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Abstract: The Urban Heat Island (UHI) effect is of critical concern for cities’ adaptation to climate
change. The UHI effect shows substantial intra-urban variation at the city microscale, causing
disparities in thermal comfort and energy consumption. Therefore, air temperature assessment
should be prioritized for effective heat mitigation and climate adaptation. However, meteorological
stations’ spatial distribution is far from meeting the scale that the UHI and its driving parameters
operate. This limitation hampers demonstrating the intra-city variability of UHI and its origin
of sources; for example, most studies employ Land Surface Temperature (LST), usually without
demonstrating the relationship between UHI and LST. The current body of knowledge on urban
climate implies a much better understanding and more detailed information on the spatial pattern
of UHI and the driving factors to provide decision-makers with tools to develop effective UHI
mitigation and adaptation strategies. In an attempt to address the adequacy of the use of LST and
UPs in describing the intra-city variability of UHI, this study investigates the relationship between
LST daytime and nighttime, and air temperature (Ta) daytime and nighttime, and driving urban
parameters (UPs) of UHI together. Although it is well recognized that the intensity of the UHI is
characterized by Ta, particularly at night, so-called nocturnal UHI, the use of remotely sensed LST is
common, owing to the lack of spatially detailed Ta data in cities. Our findings showed that nocturnal
UHI is weakly correlated with nighttime LST with a Pearson correlation (r) of 0.335 at p > 0.05 and
that it is not correlated with daytime LST for the case study, highlighting the need for Ta observations
for representing the intra-urban variation of nocturnal UHI. Among UPs, Sky View Factor (SVF),
Building Volume Density (BVD), and Road Network Density (RND) explained 69% of the variability
of Ta nighttime that characterizes nocturnal UHI. Therefore, UPs that performed well in estimating
nocturnal UHI may be used in the absence of densely distributed Ta measurements. In a further
investigation of the urban cooling phenomenon based on UHI diurnal changes, a particular region
with high nighttime temperatures spoiled the Ta daytime and nighttime coherence. This region is
characterized by high Mean Building Height (MBH), BFD, and BVD that re-emits heat, low SVF that
prevents urban cooling, and high RND that releases extra heat at night. These particular UPs can be
of prior interest for urban cooling. The present study, exploring the relationships of LST and Ta in a
diurnal context, offers a further understanding of the preference of LST, Ta, or UPs to characterize
UHI. Ta, in relation to major causative factors (UPs), provides insights into addressing the localities
most vulnerable to the UHI effect and possible strategies targeting heat mitigation for sustainability
and climate change resilience.

Keywords: Urban Heat Island (UHI); Land Surface Temperature (LST); near-surface air temperature
(Ta); climate change

1. Introduction

Cities are currently home to more than half of the world’s population. The projections
imply that urban dwellers will reach about 68% of the world population and are expected
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to double in number in developing countries by 2050 [1]. Urbanization is a complex
transformation process that converts rural areas into urban land, accompanied by increased
human activities that drastically modify the urban thermal environment [2]. The far-
reaching consequences of urbanization on climate and society are manifested in the Urban
Heat Island (UHI) effect, also recognized as the most notable impact of humans on the
earth’s climate [3–5]. UHI has a significant negative impact on the environment, human
health, and energy consumption. UHI has been reported to induce health issues and
mortality in large to medium sized cities [6–8] as well as megacities. Its environmental
impacts include reduced biodiversity [9], degraded air quality [10], and degraded water
quality [11]. UHI, creating thermal discomfort, also leads to increased energy consumption
for cooling and air conditioning [12–14]. Rising urbanization is one of the defining trends
of the last century, which is anticipated to extend into the near future, leading settlements
to become citified and current cities to become metro- and megacities [15]. Climate change,
the major challenge of the era, triggering extreme temperatures and heat waves, intensifies
the UHI effect in cities and exaggerates its adverse impacts [16,17]. Due to this combined
effect of rapid urbanization and climate change, the UHI phenomenon has become a crucial
concern in meeting the sustainability development goals, i.e., making cities more resilient
to climate change.

UHI is an urban climate phenomenon that is defined as urban areas being warmer
than the surrounding rural and natural areas [18]. One of the most noticeable differences
caused by urbanization is that soil and vegetation cover is replaced with impermeable
surfaces and volumes, i.e., concrete, asphalt, and various construction materials. The
thermophysical properties of those materials, e.g., albedo, emissivity, thermal conductivity,
and heat capacity [19], alter the heat energy balance that regulates the urban thermal
environment. Urban geometry forming canyons causes the heat to be trapped [20]. As
a result, the heat in urban areas is significantly higher than in the rural surroundings.
Urbanization also introduces a large amount of anthropogenic heat stemming from, e.g.,
emissions, heating, and combustion, further aggravating the UHI intensity [21]. UHI
intensity is the indicator of how severe the UHI effect is and is simply formulated as
∆T = Tu − Tr, where Tu is the urban temperature, and Tr is the rural temperature [18].
Most cities today are small-sized cities of populations up to 500 thousand [1]. At this scale
of cities, the temperature may be observed to be 2–4 ◦C higher in urban areas compared
to the rural surroundings [14,22,23]. As the city grows, this difference is reported to be
higher [24] and can reach up to 10–12 ◦C at nights following hot days under calm and clear
weather conditions [25,26]. Besides urban areas being warmer than their surroundings,
large differences in temperatures exist within the urban environment, causing disparities in
thermal comfort and energy consumption. Intra-urban differences in surface temperature
may be even larger than urban vs. rural land [27]. Therefore, the variation of UHI intensity
cannot be reduced to a simple urban–rural gradient [23].

Currently, more and more emphasis is being placed on intra-urban heat island assess-
ment, mainly targeting heat mitigation for sustainability and climate change resilience.
However, prior to its assessment, the types of UHI that have different underlying mech-
anisms should be acknowledged. UHI is characterized by different layers and surfaces
and is commonly classified as canopy layer heat island (CLHI), boundary layer heat island
(BLHI), and surface urban heat island (SUHI). Oke distinguishes two layers in the urban
atmosphere: the canopy layer (CL) and the boundary layer (BL) [28]. Microclimate is
defined as climate conditions at a “microscale” on the earth’s surface [29]. The urban
microclimate is governed at the microscale that is extended from the building scale to the
city scale and characterized by a community of buildings or a neighborhood [30,31]. UHI
is a microscale concept, and it is regulated by the natural and artificial materials in the
immediate surroundings composed of the urban roughness elements, mainly buildings [32].
There is also another type, a non-atmospheric UHI, called the surface UHI (SUHI), which is
the thermal emissivity of urban surfaces showing spatial variations. In UHI assessment
studies, BLHI is usually off-target as it relates to the urban area as a whole and a mesoscale
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concept associated with regional climate. There are mainly two eligible lines of research to
quantify UHI: (i) UHI of the canopy layer (CLHI), and (ii) SUHI [3,33]. The first approach
targeting CLHI is characterized by air temperature, also called near-surface air temperature
or ambient temperature [32]. It is the temperature at the lowest part of the atmosphere that
extends upwards from the ground approximately to the trees and buildings height [34] and
is observed at 1.5–2 m distance from the ground [3]. In the development of urban climate,
near-surface air temperature (Ta) in the canopy layer shows the most obvious modification
compared to the natural or rural lands where air temperatures are high in highly urbanized
areas [34–36]. Hence, the term UHI, unless otherwise stated, refers to the Ta [37].

Owing to its direct impact on human health and energy consumption, Ta measure-
ments are of prime importance to the study of urban climate. Impermeable surfaces that
absorb heat do not cool down enough, the heat is re-emitted and trapped in built environ-
ments, which leads to warm temperatures extending towards the night hours. This is the
primary reason why UHI demonstrates the maximum intensity 3–5 h after sunset, and the
nighttime Ta is considered a key indicator of UHI [25]. Quantification of UHI in the canopy
layer requires the direct measurement of Ta. However, complex urban environments with
diverse land use, texture, and density result in large temperature variations across a city,
which cannot be represented by a small number of meteorological stations [38,39]. In the ab-
sence of representative observations, densely distributed in-situ measurements from fixed
or mobile stations can theoretically represent the context of micro- and local scales [23,32,40].
However, in practice, the quality, coverage, distribution of the measurements, and costs
are of concern [41]. Nevertheless, in-situ and/or mobile measurements are quite common,
especially the low-cost in-situ measurements that have recently received growing interest
for UHI mapping [39,42,43].

