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ABSTRACT 

 

DEVELOPMENT OF COMPUTATIONAL MODELS TO PREDICT THE 

TOXICITY OF ADVANCED MATERIALS 

 

The aim of this study is to harness computational power to enhance existing 

knowledge on NM safety and to optimize the use of existing nanotoxicity data. The 

primary goal is to support the safe(r)-by-design concept, necessitating early integration 

of safety considerations into NM design through structural manipulation strategies. This 

thesis focuses on three case studies: zinc oxide, silver, and gold NP, using data manually 

collected from the literature. 

Analyses with zinc oxide and silver NP revealed a correlation between their 

toxicity and both internal (intrinsic properties, size, shape, surface charge) and external 

(cell and analysis-related properties) factors. For zinc oxide, it was found that coating had 

significant influence on cell viability, with a critical threshold identified at 20 µg/ml 

concentration and 10 nm size. Similarly, for silver NPs, concentration, size, and exposure 

time were significant factors. Coating with organic macromolecules increased cell 

viability, whereas green-synthesized NPs (using bacteria, plant extracts, algae) decreased 

it. The gold NP study highlighted that ensemble methods were more effective in 

elucidating complex relationships, with cellular uptake linked to particle size, zeta 

potential, concentration, and exposure time. 

Overall, this thesis contributes to safer-by-design strategies, crucial for 

developing commercially viable and safe NMs. The findings advocate for a broader 

toxicity evaluation approach, considering various physicochemical aspects and 

experimental procedures. The complex interactions observed suggest that advanced 

algorithms are necessary for accurate modeling, supporting the optimization of 

experimental parameters in NP engineering for biomedical applications.
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ÖZET 

 

İLERİ MALZEMELERİN TOKSİSİTESİNİN TAHMİNLENMESİ İÇİN 

BİLGİSAYIMSAL MODELLERİN GELİŞTİRİLMESİ  

 

Bu çalışmanın amacı, nanomateryal güvenliğine ilişkin mevcut bilgiyi 

geliştirmek ve mevcut nanotoksisite verilerinin kullanımını optimize etmek için 

hesaplama gücünden yararlanmaktır. Birincil amaç, yapısal manipülasyon stratejileri 

yoluyla güvenlik hususlarının nanomalzeme tasarımına erken entegrasyonunu gerektiren 

tasarım-aşamasında-güvenlik konseptini desteklemektir. Bu tez, çinko oksit, gümüş ve 

altın nanoparçacıkları (NP) üzerine yapılan üç ayrı araştırmayı ele almaktadır, bu 

araştırmalar literatürden el ile toplanan verilere dayanmaktadır. 

Çinko oksit ve gümüş nanopartiküller ile yapılan analizler, bunların toksisitesi 

ile hem iç (içsel özellikler, boyut, şekil, yüzey yükü) hem de harici (hücre ve analizle 

ilgili özellikler) parametreler arasında bir korelasyon olduğunu ortaya koymuştur. Çinko 

oksit için, kaplamanın hücre canlılığını etkilediği, 20 µg/ml konsantrasyon, 12 saat 

maruziyet ve 10 nm boyutunun kritik bir eşik değerleri olduğu tespit edilmiştir. Benzer 

şekilde gümüş NP için konsantrasyon, boyut ve maruz kalma süresi önemli faktörler 

olarak belirlenmiştir. Organik makromoleküllerle kaplama hücre canlılığını artırırken, 

yeşil sentezlenen NPlerde (bakteri, bitki özleri, algler kullanılarak) canlılık azalmıştır. 

Altın NP çalışması, topluluk öğrenmesi yöntemlerinin, parçacık boyutuna, zeta 

potansiyeline, konsantrasyona ve maruz kalma süresine bağlı hücresel alımın karmaşık 

ilişkilerini açıklamada daha etkili olduğu gösterilmiştir. 

Genel olarak bu tez, ticari olarak uygulanabilir ve güvenli nanomateryallerin 

geliştirilmesi için hayati önem taşıyan tasarım açısından daha güvenli stratejilere katkıda 

bulunmaktadır. Bulgular, çeşitli fizikokimyasal yönleri ve deneysel prosedürleri dikkate 

alan daha geniş bir toksisite değerlendirme yaklaşımını desteklemektedir. Gözlemlenen 

karmaşık etkileşimler, biyomedikal uygulamalar için nanopartikül mühendisliğinde 

deneysel parametrelerin optimizasyonunu destekleyen, doğru modelleme için gelişmiş 

algoritmaların gerekli olduğunu göstermektedir.
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Nanomaterials (NM) are one of the most important double-edged swords of our 

modern age. Nanomaterials are characterized by having at least one external dimension 

in the 1-100nm range. This definition is widely accepted across various scientific bodies, 

including the European Commission, which further specifies that at least half of the 

particles in a nanomaterial should have a size of 100nm or below. At the nanoscale, 

materials exhibit unique physical and chemical properties that differ significantly from 

their larger-scale counterparts. These include variations in strength, electrical 

conductivity, reactivity, and optical properties. For instance, nanomaterials can have 

enhanced magnetic, electrical, optical, mechanical, and catalytic characteristics. These 

properties are not just a function of their size but can also be influenced by the shape, 

synthesis conditions, and functionalization of the nanomaterials. One of the key aspects 

of nanomaterials is their increased specific surface area compared to the same material at 

a larger scale. This increased surface area can lead to different behaviors and interactions 

with other materials or environments, which is a fundamental aspect of their unique 

properties. The definition and understanding of nanomaterials are crucial for a broad 

range of applications, from medical therapies and drug delivery systems to renewable 

energy technologies and advanced materials for electronics. The unique properties of 

nanomaterials at the nanoscale offer innovative solutions and enhancements in these 

fields, making their study and application a pivotal aspect of modern science and 

technology. The nanoscale materials exhibit a range of unique properties that are different 

from their bulk counterparts. For example, the physical (melting point, strength, hardness, 

reactivity, etc.), chemical (catalytic activity, optical properties, chemical stability, etc.), 

and biological (cellular uptake, viability, clearance, genotoxicity, etc.) properties may 

change at the nanoscale due to the increased surface area and the quantum effects 

(quantum confinement, quantum tunnelling, superparamagnetism, superconductivity 

etc.) that may occur in that scale. After a basic overview of nanomaterials and their wide-

range applications in various industries, this thesis focuses on arguably the most critical 
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aspect of nanotechnology: the assessment and prediction of the toxicity of 

nanotechnology-enabled materials. Recognizing the dual nature of nanomaterials and 

promoting a balanced perspective on their revolutionary and potentially hazardous nature, 

the main goal of this work is to develop robust computational models that can accurately 

predict the toxicity of these materials. This effort is vital not only to advance the safe use 

of nanotechnology but also to reduce the potential health and environmental risks 

associated with these materials. This thesis aims to bridge the gap between the rapid 

development of nanomaterials and the understanding of their safety implications by 

providing a comprehensive approach to toxicity prediction. This will involve the 

investigation of various computational methods, including machine learning algorithms, 

to analyze and predict the toxicological profiles of advanced nanomaterials. The ultimate 

aim is to establish a predictive framework that can be used by scientists and industry 

professionals to assess the safety of novel nanomaterials, thus ensuring their responsible 

and sustainable application in various sectors.  

 

 

1.1. Basic Terms and Definitions Associated with Nano 

 

 

Although there is still no consensus on the definition of nanomaterials but yet their 

potential risks, it would be useful to make basic definitions of nanomaterials before 

delving into their possible risks 1-4. 

 

Nano: One billionth of a meter (10-9m) 5. 

Nanoscale: The size range of the nanomaterials is generally accepted from 1 to 

100 nm, but all submicron (≤1000 nm) could be accepted by some fields 6. 

Nanoscience: The science and technologies comprise the study of phenomena and 

manipulation of materials at atomic, molecular, and macromolecular scales where 

properties differ significantly from those at larger scales, and the understanding of the 

fundamental physics, chemistry, biology, and technology of nanoscale objects 7, 8. 

Nanotechnology: The branch of science that covers the development and 

application of materials, devices, and systems by controlling shape and size at the 
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nanometer scale. It is the field of science that aims to translate the knowledge and 

techniques obtained from different sciences into practice 9. 

Nanomanufacturing: Any manufacturing phenomenon performed at the 

nanoscale. It comprises both top-down and bottom-up manufacturing approaches. 

Nanomaterial (NM): A class of materials of which at least one dimension is sized 

between 1 and 100 nm. 

Engineered NM: A subsection of NM that comprises the intentionally produced 

NMs 10. 

Incidental NM: A subset of NMs that come into existence as a result of natural 

events (may also be named natural NMs) or incidental human activities rather than being 

engineered or manufactured with specific properties in mind 11. 

Advanced materials: The materials that are designed or produced with the aim 

of adding or improving superior properties to existing materials, reducing production 

costs, or encouraging the development of new technologies and applications 12. 

Nanoparticle: a particle that operates at the nanoscale, usually with all three 

dimensions in the range of 1 to 100 nm 13.  

Nanorod: A type of nanoparticle characterized by its elongated shape in one 

dimension. Typically, nanorods have a significantly longer dimension than the other two, 

but the longest dimension remains within the nanoscale. 

Nanoplate: A flat NP where one dimension (thickness) is significantly smaller 

compared to the other two but remains within the nanoscale range. They resemble small 

plates or discs and may have unique properties due to their geometry. 

Nanofiber: an extremely thin fiber with a diameter in the nm range.  

Nanostar: An NP with multiple points or arms extending from a central core 

reminiscent of the shape of a star. 

Nanotubes: Cylindrical nanostructures with a diameter on the nanoscale. The 

most well-known are carbon nanotubes (CNTs), which are sheets of carbon that are one 

atom thick, rolled into a tube. Nanotubes can be single-walled or multi-walled. NTs can 

also be formed via lipids 14. 

Nanowires: Extremely thin wires with a diameter on the nanoscale. They can be 

composed of various materials, including metals, semiconductors, or insulators. 

Quantum Dots: Nanoscale semiconductor particles that exhibit quantum 

mechanical properties. They are distinctive in that they can emit different colors of light 

when excited, depending on their size. 
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Nanosphere: Spherical particles where all three dimensions are on the nanoscale. 

Nanocone: A cone-shaped nanostructure with a circular base that tapers to a point. 

Nanoshell: An NP consisting of a dielectric core coated with a thin metallic outer 

layer. 

Nanoring: Ring-shaped nanostructures that may have magnetic properties 

distinct from those of linear nanostructures due to their closed-loop geometry. 

Nanodisc: Disc-shaped NPs with a flat, circular shape whose height is 

significantly less than their diameter. 

 

 

1.2. Common Machine Learning Algorithms Used in This Thesis 

 

 

XGBoost: Stands for eXtreme Gradient Boosting. It is a scalable and efficient 

implementation of the gradient boosting framework by Tianqi Chen and Carlos Guestrin. 

XGBoost provides a parallel tree boosting that solves many data science problems quickly 

and accurately. 

Random Forest (RF): A versatile machine learning method capable of 

performing regression and classification tasks. It uses multiple decision trees and outputs 

the class, which is the mode of the classes (classification) or mean prediction (regression) 

of the individual trees. 

Bootstrap Aggregation (Bagging): A method that involves training the same 

algorithm many times using different subsets sampled from the training data. It improves 

the accuracy and stability of machine learning algorithms. 

Light Gradient Boosting (LightGBM): A gradient boosting framework that uses 

tree-based learning algorithms. It is designed for distributed and efficient training. 

Gradient Boosting (GB): A machine learning technique for regression and 

classification problems that produces a prediction model in the form of an ensemble of 

weak prediction models, typically decision trees. 

Decision Tree (DT): A decision support tool that uses a tree-like model of 

decisions and their possible consequences, including chance event outcomes, resource 

costs, and utility. 
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K-Nearest Neighbors: A non-parametric method used for classification and 

regression. In both cases, the input consists of the k closest training examples in the 

feature space. 

BPNN (ReLu, 4 neurons in hidden layer): A backpropagation neural network 

with the ReLu activation function in the hidden layer introduces non-linearity to the 

model. 

Support Vector Regression (RBF kernel): An extension of Support Vector 

Machines (SVMs) to regression problems, it uses the same principles as SVM for 

classification but with a different loss function. 

AdaBoost: A machine learning meta-algorithm that can be used with many other 

learning algorithms to improve performance.. 

Bayesian Ridge: Implements Bayesian ridge regression, a linear regression with 

a probabilistic approach. 

Stochastic Gradient Descent: A simple yet very efficient approach to fitting 

linear classifiers and regressors under convex loss functions such as (linear) Support 

Vector Machines and Logistic Regression. 

Ridge Regression with Cross-Validation: A way to perform Ridge Regression, 

a type of linear least squares with l2 regularization, with built-in cross-validation of the 

alpha parameter. 

Generalized Additive Models: A statistical model that is a non-parametric 

extension of generalized linear models, allowing for flexibility in modeling. 

Huber Regression: A type of robust regression that is less sensitive to outliers in 

data than traditional regression methods. 

Support Vector Regression (linear kernel): Similar to SVR with RBF kernel, it 

uses a linear kernel to predict the values of a new dataset. 

Poisson Regression: A regression model is used when the dependent variables 

are count data. 

Tweedie Regression: A type of regression useful for modeling positive 

continuous data with exact zeroes. 

Theil-Sen Regression: A non-parametric regression method that chooses the 

median slope among all lines through pairs of two-dimensional sample points. 

An artificial neural network (ANN): A computational model that mimics the 

structure and functioning of the human brain to process information and generate 

outcomes. It consists of layers of interconnected nodes, called neurons, with each 
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connection representing a synapse that can transmit signals between neurons. ANNs are 

capable of learning from data through a process called training, where the weights of the 

connections are adjusted to minimize the difference between the actual output and the 

predicted output by the network. 

 

 

1.3. Non-testing Approaches for Regulatory Testing 

 

 

Traditional methods for assessing chemical toxicity rely largely on in vivo animal 

testing. This practice requires significant financial and temporal resources as well as 

ethical concerns regarding animal welfare 15. Rapid advances in innovative technologies, 

such as nanotechnology, are causing a large number of NMs to appear on the market 

rapidly. In addition, changes in existing technologies such as biotechnology require the 

urgent adoption of alternative evaluation methods that avoid (or at least reduce the use 

of) animal testing 16. Although practitioners and regulators clearly express the need for 

these methods, and the incentives in this direction are increasing day by day, the 

developments do not yet coincide with the targets 17. However, the numerous advantages 

inherent in non-testing methods are widely recognized, and they have significant potential 

in many fields, including the hazard assessment of NMs. 

The concept of “non-testing” for hazard assessment encompasses the use of 

computational technologies, molecular modeling, and chemical databases to inform risk 

management decisions with greater efficiency and precision 18. This approach prioritizes 

the safe production and use of products, protecting not only people and the environment 

but also manufacturers by reducing possible negative impacts, as it significantly reduces 

the time and financial resources required from design to market 19. Since NMs are highly 

researched products, non-assay methods offer significant opportunities to leverage these 

available data effectively and facilitate early-stage safety assessments of new materialsi20. 

The main misconception about these methods is that they will eliminate the need for 

current experimental approaches and nullify the use of animals in experiments. On the 

contrary, in silico methods provide invaluable support in making sense of existing data 

and elucidating possible mechanisms of toxicity, making it possible to identify missing 

data sets and what additional experiments need to be performed - with the minimum 
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number of experiments possible that will allow meaningful conclusions to be drawn 21, 22. 

Despite all their potential, the main reason why these methods are not widely used in the 

industry is that common and clear rules have not been fully established by the industry 

and regulators. In order to demonstrate the usability of these methods for hazard 

assessment, reliability, and compliance, studies must be carried out in a transparent 

manner and documented in regulatory contexts 23. 

It is possible to divide non-testing methods into three main types, namely 

grouping and read-across approaches, structure-activity relationship methods, and expert 

systems. These categories are interconnected as they all operate on the premise that 

structurally similar compounds will exhibit similar biological activities 24. The data they 

examine vary in their complexity, involving analytical processes, expert judgments, and 

mechanistic interpretations. 

These methods are particularly promising in terms of effectively using available 

data, providing mechanistic explanations for priority setting, and filling data gaps 

necessary for categorization, classification, labeling, and risk assessment processes 25. In 

this thesis, the potential applications of various computer-aided methods in risk 

assessment will be highlighted, including their roles in establishing categories, 

identifying hazards, filling regulatory data gaps, and prioritizing NMs for further testing. 

Despite the advantages of non-testing methods in chemical safety assessments, 

the difficulties in integrating these alternative methods into regulatory frameworks are 

complex enough in their current state. The situation becomes more challenging when 

elements that have very complex interactions with biological systems, such as NMs, are 

added to the models being developed. The first two chapters of this thesis aim to review 

how these methods can contribute to hazard and risk assessment and risk reduction in a 

regulatory context. 

Non-testing methods hold considerable promise for making the best possible use 

of existing data, providing mechanistic interpretation for priority setting, and filling data 

gaps required for categorization, classification, labeling, and risk assessment processes. 

The potential use of different computer-assisted methods in risk assessment is 

summarised in Table 1.1.  
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Table 1.1. Potential use of non-testing methods in risk assessment 

 

Non-Testing Method Potential Use in Risk Assessment 

GROUPING AND READ-ACROSS 

APPROACHES 

Chemical category formation 

Hazard identification 

Filling data gaps for regulatory purposes 

Prioritisation of chemicals for further testing 

MACHINE LEARNING AND 

STATISTICAL APPROACHES 

CORRELATING ACTIVITY 

WITH THE STRUCTURE 

Chemical category formation 

Hazard identification 

Identification of toxicity-related properties 

Hazard minimization through safe-by-design 

Prioritisation of chemicals for further testing 

PHYSIOLOGICALLY-BASED 

PHARMACOKINETIC MODELS 

Prediction of internal-dose at a target organ 

Risk assessment extrapolations (inter/intra-

species, high-low doses, route to route) 

ADVERSE OUTCOME 

PATHWAYS 

Chemical category formation 

Prioritisation of chemicals for further testing 

Providing mechanistic explanations 

Integration of testing strategies 

 

 

1.3.1. Grouping – Category Formation 

 

 

Risk assessment processes can be simplified by grouping chemicals or NMs with 

common properties relevant to safety and environmental impact based on physical, 

chemical, optical, electromagnetic, and biological similarities. In this way, it is possible 

to predict the behavior of non-tested compounds within the groups and reduces the need 

for new individual tests. Considerations related to creating strong categories and 

strengthening the existing ones are explained below 26-28: 

 

• Defining the Category: Inclusion criteria within the category should 

be determined, and these criteria should facilitate grouping. 
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• Data Collection: For each member in the categories, the largest 

possible amount of data that can be related to the endpoint should be 

collected (physical, chemical, biological). 

• Determination of Common Features: Common features within the 

collected data should be revealed. 

• Classification: Each member should be placed into appropriate 

categories based on common characteristics. 

 

To establish and enhance categories effectively, several key considerations are 

outlined below 28, 29: 

 

✓ Maximum Category Size: Placing all possible individuals in the data 

set into a certain category can increase the power of predictions for 

untested products. 

✓ Recognize Member Variability: Understand that while members share 

common features, their behaviors might differ. Consider these 

differences in making predictions. 

✓ Document Expert Judgment: Since forming categories often involves 

expert opinions, document the data and reasoning behind the 

categorization decisions thoroughly. 

 

In addition to the primary considerations for establishing and enhancing 

categories, there are important guidelines and requirements provided by international 

organizations that should be taken into account: 

 

o OECD (The Organization for Economic Cooperation and 

Development) Guidance: The OECD offers detailed guidance 

documents on the principles and methodologies for chemical 

grouping. 

o ECHA Information Requirements: ECHA's guidance on information 

requirements and chemical safety assessment provides insights into 

data needs for forming categories. 

