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Abstract

The gravity recovery and climate experiment (GRACE) observations have so far been

utilized to detect and trace the variations of hydrological extremes worldwide. How-

ever, applying the coarse resolution GRACE estimates for local-scale analysis remains

a big challenge. In this study, a new version of the fine resolution (1 km) Famine early

warning systems network Land Data Assimilation System (FLDAS) model data was

integrated into a machine learning model along with the GRACE data to evaluate the

subbasin-scale variations of water storage, and drought. With a correlation of 0:99

and a root mean square error (RMSE) of 3:93mm of its results, the downscaling

model turned out to be very successful in modelling the finer resolution variations of

TWSA. The water storage deficit (WSD) and Water Storage Deficit Index (WSDI)

were used to determine the episodes and severity of drought events. Accordingly,

two severe droughts (January 2008 to March 2009 and September 2019 to

December 2020) were discerned in the Kizilirmak Basin (KB) located in Central Tür-

kiye. The characterization of droughts was evaluated based on WSDI, scPDSI, and

model-based drought indices of the soil moisture storage percentile (SMSP) and

groundwater storage percentile (GWSP). The results indicated discrepancies in the

drought classes based on different indices. However, the WSDI turned out to be

more correlated with GWSP, suggesting its high ability to monitor groundwater

droughts as well.

K E YWORD S

downscaling, drought, FLDAS, GRACE, Kizilirmak basin, random forest

1 | INTRODUCTION

Drought is defined as prolonged dry conditions manifested in terms of

water deficits. As a dynamic event, it is one of the most catastrophic

environmental phenomena happening with a high frequency and pro-

longed duration. It has severe consequences for agriculture, ecological

integrity, and socio-economic progress (Kumar, AnandRaj,

et al., 2021). The rising temperatures, as a result of the climate crisis,

have increased global evapotranspiration amounts and have altered

the spatio-temporal distribution of the hydrological cycle components,

in particular, precipitation (Zhou et al., 2021). These alterations have

resulted in variations in extreme drought events in numerous spatial
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and temporal domains (Trenberth et al., 2014). Different drought

events can occur at different severity levels, which may demonstrate

variations spatially, thus their side effects may depend on the vulnera-

bility of affected sectors (Kisi et al., 2019). Therefore, knowledge of

precise variations in the spatio-temporal characteristics of drought is

crucial, especially in regions where water storage is linked to regional

security (Famiglietti, 2014) through which effective mitigation and

adaptation strategies can be followed to reduce the vulnerability of

human societies (Nischitha et al., 2014). The importance of drought

assessment at spatial and temporal domains was underscored by sev-

eral researchers over different case study areas such as Portugal

(Santos et al., 2010), China (Xu et al., 2015), Inner Mongolia in China

(An et al., 2020), Iran (Noorisameleh et al., 2021). The issue is also of

utmost importance in the arid and semi-arid areas of the world (Richey

et al., 2015). The exact identification of drought, however, is restrained

by our inability to directly observe changes in water storage. Droughts

are traditionally analysed through in situ observations of hydrometeo-

rological parameters. This orthodox monitoring approach is limited by

ground data availability such as the heterogeneous distribution of the

stations at a spatial scale and the scarcity of continuous observations in

time (Khorrami & Gunduz, 2021a). To date, several standardized indices

have been developed to investigate the precise spatio-temporal charac-

teristics of droughts, among which the Palmer Drought Severity Index

(PDSI), Standardized Precipitation Index (SPI), and Standardized

Precipitation-Evapotranspiration Index (SPEI) are the most widely used

ones (Mckee et al., 1993; Palmer, 1965; Vicente-Serrano et al., 2010).

However, these indices are associated with certain drawbacks that

restrict their effectiveness in the accurate reproduction of drought con-

ditions (Sehgal et al., 2017).

Due to the recent achievements in the field of remote sensing,

particularly with the advent of the Gravity Recovery And Climate

Experiment (GRACE), uninterrupted, precise, and economic assess-

ment and evaluation of water storage is now possible from regional to

global scales. The GRACE offers the estimates of Terrestrial Water

Storage Anomalies (TWSA), which include different components of

the hydrological cycle such as Groundwater Storage Anomalies

(GWSA), Surface Water Storage Anomalies (SWSA), Soil Moisture

Storage Anomalies (SMSA), and Snow Water Equivalent Anomalies

(SWEA) (Equation 1) that is stored above and beneath the land surface

(Ali et al., 2021; Ali, Liu, et al., 2022; Ali, Wang, et al., 2022; Arshad

et al., 2022; Khorrami et al., 2022; Khorrami & Gündüz, 2023).

TWSA¼ SMSAþSWEAþSWSAþGWSA: ð1Þ

The GRACE observations have so far been applied for the large-

scale assessment of water storage, groundwater storage, and drought

(e.g., Abhishek, 2022; Ali et al., 2023; Guo et al., 2021; Khorrami

et al., 2022; Khorrami, Ali, Sahin, & Gunduz, 2023; Khorrami &

Gunduz, 2021a; Khorrami & Gündüz, 2022; Li et al., 2019; Liu, Pei, &

Shen, 2022; Tariq et al., 2023; Wang et al., 2020; Wang et al., 2022;

Zhao et al., 2022). The GRACE-based drought indicators such as total

storage deficit index (TSDI) (Yirdaw et al., 2008), water storage deficit

(WSD) (Thomas et al., 2014), GRACE-based hydrological drought

index (GHDI) (Yi & Wen, 2016), GRACE-drought severity index (GDSI)

(Zhao, Velicogna, & Kimball, 2017), Water Storage Deficit Index

(WSDI) (Sinha et al., 2017), Modified Total Storage Deficit

Index (MTSDI) (Hosseini-Moghari et al, 2019), combined climatologic

deviation index (CCDI) (Sinha et al., 2019), and enhanced water stor-

age deficit index (EWSDI) (Khorrami & Gunduz, 2021a) have been

developed and used worldwide. However, the challenging point is that

the resulting indicators have the same spatial and temporal (monthly)

characteristics as those of GRACE and GRACE-FO data, making them

unsuitable for operational drought monitoring on regional to local

scales (Li & Rodell, 2021). Although the GRACE data are more suitable

for large-scale hydrological applications due to their coarse resolution,

recent developments in downscaling techniques make GRACE data

suitable to assess the local scale variations in water storage in some

studies (e.g., Ali et al., 2021; Ali, Liu, et al., 2022; Arshad et al., 2022;

