wu (2021); X. Guo (2022).

Stochastic studies started in the 1980s with Sakaguchi, who defined the first stochas-

tic system and analysed its behavior and stability using the Fokker-Plank function Sak-
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aguchi (1988). Another study analysed stability conditions for phase oscillators in a

complex Kuramoto model subject to Gaussian noise. Results obtained using the Fokker-

Planck equation showed the existence of more than one stable cluster in the system for

a stationary solution Park (1996). Later, stability research was extended to the two-

dimensional Kuramoto Model. Acebron and Spigler’s stationary solution of the Fokker-

Planck equation was obtained analytically under certain conditions Acebrón and Spigler

(1998). Some other stability studies have presented analytical results for the conditions

required to obtain a stationary solution for the time periodic Fokker planck equation of

the Kuramoto model with mean field structure P. Reimann (1999).

The importance of stochastically modeling power systems has recently been rec-

ognized and the idea of modeling the loss of system stability under a stochastic fault has

become more popular due to the faults in the transition from power plants to renewable

systems. Many important studies on stochastic models have already been done. Some of

these are as follows: In D. and C. (2018), stability analysis was performed on the Fokker-

Plank equation of the linearized Kuramoto model under the influence of tempered stable

Lévy noise.

Initially, in power system studies, noise in the systems was modelled with Gaus-

sian process for ease of implementation. However, a study published in Nature in 2018

Schafer et al. (2018), showing that the noise in the system contains sudden non-Gaussian

changes, determined this continuous process model inefficient. In this article, second

order nonlinear stochastic Kuramoto model which includes stable noise is reduced to ag-

gregated swing equation under certain conditions to analyse the stability of the frequency

of the power system. Also, the solution obtained has the same alpha and beta parameters

as noise in the model but sigma parameter.

Thus, studies on non-gaussion models have started to gain importance. Roberts

and Kalloniatis analysed the stability of the Kuramoto model subject to a tempered alpha

stable process, which is a type of Lévy process, in different networks. With the help of

the Fokker Planck equation obtained from the linearized Kuramoto model, they observed

the variation in the distribution of the solution with respect to alpha D. and C. (2018).

However, in the studies related to non-Gaussian noise, the models were linearized,

or any control function was not established on the model. In the third chapter, the strict

conditions on system parameters are lost in previous studies, and model the fluctuations

by Lévy processes in duplex power networks consisting of oscillator K and control layers

L.
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dθi(t) =

⎡⎢⎢⎢⎢⎢⎢⎣ωi + K
N∑

j=1

ai j sin
(
θ j(t) − θi(t)

)
+ ui(θ(t))

⎤⎥⎥⎥⎥⎥⎥⎦ dt + ε(θ(t))dL(t), i, j ∈ [1, · · ·N].

Here, the function ε models the Lévy processes noise, indicating the intensity of its effect

on the system. If the oscillator layer K is affected, ε is defined as follows:

ε(θ(t)) = �1

N∑
j=1

Kai j sin(θ j(t) − θi(t)).

If the noise affects the control layer L, the noise intensity function ε(θ(t)) is defined as

follows:

ε(θ(t)) = �2

N∑
j=1

bi j(θ j(t) − θi(t),

where �1 and �2 are the intensity parameters of the noise in the Kuramoto layer K and

control layer, L respectively. In the third chapter, the phase and frequency synchronization

of Kuramoto oscillator systems in the form of a duplex network topology subject to Lévy

process perturbation is investigated. The duplex network would lose phase and frequency

synchronization under certain conditions is assumed, and in light of Lyapunov Theory,

designed a control function to achieve system synchronization. The results obtained in

this chapter are as follows. Comparing the experimental and theoretical results when the

Kuramoto oscillator layer is subject to perturbation, the control function loses efficacy

as noise intensity grows. When it is the control layer that is subject to peturbation, the

numerical results indicate that noise intensity up to a certain point has minimal influence

on the phase and frequency stability of the system, but that beyond that point it cannot be

handled.
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CHAPTER 2

STOCHASTIC STABILITY OF SINGLE MACHINE

INFINITE BUS POWER SYSTEMS WITH MODIFIED

TEMPERED α-STABLE LÉVY TYPE PROCESS

In electric power systems, synchronization can be described as the process of

matching parameters such as voltage, frequency, phase angle, phase sequence, and wave-

form of an alternator (generator) or other sources working in rhythms. Any significant

effect/noise in an electricity power network’s supply or load can make the changes in syn-

chronized movement of system elements. In such a case, the line voltage can drop and so

the phase synchronism may be lost. This causes many problems in power systems, and

can lead to blackouts. Therefore, in case of noise, the ability of a system to regain the

state of equilibrium is crucial. To do this, we include control functions to the systems.

In this chapter, we introduce control functions in more generality, more precisely,

control functions which provide trivial solutions for the probability and moment exponen-

tial stability of the general nonlinear stochastic swing equation modelled with modified

totally positively skewed tempered α-stable (MTPSTS) process for α < 1. Here, the

MTPSTS distribution is evaluated by assuming the noise in the system can jump only up

to a certain size and that these jumps come from the totally positively skewed tempered

α-stable (TPSTS) distribution.

Roughly speaking, a stable equilibrium point (SEP) in the phase space of a system

is the point to which all points nearby converge. If there is no disturbance in the system,

equilibrium points are stable. However, if there is any disturbance, stability may be lost.

In electrical power systems, disturbance can occur with load change, line tripping or loss

of a generator. In such cases the balance between power input and electrical power output

is ruined so the stability, i.e., the synchronization is lost.

In the following figure, we show an example of a deterministic swing equation.

Here we take the damping parameter D = 0.5 and the critical value, Dc ≈ 0.39 (as

in Guckenheimer and Holmes (2013) and Yılmaz (2019)). Because D > Dc, all the

equilibrium points are stable; trajectories of the system converge to a SEP under 10 initial

states taken randomly from the phase space [−π, π] × [−20, 20].
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Figure 2.1. Phase portraits of deterministic SMIB system for Pm = 0.5 and Dc = 0.5

In Figure 2.2, the damping parameter D is set to 0.3, less than the critical value,

Dc. In this case, the trajectories of the system converge to a stable rotating orbits (or

’limit cycles’) and so the phase stability, that is, the synchronization of the power system

networks is ruined.
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Figure 2.2. Phase portraits of deterministic SMIB system for Pm = 0.5 and Dc = 0.3

In the next section, we examine the probabilistic and exponential stability of the

equilibrium for an SMIBS system with MTPSTS noise. We numerically test the effec-

tiveness of the control function.

2.1. Modelling the Stochastic Swing Equation

A stochastic swing equation describes the relationship between mechanical power

input and electrical power output in a single machine infinite bus (SMIB) power system

subject to one dimensional MTPSTS noise TLα(t) for α < 1. It is defined as follows:

⎡⎢⎢⎢⎢⎢⎢⎣ dδ(t)

Mdω(t)

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ ω

−Dω + Pm − Pmax sin δ

⎤⎥⎥⎥⎥⎥⎥⎦ dt +

⎡⎢⎢⎢⎢⎢⎢⎣ 0

ε([δ ω]T )

⎤⎥⎥⎥⎥⎥⎥⎦ dT Lα(t).

(2.1)
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Here variables δ and ω are respectively relative rotor angle of synchronous machine and

rotor speed with respect to the synchronous reference. M,D are the polar moment of

inertia and the damping constant respectively. Pm is the mechanical input power and

Pe = Pmaxsin(δ) is the electrical output power where Pmax represents the maximum power

output of the synchronous machine. ε(x) is the intensity function of the Lévy noise. In

this chapter, our aim is to find the control function that provides the stability types for

the system (2.1). We take the inertia constant M and maximum power output Pmax such

that M = Pmax = 1, the mechanical input power 0 ≤ Pm < 0.7, and a modified totally

positively skewed tempered α-stable process as a noise. The system’s equilibrium points

are defined as [δ∗1, ω
∗
2]T = [arcsin Pm, 0]. In order to apply the Lyapunov Theory, it is

necessary to shift the equilibrium points of the system to the origin with state variable

X = [x1 x2]T . Then (2.1) becomes as follows:

dX(t) = F(X(t))dt + ε1(X)dT Lα(t) (2.2)

F(X(t)) =

⎡⎢⎢⎢⎢⎢⎢⎣ x2

−Dx2 + Pm − Pm cos x1 −
√

1 − P2
m sin x1

⎤⎥⎥⎥⎥⎥⎥⎦ , ε1(X) =

⎡⎢⎢⎢⎢⎢⎢⎣ 0

ε(X).

⎤⎥⎥⎥⎥⎥⎥⎦ (2.3)

Characteristics of the modified totally positively skewed tempered α-stable Lévy process

T Lα(t) is defined with (b, 0, ν) and it has the following Lévy-Ito decomposition given in

equation (1.20):

T Lα(t) = bt +
∫
|y|<c

yN(t, dy), E(N(t, dy)) = tν(dy), (2.4)

where the Lévy measure of the modified totally skewed tempered α-stable distribution is

presented as follows:

ν(dy) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

y1+α+ e−λ
+y1(0,∞)(y) if y ∈ (0, c],

0 if y � (0, c].
(2.5)

where c is the size of the process’s jumps limited due to the system’s nature. In order

to do stability analyses of the stochastic differential equation (2.2), the first step is to use

the Lévy-Ito decomposition form of the tempered stable noise (2.4) in the system (2.2) to

remodel the equation in a general Lévy type stochastic differential form (1.26) as follows:
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X(t) = X0 +

∫ t

0

F(X(s))ds + ε1(X)(bt +
∫

0≤y≤c
yN(t, dy)). (2.6)

In the second step, the stochastic equation we have in (2.6) is transformed into the form

(1.26) by applying the property (1.17) for the Poisson integral.