 



 

10 

1.3.2. Read-Across 

 

 

Read-across facilitates the estimation of missing data for untested items (target) 

by utilizing information from similar, well-studied items (source). This technique plays 

an important role in fulfilling regulatory requirements, filling data gaps, and making 

informed decisions when it is impractical to test each item individually 28, 30. Figure 1.1. 

summarize the potential benefits of the read-across strategies.  

Fundamental similarities are considered: Similarities between substances include 

structure, physicochemical properties (e.g., solubility, ionization state) 31, activity/ mode 

of action (e.g., (eco)toxicological effects, fate) 32, reactivity (e.g., chemical or biological) 

and metabolic pathways (e.g., formation of common metabolites) 33. In the assessment of 

substances for safety and regulatory purposes, there are primarily two approaches 

employed to make predictions: 

 

o Analog approach: Uses data from a single source compound to make 

predictions. While convenient, data-rich categories are generally 

favored due to increased confidence in predictions 25. 

o Category approach: Uses data from multiple source compounds 

within a defined category, offering higher confidence and more 

reliable generalizations due to the larger pool of data 34. 

o  

Ensuring a robust implementation of read-across involves several critical steps, 

which are 35: 

 

✓ Identify a group of substances with common characteristics. 

✓ Establish a strong rationale for the similarity between source and 

target substances using multiple lines of evidence (e.g., structural, 

physicochemical, mechanistic). 

✓ Use experimental data from source substances to predict the unknown 

value for the target substance. 

✓ Extend the justification with additional mechanistic data to strengthen 

confidence in the predictions. 
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Figure 1.1. Read-across approach. 

 

 

Uncertainty in the data directly affects forecast accuracy, so data quality 

assessment is crucial. The first step to address uncertainty for regulatory acceptance 36-38 

is to ensure the adequacy and quality of the data sets used for prediction. In Figure 1.2. 

the relation between the source and type of uncertainty is summarized 37. There is a need 

to go beyond structural similarities and include bioavailability, reactivity, metabolic 

profiles, and mechanistic information for a more comprehensive similarity assessment.  

Another important issue is to provide clear and comprehensive documentation to 

demonstrate the robustness of the read-across process and results. Lack of transparency 

and incompleteness may hinder acceptance by regulatory agencies. 
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Figure 1.2. The interrelationships between the sources and types of uncertainty in 

a read-across 37. 

 

 

Additional considerations for greater trust are preferred data-rich categories over 

analog approaches for greater confidence 38-40. 

 

• Interpolation rather than extrapolation where possible as it carries 

lower uncertainty due to staying within data boundaries. 

• Complementary evidence: Combine in vitro, in silico, omics, and 

adverse outcome pathway (AOP) information to strengthen 

predictions and provide mechanistic links. 

• Transparent and defensible presentation of read-across hypotheses 

and findings to increase regulatory acceptance. 
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While read-across inherently involves some subjectivity and uncertainty, these 

can be minimized by the practices outlined above. By utilizing additional supporting data, 

a greater number of substances, multiple rationales, and transparent documentation, read-

across can significantly contribute to effective and reliable chemical safety assessments 

and thus promote informed regulatory decision-making. 

Integrating the concept of Adverse Outcome Pathways (AOPs) into NM grouping 

represents a future direction with considerable potential to enhance read-across 

predictions and lessen the regulatory burden for nanomaterials (NMs). AOPs detailing 

the biological steps from an NP-specific initiating event to an adverse outcome could 

increase confidence in predictions by ensuring that grouped NMs likely share similar 

toxicity pathways41. This approach requires consideration of how AOPs can be 

systematically related to NM properties and potentially involves new types of data 

analysis and interpretation 42. 

Validation of read-across assumptions and similarity rules should go beyond 

traditional physicochemical comparisons 35. By combining data from multiple sources, 

such as high-throughput analyses, in silico methods, and molecular screening specifically 

designed for NMs, a more comprehensive view of NM similarity can be obtained, and 

prediction accuracy can be improved 43-45. However, this approach involves integrating 

various types of data, which can present unique challenges in terms of data compatibility 

and analysis 46. 

Developing a reliability indicator specifically for NM read-across predictions 

would provide a quantitative measure of the uncertainty involved 47. Such an indicator 

would assist regulators in assessing whether predictions are sufficiently robust for 

decision-making and help bridge the gap between scientific analysis and regulatory 

requirements 23. 

 

 

1.4. Application of Machine Learning and Statistical Modelling 

Approaches to Structure-Activity Relationships (SAR) for NMs 

 

 

The use of machine learning and statistical modeling in NM SAR analysis is a 

powerful tool for predicting NMs based on their properties and biological effects 48. NM 
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SAR is a mathematical model that links the biological activities or properties of NMs to 

their physicochemical and structural properties 49. The field of nanotoxicology relies 

heavily on this approach, which evolves continuously through ongoing modifications and 

advancements 50. 

In NM SAR models, the biological activity of NMs is related to their properties, 

a relationship that can be expressed quantitatively by mathematical equations. This 

requires a dataset of NMs with well-characterized biological effects and corresponding 

physico-chemical and structural descriptors 50. Machine learning and statistical methods 

ranging from simple data visualization tools to complex techniques such as random 

forests, decision trees, and neural networks are used to develop these mathematical 

models 51, 52. The focus here is to assess the suitability of these methods for NM SAR 

modeling and to investigate how they can further improve the reliability and applicability 

of predictions of the in silico models. 

Improving read-across predictions through advanced methodologies is a key focus 

for the future development of approaches to nanomaterials (NMs). The integration of 

SAR and AOP concepts. By combining these approaches with machine learning and 

statistical modeling, a more holistic and accurate system for predicting NM behavior and 

toxicity can be developed 52. This would include not only an in-depth understanding of 

NM properties and biological activities, but also a comprehensive assessment of the 

pathways leading to adverse outcomes 53. 

Such integrative approaches can support a more efficient, accurate, and ethically 

responsible evaluation of data obtained by traditional testing methods. The main 

challenge encountered at this point is to create regulatory contexts for these 

methodologies on NMs, which have many ambiguities (which will be detailed in the next 

chapter). Ongoing research and collaboration among scientists, regulators, and industry 

stakeholders are crucial to achieving this goal. 

General information about the approaches that can potentially be used in the 

hazard assessment of NMs is explained below. 
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1.4.1. Decision Trees 

 

 

Decision trees (DTs), powerful machine learning methods, have great potential in 

the field of NM risk assessment and regulatory decision-making 54. DTs are created based 

on existing data, and tree-like decision-making structures are created by separating them 

first into branches and then into leaves, according to data characteristics 55. These 

structures can be used predictively to classify and measure the toxicity of NMs 55. In 

general, DTs stand out in the following areas, contributing to overcoming the difficulties 

in assessing the toxicity of NMs. 

1. Ability to reveal underlying causes: DTs help to automatically scan data, 

determine the parameters that are effective in revealing the mechanisms underlying the 

toxic effects of NMs, and manufacture safer materials from the information obtained 

about these descriptors. 

2. Diversity Recognition: It allows data, that is not evenly distributed, to be 

processed properly 56. 

3. Transparency in Decisions 57: Regulatory choices must be reliable, repeatable, 

clear and well explained. DTs make decisions within the framework of simple rules. In 

this way, it contributes to the transparency of the decisions and evaluations made by both 

researchers and regulators. 

 

 

1.4.2. Multiple Linear Regression (MLR) 

 

 

MLR models, which include algorithms with unique advantages such as Lasso 

Regression, Elastic Net Regression, Ordinary Least Squares, Least Angle Regression, 

Principal Component Regression, Partial Least Squares Regression, and Bayesian Linear 

Regression, are important tools for hazard assessment of NMs 58. These approaches reveal 

simple relationships between NM properties and the possible toxic effects of these 

properties. 

The main factor that limits their widespread use in the impact evaluation of 

structures that have complex interactions with biological systems, such as NMs, is that 
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these models are insensitive to complex and nonlinear interactions and operate on the 

assumption of linearity. Additionally, since these methods require a specific data-variable 

ratio, model-building studies can be difficult. 

Methods such as principal component analysis (PCA) can be used to improve the 

success of MLR outputs 59. However, it would still be a rational approach to use more 

complex machine learning algorithms to accurately predict the complex effects of NMs 

and reveal nonlinear relationships. 

 

 

1.4.3. Partial Least Squares (PLS) 

 

 

PLS is a linear regression approach; it has the potential to be used in modeling the 

toxicity of NMs as it has the capacity to expand the information revealed by traditional 

MLR and DTs 60-62. PLS can expand the usage area of DTs by contributing to the 

management of the complexity in large and overlapping data sets encountered in NM 

studies and allows for overcoming the linearity limitation of MLR methods 63. The feature 

of being robust in the presence of noise also makes this method ahead of others. PLS is 

also a powerful approach to detecting parameters affecting the endpoint, enabling a more 

holistic evaluation. 

Unlike the simplicity of classical MLR models, PLS creates latent variables to 

capture important interactions within the dataset, thereby enhancing the stability and 

accuracy of the predictive model. Its ease of implementation and interpretation has 

broadened its application in various scientific fields. PLS's compatibility with the rule-

based logic characteristic of decision trees, along with its transparency, makes its results 

particularly valuable. These features also facilitate the use of PLS models within the 

decision-making mechanisms of regulatory institutions. Despite its strengths, PLS, 

primarily focused on linear relationships like other MLR models, may not fully succeed 

in capturing the complex nonlinear interactions between NMs and biological systems. 

To address this limitation, there are ongoing studies focused on developing 

extensions to PLS using decision trees (DTs), kernel methods, and artificial neural 

networks, which are good at modeling nonlinear relationships 64-66. These innovative 

methodologies could play an important role in unraveling the complex interactions 
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between NMs and biological systems. The decision-making clarity provided by DTs, 

combined with the inherently simple structure of these advanced PLS models, makes 

them a promising approach to assessing the hazard of NMs. Consequently, these versatile 

approaches are leading to the development of ensemble methods, which integrate the 

principles of various methods for more comprehensive analysis. 

 

 

1.4.4. Artificial Neural Networks 

 

 

Artificial Neural Networks (ANNs) are computational models that simulate 

human brain processes such as data input, thought, decision-making, memory, reasoning, 

and action for problem-solving. By integrating statistical methods and machine learning, 

ANNs have the capability to produce highly accurate and quantifiable predictions based 

on the models they create using existing data sets 67. Despite their complex internal 

structure, often referred to as a 'black box,' which can complicate practical applications, 

ANNs are increasingly utilized due to their superior performance in QSAR studies 68-71. 

A significant advantage of ANNs is their ability to reveal both linear and nonlinear 

interactions between variables in the data set and endpoints, as well as to provide insights 

into hidden variables that may have been overlooked. They are often perceived as black-

box models because the relationship they model between output and input can be 

challenging to interpret 72. However, with the use of genetic algorithm-based feature 

selection, it is possible to eliminate redundant variables. Sensitivity analysis can be 

employed to reduce data sizes and to elucidate the significance of different inputs on the 

model's results 73. 

ANNs, in assessing the human health and environmental impacts of NMs, offer 

significant contributions to risk assessors, regulators, end-users, and even 

manufacturersi74, 75. These methods not only analyze existing data but also identify gaps 

within datasets, highlighting the need for further experiments. This approach facilitates 

the acquisition of more comprehensive data through fewer experiments. 

Ensuring the reliability of these models through experimental verification is 

crucial. Such verifications can demonstrate the models' effectiveness and potentially lead 

to their acceptance by regulatory bodies and manufacturers. For this process to be 
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efficient, it is important to report the results and functionalities of the models in a detailed 

manner 76. A clear presentation of all parameters and hyperparameters is essential for 

experimentally verifying the reliability of the models 77. 

In summary, the integration of machine learning and statistical modeling, 

especially ANNs, into QSAR analysis is an important step forward in toxicological 

research. It shifts the focus from individual assessments to an integrated hazard screening 

approach that can predict chemical toxicity based on structural and physical properties. 

These computational methods play an important role in bringing new chemicals to market 

more efficiently and effectively. However, the regulatory acceptance of QSAR models, 

especially for complex NMs and nanosystems, is still a matter of ongoing debate. Given 

the diversity and complexity of NM classes, the acceptance of in silico models is likely 

to be determined on a case-by-case basis. The use of existing data with computational 

tools also offers opportunities for designing inherently safer NMs through structural 

modifications. Integrating safety into the design of nanoscale materials is one of the most 

effective risk reduction strategies, but its implementation faces challenges in maintaining 

the desired properties and commercial viability of materials during product design 

changes. 

 

 

1.5. PBPK Modeling for NM Risk Assessment 

 

 

In the field of traditional risk assessment, the process typically consists of four 

stages: identification of hazards, assessment of dose-response relationships, assessment 

of exposure, and characterization of risk. Dose-response evaluation involves determining 

the highest exposure dose at which a recognized hazard does not produce adverse effects. 

Originally developed to track the concentration of exogenous substances (chemicals) in 

the body over time, Physiologically Based Pharmacokinetics (PBPK) modeling holds 

significant potential for evaluating the effects of NMs 78. PBPK models contribute to more 

accurate modeling of NM exposure consequences by focusing on the internal dose that 

remains after excretion rather than the external dose. The inclusion of factors such as 

different organisms, dose levels, and exposure routes in these models is leading to the 

widespread use of a cumulative approach in NM hazard assessment 78, 79. The data 
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obtained from these models significantly aid in the evaluation, reporting, and 

establishment of appropriate regulations. 

 

 

1.6. Adverse Outcome Pathways  

 

 

The Adverse Outcome Pathway (AOP) is an approach that seeks to explain the 

sequence of events, starting from the interactions of NMs at the molecular level (known 

as the Molecular Initiating Event, or MIE), leading to the adverse outcomes resulting 

from these interactions 80. Rather than focusing solely on the endpoint, it aims to 

understand the underlying reasons for these outcomes. As such, AOP is recognized as 

one of the leading methods in NM hazard assessment, noted for its comprehensiveness 

and ability to provide detailed and clear explanations. 

 

AOPs typically consist of three key elements: MIE, a series of intermediate 

events, and the final adverse outcome 81. The MIE represents the beginning of the 

interaction between an NM and a biological target, followed by key events leading to a 

toxic response. Potential applications of AOPs in regulatory environments for NMs 

include 82; 

 

• Setting priorities for additional testing focused on specific targets, 

• Helping to establish chemical categories relevant to NMs, 

• Providing mechanistic justification for cross-reading predictions in 

nanotoxicology, 

• Informing comprehensive testing strategies, 

• Predicting overall toxicity outcomes at the organismal level. 

 

The level of validation and precision required for effective implementation of 

AOPs depends on their specific use. Criteria specific to each application are required for 

AOPs to be accepted by regulatory authorities, especially if they replace conventional 

testing. It is crucial to quantify the variability and uncertainty in downstream events in 

the AOP framework to increase trust among stakeholders. Setting realistic expectations 
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about the capabilities and limitations of AOPs is crucial as it will contribute to 

strengthening scientific and regulatory confidence in AOPs. This approach supports the 

transition from traditional, costly, and ethically challenging animal testing in chemical 

safety assessment for NMs to alternative testing methods more suitable for regulatory 

purposes 83. 

 

 

1.7. Perspectives on In Silico Methods 

 

 

Assessment of chemical and biological safety is crucial for making informed 

decisions about substances humans encounter, particularly in the context of NMs. 

Traditionally, this evaluation has heavily relied on animal testing, relying on the 

assumption that data from animals can predict potential human side effects. However, 

due to the often insufficient correlation of these data with human outcomes and rising 

ethical concerns, the use of animal experiments has been restricted or even banned in 

many areas, like the cosmetics industry. This shift has encouraged the development of 

non-animal testing methods. The common features expected from these methods can be 

summarized as follows: they should yield faster results, not cause ethical concerns, be 

cost-effective, and be easily applied and interpreted. 

In silico methods, increasingly utilized in conjunction with data from in vivo and 

in vitro experimental approaches in NM hazard assessment, hold significant potential in 

this concept. These methods do not claim to eliminate the need for experimental data. 

Rather, they can enhance the analysis of existing data, yielding clearer and more 

interpretable results. They can identify gaps in datasets, suggest minimal additional 

experimental setups required, and provide mechanistic insights or predictions about 

biological effects. Consequently, in silico methods have the potential to bridge the gap 

between in vitro studies and in vivo research, leading to more accurate results with 

reduced reliance on animal testing. 

The shift to integrated hazard screening encouraged by policymakers and 

regulatory agencies aims to replace individual animal-based toxicity testing with more 

comprehensive and humane approaches. However, this shift is hindered by the lack of 

clear guidelines for the application of non-testing methods in a standardized regulatory 
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context, resulting in limited acceptance in regulatory and industrial circles. The reliability 

of these computational models for predicting NM toxicity depends on their validation 

against real-world results and acceptance by the scientific community, manufacturers, 

and regulatory authorities. 

Addressing nanoscale applications, especially in assessing NM cytotoxicity and 

cellular uptake, introduces additional complexity due to the diverse nature of NMs. As 

the field of nanotoxicology continues to develop, the use of predictive models for 

evaluating newly produced NMs is still in an evolution phase and demands further 

research. This effort involves collecting and standardizing a vast array of existing 

literature data on NMs to enable effective analysis through machine learning algorithms. 

By employing a spectrum of models, ranging from simple to complex and linear to 

nonlinear, we can significantly enhance our understanding and prediction of NM 

behavior. The success of this approach depends on interdisciplinary collaboration, which 

requires open communication and understanding between academic experts (such as 

experimenters, toxicologists, and modelers) and industry and regulatory professionals.  

Utilizing the power of accumulated data and advanced machine learning 

techniques documented in the literature enables the pioneering of a 'safer by design' 

approach in NM manufacturing. This strategy not only enhances NM safety but also 

facilitates responsible development and utilization of nanotechnologies, aligning with 

ethical standards and regulatory requirements. This paradigm shift, enabled by in silico 

methods, signifies a critical advancement in the development of NMs that are safe for 

both human health and the environment. 
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CHAPTER 2 

 

 

BIOMEDICAL NANOMATERIALS: APPLICATIONS, 

TOXICOLOGICAL CONCERNS AND REGULATORY 

NEEDS 

 

 

2.1. Background 

 

 

Advances in cutting-edge technologies such as nano- and biotechnology have 

created an opportunity for re-engineering existing materials and generating new nano-

scale products that can function beyond the limits of conventional ones. While the step 

change in the properties and functionalities of these new materials opens up new 

possibilities for a broad range of applications, it also calls for structural modifications to 

existing safety assessment processes that are primarily focused on bulk material 

properties. Decades after the need to modify existing risk management practices to 

include nano-specific behaviors and exposure pathways was recognized, relevant policies 

for evaluating and controlling health risks of nano-enabled materials is still lacking. This 

review provides an overview of current progress in the field of nanobiotechnology rather 

than intentions and aspirations, summarizes long-recognized but still unresolved issues 

surrounding materials safety at the nanoscale, and discusses key barriers preventing 

generation and integration of reliable data in bio/nano-safety domain. Particular attention 

is given to nanostructured materials that are commonly used in biomedical applications. 

 

 

2.2. Introduction 

 

 

Advanced materials that operate at the nano-bio interface exhibit novel or 

enhanced characteristics not observed in the bulk. While these unprecedented properties 
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of nanostructured materials make them promising candidates for diverse applications, 

these scale-specific properties may also trigger undesirable health or environmental 

consequences 84. Although the health and safety risks of NMs (NMs) and their effective 

regulation has been given a great deal of attention over the past decades 85-88, science has 

not yet provided clear answers to the questions surrounding the safety of NMs. 