Gerdener et al., 2020; Gyawali et al., 2022; Jyolsna et al., 2021;

Khorrami et al., 2021; Khorrami, Pirasteh, Ali, et al., 2023; Seo &

Lee, 2019; Yin et al., 2022). However, the majority of the downscaling

practices have so far focused on medium-resolution (25km�25km)

analysis because of the limitations of fine-resolution hydrological

inputs. To our best knowledge, there are only two research items

implemented so far to evaluate 1 km variations of terrestrial and

groundwater storage based on some fine-resolution hydrological

parameters where Zhou et al. (2021) applied high-resolution

vegetation index and temperature and Zhang et al. (2021) used high-

resolution variables such as NDVI, soil parameters, temperature, pop-

ulation and Digital Elevation Model (DEM) in their studies.

As one of the world's climatic variability hotspots with a dominat-

ing arid to semi-arid climate, Türkiye is overly susceptible to drought

risk, in which progressive and dramatic drier seasons at higher levels

of global warming seem to be ineluctable (Pekpostalci et al., 2023).

The climate change impacts accompanied by the geographic charac-

teristics of the region have rendered the majority of the country, par-

ticularly the central, southern, and southeastern regions, prone to

water scarcity (Kurnaz, 2014) where agriculture is the main economic

sector (Komuscu, 1999). Drought incidents may spawn grave socio-

economic side-effects in the country. For example, according to Dellal

and McCarl (2010), up to 15% of the national agricultural production

of Türkiye was negatively affected by the extreme drought in 2007,

culminating in the loss of welfare of the population. Although drought

events over Türkiye have been explored by a myriad of studies

(e.g., Khorrami & Gunduz, 2021a; Khorrami & Gündüz, 2022;

Kurnaz, 2014; Pekpostalci et al., 2023), no previous study have imple-

mented a downscaled GRACE data integrated assessment procedure.

Therefore, the main novelty of the current study is to evaluate the

spatiotemporal patterns of drought using downscaled GRACE esti-

mates. In this premise, a model-based Random Forest integrated

methodology is proposed to downscale the GRACE/GRACE-FO data

to the fine spatial resolution of 1 km�1km resolution. Although the

FLDAS outputs have recently been utilized for the downscaling of

the GRACE data (Khorrami, Ali, & Gunduz, 2023; Khorrami &

Gündüz, 2023), their target resolution was 10km�10km. In this

study, the authors go one step further in generating high-resolution
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(1km�1km) TWSA data by integrating the newly released version of

the Famine early warning systems network Land Data Assimilation

System (FLDAS) model. The authors hypothesize that the fine resolu-

tion TWSA from GRACE-FLDAS integrated approach would yield

acceptable results for the assessment of the subbasin-scale variations

of water storage and drought incidents on a spatial and temporal

domain. Within the scope of the current study, the authors aim (1) to

downscale the GRACE/GRACE-FO observations based on the fine

resolution FLDAS model outputs; (2) to investigate the subbasin-wise

fluctuations of TWSA over subbasins of Kizilirmak Basin (KB); (3) to

evaluate the subbasin-wise variations of drought; (4) to analyse the

spatio-temporal characteristics of drought incidents based on the

1km Water Storage Deficit Index (WSDI); and (5) to validate the

results against global drought indices.

2 | METHODOLOGY

2.1 | Site description

As one of the most significant hydrological units of Türkiye, The Kizi-

lirmak Basin (KB) is positioned in eastern central Anatolia. The KB is

the second largest basin of the country with a drainage area of

82 221 km2 where about 4 million people reside in 18 provinces

(FMP, 2019). The basin receives an estimated precipitation of

455 mm per annum with an air temperature of 13.7�C (Hinis &

Geyikli, 2023). There are six sub-basins in the basin, including the

Upper Kizilirmak Basin (UKB), Lower Kizilirmak Basin (LKB), Central

Kizilirmak Basin (CKB), Delice Basin (DB), Seyfe Closed Basin (SCB),

and Develi Closed Basin (DCB) (Figure 1). Although the generic cli-

mate of the basin is of central Anatolian continental type (Ercan &

Yüce, 2017), the microclimate of sub-basins varies according to local

terrain and morphological differences (FMP, 2019). Essentially, the

inner parts of the KB belong to the arid to semiarid climate type, while

the coastal regions near the Black Sea have humid to semihumid con-

ditions. The basin experienced widespread droughts between 1960

and 2017 (Akturk et al., 2022). The concomitant effects of drought

vary concerning the spatial location of the incidents in the basin and

have serious consequences for agricultural productivity, ecosystem

integrity, and the socioeconomic well-being of the KB (DMP, 2019).

Therefore, monitoring the incidents and taking effective measures in

the basin are of utmost importance.

2.2 | Data sets used

As discussed below, this study used a variety of remote sensing and

model data, the characteristics of which are listed in Table S1. More-

over, the methodological flow of the analysis is portrayed in

Figure S1.

F IGURE 1 The geographic location of Kizilirmak Basin (KB) in Central Türkiye (a); Mean Annual Precipitation (MAP) (b), and Land Use/Cover
(LULC) (c) of the KB.
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2.2.1 | GRACE/GRACE-FO observations

GRACEThe is a pioneering remote sensing mission with two

identical satellites onboard to sense the variations in the Earth's

gravitational pull (Tapley et al., 2004). The GRACE and GRACE-

FO satellites both have a similar satellite orbit configuration.

However, the latter benefits from an optimized system design

where a Laser Ranging Interferometer (LRI) is used for testing

purposes for upcoming remote sensing gravimetry projects

(Chen et al., 2022). To date, the GRACE project has been a very

promising space mission in rendering services to the end-users

with its precious observations of terrestrial water storage anom-

alies (TWSA) at spatial resolutions ranging from 100 to 25 km,

depending on the processing level (Khorrami et al., 2022). The

gravity signals of the CSR (Center for Space Research) mascon

solutions manifest higher spatial resolution (25 km) than those

from other GRACE mascon solutions (Save et al., 2016). The

TWSA estimates were extracted for the study area from the

GRACE-CSR mascon data set accessed from http://www2.csr.

utexas.edu/grace/RL06_mascons.html.