X(t) = X0 +

∫ t

0

F(X(s))ds + ε1(X)(bt + t
∫

0≤y≤c
yν(dy) +

∫
0≤y≤c

yÑ(t, dy)), (2.7)

where

∫
0≤y≤c

yN(t, dy) = t
∫

0≤y≤c
yν(dy) +

∫
0≤y≤c

yÑ(t, dy). (2.8)

Here, the equality given by (2.8) is valid only when
∫

0≤y≤c
yν(dy) is finite. In the next

section, under certain assumptions, the necessary conditions for the SDE (2.2) are given

to provide stability in probability and 2-moment stability.

2.2. Stability Condition in SMIBS

We will now give the conditions required for SMIBS to achieve stability in prob-

ability and 2-moment exponential stability when perturbed with modified tempered alpha

stable noise under the following assumptions:

Assumption 2.1 We suppose that the function ε(x) satisfies following inequality for β ∈
R
+ in the equation (2.2):

|ε(x)| < β2|x2|.

Assumption 2.2 Assuming that ε(x) satisfies the following inequality for β ∈ R+ in equa-

tion (2.2), we have:

|ε(x)| < β‖x‖.
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2.2.1. Stability in Probability

In this section, the theorem related to the control function to obtain the stability

in probability of the SMIBS perturbed by a modified totally positively skewed tempered

α-stable Lévy process is given, under certain assumptions.

Theorem 2.1 Suppose the maximum jump amount of noise in the system is π/4, the max-

imum value of the mechanical input power Pm is 0.7, the maximum value of the stable

parameter α is 1 and the Assumption 2.1 holds. Then the trivial solution of equation (2.2)

is stable in probability with the following control function u(x) = [u1(x) u2(x)]T :

u(x) =

⎡⎢⎢⎢⎢⎢⎢⎣ 0

−Kx2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where K > M1β
2
2 + β

2
2(|b| + N1) − D with

M1 =

∫
0≤y≤π/4

y2ν(dy) <

∫ ∞

0

y2 e−λy
y1+α

dy = λα−2Γ(2 − α) < ∞,

and

N1 =

∫
0≤y≤π/4

yν(dy) <

∫ ∞

0

y
e−λy

y1+α
dy = λα−1Γ(1 − α) < ∞, Γ(z) =

∫ ∞

0

tz−1e−tdt.

Note : λ represents the tempering parameter and α signifies the stability parameter of the

process.

Proof

We will use Theorem 1.9 to analyze the stability of the system. However, The-

orem 1.9 can only be applied in the presence of a compensated Poisson integral in the

system. Therefore, to ensure the applicability of the theorem, we apply the following

decomposition to the Poisson integral (2.4):

T Lα(t) = bt + t
∫

0≤y≤π/4
yν(dy) +

∫
0≤y≤π/4

yÑ(t, dy). (2.9)

39



By decomposition of the tempered α stable process T Lα in (2.9), the functions F(x) in

(2.2) can be expressed as:

F(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x2

−Dx2 − Pm(cos x1 − 1) − √
1 − P2

m sin x1 + u2(x) + ε(x)
[
b +

∫
0≤y≤π/4 yν(dy)

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Now, we construct the following positive definite Lyapunov function on a ball centered at

the origin over conjugate gradient method (Khalil (2015),page 129). Suppose the system

has the following model

⎡⎢⎢⎢⎢⎢⎢⎣ ẋ1

ẋ2

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ x2

−h1(x) − h2(x)

⎤⎥⎥⎥⎥⎥⎥⎦ .

where h1(x) and h2(x) are locally Lipschitz, and satisfy

hi(0) = 0, yhi(y) > 0, ∀y � 0, y ∈ (−a, a), a ∈ R+, i ∈ [1, 2]. (2.10)

Then the positive definite energy-like function V1 can be defines as follows:

V1(x) =

∫ x1

0

h1(y)dy +
x2

2(t)
2
.

Here

V̇1 = h1(x)x2 + x2[−h1(x1) − h2(x2)] = −x2h2(x) ≤ 0

Now we apply this method to our model. We take the deterministic swing equation:

⎡⎢⎢⎢⎢⎢⎢⎣ ẋ1

ẋ2

⎤⎥⎥⎥⎥⎥⎥⎦ = =
⎡⎢⎢⎢⎢⎢⎢⎣ x2

−h2(x2) − h1(x1)

⎤⎥⎥⎥⎥⎥⎥⎦ .
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h1(x1) = Pm cos x1 +

√
1 − P2

m sin x1 − Pm,

h2(x2) = Dx2.

Here h1 and h2 functions satisfy the conditions (2.10) over the domain Bh = {x ∈ R2 | ‖x‖ <
π/2} for Pm < 0.7. The positive definite function V1 in Bh is:

V1(x) =

∫ x1

0

[Pm(cos x − 1) +

√
1 − P2

m sin x]dx +
x2

2(t)
2
.

We now evaluate LV1: For this, first recall the formula of the infinitesimal operator (1.22)

with respect to the d-dimensional SDE equation (1.25), given below:

dx(t) = f (x(t))dt +
∫
‖y‖<c

H(x(t), y)Ñ(dt, dy) (2.11)

Then the infinitesimal operator of the Lyapunov function with respect to the solution of

the SDE (2.11) is:

(LV)(x) = f i(x)(∂iV)(x) +

∫
‖y‖<c

[V(x + H(x, y)) − V(x) − Hi(x, y)(∂iV)(x)]ν(dy),

i ∈ [1, · · · , d]. (2.12)

Our model applies to (2.11) with

f (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x2

−Dx2 − Pm(cos x1 − 1) − √
1 − P2

m sin x1 + u2(x) + ε(x)
(
b +

∫
0≤y≤π/4 yν(dy)

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H(x, y) =

⎡⎢⎢⎢⎢⎢⎢⎣ 0

ε(x)y

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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We can then evaluate (LV1)(x) by

(LV1)(x) = x2

[
Pm(cos x1 − 1) +

√
1 − P2

m sin x1

]

+ x2

[
−Dx2 − Pm(cos x1 − 1) −

√
1 − P2

m sin x1 + u2(x) + ε(x)(b +
∫

0≤y≤π/4
yν(dy))

]

+

∫
0≤y≤π/4

[
V1(x + H(x, y) − V1(x) − Hi(∂iV1)(x)

]
ν(dy), i ∈ [1, 2]. (2.13)

By applying the Mean Value Theorem to the integral part of (LV1), we have:

V1(x + H(x, y)) − V1(x) = Hi(∂iV1)(x) +
1

2
H2

2(x, y)(∂2
2V1)(xm),

where xm =

⎡⎢⎢⎢⎢⎢⎢⎣ x1

x2m

⎤⎥⎥⎥⎥⎥⎥⎦ , x2 ≤ x2m ≤ x2+H2(X, y). Using Lyapunov function V1, we evaluate

the integral part of equation (2.13) as follows:

V1(x + H(x, y)) − V1(x) − Hi(∂iV1)(x) =
1

2
ε2(x)y2

Using the equality
∫

0≤y≤π/4 yν(dy) = N1 and defining the control function u2 = −Kx2, we

then have

(LV1)(x) = x2

[
Pm(cos x1 − 1) +

√
1 − P2

m sin x1

]
+ x2

[
− Dx2 − Pm(cos x1 − 1)

−
√

1 − P2
m sin x1 + (b + N1)ε(x) − Kx2

]
+
ε2(x)

2

∫
0≤y≤π/4

y2ν(dy)

= −(D + K)x2
2 + (b + N1)ε(x)x2 +

ε2(x)

2
M1.

Under Assumption 2.1, we obtain the following inequality:

(LV1)(x) ≤ −(D + K − β2(b + N1))x2
2 +

M1

2
β2

2x2
2.
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Then the desired condition on the region Bh is satisfied if K > M1

2
β2

2 + β2(|b| + N1) − D.

This completes the proof. �

2.2.2. P-th Moment Exponential Stability in Probability

This section presents theory demonstrating that the control function provides 2-nd

moment exponential stability in probability of the SMIBS disturbed by a modified totally

positively skewed tempered α-stable Lévy process, given certain conditions.

Theorem 2.2 Suppose that Assumption 2.2 holds and the maximum value of the stable

parameter α is 1. Then the trivial solution of the equation (2.2) is 2nd moment ex-

ponentially stable for all initial values X0 ∈ RN, given the following control function

u(x) = [u1(x) u2(x)]T :

u(x) =

⎡⎢⎢⎢⎢⎢⎢⎣ −K1x1 − x2

−2Pm sin
x2

1

2
− K2x2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where

K3 = min(K1, D + K2) > (
K2

2
+ |b| + N2) β +

β2

2
M2, (2.14)

and in the light of the measure (2.5)

M2 =

∫
0<y<c

y2ν(dy) <

∫ ∞

0

y2 e−λy
y1+α

dy = λα−2Γ(2 − α) < ∞ .

and

N2 =

∫
0<y<c

yν(dy) <

∫ ∞

0

y
e−λy

y1+α
dy = λα−1Γ(1 − α) < ∞, Γ(z) =

∫ ∞

0

tz−1e−tdt

Note : λ represents the tempering parameter and α signifies the stability parameter of the

process.
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Proof In this part, we check that the solution of (2.2) satisfies each of the conditions of

Theorem 1.10:

1. If the Lyapunov function is taken as V2(x) = ‖x‖2/2, then the first condition is

satisfied for α1 = α2 = 1/2 and p = 2.

2. The second condition LV2 ≤ −α3V2(X) can be satisfied by obtaining a positive,

α3 ∈ R as follows.

In order to evaluate LV2, we must first write a Lévy decomposition of the MTPSTS noise

T Lα(t) in the system, then reorganize the stochastic model, by considering the equality

Ñ(t, dy) = N(t, dy) − ν(dy)t, as follows:

T Lα(t) = bt + t
∫

0<y<c
yν(dy) +

∫
0<y<c

yÑ(t, dy), (2.15)

Taking the process (2.15) and the control function (2.14), it is apparent that the function

F(x) in stochastic model (2.2) can be expressed as follows:

F(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x2 + u1(x)

−Dx2 + Pm − Pm cos x1 −
√

1 − P2
m sin x1 + u2(x) + ε(x)

(
b +

∫
0<y<c

yν(dy)
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Define the energy function as the Lyapunov function:

V2(x) = xxT/2.