Increasing evidence confirms that the main principles of traditional risks 

assessment also apply to NMs, so scientists and regulators have shifted their focus from 

developing a completely new risk assessment methodology to modifying existing 

practices to encompass the unique features of nanoscale materials 89. However, as NMs 

are very complex systems and are still a relatively new technology, tailoring existing 

regulations to properly address nano-scale risks is yet to be completed. 

While many questions still need to be answered in nano-safety research, a growing 

number of NMs continue to attract attention because of the potential benefits they provide 

to a wide range of industries and markets. In particular, nanostructured biomaterials in 

medicine promise to improve many key aspects of disease prevention, diagnosis, and 

treatment 90-92. The nanomedicine industry is on the cusp of a major revolution and is 

expected to grow to $350 billion by 2025 93. While the growth potential of nano-enabled 

products in nanomedical industries is undeniably high, exaggerating potential benefits 

(the well-known Gartner technology hype cycle) is as problematic as overstating potential 

health risks as it contributes to public distrust of nanotechnologies 94. 

Here, we discuss potential factors hampering effective assessment of health and 

safety risks of NMs within the regulatory context. We start by highlighting the long-

standing but still unresolved problems in nano-safety research, and the key issues leading 

to data artefacts and controversies in nanotoxicology. We then discuss the latest medical 

applications of NMs, and how to assess the associated health risks given the lack of 

technical standards, consensus and legal frameworks. 

 

 

2.3. Ambiguities Around Nano 

 

 

NMs are structures having one or more dimensions smaller than 100 nm, with 

surface to volume ratios orders of magnitude larger than bulk materials that may trigger 
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specific hazardous properties. While the link between hazard and particle size alone is 

still unclear, the scientific evidence to date 95-98 suggests a growing controversy about the 

effects of long-term exposure to NMs, intensified by lack of standardized terminologies 

and methodologies 99, 100. In particular, precise definitions and class labels are needed to 

avoid regional or sectoral differences in how NMs are defined, and to define sub-classes 

to which specific attention and regulatory assessment is more urgent. Despite many 

committees, reports and recommendations 101-104, the question of how to define, 

categorize and regulate NMs remains mostly controversial (Figure 2.1). 

 

 

 

 

Figure 2.1. Ambiguities in NMs. 

 

 

2.3.1. Ambiguity 1: Defining NMs 

 

 

The problem with nano starts with definition, which have been a roadblock in 

deciding whether a material is a NM for which special legal requirements may apply. The 

European Commission’s (EC) definition of NM, a natural, incidental or manufactured 

material containing particles, in an unbound state or as an aggregate or as an 

agglomerate and where, for 50% or more of the particles in the number size distribution, 
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one or more external dimensions is in the size range 1-100nm, is based on particles’ 

external dimensions and does not cover nanoscale internal/surface structures. The 

International Organization for Standardization (ISO) includes nanostructures in its 

definition of NMs, material with any external dimension in the nanoscale or having 

internal structure or surface structure in the nanoscale, where nanoscale is defined as the 

size range from approximately 1–100 nm. The European Cosmetics Regulation provides 

an independent definition that incorporates insolubility and/or (bio)persistence, insoluble 

or biopersistent and intentionally manufactured material with one or more external 

dimensions, or an internal structure, on the scale from 1 to 100 nm.  

Definition problems are exacerbated by the fact that NMs cannot simply be 

defined by their formula, and their characteristics cannot be represented by a single value. 

Moreover, size-dependent changes also occur in bulk properties of different materials at 

sizes above 100 nm. However, we stress that while conceptual ambiguity in the definition 

of NMs still persists (and likely always will), the definition itself serves as a guide for 

differentiating NMs from their bulk equivalents, not for separating hazardous materials 

from non-hazardous ones 105. Clearly, as materials properties do not undergo a sudden, 

dramatic change once one dimension falls below 100 nm, definitions of what constitute 

NMs will never be completely precise. The current definitions of different types of NMs 

are likely to be useful and workable in the future. 

 

 

2.3.2. Ambiguity 2: Categorizing NMs 

 

 

Categorization of NMs is another area of research that has received considerable 

attention, but more work is needed 106-108. A chemical category represents a group of 

chemicals sharing at least one similar physical, chemical and/or biological feature 

relevant to risk assessment. Category formation through grouping chemicals with 

common behaviour or consistent trends into distinct classes is usually intended to 

streamline the risk assessment and decision-making process. To date, several distinct 

categories of NMs have been defined according to their source (natural or synthetic), 

dimensionality (1D, 2D and 3D), composition (carbon-based, inorganic, organic and 

composite/hybrid) and morphology (high aspect ratio and low aspect ratio) 109. Despite 
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the concerted efforts to establish science-based grouping approaches for NMs, there is 

still no consensus on how to apply, validate and report nano-specific grouping concepts 

in a regulatory context 34. In particular, in order to group NMs according to their risk 

potential to eliminate the need to test every NM for every endpoint, we need improved 

understanding of the factors that control biological effects at the nanoscale.  

When considering similar NMs as a group and applying grouping concepts for 

regulatory risk assessment purposes, special attention must be given to (1) justifying 

grouping criteria on multiple bases to validate initial category hypothesis, (2) forming 

information-rich categories with the highest possible number of potential members, (3) 

describing the logic of and data defining category formation, and (4) reporting the 

posterior probability that each group member follows the biological profile of reference 

substances. 

The similarity principle has been used by chemical regulatory bodies, allowing 

simplified labelling of chemicals likely to have similar risk and hazard profiles. For NMs, 

recent developments in experimental and computational characterization of NM 

structures and other physicochemical properties and the relative success of read across 

methods have opened the door to similar categorization (labelling) of NM with similar 

risk and hazard profile in the future.  

 

 

2.3.3. Ambiguity 3: Nanometrology and Standardization 

 

 

NMs can generate new toxicological risks that are poorly understood or are 

contradictory, leading to greater uncertainty than the well-known risks of bulk materials 

or industrial chemicals. Lack of standardization of experimental procedures and methods 

involved in the preparation, characterization, and toxicological evaluation of NMs 110 is 

a major contributor to inconsistency and uncertainty in the field. This is particularly 

relevant for complex NMs whose physicochemical and toxicological properties are 

highly variable, environment-specific, and difficult to test.  

Regulatory and standardization communities (e.g. FDA, EPA, ECHA, ISO and 

OECD) are strongly committed to development of validated methods for characterizing 

as-received intrinsic properties and medium-dependent extrinsic properties of NMs, and 
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to identifying the exposure/hazard posed by NMs to humans and the environment. 

Compared with the measurement of pristine properties free of the influence of biological 

environments, assessing properties of NMs that change over time or in different 

biological fluids is less standardized and more technically challenging.  

This ambiguity is more difficult to address as it bears on how NMs are recognized 

by cells and other biological systems. The ‘sizes’ or NMs clearly depend on the 

environments in which they impact biological systems, depending on corona properties 

and how these modulate biological uptake. Pristine NM sizes are useful to characterize 

the initial average sizes and size distributions of NMs but we need to become better at 

predicting the change in NM size and surface composition in different environments. 

Lack of knowledge of the dynamic changes that occur when NMs are in biological or 

environmental compartments blunts our ability to understand and predict how NMs are 

taken up by cells. As the characterization of corona composition and its evolution in 

biological systems improve, we will gain increasing confidence in predicting the 

‘biological relevant entity’ that ultimately affects the biological responses to NMs. Once 

the methods and procedures for NM testing in appropriate environments are developed 

and fully validated, they need to be converted into regulatory-relevant, practical 

recommendations. 

 

 

2.3.4. Ambiguity 4: Regulating NMs 

 

 

Nanotechnology was at an early stage of development when the EU’s REACH 

Regulations came into force in 2007 111. These regulations aimed to ensure safe 

production, use and import of substances. The developments in nanotechnology triggered 

a need for modification of the EU’s existing chemical legislation to cover nanoscale forms 

of materials. This was partly addressed by amending the REACH Regulation annexes 112 

and corresponding ECHA guidance 113. However, these changes have been based on 

knowledge from relatively simple NMs (e.g. metal oxides and carbon-based materials) 

that are smaller versions of familiar bulk substances. The capability of updated REACH 

annexes and guidance documents to estimate and manage potential impacts of more 

complex, functional NMs already in medical use remains to be tested.  



 

28 

These four ambiguities (i.e. definitions, categorization, standardization and 

regulation) add to the existing complexity in nano-EHS (Environmental, Health, and 

Safety) issues. Firstly, difficulties in finding a universally agreed definition and 

classification of a NM differentiated from its bulk correspondent present serious 

challenges for the nano-safety research and the safe use of NMs outside the research 

environment. Secondly, identifying the most important NM properties and functions 

contributing to their toxicity is only possible with the availability of reliable and extensive 

characterisation are available; this is currently limited by methodological complexities. 

Lastly, the uncertainties about regulatory requirements for NMs have direct impact on 

selecting relevant toxicity endpoints for risk assessment and judging the acceptability of 

measured risks on the basis of risk-benefit considerations for each NM. Resolving these 

ambiguities by generating new data, developing new tools to learn from the data and 

discovering new ways of interpreting the data would directly benefit nanosafety research 

in multiple ways. For example, the ability to group NMs based on 

structural/physicochemical similarity would enable regulators to focus their limited 

testing resources on NMs of high toxicity concern, and to fill data gaps without requiring 

additional time and cost-intensive animal studies. Moreover, having clear frameworks 

and guidelines detailing what qualifies as NM and what properties/endpoints need to be 

tested as part of regulatory risk assessment would help incorporate safety into the design 

stage and ensure regulatory clarity that improves compliance. In order to resolve 

remaining ambiguities in nanoscience, it is essential to establish an international network 

of scientists with multi-disciplinary expertise, policymakers and industry leaders fully 

committed to ensuring safer nanotechnology and nano-enabled products. 

 

 

2.4. Regulatory Hazard Assessment of NMs  

 

 

It is now generally agreed that 89, 114 nanotoxicity is not as specific as it was first 

thought to be, so it is unlikely that completely new risk assessment protocols will be 

required. However, there are additional issues that apply specifically to NMs, such as 

interference with toxicity assays 115 and formation of the protein corona 116, 117. Questions 

like ‘which tests are reliable for identifying potential health effects of NMs’ and ‘how to 
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translate the acquired knowledge into a regulatory context’ need to be clarified in order 

to avoid false positives or negatives and misinterpretation of toxicity data in nano-safety 

research. Key steps to consider for hazard assessment of NMs are summarized in Figure 

2.2.  

The paucity of faster methods of synthesis and characterization means that we are 

exploring a minute fraction of possible NMs. This in turn means that data that could be 

used to train ML models of NM structure-activity and structure-property relationships is 

sparse. The models are therefore less predictive and even those that perform well have 

small domains of applicability, limiting their use to leverage existing experimental data 

into new regions of NM space. Clearly, expanding the scale of synthesis and 

characterization will provide greater insight into the properties of NM that can be used to 

design improvements, and will have the added benefit of substantially improving the 

predictivity and applicability of ML models of NM properties. If these models are more 

predictive and more widely applicable, it makes possible more rational ‘safe-by-design’ 

NMs.  

The inability to predict in vivo impacts of NMs is largely due to the cost and 

ethical limitations of animal testing, and the relatively poor correlations between in vitro 

assessments of the biological effects of NMs and their in vivo effects. Use of organ-

specific cell lines derived by regenerative medicine techniques, and a better 

understanding of how NM impacts on biological systems as assessed by omics 

technologies inform toxicity mechanisms, should allow in vivo effects of NMs to be more 

accurately predicted without substantially increasing animal testing. All of these 

developments will provide much better tools for regulatory agencies to assess or even 

predict the likely risk and hazard of new NMs, allowing appropriate regulation. 

 

 



 

30 

 

Figure 2.2. Key aspects associated NMs’ hazard assessment. 

 

 

2.4.1. Understanding the Physicochemical Identity of NMs 

 

 

A thorough understanding of the physicochemical and the biologically-relevant 

entities is critical for linking biological activity to intrinsic materials properties, and to 

allow toxicity to be predicted for untested materials using these structure-activity 

relationships 118. This knowledge can be also be used to reduce the toxicity of substances 

through structural modifications and to design-out hazards without compromising 

performance (so-called safety-by-design) 119. In addition to designing out toxicity during 

the development of new NMs, the knowledge of toxicity-driven nano-scale properties 

would further assist in understanding the mechanisms by which NMs interact with 

biological systems and prioritizing which NMs should be subject to extensive 

experimental investigation. 

There is still no scientific consensus on the minimum set of relevant 

characteristics for toxicological evaluation. The key physicochemical features considered 

important in the majority of cases 120-122 include: morphological characteristics (particle 

size, shape and their distribution); surface characteristics (chemistry, charge, and 

modifications); solubility; and colloidal stability and state of agglomeration. Numerous 

studies in recent years have shown that NMs may display size-dependent 123-126, shape-
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dependent 127-130 and surface-dependent 131-133 toxicity. Table 2.1 lists the key toxicity-

related physicochemical parameters of NMs. 

 

 

Table 2.1. The key toxicity-related physical, chemical, and behavioral parameters 

of NMs 

 

Property Type Key Property 

Physical Properties 

Particle size (mean and distribution) 

Particle shape (dimensions and aspect ratio) 

Specific surface area 

Density 

Porosity 

Roughness 

Viscosity 

Chemical Properties 

Composition (core, surface, overall) 

Surface properties (charge, coating, affinity) 

Functionalization 

Purity/impurities 

Chemical Structure 

Crystallinity/defects 

Redox activity 

Behavioural Properties 

Solubility 

Dispersibility 

Corrosivity 

Dissolution rate 

Degradation rate 

Dustiness 

Hydrophobicity 

Surface reactivity 

Aggregation/agglomeration 
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The key considerations when characterizing NMs prior to toxicological evaluation 

are:  

(1) measuring not only ‘as-received’ intrinsic properties but also properties in 

relevant media; 

(2) quantifying a single characteristic over an extended period of time using 

multiple techniques, especially when a priori knowledge on the parameter of interest is 

unavailable for the test material; 

(3) providing detailed information (metadata) on measurement conditions, such 

as sample preparation, pH value, and concentration 134. 

 

 

2.4.2. Understanding the Biologically Relevant NM Identity 

 

 

In biological fluids, the surfaces of NMs are immediately coated by a layer of 

adsorbed proteins (the protein corona) and ions. These materials have high affinity for 

biomolecules and ions resulting in their physicochemical identity being transformed into 

a biological one (the biologically relevant entity). This is a dynamic process in which the 

composition of the corona changes in different biological fluids, and over time as more 

abundant lower affinity proteins are replaced by less abundant higher affinity proteins. 

Since the toxic potential of NMs depends on their size and surface characteristics 133, 135, 

136, the risk they pose may also change accordingly when they are aggregated or coated 

with other molecules in biological environments. Moreover, biological entities such as 

cells interact with the entire NM-corona complex (Figure 2.3), not just with the core NM. 

Therefore, it is critically important to investigate protein corona formation and its 

structure prior to toxicity testing 116. Such knowledge may help understand the true 

correlation between structural features and biological effects and explain some of the 

inconsistencies in in vitro and in vivo studies. 
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Figure 2.3. NM-corona complex formation steps 

 

 

Currently, the main concern in nanotechnology-related EHS research is not only 

to identify which physicochemical or biological properties are responsible for 

toxicological effects but also to link hazard with toxicity-related features in a quantitative 

way. Altering the biological activity by modifying toxicity-related properties is only 

possible if the relationship between physicochemical characteristics, toxicity and the 

desired functionality is mathematically defined. The field of computational 

nanotoxicology has emerged to meet this need but it is challenged by lack of sizeable and 

consistent datasets, the complexity of nanostructures, and a need for more 

multidisciplinary trained researchers in this new field. More data on in vitro and in vivo 

effects of well-characterized NMs are needed for data-driven methods to reach their full 

potential and to fully decode the relationship between physicochemical structure and 

biological activity. 
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2.4.3. Understanding the Main Entry Routes of NMs 

 

 

NMs may enter the human body by inhalation, ingestion or skin contact, and travel 

in the bloodstream to internal organs where they can cause harm. The main routes by 

which NMs can enter the body are shown in Figure 2.4.  

 

 

 

Figure 2.4. The main routes that can NMs enter the body. 

  

 

It is now well known that the majority of non-targeted NMs tend to accumulate 

in the liver or spleen 137. Most preliminary studies have shown that a large fraction of 

uncoated NMs that are distributed to major organs such as liver are cleared by the 

immune system within a short period of time 138. However, accumulation in secondary 

organs following long-term exposures and the biological mechanism by which NMs are 

immunologically sequestered from the body need further investigation. While no vital 

danger has been proven, scientific evidence so far provides incomplete picture of the 
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organ distribution and clearance of NMs (and their agglomerates) from the body 139. Such 

understanding is important for not only predicting the potential toxicological 

implications of accumulated NMs in human tissues and organs, but also controlling the 

biodistribution of NMs with the ultimate aim of targeting unhealthy cells (e.g. tumours) 

while leaving the healthy ones intact 140. 

 

 

2.4.4. Understanding How NMs Affect Testing Systems 

 

 

Reliability of existing in vitro approaches for the assessment of NMs health hazard 

potential has been a subject of continued debate for the past two decades. Although the 

question of ‘which tests can be safely used to assess the hazard of NMs’ continues to 

arouse controversy, expert consensus favours the use of testing systems with minimum 

interference potential (e.g. interference of NMs with nanotoxicology assays or assay 

reagents) to avoid under- or over-estimation of toxicity. 

An important technical limitation of conventional assays is caused by putative 

interference between NMs and the assay system 115. While assay interference is not a new 

phenomenon, specific properties of NMs (e.g. increased surface area, catalytic activity, 

optical and magnetic characteristics) can interfere with assays that rely on changes in 

absorbance or fluorescence to provide information on cellular activities. Several recent 

studies have exemplified NM interference with in vitro systems 141-143, generating both 

false positive or false negative results. For example, NMs have been shown to absorb 

analytes, react with assay components, release chemical species and cause side reactions 

144. Therefore, systematic evaluation of possible NM-assay interferences under realistic 

conditions is essential to ensure valid interpretation of test results.  This will lead to 

necessary protocol modifications and nano-specific interference controls. As most of the 

traditional in vitro methods exist for the identification of toxicological hazards have not 

been specifically validated for each NM class, possible interferences and solutions given 

in Table 2.2, are more general in nature and not specific to any NM. 

The ways in which potential assay interferences depend on particular 

physicochemical properties, working conditions of the assay, and the loading/exposure 

protocols applied makes drawing general conclusions about the reliability of certain tests 
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for all NMs very difficult. With so many factors contributing to assay interference, a 

paucity of knowledge on possible interference mechanisms, and the fact that NMs exhibit 

novel physicochemical properties, confidence in the results of toxicity testing can only 

be achieved by validating each assay for each NM formulation, and using complementary 

assays for common endpoints, especially if doubt exists. It is also advisable to use 

appropriate controls, realistic concentrations, and maintain a high level of suspicion when 

inspecting test results so as to detect and control interferences that may lead to 

erroneously high or low results. 

  

 

2.4.5. Testing Nano-Hazards 

 

 

Conventional toxicity assessment relies primarily on animal testing that is very 

costly, slow, and ethically problematic. With the rapid development of new materials and 

strong growth in existing technologies (e.g. biotechnologies), the need for faster and 

cheaper non-animal test methods for regulatory applications has become urgent.  

