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Abstract. The Chapter presents a simple and efficient way of approximating a 

function with a four-bar mechanism using four or five design parameters includ-

ing one or both of the initial crank angles. The method only involves solution of 

linear set of equations and evaluating determinants, whereas nonlinear equations 

are numerically solved using a simple program such as Excel. So, the method is 

easy to explain and can be taught in an undergraduate course along with the well-

known linear three precision point synthesis problem. Precision point synthesis, 

order synthesis, mixed order synthesis, least squares approximation and extreme 

point synthesis can all be treated using the same method. The proposed method 

is illustrated with numerical examples for all mentioned synthesis problems and 

shown to be quite efficient with very low amount of structural error values. 

Keywords: Kinematic synthesis, Function generation, Four-bar mechanism. 

1 Introduction 

Approximating a function by means of a four-bar mechanism has drawn the attention 

of many kinematicians over the years. The problem was first treated geometrically as 

“position coordination” utilizing Burmester theory and curvature theory [1]. Following 

the approximation methods developed by Chebyshev, Levitskii [2] treated the problem 

analytically. Svoboda [3] prepared monograms and developed “overlay method” for 

the graphical correlation of crank angles. The main breakthrough on function genera-

tion utilizing a four-bar mechanism was by F. Freudenstein [4-7] where he treated three, 

four and five precision points and third and fourth order approximations. 

Following Freudenstein, the work on four-bar function generators followed different 

paths. Algebraic solutions for four and five precision points were sought in different 

ways [8-12] or different methods for higher order approximations were investigated 

[13-14]. Sandor and Erdman [15] use “dyad formulation” for function generation. 

Chmielewski [16] describes a numerical method through which the five equations ob-

tained for five precision point synthesis is solved. With the advance of parametric de-

sign software packages, Kinzel et al. [17] describe “geometric constraint programming” 

method for function generation. Another way of improving function approximation was 

the selection of precision points and respacing for the reduction of the structural error 

[7, 18]. The function approximation as a constrained or unconstrained nonlinear opti-
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mization problem using different numerical optimization methods attracted the atten-

tion of many researchers. The aim is to minimize the “structural error”, which is the 

difference between the generated and the required function (y = ygenerated – yrequired) or 

( = generated – required), throughout a defined range. The objective function is usually 

formulated as the minimization of the sum of the squares of the structural error (S = 

yj
2) over the range or the minimization of the maximum error within the range 

(min(max(yj)). Developments made since 1970 are given in [19]. 

Basically, four-bar function generator design is to find the dimensions of a four-bar 

mechanism (Fig. 1) to approximate a function y = f(x) within a range xin ≤ x ≤ xfin as 

best as possible. We first correlate x and y with input and output angles  and linearly 

by selecting the range , corresponding to x = |xfin – xin| and y = |ymax – ymin| via 

k = y, k = x to obtain conversion equations from x, y to  and as: 

 =in + k(y – yin)   and   =in + k(x – xin) (1) 

where the initial crank angles in and in can be designed, or selected arbitrarily. The 

ranges and are not considered as design parameters, since they are the ranges of 

motion. Freudenstein states that “in general, ranges up to 120° are feasible” [5]. 

 

Fig. 1. A four-bar mechanism. 

For a four-bar mechanism, the relation between the input-output angles is given by [5]: 

 K1cos–K2cos + K3 = cos( – ) (2) 

where 1
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the relationship between the input and output angles, the size of the mechanism is not 

important, so we can select one of the link lengths arbitrarily. Usually, a1 = 1 is selected. 

 There are five design parameters that can be used when approximating a function 

within a certain range: a2, a3, a4, in and in (a1 = 1). Instead of these parameters, K1, K2, 

K3, in and in are preferred, since Eq. (2) gives a linear relationship for Kj. 

 In this paper a novel simple numerical method of solving Freudenstein’s equation 

using four and five design parameters is shown. The method can be used for precision 

point, order and mixed order synthesis, least squares approximation and extreme point 

synthesis. The advantage of the method over other analytical or numerical methods is 

its simplicity and that it can be easily applied using a simple tool such as Excel. In this 

form, the method can be safely taught in undergraduate level courses. 
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2 Precision Point, Order and Mixed Order Synthesis 

The desired function and the function generated by the mechanism can be made to co-

incide at a number of points known as the “precision points”. Another form of function 

approximation is that the function may coincide at a few points but higher order deriv-

atives of the desired function coincide with those of the generated function. This is 

known as the “order synthesis”. We may also have a fewer number of precision points 

and have first or second order derivatives coincide. This is known as “mixed order syn-

thesis”. Let us denote P-P for two finitely separated points and PP when a point and its 

first order derivative is to be made coincident for the desired and generated functions. 