We now can evaluate LV2. To do so, first recall the formula of the infinitesimal operator

(1.22) with respect to the d-dimensional SDE equation (1.25):

dX(t) = f (X(t))dt +
∫
‖y‖<c

H(X(t), y)Ñ(dt, dy) (2.16)

In this case, the infinitesimal operator of the Lyapunov function with respect to the solu-

tion of the SDE is (2.16) as follows:
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(LV)(x) = f i(x)(∂iV)(x)

+

∫
‖y‖<c

[V(x + H(x, y)) − V(x) − Hi(x, y)(∂iV)(x)]ν(dy), i ∈ [1, · · · , d].

Taking into account the control function, u(x), our system corresponds to the following:

f (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x2 + u1(x)

−Dx2 + Pm − Pm cos x1 −
√

1 − P2
m sin x1 + ε(x)

(
b +

∫
|y|>0

yν(dy)
)
+u2(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

H(x, y) =

⎡⎢⎢⎢⎢⎢⎢⎣ 0

ε(x)y

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.17)

The image of the function V2 under the infinitesimal operator L, calculated similarly as

in equation (1.24), is then as follows:

(LV2)(x) = x1x2 + x1u1(x) + x2

[
−Dx2 + Pm − Pm cos x1 −

√
1 − P2

m sin x1

+ u2(x) + ε(x)(b +
∫

0≤y≤c
yν(dy))

]

+
1

2

∫
0≤y≤c

(
x2

1 +

(
x2 + ε(x)y

)2

−
[
(x2

1 + x2
2) + 2ε(x)yx2

])
ν(dy).

Considering the control function u(x) given in (2.14) and given the equality N2 =
∫

0≤y≤c
yν(dy),
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the integral component can be rearranged and the following expression evaluated:

(LV2)(x) = −K1x2
1 − (D + K2)x2

2 + x2(Pm − Pm cos x1

−
√

1 − P2
m sin x1 − 2Pm sin

x2
1

2
) + (b + N2)ε(x)x2

+
ε2(x)

2

∫
0<y<c

y2ν(dy). (2.18)

Considering the half-angle identities for (Pm − Pm cos x1) = 2Pm sin x2

2
and the integral

term
∫

0≤y<c
y2ν(dy) of the equality (2.18) equals to M2, that equation can be rewritten as

follows:

(LV2)(x) = −K1x2
1 − (D + K2)x2

2 − K2x2 sin(x1) + ε(x)x2(b + N2)

+
ε2(x)

2
M2.

By the inequality | sin x1| ≤ |x1|, it can be seen that:

(LV2)(x) ≤ −K1x2
1 − (D + K2)x2

2 + K2|x2x1| + ε(x)x2(b + N2)

+
ε2(x)

2
M2.

Then, by Assumption 2.2, the following inequality can be obtained:

(LV2)(x) ≤ −min(K1,D + K2)‖x‖2 + K2‖x‖2
2
+ (|b| + N2)β‖x‖2

+
β2

2
‖x‖2M2.

Now, if the condition

K3 = min(K1, D + K2) >
K2

2
+ (|b| + N2)β +

β2

2
M2 (2.19)
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is satisfied, then the desired stability condition is obtained:

(LV2)(x) ≤ −
[
K3 − (

K2

2
+ |b|β + β

2

2
M2)

]
‖x‖.

And the proof is completed. �

2.3. Numerical Experiment

In this section, we will present the existing algorithm of modified positively skewed

α stable process with maximum jumps size c and an example.

2.3.1. Algorithm

The modified totally skewed tempered α-stable random variable (T Lm
α (t)) is sim-

ulated by the rejection method in three steps (algorithm is taken from Baeumer (2010)):

Step 1: We generate exponential random variable E with mean λ−1, P(E > x) = e−λ
−1 x.

Step 2: We generate totally skewed α−stable random variable Lα(α < 1), by using the

following formula Baeumer (2010); Assoc (1976):

Lα(t) = (|c1|t) 1
α

sinα
(
γ + π

2

)
(cos γ)1/α

⎛⎜⎜⎜⎜⎜⎜⎝cos
(
γ − α

(
γ + π

2

))
W

⎞⎟⎟⎟⎟⎟⎟⎠
(1−α)/α

.

Here, the parameter c1 = Γ(2 − α)/(α − 1) is fixed where Γ is the known Gamma

function, γ is uniformly distributed on [−π/2, π/2], and W has exponential distri-

bution with parameter 1,

Step 3: If E > Lα we replace T Lm
α (t) = Lα(t) + c1tαλα−1, otherwise we go back to step 1.

To simulate the entire path, follow these steps:

• Define T Lm
α (t) as the sum of increments over the specified time interval: T Lm

α (t) =∑n
i=1[T Lm

α (kΔt) − T Lm
α ((k − 1)Δt)]

Here, t represents the total time (t = nΔt), and Δt is the time increment.

Next, rearrange the simulation process as follows:
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• Start with T Lm
α ((n − 1)Δt). Calculate T Lm

α (nΔt) − T Lm
α ((n − 1)Δt).

• If the calculated difference (T Lm
α (nΔt) − T Lm

α ((n − 1)Δt)) is greater than a specified

threshold c, then set T Lm
α (nΔt) equal to T Lm

α ((n − 1)Δt). Otherwise, proceed to the

next step

By using the Euler-Maruyama approximation presented in Janicki and Weron

(1993), we obtain the numerical solutions of (2.2) using

Xti+1
= Xti + f (X(ti−1))τ + ε(X(ti−1))ΔT Lα(τ).

2.3.2. Example

In this section, we test the efficiency of the control function according to the

change of α for given damping parameter D = 0.5, power input PM = 0.5, intensity

function ε(x) = β‖x‖ and Lévy noise measure ν(dx) of the process.

• Take stability parameter as α = 0.2 and tempering parameter λ = 2, then the Lévy

measure of the noise is as follows:

ν(dx) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

x1+0.2 e−2x1(0,∞)(x) if x ∈ [0, 3],

0 if x � [0, 3].

• Take the control function given in Theorem 2.2 accordance with condition (2.14).
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The following Figure 2.3 shows the effected tempered α-stable Lévy noise for

α = 0.2 with intensity noise coefficient β = 0.05. (For each figure, simulations are

repeated 10 times and time period is taken as [0, 20].)

Figure 2.3. Modified totally positively skewed tempered α-stable Lévy Noise for α =
0.2 with intensity noise coefficient β = 0.05

The following Figure 2.4 shows how the system changes under the modified tempered

α-stable Lévy Noise for α = 0.2.
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Figure 2.4. Phase portraits of perturbed SMIB system with totally positively skewed

tempered α-stable Lévy noise for α = 0.2 with intensity noise coefficient

β = 0.05.

According to the following Figure 2.5, trajectories tend to go into a rotating orbit.

Then it shows phase angle by applying the control function u(x) to the system.
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Figure 2.5. Controlled Phase portraits of perturbed SMIB system with totally posi-

tively skewed tempered α-stable Lévy noise for α = 0.2 with intensity

noise coefficient β = 0.05.

2.3.3. Summary

In this chapter, we obtained a control function for a perturbed SMIBS with mod-

ified totally positively skewed tempered α-stable noise by applying Lyapunov Theory.

Using this control function, probability stability and 2nd moment exponential stability of

the equilibrium points of the SMIBS was achieved. This validity of the control function

was supported by results from numerical simulations.
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CHAPTER 3

CONTROL OF KURAMOTO-OSCILLATOR NETWORKS

DRIVEN BY LÉVY PROCESSES

In this chapter, the probabilistic frequency synchronization and phase agreement

are investigated by control functions under Lévy-type stochastic perturbations of elec-

tricity power grid consisting of a large number of generators and/or loads (consumers) by

using Kuromota Duplex network (coupled nonlinear oscillators). Stochastic perturbations

in electric power systems include equipment failures, the effects of weather on wind, so-

lar energy, etc. In this respect, it is assumed that perturbations can be modelled by Lévy

Processes with jumps, and it is assumed that the cause of the frequent Blackouts observed

in complex power networks in recent years is high variance. Although stochastic pertur-

bations in both generators and loads in electrical power systems are modelled as Gaussian

Noise (Wiener Processes) in the literature Wang et al. (2017), the hypothesis of the Lévy-

type perturbations in electrical power systems Yılmaz and Savacı (2017); Yılmaz (2019)

is supported by Weron (2009), which models oscillations in electricity prices with Lévy

Processes and also supported in recent research Schafer et al. (2018). Now let’s start to

introduce the second problem by introducing the deterministic Kuramoto model.

.

3.1. Model

Consider a duplex network consisting of a Kuramoto-Oscillator layer K and a

control layer L with the same topology.

dθi(t) =

⎡⎢⎢⎢⎢⎢⎢⎣ωi +
K
N

N∑
j=1

ai j sin
(
θ j(t) − θi(t)

)
+ ui(θ(t))

⎤⎥⎥⎥⎥⎥⎥⎦ dt, i, j ∈ [1, · · ·N], (3.1)

where θi is the phase of the ith oscillator, ωi is the natural frequency of the ith oscillator,

and ai j represents an element of the adjacency matrix A, and is indicative the strength of

the interaction between oscillators i and j (which is assumed to be proportional to the sin
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of the difference in their phase angles). In this section, the structure of the duplex network

is undirected graph G with N nodes and ai j = aji = 1 > 0 for i � j. Otherwise, ai j = 0.