The term non-animal testing in the context of hazard assessment refers to the use 

of human cells/tissues (in vitro) and computer-modelling (in silico) methods as 

alternatives to in vivo animal testing. In vitro approaches are employed world-wide to 

detect adverse effects of NMs such as cytotoxicity 145, 146, immunotoxicity 147, 148 and 

genotoxicity 149-151. In particular, the ability of NMs to trigger oxidative stress in 

biological systems is the most frequently reported cause of nanotoxicity 152, 153. However, 

the oxidative potential should be seen as a toxicological parameter rather than the main 

mechanism of nanotoxicity as the observed link could be a consequence of NM-induced 

toxicity, not necessarily the cause 154. While conventional in vitro assays are an important 

first step toward assessing the potential risks of NMs, there is a need to establish fully 

validated test systems and procedures to bring old practices in line with the products of 

new technologies. In particular, the correlation between in vitro and in vivo responses 

needs to be made more robust if in vitro methods are to be used as viable surrogate assays 

to replace animal testing. 
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Table 2.2. Assay-specific interferences and possible solutions 

 

Assay Test Potential Interference Potential Solution 

 

Cell               

Viability  

LDH 

Optical interference                

Inactivation/adsorption of 

LDH  

Use lower concentrations 

Use cell-free controls 

Neutral Red 

Dye adsorption                             

Interference with readout 

system 

Use lower concentrations 

Intensive washing steps 

Annexin V 
Interaction with serum 

proteins 

Confirm with other assays 

Use spike-in controls  

ATP Optical interference  Avoid light emitting NMs 

TUNEL 
Nonapoptotic DNA cleavage  Confirm with other assays 

Digest proteins 

Metabolic                    

Activity 

MTT 

MTS 

XTT 

WST1                                                                 

Optical 

quenching/interference                                     

Interaction with formazan 

salts, serum proteins or dye      

Use lower concentrations 

Pre/post-spike controls 

Centrifugation 

Use modified salts 

Adapt cells to serum-free 

medium 

Oxidative              

Stress 

EPR 

ESR                        

Interaction with paramagnetic 

molecules 

Use stable probes 

H2DCF-DA 
Optical quenching or 

interference  

Thoroughly wash samples 

Confirm with other assays  

Inflammation ELISA 

Interaction with Interleukins-

cytokines 

Careful design                      

Pre-test using cell-free media  

Genotoxicity 

COMET 

DNA fragmentation  Confirm with other assays 

Use lower concentrations 

Prevent agglomeration 

Micronucleu

s 

Interference of cytochalasin-B Careful design (serum, 

exposure time/order) 

 

 

In silico approaches make much better use of the available experimental data on 

hazard, allowing new knowledge to be extracted that can be used to ‘design in’ safety for 

new materials without compromising desired functionality 155. Clearly, most non-testing 

approaches are data driven, requiring experimental information to train them and cannot 

(yet) completely replace animal testing in toxicology. However, these methods are 

capable of making maximum use of often scarce and expensive experimental data, 
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providing insights into toxicity mechanisms, filling data gaps, prioritizing potentially 

problematic materials for testing, and reducing animal testing by eliminating non-critical 

experimental processes. The current state of research on the use of in silico methods and 

issues still to be addressed, are summarized in a recent review 156. Although there is a 

profound interest among policy-makers and the scientific community to move from 

animal-based individual toxicity assessments toward a more integrated hazard screening 

approach, the lack of practical guidance on the harmonized use of non-animal testing 

methods in regulatory context has resulted in low regulatory and industrial acceptance so 

far 157. The key to the successful uptake of alternative methods by scientists and regulators 

is to transparently demonstrate the reliability and relevance of their outcomes for hazard 

screening and assessment purposes. 

 

 

2.4.6. Using Realistic Concentrations and Dose 

 

 

The basic concept of toxicology, the dose makes the poison, has not been fully 

adopted in the field of nano-safety 158. Selection of realistic exposure concentrations and 

physiologically relevant measures of dose is needed (and currently lacking) for 

meaningful comparison of in vitro outcomes with previously published in vitro data and 

in vivo biological responses 159. Unlike conventional materials whose toxic doses can 

solely be described by administered mass or concentration, NMs requires a careful 

adaptation of traditional dose-metrics as mass alone is often not sufficient to describe 

their property-dependent dose-response relationship 160. Earlier in vitro nanotoxicity 

studies have reported studied doses in mass units (μg/mL), ignoring surface- or number-

related effects 161. With the recognition of the need to move beyond mass-only metrics 

for NMs, various dose-metrics such as particle number, volume, surface area, and body 

burden have been suggested, each with some limitations. In the absence of universally 

agreed dose measures that can adequately reflect NM exposure, reporting concentrations 

in a range of dose metrics will allow for different interpretations of exposure. Special 

attention should be given to NM dispersion preparation and characterization to ensure 

accurate dosimetry and delivered to cell doses of particles 159. 
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2.4.7. Translating Knowledge into Regulatory Outcomes 

 

 

Generating reliable nano-hazard data is one issue but translating these pre-

normative research results into regulatory outcomes is an entirely different problem. In 

general, regulators’ early concerns about lack of nanotoxicity data have been replaced by 

lack of regulatory-relevant data. Although large volumes of nanotoxicity data have been 

generated in the last two decades 162, the vast majority of these data suffer from 

consistency problems between replicate samples, methods, analysts, or laboratories. 

Much of this provides information of NM hazard, while modelling of the resulting risk 

when NMs are used in diverse workplaces and exposure scenarios, is less well developed. 

In the absence of reliable and consistent data needed to broaden the scope of existing laws 

to cover nano-specific issues, regulators take a precautionary approach or use the best 

available evidence to regulate NMs. However, overly cautious measures that are 

disproportionate to the real risk may stifle innovation, progress in the field of 

nanotechnology, and commercial applications. On the other hand, failing to properly 

address possible risks from nano-enabled products may have severe effects on public 

health and the environment, resulting in a backlash against NMs. The main risk 

management challenge under considerable uncertainty is to find the right balance between 

real risk and benefit. 

Newly acquired information can only be applied to regulatory tasks if the key 

policymakers and legislators are able to translate, interpret and extrapolate it. Therefore, 

the key to the successful integration of new information and knowledge into regulatory 

frameworks and decision-making processes is to transparently demonstrate the reliability 

and relevance of their outcomes for regulatory purposes. To facilitate the flow of 

information from production to policy use, following barriers need to be addressed:  

• providing an easy access to data, 

• generating verifiable, consistent and high-quality data, 

• fostering interdisciplinary and collaborative research, 

• developing working relationships between policy making bodies, 

regulatory authorities and other relevant stakeholders, 

• and increasing openness of regulatory bodies to new information and 

tools. 
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2.4.8. Comparison with Current FDA/EMA Regulations and 

Guidance in Related Fields 

 

 

The Food and Drug Administration (FDA) and European Medicines Agency 

(EMA) have comprehensive regulations and guidance documents for drugs and medical 

devices, some of which provide insight into how biomedical NMs could be regulated. 

The FDA has classifications for ~1,700 different types of devices and has grouped them 

into 16 medical specialties (panels). Each type of device is assigned to one of three 

regulatory classes based on the level of control required to assure device safety and 

effectiveness:  

 

(1) Class I General Controls e.g. nasal oxygen cannulas, manual stethoscopes, 

and hand splints represent a low risk to the patient. 

(2) Class II General Controls and Special Controls represent the majority of 

medical devices e.g. tracheal tubes, bone plates, elbow joint radial prostheses. These are 

typically surgically implanted into the body or by some other medical intervention and 

represent a moderate risk to the patient.  

(3) Class III General Controls and Premarket Approval e.g. aortic valves, 

constrained metal hip prostheses, and coronary stents with the highest patient risk. 

 

The assigned class determines what premarketing submission/application is 

needed for FDA clearance to market. If your device is classified as Class I or II, and if it 

is not exempt, a 510k premarket notification is required. 

The EMA regulates new drugs and medical devices. It evaluates the quality, safety 

and efficacy of marketing authorisation applications for drugs, medical devices and 

medical devices that also incorporate a medicinal product. As Table 3 shows, medical 

device classification and regulation in the US and EU are similar. The way these are 

regulated into three main classes provides possible guidance for streamlined regulation 

of NMs, as is suggested in Table 2.3. 

In the EU, NMs are defined as any other substances under the both existing 

REACH and CLP regulations. An EU definition of a NMs is used to help harmonise how 

NMs are defined across REACH and CLP legal frameworks. Specific REACH legal 



 

41 

requirements apply to companies that manufacture or import nanoforms: characterisation 

of nanoforms or sets of nanoforms covered by the registration (Annex VI); chemical 

safety assessment (Annex I); registration information requirements (Annexes III and VII-

XI); and downstream user obligations (Annex XII). Since REACH and CLP cover NMs, 

the European Chemicals Agency (ECHA) must carry out its tasks for nanoforms within 

the various REACH (e.g. registration, evaluation, authorisation and restrictions) and CLP 

processes (e.g. classification and labelling) as it would for any other form of a substance. 

Miernicki et al. recently discussed the issues involved in regulation of NMs from 

an EU perspective 163. They made the following recommendations for the regulation of 

NMs that would benefit not only European law, but other jurisdictions in which legal 

approaches to NMs are considered.  

(1) NM definitions should be clarified by avoiding ill-defined terms and by 

including clear thresholds (e.g. for solubility in the Cosmetics Regulation) for the sake of 

legal certainty and workability of the regulations. 

(2) Nano-specific regulations that are not workable in practice cannot fulfil their 

function, e.g. to protect humans and the environment, and thus need adaptation. 

(3) Adaptation clauses should be harmonized and include clearer distinction 

between technical/scientific aspects to be adapted by the Commission and political/risk 

management aspects that should remain within the responsibility of the legislator. 

(4) Product manufacturers should carry the burden of proof for the NMs’ origin. 

(5)The 50% by number threshold should be replaced by a threshold of 1% by 

weight to make definitions workable with current particle analysis methods, contributing 

to a more balanced cost–benefit relation in the regulatory nano-framework and its 

enforcement. 
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2.5. Biomedical Applications of NMs 

 

 

Rapid developments in (bio)medical research and technology has contributed to 

increasing human life expectancy, which has resulted in an increase in the number of 

ageing patients requiring medical care 164. NMs can play important role in early diagnosis 

and treatment of serious illnesses such as cancer. A short summary of biomedical 

technologies employing NPs are summarized below. Interested readers are referred to 

recent, comprehensive reviews in this field 165-173. 

 

 

2.5.1. Contrast Enhancing Agents in Biomedical Imaging 

 

 

NM selective accumulation in tumours,  and their ease of functionalization, make 

them important contrast enhancing agents in biomedical imaging 174. Dipeptide NPs 175, 

semiconductor quantum dots 176, thermosensitive fluorescent rhodamine 6G NPs 177, 

pyrene loaded supramolecular micelles 178, conjugated NPs 179 and functionalized 

fluorescent dyes (PEGylated C18-R) 180 have demonstrated enhanced emission, reduced 

non-specific binding, and better in situ stability 181. Targeted paramagnetic NMs 182, 

superparamagnetic iron oxide NPs (SPION) 183, pH-sensitive calcium phosphate-PEG 

shell NPs 184, SPION loaded red blood cells 185, DNA plasmid loaded SPIONs 186 and 

fluorinated graphene oxide NPs 187 are recently developed MRI contrast agents with 

favourable superparamagnetic characteristics, biocompatibility, and ease of modification. 

Gold NPs are also important contrast agents for CT imaging due to their unique optical 

properties, high X-Ray attenuation, low toxicity, and ease of surface functionalization 188-

193. 18F-, 64Cu-, 199Au- and 111In-labelled NMs have been developed for PET and SPECT 

imaging 194-197. NMs developed for biomedical imaging have superior performance to 

conventional agents, but few have been translated to the clinic 198. 
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2.5.2. Antimicrobial Agents 

 

 

Some NPs exhibit high antimicrobial activity useful for treating surgical wound 

infections. Silver NMs accelerate wound healing 199 and fight post-surgical infections 200 

due to broad-spectrum antimicrobial activity. Titanium-doped silver NPs prevent 

multidrug-resistant infections 201 while silver NP embedded titania nanotubes exhibit 

persistent antibacterial effect against pathogenic Escherichia coli and Staphylococcus 

aureus 202. Nanoscale silver coatings are effective against implant-associated 

infectionsi203. Copper, titanium, gold and zinc NPs have broad-spectrum antimicrobial 

activities due induction of oxidative stress 204. 

 

 

2.5.3. Therapeutic NMs 

 

 

Magnetic NMs are increasingly used for treatment of diseases, especially cancers. 

Magnetic NM clusters and colloidal crystals (nanobeads) have diameters 50–200 nm. 

They are very useful for tissue targeting, tissue ablation, and imaging 205-209. Heating due 

to hysteresis losses, which occurs when a fluid containing magnetic NMs is exposed to 

an alternating external magnetic field, can selectively damage tumours It is particularly 

useful for hard-to-treat cancers like hepatocellular carcinomas. 

 

 

2.5.4. Tissue Engineering 

 

 

Tissue engineering research aims to develop biological constructs for repair, 

restoration, maintenance or improvement of tissue function 210. Second generation 

biomaterials with biological and mechanical properties more similar to those of human 

tissues have evolved from first-generation biological substitutes 211. Biomaterials can 

trigger immune responses because they do not mimic the highly complex extracellular 

matrix, leading to rejection of implanted materials 212, 213. Tissue engineering at the 
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nanoscale allow design of new biologically inspired materials with properties that 

overcome the limitations of conventional tissue engineering materials 214-216. A wide 

range of nano-scale biomaterials, including inorganic, ceramic, polymeric and metallic 

NPs, have been employed in tissue engineering applications, such as enhancement of cell 

proliferation rates, novel mechanical and electrical properties of scaffolds, gene deliver, 

and fabrication of 3D tissue engineered constructs 217. For example, nanostructured 

calcium phosphates and nano-hydroxyapatite are used as bone substitutes due to their 

biocompatibility, osteoconductive properties, and bone regenerative capacity 218, 219. 

Similarly, nano-scale bioprinting of 3D hydrogel scaffolds is an active area of research 

with enormous potential to resemble natural bone tissue and the cells’ natural surrounding 

environment 220, 221. 

 

 

2.5.5. Biosensors 

 

 

Biosensors use biomolecules, tissues, and organisms to measure concentrations 

of specific biological analytes, a biological structure, or a microorganism 222. They 

convert a molecular recognition event into a signal (e.g. optical, electrical or magnetic) 

that provides information about health and diseases, enabling  earlier disease detection 

and more targeted therapies 223. The small size and large surface-to-volume ratio of NMs 

make them well suited for medical biosensing applications where enhanced sensitivity 

and detection capability are essential. Nanostructured carbon materials e.g. nanotubes 

with high sensitivity and extremely low detection limits 224, have been used in biosensing 

applications for over two decades 225. Their electronic/optical properties and permeability 

through biological membranes make them well-suited to minimally-invasive, in vivo 

optical biosensing applications 226. Quantum dots are widely used in fluorescence-based 

medical biosensors 227. Other nanobiosensors include gold nanorod- and graphene oxide-

based electrochemical biosensors for early detection of cancer 228, inorganic nanocrystal-

based sandwich immunoassays for multitarget detection of proteins 229, nanosized silica-

based immunosensors for prostate cancer detection 230 and nanosilver-based plasmonic 

biosensing applications 231. As the scientific evidence for the benefits of nanobiosensors 

grows, so too have concerns about their in vitro and in vivo biosafety. Clinical translation 
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of these systems hinges on understanding how the human body responds to, distributes, 

and eliminates biomedical NMs, with the ultimate aim of ensuring their safe use in 

biosensing applications. 

 

 

2.6. Safety of Biomedical NMs 

 

 

With the ever-increasing use of nanostructures in biomedical applications, human 

and environmental exposure to NMs has become inevitable. There are existing and robust 

regulatory processes in place for biomedical NMs used for diagnostic applications. There 

is also strict regulation of implantable and indwelling medical devices that increasingly 

contain nanostructured coatings. For example, the US FDA defines three risk classes for 

medical devices and devices that are not within a type marketed before are automatically 

classified into class III (high risk), a cautious approach that is suitable for NMs with 

unconventional properties. Review and approval of nanoscale drugs, coatings and devices 

is ongoing 232, e.g. the FDA has approved nano-formulations of paclitaxel and 

doxorubicin as new cancer drugs, of the immunosuppressant sirolimus, and of an 

oestradiol topical emulsion 92. Regulation will need to be agile to deal with new 

technologies such as the use of microscale and nanoscale topographies to control 

biological responses such as microbial pathogen attachment, and modulation of immune 

responses by novel coatings 233. 

 

 

2.7. Final Remarks 

 

 

Advances in systems biology, chemistry, automation, and computer science have 

led to several paradigm shifts in regulatory safety assessment. These include use of animal 

data for estimating health impacts of chemicals on humans and the environment, 

development of faster and cheaper non-animal alternatives to animal tests, use of gene 

expression and other omics data, faster high capacity in vitro screens, and robust in silico 

methods. The ultimate aim is to accelerate safe manufacturing and use of products, while 
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reducing costs and the time from design to commercialization. Despite the growing 

interest among regulatory authorities in the development of time- and cost-effective 

methods to complement and extend traditional risk assessment methods, there are 

significant barriers to integrating such concepts into the practice of existing regulatory 

frameworks.  

The safety evaluation of biomedical NMs requires input from multiple sources 

and disciplines. The successful adaptation of risk assessment procedures to NMs directly 

depends on the ability of experts in material science, toxicology, industry, and regulatory 

bodies to understand how their respective expertise complements that of the others. There 

is a clear recognition of the value of such cross-disciplinary collaboration for improving 

chemical risk assessment processes. However, only a few ideas have been reduced to 

practice so far, as scientists, regulators and industry work from different assumptions and 

are invested in their own points of view.  
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CHAPTER 3 

 

 

MACHINE-LEARNING ASSISTED INSIGHTS INTO 

CYTOTOXICITY OF ZINC OXIDE NANOPARTICLES 

 

 

3.1. Background 

 

 

Zinc oxide NPs (ZnO NPs) are commercially used as an active ingredient or a 

color additive in foods, pharmaceuticals, sun protection lotions, and cosmetic products. 

While the use of ZnO NPs in everyday products has not been linked to any serious health 

issues so far, the scientific evidence generated for their safety is not conclusive and, in 

most cases, could not be validated further in in vivo settings. To settle controversies 

arising from inconsistent in vitro findings in previous research focusing on the toxicity 

ZnO NPs, we combined the results of 25+ independent studies. One way analysis of 

variance (ANOVA) and classification and regression tree (CART) algorithm were used 

to pinpoint intrinsic and extrinsic factors influencing cytotoxic potential of ZnO in 

nanoscale. Particle size was found to have the most significant impact on the cytotoxic 

potential of ZnO NPs, with 10 nm identified as a critical diameter below which cytotoxic 

effects were elevated. As expected, strong cell type-, exposure duration- and dose-

dependency were observed in cytotoxic response of ZnO NPs, highlighting the 

importance of assay optimization for each cytotoxicity screening. Our findings also 

suggested that ≥12 hours exposure to NPs resulted in cytotoxic responses irrespective of 

the concentration. Considering the cumulative nature of research processes where 

advances are made through subsequent investigations over time, such meta-analytical 

approaches are critical to maximizing the use of accumulated data in nano-safety 

research. 
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3.1.1. Zinc Oxide Cytotoxicity 

 

 

Nanoscience deals with the phenomena that occurs in the nanometer range which 

is one billionth of a meter. While the conceptual roots of nanoscience were planted in the 

late 1950s, it was not until early 1990s that nanotechnology advanced enough to design 

structures, devices and systems at atomic and molecular scales 234. Nanoscale science and 

engineering is interdisciplinary in nature, requiring teams of researchers with different 

scientific backgrounds (e.g., physics, chemists, biologists, material scientists and 

engineers) working together to come up with new innovations and solutions to today’s 

complex issues. The application of nanotechnology can span across different disciplines 

and research areas. Today, nanotechnology is explored in almost all existing domains 

ranging from high-strength materials and nanoscale sensors to electronic and opto-

electronic devices 235. In parallel, novel properties of nano-scale materials are enabling 

new commercial markets such as next generation batteries and intelligent drug delivery 

systems 236, 237.  