2.2.2 | FLDAS model

The FLDAS is a multifaceted modelling project (McNally et al., 2017)

through which a broad range of input data from in situ observations

to remotely sensed data such as precipitation, temperature, humidity,

radiation, and wind is assimilated into a global model to generate

intended hydro-meteorological parameters such as soil moisture,

evapotranspiration, and runoff (Loeser et al., 2020; McNally

et al., 2017). This model utilizes two land surface models (LSMs) in its

simulation process: the Variable Infiltration Capacity (VIC) model and

the Noah model (McNally et al., 2017), the spatial resolution of which

ranges from 25 to 1 km. In this study, the fine resolution (1 km) of the

downscaling training data sets was extracted from the newest version

of the FLDAS-Noah model which covers the Central Asia region. The

FLDAS model outputs can be accessed at https://disc.gsfc.nasa.gov/

datasets?keywords=FLDAS.

2.2.3 | GLDAS model

The Global Land Data Assimilation System (GLDAS) is a hydrologi-

cal model, akin to the FLDAS, by which different parameters are

simulated through the integrated data assimilation process. The

GLDAS mission uses five LSMs, such as the community land model

(CLM), Variable Infiltration Capacity (VIC) model, Noah model,

Mosaic model, and Catchment Land Surface Model (CLSM) (Hu

et al., 2019). VIC, Mosaic, and CLSM have a spatial resolution of

100 km, while the Noah and CLSM models produce data at a reso-

lution of 25 km. NASA has released a new version of the GRACE-

CLSM assimilated drought indicators on a global scale. The soil

moisture and groundwater storage situation is estimated using a

complex numerical model of water and energy fluxes to come up

with the soil moisture and groundwater drought indicators to eval-

uate the wet and dry conditions (Houborg et al., 2012). The proba-

bility of a drought incident is given as percentiles indicating wet or

dry conditions (Table S2). The soil moisture and groundwater

drought indices from the GLDAS-CLSM model are accessible at

https://disc.gsfc.nasa.gov/datasets/GRACEDADM_CLSM025GL_

7D_3.0/summary?keywords=GRACE-DA.

2.2.4 | Climate hazards group infrared precipitation
with station data

The climate hazards group infrared precipitation with station

data (CHIRPS) is a global precipitation data set that offers estimates

of precipitation at daily and monthly scales. Much appreciated for its

accurate estimates, the CHIRPS is utilized as a surrogate for precipita-

tion perceptions, particularly over locales with data availability issues

(Paca et al., 2020). The CHIRPS data set is available at http://chg.

geog.ucsb.edu/data/chirps/.

2.2.5 | Self-calibrating palmer drought
severity index

The self-calibrating palmer drought severity index (scPDSI) is an

improved version of the palmer drought severity index (PDSI). The

PDSI is based on the water balance approach and assimilates the

historical data of precipitation and temperature into soil character-

istics to infer drought conditions (Briffa et al., 2009). Wells et al.

(2004) developed the scPDSI to compensate for the weakness of

the PDSI for applications over regions with climatic diversity. For

details on the calculation of the index can be found in refer to

Wells et al. (2004). The grid-based scPDSI data with a spatial reso-

lution of 50 km and on a monthly time scale were received from

https://crudata.uea.ac.uk/cru/data/drought/. Table S3 gives the

corresponding drought classes.

2.2.6 | Soil moisture and groundwater drought
indices

Soil moisture storage percentile (SMSP), and groundwater storage

percentile (GWSP) are model-based drought metrics generated

through sophisticated data assimilation techniques. These drought

indicators express wet or dry conditions as a percentile, indicating the

probability of occurrence within the period of record from 1948 to

2014. NASA provides the global-scale gridded data simulated under

the GLDAS-CLSM model, which can be accessed via https://disc.gsfc.

nasa.gov/datasets/GRACEDADM_CLSM025GL_7D_3.0/summary?

keywords=GRACE-DA.
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2.3 | Methods

2.3.1 | Random forest machine learning

Random Forest Machine Learning (RFML) is one of the ensemble-

based machine learning techniques (Rahaman et al., 2019), with preva-

lent applications in classification and regression problems

(Breiman, 2001). It generates a set of decision trees using homoge-

nous subsets of random predictors (Rahaman et al., 2019). The down-

scaling model was organized and implemented as follows: (i) The

training data including surface topography, soil moisture, snow water,

rainfall, runoff, temperature, and evapotranspiration, were aggregated

to 25 km using bilinear interpolation method similar to the GRACE's

spatial resolution, and consequently their associations with TWSA

values were examined. Later, the RFML model was applied for

TWSA predictions at coarse resolution (25 km). (ii) The TWSA resid-

uals at the same resolution (25 km) were estimated by deducing the

RFML-predicted TWSA from the GRACE-derived TWSA. (iii) Then,

the trained RFML model was applied to the input variables at a spatial

resolution of 1 km to obtain fine-resolution TWSA estimates. At the

final stage, the residuals interpolated at 1 km using bilinear

interpolation method were added to the estimated 1 km TWSA to

obtain the downscaled TWSA over the KB.

K-fold cross-validation was employed to assess the robustness of

the RFM (Ali et al., 2021). The k-fold cross-validation technique partitions

the data set into k subsets and utilizes different subsets for training the

model while using the remaining examples for testing. This approach

allows for a comprehensive evaluation of the model's performance

across numerous train and test samples. It is conventional to employ a

10-fold cross-validation technique and thereafter compute the average

of the obtained results, so enhancing the reliability of the findings.

2.3.2 | Water storage deficit index

Water storage deficit index (WSDI) (Thomas et al., 2014) was utilized

for drought evaluation in the study area. To calculate the WSDI, water

storage deficit (WSD) values were first calculated based on

Equation (2) by subtracting the climatology (long-term monthly) values

of TWSA from the TWSA time-series. Then, the WSDI was extracted

by standardizing the computed WSD based on Equation (3) by using

the mean and the standard deviation of the WSD time-series.