K, the coupling strength, characterizes the strength of interaction between the oscillators

overall. The function ui in the equation represents the control law.

ui =
C
N

N∑
j=1

bi j

(
θ j(t) − θi(t)

)
, i, j ∈ [1, · · ·N],

u = [u1 u2 · · · uN]T (3.2)

where C > 0 is the control strength and bi j is the element of the adjacency matrix B that

describes the structure of control layer L. The ith element of the solution of the target

system, which is desired to be reached in time, is denoted by the function θ̃i(t). This is

achieved with the help of the control function u. In the next section, a description of the

Target system will be given in the next section. Now, the duplex power network model

whose layers are perturbed by Lévy processes is given as follows:

dθi(t) =

⎡⎢⎢⎢⎢⎢⎢⎣ωi + K
N∑

j=1

ai j sin
(
θ j(t) − θi(t)

)
+ ui(θ(t))

⎤⎥⎥⎥⎥⎥⎥⎦
+ dt + ε(θ(t))dL(t), i, j ∈ [1, · · ·N]. (3.3)

Here, the function ε models the noise intensity of the Lévy processes. This function

indicates the intensity of the effect of the Lévy process on the system. If the oscillator

layer K is affected, ε is defined as follows:

ε(θ(t)) = ρ1

N∑
j=1

K
N

ai j sin(θ j(t) − θi(t))(t). (3.4)
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If the noise in the control layer L, the noise intensity function ε(θ(t)) is defined as follows

ε(θ(t)) = ρ2

N∑
j=1

C
N

bi j(θ j(t) − θi(t)), (3.5)

where ρ1 and ρ2 are intensity parameters of the noise in the Kuramoto layer K and control

layer L respectively. Regarding Lévy-type processes affecting the control and Kuramoto

layers, the following assumption that the system contains finite jumps due to the nature of

the system is considered.

Assumption 3.1 We assume that the Lévy process L(t) in the equation (3.11) is one di-

mensional and the size of its jumps is limited by the value c > 1 due to its nature. Thus, it

has the following Lévy-Ito decomposition form.

L(t) = bt + BA(t) +
∫
|y|≤1

yÑ(t, dy) +

∫
1<|y|≤c

yN(t, dy),

E(N(dt, dy)) = ν(dy)dt. (3.6)

Here bt + BA(t) is a Gaussian process with variance At, mean bt, b ∈ R, and N is an

independent Poisson random measure on R+ × (R − {0}). ν represents the Lévy measure

on R which is related to Poisson random measure N.

.

Assumption 3.2 It is assumed that the Kuramoto oscillators have the same frequency

ωi = ω, where i ∈ [1, · · ·N].

The purpose of this section is to ensure that the network maintains phase agreement and

frequency synchronization, defined as follows:

Definition 3.1 The Kuramoto-oscillator network (3.1) achieves p-th moment exponential

phase agreement if the following condition is satisfied:

If there exist positive constants C and M such that

E

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

i=1

N∑
j=1

|θi(t) − θ j(t)|p
⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C

N∑
i=1

N∑
j=1

|θi(t0) − θ j(t0)|pe−Mt, t ≥ t0 (3.7)
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for all θ(t0) ∈ RN.

Definition 3.2 The Kuramoto-oscillator network (3.1) achieves p-th moment exponential

frequency synchronization, if there exist positive constants C and M such that

E

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

i=1

N∑
j=1

|θ̇i(t) − θ̇ j(t)|p
⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C

N∑
i=1

N∑
j=1

|θ̇i(t0) − θ̇ j(t0)|pe−Mt, t ≥ t0 (3.8)

for all θ(t0), ω(t0) ∈ RN.

Lemma 3.1 Wu and Li (2019b) For an undirected graph G with N nodes, the following

equality is satisfied

xTLAx =
1

2

N∑
i=1

N∑
j=1

ai j

(
xi − x j

)2
, x = (x1, x2, . . . , xN)T (3.9)

Here,LA = DA−A is the Laplacian matrix associated with the adjacency matrix A, where

DA ∈ RN×N is a diagonal matrix with DA
ii =

∑N
j=1 ai j(∀i ∈ [1, · · ·N]). The equality (3.9)

implies that matrix LA is positive semi-definite, with non-negative eigenvalues. With LA

represented using its eigenvalues 0, λ2, · · · , λN, ordered to satisfy 0 < λ2 < · · · < λN,

and 1N representing the N dimensional vector whose components are all equal to one, if

1T
N x = 0, then xT Lx ≥ λ2xT x.

3.2. Control of Stochastic Phase Agreement and Frequency

Synchronization of the Duplex Network

In this section, our aim is to ensure that the duplex system perturbed by Lévy

processes reaches phase agreement and frequency synchronization with the help of the

control function. To achieve this, the perturbed system is intended to reach the target

system, where the oscillators exhibit a common behavior, by utilizing the control function

u(x) provided in equation (3.2).
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Target System

˙̃θi(t) = ω, i ∈ [1, · · ·N],

θ̃i(t0) = θ0. (3.10)

Here the function θ̃i(t) defined as θ̃i(t) = θ̃(t) = 1
N

∑N
i=1 θi(t) is the mean phase angle of

oscillators on all N nodes on the graph, t0 is the initial time and ω is the common natural

frequency of the oscillators.

Now, the theorems about the formation of the control rule necessary for the system

to have phase agreement and frequency synchronization when the oscillator and control

layers are perturbed by the Lévy process given in the equation (3.6) are given.

3.2.1. Control of Stochastic Phase Agreement under Lévy Type

Perturbations

In this section, assuming that the frequenciesωi are the same, the system parameter-

dependent control function required for phase synchronization when the Kuramoto model

is disturbed by Lévy noise is constructed.

3.2.2. Lévy Type Perturbations on the Kuramoto-Oscillator Layer

This section concerns the synchronization of the system’s phase angles when each

node in the Kuramoto-oscillator layer K is perturbed by Lévy process and modeled with

the following equation.

dθi(t) = ωi +

⎡⎢⎢⎢⎢⎢⎢⎣K
N

N∑
j=1

ai j sin
(
θ j(t) − θi(t)

)
+ ui(θ(t))

⎤⎥⎥⎥⎥⎥⎥⎦ dt

+ ρ
K
N

N∑
j=1

ai j sin
(
θ j(t) − θi(t)

)
dL(t), i, j ∈ [1, · · ·N]. (3.11)
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Theorem 3.1 Phase agreement of the Kuramoto-oscillator layer Lévy process-perturbed

duplex network (3.11) is achieved under Assumption 3.1 and Assumption 3.2 and the fol-

lowing condition between the system parameters in (3.11):

C >
[
(1 + S )

(ρK)2

2
+ K(1 + |ρb| + |ρR|)

]
, (3.12)

where

S =

∫
|y|≤c

y2ν(dy), R =
∫

1<|y|<c
yν(dy) (3.13)

Note :These values are valid for all S and R values of this chapter.

Proof At this stage, the aim is to prove that all oscillators approach the θ̃(t) function

asymptotically in time. In this respect, define the phase error/difference of each oscillator

ei(t) = θi(t) − θ̃(t), should approach zero. Then, the phase error system evolves ėi(t) =

θ̇i(t) − ˙̃θ(t) = θ̇i(t) − ω as and the stochastic error system can be calculated as follows:

dei(t) =

⎡⎢⎢⎢⎢⎢⎢⎣K
N

N∑
j=1

ai j sin
(
e j − ei

)
+

C
N

N∑
j=1

bi j

(
e j − ei

)⎤⎥⎥⎥⎥⎥⎥⎦ dt

+ρ

N∑
j=1

K
N

ai jsin(e j − ei)dL(t). (3.14)

The stability of the trivial solution of (3.14) can be examined with the help of Lyapunov

Theory. For this purpose, the conditions given by Siakalli in her thesis Siakalli (2009), as

stated in Theorem 1.10, are checked to see if the solution of (3.14) satisfies them.

1. If the Lyapunov function is taken as follows:

V1 =
1

2
eTe =

1

2

N∑
i=1

e2
i , (3.15)

where e = [e1, . . . , eN]T is the phase error vector. Then first condition is satisfied

for α1 = α2 = 1/2 and p = 2.
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2. A α3 ∈ R+ can be found that will satisfy the second condition LV ≤ −α3V(X) as

follows:

Before evaluating the infinitesimal operator L defined in (1.24) for the error dy-

namical system (3.14), the Poisson random measure is needed to be divided into compen-

sated Poisson random measure and Lévy measure in the Lévy process as follows in order

to apply the stability theorem given in (1.10):

L(t) = bt + BA(t) +
∫
|y|≤1

yÑ(dt, dy) + t
∫

1<|y|≤c
yν(dy) +

∫
1<|y|≤c

yÑ(dt, dy). (3.16)

By considering Theorem 1.11 and Theorem 1.12, the boundedness of the integral term is

evaluated

R =
∫

1<|y|≤c
yν(dy) (3.17)

As the defined variable R is finite, it becomes possible to rearrange the L’evy-Ito decom-

position into the following form.

L(t) = bt + BA(t) + t
∫

1<|y|≤c
yν(dy) +

∫
|y|≤c

yÑ(t, dy)

= bt + BA(t) + tR +
∫
|y|≤c

yÑ(t, dy). (3.18)

Finally, let’s evaluate the infinitesimal operatorL defined in (1.24) for the error dynamical

system (3.14) and Lévy-Ito decomposition given in (3.18) as follows:

58



LV1 =

N∑
i=1

ei

⎡⎢⎢⎢⎢⎢⎢⎣[
N∑

j=1

K
N

ai j(1 + bρ + Rρ)] sin
(
e j − ei

)
+

C
N

N∑
j=1

bi j

(
e j − ei

)⎤⎥⎥⎥⎥⎥⎥⎦

+
ρ2

2

N∑
i=1

trace

{[ N∑
j=1

K
N

ai j sin(e j − ei)
]
×

[ N∑
j=1

K
N

ai j sin(e j − ei)
]T}

+

N∑
i=1

∫
|y|≤c

1

2

[(
ei + ρ

N∑
j=1

K
N

ai j sin
(
e j − ei

)
y
)2

− e2
i

− eiρ

N∑
j=1

K
N

ai j sin(e j − ei)y
]
ν(dy).