Besides the UHI approach mainly owing to its shortfalls, SUHI was introduced. With
the advancement of remote sensing technologies enabling synoptic view and continuous
acquisition, SUHI was proposed in an attempt to represent UHI [37]. SUHI is typically char-
acterized by Land Surface Temperatures (LST) derived from airborne or satellite thermal
infrared imagery, which provides a uniform means of effective radiating temperature of the
Earth’s surface [44]. Although LST can demonstrate surface temperature at large coverages
and relatively high spatial resolution, the acquisition is limited to clear sky conditions
and subject to temporal resolution that is insufficient to monitor daily or hourly intervals
important for nighttime or daytime UHI assessment [45]. While UHI in the canopy layer
is characterized by direct measurement of air temperature, SUHI is derived indirectly
from the conversion of upwelling thermal radiance of the surface to temperature [37,46].
Nonetheless, the idea of using LST as an indicator of UHI is mainly based on the premise
that surface temperature modulates the air temperature of the lowest layers of the urban
atmosphere [37], and there is reasonable agreement at matching scales [47]. Several studies
that facilitate both air and surface temperatures have documented a good consistency
between Ta and LST [48–51], while some others reported either weak consistency or lack
thereof [52,53]. Studies investigating Ta and LST for both day and night have found a
stronger correlation between nighttime Ta and nighttime LST rather than daytime ver-
sions [54–56]. As LST modulates the Ta, along with other variables such as wind, moisture,
and turbulent mixing [5], the complex linkage between air and surface temperatures cannot
be easily quantified [37]. This complexity is the main reason that discourages the estimation
of UHI through LST [5].

The representativeness of the thermal conditions can only be ensured at the local to
the microscale context of surface geometry, land cover, and anthropogenic heat release [57].
Given that UHI at the micro- to local scale operates at distances from 1 cm to 1 km and
is usually considered at less than 100 m [58], the main concerns with LST and Ta are
as follows:

i LST, even if effective in capturing the spatial pattern of surface temperature [3], is not a
direct measure of UHI. Moreover, the diurnal cycle of UHI and SUHI are substantially
different [47].
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ii Ta, although it directly characterizes UHI, represents the heat in the close vicinity.
Unless forming a very dense network that is expensive to install and maintain, in-
situ measurements are insufficient to represent the spatial variability of the UHI.
Although some studies employ spatial interpolation, it is typically inadequate [59],
as the urban form, texture, and land use characteristics are not steady across the
space [39].Therefore, representing UHI with LST or coarsely distributed Ta measure-
ments can lead to erroneous results in studies targeting heat mitigation and may
particularly be misleading in health-related subjects [34,53].

Urban parameterizations promote a better understanding of the major causative
factors, addressing urban effects, including UHI, and the development of appropriate
mitigation strategies [60]. As drivers of UHI formation, urban features, e.g., geometry
and land use characteristics, are well-documented to be closely related to UHI, and have
been extensively studied for their influence on UHI formation as gathered in several
reviews [36,46,61]. There is a great deal of studies that explore and relate urban features
and SUHI [62–66], as data for both are more available and easier to obtain. A study was
implemented in the same case area as the present study, using elementary methods to see
whether LST and some urban parameters were related [67]. Urban features’ relation with
Ta is also explored, yet studies are relatively scarce [38,68,69]. There are very few studies
that explore urban features’ relation with UHI and SUHI in parallel [70,71].

Of all the modifications produced by the urbanization process, urban geometry, ther-
mal properties with their effects on radiation and heat storage [20,72], and anthropogenic
heat [21] are the key factors in UHI formation. These factors are quantified as various spatial
data including albedo, solar insolation, sky view factor, vegetation index, imperviousness,
building density, population density, and traffic density, to name a few. All these data are
referred to as “urban parameters” (UPs) throughout this study. Research that investigates
the role of UPs has mainly taken two approaches into consideration. First is the direct use
of urban features presumed to contribute to UHI formation. The second approach is the
use of a classification of urban areas into local climate zones (LCZ) [73], characterized by
a particular combination of UPs. However, the LCZ scheme employs only a few urban
features, e.g., land cover and building density for zonation. Furthermore, temperatures
may differ substantially even within LCZs [74]. In practice, mitigation and urban planning
require a UHI map of proper scale that reveals the actual variability of UHI rather than
the local thermal conditions of different LCZ types that are subject to generalization [75].
Therefore, the direct use of urban features is considered to better represent the microscale
variation in urban climate. Effective scale is another important issue to be explored for the
spatial extent dependence of UPs on UHI formation [23].

State-of-the-art UHI studies have reached a vast number, mainly due to the significance
of the issue owing to the two overarching trends, climate change (CC) and urbanization.
Among these studies, especially with the advancement of medium- to high-resolution
thermal remote sensing, empirical studies that use LST for the determination of the UHI
effect have increased considerably. Although LST characterizes SUHI, its use as an indicator
of UHI is fairly common. The daily cycle of UHI, where nocturnal temperatures are pivotal,
is usually disregarded in studies investigating UHI formation. LST, even if related, is not a
perfect indicator of UHI. Therefore, using LST as an indicator of UHI might be problematic
and needs further investigation. Besides, studies that substitute LST for UHI and investigate
UPs in relation to SUHI formation became predominant. However, mainly owing to the
lack of densely distributed Ta measurements, studies that model Ta based on UPs at the
microscale, which may be helpful to guide strategies and critical measures to be taken for
climate-proof cities, are scarce. In this context, it is beneficial to explore UPs’ influence on
forming UHI and SUHI separately. However, exploring UHI at a fixed scale is not adequate.
Acknowledging that air temperature is affected by the broader surroundings of a particular
location [76], it is essential to determine the optimal scales of indicator variables of UHI,
i.e., LST and UPs.
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It is evident that the diurnal cycle of atmospheric UHI and SUHI are considerably
different [47]. However, studies that compare daytime and nighttime Ta or LST for UHI
and SUHI, respectively, are scarce. Comparing diurnal differences, particularly of UHI,
can enhance our understanding of how urban cooling progresses and whether cooling is
prevented in particular regions of urban environments.

Based on the overview above, exploring both UHI and SUHI, for both day and night in
relation to UPS, is considered a gap in urban climate studies. This study, besides attempting
to verify the well-documented UHI–SUHI–UPs relation, addresses issues that are not given
much emphasis and intends to answer the following research questions in an attempt to
better understand urban climate through an empirical study.

i Is LST a very good indicator of UHI? (How are Ta and LST related?)
ii How are Ta and LST related to UPs? What are the most influential UPs in forming

UHI and SUHI?

Regarding the first two questions, is there an effective scale on which LST and UPs
operate mutually with the UHI spatial variability?

iii What are the changes in Ta and LST in the diurnal cycle? (How are UHI day–night
and SUHI day–night related?)

2. Data and Materials

To address the research questions, this study employs air measurements from the field
for daytime and nighttime that coincide with the visit time of the remote sensing satellites
of medium resolution that are used to derive LST for day and night. A set of parameters
that represent urban geometry, thermal properties, and anthropogenic effects of the case
area were quantified as spatial data, so-called UPs. Following a flowchart of analyses
(Figure 1), the relationships between Ta, LST, and UPs were explored using multivariate
statistics and graphical outputs.
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2.1. Case Study

A small-scale city (population < 500 thousand), which is the most common city type
across the globe [1], that has about 350 thousand dwellers and an urbanization rate of 100%,
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was selected as a case study. In arid to semi-arid climates, the UHI effect places more heat
stress on organisms, including humans. Located in the Izmit Bay of the Marmara Sea in the
northwest of Turkey (Figure 2), Izmit City has hot summers and mild winters, characterized
by a transition between Csa and Cfa of the Köppen–Geiger climate classification [77]. The
city has an average annual daily maximum temperature of 19.8 ◦C, where August is the
hottest month with a long-time average of 30 ◦C. The city is in the hinterland of Istanbul
and is the industrial heart of Turkey, with ports connected to major highways and railways.
Due to the industrial activities and migration in the last several decades, Izmit has been
subject to rapid urbanization that has produced many environmental challenges, including
the Urban Heat Island effect.
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The study area covers the city center with surrounding residential areas with the
highest density of buildings and commercial facilities. The total area is about 14 km2. The
average elevation is 224 m, and the area is located on a plain with gently rising slopes
towards the north of the study area.