F IGURE 2 The schematic flow of the analysis.

KHORRAMI ET AL. 5 of 23

 10991085, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.15034 by Izm

ir Y
uksek T

eknoloji E
nstit, W

iley O
nline L

ibrary on [18/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WSDi,j ¼TWSAi,j�TWSAj, ð2Þ

WSDI¼WSDi,j�xWSD

sWSD
, ð3Þ

where TWSAi,j and WSDi,j are the downscaled-based TWSA and total

WSD time-series for the jth month in the year i, respectively; TWSAj is

the long-term mean of TWS for the corresponding month (the jth

month in a year i), sWSD and xWSD are the standard deviation and mean

of the WSD time-series, respectively.

Water deficit or surplus conditions of a given area is determined

according to the sign of the WSD. Negative and positive values of

WSD demonstrate water storage shortage and surplus respectively.

The duration of negative WSD values over a region is a clear indica-

tion of a drought incident. The persistence of negative WSD values

for three or more consecutive months over a region indicates the exis-

tence of a drought event (Thomas et al., 2014). The monthly

departures from the average situation of the region in each month are

represented as the WSDI time-series and may be used as a proxy for

the severity of drought.

The drought severity was evaluated using Equation (4) (Thomas

et al., 2014) through which the combined effects of water storage

deficit and drought duration are taken into account.

Se tð Þ¼M tð Þ�D tð Þ, ð4Þ

where, Se depicts the drought severity, of the number of droughts (t).

M and D represent the average storage deficit and the drought dura-

tion respectively. In comparison to the WSD, this approach is very

effective in illuminating droughts due to its capability of integrating

the WSD with drought duration. The WSD is a useful variable only

when the WSDI has identified a specific drought in a region and the

previous month's value indicates the severity of that event.

The drought classes based on the WSDI are given in Table S4.

F IGURE 3 (a) Time-series associations between the GRACE-derived TWSA (25 km), and the downscaled TWSA (1 km) and the spatial
fluctuations of TWSA in 2020 before (b), and after (c) downscaling from 2003 to 2020.
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A brief description of the methodological flow of the analy-

sis is given in Figure 2. Overall, the analysis consists of several

stages. First, RFML model was developed to predict the finer

resolution of the GRACE-like TWSA estimates using some fine

resolution hydro-climatic parameters received from the FLDAS

model. Second, the WSDI was estimated using the downscaled

TWSA based on Equations 1 and 2. And finally, the validation

and interpretation of the results were done using auxiliary infor-

mation received from some open-source data sets such as

scPDSI, SMSP, and GWSP.

3 | RESULTS

3.1 | Downscaling performance

As the first step of the analysis, the original TWSA estimates with a

resolution of 25 km were downscaled to a 1 km data set based on

the RFML algorithm. The downscaled and the original TWSA time-

series were evaluated to assess the performance of the downscal-

ing model. The TWSA time-series (Figure 3a) demonstrates a very

well performance for the downscaling model in catching the fine

resolution fluctuations of the original TWSA with high R2 (0:99) and

low RMSE (3:93mm). The good performance of the RFML model

found in this study agrees well with the findings of some researchers.

For instance, Ali et al. (2021), Khorrami (2023), and Chen et al. (2019)

reported high correlation values of 0:97, 0:87, and 0:83, respectively

between the RFML-based downscaled and GRACE-based TWSA

time-series. To provide a better illustration of the model performance,

the spatial distribution of the TWSA values over the KB was depicted

before and after downscaling in Figure 3b and c, respectively.

3.2 | Fluctuations of terrestrial water storage

The basin-average time-series of precipitation and the fine resolution

TWSA were generated to investigate their monthly fluctuations, as well

as their associations over each subbasin of the KB (Figure S1). According

to the results, the fluctuations of TWSA in the LKB are ascending, while

the remaining subbasins demonstrate diminishing water storage. The

results also reveal that during the years 2007, 2008, 2018, 2019, and

2020, all the studied subbasins suffered from critical water storage

anomalies. This dry situation is particularly exacerbated in 2008 and

2020, during which all the subbasins of the study area lost most of their

water storage. March 2008 was the most critical time in the last 18 years

in which the LKB lost an estimated water storage of �383:57mm. The

remaining subbasins show different times of maximum storage loss.

The results show that the DCB, SCB, UKB, CKB, and DB respectively

lost �253:11mm (November 2020), �214:20mm (November 2020),

�207.80mm (November 2008), �188:91mm (December 2020), and

�187:86mm (November 2008). The acute depletion of water storage

in the KB is a local footprint of the widespread droughts striking Tür-

kiye during the dry years of 2007 to 2008 and 2018 to 2020

(Khorrami & Gunduz, 2021b; Okay Ahi & Jin, 2019).

Conversely, an unremitting pluvial period is seen for all the studied

subbasins from 2010 to 2013 during which water storage of the basins

manifests an increasing trend, especially in April 2013, when the water

storage of the basins set a record during the GRACE era. According to

the results, the maximum number of wet months (139 months) is seen in

the LKB which accounts for 64% of the total study months. The maxi-

mum number of dry months (113), on the other hand, belongs to the

DCB accounting for 52% of the study months. Therefore, it can be

stated that the LKB and DCB are the wettest and driest basins from

the perspective of the temporal fluctuations of TWSA.

TABLE 1 Trend analysis results of the basin-wise Terrestrial Water Storage Anomalies (TWSA) and Precipitation (P).