 The number of precision points or the order of the derivatives depend on the number 

of design parameters. For example, if only K1, K2, K3 are to be considered as the design 

parameters, then we can have 3-precision points (P-P-P), or one precision point with 

first and second derivatives coincident (PPP) or two precision points (PP-P) with the 

first order derivative made coincident at one of the precision points (Case P-PP is the 

same as PP-P). If we consider in or in as a fourth design parameter, then we can have 

the following 4 cases: P-P-P-P, PP-P-P, PP-PP, P-PPP, PPPP. 

 In the solution of four design parameters, at most two different solutions are ob-

tained. These solutions may have branch defect (i.e. the precision points are obtained 

at different assembly configurations), or the transmission angle or the maximum/mini-

mum link length ratio may be unacceptable. Also, there may be no real solutions.  

 If both initial crank angles are considered as design parameters, we have five design 

parameters and one may have the following mixed order synthesis cases (disregarding 

the order): P-P-P-P-P, P-P-P-PP, P-PP-PP, P-P-PPP, P-PPPP, PP-PPP, PPPPP. For 

five-parameter approximation, finitely many (usually just one) solutions are obtained. 

 For all these cases at the precision points, Eq. (2) must be satisfied. For position j:  

  j j1 j 2 j 3K cos – K cos K cos         for   j = 1, 2, .., n (n ≤ 5) (3) 

   j j j1 j j 2 j
1K sin K sin sin           (4) 

       
22

j j j j j1 j j j j 2 j j
1K cos sin K cos sin cos                    (5) 
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 (7) 
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When a problem is to be solved using three design parameters K1, K2 and K3, one will 

obtain 3 linear equations (for P-P-P Eq. (3) j = 1, 2, 3, for P-PP Eq. (3) j = 1, 2 and Eq. 

(4) (j = 2 or 1), and for PPP Eq. (3), (4), (5), j = 1). The solution is straightforward. 

When the problem is to be solved using 4 design parameters, one can select one of 

the initial crank angles, in or in, as the fourth design parameter. We can write four 

equations as a combination of Eqs. (3)-(6) depending on the type of the problem. These 

equations are linear in terms of K1, K2 and K3, nonlinear in terms of the initial crank 

angle, say in. If we assume that in is determined by some means, then the resulting 

four equations have a solution for K1, K2 and K3 if and only if the augmented matrix 

formed by the four equations is singular, or if the values of K1, K2 and K3 obtained from 

the solution of any of the three equations also satisfies the fourth equation. 

For the problem with five design parameters, both initial crank angles in and in are 

design parameters. Again we can write five equations as a combination of Eqs. (3)-(7). 

The equations are linear in terms of K1, K2 and K3. In order to have a solution, in and 

in must be such that the rank is three. Hence, the determinant of five 4×4 augmented 

matrices obtained by eliminating one equation at a time, must all be zero (taking any 

two of them may be enough). If we square the determinants and sum, the rank of the 

equations will be three when this sum is equal to zero. Another form of solution is that 

the values of in or in must be such that when K1, K2 and K3 obtained from any three 

of the five equations are substituted into the other two equations, these two equations 

must be satisfied. We determine the error made for assumed values of in and in (say 

1, 2) and evaluate 2 2

1 2     . in and in values must be such that = 0. 

Example 1: Consider the generation of y = log(x) within 1 ≤ x ≤ 10. Let  = 90 and 

= 60. This results in k = 10/unit x and k = 60/unit y. Selection of precision 

points according to Chebyshev spacing as a first trial is a good choice for reducing the 

maximum error [7]. For the independent variable x, precision points are given by: 

    j fin in fin in

1 1 2j 1
x x x x x cos

2 2 2n

 
     

 
   for   j = 1, 2, .., n (8) 

For order or mixed order synthesis, the precision points can be selected arbitrarily and 

the derivatives of y(x) and () are related by: 

 
iv iv

2 3 4

k k k k
y ,  y ,  y  and y

k k k k

   

   

              (9) 

For the P-P-P-P case, initially we assume a value of in or in. xj (j = 1, 2, 3, 4) are 

determined using Chebyshev spacing and the corresponding yj values are found. Cor-

responding crank angles are found using j = in + k(xj – xin) and j = in + k(yj – yin) 

and Freudenstein’s equation is written for the four positions. When we determine the 

value of the augmented matrix formed by these four equations, the value of the deter-

minant is not necessarily zero. “Solver” tool in Excel is used to make the value of the 

determinant zero by changing one of the initial crank angles. In general, there are two 

possible solutions. If both solutions are sought, the initial guess for the initial crank 
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angle must be altered. Instead of using the augmented matrix, Solver tool can also be 

used to determine the value of initial crank angle such that the fourth equation is satis-

fied. In Fig. 2, five different cases are shown (a1 = 1). The results must be analyzed. 