2.2. Dataset

For the study, two successive medium-high resolution images to represent daytime
and nighttime LST were acquired. August was selected as the image acquisition period,
typically the hottest month of the city, and the acquisition dates were as follows:

Landsat 8 daytime images: 30 August 2015
ASTER nighttime images: 31 August 2015

LST products of high temporal resolution, e.g., MODIS that are freely available, usually
suffer from low spatial resolution and are not adequate to represent intra-urban spatial
variation of SUHI. ASTER thermal infrared imagery was purchased by funding, and the
field campaigns we conducted in parallel with the same funding project in 2015. Therefore,
the analyses in the study are based on a 2015 dataset.
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The kinetic surface temperature product of ASTER that was gathered through a
temperature emissivity separation method (TES) [78] was ready for use after geometric
correction. The Landsat 8 thermal infrared bands had a spatial resolution of 100 m, and the
ASTER surface temperature product had a spatial resolution of 90 m.

For Ta, mobile, low-cost in-situ observations were conducted for two successive
periods (day and night) in parallel with the remote sensing image acquisition date/time.
The field campaigns were organized on the same day of daytime image Landsat 8, and
on the same night of the nighttime image (ASTER) to ensure that there was very little
influence introduced by the weather conditions for comparisons. The field campaigns were
implemented as follows:

Daytime campaign: the warmest time of the day between 14:00 and 15:00 on 30 August
2015.

Nighttime campaign: at midnight, 3.5 h after sunset (19:36), between 23:00 and 00:00
on 31 August 2015.

The (i) accuracy and (ii) distribution density of the measurements are of primary
concern in Ta measurements [41].

(i) In-situ measurements for UHI studies, either static or mobile, commonly employ
instruments with an accuracy of ±0.2–0.3 ◦C [48,79–82] or ±0.5 ◦C [39,42,43,55,69],
where low-cost instruments measuring at ±0.5 ◦C accuracy were reported to be effec-
tive in representing UHI and adequate in fine-scale spatiotemporal UHI mapping [42].
Two Kestrel-4500 weather meters were utilized for the air temperature observations
for the study. The Kestrel weather meter is mounted with a hermetically sealed,
thermally isolated precision thermistor with a fast response, marketed at a reasonable
price, and easy to use and carry. It has a manufacturer-reported accuracy of ±0.5 ◦C
at 1 sec response time and a resolution of 0.1 ◦C. Allowing meter readings to stabilize
in a few minutes is suggested at each location to enhance reported accuracy [83,84].

(ii) Studies for the local scales may utilize one measurement per 1 to 10 km2 [69,75]. For
microscales, this may be reduced to 1 measurement per 0.25 km2, where there is
approximately 300 to 600 m between measurement locations [23].

Intending to explore urban climate at the microscale, a number of 30 measurements
was set for the study area of approximately 14 km2. The measurement locations were
determined in the built-up land of the case area and then modified as some of the points
were not accessible or did not represent critical localities. The sampling density is one
measurement for less than 1 km2 (approx. 0.7 km2), and there is around 300 to 750 m
between the points. The measurement points were spatially divided into two groups for
the two instruments to complete the observations in a 1-h interval to minimize the temporal
change of ambient temperature. The measurement points were accessed by car and then
by walking. The instruments were placed on a tripod 1.75 m above the ground and at
a distance of at least 2–3 m from buildings, roads, and heat-emitting sources. Daytime
measurements were made in the shadow if possible, and a plastic shield over the instrument
was used to prevent direct rays. The instrument logger was adjusted to automatically log
every 10 s. At each location, 2–3 min were spent, where temperature records in the 1-min
interval in the midst of each period were used for calculating Ta. Daytime and nighttime
measurements were made at the same locations. Each campaign took about an hour to
complete. A total of 28 points could be observed for the daytime temperatures. A total
of 32 points for the nighttime temperatures was observed as there was less traffic and
observers could visit more locations.

2.3. Land Surface Temperature (LST) Retrieval for SUHI

Of the two thermal datasets, the ASTER thermal product was ready for use after
geometric correction. To calculate LST out of Landsat 8 thermal bands, the Radiative
Transfer Equation (RTE) was employed as in recent studies [62,63,85] owing to its explicit
method and straightforward application. Among two thermal bands of Landsat 8, band
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10 was employed in the LST calculation. A four-phased transformation was carried out to
reach surface kinetic temperature values from raw DN values of image cells.

(i) DN values were converted to radiance using offset (bias) and gain values.
(ii) Emissivity (ε) values were obtained using the Normalized Difference Vegetation Index

(NDVI), which is closely related to emissivity [86] and used as thresholds to designate
emissivity values as suggested by Sobrino [87].

(iii) Atmospheric transmission (τ), downwelling atmospheric radiation (S↓), and up-
welling atmospheric radiation (S↑) were derived using the Atmospheric Correction
Parameter Calculator [88] that is based on MODTRAN Radiative Transfer code mod-
eling from the National Centers for Environmental Prediction (NCEP) global atmo-
spheric profiles database.

(iv) The Radiative Transfer Equation (RTE), taking into account (ε), τ, S↓, and S↑ as in
Equation (1), is transformed by applying the inverse of the Plank as in Equation (2) to
derive LST.

L
λ
◦ =

[
εBTs + 1(1− ε)S↓

]
τ+ S↑ (1)

where;
Lλ = Thermal radiance at sensor
BTs = blackbody radiance (Plank’s law)

LST =
C2

λ ln

 C1

λ5

[
Lλ−S↑−τ(1−ε)S↓

τε

]
+ 1

(2)

ε = Land surface emissivity
τ = Atmospheric transmissivity
S↑ = Upwelling atmospheric radiance
S↓ = Downwelling atmospheric radiance
λ = Effective band wavelength
Constants: C1 = 1.191 × 108 Wµm4sr−1 m−2, C2 = 1.439 × 104 µm·K
Finally, both ASTER and Landsat temperature values in Kelvin were converted to

degrees Celsius (◦C) to acquire daytime LST and nighttime LST that represent the daytime
and nighttime SUHI, respectively (Figure 3). Daytime and nighttime LST comparisons are
essential for exploring LST diurnal changes and their relationship with the UHI formation.
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2.4. Air Temperature (Ta) Retrieval for UHI

Spatial variations in Ta can be captured via in-situ measurements that can accurately
depict the target areas in small time and space scales [23]. A total of 28 points were observed
for daytime and 32 points for nighttime at an accuracy of ±0.5 ◦C and below.

Two of the observations were removed from the daytime set for fluctuated recordings,
most possibly due to external heat sources, leaving 26 eligible observations for the daytime
Ta (Figure 4).
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Although the measurements were complete in approximately one hour, considering
that a temperature change had taken place, a time normalization that is common in UHI
investigations was applied [23,75,89,90]. The Ta observation was adjusted to the mid-
time based on fixed weather station measurements located in the city. Assuming that
the time change rate is linear between the planned start and end times of the campaign,
a unified time was defined as the mid-time, rather than the beginning or the end in an
attempt to distribute possible errors more uniformly along the time span. Accordingly, for
daytime observations, the unified reference time was set as 14:30, where the temperature
difference between the beginning and the end (14:00, 15:00) is +0.33 ◦C. For nighttime
observations, the unified reference time was set as 23:30, where the temperature difference
between the beginning and the end (23:00, 00:00) is −1.2 ◦C. A temporal adjustment of
0 to max ±0.16 and 0 to max ±0.6 was made on the observed Ta values for daytime and
nighttime observations, respectively.