Basin name

Trend

p-value MK trend test (α = 0.05)Parameter mm/year km3/year Total change (km3)

Terrestrial Water Storage Anomalies LKB þ3:51 þ0:075 þ1:36 0:002 Ascending trenda

CKB �1:15 �0:025 �0:45 0:105 Descending trend

DB �1:14 �0:020 �0:35 0:087 Descending trend

UKB �1:58 �0:025 �0:46 0:036 Descending trenda

DCB �2:34 �0:007 �0:12 0:002 Descending trenda

SCB �1:31 �0:002 �0:03 0:035 Descending trenda

Precipitation LKB þ1:21 þ0:026 þ0:47 0:225 Ascending trend

CKB þ0:23 þ0:005 þ0:09 0:822 Ascending trend

DB �3:18 �0:055 �0:98 0:001 Descending trenda

UKB �0:61 �0:010 �0:18 0:544 Descending trend

DCB þ0:45 þ0:001 þ0:02 0:649 Ascending trend

SCB �1:21 �0:002 �0:03 0:225 Descending trend

aStatistically significant.
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The monthly variations of precipitation, on the other hand, dem-

onstrate ascending trends for the LKB, DCB, and CKB subbasins while

the DB, UKB, and SCB manifest an increasing trend during the same

time. The temporal fluctuations of the precipitation and TWSA are of

moderate associations ranging from 0:30 (over the LKB) to 0:48 (over

DCB and UKB), which may stem from the existing temporal lag

between them over almost all the studied subbasins. The time-series

analysis also reveals that, on average, the LKB, DB, DCB, CKB, SCB,

and UKB have suffered from the least received annual precipitation of

about 47mm (2018), 28mm (2016), 33mm (2017), 25mm (2016),

30mm (2008), and 30mm (2013), respectively.

The long-term monthly (climatology) fluctuations of TWSA and

precipitation are given in Figure S3. According to which, the minimum

amount of precipitation was observed in the study area during August,

September, and October. The decreasing precipitation during this

period corresponds to the diminishing water storage of the basins,

which culminates in the least recorded amount of TWSA in October

for all the subbasins. The climatology associations between TWSA

and precipitation indicate a powerful link between them where the

correlation values range from 0:71 (over the SCB) to 0:79 (over LKB).

3.3 | Trend analysis results

The MK trend test and Sen's slope technique were applied to deter-

mine precipitation and TWSA trends over each subbasin at the signifi-

cance level of 0:05 (Table 1). According to the results, the storage of

the LKB has been augmented by þ3:51mm per annum which is

equivalent to 1:36km3 of total storage surplus. However, the remain-

ing basins have suffered from declining water reserves, among which

DCB has been the most critical basin, where the basin storage has

been reduced by �2.34mm per annum.

F IGURE 4 Temporal interactions between the water storage deficit index (WSDI) and self-calibrated palmer drought severity index (scPDSI)
over LKB (a), DB (b), DCB (c), CKB (d), SCB (e), and UKB (f).
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The precipitation time-series, on the other hand, reveals that while

there is a diminishing trend for the DB (�3:18mm=year), UKB

(�0:61mm=year), and SCB �1:21mm=yearð Þ, an ascending trend is

observed for the LKB þ1:21mm=yearð Þ, CKB þ0:23mm=yearð Þ, and
DCB þ0:45mm=yearð Þ. The significance test analysis results suggest

that except for the DB with a significant decreasing P trend, the esti-

mated trends of the remaining subbasins are not statistically significant.

3.4 | Associations between WSDI and drought
indices

The temporal variations in WSDI were evaluated and validated against

the variations of other drought indicators including the scPDSI, SMSP,

and GWSP.The temporal associations between WSDI and scPDSI

(Figure 4) manifest a generally good agreement over almost all the

subbasins. Except in the DCB, for which the correlation is 0:31,

the WSDI in LKB, DB, CKB, SCB, and UKB show relatively good

performance with a correlation of 0:51, 0:52, 0:45, 0:45, and 0:56,

respectively. It is observed that there was a relatively low to moderate

agreement between the WSDI and scPDSI in the subbasins of the

KB. However, the WDSI was successful in catching the descending

trend of the scPDSI during the drought events in 2007–2008, 2014,

and 2018–2020. Therefore, it can be stated that the WSDI can detect

and trace dry periods over small-scale areas.

The associations between WSDI and the simulated drought indi-

cators of SMSP and GWSP are illustrated in Figures 5 and 6, respec-

tively. According to the results, there is overall a higher agreement for

the WSDI-SMSP and WSDI-GWSP interactions than WSDI-scPDSI in

the studied subbasins. The correlation for the WSDI-SMSP over LKB,

DB, DCB, CKB, SCB, and UKB is 0:60, 0:59, 0:58, 0:60, 0:61, and

0:62, respectively. The temporal associations are even stronger for

the WSDI-GWSP relation with a correlation of 0:71 (over LKB), 0:77

(over DB), 0:79 (over DCB), 0:78 (over CKB), 0:79 (over SCB), and

0:81 (over UKB). The strong agreement observed for the CLSM-

derived SMSP and GWSP with the WSDI is justifiable because the

F IGURE 4 (Continued)

KHORRAMI ET AL. 9 of 23

 10991085, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.15034 by Izm

ir Y
uksek T

eknoloji E
nstit, W

iley O
nline L

ibrary on [18/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CLSM model uses the GRACE data to improve its estimates through

sophisticated data assimilation models (Li & Rodell, 2015). Therefore,

the drought indices derived based on this approach yield more accu-

rate results.

The spatial correlation maps (Figure 7) illustrate the spatial pat-

terns of the correlation values of the WSDI and the other indices over

the KB basin. According to Figure 7-a, the spatial agreement between

the WSDI and scPDSI ranges from 0.31 to 0.56 with the maximum

correlation seen over the LKB, DB, and a part of UKB subbasins. The

spatial correlation between the WSDI and SMSP (Figure 7-b) is above

0.50 for the whole area with the maximum agreement over the SCB,

DB, and UKB. The best spatial association is observed between the

WSDI and GWSP (Figure 7c) ranging from 0.53 to 0.82. The southern

and western subbasins of UKB, DB, SCB, and the majority of CKB

manifest the highest spatial association between the WSDI

and GWSP.