NPs are commonly classified according to their origin (engineered or natural), 

dimensionality (0D, 1D, 2D or 3D), morphology (low or high aspect ratio), state (well-

dispersed, aggregated etc.) or chemical composition (ceramic, polymeric, carbon-based 

or metallic) 238. Among different metal-based NPs (NPs), zinc oxides (ZnO) stand out for 

their high UV-absorption capacity and solubility. They are commercially used as a 

bulking agent, filler or pigment in glass and ceramic products, foods, pharmaceuticals, 

sun protection lotions, and cosmetics 239. One of the early uses of ZnO NPs was in 

sunscreens due to their intrinsic UV absorbing properties and transparent nature 240. The 

use of nano-sized ZnO (and also titanium dioxide) as an effective ingredient in modern 

sunscreens has created a long-lasting debate over their safety 241, 242. In early 2010s (and 

onwards), both the regulatory bodies and the public have become increasingly aware of 

the potential threat posed by sunscreens formulated with nano-ingredients. The early 

findings related to potential hazards of ZnO NPs were mostly inconsistent, making it 

impossible to conclude with high certainty that nano-sized ZnO is ultimately safe to use 

in skin-contacting products 242. In the following years, it became clear that not all ZnO 

NPs should be treated the same from safety perspectives because physicochemical 

characteristics greatly affect cellular interactions and safety profiles of NPs 243. 
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Determining the potential harmful effects of NPs is critical to ensure that they are 

safe for human use. One effect of NPs that must primally be assessed is its cytotoxic 

potential, together with the factors contributing to their cytotoxicity 244. After two decades 

of research and detailed investigations, there is still no consensus on the main 

physicochemical properties driving cytotoxicity of NPs 245-247. In addition to intrinsic as-

received properties of NPs and media-dependent surface characteristics, test conditions 

such as cell type, exposure concentration and duration have direct influence on the results 

of cytotoxicity assays. Figure 3.1 shows material- and assay- related parameters 

influencing different dimensions of NPs-protein and NPs-cell interactions.  

 

 

 

Figure 3.1. Key parameters affecting the toxicity of NPs. 

  

 

ZnO NPs differ from their bulk counterparts in that their inherent complexity and 

medium-dependent characteristics make it very difficult to study their cellular 

interactions and effects. Moreover, the experimental differences in nano-hazard screening 

are directly reflected in test results, potentially leading to interexperimental 

inconsistencies. The aim of this study is to integrate published evidence on the 

cytotoxicity of ZnO NPs and to critically appraise bodies of evidence in their entirety.  
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3.2. Methods 

 

 

3.2.1. Literature Search and Data Extraction 

 

 

A systematic literature search was undertaken using the PubMed scientific search 

engine between 2010 and 2022. The following three terms were used for the initial article 

search: “zinc oxide”, “nanoparticle*” and “cytotoxic*”. The search returned 594 peer-

reviewed research papers that were manually filtered according to the following inclusion 

criteria: (i) the core of the studied NPs must be zinc (and not a composite material); (ii) 

in vitro cytotoxicity data must be available and accessible; (iii) particle size data must be 

available; (iv) the unit of exposure concentration must be convertible to µg/mL; and (v) 

untreated cell control must be available. A total of 543 data points for 40 different ZnO 

NPs from the remaining 26 independent studies were included in the analysis. 

 

 

3.2.2. Data Cleaning and Pre-processing 

 

 

Data normalization (i.e., changing the values to a standard scale) is often used 

prior to statistical analysis when comparing features with different units or ranges. First, 

the units of measure were unified to minimize variability between different studies. The 

numeric data records describing the concentration were divided into ten subgroups. The 

cleaned data were randomly divided into training (75%) and test sets (25%), each 

involving a similar fraction of toxic and nontoxic groups. 

 

 

3.2.3. Descriptive Statistics 

 

 

One-way analysis of variance (ANOVA) was used to determine how strongly 

each of the categorical parameters describing NP, cell line, or assay characteristics was 
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related to cytotoxicity. The strength and direction of the relationship between pairs of 

continuous variables were measured by Pearson’s correlation coefficients. A box plot was 

used to display the distribution and skewness of the cell viability data among different 

subcategories. Significance was reported at p < 0.05 and p < 0.001 levels. 

 

 

3.2.4. Machine Learning  

 

 

Classification and Regression Tree (CART) was applied to partition the pre-

processed data using a series of binary decisions. The method was set to regression, as 

the endpoint was a numerical value (% cell viability). The rpart package in R version 

4.2.0 was used to implement all CART analyses. Regression trees were pruned through a 

10-fold cross-validation process to remove branches providing the least error reduction. 

Refer to more specialized publications for details on the CART algorithm 248-250 

 

 

3.3. Results and Discussion  

 

 

Description of data included in analysis. After a systematic data search and 

excluding data points that did not meet the data inclusion criteria, a total of 543 data 

records from 26 independent studies remained for evaluation. Each data record 

corresponds to a cytotoxic evaluation of individual NP. Figure 3.2 summarizes the main 

characteristics of the collected data. 

Effect Sizes and Heterogeneity. A series of one-way ANOVAs were conducted 

to assess the influence of NPs and assay parameters on cell viability (Table 3.1). As 

expected, a strong negative correlation was observed between exposure dose and cell 

viability (p<0.001), with concentrations ≥20 µg/mL killing at least half of the cells. 

Similarly, cytotoxic profiles were detected after >12h exposure to ZnO NPs, with shorter 

exposure durations not causing significant toxicity.  
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Figure 3.2. Dataset description 

 

 

ANOVA also revealed that coating surfaces of NPs with amphiphilic polymers or 

thiol-containing acids could elevate its cytotoxicity, while green synthesis could help 

reduce the cytotoxic potential of ZnO NPs. These results highlight the importance of 

intrinsic materials characteristics and extrinsic experimental conditions on NP-induced 

cytotoxicity. 

 

 

Table 3.1. One-way ANOVA results 

 

Parameter n Cell Viability (%) p-value 

Coating (presence) 

Coated 110 47.4 ± 39.3 <0.001 

Uncoated 433 60.5 ± 33.7 

Coating type 

Uncoated 433 60.5 ± 33.7 <0.001 

PMA, amphiphilic polymer 26 39.7 ± 40.1 

L-Arginine 26 40.6 ± 39.4 

Mercaptoundecanoic acid 26 37.3 ± 42.4 

Plant extract 6 69.7 ± 24.0 

Triton X-100 26 67.0 ± 30.3 

(cont. on next page) 
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Table 3.1. (cont.) 

 

Exposure concentration (dose) 

< 5 µg/mL 85 91.0 ± 10.8 <0.001 

  5 – 10 µg/mL 68 81.6 ± 27.2 

10 – 20 µg/mL 129 71.8 ± 31.0 

20 – 30 µg/mL 67 48.4 ± 31.3 

30 – 40 µg/mL 29 49.2 ± 20.0 

40 – 50 µg/mL 11 25.9 ± 15.5 

50 – 60 µg/mL 38 41.8 ± 25.0 

60 – 100 µg/mL 31 32.8 ± 24.0 

100 – 200 µg/mL 27 22.0 ± 18.9 

>200 µg/mL 58 12.8 ± 9.8 

Cell morphology 

Epithelial 152 58.6 ± 34.5 0.002 

Epithelial-like 161 66.0 ± 37.0 

Fibroblast 163 49.4 ± 33.9 

Lymphocytes 5 59.1 ± 33.8 

Monocyte 5 48.4 ± 40.8 

Lymphoblast-like 5 41.6 ± 46.3 

Keratinocyte 22 69.7 ± 26.7 

Myoblast 11 42.3 ± 24.2 

Cobblestone 3 50.0 ± 25.0 

Cell source (organ/tissue) 

 

 

 

Skin 43 56.2 ± 29.7  

<0.001 Lung 78 52.7 ± 33.2  

Cervix 57 58.0 ± 32.2 

Embryo 65 41.6 ± 38.5 

Peripheral Blood 26 55.8 ± 36.1 

Pleural effusion 5 48.4 ± 40.8 

Kidney 9 37.0 ± 34.0 

Liver 19 48.8 ± 32.8 

Adipose 43 50.4 ± 28.4 

Bone 9 53.7 ± 34.7 

Eye 30 72.5 ± 24.2 

Ovary 66 86.5 ± 31.0 

Colon 21 46.1 ± 37.8 

Testis 20 93.0 ± 12.2 

Breast 41 51.7 ± 35.6 

Muscle 11 42.3 ± 24.2 

Cytotoxicity assay 

MTT 324 63.1 ± 33.7 <0.001 

WST-1 51 43.2 ± 33.9 

Resazurin 88 45.0 ± 41.2 

Flow cytometry 6 55.2 ± 34.6 

Calcein AM 8 80.6 ± 11.6 

(cont. on next page) 
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Table 3.1. (cont.) 

 

Exposure duration 

3_6 hours 30 89.3 ± 9.4 <0.001 

8_9 hours 13 68.8 ± 37.1 

12 hours 28 70.1 ± 27.4 

16 hours 5 47.6 ± 38.6 

24 hours 345 53.6 ± 35.6 

32 hours 5 36.8 ± 36.0 

48 hours 88 56.6 ± 35.4 

72 hours 26 74.2 ± 37.1 

168 hours 3 30.0 ± 17.7 

 

 

A Pearson’s correlation was run to assess the relationship between numeric 

parameters (particle size, hydrodynamic size, zeta potential, and concentration) and cell 

viability (%). The Pearson correlation coefficient of -0.22 suggested that cell viability and 

exposure concentration were moderately correlated in the opposite direction (Table 3.2). 

There was a positive correlation between particle size measured by TEM/SEM or DLS 

and cell viability, with NPs of larger diameter inducing less potent cell death. 

Interestingly, no direct correlation between zeta potential values and cell viability was 

observed. 

 

 

Table 3.2. Pearson correlation results 

 

 dTEM/SEM dDLS Zeta potential Conc. Viability 

dTEM/SEM ---     

Zeta potential 0.14 

(p=0.031) 

-0.17 

(p=0.021) 
---  

 

Concentration -0.09 

(p=0.028) 

-0.15 

(p=0.026) 

-0.08 

(p=0.026) 
--- 

 

Viability 0.24** 

(p<0.001) 

0.19* 

(p=0.005) 

-0.03 

(p=0.696) 

-0.22** 

(p<0.001) 

--- 
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Next, a box plot was constructed to show the distribution of cell viability among 

different exposure durations and doses (Figure 3.3). As expected, higher concentrations 

of NPs and longer exposure durations led to higher levels of cytotoxicity relative to 

untreated cell control. The effect of extended exposure on cell viability was more 

pronounced at higher exposure doses. 

 

 

 

Figure 3.3. Box plot of changes in cell viability (%) as a function of exposure 

concentration (dose, µg/ml) category, grouped by exposure duration (h).  

*Circles outside the plot represent outliers beyond the 10th and 90th percentiles. 

  

 

Machine learning. To identify the influence of material characteristics and 

experimental factors on the cytotoxic potential of ZnO NPs, the CART recursive 

partitioning analysis was employed. The best-performing regression tree (Figure 3.4) was 

selected based on both cross-validation results and simplicity.  

The zeta potential measurements were not included in the decision tree analysis 

due to a high number of missing values (57%). Cross-validation error minimized at a tree 

size of 5 branches. The best-performing regression tree given in Figure 3.4 included 

concentration, exposure duration, cell morphology, and particle size. The variable 

importance order was as follows: concentration > particle size > cell type > exposure 

duration > assay type > coating.  In line with previous studies 251, 252, our analysis showed 

that the potency of ZnO NPs to induce cytotoxic response is particle size-dependent. In 

particular, the primary particle size of 10 nm was found to be critical below which 

elevated cytotoxicity was seen. As expected, a strong positive linear relationship was 

observed between exposure duration and cytotoxic response. The longer the duration that 
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cells are exposed to ZnO NPs, the greater the cytotoxicity. Most ZnO NPs were cytotoxic 

after 12 hours’ exposure, especially at relatively higher doses (>20 µg/mL). As previously 

reported by Cierech et al., significant changes in cell viability were observed with 

increasing concentrations of ZnO NPs 253. The identified relationships between exposure 

conditions and cell viability results are also very much in line with the earlier 

investigations in the field 254-257. For example, Khan and co-workers evaluated the toxic 

effects of ZnO NPs at different concentrations and demonstrated the role of reactive 

oxygen species generation in NP-induced cytotoxicity and genotoxicity 258. In another 

study, NP-induced DNA damage and cytotoxicity were evident after 6h exposure to 20 

µg/mL of ZnO NPs 259. Taken together, the accumulated evidence on the cytotoxic and 

genotoxic potential of ZnO NPs suggests that the safety of ZnO NPs should remain a 

critical concern for all parties involved, including regulators, academicians, and industrial 

people. 

 

 

 

Figure 3.4. The best-performing regression tree predicting cell viability of ZnO 

NPs. 
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CHAPTER 4 

 

 

MACHINE LEARNING-ASSISTED PREDICTION OF THE 

TOXICITY OF SILVER NANOPARTICLES: A META-

ANALYSIS 

 

 

4.1. Background 

 

 

Silver nanoparticles are likely to be more dangerous than other forms of silver due 

to the intracellular release of silver ions upon dissolution and the formation of mixed ion-

containing complexes. Such concerns have resulted in an ever-growing pile of scientific 

evaluations addressing the safety aspects of nanosilver with widely varying 

methodological approaches. The substantial differences in the conduct/design of 

nanotoxicity screening have led to the generation of conflicting findings that may be 

accurate in their narrative but fail to provide a complete picture. One strategy to maximize 

the use of individual risk assessments with potentially biased estimates of toxicological 

effects is to homogenize results across several studies and to increase the generalizability 

and human relevance of their findings. Here, we collected a large pool of data (n=162 

independent studies) on the cytotoxicity of nanosilver and unrevealed potential triggers 

of toxicity. Two different machine learning approaches, decision tree (DT) and artificial 

neural network (ANN), were primarily employed to develop models that can predict the 

cytotoxic potential of nanosilver based on material- and assay-related parameters. Other 

machine learning algorithms (logistic regression, gaussian naive bayes, k-nearest 

neighbor, and random forest classifiers) were also applied. Among several attributes 

compared, exposure concentration, duration, zeta potential, particle size and coating were 

found to have the most substantial impact on nanotoxicity, with biomolecule- and 

microorganism-assisted surface modifications having the most beneficial and detrimental 

effects on cell survival, respectively. Such machine learning-assisted efforts are critical 
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to developing commercially viable and safe nanosilver-containing products in the ever-

expanding nanobiomaterials market. 

 

 

4.1.1. Silver Oxide Cytotoxicity 

 

 

Nanotechnology is an interdisciplinary area of science and engineering that 

studies small feature sizes (in the range of 1-100 nm) with broad applications. The 

development of nanotechnology has been steadily gaining momentum since its early 

inception in the 1980s 234, 260, 261. Over the next few decades, nanotechnology has been 

heavily incorporated in various fields, including medicine, electronics, agriculture, 

chemistry, physics, environment, material science, and engineering 235. The application 

of nanotechnology in medicine (so-called nanomedicine) has led to the development of 

new diagnostic tools and treatment strategies with increased capabilities and success rates 

23.  

NPs used for medical applications can be broadly divided into three groups (1) 

inorganic NPs (metal, metal oxides, and quantum dots), (2) carbon-based NPs (graphene, 

fullerene, and carbon nanotubes), and (3) organic NPs (lipids and polymers) 262. Among 

different NP formulations explicitly developed for biomedical applications, nanosilver-

enriched materials are particularly suitable for implants, medical devices, coatings, and 

wound dressings due to their antioxidant, antibacterial, and antimicrobial properties 263. 

While the antibacterial activity of silver has long been known and has found a wide range 

of applications, its production in nanoform results in additional benefits 264. First, silver-

core NPs enable bright particle tracking by providing fluorescence enhancement. The size 

of silver NPs can be easily controlled in the range of 4-150 nm, allowing customizable 

cellular internalization and targeted clinical interventions. Another advantage of 

nanosilver-based biomaterials is their high antimicrobial activity against multidrug-

resistant microorganisms 265. 

There is a risk that nanosilver not only destroys microorganisms but also damages 

healthy human organs. The unique properties that nano forms of silver exhibit relative to 

the bulk also raise concerns about their new biological identity and the physiological 

response triggered by them. Over the last decade, the nanosafety community has made a 
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substantial effort to determine the toxicological effects of silver NPs 266, 267. The 

accumulated evidence suggests that nanosilver may exert toxic effects on mammalian 

cells (especially at high concentrations), attributed mainly to the release of Ag+ ions and 

the subsequent generation of reactive oxygen species 265, 268, 269. 

Cytotoxicity (i.e., the quality of being toxic to cells) is the most common biosafety 

evaluation test. It is often the first step in determining whether a material is a viable 

candidate for biomedical applications 244, 270. Most conventional in vitro cytotoxicity 

assays have been established long before the emergence of nanotechnology and hence, 

not particularly suitable for use in nanotoxicity testing. For example, the dyes used in the 

colorimetric MTT assay (i.e., the most widely applied method for assessing NP-induced 

cytotoxicity in vitro, Figure 4.1.) can interfere with silver NPs due to their unique optical 

properties 141, 271. Similarly, the LDH release assay, another test commonly used for 

screening the cytotoxic potential of NPs (Figure 4.1.), is also repeatedly shown to suffer 

from cell-type specific NP-mediated interferences 272-274. Another challenge for designing 

efficient in vitro nanotoxicity testing methods is NPs' large and dynamic physicochemical 

property space and the subsequent impacts of the variations in those characteristics on the 

toxicological behavior 267, 275.  

 

 

 

 

Figure 4.1. The relative increase in cumulative publications of in vitro assays 

commonly used to assess NP cytotoxicity.  
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*Pubmed abstract search with the following terms: (MTT AND nano*), (ATP 

AND nano*), (LDH AND nano*), (Annexin V AND nano*), (Live/Dead AND nano*), 

(MTS AND nano*), (WST AND nano*), (Trypan blue AND N-nano*), (Neutral AND 

nano*), (XTT AND nano*), (Alamar blue AND nano*), (Resazurin AND nano*). 

The rapid increase in NP-containing biomedical materials and tools strengthens 

the need for a detailed investigation of their potential hazard to human health 276. 

However, nanosilver is incorporated into commercial products much faster than 

mechanistic understanding relating to adverse health effects can be established. One 

strategy to fill the gap in nano-safety knowledge before it widens any further is to increase 

the generalizability of the findings coming from individual studies by conducting a meta-

analysis 155, 243. Meta-analysis can help solve the problem of the ever-growing body of 

data created through nanotoxicological studies and can enable the integration of the 

accumulated nanotoxicity data, which will ultimately boost the precision of conclusions 

drawn from it. Here, we present a meta-analysis of NP toxicity by combining published 

evidence on the cytotoxicity of silver NPs between 2007 and 2021. The central hypothesis 

here is that the cytotoxic potential of silver NPs can be estimated based on intrinsic 

material properties (e.g., particle size, concentration, zeta potential, and coating) and 

cytotoxicity test conditions (e.g., assay type, cell type and characteristics, and exposure 

duration). An exhaustive literature search yielded an initial pool of 338 studies, almost 

half of which were filtered down as per the inclusion/exclusion criteria and used in the 

meta-analysis. 