The above equality is transformed into the following expression, considering the Lya-

punov function V(e) = eeT/2 that has been chosen and the jump function in the form

H(e, y) = ρ
∑N

j=1
K
N ai j sin(e j − ei)y

V1(x + H(x, y)) − V1(x) − Hi(x, y)∂iV1(x) =
1

2

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

K
N

ai j sin
(
e j − ei

)
y

⎞⎟⎟⎟⎟⎟⎟⎠
2

. (3.19)

By considering the following inequality for

1

2

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

K
N

ai j sin
(
e j − ei

)
y

⎞⎟⎟⎟⎟⎟⎟⎠
2

≤ N
2

y2

N∑
j=1

(ρ
K
N

ai j)
2 sin2

(
e j − ei

)
.

Then the following inequality for the last term of the LV1 is obtained

1

2

∫
|y|≤c

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

K
N

ai j sin
(
e j − ei

)
y

⎞⎟⎟⎟⎟⎟⎟⎠
2

ν(dy) ≤ N
2

N∑
j=1

(ρ
K
N

ai j)
2 sin2

(
e j − ei

) ∫
|y|≤c

y2ν(dy).

(3.20)
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The integral term S =
∫
|y|≤c

y2ν(dy) defined in (3.13) and established above is finite. It can

be rewritten as follows,

∫
|y|≤c

y2ν(dy) =

∫
0<|y|<1

y2ν(dy) +

∫
1<|y|<c

y2ν(dy). (3.21)

First integral term in right side of the equation (3.21) is bounded by definition of Lévy

noise, and second integral term is bounded result of Theorem 1.11 and Theorem 1.12 for

the stochastic system includes bounded jumps. By taking into account the equality (3.13)

and (3.20), LV1 can be reorganized in the following manner

LV1 ≤
N∑

i=1

ei

N∑
j=1

[K
N

ai j(1 + ρb + ρR)
]
sin

(
e j − ei

)

+
C
N

N∑
i=1

ei

N∑
j=1

bi j

(
e j − ei

)
+

Nρ2

2

N∑
i=1

N∑
j=1

(
K
N

ai j)
2 sin2(e j − ei))

+
NS
2

N∑
i=1

N∑
j=1

(ρ
K
N

ai j)
2 sin2

(
e j − ei

)
.

Now, the expression in parentheses (e j − ei)
2 is put to get the negative definiteness by

editing the other terms.

LV1 ≤ −1

2

N∑
i=1

N∑
j=1

⎡⎢⎢⎢⎢⎢⎢⎣K
N

ai j(1 + ρb + ρR)
sin

(
e j − ei

)
e j − ei

⎤⎥⎥⎥⎥⎥⎥⎦ (e j − ei)
2

− 1

2

N∑
i=1

N∑
j=1

C
N

bi j(e j − ei)
2

+

⎡⎢⎢⎢⎢⎢⎢⎣Nρ2

2

N∑
i=1

N∑
j=1

(
K
N

ai j)
2
sin2

(
e j − ei

)
(e j − ei)2

⎤⎥⎥⎥⎥⎥⎥⎦ (e j − ei)
2

+

⎡⎢⎢⎢⎢⎢⎢⎣NS
2

N∑
i=1

N∑
j=1

(ρ
K
N

ai j)
2
sin2

(
e j − ei

)
(e j − ei)2

)

⎤⎥⎥⎥⎥⎥⎥⎦ (e j − ei)
2.

(3.22)
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Let’s sum all terms under the same sum expression

LV1 = −1

2

N∑
i=1

N∑
j=1

[K
N

ai j(1 + ρb + ρR)

sin
(
e j − ei

)
e j − ei

+
C
N

bi j

−(1 + S )
(ρKai j)

2

2N
sin2(e j − ei)

(e j − ei)2

]
(e j − ei)

2.

Since (sin(r)/(r))r∈[−π,π] ∈ [−1, 1] and if i � j then ai j = bi j = 1 else ai j = bi j = 0 for all

i, j ∈ [1, · · · ,N], this

LV1 ≤ −1

2

N∑
i=1

N∑
j=1

[
(−K

N
(1 + |ρb| + |ρR|) + C

N
− (1 + S )

(ρK)2

2N
)ai j

]
(e j − ei)

2.

By the Lemma 3.1, thus the following equality is satisfied

= −
[
C − (1 + S )

(ρK)2

2
− K(1 + |ρb| + |ρR|)

]
eLAeT . (3.23)

Taking into account the 1Ne = 0, then the following inequality given in the Lemma can

be used3.1

eLAeT ≥ λ2(LA)eeT . (3.24)

If the following conditions are satisfied

C >
[
(1 + S )

(ρK)2

2
+ K(1 + +|ρb| + |ρR|)

]
, (3.25)

By considering (3.24) and (3.25), a bound for LV1 can be evaluated, as follows:

LV1 ≤ −
[
C − (1 + S )

(ρK)2

2
− K(1 + ρb + ρR)

]
λ2(LA)eeT . (3.26)

Finally, the negativeness condition of the Lyapunov operatorLV1 ≤ −α3V1 for Theorem1.10

is established, by setting α3 as follows:
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α3 =

[
C − (1 + S )

(ρK)2

2
− K(1 + ρb + ρR)

]
λ2(LA)/2. (3.27)

The trivial solution of the error stochastic system (3.14) is thus 2nd moment exponentially

stable, and as a result the conditions for phase agreement are also fulfilled, completing the

proof. �

3.2.3. Lévy Type Perturbations on the Control Layer

In this section, the situation where the control layer, which helps to provide syn-

chronization to the system, is affected by the Lévy process is considered and determined

the relationship between the system parameters necessary for phase agreement. First, let’s

examine the current Kuramoto model with distributed control ui using equations (3.1) and

(3.2).

dθi(t) = ωi +

⎡⎢⎢⎢⎢⎢⎢⎣K
N

N∑
j=1

ai j sin
(
θ j(t)) − θi(t)

)
+

C
N

N∑
j=1

bi j

(
θ j(t) − θi(t)

)⎤⎥⎥⎥⎥⎥⎥⎦ dt

+ ρ
C
N

N∑
j=1

bi j

(
θ j(t) − θi(t)

)
dL(t), i, j ∈ [1, · · ·N]. (3.28)

Theorem 3.2 If the following condition is satisfied between system parameters in (3.28),

the duplex Kuramoto-oscillator network (3.28) achieves 2nd moment exponential stochas-

tic phase agreement, even if the control layer environment is subject to the Lévy type

process perturbations.

−K + r2 > 0, C = r/z,

where

z2 = σ2ρ2 + S ρ2

r = (1 + ρb + ρR)/2z.

Proof We will prove this theorem using a similar technique to that used in Theorem 3.1.

To do this, first, the error function is constructed such that ei(t) = θi(t) − θ̃(t). Then The
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stochastic error system is evaluated as follows:

dei(t) =

⎡⎢⎢⎢⎢⎢⎢⎣K
N

N∑
j=1

ai j sin
(
e j − ei

)
+

C
N

N∑
j=1

bi j

(
e j − ei

)⎤⎥⎥⎥⎥⎥⎥⎦ dt

+ρ

N∑
j=1

C
N

bi j

(
e j − ei

)
dL(t). (3.29)

As a result of Lyapunov Theory given in Siakalli (2009), the conditions of Theorem 1.10

are checked to determine if the trivial solution of (3.29) satisfies them.

1. If the Lyapunov function is defined as follows:

V2 =
1

2
eTe =

1

2

N∑
i=1

e2
i , (3.30)

where e = [e1, . . . , eN]T is the phase error vector. So the first condition is met for

α1 = α2 = 1/2 and p = 2.

2. As a result of Lyapunov Theory given in Siakalli (2009), the conditions of Theorem

1.10 are checked to determine if the trivial solution of (3.29) satisfies them.

LV2 ≤ −α3V2(X). (3.31)

In a similar way in Theorem 3.1, the Poisson random measure is divided into

compensated Poisson random measure and Lévy measure in the Lévy process to evaluate

the infinitesimal operator L defined in (1.24) for the error dynamical system (3.29) to

apply the stability theorem given in (1.10). The representation of the L’evy process can

be observed from the first theorem as follows:

As the variable R defined in (3.13) is finite, the L’evy-Ito decomposition can be
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rearranged to take the following form.

L(t) = bt + BA(t) + t
∫

1<|y|≤c
yν(dy) +

∫
|y|≤c

yÑ(t, dy)

= bt + BA(t) + tR +
∫
|y|≤c

yÑ(t, dy). (3.32)

where

R =
∫

1<|y|≤c
yν(dy) (3.33)

Now, using the equality (3.32), now LV2 is calculated as follows:

LV2 =

N∑
i=1

ei

⎡⎢⎢⎢⎢⎢⎢⎣K
N

N∑
j=1

ai j sin
(
e j − ei

)
+

N∑
j=1

[C
N

bi j(1 + bρ + Rρ)
](

e j − ei

)⎤⎥⎥⎥⎥⎥⎥⎦
+
σ2

2

N∑
i=1

trace

{⎡⎢⎢⎢⎢⎢⎢⎣ρ
N∑

j=1

C
N

bi j

(
e j − ei

)⎤⎥⎥⎥⎥⎥⎥⎦ ×
⎡⎢⎢⎢⎢⎢⎢⎣ρ

N∑
j=1

C
N

bi j

(
e j − ei

)⎤⎥⎥⎥⎥⎥⎥⎦
T }

+

N∑
i=1

∫
|y|≤c

1

2

[
(ei + ρ

N∑
j=1

C
N

bi j(e j − ei)y)2 − e2
i

− 2eiρ

N∑
j=1

C
N

bi j(e j − ei)y)
]
ν(dy).