2.5. Urban Parameters

Urban parameterizations are increasingly being used to promote a better understand-
ing of urban climate and the major causative factors of UHI. In this study, we utilize key
factors commonly employed, as summarized from numerous references. We broadly cate-
gorize those factors (UPs) based on their different sources as (i) biophysical, which relates
to the thermal properties of the land use/land cover, (ii) morphometric, which relates to
the urban form and geometry, and (iii) socioeconomic, that relates to urban density and
functions that contribute to emissions.

There is a vast number of studies that use urban parameterizations and relate them to
UHI or SUHI. Table 1 presents the UPs used in this study and their calculation method,
along with the recent reference studies that utilize the same method. UPs and reference
data used in calculating UPs in this study are depicted in Figure 5. UPs are essentially
explored for their influence in forming UHI and SUHI, respectively.
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Table 1. Urban Parameters (UPs) and their descriptions.

Urban Parameters Descriptions References

B
io

ph
ys

ic
al

Vegetation
Index

NDVI a = (NIR−R)
(NIR+R)

Normalized Difference Vegetation Index indicates the
abundance of vegetation cover and is a major parameter that

is commonly retrieved and used for UHI estimation.

[64,91–94]

Built-up
Index

NDBI a = (SWIR−NIR)
(SWIR+NIR)

Normalized Difference Built-up Index indicates the fraction of
built-up surfaces.

[94–96]

Albedo

Albedo a = 0.356ρ2+0.130ρ4+0.373ρ5+0.085ρ6+0.072ρ7−0.0018
0.356+0.130+0.373+0.085+0.072

Albedo, as formulated by Liang [97], was adopted. Albedo is
the surface reflectance rate, where low albedo stores more

energy and contributes to UHI.

[91,98]

Solar
Radiation

SR, incoming solar radiation (insolation), is the radiation
energy received from the sun. Besides the day and time of the
year, SR is determined by the topographic orientation (slope

and aspect) of a surface. SR for the study was calculated
based on the formulation by Fu and Rich [99], with slope and

aspect derived from DEM b as input into the ArcGIS Area
Solar Radiation tool.

[93]

M
or

ph
om

et
ri

c
(u

rb
an

)

Mean
Building
Height

MBH c = height of buildings/number of buildings in the sample area
Building height is usually considered to reduce warming

owing to the shade effect [64,82].
[38,64,82,95]

Building
Footprint
Density

BFD c = buildings footprint area/sample area
Division of the total building footprint by the site area. The

density of the buildings in an area [14] indicates impermeable
sealing that reduces evapotranspiration, hence cooling.

[46,63,64,82,95]

Building
Volume
Density

BVD c = Total volume of all buildings/sample area
Larger building blocks both release more longwave radiation

and cause the heat to be trapped. The higher the building
volume density, the larger its heat capacity [100].

[38,64]

Sky View
Factor

SVF is the ratio of visible sky from the ground to an
unobstructed hemisphere [73]. A Digital Surface Model

(DSM) was generated in ArcGIS by incorporating the building
heights to the DEM b, which was then processed in the SVF

tool of SAGA GIS [101].

[93,102,103]

So
ci

o
Ec

on
om

ic

Population
Density

PD d = Number of people/sample area
Population density indicates the thermal load status of a city

and is considered to influence urban climate [100,104].
[33,38,46,64]

Road
Network
Density

RND e = Kernel density of roads (road width
weighted)/sample area

UHI is exacerbated by the anthropogenic heating from
vehicles [44]. In the lack of traffic count data, road density
was used as a proxy. A kernel density estimation tool was

used to produce a road network density raster from the road
length weighted by the road width.

[102]

a NIR, R, and SWIR are the near-infrared, red, and mid-infrared bands of Landsat 8, respectively, and ρ represents
Landsat 8 bands, b 1-m resolution Digital Elevation Model (DEM) was used. Building height data were rasterized
and added to DEM to end up with a Digital Surface Model (DSM), c Building footprint and height data were
obtained from the Municipality as vector data, d Number of people per building was calculated based on
household census obtained from the Municipality, e Road data and related road widths were obtained from the
Municipality.
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2.6. Methods

This study aims to understand the urban climate by exploring the interrelationships
between UHI, SUHI, and the UPs at the microscale using multivariate statistics and GIS
tools. The associations between the indicators were explored through correlation analysis.
The Pearson correlation, which measures the strength of a linear association between



Sustainability 2023, 15, 15710 12 of 22

two variables, was used. A correlation matrix was developed to examine the strength
of bivariate relationships between Ta, LST, and UPs. LST and UPs were datasets with
continuous coverage in raster format. All raster datasets of LST and UPs were resampled
to a common resolution of 30 m for convenience. Ta points coincide only with one or a
few pixels of the data, which would hardly produce reliable statistics. The correlation
between air temperature at a point and land cover composition within a particular buffer
area of that location is well documented [105]. Therefore, buffers of various sizes were
produced that center Ta locations in order to make UHI data compatible with other datasets.
The reason for utilizing varying sizes of buffers is to quantitatively assess the effective
scale that the UHI phenomenon is associated with the UPs. In urban climate studies
that use Ta measurements, fixed buffers of sizes as small as 10 m [106], 125 m [107], and
300 m [105] have been used. Some studies use a series of buffers, e.g., 20 to 300 m [23] and
50 to 1000 m [108], to determine critical buffer width, producing the highest correlation for
the numerous explanatory variables they use. In the present study, we adopted buffer sizes
at eight levels, starting from 25 m up to 200 m, as we have densely distributed observations
to represent UHI at the microscale in a relatively small case area.

A multiple linear regression (MLR) using stepwise backward elimination was im-
plemented to analyze the multivariate relationship between UHI, SUHI, and the driving
UPs. A MLR is a model for predicting the value of a dependent variable based on multiple
independent variables, where stepwise backward elimination starts with the complete
list of independent variables and successively eliminates non-significant variables until
reaching a reduced model with a high performance of estimating the dependent variable. In
the present study, Land Use Regression (LUR), a specialized version of MLR for geospatial
independent variables, was adopted. LUR is a prevalent method in public health studies,
especially in modeling air pollution [109,110]. LUR also has found an application domain
in urban climate studies [23,38,108]. LUR estimates the UHI in the study area by treating it
as the response variable of a multiple linear regression model (MLR) of several explanatory
variables: UPs for this case. LUR was implemented using the buffer size representing the
most effective scale of UPs for LST and Ta. The mean zonal statistics for particular buffers
where UPs have the highest correlation with LST or Ta were utilized for the estimation
of those.

3. Results and Discussions

The LST and Ta measurements for both day and night and UPs were analyzed for their
correlation. All datasets are of ratio scale, without significant outliers, and have shown
linear patterns of match in dot plots that conform to a Pearson Correlation assessment.
A Pearson Correlation matrix was developed to examine the strength of these bivariate
associations between Ta, and UPs at different spatial scales represented by varying buffer
sizes. Furthermore, a stepwise backward MLR was employed to examine the relationships
between LST, Ta, and UPs to understand how well intra-urban variations of UHI can be
explained by the UPs at effective scales.

3.1. SUHI-UHI Relation

It is well documented and recognized that nighttime Ta is the most convenient indica-
tor of the UHI effect. Therefore, in the absence of Ta nighttime, any substitute is required
to be highly consistent. In search of this consistency, we have evaluated the correlation of
Ta nighttime with LST datasets. Contrary to what several studies have reported [54,55],
the relationship between daytime LST and daytime Ta is stronger and more significant
compared to that of the nighttime LST and nighttime Ta for the case study (Table 2). How-
ever, similar to the study by Zhang et al. [56], the model using LST nighttime performed
better than the LST daytime in describing UHI. Ta nighttime was totally inconsistent with
LST daytime (Table 2 (a)), which means a daytime LST may not be an excellent option to
substitute for or relate to UHI (nocturnal) in the absence of a nighttime LST. Nighttime LST
can be an option to infer an understanding of the UHI pattern. However, the correlation
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was low to moderate and insignificant for our case (Table 2 (b)). Even if Ta daytime and
LST daytime had a strong correlation in our case, Ta daytime is not a reliable indicator of
UHI and, hence, is considered irrelevant. Nevertheless, the complex relationship between
the Ta nighttime and LST, which manifests itself in a weak correlation, casts doubt on the
use of LST to represent UHI.