 

 

4.2. Methods 

 

 

4.2.1. Literature Search and Data Extraction 

  

 

An iterative systematic literature search was undertaken using SCOPUS scientific 

search engine. Following terms were used for the article search: “silver” AND 

“nanoparticle” AND (“cytotoxicity” OR “toxicity” OR “ic50”) AND (“human” OR 

“cell”). The search returned 339 peer-reviewed research papers, which were manually 
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filtered according to the inclusion criteria outlined below. To be included in the 

metaanalysis, the following requirements had to be met: (i) the core of the studied NP 

must be silver, (ii) in vitro cytotoxicity data must be available, (iii) the particle size data 

measured by the electron microscopy and/or dynamic light scattering technique must be 

available, (iv) the unit of exposure concentration must be convertible to µg/ml, and (v) 

untreated cell control must be available. A total of 4477 data points for 255 individual 

silver-core NPs from the remaining 162 studies were included in the meta analysis (Figure 

4.2). 

 

 

4.2.2. Data Cleaning and Pre-processing 

 

 

The raw dataset including a total of 4477 rows (each corresponding to a single 

cytotoxicity experiment) is provided in APPENDIX (barcode). First, the units of 

measures were unified to minimize variability between different studies. Surface-coated 

NPs were divided into one of the 13 categories according to the type of coating material 

(e.g., polymer, plant extract, surfactant, bacteria, fungi, etc.). Similarly, the numeric data 

records describing the concentration were divided into nine subgroups (0; 0-1; 1-10; 10-

20; 20-40; 40-60; 60-100; 100-200 and >200 µg/mL). The quantitative cell viability data 

(% viability) was converted to binary (toxic or nontoxic) toxicity class variable based on 

a pre-defined threshold (<50%) widely applied in the scientific literature 277, 278. The 

cleaned data were randomly divided into training (70%) and test sets (30%), each 

involving a similar fraction of toxic and nontoxic groups. 

 

 

4.2.3. Descriptive Statistics  

 

 

One-way analysis of variance (ANOVA) combined with Tukey’s honest 

significant difference (HSD) test was used to determine how strongly each of the 10 

categorical parameters describing NP, cell line, or assay characteristics was related to 

cytotoxicity. The strength and direction of the relationship between pairs of continuous 
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variables (particle size by SEM, TEM, or DLS, zeta potential, NP concentration, exposure 

duration, and cell viability) were measured by Pearson’s correlation coefficients. A box 

plot was used to display the distribution and skewness of the cell viability data among 

different subcategories. ANOVA, Pearson correlation, and box plot visualization were 

performed using STATA/IC statistical software (version 16.1; StataCorp). Significance 

was reported at p < 0.05 and p < 0.001 levels. 

  

 

 

Figure 4.2. Data search and selection procedure. 

 

 

4.2.4. Model Development  

 

 

A Decision Tree (DT) is a non-parametric machine learning algorithm that can 

perform both classification and regression tasks. It has an inverted tree-like structure, 

where each node represents a predictor, each branch represents a decision on a predictor, 

and each leaf holds a class label 279, 280. Here, DTs were developed using the Python-based 

scikit-learn classifier to predict whether a silver-core NP was toxic (cell viability < 50%) 

based on NP, cell, and assay characteristics 281, 282. The best splits in DTs were selected 
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based on the Gini impurity index describing the likelihood of an incorrect classification 

283. The performance of DT models was compared with four different machine learning 

algorithms (logistic regression, gaussian naive bayes, k-nearest neighbor, and random 

forest classifiers) implemented in the Scikit-learn Python library. The versions were 

Python 3.8.10, Scikit-learn 1.0.2, Pandas 1.3.5, and Numpy 1.22.4. 

Inspired by the biological neurons in the human brain, artificial neural networks 

(ANNs) take in data, train themselves to recognize the patterns in this data, and predict 

the output for a new set of similar data 284-286. It is made up of layers of connected input 

and output units called neurons. The hidden layers that exist in between the input and 

output layers perform most of the computations required by ANN 287, 288. In this study, 

the ANN models were designed, optimized, and tested using an advanced machine 

learning platform specializing in neural networks called Neural Designer. The growing 

neurons and growing inputs algorithms were used to select the optimum number of 

neurons and inputs. The aim here was to avoid the risk of both overfitting and underfitting 

and to develop high-performing ANN models capable of predicting the cytotoxicity of 

silver-core NPs based on material characteristics and hazard screening parameters. 

 

 

4.2.5. Model Performance  

 

 

The performance of machine learning models was assessed in terms of accuracy, 

precision, sensitivity, and specificity calculated based on the following equations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
   (4) 

 

Where TP, FP, TN, and FN represent true positive, false positive, true negative, 

and false negative, respectively. The area under the receiver operating characteristic curve 

(AUC) and the ratio of misclassified instances (error rate) were also used to assess the 

performance of binary classification models. 
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4.3. Results  

 

 

Description of data included in analysis. A total of 4477 data points for 255 

individual NPs were collected from 162 independent studies and included in the meta-

analysis (provided in Supplementary Material). Each data record represents an individual 

silver-core NP and the corresponding physicochemical characterization (size, zeta 

potential, and surface coating) and cytotoxicity data. The data search, extraction, and 

exclusion details are documented in the methods section. A short description of the data 

included in the meta-analysis is given in Table 4.1, whereas the frequency of collected 

data points per individual NP, coating category, exposure concentration, cell source, cell 

morphology, and assay type are summarized in Fig S1-7. 

The missing data percentages given in Table 7 reveal that the variable with the 

highest number of missing cases is zeta-potential (38%). We further looked into missing 

data distribution between toxic and non-toxic classes and observed that ~ 31% of total 

cases with missing zeta potential values had a cell viability of < 50%. In the entire dataset 

(including missing and non-missing cases), approximately 28% of silver NPs were 

identified as toxic based on the pre-defined threshold (<50%). Considering the similarity 

in the fraction of cytotoxic NPs in both complete (547 cases out of 1706 data points) and 

incomplete cases (1280 cases out of 4477 data points), the missingness was deemed 

random, not significantly affecting the classification results. While the amount of missing 

data was not very small, the sample size was sufficiently large so we applied case-wise 

deletion (i.e., all silver NPs with missing zeta potential values were excluded from the 

analysis) and carried out a complete-case analysis as the primary method of missing data 

handling. 

 

 

Table 4.1. Dataset description 

 

Parameter Type Range Missing 

(%) NPSize by SEM/TEM Numeric 2 – 275 nm 660 

(15%) NPSize by DLS Numeric 3 – 534 nm 1601 

(36%) NPZeta potential Numeric -56 – +89 mV 1706 

(38%) NPConcentration Numeric 0.01 – 2000 µg/mL 0 (0%) 

(cont. on next page) 
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Table 4.1. (cont.) 

NPCoating Categorical Coated or Uncoated 0 (0%) 

NPCoating type Categorical 

Bacteria, Surfactant, Polymer, Peptide, Protein, Plant, Algae, 

Fungi, Phospholipid, NP, Small molecule, or their 

combinations 

0 (0%) 

CellViability Numeric 0 – 206 % 0 (0%) 

CellNature Categorical Healthy or Cancer 6 (1%) 

CellOrigin Categorical Primary cells or Cell line 0 (0%) 

CellSource Categorical Human, Mouse, Hamster, Rat, Bovine, Monkey, Pig, Dog 0 (0%) 

CellAge Categorical Embryonic or Adult 0 (0%) 

CellMorphology Categorical 
Endothelial, Epithelial, Fibroblast, Lymphoblast, and 

Neuronal 
0 (0%) 

CellOrgan_tissue Categorical 
Bone, Brain, Skin, Colon, Breast, Kidney, Lung, Liver, 

Embryo, Blood, Ascites, Urinary system, Others 
0 (0%) 

AssayIndicator Categorical 
Resazurin reduction, Dye inclusion or exclusion, LDH 

activity, Tetrazolium salt 
0 (0%) 

AssayType Categorical 

Alamar blue, Apoptosis, ATP, CellTiter-Blue, LDH, 

Clonogenic assay, . blue, Crystal violet, DAPI, Image 

processing, Live/Dead, MMP, MTS, MTT, Neutral red, 

Presto blue, Resazurin, SRB, Trypan blue, WST-1/8, XTT 

0 (0%) 

ExposureDuration Numeric 1 – 504 hours 0 (0%) 

 

 

A box plot was constructed to illustrate the distribution of cell viability among 

different exposure times and concentrations (Figure 4.3). As expected, higher NP 

concentrations and exposure duration led to higher levels of cytotoxicity relative to 

untreated cell control. The effect of extended exposure on cell viability was more 

pronounced at higher exposure doses (≥40 µg/mL).  

A box plot diagram showing the percentage viability of cells exposed to silver-

core NPs of different surface functionality at increasing doses confirmed that cell viability 

was significantly reduced when treated with algae-, bacteria-, fungi- or plant-extract-

coated nanosilver, even at relatively lower exposure concentrations (Figure S8). It is 

worth noting that the microorganisms and plant extracts were not primarily used for 

coating purposes in these studies but rather for the synthesis of silver NPs. However, there 

was no additional step for removing these biological entities, suggesting that their 

residues remained on the surface of the synthesized nanosilver. Additionally, cells with 

lymphoblast morphology were more resistant to silver NPs, when compared to other cell 

lines (Figure S9). 
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Figure 4.3. Box plot of changes in cell viability (%) as a function of exposure 

duration (1, 6, 12, 24, 48, 72 and 96 hours), grouped by NP exposure concentrations. 

(Untreated cell control; 1 µg/mL:0-1 µg/mL; 10 µg/mL:1-10 µg/mL; 20 µg/mL:10-20 

µg/mL; 40 µg/mL:20-40 µg/mL; 60 µg/mL:40-60 µg/mL; 100 µg/mL:60-100 µg/mL; 200 

µg/mL:100-200 µg/mL and >200 µg/mL). Circles outside the plot represent outliers 

beyond the 10th and 90th percentiles. 

 

Effect Sizes and Heterogeneity. A series of one-way ANOVA was conducted to 

understand how each categorical variable given in Table 1 affected cell viability (Table 

8). ANOVA revealed that there was a statistically significant difference between each 

category’s mean cell viability value (p<0.001), except cell age (embryonic or adult) 

category. Coating the surface of silver NPs with biomolecules such as peptides, proteins, 

and DNA led to high cell viability values (95%). In contrast, microorganism-assisted 

(e.g., bacteria or algae) NP synthesis significantly reduced cell viability to 54%. The 

ANOVA analysis confirmed the negative correlation between exposure dose and cell 

viability, with concentrations ≥60 µg/mL killing almost half of the cells (Table 4.2). The 

silver NPs were slightly more toxic to cancer cells (68%) than normal cells (76%). The 

level of cytotoxicity caused by silver NPs was further influenced by the source and 
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morphology of cultured cells, as well as the type of assay used for toxicity screening 

(p<0.001). 

 

 

Table 4.2. One-way ANOVA results 

 

Parameter n 
Cell Viability (%) 

mean ± standard error 
p-value 

Coating (presence) 

Coated 3463 73.1 ± 33.4 
<0.001 

Uncoated 1014 65.6 ± 35.0 

Coating type 

Uncoated 1014 65.6 ± 35.0 

<0.001 

Bacteria 318 59.7 ± 33.7 

Fungi 258 70.8 ± 28.1 

Phospholipid 7 76.4 ± 25.4 

Plant extract 712 67.2 ± 31.6 

Polymer 635 70.9 ± 33.4 

Algae 75 53.6 ± 34.6 

Small molecule 736 78.5 ± 34.0 

Peptide, protein, or DNA 159 94.8 ± 33.4 

Surfactant w/wo* polymer 55 72.7 ± 25.6 

Nanoparticles w/wo* polymer 404 83.1 ± 30.6 

Small molecule w/wo* polymer 32 51.6 ± 32.2 

Small molecule mixture w/wo* nanoparticle 72 90.4 ± 23.9 

Nanoparticle exposure concentration 

0 µg/mL (untreated control) 702 100.0 ± 0.7 

<0.001 

0  –  1 µg/mL 381 91.2 ± 18.9 

1 – 10 µg/mL 1024 79.2 ± 27.7 

10 – 20 µg/mL 535 71.3 ± 34.1 

20 – 40 µg/mL 510 66.2 ± 33.5 

40 – 60 µg/mL 439 56.4 ± 35.5 

60 – 100 µg/mL 199 44.2 ± 24.6 

100  –  200 µg/mL 320 48.7 ± 32.4 

>200 µg/mL 367 34.5 ± 29.7 

Cell morphology 

Endothelial 56 77.5 ± 27.9 

<0.001 

Epithelial 3071 68.5 ± 33.4 

Fibroblast 759 74.9 ± 38.0 

Lymphoblast 506 83.0 ± 28.5 

Neuronal 85 73.7 ± 29.5 

  (cont. on next page) 
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Table 4.2. (cont.) 

 

Cell nature 

Healthy 1806 76.3 ± 35.3 
<0.001 

Cancer 2665 68.1 ± 32.7 

Cell origin 

Primary cells 143 90.5 ± 43.3 
<0.001 

Cell line 4334 70.8 ± 33.4 

Cell age 

Embryonic 251 72.9 ± 43.1 
0.460 

Adult 4226 71.3 ± 33.3 

Cell source (species) 

Human 3570 70.5 ± 33.6 

 

<0.001 

Mouse 654 76.6 ± 36.5 

Rat 175 71.1 ± 30.3 

Hamster 28 49.0 ± 35.2 

Bovine 11 53.9 ± 30.1 

Dog 3 99.4 ± 1.1 

Monkey 29 93.1 ± 14.7 

Pig 7 72.9 ± 18.4 

Cell source (organ/tissue) 

Ascites 129 88.5 ± 22.2 

<0.001 

Blood 214 85.7 ± 28.0 

Bone 250 79.4 ± 32.5 

Brain 109 73.9 ± 31.9 

Breast 513 61.9 ± 33.7 

Colon 289 72.0 ± 33.3 

Embryo 123 57.6 ± 36.3 

Kidney 138 76.1 ± 29.1 

Liver 415 72.4 ± 29.3 

Lung 605 75.9 ± 30.4 

Skin 668 67.4 ± 38.5 

Urinary systems 605 63.2 ± 36.0 

Others 337 81.5 ± 30.5 

Cytotoxicity assay 

MTT 2812 69.7 ± 33.1 

<0.001 

MTS 413 92.2 ± 32.7 

LDH 120 63.2 ± 33.5 

Dye-based 514 60.7 ± 34.2 

WST1/8 414 76.5 ± 32.6 

XTT 74 77.2 ± 23.9 

Presto Blue 97 71.2 ± 32.3 

Others 27 83.5 ± 16.4 

* w/wo: with or without 
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To measure effect size, the eta-squared value describing the proportion of 

variance explained in an ANOVA model was calculated (Table S1). Large effects were 

only detected in the coating category (eta-squared: 0.33) based on the benchmark of 0.14 

289. Next, Tukey’s post-hoc test was performed to determine the significance of pairwise 

comparisons and to compare the means of groups that reached statistical significance 

(Table S2). A Pearson’s correlation was run to assess the relationship between numeric 

parameters (mean particle size, hydrodynamic size, zeta potential, concentration, and 

exposure duration) and cell viability (%). The Pearson correlation coefficient of -0.37 

suggested that cell viability and exposure concentration were moderately correlated in the 

opposite direction (Table S3). 

Machine Learning Models. In the first attempts of machine learning modeling, all 

16 features given in Table 1 were included, and the produced accuracy was around 20-

40%. Suspecting that the collected data was too complex and heterogeneous for 

developing machine learning models with high predictive performance, we selected 

different sub-sets of features to generate local models. With the homogenized training 

data, the resulting DT models achieved an accuracy of 60-84%. The features included in 

the best-performing classification models and their predictive performance are 

summarized in Table 4.3. 

 

Table 4.3. Performance of classification models built using different machine 

learning algorithms.  

 

   

(cont. on next page) 



 

71 

Table 4.3. (cont.) 

 

   

(cont. on next page) 
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Table 4.3. (cont.) 

 

   

(DT: Decision Tree, LR: Logistic Regression, GNB: Gaussian Naive Bayes, KNN: K-

Nearest Neighbor, RF: Random Forest) and different data subsets. 

 

 

The DT model given in Figure 4.4 achieved an accuracy of 84% in predicting 

whether or not a silver-core NP is toxic. The dataset used to build the tree model included 

1515 data points (i.e., case wise deletion was applied). Four features were selected based 

on their importance score, including concentration, zeta potential, particle size, and 

exposure time. Concentration was the best single predictor to start classification, with an 

importance score of 0.7. Early nodes were also formed by zeta potential, which had a 

feature importance score of 0.17. The relative importance of the remaining splitting 

variables, particle size, and exposure duration was less than 15% in total. The optimal 

decision tree model suggested a highly negative correlation between the concentration or 
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exposure time and cell viability, with increased NP concentrations and overlong 

exposures leading to an increase in the proportion of the toxic group.  

Next, different machine learning models were developed for uncoated, small 

molecule-coated, bacteria-coated, fungi-coated, NP-coated, peptide/protein/ DNA-

coated, plant extract-coated, or polymer-coated nanosilver (Table 4.3). Based on three 

parameters (concentration, exposure duration, and particle size), the highest prediction 

accuracy (87%) was achieved for fungi-coated nanosilver. Distinct models were also 

developed for each concentration category using different combinations of particle size, 

exposure duration, and the presence/absence of coating as predictors, with the highest 

prediction accuracy (82%) being achieved for the high concentration (≥100 µg/mL) class.   
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Artificial Neural Network (ANN) Classifiers. For the ANN analysis, the dataset, 

including 1515 data points (after excluding con.= 0 and casewise deletion of missing 

data), was split into training (60%), test (20%), and validation (20%) sets. The ANN 

activation function was the hyperbolic tangent (tanh). The loss index used was the 

weighted squared error with L2 regularization 290. The quasi-Newton method was used 

as an optimization algorithm. The charts in Figure 4.5 and 4.6 illustrate how the weighted 

squared error decreases with the increasing number of iterations and neurons, 

respectively. 

 

 

 

 

Figure 4.5. The training (blue) and selection (yellow) error as a function of the 

epoch (iteration) number 

 

 

The network required approximately 10 epochs (iterations) of training to reach 

the minimum point (Fig 4.6). The optimal number of neurons was found to be 8 based on 

the training and selection error. The architecture of the final ANN model is given in 

Figure S10. The optimal ANN classification model included 4 inputs (particle size, NP 

concentration, zeta potential, and exposure duration) and 1 output (binary toxicity class). 

It consisted of a scaling layer, a perceptron layer with 8 neurons, and a probabilistic layer 

(Figure S10). It achieved an accuracy of 0.82, a sensitivity of 0.81, and a specificity of 

0.83 (Table S4). The area under the curve was calculated as 0.88, indicating a great 
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performance. The relative importance of chosen input parameters was as follows: particle 

size (5.7%), exposure time (13%), coating (binary) (4.7%), and concentration (76.6%). 