Unlike Theorem 3.1, the jump function is defined as H(e, y) = ρ
∑N

j=1
C
N bi j

(
e j − ei

)
y and

same Lyapunov function V2(e) = eeT/2, the above equation leads to the following expres-

sion

V2(e + H(e, y)) − V2(e) − Hi(e, y)∂iV2(e) =
1

2

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

C
N

bi j

(
e j − ei

)
y

⎞⎟⎟⎟⎟⎟⎟⎠
2

(3.34)
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By considering the inequality

1

2

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

C
N

bi j

(
e j − ei

)
y

⎞⎟⎟⎟⎟⎟⎟⎠
2

≤ N
2

N∑
j=1

(ρ
C
N

bi j)
2
(
e j − ei

)2
y2,

Then, for the last term of LV2, the following inequality is obtained

1

2

∫
|y|≤c

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

C
N

bi j

(
e j − ei

)
y

⎞⎟⎟⎟⎟⎟⎟⎠
2

ν(dy) ≤ N
2

N∑
j=1

(ρ
C
N

bi j)
2
(
e j − ei

)2
∫
|y|≤c

y2ν(dy).

(3.35)

The boundedness of the integral term S =
∫
|y|≤c

y2ν(dy) was showed in Theorem 3.1. Then

LV2 is organized by considering equalities (3.13) and (3.35) Then the following inequality

is evaluated

LV2 ≤ − 1

2

N∑
i=1

N∑
j=1

⎡⎢⎢⎢⎢⎢⎢⎣K
N

ai j

sin
(
e j − ei

)
e j − ei

⎤⎥⎥⎥⎥⎥⎥⎦ (e j − ei)
2

− 1

2

N∑
i=1

N∑
j=1

C
N

bi j(1 + bρ + Rρ)(e j − ei)
2

+
Nσ2ρ2

2

N∑
i=1

N∑
j=1

C2

N2
b2

i j(e j − ei)
2

+

N∑
i=1

N∑
j=1

NS
2

(ρ
C
N

bi j)
2
(
e j − ei

)2
.

Now, the terms can be put in parentheses (e j−ei)
2 and alter the remaining terms to achieve

negative definiteness.

= −1

2

N∑
i=1

N∑
j=1

[K
N

ai j
sin(e j − ei)

e j − ei
+

C
N

bi j(1 + bρ + Rρ)

−Nσ2ρ2 C2

N2
b2

i j − NS (ρ
C
N

bi j)
2
]
(e j − ei)

2.
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By defining the variables as follows:

z2 = σ2ρ2 + S ρ2

r = (1 + ρb + ρR)/2z

By using the quadratic property, max−π,π | sin(e j−ei)
e j−ei

| = 1 and ai j = bi j (recall that control

layer and Kuramoto layer have same topology)

LV2 = −1

2

N∑
i=1

N∑
j=1

[−K + r2 − [zC − r]2]ai j(e j − ei)
2. (3.36)

Considering Lemma 3.1, the following equality is satisfied:

LV2 = −[−K + r2 − [zC − r]2]eLAeT (3.37)

Taking the following inequality into consideration given in the Lemma 3.1

eLAeT ≥ λ2(LA)eeT (3.38)

, and assuming that the following conditions are satisfied

−K + r2 > 0, C = r/z, (3.39)

, the following upper bound for LV2 can be calculated:

LV2 ≤ −
[
−K + r2)

]
λ2(LA)eeT . (3.40)

As a result, 2nd moment exponentially stability of trivial solution of the error stochastic

system (3.29) can be achieved, by setting α3 in the second condition (3.31) to [−K +

r2]λ2(LA), completing the proof. �
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3.3. Control of Stochastic Frequency Stability under Lévy Type

Perturbations

This section, extends the results of Wu and Li (2021) for Lévy process noise.

Thus, the equation obtained from the derivative of the deterministic Kuramoto model,

which gives the frequency of the system, is assumed that is subjected to perturbation

by Lévy-type noise, and then establish the relationship between the system parameters

required for frequency synchronization of the duplex network under this assumption. No

restrictions on the frequencies ωi is required for the application of the methods of this

section.

3.3.1. Lévy Type Perturbations on the Kuramoto-Oscillator Layer

The Kuramoto model of the perturbed oscillator network with distributed control

function ui is generated with composing derivative of (3.1) and (3.2) equations.

dθ̇i(t) =

⎡⎢⎢⎢⎢⎢⎢⎣K
N

N∑
j=1

ai j cos
(
θ j − θi

) (
θ̇ j − θ̇i

)
+

C
N

N∑
j=1

bi j

(
θ̇ j − θ̇i

)⎤⎥⎥⎥⎥⎥⎥⎦ dt

+ ρ

N∑
j=1

K
N

ai j cos
(
θ j − θi

) (
θ̇ j − θ̇i

)
dL(t), i, j ∈ [1, · · · ,N]. (3.41)

Theorem 3.3 If the following criteria listed below is satisfied between system parame-

ters in (3.41), the specified duplex Kuramoto-oscillator network in (3.41) has 2nd mo-

ment exponential stochastic frequency synchronization when the Kuramoto-oscillator is

perturbed

C > K(1 + ρ|b| + ρR) + ρ2σ2K2 + S ρ2K2. (3.42)

Proof In this proof, a similar technique to the previous proofs is applied, but the param-

eter aimed to reach equilibrium is the frequency, which corresponds to the derivative of

the oscillator variable.

From stochastic dynamical system (3.41) and Target system (3.10), it is known

that the error function for frequency fluctuation ėi = θ̇i − ˙̄θ and vector ė = [ė1, ė2, ..., ėd]T .

Then the error model that its derivative of variable converges to zero is desired as follows:
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dėi(t) =

⎡⎢⎢⎢⎢⎢⎢⎣K
N

N∑
j=1

ai j cos
(
e j − ei

) (
ė j − ėi

)
+

C
N

N∑
j=1

bi j

(
ė j − ėi

)⎤⎥⎥⎥⎥⎥⎥⎦ dt

+ ρ

N∑
j=1

K
N

ai j cos
(
e j − ei

) (
ė j − ėi

)
dL(t). (3.43)

The stability of the trivial solution of (3.43) is examined with the help of Lyapunov The-

ory. For this aim, if the solution of (3.43) satisfies the conditions is checked in Theorem

1.10 given by Siakalli in her thesis Siakalli (2009), respectively.

1. If the Lyapunov function is taken as follows:

V3 =
1

2
ėTė =

1

2

N∑
i=1

ė2
i , (3.44)

where ė = [ė1, . . . , ėN]T is the phase error vector. Then first condition is satisfied

for α1 = α2 = 1/2 and p = 2.

2. It is possible to find an α3 inR+ which satisfies the second conditionLV ≤ −α3V(X)

as follows:

In order to apply the stability theorem given in (1.10), the Poisson random measure

must be divided into compensated Poisson random measure and Lévy measure in the Lévy

process as follows before evaluating the infinitesimal operator L defined in (1.24) for the

error dynamical system (3.43).

L(t) = bt + BA(t) +
∫
|y|≤1

yÑ(dt, dy) + t
∫

1<|y|≤c
yν(dy) +

∫
1<|y|≤c

yÑ(dt, dy). (3.45)

By considering Theorem 1.11 and Theorem 1.12, the boundedness of the integral term is

evaluated

R =
∫

1<|y|≤c
yν(dy). (3.46)

Because of the finiteness of the defined variable R, the L’evy-Ito decomposition can be
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rearranged to take the following form.

L(t) = bt + BA(t) + t
∫

1<|y|≤c
yν(dy) +

∫
|y|≤c

yÑ(t, dy)

= bt + BA(t) + tR +
∫
|y|≤c

yÑ(t, dy) (3.47)

Finally, let’s evaluate the infinitesimal operatorL defined in (1.24) for the error dynamical

system (3.43) and Lévy-Ito decomposition given in (3.47) as follows: L defined in (1.9)

for the above function V3 along the dynamics (3.43) gives

LV3 =

N∑
i=1

ėi[

N∑
j=1

[
K
N

ai j(1 + ρb + ρR)] cos
(
e j − ei

) (
ė j − ėi

)
+

C
N

N∑
j=1

bi j

(
ė j − ėi

)
]

+
σ2

2

N∑
i=1

trace

{⎡⎢⎢⎢⎢⎢⎢⎣
N∑

j=1

K
N

ai jρ cos
(
e j − ei

) (
ė j − ėi

)⎤⎥⎥⎥⎥⎥⎥⎦ ×
⎡⎢⎢⎢⎢⎢⎢⎣

N∑
j=1

K
N

ai jρ cos
(
e j − ei

) (
ė j − ėi

)⎤⎥⎥⎥⎥⎥⎥⎦
T }

+

N∑
i=1

∫
|y|≤c

1

2

[
(ėi + ρ

N∑
j=1

K
N

ai j cos(e j − ei)(ė j − ėi)y)2

−e2
i − 2eiρ

N∑
j=1

K
N

ai j cos(e j − ei)(ė j − ėi)
]
ν(dy).

According to the chosen Lyapunov function V3(e) = ėėT/2 and the jump function in

the form H(e, y) = ρ
∑N

j=1
K
N ai j cos

(
e j − ei

) (
ė j − ėi

)
y, the above equation returns to the

following expression

V3(x+H(x, y))−V3(x)−Hi(x, y)∂iV3(x) =
1

2

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

K
N

ai j cos
(
e j − ei

) (
ė j − ėi

)
y

⎞⎟⎟⎟⎟⎟⎟⎠
2

(3.48)
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By considering the following inequality for

1

2

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

K
N

ai j cos
(
e j − ei

) (
ė j − ėi

)
y

⎞⎟⎟⎟⎟⎟⎟⎠
2

≤ N
2

y2

N∑
j=1

(ρ
K
N

ai j)
2
(
cos(e j − ei)(ė j − ėi)

)2
.