Table 2. Pearson Correlation between LST daytime/nighttime and (a) Ta daytime, (b) Ta nighttime.

Ta Daytime LST Daytime LST Nighttime

(a)

Buff_25 0.430 * 0.189

Buff_50 0.453 ** 0.197

Buff_75 0.484 ** 0.192

Buff_100 0.518 ** 0.198

Buff_125 0.521 ** 0.188

Buff_150 0.541 ** 0.147

Buff_175 0.559 ** 0.094

Buff_200 0.566 ** 0.048

Ta nighttime LST daytime LST nighttime

(b)

Buff_25 −0.036 0.103

Buff_50 −0.004 0.105

Buff_75 −0.018 0.122

Buff_100 −0.026 0.158

Buff_125 −0.012 0.199

Buff_150 −0.032 0.249

Buff_175 −0.058 0.300

Buff_200 −0.082 0.335
Pearson’s r > 0.5 (bold), (*) Correlation is significant at 0.05 level, (**) Correlation is significant at 0.01 level.

The Ta and LST relation is observed to vary with scale. The strength of the relationship
increases with the buffer size and levels out, reaching 200 m. Therefore, small buffer sizes
may not be adequate to relate LST with Ta measurements.

3.2. SUHI Relation with Urban Parameters

To explore whether the SUHI effect varied together with the driving factors of SUHI,
the relationship of LST was analyzed for its relationship between UPs using Pearson Corre-
lation. According to the empirical results, daytime LST has a strong negative correlation
with NDVI, as reported by most studies [63,96,111], and a strong positive correlation with
Normalized Difference Built-up Index (NDBI) [96], and population density (PD). For the
UPs, correlation with daytime LST grows from weak to stronger with a buffer size of up to
150–175 m (Table 3 (a)).

Nighttime LST has a strong negative correlation with NDVI and a strong positive
correlation with RND and MBH. Nocturnal SUHI correlation grows from weak to stronger
with a buffer size up to 150–175 m for NDBI, BVD, BFD (positively), and SVF (negatively)
(Table 3 (b)).
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Table 3. LST and UPs Pearson Correlations (a) for daytime LST, (b) for nighttime LST.

LST Daytime NDVI NDBI Albedo SR MBH BFD BVD SVF PD RND

Buff_25 −0.468 ** 0.587 ** −0.032 0.114 0.140 0.077 0.037 −0.087 0.254 −0.200

Buff_50 −0.490 ** 0.660 ** 0.174 0.138 0.123 0.366 * 0.181 −0.199 0.527 ** −0.176

Buff_75 −0.492 ** 0.647 ** 0.269 0.248 −0.219 0.326 0.063 −0.214 0.493 ** −0.181

Buff_100 −0.452 ** 0.628 ** 0.305 0.297 −0.140 0.250 0.013 −0.208 0.493 ** −0.180

Buff_125 −0.408 * 0.592 ** 0.342 0.343 −0.152 0.232 0.039 −0.220 0.515 ** −0.162

Buff_150 −0.361 * 0.542 ** 0.364 * 0.347 −0.173 0.363 * 0.050 −0.188 0.503 ** −0.130

Buff_175 −0.334 0.484 ** 0.371 * 0.308 −0.160 0.389 * 0.057 −0.196 0.494 ** −0.082

Buff_200 −0.300 0.430* 0.387 * 0.266 −0.163 0.374 * 0.035 −0.210 0.484 ** −0.048

(a)

LST nighttime NDVI NDBI Albedo SR MBH BFD BVD SVF PD RND

Buff_25 −0.413 * 0.101 0.198 −0.184 −0.056 −0.031 −0.013 −0.074 −0.013 0.533 **

Buff_50 −0.476 ** 0.067 0.089 −0.198 0.281 0.030 0.043 −0.047 0.043 0.531 **

Buff_75 −0.454 ** 0.081 0.039 −0.198 0.299 0.100 0.131 −0.071 0.131 0.545 **

Buff_100 −0.459 ** 0.139 0.084 −0.156 0.283 0.109 0.144 −0.118 0.144 0.552 **

Buff_125 −0.488 ** 0.202 0.124 −0.130 0.422 * 0.226 0.207 −0.175 0.207 0.579 **

Buff_150 −0.530 ** 0.246 0.128 −0.121 0.500 ** 0.258 0.244 −0.235 0.244 0.621 **

Buff_175 −0.567 ** 0.257 0.085 −0.138 0.530 ** 0.321 0.300 −0.231 0.300 0.669 **

Buff_200 −0.604 ** 0.261 0.002 −0.165 0.594 ** 0.293 0.325 −0.199 0.325 0.703 **

(b)

Pearson’s r >0.5 (bold). (*) Correlation is significant at 0.05 level, (**) Correlation is significant at 0.01 level.

3.3. UHI Relation with Urban Parameters

According to the empirical results for UHI and UPs relationship, Ta daytime has
a strong positive correlation with albedo. UHI daytime is correlated with SR and PD
positively but not significantly. UHI diurnal, being negatively correlated with MBH, BVD,
and RND, is questionable. It is considered that shading is effective where open impermeable
spaces are more prone to diurnal UHI effects. This contradiction also manifests in a positive,
strong correlation with albedo contrary to the reported negative correlation [112,113].
Higher albedo surfaces typically reduce absorbed radiation; hence, they are usually cooler
(Table 4 (a)).

Ta nighttime is a reliable indicator of UHI; therefore, it is of critical importance to
assess nighttime Ta and its driving factors. Ta nighttime has a strong negative correlation
with NDVI and the SVF. It has a strong positive correlation with NDBI, BVD, RND, MBH,
and BFD (Table 4 (b)). The NDVI relationship with UHI is well documented in the literature.
SVF is also documented to be closely associated with nocturnal UHI. The SVF varies from 1
for completely unobstructed land surface to 0 for completely obstructed land surface by
the buildings. As the sky view reduces, the heat gets trapped, and cooling is prevented.
Buildings absorb thermal energy from the sun and continue to release it during the night.
BFD, MBH, and BVD are indicators of how dense the buildings are horizontally, vertically,
and volumetrically, respectively. The energy emitted as heat grows with the building
materials that store energy are greater in surface and volume. Moreover, traffic activities
represented with proxy variable RND are very influential on UHI. Emissions and heat
released from the vehicles are considered responsible for the additional heat introduced to
the ambient temperature.

Correlation analysis shows clearly that the spatial scale described with buffer size is
effective on the relationship between the SUHI, UHI, and the UPs. As quantified by the
correlation coefficients of these relationships, the magnitude of UPs increased with the
increasing buffer size, e.g., the buffer size as small as 25 m, including a few pixels of 30 m
resolution UPs, is not capturing the spatial scale. However, the increase in correlation with
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buffer size is not steady, and there is an extent to which the correlation levels out. The size
of the buffer where correlation levels out, that is, it starts to drop or increase very slowly,
is considered a critical buffer width for the case study. Accordingly, around 150–175 m
represents a critical buffer size for SUHI, and 125 m represents a critical buffer size for
UHI in relation to UPs. Studies also indicate that UHI is better correlated in at least 100 m
proximity, e.g., SVF around 100 m buffer [114].

Table 4. Ta and UPs Pearson Correlations (a) for daytime Ta, (b) for nighttime Ta.