 

 

 

 

Figure 4.6. The training (blue) and selection (yellow) errors as a function of the 

number of neurons 

 

 

4.3.1. Supporting Tables and Figures Associated with This Chapter 

 

 

Table S1. Effect sizes for ANOVA Models  

 

Attribute Cell Viability  

Eta-squared*  

 

 

Coating category 0.06 (0.05 – 0.08)  

Exposure concentration 0.33 (0.31 – 0.35) 

Cell morphology 0.02 (0.01 – 0.03) 

Cell nature (heathy or cancer cell line) 0.01 (0.01 – 0.02) 

Cell source (species) 0.01 (0.00 – 0.01) 

Cell source (tissue/organ) 0.05 (0.04 – 0.06) 

Cytotoxicity assay 0.05 (0.04 – 0.06) 
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(Eta-squared is calculated by dividing the sum of squares of an effect for one 

variable, SSeffect, by the total sum of squares in the ANOVA model, SStotal) * 0.01: small 

effect size; 0.06: medium effect size; 0.14 or higher: large effect size 

 

Table S2. Tukey’s Post Hoc test results (results with statistical significance are 

reported only) 

 

Parameter Group 1 Group 2 

Mean Difference 

(Group2-

Group1) 

HSD-

test 

Coating 

Algea extract 

Nanoparticles w/o 

polymer 
29.49 6.41* 

Peptide, protein or 

DNA 
41.18 8.95* 

Phospholipid 22.77 4.95* 

Small molecule 

mixture w/o 

nanoparticle 

36.81 8.00* 

Small molecule 24.92 5.42* 

Bacteria 

Nanoparticles w/o 

polymer 
23.42 5.09* 

Peptide, protein or 

DNA 
35.10 7.63* 

Small molecule 

mixture w/o 

nanoparticle 

30.74 6.68* 

 

Peptide, 

protein or 

DNA 

Fungi -24.01 5.22* 

Plant extract -27.61 6.00* 

Polymer -23.85 5.19* 

Small molecule w/o 

polymer 
-41.16 9.39* 

Uncoated -29.23 6.36* 

Surfactant -22.07 4.80* 

Small 

molecule 

mixture w/o 

nanoparticle 

Plant extract -23.25 5.06* 

Small molecule w/o 

polymer 
-38.80 8.44* 

Uncoated -24.87 5.41* 

Small 

molecule 

w/o polymer 

Nanoparticles w/o 

polymer 
31.48 6.85* 

Phospholipid 24.76 5.38* 

Small molecule 26.91 5.85* 

(cont. on next page) 
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Table S2. (cont.) 

 

Cell 

morphology 

Endothelial Epithelial -9.06 4.00* 

Epithelial Lymphoblast 14.53 6.42* 

Lymphoblast Neuronal -9.30 4.11* 

Cell source 

(species) 

Bovine 

 

Dog 45.45 5.76* 

Monkey 39.18 4.97* 

Hamster 
Dog 50.40 6.39* 

Monkey 44.13 5.60* 

Cell source 

(tissue/orga

n) 

Ascites 

Bone -9.02 4.93* 

Brain -14.6 7.98* 

Breast -26.55 14.51* 

Colon -16.48 9.00* 

Embryo -30.91 16.90* 

Kidney -12.32 6.84* 

Liver -16.05 8.78* 

Lung -12.52 6.84* 

Skin -21.08 11.52* 

Urinary -25.22 13.79* 

Blood 

Brain -11.84 6.47* 

Breast -23.79 13.00* 

Colon -13.72 7.50* 

Embryo -28.15 15.39* 

Kidney -9.56 5.23* 

Liver -13.29 7.27* 

Lung -9.76 5.33* 

Skin -18.31 10.01* 

Urinary -22.46 12.28* 

Bone 

Breast -17.52 9.58* 

Embryo -21.89 11.97* 

Skin -12.05 6.59* 

Urinary -16.20 8.85* 

Brain 

Breast -11.94 6.53* 

Embryo -16.31 8.92* 

Urinary -10.61 5.80* 

Breast 

Colon 10.07 5.51* 

Kidney 14.23 7.78* 

Liver 10.50 5.74* 

Lung 14.03 7.67* 

Other 19.60 10.72* 

(cont. on next page) 
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Table S2. (cont.) 

 

Cell source 

(tissue/organ) 

Colon 

Embryo -14.43 7.89* 

Other -9.53 5.21* 

Urinary -8.73 4.78* 

Embryo 

Kidney 18.59 10.16* 

Liver 14.86 8.12* 

Lung 18.40 10.06* 

Other 23.97 13.10* 

Skin 9.84 5.38* 

Kidney 
Skin -8.75 4.78* 

Urinary -12.89 7.05* 

Liver 
Other 9.11 4.98* 

Urinary -9.16 5.01* 

Other 
Skin -14.13 7.28* 

Urinary -18.27 9.99* 

Lung Urinary -12.70 6.94* 

Test 

indicator 

Dye inclusion 

or exclusion 

Other 23.22 7.93* 

Tetrazolium 12.88 4.38* 

Other 
LDH activity -20.37 6.92* 

Resazurin -12.50 4.25* 

 

 

Table S3. Pearson correlation results 

 

 dTEM/SEM dDLS Zeta Conc. Duration Viability 

dTEM/SEM ---      

dDLS 
0.27 

<0.001 

--

- 
    

Zeta 
-0.08 

0.002 

-0.03 

0.194 

--

- 
   

Conc. 
0.03 

0.085 

0.04 

0.050 

-0.09 

<0.001 

--

- 
  

Duration 
0.018 

0.257 

-0.20 

<0.001 

-0.06 

<0.001 

0.01 

0.342 
---  

Viability 
-0.06 

<0.001 

0.01 

0.564 

-0.05 

0.012 

-0.37 

<0.001 

-0.09 

<0.001 
--- 

 

 



 

80 

Table S4. The optimal ANN model performance metrics 

 

Metric Description 

 

 

Value 

Classification 

accuracy 

Ratio of cases correctly classified 0.825 

Error rate Ratio of cases misclassified 0.175 

Sensitivity Portion of real positive which are predicted 

positive 

0.808 

Specificity Portion of real negative which are predicted 

negative 

0.834 

Precision Portion of predicted positive which are real 

positive 

0.719 

F1 score Harmonic mean of precision and sensitivity 0.760 

AUC The area under the receiver operating 

characteristic curve 

0.877 

 

 

4.3.2. Supporting Figures Associated with This Chapter 

 

 

 

 

Figure S1. Number of data points per individual nanoparticle included in meta-

analysis. 
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Figure S2. Frequency of data points per coating category.  

1: Algae; 2: Bacteria; 3: Fungi; 4: Nanoparticles with or without polymer; 5: 

Peptide, protein or DNA; 6: Plant extract; 7:Polymer; 8: Small molecule; 9: Small 

molecule mixture with or without NP; 10: Small molecule with or without polymer; 11: 

Surfactant with or without polymer; 12: Uncoated; 13: Phospholipid 

 

 

 

 

Figure S3. Frequency of data points per concentration category.  

1: 0 µg/mL (untreated control); 2: 0  –  1 µg/mL; 3: 1 – 10 µg/mL; 4: 10 – 20 

µg/mL; 5: 20 – 40 µg/mL; 6: 40 – 60 µg/mL; 7: 60 – 100 µg/mL; 8: 100  –  200 µg/mL; 

9: >200 µg/mL 

 

 



 

82 

 

 

Figure S4. Frequency of data points per cell source (animal or human), grouped 

by cell nature (cancer or healthy). 

 

 

 

 

Figure S5. Frequency of data points per cell morphology category. 

1: Endothelial; 2: Epithelial; 3: Fibroblast, 4: Lymphoblast; 5: Neuronal), grouped 

by cell nature (cancer or healthy 
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Figure S6. Frequency of data points per cell organ/tissue category. 

1: Ascites; 2: Blood; 3: Bone; 4: Brain; 5: Breast; 6: Colon; 7: Embryo; 8: Kidney; 

9: Liver; 10: Lung; 11: Others, 12: Skin; 13: Urinary systems 

 

 

 

 

Figure S7. Frequency of data points per assay category.  

1: Dye-based; 2: LDH; 3: MTS; 4: MTT; 5:Others; 6: Presto Blue; 7: WST1/8; 8: 

XTT 
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Figure S8. Box plot of changes in cell viability (%) as a function of NP exposure 

concentration category. 

1: 0 µg/mL (untreated control); 2: 0  –  1 µg/mL; 3: 1 – 10 µg/mL; 4: 10 – 20 

µg/mL; 5: 20 – 40 µg/mL; 6: 40 – 60 µg/mL; 7: 60 – 100 µg/mL; 8: 100  –  200 µg/mL; 

9: >200 µg/mL, grouped by NP coating category. Circles outside the plot represent 

outliers beyond the 10th and 90th percentiles. 

 

 

 

 

Figure S9. Box plot of changes in cell viability (%) as a function of cell 

morphology, grouped by cell nature (cancer or healthy).  

 

Circles outside the plot represent outliers beyond the 10th and 90th percentiles. 
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Figure S10. The structure of the ANN Model 

 

 

4.4. Discussion 

 

 

This study aggregated a large pool of data to build on previous work 

demonstrating the importance of machine learning algorithms to generate accurate 

predictions of NP cytotoxicity. First, five supervised classification algorithms were 

compared: Decision Tree, Random Forest, k-Nearest Neighbor, Naive Bayes, and 

Logistic Regression. Each classifier was trained multiple times using different input 

features and subsets of the collected data chosen based on coating material or 

concentration range. Algorithms were evaluated using out-of-sample validations. The 

highest accuracy (84%) in the models trained with the complete data (n=1515 data points 

excluding missing cases and untreated cell controls) was achieved when applying 

Random Forest, Decision Tree, and k-Nearest Neighbor, with the precision being 

generally higher for the Decision Tree model. An added advantage of the classification 

models with a tree-like structure of conditional statements is the simplicity and ease of 

interpretation. To further simplify the tree’s interpretation without overloading 
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information, we used an informative visualization approach where the inner nodes and 

leaf nodes were combined with detailed histograms and pie chart representations of toxic 

and nontoxic classes, respectively 291. 

Surprisingly, the performance of neural network models trained with the same 

dataset was not statistically very different than tree-based models, suggesting that 

increased sophistication in machine learning algorithms does not always translate into 

better predictions. Similar findings where tree-based ensemble models demonstrated 

superior performance for both classification and regression tasks were reported in many 

other studies 292-294. An additional machine learning technique to consider would be 

gradient boosting and its advanced implementations, such as XGBoost Tree, which works 

by iteratively adding weak classifiers to an ensemble, with each model trying to 

compensate for the weaknesses of its predecessor 295, 296. 

Predictive models were developed for the cytotoxic potential of nanosilver. Each 

model used a combination of NP-related (particle size, zeta potential, concentration, and 

coating), cell-related (nature, origin, organ/tissue source, age, and morphology), and 

assay-related (type, indicator, and duration) parameters, which have been related to the 

viability of nanosilver-treated cells. It is worth mentioning that the key physicochemical 

features of NPs such as particle size, shape, aggregation state, and zeta potential are 

dynamic, changing as a function of environmental conditions, biological interactions, and 

time 297, 298. In particular, the surfaces of NPs become immediately coated by 

macromolecules (e.g., proteins and lipids) in the physiological environment, and this 

newly-formed layer masks physicochemical characteristics of pristine (as-received or as-

manufactured) NPs. Therefore, linking intrinsic NP characteristics to their biological 

activity measured in vitro requires a deeper understanding of how the adsorbed 

biomolecule layer (so-called protein corona layer) changes the key NP characteristics 

under realistic exposure conditions and how these changes are reflected in their biological 

identity/behavior. 

 The accuracy of models including all features did not exceed the chance level, 

suggesting that the performance of machine learning models could have suffered due to 

the inclusion of redundant attributes. The features included in best-performing models 

were NP concentration, exposure duration, coating, zeta potential, and particle size, with 

the first two being relatively more influential. This finding highlights the importance of 

using relevant exposure conditions when characterizing the potential health effects of NPs 

on human health. The use of unrealistically high concentrations or exposure durations can 
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magnify the severity of the induced effect and prevent most of the beneficial uses of NPs, 

while lower values of those parameters could mask potentially harmful effects. As 

included in the screening strategies of NPs, designing nanotoxicity testing parameters in 

line with the anticipated human exposure levels is critical to avoid over/underestimating 

the actual risks 86, 299.  

The major strength of this work is the aggregation of a large pool of data (n=162 

independent studies) on which machine learning models are trained, which is a larger 

training data size than much of the previous work 277, 300, 301. The included studies differed 

in terms of experimental protocols followed, which provide a reasonable estimate of the 

applicability of developed classification models. Another strength is the implementation 

of various machine learning algorithms to minimize errors in cytotoxicity prediction. The 

main limitation of this study is the absence of physicochemical characterization data 

measured under conditions that closely mimic the relevant physiological environment and 

the resulting difficulty of linking intrinsic NP characteristics to observed biological 

activity. A further limitation was the high number of missing values in zeta potential 

measurements, which was partly dealt with by excluding the entire data record from 

analysis if any single parameter was missing. Finally, it is important not to interpret the 

reported models as definite, foolproof or fixed as they potentially reflect the assumptions, 

biases, and errors of the data sources and need to be updated regularly as the new data 

become available. One area of future work is to incorporate new data when it is generated 

and to validate the computational findings with systemically designed experimental 

observations. 

 

 

4.5. Conclusion 

 

 

There are several challenges to overcome before the potential of nano-enabled 

products can truly be realized, starting with the development of a complete understanding 

of nanosafety-related concepts. Systematic reviews and statistical procedures are 

increasingly adopted in health risk assessments to decide whether a NP is a viable 

candidate for medical applications. By statistically and strategically combining evidence 

from multiple studies in the nanotoxicity domain, it is possible to generate accurate 
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estimations of the actual risks posed by NPs. In this work, we investigated the relationship 

between both NP- (concentration, size, zeta potential, and coating) and assay-related (cell 

type, test indicator, exposure duration, etc.) parameters and the cytotoxic response of 

silver NPs using a meta-analytic dataset encompassing over 4477 data points from 162 

studies. Heterogeneity within the collected data was explored by performing subgroup 

analyses and visualizations. Beyond looking at hidden patterns within the subgroup of 

studies, we developed machine learning models that can predict the cytotoxicity of silver 

NPs with high classification accuracies (>0.84). While the scope of this analysis is limited 

to cytotoxicity, similar data-driven models can also be developed for different toxicity 

endpoints (e.g., NP-induced genotoxicity or oxidative stress) or well-defined regions of 

chemical space. Such meta-analytic approaches represent a major step toward including 

safety at the earliest possible stage of NM development, the so-called safe-by-design 

(SbyD) concept. 
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CHAPTER 5 

 

 

IDENTIFYING FACTORS CONTROLLING CELLULAR 

UPTAKE OF GOLD NANOPARTICLES BY MACHINE 

LEARNING  

 

 

5.1. Background 

 

 

There is strong interest to improve the therapeutic potential of gold nanoparticles 

(GNPs) while ensuring their safe development. The utility of GNPs in medicine requires 

a molecular-level understanding of how GNPs interact with biological systems. Despite 

considerable research efforts devoted to monitoring the internalization of GNPs, there is 

still insufficient understanding of the factors responsible for the variability in GNP uptake 

in different cell types. Data-driven models are useful for identifying the sources of this 

variability. Here, we trained multiple machine learning models on 2077 data points for 

193 individual NPs from 59 independent studies to predict cellular uptake level of GNPs 

and compared different algorithms for their efficacies of prediction. The five ensemble 

learners (Xgboost, random forest, bootstrap aggregation, gradient boosting, light gradient 

boosting machine) made the best predictions of GNP uptake, accounting for 80-90% of 

the variance in the test data. The models identified particle size, zeta potential, GNP 

concentration and exposure duration as the most important drivers of cellular uptake. We 

expect this proof-of-concept study will foster the more effective use of accumulated 

cellular uptake data for GNPs and minimize any methodological bias in individual studies 

that may lead to under- or over-estimation of cellular internalization rates. 
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5.1.1. GNPs and Cellular Uptake 

 

 

NP are defined as a materials with at least one dimension < 100 nm 13, 302. Their 

small size and high surface to volume ratios elicit novel characteristics relative to bulk 

materials that find applications in a diverse areas such as electronics, energy, agriculture, 

and the healthcare industry 303. Today, thousands of commercial products contain NPs 

while many others are produced using nano-enabled tools 304. The use of nanotechnology 

in healthcare applications has led to the development of new diagnostic molecules and 

drugs with improved functionality and therapeutic outputs 305, 306. 

In the field of medicine, the most important problems are driven by processes at 

the molecular/nanoscale level. Consequently, nanoscale diagnostics and therapeutics 

allow fine-tuning of material properties to target specific cells or tissues 306, 307. For 

example, nanoscale silica, lipids, polymers, metallics and carbon nanotubes are 

sometimes administered intravenously to target diseased cells, and kill them selectively 

308. Although several types of NP are commonly used in medical applications, gold NPs 

(GNPs) are of particular diagnostic and therapeutic interest due to their useful optical 

properties 309. 

GNPs can be synthesized from other forms of gold by laser ablation or chemically 

by using reducing and stabilizing agents 310, 311. Nano-sized gold displays useful 

characteristics not seen in bulk gold, making them especially useful for medical 

applications such as bioimaging, drug and gene delivery, targeting, photothermal therapy, 

and radiotherapy 312. Their surfaces can be easily modified for specific cell targeting 

applications to improve disease management and to treat conditions not responsive to 

available medications 313. Furthermore, colloidal GNPs exhibit so-called surface plasmon 

resonance (SPR), a particular interaction between light and matter when a specific 

wavelength of light is applied 314, making them promising agents for hyperthermic cancer 

treatments and medical imaging 315. 

GNPs can function as delivery vehicles, therapeutics, or theranostics (diagnostics 

and therapeutics combined), a promising, relatively new concept for medicine 316. When 

used for targeted drug delivery and release, GNPs are generally composed of a nano-size 

gold core with a surface monolayer containing the drugs and/or other (e.g., targeting) 

molecules 317, 318. Drug-loaded GNPs are commonly combined with targeting agents to 
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provide safety for healthy bystander cells. Once bound to disease cells, they are taken up 

through different uptake mechanisms depending on their size and shape 319, 320.  

GNPs have diverse sizes, shapes, surface coatings, functionalities, and charges. 

Earlier work suggested (incorrectly) that positively charged GNPs were always more 

toxic than negatively charge ones because they could disrupt the negatively charged cell 

membrane 321, 322. Another common early misconception was that small NPs were more 

toxic than larger ones 323. While it is true that particle size and surface characteristics are 

important determinants of cellular uptake and the fate of translocated NPs in the body, it 

was simplistic to associate certain NP sizes or morphologies with a specific 

internalization rates or toxicity profiles 324. An important research challenge in 

nanomedicine is therefore deciphering how to control cellular internalization and safe 

uptake of NPs by altering the shape, size, and surface properties 243, 298, 325. 

There is increasing evidence that morphology and surface charge modulate 

cellular uptake of GNPs, but most investigations have produced inconclusive and 

inconsistent results 326-328. To better leverage value of this existing literature data resource 

and to resolve controversies arising from inconsistent findings in prior research, it is 

helpful to create a pooled (or absolute) estimate by combining findings from separate 

studies and critically appraising total bodies of evidence. While many meta-analytic 

studies report NP cytotoxicity, none focus on the cellular uptake profile of the NPs. Here, 

we present a meta-analysis of cellular uptake by combining data on intracellular uptake 

of GNPs from the period 2010–2023. We hypothesize that cellular uptake rate of GNPs 

can be predicted from their characteristics (e.g., particle size, shape, concentration, 

surface charge, and coating) and experimental conditions (e.g., cell type and morphology, 

and exposure duration and concentration). We trained multiple machine learning models 

on these features that aimed to predict cellular uptake on GNPs and compared them for 

their efficacies of prediction. 
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5.2. Methods 

 

 

5.2.1. Literature Search and Data Extraction 

 

 

A systematic literature search was undertaken using SCOPUS and Google Scholar 

search engines (Figure 5.1). The search was restricted to English-language articles 

published between 2000 and 2023. Combinations of the following keywords were used 

for the article search: gold; nano*; ICP*; cell; uptake. This yielded an initial pool of 100+ 

peer-reviewed studies, 91 of which were manually filtered by: (i) the core of the studied 

NP must be gold; (ii) cellular uptake data must be available; and (iii) the unit of cellular 

uptake must be convertible to pg Au/cell. A total of 2077 data points from 59 studies 

remained after cleaning and formatting and were included in the meta-analysis. 