Then the following inequality for the last term of the LV3 is obtained

1

2

∫
|y|≤c

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

K
N

ai j(cos
(
e j − ei

) (
ė j − ėi

)
y

⎞⎟⎟⎟⎟⎟⎟⎠
2

ν(dy)

≤ N
2

N∑
j=1

(ρ
K
N

ai j)
2(cos(e j − ei)(ė j − ėi))

2

∫
|y|≤c

y2ν(dy). (3.49)

The defined integral term S =
∫
|y|≤c

y2ν(dy) have been shown that is finite in previous

Theorem 3.1. If the bound of the LV3 (3.48) is rearranged by considering inequality

(3.49)

LV3 ≤
N∑

i=1

ėi

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

j=1

[
K
N

ai j(1 + ρb + ρR)] cos
(
e j − ei

) (
ė j − ėi

)
+

C
N

N∑
j=1

bi j

(
ė j − ėi

)⎤⎥⎥⎥⎥⎥⎥⎦
+
σ2

2

N∑
i=1

trace

{⎡⎢⎢⎢⎢⎢⎢⎣
N∑

j=1

K
N

ai jρ cos
(
e j − ei

) (
ė j − ėi

)⎤⎥⎥⎥⎥⎥⎥⎦ ×
⎡⎢⎢⎢⎢⎢⎢⎣

N∑
j=1

K
N

ai jρ cos
(
e j − ei

) (
ė j − ėi

)⎤⎥⎥⎥⎥⎥⎥⎦
T }

+
N
2

∑
i=1

N∑
j=1

(ρ
K
N

ai j)
2
(
cos

(
e j − ei

) (
ė j − ėi

))2
∫
|y|≤c

y2ν(dy).
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then the terms is written under the common sum

LV3 ≤ − 1

2

N∑
i=1

N∑
j=1

K
N

ai j(1 + ρb + ρR) cos(e j − ei)(ė j − ėi)
2

− 1

2

N∑
i=1

N∑
j=1

C
N

bi j(ė j − ėi)
2

+
Nρ2σ2

2

N∑
i=1

N∑
j=1

(
K
N

ai j)
2 cos2(e j − ei)(ė j − ėi)

2

+
NS
2

N∑
i=1

N∑
j=1

ρ2 K2

N2
a2

i j cos2(e j − ei)(ė j − ėi)
2.

Now, the expression in parenthesis (ė j − ėi)
2 is put to get the negative definiteness by

editing the other terms.

= −1

2

N∑
i=1

N∑
j=1

[
K
N

ai j(1 + ρb + ρR) cos(e j − ei) +
C
N

bi j

−Nρ2σ2 K2

N2
a2

i j cos2(e j − ei) − NS ρ2 K2

N2
a2

i j cos2(e j − ei)

]
(ė j − ėi)

2.

By using the property that maxx∈[−π,π] cos x = 1 and if i � j then ai j = bi j = 1 otherwise

ai j = bi j = 0 for all i, j ∈ [1, · · · ,N],

LV3 ≤ − 1

2N

N∑
i=1

N∑
j=1

[
C −

(
K(1 + ρ|b| + ρR) + ρ2σ2K2 + S ρ2K2

)]
ai j(ė j − ėi)

2.

Considering the inequality given in the Lemma 3.1

ėLAėT ≥ λ2(LA)ėėT , (3.50)

and assuming that the following condition is fulfilled

C > K(1 + ρ|b| + ρR) + ρ2σ2K2 + S ρ2K2, (3.51)
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the following upper bound for LV3 can be determined:

LV3 ≤ −
[
C − K(1 + ρ|b| + ρR) + ρ2σ2K2 + S ρ2K2

]
λ2(LA)ėėT . (3.52)

This, satisfies the conditions of Theorem 1.9, thus establishing the 2nd moment expo-

nentially stability of the trivial solution of error stochastic system (3.41). The perturbed

system’s frequency exponentially asymptotically converges to the same mean square val-

ues, also establishing stability in frequency as a consequence. �

3.3.2. Lévy Type Perturbations on the Control Layer

The Kuramoto model of the perturbed oscillator network with distributed con-

trol function ui is generated by composing the derivatives of (3.1) and (3.2), giving the

following equation:

dθ̇i(t) =

⎡⎢⎢⎢⎢⎢⎢⎣K
N

N∑
j=1

ai j cos
(
θ j − θi

) (
θ̇ j − θ̇i

)
+

C
N

N∑
j=1

bi j

(
θ̇ j − θ̇i

)⎤⎥⎥⎥⎥⎥⎥⎦ dt

+ρ

N∑
j=1

C
N

bi j

(
θ̇ j − θ̇i

)
dL(t), i, j ∈ [1, · · ·N]. (3.53)

Theorem 3.4 If the following requirement upon the system parameters in (3.53) is ful-

filled, the frequency 2nd moment exponential stability of the system can be restored if the

control layer of the duplex Kuramoto network in (3.53) is perturbed.

−K
N

ai j + r2 > 0,
C
N
= −r/z, (3.54)

where

z2 = σ2ρ2 + S ρ2

r = (1 + ρb + ρR)/2z,

Proof Our purpose while proving the approximation of each frequency ωi to the aver-
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age frequency (1/N)
∑N

i=1 ωi = ω̄. The convergence of their difference ėi = θ̇i − ω̄, which

is equivalent to this convergence, to go to zero is aimed. So the Lyapunov theory can be

used.

Now let’s define the stochastic system related to the error function

dėi(t) =

⎡⎢⎢⎢⎢⎢⎢⎣K
N

N∑
j=1

ai j cos
(
e j − ei

) (
ė j − ėi

)
+

C
N

N∑
j=1

bi j

(
ė j − ėi

)⎤⎥⎥⎥⎥⎥⎥⎦ dt

+ρ

N∑
j=1

C
N

bi j

(
ė j − ėi

)
dL(t). (3.55)

The stability of the trivial solution of (3.55) can be examined with the help of Lyapunov

Theory. For this purpose, it is checked that if the solution of (3.55) satisfies the conditions

in Theorem 1.10 given by Siakalli in her thesis Siakalli (2009), respectively

1. If the Lyapunov function is taken as follows:

V4 =
1

2
ėTė =

1

2

N∑
i=1

ė2
i .

where e = [e1, . . . , eN]T is the phase error vector. Then first condition is satisfied

for α1 = α2 = 1/2 and p = 2.

2. A α3 ∈ R+ can be found that will satisfy the second condition LV4(X) ≤ −α3V4(X)

as follows:

As in the previous Theorem 3.1, the Poisson random measure is divided into com-

pensated Poisson random measure and Lévy measure in the Lévy process as follows in

order to apply the stability theorem given in (1.10).

L(t) = bt + BA(t) +
∫
|y|≤1

yÑ(dt, dy) + t
∫

1<|y|≤c
yν(dy) +

∫
1<|y|≤c

yÑ(dt, dy). (3.56)

By considering Theorem 1.11 and Theorem 1.12, the boundedness of the integral term is

evaluated
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R =
∫

1<|y|≤c
yν(dy). (3.57)

The defined variable R in is finite thus, the Lévy-Ito decomposition can be rearranged., so

it will take the form as follows:

L(t) = bt + BA(t) + t
∫

1<|y|≤c
yν(dy) +

∫
|y|≤c

yÑ(t, dy)

= bt + BA(t) + tR +
∫
|y|≤c

yÑ(t, dy). (3.58)

Finally, let’s evaluate the infinitesimal operatorL defined in (1.24) for the error dynamical

system (3.55) and Lévy-Ito decomposition given in (3.58) as follows:

LV4 =

N∑
i=1

ėi

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

j=1

K
N

ai j cos
(
e j − ei

) (
ė j − ėi

)
+

C
N

N∑
j=1

bi j(1 + ρb)
(
ė j − ėi

)⎤⎥⎥⎥⎥⎥⎥⎦
+
σ2

2

N∑
i=1

trace{
⎡⎢⎢⎢⎢⎢⎢⎣

N∑
j=1

C
N

bi jρ
(
ė j − ėi

)⎤⎥⎥⎥⎥⎥⎥⎦ ×
⎡⎢⎢⎢⎢⎢⎢⎣

N∑
j=1

C
N

bi jρ
(
ė j − ėi

)⎤⎥⎥⎥⎥⎥⎥⎦
T

}

+

N∑
i=1

∫
|y|<1

1

2

[
(ėi + ρ

N∑
j=1

C
N

bi j(ė j − ėi)y)2 − e2
i

−2eiρ

N∑
j=1

C
N

bi j(ė j − ėi)
]
ν(dy).

(3.59)

According to the chosen Lyapunov function V4(e) = eeT/2 and the jump function in

the form H(e, y) = ρ
∑N

j=1
K
N ai j sin(e j − ei)y, the above equation returns to the following

expression

V4(x + H(x, y)) − V4(x) − Hi(x, y)∂iV4(x) =
1

2

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

C
N

bi j

(
ė j − ėi

)
y

⎞⎟⎟⎟⎟⎟⎟⎠
2

. (3.60)
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By considering the inequality

1

2

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

C
N

bi j

(
ė j − ėi

)⎞⎟⎟⎟⎟⎟⎟⎠
2

≤ N
2

N∑
j=1

(ρ
C
N

bi j)
2
(
ė j − ėi

)2
.

Then the following inequality is obtained for the last term of the LV4

1

2

∫
|y|≤c

⎛⎜⎜⎜⎜⎜⎜⎝ρ
N∑

j=1

C
N

bi j

(
ė j − ėi

)
y

⎞⎟⎟⎟⎟⎟⎟⎠
2

ν(dy) ≤ N
2

N∑
j=1

(ρ
C
N

bi j)
2
(
ė j − ėi

)2
∫
|y|≤c

y2ν(dy).

(3.61)

In Theorem 3.1, bound of the defined integral term S =
∫
|y|≤c

y2ν(dy) is shown. If the

upper bound of LV4 (3.59) is reorganized by considering equality (3.13) and (3.61) then

LV4 ≤ −1

2

N∑
i=1

N∑
j=1

K
N

ai j cos(e j − ei)(ė j − ėi)
2

−1

2

C
N

N∑
i=1

N∑
j=1

bi j(1 + ρb + ρR)
(
ė j − ėi

)2

+
Nσ2ρ2

2

N∑
i=1

N∑
j=1

C2

N2
b2

i j(ė j − ėi)
2

+

N∑
i=1

N∑
j=1

NS
2

(ρ
C
N

bi j)
2(ė j − ėi)

2.

We now put the terms in parentheses (ė j − ėi)
2 and alter the remaining terms to achieve

negative definiteness.