Ta Daytime NDVI NDBI Albedo SR MBH BFD BVD SVF PD RND

Buff_25 −0.201 0.129 0.188 0.392 * −0.242 −0.185 −0.289 0.085 0.195 −0.340

Buff_50 −0.112 0.194 0.264 0.329 −0.097 −0.001 −0.199 0.130 0.306 −0.332

Buff_75 −0.096 0.176 0.346 0.310 −0.274 −0.041 −0.268 0.094 0.234 −0.326

Buff_100 −0.085 0.167 0.393 * 0.291 −0.197 −0.146 −0.315 0.155 0.188 −0.322

Buff_125 −0.107 0.158 0.461 ** 0.282 −0.212 −0.255 −0.369
* 0.160 0.141 −0.312

Buff_150 −0.108 0.143 0.456 ** 0.272 −0.221 −0.142 −0.278 0.163 0.175 −0.302

Buff_175 −0.116 0.145 0.485 ** 0.288 −0.227 −0.085 −0.257 0.138 0.197 −0.288

Buff_200 −0.102 0.139 0.526 ** 0.300 −0.231 −0.081 −0.273 0.120 0.215 −0.276

(a)

Ta nighttime NDVI NDBI Albedo SR MBH BFD BVD SVF PD RND

Buff_25 −0.237 0.460 ** −0.159 0.031 0.654 ** 0.699 ** 0.684 ** −0.704 ** 0.308 0.582 **

Buff_50 −0.383 * 0.406 * −0.196 0.061 0.668 ** 0.687 ** 0.779 ** −0.782 ** 0.318 0.576 **

Buff_75 −0.416 * 0.482 ** −0.277 0.082 0.645 ** 0.683 ** 0.826 ** −0.756 ** 0.379 * 0.573 **

Buff_100 −0.442 * 0.493 ** −0.270 0.128 0.419 * 0.731 ** 0.839 ** −0.771 ** 0.400 * 0.573 **

Buff_125 −0.471 ** 0.498 ** −0.224 0.142 0.447 * 0.729 ** 0.841 ** −0.762 ** 0.422 * 0.573 **

Buff_150 −0.480 ** 0.503 ** −0.156 0.168 0.439 * 0.634 ** 0.816 ** −0.711 ** 0.366 * 0.572 **

Buff_175 −0.467 ** 0.488 ** −0.091 0.170 0.387 * 0.615 ** 0.793 ** −0.625 ** 0.303 0.566 **

Buff_200 −0.440 * 0.452 ** −0.096 0.171 0.321 0.602 ** 0.764 ** −0.518 ** 0.241 0.557 **

(b)

Pearson’s r > 0.5 (bold). (*) Correlation is significant at 0.05 level, (**) Correlation is significant at 0.01 level.

For a better understanding of the relationship between UHI and UPs and to explore
how UPs are effective in estimating UHI, a LUR extension of MLR was implemented. As
nighttime UHI describes the UHI effect and UHI is observed stronger at night than during
the day, LUR was implemented to estimate nighttime Ta based on UPs. Many studies
utilize LST for UHI estimation. However, as the correlation between the nighttime Ta
and LST was not strong for the case study, the LST was not employed as a predictor. Ta
nighttime (32 measurements) as a dependent variable and UPs mean statistics for 125 m
buffer (critical buffer size) were employed as independent explanatory variables. In prior
checks for correlation and multicollinearity, albedo and SR were removed owing to their
weak correlation with nighttime UHI. Among NDVI and NDBI, the latter was removed
for collinearity VIF > 10 and p > 0.1. The lack of NDBI can be compensated with other
parameters, e.g., BFD and SVF, that may well describe the built-up environment. A stepwise
backward MLR adopting LUR was conducted on eight variables, namely, NDVI, NDBI,
MBH, BFD, BVD, SVF, PD, and RND. The backward model eliminates BFD, PD, NDVI, and
MBH, respectively, leaving SVF, BVD, and RND as predictor variables with an adjusted
coefficient of determination, R2 of 0.688. Regression statistics reveal that SVF is the most
influential factor that drives UHI, the BVD follows, finally comes RND with standardized
Beta Coefficients of −0.411, 0.333, and 0.212, respectively. SVF has a strong negative
relationship with UHI, where the decreasing SVF values cause heat to be trapped and lead
to an increased Ta. An increase in BVD per unit contributes to UHI formation. Similarly,
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with the rise in RND per unit that is a proxy to traffic density, Ta tends to increase. Other
UPs, although, may contribute to UHI, their influence is slight compared to the three
parameters captured by the model.

The linear equation of MLR using spatial LUR modeling is as follows:

Tai = β0 + β1Vari1 + . . . + βn varin + ε (3)

where Tai is the observed Ta nighttime at location i, β0 is the constant (intercept), βn are
coefficients of UPs, n = 3, and ε is the model’s error term (the residual). R2 of approximately
0.65–0.75 is considered a good model performance in UHI estimation studies [38]. In the
present study, the variability of Ta explained by SVF, BVD, and RND, with R2 of 0.69 is a
good model performance. Ta for the case study can be estimated using the following linear
equation with a Standard Error of Estimate (SEE) of 0.57:

Tai = 23.531 − 1.986 × SVFi + 5.283E − 6 × BVDi + 0.029 × RNDi (4)

3.4. SUHI, UHI Diurnal Changes

Most studies use daytime or nighttime Ta measurements or LST interchangeably
to describe the UHI phenomenon in urban environments. However, both Ta and LST
for day and night may show considerable changes. This part of the study is devoted to
understanding the relationship between LST daytime vs. nighttime and UHI daytime vs.
nighttime based on their correlation statistics.

The Pearson Correlation between LST daytime, calculated from Landsat 8, and LST
nighttime from ASTER thermal product is 0.251, p = 0.167 for buffer size 150. Although
there is a positive correlation, it is weak and statistically not significant.

For UHI diurnal comparisons, 26 Ta nighttime and daytime coherent measurements
from the same locations were found to have a weak positive correlation of 0.248 (not
significant, p = 0.223). To further examine this questionably low correlation, the dot plot of
Ta daytime and Ta nighttime was evaluated. Accordingly, the daytime and nighttime Ta
show low–low, high–high, and low–high clusters of Ta day and night. The weak correlation
between Ta daytime and Ta nighttime is mainly attributed to the low–high cluster that spoils
the linear coherence between the measurements and, hence, worth further inspection. The
low–low, high–high, and low–high clusters’ member points were colored in blue, yellow,
and red, respectively, in both the dot plot and the map (Figure 6). The mean statistics of the
points that represent each region for the UPs are given in Table 5.

(i) In the blue region, the temperatures are relatively low for both day and night. Cor-
responding measurement locations refer to a region characterized by vegetation
and tree abundance (high NDVI) with relatively low building footprint and volume
density (BFD, BVD), low-rise buildings (low MBH), and an increased SVF. This low-
density fabric of residential use at the urban fringes does not get as warm as the other
two regions.

(ii) In the yellow region, the temperatures are relatively high for both day and night.
Corresponding measurement locations refer to a region that is a concentrated built-up
land mainly composed of residential use and was subject to haphazard development.
A moderate score of MBH, BFD, BVD, SVF, and RND, accompanied with scarce green
areas and trees (low NDVI), and high NDBI results in relatively high temperatures for
both day and night.

(iii) The red region is not very warm during the day, but the warmest at night. This is the
urban core with the commercial, financial, educational functions, and health facilities.
The built environment is characterized by a high building footprint, volume density,
and high-rise buildings (BFD, BVD, MBH) where SVF is small. However, there is an
ample number of big trees, especially along the walking lanes, that is represented with
a moderate NDVI. The relatively low daytime temperatures are mainly attributed
to the shadow effect due to high-rise buildings and large trees that may prevent an
increase in temperatures during the daytime. However, at nighttime, due to the
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high building density and volume, the heat is stored and re-emitted; and due to the
low SVF, heat is trapped and, hence, cooling at night is prevented. Traffic that is
represented with high RND is considered another factor that introduces additional
heat to the ambient temperatures at night as this part of the city core is active at night
(Table 5).
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Table 5. UPs mean values for city regions (blue, yellow, red) and UPs minimum and maximum
values. Highest scores per urban parameter were shown bold.