3.5 | Drought characterization based on drought
indices

The drought events of the study area were categorized based upon

the used indices of the WSDI, scPDSI, SMSP, and GWSP according to

corresponding tables of classification given in Data S1. The lower

WSD and longer duration were considered to define the harshness of

the drought events. Accordingly, two harshest droughts were identi-

fied for all the subbasins of the KB. The first event was observed

between January 2008 and March 2009 (15 months in duration). The

second event was observed from September 2019 to December 2020

(16 months in duration). Although Türkiye experienced a country-wise

dry period in 2014 (Khorrami & Gunduz, 2021a), the analysis results

suggest that it has had a trivial short-term impact on the water stor-

age of the KB compared to the droughts that transpired in the above-

mentioned periods. The characteristics of the detected droughts are

F IGURE 5 Temporal interactions between the water storage deficit index (WSDI) and soil moisture storage percentile (SMSP) over LKB (a),
DB (b), DCB (c), CKB (d), SCB (e), and UKB (f).
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given in Table 2, according to which the most critical situation in

terms of hydrological severity is observed in the LKB basin with a

total storage loss of about 2053 and 1010mm during the first and the

second harsh drought incidents. The LKB is followed by DCB, DB,

SCB, CKB, and UKB with a total storage loss of 1368, 1331, 1286,

1116, and 1142mm, respectively during the first dry period. But for

the second dry period, the LKB is followed by SCB, DCB, DB, UKB,

and CKB with the estimated storage loss of 1002, 991, 965, 882, and

821mm, respectively.

From the perspective of the maximum water storage losses dur-

ing the discerned dry periods, it can be stated that March 2008, and

December 2020 have been the most critical months, during which the

majority of the study subbasins have experienced peak water deficits.

According to Table 2, the LKB has the most dramatic situation in

terms of the experienced peak storage deficit that happened in March

2008 (�466:07mm) and in Jun 2020 (�229:85mm). The UKB, on the

other hand, manifests the least peak deficit recorded in November

2008 �118:78mmð Þ and in December 2020 �131:05mmð Þ.

The drought categorization into different levels was done consid-

ering the defined levels of severity for each drought index given in

Tables S2, S3, and S4. Except for the drought indices of WSDI and

GWSP, with almost identical drought classes during the drought inci-

dents, trivial discrepancies are seen in the severity level of droughts

based on different indicators. The classification of drought severity is

given in Table 3. According to the results, it is revealed that notwith-

standing the contrasts in the severity levels among drought indices,

there is more consistency in terms of the detected droughts during

the second dry period (September 2019–December 2020) than

during the first period (January 2008–March 2009). The consistency

of the results during the second drought incident is even more notice-

able for the WSDI, SMSP, and GWSP over the DB, CKB, DCB, SCB,

and UKB with the ascribed ‘moderate’ drought category. While the

scPDSI discloses the existence of a ‘mild’ situation for all the subba-

sins excluding the LKB and SCB with ‘moderate’, and ‘normal’ situa-
tions, according to SMSP, and GWSP, the drought severity was of

‘moderate’ class for all the study area during the second dry period.

F IGURE 5 (Continued)
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During the first period, however, the inconsistency between the

severity levels of drought over the subbasins of the study area is more

profound. WSDI demonstrates a ‘moderate’ drought period for all the

subbasins, the scPDSI, on the other hand, indicates a ‘mild’ situation
for almost all the subbasins. This inconsistency is more evident

between the SMSP- and GWSP-based categorized droughts. Accord-

ing to the SMSP, there is an ‘abnormal’ drought over the subbasins in

the first drought period. However, the GWSP manifests an ‘extreme’
drought for the DCB, a ‘severe’ drought for the CKB, and a ‘moder-

ate’ drought for the DB, SCB, and UKB. Overall, a maximum differ-

ence of one severity level was observed between the drought indices

over the majority of the subbasin of the KB. The characterization of

drought based on different indices revealed discrepancies in the

severity of the droughts. The discrepancies observed between

the drought classes based on the used indices may be ascribed to the

differences in hydrological ingredients and used algorithms as well

(Cui et al., 2021). While the WSDI represents a combined set of

different hydrological components such as the water input and output

(Emerton et al., 2016), scPDSI takes into account only a handful of

those data such as precipitation (Sinha et al., 2017).

3.6 | Drought spatial variability

The drought was further evaluated in a spatial context by using the

thematic maps of WSDI. As the most dramatic drought event over

the KB from 2003 to 2020, the first drought incident (January 2008–

March 2009) was selected to be evaluated spatially. To this end, the

drought incident over the KB was portrayed spatially based on

the monthly WSDI values (Figure 8). According to the results, it is

observed that the most drought-beaten part of the KB is the northern

part over the LKB. While the LKB has the most dramatic situation, the

UKB in the Eastern KB turns out to suffer less from the drought inci-

dent. However, in January 2008 and December 2008, there is a

F IGURE 6 Temporal interactions between the water storage deficit index (WSDI) and groundwater storage percentile (GWSP) over LKB (a),
DB (b), DCB (c), CKB (d), SCB (e), and UKB (f).
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different spatial pattern of the WSDI, during which the majority of the

KB is covered by the lower WSDI values suggesting a basin-wide

drought incident on these dates.

The map of the drought-ravaged areas demonstrates the drought

development and its impacted regions with various intensities.

Figure 9 illustrates the geographical evolution of WSDI in different

subbasins of the KB during 2003–2020. The area percentage of the

drought-beaten subbasins is given based on the monthly droughts of

various severity levels to more clearly identify the regions affected by

various levels of drought. According to the results, the first drought

incident (January2008�March2009) affected about

37%,46%,49%,53%,56%, and 65% of the area of LKB, DB, CKB,

DCB, SCB, and UKB subbasins, respectively. The above-mentioned

subbasin has also suffered from extreme drought (IV) during the same

period with an area percentage of 15%,0:08%,3%,1%,0:7%, and

0:01%, respectively. During the second incident

(September2019�December2020), drought has beaten the LKB,

DB, CKB, DCB, SCB, and UKB subbasins with the estimated area per-

centage of 52%,62%,63%,59%,62%, and 61%, respectively. During

this period the extreme drought overtly impacted the LKB, and CKB

with the affected area of 6:5% and 3%, respectively. The DB and

DCB were slightly subjected to extreme drought with the affected

area of 0:23% and 0:66%, respectively. The impact of the transpired

extreme drought during this dry period was trivial over the SCB and

UKB. A summary of the drought area percentages is given in Table 4.