= −1

2

N∑
i=1

N∑
j=1

[
K
N

ai j cos(e j − ei) +
C
N

bi j(1 + bρ + Rρ)

−Nσ2ρ2 C2

N2
b2

i j − NS (ρ
C
N

bi j)
2

]
(ė j − ėi)

2.
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By defining the following variables,

z2 = σ2ρ2 + S ρ2

r = (1 + ρb + ρR)/2z,

and applying the quadratic property, max−π,π | cos(e j − ei)| = 1 and the property that i � j

then ai j = bi j = 1 otherwise ai j = bi j = 0 for all i, j ∈ [1, · · · ,N], the following inequality

can be established:

LV4 ≤ − 1

2

N∑
i=1

N∑
j=1

1

2
[−K + r2 − [zC − r]2](ė j − ėi)

2. (3.62)

Taking into account the following inequality given in the Lemma 3.1

ėLAėT ≥ λ2(LA)ėėT , (3.63)

and assuming that the following conditions are satisfied,

−K + r2 > 0, C = r/z, (3.64)

By considering the equations in (3.63) and (3.64), the following estimate for the upper

limit for LV2 given in inequality (3.62) can be derived:

LV4 ≤ −
[
−K + r2)

]
λ2(LA)ėėT . (3.65)

Thus, the trivial solution of the error stochastic system (3.55) is 2nd moment exponentially

stable. Since the perturbed system’s frequency converges exponentially asymptotically to

the same mean square values, stability in frequency is also established as a consequence.

�
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3.4. Numeric Simulation

In this section, the accuracy of the control rules obtained is numerically tested for

the phase and frequency synchronization of the system. To obtain the numerical results,

the Euler-Maruyama scheme as follows is employed Janicki and Weron (1993):

θn+1
i (t) =

θni (t) +

⎡⎢⎢⎢⎢⎢⎢⎣ωi + K
N∑

j=1

ai j sin
(
θnj (t) − θni (t)

)

+C
N∑

j=1

bi j

(
θnj (t) − θni (t)) + H(θn)(b + dB(tn) −

∫
|y|<1

sν(ds)

)
dt

+H(θn)

∫ tn+1

tn

∫
|y|<c

sN(dt, ds), i ∈ [1, · · ·N].

The H function indicates which layer is affected by noise

H(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ρ1

∑N
j=1 Kai j sin(θ j(t) − θi(t)

ρ2

∑N
j=1 Cbi j

(
θ j(t) − θi(t)

)
.

(3.66)

where ρ1 and ρ2 are intensity parameters of the noise in the Kuramoto layer K and control

layer L respectively.

Natural frequencies are selected as ωi = 0 for computation simplicity, and all

oscillators are interconnected.

3.4.1. Algorithm:

In the Matlab experiment, a detailed representation of each discretized trajectory

taken from the article H. Yu (2012) is provided in the following:

Before moving on to the steps of the algorithm, define f (v) density function and λ

parameter from the equality ν(ds)dt = λ f (s)dsdt
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1 Evaluate a path by simulating

θ̃ni (tn+1) = θni (tn) +

⎡⎢⎢⎢⎢⎢⎢⎣ωi + K
N∑

j=1

ai j sin
(
θnj (tn) − θni (t)

)

+ C
N∑

j=1

bi j(θ
n
j (tn) − θni (tn)) + H(θn(tn))b

]
dt + H(θn(tn))B(tn)

2 Simulate N(tn+1) − N(tn) samples from a random variable N(tn) with parameter λtn

3 Evaluate N(tn+1) − N(tn) samples t̃i from a uniformly distributed random variable

defined on [−N(tn), N(tn+1)].

4 Evaluate N(tn+1) − N(tn) samples ξi from a random variable with a density function

f (s)

5 Calculate θn+1
i (tn+1) = θ̃ni (tn) + H(θ̃n)

∑N(tn+1)

i=N(tn)+1
χ(tn+1≤t̃i<tn)ξi

78



Now let’s give simulations of the deterministic basic version of the phase angle

and frequency of the model for certain parameters in which our theoretical inference will

be tested. In all simulations, the same values are taken for K = 0.2, and the initial values

are chosen from the normal distribution from the range [−π, π].

Figure 3.1. Evolution of phases θi in time for 6 identical oscillator
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Figure 3.2. Evolution of frequencies θ̇i in time for 6 identical oscillator

The Lévy process placed in the examples is taken with a triplet as

(0.5, 1 , ν(dy)) (3.67)

where ν(dy) = exp(−x2/2)/(
√

2π).

3.4.2. Case 1: Kuramoto-oscillator layer is perturbed by the Lévy

process

In the model (3.66), ωs are taken zero for simplicity and H(θ) is taken as follows:

ρ1

N∑
j=1

Kai j sin
(
θ j(t) − θi(t)

)
(3.68)
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I : Numerical Control of Phase agreement :

In this section, the control of phase agreement of the oscillators is examined when

Lévy processes affect the oscillator layer.

Example1 :In this example, the intensity coefficient ρ = 2 is considered for Lévy

process (3.67) in the system (3.41).

Figure 3.3. Evolution of ocillator layer perturbated phases θi with intensity coefficient

ρ = 2
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By applying the control function u(x) to the system, trajectories tend to go into

stable equilibrium points

Figure 3.4. Controlled phase θi evolution of oscillator layer perturbated system with

Lévy process with intensity coefficient ρ = 2
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Example2 :In this example, it is considered different intensity coefficient ρ = 16

for the system (3.41) with the Lévy process (3.67)

Figure 3.5. Evolution of oscillator layer perturbated phases θi with Lévy process with

intensity coefficient ρ = 16
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Figure 3.6. Controlled phase θi evolution of ocillator layer perturbated system with

Lévy process with intensity coefficient ρ = 16

When the noise in intensity coefficient in the system is increased, the control func-

tion is insufficient to provide stability is observed.
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II : Numerical Control of Frequency Sychronization agreement :

The figure 3.7 shows that frequency parameters evaluation in time under the (3.67)

with intensity coefficient.

Figure 3.7. Evolution of ocillator layer perturbated frequencies θ̇i with Lévy process

with intensity coefficient ρ = 2
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The Figure 3.8 shows that frequency parameters evaluation in perturbed system

(3.41) goes into stability by control function u(x)

Figure 3.8. Controlled frequencies θ̇i evolution of ocillator layer perturbated system

with Lévy process with intensity coefficient ρ = 2
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The following Figure 3.9 shows that frequency evolution in time when the inten-

sity coefficient ρ = 16 for the system.

Figure 3.9. Evolution of oscillator layer perturbated frequencies θ̇i with Lévy process

with intensity coefficient ρ = 16
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Figure 3.10. Controlled frequencies θ̇i evolution of oscillator layer perturbated system

with Lévy process with intensity coefficient ρ = 16

3.4.3. Case 2: Control layer is perturbed by the Lévy process

I : Numerical Control of Phase agreement : In this section, the control of phase

agreement of the oscillators is examined when Lévy processes affect the control layer.
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The following Figure 3.11 shows that, the intensity coefficient ρ = 2 for Lévy

process (3.67) is considered in the system (3.41).

Figure 3.11. Evolution of control layer perturbated phases θi with intensity coefficient

ρ = 2
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By applying the control function u(x) to the system, trajectories tend to go into

stable equilibrium points in shorter time given with following Figure 3.12

Figure 3.12. Controlled phase θi evolution of control layer perturbated system with

Lévy process with intensity coefficient ρ = 2
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The Figure 3.13 shows that, intensity coefficient ρ = 16 is considered for Lévy

process (3.67) in the system (3.41).

Figure 3.13. Evolution of control layer perturbated phases θi with intensity coefficient

ρ = 16
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II : Numerical Control of Freqency Sychronization :

The Figure 3.14 shows trajectories of the frequencies of the system in time, when

intensity coefficient ρ = 2 is considered for Lévy process (3.67) in the system (3.41)

Figure 3.14. Evolution of control layer perturbed frequencies θ̇i with intensity coeffi-

cient ρ = 2
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After adding control function into system, the Figure 3.15 shows that frequency

evolution in time

Figure 3.15. Controlled phase θ̇i evolution of control layer perturbated system with

Lévy process with intensity coefficient ρ = 2

The Figure 3.16 shows trajectories of the frequencies of the system in time, when

intensity coefficient ρ = 16 is considered for Lévy process (3.67) in the system (3.41)
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Figure 3.16. Evolution of control layer perturbed frequencies θ̇i with intensity coeffi-

cient ρ = 16

According to the obtained results, compared to the theoretical results, when the

Kuramoto oscillator layer is affected, the control function loses power according to the

increase in noise intensity. Where the control layer is affected, the numerical results

indicate that noise up to a certain intensity does not affect the phase and frequency stability

of the control system, but that after this point it cannot be controlled.
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CHAPTER 4

CONCLUSIONS

In conclusion, this thesis has demonstrated that the normal distribution is not al-

ways suitable for modeling noise in power networks, particularly when sudden peaks

occur. Instead, a combination of a continuous process and a jump process is a more suit-

able approach for modeling such noise. The study focused on analyzing the stability and

control of two fundamental equations used in the modeling of power grids, the swing

equation, and the Kuramoto Model. For the SMIBS, it was concluded that a modified

(tempered) α-stable process is a better model for the noise, and control functions are de-

signed to make the system stable in probability and 2nd moment exponential stability

stable at its equilibrium point.

In the case of the Kuramoto model, the researchers studied the synchronization

of phase and frequency in Kuramoto oscillator systems. These systems were organized

in a duplex network topology and subjected to perturbations from a L’evy process. Our

investigation aimed to determine the conditions under which the duplex network would

experience a loss of phase and frequency synchronization. To address this, we utilized

Lyapunov Theory and devised a control function to facilitate system synchronization. It

was concluded that control of the system frequency and phase synchronization can be

evaluated up to a certain noise intensity level however not beyond that level. In sum, the

thesis provides valuable insights into the stability and control of power networks under

Lévy noise, and the results have practical implications for the design and operation of

power systems.
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