Ta Point Id NDVI NDBI MBH BFD BVD SVF PD RND

Blue 1,2,3, 31b, H-Kocaeli 0.326 −0.0703 7.770 0.220 2225.66 0.871 83.16 9.921

Yellow 21, 23, 27, 28, 29, 30, 33, 34, log-75 0.214 0.044 10.535 0.397 4744.6 0.697 251.94 12.09

Red 12, 14, 16, 17, 18, 20, 35 0.277 0.032 12.212 0.462 5408.74 0.621 221.91 16.173

Min. - 0.134 −0.183 0 0.028 900 0.588 0 2.111

Max. - 0.454 0.091 16.75 0.559 8180.36 0.999 383.19 21.492

4. Conclusions

The present study aims to provide a basic dataset that can be simply acquired or
calculated and proposes straightforward methods and basic statistical tools to explore the
relationships between data and the parameters very commonly employed in urban climate
studies. In urban climate research, most studies employ LST as a substitute for UHI without
much questioning. However, results from the present study reveal that LST is not a very
good indicator of UHI. Therefore, more care should be taken when substituting UHI with
LST. Daytime LST, in particular, should be cautiously used in climate studies as UHI is
characterized by nighttime Ta and commonly used daytime LST can mislead the strategies
and critical measures to be taken. In the absence of any Ta nighttime measurements of fine
spatial distribution, the use of nighttime LST might be a better option, albeit with a possible
low to moderate correlation with Ta nighttime. Empirical results show that UPs better
explain UHI variation and are considered a better option to estimate UHI in the absence of
densely distributed Ta.

The increase in artificial surfaces and building structures due to urbanization has a
significant impact on the increase in the UHI effect. The SVF, BVD, and RND, respectively,
were the most related parameters with nighttime Ta, which is the determinant of the UHI
phenomenon. Volumetric buildings and reduced sky view within a pattern of narrow
streets, coupled with traffic intensity, establishes the most favorable conditions for the
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increased UHI effect. The LUR model can estimate the intra-urban UHI effect given
relevant UPs at an effective scale represented with a critical buffer size. With the increased
availability of city models and building data, many of the UP data can be easily retrieved
and used for UHI modeling.

Similar to the discrepancy between daytime and nighttime LST, Ta measurements do
not correspond very well for day and night and have a low correlation. This inconsistency
can be attributed to the relatively higher Ta nighttime observations specific to a particular
region in the city. In these typical regions, the cooling is considered to be prevented, and
traffic contributes to the heating. These localities should be of prior interest in developing
urban cooling strategies at the urban design scale.

Contrary to a growing number of studies that employ remotely sensed LST, owing to
the lack of spatially detailed Ta data in cities, our findings highlight that Ta is indispensable
for precise mapping and accurate description of the UHI effect. LST that characterizes
SUHI, on the other hand, can be a proxy for studies that aim to map LST that is intricately
related to UHI. A microscale analysis of UHI for a comprehensive understanding of how
various UPs are related to urban air temperature variations is of crucial importance for
urban planning and design with a focus on UHI mitigation. UHI modeling based on
Ta measurements that are densely distributed is the primary reference metric for UHI.
However, the most influential UPs can also represent the UHI effect in this aim. Decision
makers should consider the localities of the highest intensity of UHI described by Ta or
estimated by UPS for taking specific measures to reduce exposure, especially during heat
waves. Urban planners and designers with the knowledge of the degree of influence of UPs
for UHI in their case study can establish decent strategies for reducing the UPs’ particular
contribution to UHI.
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32. Unger, J.; Savić, S.; Gál, T. Modelling of the annual mean urban heat island pattern for planning of representative urban climate

station network. Adv. Meteorol. 2011, 2011, 398613. [CrossRef]
33. Peng, W.; Wang, R.; Duan, J.; Gao, W.; Fan, Z. Surface and canopy urban heat islands: Does urban morphology result in the

spatiotemporal differences? Urban Clim. 2022, 42, 101136. [CrossRef]
34. Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat

island. Int. J. Climatol. A J. R. Meteorol. Soc. 2003, 23, 1–26. [CrossRef]
35. Oke, T. Boundary Layer Climates; Routledge: London, UK, 1987; 464p.
36. Rizwan, A.M.; Dennis, L.Y.; Chunho, L. A review on the generation, determination and mitigation of Urban Heat Island. J.

Environ. Sci. 2008, 20, 120–128. [CrossRef]
37. Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [CrossRef]
38. Shi, Y.; Katzschner, L.; Ng, E. Modelling the fine-scale spatiotemporal pattern of urban heat island effect using land use regression

approach in a megacity. Sci. Total Environ. 2018, 618, 891–904. [CrossRef] [PubMed]
39. Zhang, Y.; Zhang, J.; Zhang, X.; Zhou, D.; Gu, Z. Analyzing the characteristics of UHI (Urban heat island) in summer daytime

based on observations on 50 sites in 11 LCZ (local climate zone) types in Xi’an, China. Sustainability 2021, 13, 83. [CrossRef]
40. Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; World Meteorological Organization:

Geneva, Switzerland, 2004; Volume 81.
41. Schlünzen, K.H.; Grimmond, S.; Baklanov, A. Guidance to Measuring, Modelling and Monitoring the Canopy Layer Urban Heat Island

(CL-UHI); World Meteorological Origanization: Geneva, Switzerland, 2023.
42. Gubler, M.; Christen, A.; Remund, J.; Brönnimann, S. Evaluation and application of a low-cost measurement network to study

intra-urban temperature differences during summer 2018 in Bern, Switzerland. Urban Clim. 2021, 37, 100817. [CrossRef]

https://doi.org/10.1016/j.atmosenv.2005.11.037
https://doi.org/10.3390/w12051343
https://doi.org/10.1016/S0038-092X(00)00095-5
https://doi.org/10.1088/1748-9326/8/3/034022
https://doi.org/10.1016/j.scs.2020.102387
https://espas.secure.europarl.europa.eu/orbis/document/global-trends-2030-future-urbanization-and-megacities-0
https://espas.secure.europarl.europa.eu/orbis/document/global-trends-2030-future-urbanization-and-megacities-0
https://doi.org/10.1126/science.1098704
https://www.ncbi.nlm.nih.gov/pubmed/15310900
https://doi.org/10.1175/JAMC-D-13-02.1
https://doi.org/10.1002/qj.49710845502
https://doi.org/10.1016/j.jtte.2021.02.001
https://doi.org/10.1002/joc.3370010304
https://doi.org/10.1016/S0378-7788(96)00999-1
https://doi.org/10.1016/S1352-2310(99)00131-4
https://doi.org/10.1371/journal.pone.0102124
https://doi.org/10.1002/2013GL057320
https://doi.org/10.1007/s10980-009-9402-4
https://doi.org/10.1080/00046973.1976.9648422
https://doi.org/10.1080/00221349108979321
https://doi.org/10.1016/j.buildenv.2023.110334
https://doi.org/10.1016/j.eti.2019.100341
https://doi.org/10.1155/2011/398613
https://doi.org/10.1016/j.uclim.2022.101136
https://doi.org/10.1002/joc.859
https://doi.org/10.1016/S1001-0742(08)60019-4
https://doi.org/10.1016/S0034-4257(03)00079-8
https://doi.org/10.1016/j.scitotenv.2017.08.252
https://www.ncbi.nlm.nih.gov/pubmed/29096959
https://doi.org/10.3390/su13010083
https://doi.org/10.1016/j.uclim.2021.100817


Sustainability 2023, 15, 15710 20 of 22

43. Alvi, U.; Suomi, J.; Käyhkö, J. A cost-effective method for producing spatially continuous high-resolution air temperature
information in urban environments. Urban Clim. 2022, 42, 101123. [CrossRef]

44. Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface
urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [CrossRef]

45. Yang, Y.; Endreny, T.A.; Nowak, D.J. A physically based analytical spatial air temperature and humidity model. J. Geophys. Res.
Atmos. 2013, 118, 10449–10463. [CrossRef]

46. Acosta, M.P.; Vahdatikhaki, F.; Santos, J.; Hammad, A.; Dorée, A.G. How to bring UHI to the urban planning table? A data-driven
modeling approach. Sustain. Cities Soc. 2021, 71, 102948. [CrossRef]

47. Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in
urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [CrossRef]

48. Schwarz, N.; Schlink, U.; Franck, U.; Großmann, K. Relationship of land surface and air temperatures and its implications
for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol. Indic. 2012, 18, 693–704.
[CrossRef]