4 | DISCUSSION

4.1 | WSDI performance

Drought incidents can be more effectively determined and surveyed

by using the drought indices derived from the GRACE/GRACE-FO

observations compared to the traditionally used standardized drought

F IGURE 6 (Continued)
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indicators (Nigatu et al., 2021). The GRACE project is adept at detect-

ing hydrological extremes because they vertically integrate the stor-

age variations from the surface to the deep layers of aquifers. Thus,

they can potentially detect the water storage loss of surface water,

shallow groundwater, and deep groundwater (Cui et al., 2021). Since

traditional drought indices depend on the accumulation of rainfall def-

icits, they are usually lame in describing droughts and their impact on

the hydrological system of subsurface structures. (Thomas

et al., 2014). As an enhanced form of PDSI, the scPDSI does also

account for the net water changes but through a simplified model,

which usually represents the water balance of shallow soil depth

(Zhao, Geruo, et al., 2017). The sc-PDSI is more suitable to character-

ize just agricultural droughts. Additionally, it is weak in quantifying

drought trends and magnitude in drier regions (Xu et al., 2021). From

this perspective, the tenuous connection between the time-series of

the TWSA-based WSDI and scPDSI can be rationalized. The major

reason is that the TWSA-identified droughts and meteorological

droughts are different in timing due to the inherent lags within the

hydrologic system (Thomas et al., 2014). Moreover, traditional indices

depend mainly on hydro-climatic variables and fluxes with a trivial

impact on the top surface system. However, differences in the subsur-

face system characteristics may also play a paramount role in the for-

mation of drought, especially for prolonged and extremely intense

droughts. Conversely, by integrating the effects of multiple surface and

subsurface hydrological phenomena, the Water Storage Deficit Index

(WSDI) can accurately measure the amount of water that is depleted

from storage. Furthermore, the sensitivity of the scPDSI to strong

meteorological droughts is low compared to other indices (Van der

Schrier et al., 2011). Although the scPDSI has contributed a lot to

improving spatial consistency and controlling the frequency of extreme

incidents (Trenberth et al., 2014), it is more sensitive to extreme varia-

tions in the surface soil moisture (Van der Schrier et al., 2011).

The WSDI shows strong accordance with the CLSM-derived

drought indices of SMSP and GWSP, which is justifiable because the

F IGURE 7 Spatial association of the time series drought indices from 2003 to 2020 over the KB. WSDI versus scPDSI (a), WSDI versus SMSP
(b), and WSDI versus GWSP (c).
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CLSM model has integrated the GRACE data into its simulations to

improve their quality (Li & Rodell, 2015; Zaitchik et al., 2008). The

enhanced CLSM-derived drought indicators, ought to give a more

comprehensive and objective characterization of droughts (Rui

et al., 2018). Furthermore, the GRACE signals are more sensitive to

the surface and subsurface water storage anomalies (Scanlon

et al., 2016), thus, they supply realistic information on the soil mois-

ture and groundwater conditions at depth. Therefore, the drought

indices derived from the TWSA data are more likely to agree with the

soil moisture- and groundwater storage-related drought indices such

as the SMSP and GWSP. Because the GRACE TWSA encompasses

various components of the hydrological water cycle (Longuevergne

et al., 2013), the GRACE is potent enough to capture the storage

dynamics in deep soil water as well as groundwater (Wang &

Pozdniakov, 2014). The SMSP and GWSP represent the water storage

status of the surface soil and groundwater aquifers. Considering the

strong association between the WSDI and GWSP, it can be inferred

that the WSDI can also act potentially to detect groundwater drought

as suggested by Abhishek (2022).

Overall, different drought indices have different limitation and their

ideal performance relies on having access to different data,

and effective data processing (Liu, Zhu, et al., 2022). Consequently, it

seems to be unrealistic to expect a single drought index to capture all

drought types and in all regions. However, the use of TWSA-based

indices for drought analysis and assessment makes more sense from a

physical perspective, as soil water content and total soil storage deficit

are better visual representations of drought (Sun et al., 2018). The

WSDI-based analysis of drought intensity suggests that the majority of

the KB has undergone moderate droughts. Unfortunately, there is no

similar study in the KB to be used as a validation source for the WSDI-

revealed results of the current study. However, some researchers used

conventional approaches and indices to assess the drought situation of

TABLE 2 Characteristics of the most severe droughts discerned based on the fluctuations of TWSA.

Period (duration) Subbasin Average deficit (mm) Total severity (mm) Peak deficit (mm)

Jan 2008–Mar 2009 (15 months) LKB �136:9 �2053:8 �466:1 (Mar 2008)

DB �88:7 �1330:8 �150:9 (Mar 2008)

CKB �74:4 �1116:2 �123:2 (Jun 2008)

DCB �91:8 �1367:7 �184:3 (Mar 2008)

SCB �85:8 �1286:5 �147:4 (Jun 2008)

UKB �76:1 �1141:8 �118:8 (Nov 2008)

Sep 2019–Dec 2020 (16 months) LKB �63:2 �1010:5 �229:8 (Jun 2020)

DB �60:3 �965:2 �160:8 (Dec 2020)

CKB �51:3 �820:9 �169:9 (Nov 2020)

DCB �61:9 �990:9 �172:9 (Dec 2020)

SCB �62:6 �1001:7 �164:3 (Dec 2020)

UKB �55:1 �881:9 �131:1 (Dec 2020)

TABLE 3 Classification of the most severe droughts discerned based on drought indicators.

Period (duration) Subbasin

Grade

WSDI sc-PDSI SMSP GWSP

Jan 2008–Mar 2009 (15 months) LKB III (moderate) III (moderate) I (abnormal) III (severe)

DB III (moderate) II (mild) I (abnormal) II (moderate)

CKB III (moderate) II (mild) I (abnormal) III (severe)

DCB III (moderate) II (mild) I (abnormal) IV (extreme)

SCB III (moderate) II (mild) I (abnormal) II (moderate)

UKB III (moderate) I (normal) I (abnormal) II (moderate)

Sep 2019–Dec 2020 (16 months) LKB II (mild) III (moderate) II (moderate) II (moderate)

DB III (moderate) II (mild) II (moderate) II (moderate)

CKB III (moderate) II (mild) II (moderate) II (moderate)

DCB III (moderate) II (mild) I (abnormal) II (moderate)

SCB III (moderate) II (mild) II (moderate) II (moderate)

UKB III (moderate) II (mild) II (moderate) II (moderate)
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the KB. For example, taking into account the results of SPI-based analy-

sis, Akturk et al. (2022) reported that 28 of the 31 drought-stricken sta-

tions in the KB had experienced mild droughts from 1960 to 2017. In a

more recent study, Deger et al. (2023) applied Streamflow Drought

Index (SDI) to analyse the dry and wet periods in the KB and found that

mild droughts had the highest percentage of occurrence in the basin.