 

Fig. 2. Approximation of y = log(x) for 1 ≤ x ≤ 10,  = 90 and = 60 (a1 = 1). 

Excel Solver tool has three optimization algorithms, GRG nonlinear, LP Simplex and 

Evolutionary. It turns out that GRG nonlinear works quite efficiently in the synthesis 

problems considered. One can also use Evolutionary engine in the synthesis, provided 

that limits are placed on all the design parameters. 

For approximation with five design parameters, any one of the seven mixed order 

cases can be solved. One will obtain five equations which are either Freudenstein’s 

equation or its derivatives. Assuming values for in and in, we solve the values of Ki 

from any three of the equations. When these values are substituted into the remaining 

two equations, there are certain errors, say 1 and 2. We evaluate 2 2

1 2      and 

using the Solver tool the values of in and in which make = 0 are found. Note that 

the maximum error values can be decreased by respacing the precision points [7]. 
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3 Least Squares Approximation of a Function 

In the approximation of a function described by Levitskii et al. [2, 8], when Eq. (2) is 

written for points other than the precision points, there is some error involved, i.e.: 

  1 k 2 k 3 kk k
K cos – K cos K cos          for   k = 1, 2, .., N (10) 

where N is greater than the number of design parameters. The “residual error”, k, is 

not the structural error, but it is related. Taking the squares of the errors and adding up:  

  
2N

1 k 2 k 3 k kk 1
S K cos – K cos K cos


           (11) 

For S to be at its minimum, a necessary condition is that the derivative of S with respect 

to the design parameters must vanish. This is known as “least squares approximation”.  

Taking the partial derivative of S with respect to K1, K2, K3, in and in, we have: 

  
N

k 1 k 2 k 3 k kk 1
1

1 S
cos K cos – K cos K cos 0

2 K 


         
  (12) 

  
N

k 1 k 2 k 3 k kk 1
2

1 S
cos K cos – K cos K cos 0

2 K 


          
  (13) 

  
N

1 k 2 k 3 k kk 1
3

1 S
K cos – K cos K cos 0

2 K 


        
  (14)

   
N

2 k 1 k 2 k 3k k k kk 1
in

1 S
K sin K cos 0s cin – K cos K os

2 


                
  (15) 

   
N

1 k 1 k 2 k 3k k k kk 1
in

1 S
K sin sin K cos – K cos K cos 0

2 


                 
  (16) 

Although Eqs. (12)-(14) are linear in terms of K1, K2 and K3, Eqs. (15)-(16) are not. 

Solution using Ki (i = 1, 2, 3) as design parameters only is straightforward and is given 

in the literature [20]. Proposed solution using four or five design parameters is based 

on assuming a value for in and/or in. Using four design parameters by taking in as 

given, one can assume a value for in and solve Ki from Eqs. (12)-(14). When Ki are 

substituted into Eq. (15) (or Eq. (16) for in), it will not be satisfied. Then the problem 

is to determine in which will satisfy Eq. (15) (or Eq. (16) for in). This is basically one 

parameter search. We have found the Solver tool in Excel to be quite useful. The gra-

dient method (GRG nonlinear) or genetic algorithm (Evolutionary) can be used to de-

termine in. For five design parameters case, the same method described in Example 1 

is used: Assume values for in and in, determine the errors (1 and 2) for Eqs. (15)-

(16), evaluate 2 2

1 2      and use Solver tool to make = 0 by changing in and in. 

Note that the values of Ki solved from Eqs. (12)-(14) also depend on in and in.  
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Example 2: Consider the generation of y = ex for 0 ≤ x ≤ 1,  = 120 and = 100. 

This results in k = 120/unit x and k = 58.2/unit y. Assuming in = 60 and in = 45, 

we select 11 points for increments of 0.1 in x and determine the corresponding yk, k, 

k (k = 0, 1, …, 10). K1, K2, K3 are solved from Eqs. (12)-(14) and substituted into Eqs. 

(15)-(16). K1 = –0.16229, K2 = 00.27223, K3 = 0.95160, 1 = –0.00062, 2 = 0.00545, 

= 0.00828 are found. Solver tool is used to make  = 0 by changing in and in. When 

in and in change, Ki also change. The result is shown in Fig. 3 with = 3.4808×10-10. 