49. Mostovoy, G.V.; King, R.L.; Reddy, K.R.; Kakani, V.G.; Filippova, M.G. Statistical estimation of daily maximum and minimum air
temperatures from MODIS LST data over the state of Mississippi. GIScience Remote Sens. 2006, 43, 78–110. [CrossRef]

50. Kloog, I.; Chudnovsky, A.; Koutrakis, P.; Schwartz, J. Temporal and spatial assessments of minimum air temperature using
satellite surface temperature measurements in Massachusetts, USA. Sci. Total Environ. 2012, 432, 85–92. [CrossRef]

51. Pelta, R.; Chudnovsky, A.A.; Schwartz, J. Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to
air temperature monitoring. Environ. Pollut. 2016, 208, 153–160. [CrossRef]

52. Xiong, Y.; Chen, F. Correlation analysis between temperatures from Landsat thermal infrared retrievals and synchronous weather
observations in Shenzhen, China. Remote Sens. Appl. Soc. Environ. 2017, 7, 40–48. [CrossRef]

53. Azevedo, J.A.; Chapman, L.; Muller, C.L. Quantifying the daytime and night-time urban heat island in Birmingham, UK: A
comparison of satellite derived land surface temperature and high resolution air temperature observations. Remote Sens. 2016, 8,
153. [CrossRef]

54. Hartz, D.; Prashad, L.; Hedquist, B.; Golden, J.; Brazel, A. Linking satellite images and hand-held infrared thermography to
observed neighborhood climate conditions. Remote Sens. Environ. 2006, 104, 190–200. [CrossRef]

55. Del Pozo, S.; Landes, T.; Nerry, F.; Kastendeuch, P.; Najjar, G.; Philipps, N.; Lagüela, S. UHI estimation based on ASTER and
MODIS satellite imagery: First results on Strasbourg city, France. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43,
799–805. [CrossRef]

56. Zhang, W.; Huang, Y.; Yu, Y.; Sun, W. Empirical models for estimating daily maximum, minimum and mean air temperatures
with MODIS land surface temperatures. Int. J. Remote Sens. 2011, 32, 9415–9440. [CrossRef]

57. Stewart, I.D. Landscape representation and the urban-rural dichotomy in empirical urban heat island literature, 1950–2006. Acta
Climatol. Chorol. 2007, 40, 111–121.

58. Sharpe, D.M. Microclimatology. In Climatology; Springer: Boston, MA, USA, 1987; pp. 572–581. [CrossRef]
59. Anderson, S. An Evaluation of Spatial Interpolation Methods on Air Temperature in Phoenix, AZ; Department of Geography, Arizona

State University: Tempe, AZ, USA, 2002; Volume 104.
60. Li, D.; Bou-Zeid, E.; Oppenheimer, M. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ.

Res. Lett. 2014, 9, 055002. [CrossRef]
61. Garuma, G.F. Review of urban surface parameterizations for numerical climate models. Urban Clim. 2018, 24, 830–851. [CrossRef]
62. Aslan, N.; Koc-San, D. The use of land cover indices for rapid surface urban heat island detection from multi-temporal Landsat

imageries. ISPRS Int. J. Geo-Inf. 2021, 10, 416. [CrossRef]
63. Okumus, D.E.; Terzi, F. Evaluating the role of urban fabric on surface urban heat island: The case of Istanbul. Sustain. Cities Soc.

2021, 73, 103128. [CrossRef]
64. Yang, L.; Yu, K.; Ai, J.; Liu, Y.; Yang, W.; Liu, J. Dominant factors and spatial heterogeneity of land surface temperatures in urban

areas: A case study in Fuzhou, China. Remote Sens. 2022, 14, 1266. [CrossRef]
65. Kiavarz, M.; Hosseinbeigi, S.B.; Mijani, N.; Shahsavary, M.S.; Firozjaei, M.K. Predicting spatial and temporal changes in surface

urban heat islands using multi-temporal satellite imagery: A case study of Tehran metropolis. Urban Clim. 2022, 45, 101258.
[CrossRef]

66. Wang, X.; Zhang, Y.; Yu, D. Exploring the Relationships between Land Surface Temperature and Its Influencing Factors Using
Multisource Spatial Big Data: A Case Study in Beijing, China. Remote Sens. 2023, 15, 1783. [CrossRef]

67. Gerçek, D.; Güven, İ.; Oktay, İ. Analysis of the intra-city variation of urban heat island and its relation to land surface/cover
parameters. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 123–129. [CrossRef]

68. Ramírez-Aguilar, E.A.; Souza, L.C.L. Urban form and population density: Influences on Urban Heat Island intensities in Bogotá,
Colombia. Urban Clim. 2019, 29, 100497. [CrossRef]

69. Foissard, X.; Dubreuil, V.; Quénol, H. Defining scales of the land use effect to map the urban heat island in a mid-size European
city: Rennes (France). Urban Clim. 2019, 29, 100490. [CrossRef]

70. Puche, M.; Vavassori, A.; Brovelli, M.A. Insights into the Effect of Urban Morphology and Land Cover on Land Surface and Air
Temperatures in the Metropolitan City of Milan (Italy) Using Satellite Imagery and In Situ Measurements. Remote Sens. 2023, 15,
733. [CrossRef]

https://doi.org/10.1016/j.uclim.2022.101123
https://doi.org/10.1016/j.rse.2006.09.003
https://doi.org/10.1002/jgrd.50803
https://doi.org/10.1016/j.scs.2021.102948
https://doi.org/10.1080/01431168908904002
https://doi.org/10.1016/j.ecolind.2012.01.001
https://doi.org/10.2747/1548-1603.43.1.78
https://doi.org/10.1016/j.scitotenv.2012.05.095
https://doi.org/10.1016/j.envpol.2015.09.007
https://doi.org/10.1016/j.rsase.2017.06.002
https://doi.org/10.3390/rs8020153
https://doi.org/10.1016/j.rse.2005.12.019
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-799-2020
https://doi.org/10.1080/01431161.2011.560622
https://doi.org/10.1007/0-387-30749-4_115
https://doi.org/10.1088/1748-9326/9/5/055002
https://doi.org/10.1016/j.uclim.2017.10.006
https://doi.org/10.3390/ijgi10060416
https://doi.org/10.1016/j.scs.2021.103128
https://doi.org/10.3390/rs14051266
https://doi.org/10.1016/j.uclim.2022.101258
https://doi.org/10.3390/rs15071783
https://doi.org/10.5194/isprs-annals-III-8-123-2016
https://doi.org/10.1016/j.uclim.2019.100497
https://doi.org/10.1016/j.uclim.2019.100490
https://doi.org/10.3390/rs15030733


Sustainability 2023, 15, 15710 21 of 22

71. Liu, Y.; Xu, Y.; Zhang, Y.; Han, X.; Weng, F.; Xuan, C.; Shu, W. Impacts of the Urban Spatial Landscape in Beijing on Surface and
Canopy Urban Heat Islands. J. Meteorol. Res. 2022, 36, 882–899. [CrossRef]

72. Swaid, H. Urban climate effects of artificial heat sources and ground shadowing by buildings. Int. J. Climatol. 1993, 13, 797–812.
[CrossRef]

73. Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [CrossRef]
74. Georgescu, M.; Chow, W.T.; Wang, Z.; Brazel, A.; Trapido-Lurie, B.; Roth, M.; Benson-Lira, V. Prioritizing urban sustainability

solutions: Coordinated approaches must incorporate scale-dependent built environment induced effects. Environ. Res. Lett. 2015,
10, 061001. [CrossRef]

75. Xu, D.; Zhou, D.; Wang, Y.; Meng, X.; Chen, W.; Yang, Y. Temporal and spatial variations of urban climate and derivation of an
urban climate map for Xi’an, China. Sustain. Cities Soc. 2020, 52, 101850. [CrossRef]

76. Van Hove, L.; Jacobs, C.; Heusinkveld, B.; Elbers, J.; Van Driel, B.; Holtslag, A. Temporal and spatial variability of urban heat
island and thermal comfort within the Rotterdam agglomeration. Build. Environ. 2015, 83, 91–103. [CrossRef]

77. Öztürk, M.Z.; Çetinkaya, G.; Aydin, S. Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Coğrafya Derg. 2017,
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