These findings cast light on the feasibility of the used method for moni-

toring droughts at a basin scale.

4.2 | Drought conditioning parameters in the KB

Being the main feeding source of the hydrological cycle, variations in

precipitation play the most important role in the onset and evolution

of droughts throughout the world. The precipitation is also very effec-

tive on the fluctuations of TWSA thus affecting the water storage var-

iations in a given area. The results of the current study revealed that

there is a moderate association between the variations of

F IGURE 8 Thematic illustration of the spatial variability of the drought incident (January 2008–March 2009) based on the water storage
deficit index (WSDI).
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precipitation and those of TWSA. The trend analysis suggested that,

notwithstanding the significance of the trends, except in the LKB, DB,

SCB, and UKB subbasins, over which there is an agreement between

the annual trends of precipitation and TWSA, there are contrasts over

the remaining subbasins. However, the fluctuations of TWSA cannot

scientifically appertain to the precipitation in the KB based on the dis-

crepancies between the precipitation and TWSA trends in terms of

statistical significance. On the other hand, because the GRACE mis-

sion considers anthropogenic forces (such as groundwater withdrawal)

(Cui et al., 2021), it can be stated that the detected droughts over the

KB may be mainly ascribed to anthropogenic parameters. A great part

of the KB is located in central Anatolia, where water resources are

crippled by the side effects of the climate crisis in an arid region

(Citakoglu & Minarecioglu, 2021). Since agriculture dominates the

economic activities of the residents, there is a widespread extraction

of groundwater, as the only water source in the region

(Bozda�g, 2016). This situation is particularly aggravated during meteo-

rological drought periods, resulting in the detriment of its hydrologic

balance and accelerating the decline of water resources (Citakoglu &

Minarecioglu, 2021).

4.3 | Uncertainties

Variegated sources of uncertainty are engaged in the analysis of this

study. To do away with the uncertainties associated with the GRACE

F IGURE 9 Illustration of the areal distribution of drought based on Water Storage Deficit Index (WSDI) from 2003 to 2020.
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processing errors, the GRACE Mascon solutions were utilized for

which no further processing is required and thus are deemed superior

to the spherical harmonics solutions (Aryal & Zhu, 2020). However,

the Mascon solutions do also suffer from some uncertainties ascribed

to the applied diverse models and data processing approaches

(Kumar, AnandRaj, et al., 2021). Additionally, the GRACE-derived

information is subject to further uncertainties due to the errors that

can be invited through the gap-filling based on the linear interpolation

technique. However, since it is very straightforward to apply, linear

interpolation is widely used within the scientific community (Kumar,

Rathnam, & Sridhar, 2021), thus, the missed GRACE data of this study

were filled in based on this method. The uncertainties of hydrological

models can be dealt with by using the ensemble mean of several

models (Cao et al., 2015), however, multiple models with the same

spatial resolution (1 km) as the FLDAS model are not available, so the

FLDAS was the only option for this study.

5 | CONCLUSIONS

The emergence of the GRACE satellite mission paved the way for

effective large-scale hydrological applications and rendered assistance

to scientists to better discern drought incidents, particularly in regions

where insufficient data (Yirdaw et al., 2008). This study evaluates the

spatiotemporal patterns of drought using a model-integrated GRACE

downscaling approach. In this premise, a model-based Random Forest

F IGURE 9 (Continued)
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integrated methodology is proposed to downscale the GRACE/

GRACE-FO data to the fine spatial resolution of 1km�1km resolution.

Consequently, the fine resolution WSDI index was generated based

on the downscaled TWSA from the GRACE/GRACE-FO missions and

was applied alongside scPDSI, SMSP, and GWSP drought indices to

analyse droughts. It has provided reliable and robust quantitative

results for the variations of water storage by integrating the fine-

resolution FLDAS outputs to the GRACE/GRACE-FO observations to

link surface and subsurface conditions while investigating droughts.

The developed methodology is the first case of the GRACE-FLDAS

integrated approach for the local-scale assessment of drought. This

approach can be followed in any other region in the world and hence

provide a globally pertinent approach for water storage and drought

analysis. The results indicated that TWSA variations exhibited various

patterns in different subbasins of the study area. The LKB was the

only basin with an ascending trend of TWSA, while the remaining

basins showcased decreasing trends from 2003 to 2020. Notwith-

standing some trivial dry events in the region, two major drought inci-

dents over the KB were accurately determined by the proposed

methodology. The first event was a 15-month length of drought

between January 2008 and March 2009 and the second event was a

16-month drought period between Sep 2019 and Dec 2020.

The findings of this study cast light on the feasibility of the RF-

based downscaled TWSA for analysing droughts at sub-basin scales.

Nevertheless, it can be further improved by considering two distinctive

points. First, the GRACE estimates are downscaled based on the statis-

tical relationship between the input variables from hydrologic models

and the target variable. The accuracy of the modelled variables plays a

decisive role in the precision of the downscaled GRACE data. The

global hydrological models are inevitably subject to uncertainties arising

from the land surface model used, algorithms, etc. Therefore, it can be

stated that even more accurate downscaled values can be obtained for

other watersheds around the world if highly accurate satellite estimates

of hydro-meteorological parameters are integrated into the downscal-

ing model. The authors also hold the notion that training the

downscaling models with simulations of hydro-meteorological parame-

ters from local-scale and area-tailored models may increase the accu-

racy of the downscaled variable. Second, there is almost a year of data

gap between GRACE and GRACE-FO missions, which shackles their

effective application for consistent monitoring of droughts. Filling in

the missing data in both spatial and temporal domains can be done

using improved statistical techniques such that a more coherent analy-

sis of drought can be implemented based on the GRACE estimates.

However, because of the over-, and under-estimation of positive and

negative TWSA values through reconstruction techniques

(Bringeland & Fotopoulos, 2023), any gap-filling method needs to be

implemented with enough care to avoid additional errors.
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