Five precision point synthesis with Chebyshev spacing is also shown for comparison. 

 

Fig. 3. Approximation of y = ex for 0 ≤ x ≤ 1,  = 120 and = 100 (a1 = 1) using 

least squares method and five precision point approximation using Chebyshev spacing. 

4 Extreme Point Synthesis  

Although the approximating function generated by the mechanism is not a Chebyshev 

polynomial, Chebyshev spacing results in a good initial approximation. Another way 

to use Chebyshev’s theory is applying Chebyshev’s alternation theorem, where the lo-

cal extrema of the error function should be equal in magnitude and alternating in sign. 

If there are n design parameters, there must be n + 1 local extrema [2]. Two of the 

design points are the terminal points of the interval. The remaining n – 1 design points 

are within the interval. At these design points we want the errors to be equal to an 

unknown value ±L. Using the correlation of x with  and y with and selecting 

in, in as before, we can determine the crank angles i, i to be correlated at the design 

points using a four-bar mechanism. This approximation method is called Best or Che-

byshev approximation in the literature, but in order to emphasize the aim, we shall call 

it “Extreme Point Synthesis”. This procedure can be used for four, five or six extrema. 

Design parameters are K1, K2, K3, in and in, but L also needs to be determined. 

When the approximating function is a Chebyshev polynomial, the design points are 

at an extremum point of the function. For n + 1 design points this spacing is given by:  

    j fin in fin in

1 1 j
x x x x x cos

2 2 n

 
     

 
   for   j = 0, 1, 2, .., n (17) 
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Note that Eq. (8) gives the roots of a Chebyshev polynomial, whereas Eq. (17) gives 

the values for the extrema of a Chebyshev polynomial. When we assume that the mag-

nitude of the error at the design points are all equal, Freudenstein’s equation can be 

written at the design points in the following form: 

     j

j j1 j 2 j 3K cos – K cos K cos 1 L         for   j = 0, 1, 2, .., n (18) 

Notice that Eq. (18) guarantees that the errors have the same magnitude at the design 

points, but it does not guarantee that these points correspond to the local extrema of the 

error function. So, it is a necessary, but not sufficient condition. 

 If we use 3 design parameters Ki, we can design for 4 design points. When 4 design 

points are considered, the unknowns are K1, K2, K3 and L. This set of four linear equa-

tions in four unknowns can be solved. When we use 4 design parameters, we also in-

clude one of the initial crank angle (say in) as a design parameter and write Eq. (18) 

for five design points. The unknowns are K1, K2, K3, L and in. Similar to 4 precision 

point synthesis, we use any four of the five equations by assuming a value for in. Then 

using the Solver tool we change the value of in such that either the determinant of 4x4 

matrix is zero, or the value of the fifth equation is satisfied with the new value of in. 

With five design parameters, we can write Eq. (18) for six design points. We assume 

values for in and in and solve for K1, K2, K3 and L from any four of the six equations. 

The rank of the equations must be 4. Solution for the design parameters may be done 

using the two methods described for the previous cases. The design points will not 

necessarily be the points of local extreme values, since the approximating function is 

not a Chebyshev polynomial. An algorithm developed by Remes [21] can be used to 

recalculate the design points. 

Example 3: For equal extreme local error synthesis functions y = x2 for 0 ≤ x ≤ 1, 

 100; y = logx for 1 ≤ x ≤ 10,  60; y = ex, 0 ≤ x ≤ 1,  

100 are approximated using 5 or 6 design points. The results are shown in Fig. 4. 

5 Discussion 

The method proposed in this Chapter is a simple and efficient way of approximating a 

function with a four-bar mechanism using four or five design parameters. The method 

only involves solution of linear set of equations and evaluating determinants, whereas 

numerical solution of nonlinear equations is performed using a simple program such as 

Excel. So, it is easy to explain and apply even at the undergraduate level. Problems 

such as precision point synthesis, order synthesis, mixed order synthesis, least squares 

approximation and extreme point synthesis can all be treated using the same method. 

The method can be easily extended to function approximation using other planar, spher-

ical or spatial single loop mechanisms. Solver tool in Excel is a widely available tool 

and if necessary function approximation can also be performed by applying constraints 

on the link length ratios and/or on the transmission angle deviation as well. 
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Fig. 4. Approximating functions y = x2 (0 ≤ x ≤ 1,  100), y = logx (1 ≤ x ≤ 10, 

 60) and y = ex (0 ≤ x ≤ 1,  100) for five and six design points. 
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