 

 

 

 

 

Figure 5.1. Data search and selection procedure 
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5.2.2. Data Cleaning and Pre-processing 

 

 

The raw dataset included 2077 rows, each corresponding to a single cellular 

uptake measurement, and 25 columns summarizing NP properties and in vitro test 

conditions. Surface-coated GNPs were divided into 10 categories according to the coating 

material (e.g., polymer, protein, small-molecule, metal, peptide, DNA, albumin etc.). A 

(base 10) log transformation was applied to the cellular uptake data that was converted to 

pg Au per cell. The final dataset was randomly divided into training (75%) and test set 

(25%). Parameters with high correlation values (>0.7) were identified, and only one of 

the correlated pairs was included in the modelling process. 

 

 

5.2.3. Descriptive Statistics 

 

 

One-way analysis of variance (ANOVA) was used to determine how strongly 

each of the categorical parameters describing NP, cell line, or assay characteristics was 

related to cellular uptake level. A box plot was used to display the distribution and 

skewness of the cellular uptake data. ANOVA and box plot visualization were performed 

using STATA/IC statistical software (version 16.1; StataCorp). Significance was reported 

at p < 0.05 and p < 0.001 levels. 

 

 

5.2.4. Machine Learning 

 

 

Five ensemble learners, a general meta-approach to machine learning that 

improves predictive performance by combining the predictions from multiple models, 

were employed in this study: XGBoost (XGB), random forest (RF), bootstrap aggregation 

(BA), gradient boosting (GB) and light gradient boosting machine (LGB). In XGB 

(extreme gradient boosting trees), each tree within the scheme boosts the attributes to 

correct the errors of the previous tree 329. RF is a version of ensemble learning that 
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provides improvement over bagged decision trees by training individual models in 

parallel and creating a diverse group of ensemble members 330. BA, also called bagging, 

fits a decision tree on a number of subsets of training data chosen at random with 

replacement 331. GB is a family of models that are added to the ensemble sequentially 

such that each new models tries to minimize the prediction error of the previous one 332. 

LGB is a gradient boosting framework that differs from XGBoost in tree construction 

(i.e. trees are grown leaf-wise rather than level-wise) 333.  

In this study, the response variable was the log-transformed cellular uptake level, 

while the predictors were physicochemical characteristics of GNPs and assay conditions. 

The Random Forest Regressor, Bagging Regressor, Gradient Boosting Regressor, and 

Hist Gradient Boosting Regressor, implemented in Python’s sklearn.ensemble module, 

were used with standard settings to construct RF, BA, GB and LGB models. The 

XGBoost package was utilized to construct the XGB model. 25% of the data were 

reserved as a test set to compare the performance of models and the best performing ones 

were selected based on the R-squared (R2) value and measures of dispersion (e.g., mean 

absolute error (MAE) and root mean square error (RMSE)) for the test set predictions. To 

understand the role of the different parameters in the cellular uptake predictions, the Scikit 

“feature importance” function implemented in Python was used. The performance of 

ensemble regressors was compared with 13 other linear and nonlinear machine learning 

algorithms implemented in Python libraries. The versions were Python 3.8.10 and Scikit-

learn 1.0.2.  

Of the nonlinear ML methods, decision trees (DT) are classifiers that are easy to 

interpret but are ill-posed (a small change in data can lead to a large change in optimal 

tree structure), and are often relatively inaccurate compared to ensemble methods like RF 

334, 335. The k-nearest neighbors (k-NN) method is fast and nonparametric regression 

method but suffers from sensitivity to the local structure of the data 336. The support vector 

machine (SVM) is a machine learning method that maps inputs into high-dimensional 

feature spaces but it is prone to overfitting 337. Adaboost is a type of linear regression 

where the normal quadratic cost function is replaced by an exponential function 338. 

Bayesian ridge regression is a type of linear regression where Bayes rule is used to 

regularize the regression to control the complexity of the linear model 339. Ridge 

regression, beneficial when there is multicollinearity in the features, is a special case of 

Bayesian regression 340. Stochastic gradient descent regression is a linear modelling 

algorithm in which the gradient (calculated from the entire data set) is approximated by a 



 

95 

stochastic estimate of it (calculated from a randomly selected subset of the data) 341. It is 

particularly useful for very large data sets. The Theil–Sen estimator robustly fits a line to 

sample points (simple linear regression) by choosing the median of the slopes of all lines 

through pairs of points 342, 343. Compared to ordinary least squares regression, it is 

insensitive to outliers, can be used when residuals are not normally distributed, can be 

more accurate than simple linear regression for skewed and heteroskedastic data, and 

competes well with least squares for normally distributed data. Tweedie, Huber, and 

Poisson regression (log-linear) models are all forms of generalized linear regression that 

deal with non-Normal or skewed data distributions in different ways 344.  

Artificial neural networks (ANN) are one of the most popular algorithms in 

machine learning 284-286. The processing units of ANNs are called layers: input, output, 

and hidden. Each layer contains a number of neurons or nodes that contain transfer 

functions that transform the data they receive. The input layer contains with the same 

number of nodes as inputs, each of which contain a linear transfer function. The output 

layer contains a single node that predicts the final output. This node generally has a linear 

transfer function for regression and a sigmoidal transfer function for classification. The 

hidden layers perform most of the computations required to generate the model and 

contain a variable number of nodes with (usually) nonlinear transfer functions. Each node 

has an associated weight and activation threshold above which the data is sent to the next 

network layer. A range of activation functions (e.g., sigmoid or the Rectified Linear Unit 

(ReLU) function) can be used to compress the weighted sums into the interval of 0–1 in 

ANN models. The most common algorithm used to train neural networks (i.e., find which 

weights and biases minimize a specific cost function) is called backpropagation. Here, 

errors in predicting the output are propagated backwards from output to input nodes. In 

this study, the backpropagation algorithm was used for reducing the network error. 

Different numbers of hidden layers and nodes in those hidden layers, different activation 

functions (ReLU, tanh, sigmoid, linear, eLU), batch sizes (32, 64 and 128), and learning 

rates (0.0001-0.01) were compared based on measures of dispersion (MAE, RMSE) for 

the test set predictions. The hyperparameters used to train models are given in Table S1. 
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5.3. Results and Discussion 

 

 

A summary of the data 2077 records from 193 independent studies remaining after 

applying the inclusion criteria is provided in Table 5.1. Characteristics of collected data 

are presented in Figure S11-S18.  

 

 

Table 5.1. Dataset description 

 

Parameter Type Range 

Nanoparticle Characteristics 

NPSize by 

SEM/TEM 

Numerical 3 – 205 nm 

NPSize by DLS Numerical 3 – 1070 nm 

NPZeta potential Numerical -75 – +65.5 

NPShape Categorical 
Spherical (72%), Rod (17%), Shell (5%), Cubic (2%), 

Triangular (2%), Star (1%) 

NPCoating Categorical 

Uncoated (10%), Polymer (20.9%), Protein (5.2%), 

Small molecules (37%), Metallic (1.7%) 

Polymer_protein (11.5%), Peptide_antibody (1.7%),  

DNA (8.6%), Albumin (2.4%), Others (1%) Viability Assay  

CellViability Numerical 0 – 150% 

ExposureTime Numerical 1 – 96h  

ExposureCon. Numerical 0 – 10000 µg/mL 

ICP-based Uptake Assay 

Celluptake Numerical 0 – 518 pg Au/cell 

CellMorphology Categorical 
Epithelial (85.4%), Macrophage (7.9%), Fibroblast 

(4.3%), Endothelial (1.3%), Neuron (0.7%), Multi–

nucleated (0.5%) CellCondition Categorical Healthy (68%), Cancer (32%) 

CellSource Categorical 
Human (87.3%), Mouse (10.7%), Rat (1.2%), Monkey 

(0.4%), Dog (0.4%) 

(cont. on next page) 
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Table 5.1. (cont.) 

CellOrgan/System 
Categorica

l 

Circulatory (2%), Reproductive (38.1%), Digestive 

(34.5%), Nervous (1.5%), Embryonic (1.8%), Excretory 

(13.8%), Integumentary (4.1%), Respiratory (3.1), 

Skeletal (0.3%) and Others (0.8%) 

ExposureTime Numerical 

0h (4%), 1h (7%), 2h (5%), 3h (5.5%), 4h (7.5%), 6h 

(7%), 8h (6.3%), 12h (10.3%), 16h (3.2%), 24h (32%), 

36h (0.3%), 48h (2.2%), 72 (1.5%), 96h (0.2%) 

ExposureCon. Numerical 0 – 1000 µg/mL 

AssayType Categorical 
ICP_MS (72.9%), ICP_AES (15%), ICP_OES (11.1%), 

ICP_AAS (1%) 

 

 

5.3.1. Statistical Analyses  

 

 

A series of one-way ANOVAs were conducted to understand how the categorical 

variables modulated cellular uptake (Table S2). The variation of cellular uptake with NP 

shape and surface modification was statistically significant (p < 0.001). Coating of GNP 

surfaces with protein or small molecules (e.g., Thiol and DMSA) resulted in higher gold 

mass in exposed cells while albumin coating led to decrease in cellular internalization of 

GNPs. This is consistent with the results of Li et al. 345 who showed that albumin pre-

coating on GNPs led to a lower intracellular Au mass when compared to pristine GNPs. 

The number of internalized GNPs was slightly higher in cancer cells compared to healthy 

ones (p=0.05), and particularly low in healthy fibroblasts. This is also consistent with the 

findings of Bromma et al., who reported that the cancer cells (HeLa and MDA-MB-231) 

had a higher uptake compared to normal fibroblasts cells 346. When comparing the cellular 

internalization of GNPs with different shape configurations, the highest uptake was found 

for gold nanoshells (Table S2). The results of univariate analysis suggest that the interplay 

between GNP properties and cellular internalization profile is complex and requires a 

multivariate, nonlinear modelling approach. 
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5.3.2. Regression Machine Learning Models 

 

 

Next, we trained regression models using ensemble regression, discrete nonlinear 

regression, and linear regression methods and used them to predict cellular uptake level 

of GNPs in the test set.  

R2 (coefficient of determination), root mean squared error (RMSE), and mean 

absolute error (MAE) values for prediction of training and test sets were calculated. 

Measures of dispersion such as RMSE and MAE are preferred when comparing the 

quality of model predictions 347. We used MAE as the primary metric for comparing 

models because it is less influenced by a few large outliers than is RMSE 348. 

Table 5.2 shows the relative performance of regression models fall broadly into 

three classes when assessed by the MAE of the test set predictions. The three classes are 

models based on ensemble learning (MAE 0.3-0.5), those estimated by discrete nonlinear 

methods (MAE 0.5-0.7), and those generated by linear methods (MAE 0.9-1.0). Clearly, 

the nonlinear ensemble learning methods are superior to the other two classes of methods, 

also indicating substantial nonlinearity on the relationship between GNP features and 

uptake. Best agreement overall between the test set predictions and measurements for 

GNP uptake was found for XGBoost (MAE:0.31), closely followed by random forest 

(MAE:0.37) and bagging aggregate (MAE:0.38). 

Plots of cellular uptake measurements (x-axis) against the predicted values (y-

axis) for XGBoost and four other ensemble models are shown in Fig. 5.2 and Fig. S19, 

respectively. The diagonal lines on the plots represent the best-fit regression line through 

the data. 

 

 

5.3.3. Feature Importance and Model Interpretation 

 

 

Fig. 5.3 displays the impurity-based importance scores of GNP characteristics and 

experimental parameters for predicting cellular uptake. 

https://www.sciencedirect.com/science/article/pii/S0143622898000393?casa_token=hWVrLjn5iWYAAAAA:OBiQlGfYuzrDv6R17oLPLNeazdxMm_Gs-5uMU8unSEkvMj8fiR-Sk6-YznXo37zjRi939dM#FIG2
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Figure 5.2. Scatterplot of measured cellular uptake (x-axis) against predictions (y-axis) 

for XGBoost ensemble model. 

 

 

The agreement between feature importances calculated by the ensemble learners is good 

considering that for nonlinear models, feature importance is a local rather than global model 

property. As expected, exposure concentration and time were among the strongest predictors of 

cellular uptake. The positive relationship between uptake level and exposure concentration was 

consistent for all cells but prolonged exposure not always resulted in increased uptake. As 

reported elsewhere 349, we observed that different cell lines displayed unique GNP uptake 

profiles. For example, the time required for maximal GNP uptake ranged between 3-24h for 

HepG2, HeLa, A549 and SKOV3 cells, and the cell lines maintained either a similar amount or 

less internalized GNPs after this point. 
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Figure 5.3. Bar chart showing the impurity-based importance of features included in 

ensemble regression models. 

XGB: XGBoost, RF: Random Forest, BA: Bootstrap Aggregation, GB: Gradient Boosting, LGB: Light 

Gradient Boosting. 

 

 

The diameter of GNPs, the zeta potential and type of surface coating material were the 

key physicochemical properties modulating cellular uptake. The direct relationship between 

GNP size and cellular uptake was shown in many studies 350-352. Surface modification, in some 

cases, improves dispersion characteristics of NPs, which, in return, reduces the uptake of large-

sized aggregates 345.  

As expected, zeta potential was another important design parameter when engineering 

GNPs for efficient cellular uptake. Zeta potential indicates the overall surface charge in a 

colloidal dispersion and directly controls the likelihood of adhesion to the plasma membrane 

and cellular uptake 353, 354. Earlier studies arguably suggested that cationic NPs had higher 

ability to interact with the negatively charged cellular membrane compared to anionic ones 355, 

356. Later research suggested that cellular uptake of NPs involves highly regulated mechanisms 
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with complex interactions, not simply Coulomb-driven electrostatic interactions 357, 358. For 

examples, GNPs that had a positive zeta potential in pristine form may no longer be cationic in 

the cellular media due to protein adsorption to their surfaces. Type of ICP-based uptake test, 

cell line and the organ it represented were among top seven important predictors, suggesting 

the importance of cell culture configurations in cellular uptake studies.  

 

 

5.3.4. Supporting Figures Associated with This Chapter 

 

 

 

 

Figure S11. Percent frequency of data points per individual GNP included in meta-

analysis. 

 

 

 

 

Figure S12. Percent frequency of data points per cell source, grouped by cell nature 
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Figure S13. Percent frequency of data points per cell morphology, grouped by cell 

nature 

 

 

 

 

Figure S14. Percent frequency of data points per cell organ/tissue category 
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Figure S15. Percent frequency of data points per assay category 

 

 

 

 

Figure S16. Box plot of changes in cellular uptake as a function of NP exposure 

concentration, exposure time or NP shape. 
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Figure S17. Box plot of changes in cell viability (%) as a function of NP exposure 

concentration (0-1000 µg/mL), grouped by NP coating. 

 

 

 

 

Figure S18. Box plot of changes in cell viability (%) as a function of NP exposure 

concentration (0-1000 µg/mL), grouped by NP shape. 
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Figure S19. Scatterplots of measured cellular uptake (x-axis) against predictions (y-

axis) for each ensemble model.    
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Table S6. One-way ANOVA results 

 

Parameter N 
Cellular Uptake 

pg Au per cell 

p-value 

Modifier type 

Uncoated 97 16 ± 23 

<0.001 

Polymer  170 20 ± 58 

Small molecule 470 29 ± 60 

Protein 19 26 ± 40 

Polymer&Protein 134 6 ± 12 

Peptide/Antibody 34 16 ± 16 

Metal 7 22 ± 38 

DNA 176 12 ± 20 

Albumin 49 4 ± 9 

Other 11 15 ± 10 

Shape 

Spherical 780 14 ± 38 

<0.001 

Rod 237 18 ± 30 

Shell 75 83 ± 79  

Cubic 37 20 ± 27 

Nanostar 12 8 ± 10  

Triangular 26 52 ± 119 

Cell Morphology 

Endothelial 15 13 ± 12 

<0.001 

Epithelial 998 17 ± 38 

Fibroblast 49 12 ± 24 

Macrophage 73 45 ± 78  

Neuron 8 0.2 ± 0.1 

Others 24 101 ± 140 

Cell Condition 

Healthy 375 16 ± 46  
0.05 

Cancer 792 22 ± 47 

 

 

5.4. Conclusion 

 

 

In recent years, lipid-based, polymeric, and inorganic NPs have been engineered 

to navigate intracellular barriers and overcome the limitations of conventional drug 

delivery systems. Gold is one of the most studied inorganic NPs that is particularly 

suitable for mediating the release of therapeutically active compounds. The addition of 

GNP to the treatment cycle as a means of transport increases cellular uptake by target 
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cells while causing no or minimal toxicity to normal tissues. The intrinsic characteristics 

of GNPs greatly affect their cellular internalization rate and therapeutic potential. Several 

in vitro studies have demonstrated that spherical GNPs internalize better than nanorods 

319, 359, 360, but others show an opposite effect 361. Similarly, there are studies suggesting 

that GNPs of 50 nm have the maximum uptake 362, 363, whereas other studies report that 

GNPs in the range of 10-25 nm are more easily taken up by cells 364. In addition to NP 

characteristics such as size, shape, surface chemistry, and charge, the fate of GNPs within 

the cell is affected by a number of experimental parameters (e.g., exposure conditions) 

and cell configurations (e.g., cell type, source organ/tissue and morphology) 365.  

Machine learning models are very useful in silico tools for predicting the cellular 

uptake level of GNPs and for elucidating factors that control their cellular uptake. Here, 

we used SCOPUS and Google Scholar databases to identify 59 studies that met data 

inclusion requirements. The performance of ensemble regressors in predicting cellular 

uptake was compared with other linear and nonlinear machine learning algorithms. The 

XGBoost ensemble model performed the best, explaining 88% of the variance in cellular 

uptake of GNPs for the test set. Several important trends in the data were identified. First, 

GNPs functionalized with PVA, DMSA, or thiol internalize more than uncoated GNPs. 

90% of the GNPs included in this study had a particle size of <90 nm and we found a 

positive relationship between GNP size and cellular uptake in this size range. There was 

no (or very slight) size-dependent increase in uptake level beyond this point. Gold 

nanoshells had the highest uptake, particularly in cancer cell lines. Parameters that 

directly control dispersion characteristics of GNPs such as zeta potential and surface 

modification were also identified as important drivers of cellular uptake.  

The major strength of this work is the use of a relatively large dataset (n=193 

individual gold core NPs from 59 independent studies) to train machine learning models. 

Although there are computational studies focused on predicting the cellular uptake of NPs 

48, 366-368, none of them used a compiled dataset. The clear advantage of nonlinear 

ensemble machine learning methods over other discrete nonlinear and linear methods was 

also a useful outcome from this work. The major limitation is the absence of 

characterization data measured under biologically relevant conditions and the resulting 

difficulty of relating medium-dependent NP characteristics to measured cellular uptake 

level. 

The results presented here show the power of machine learning tools to make 

accurate predictions of cellular uptake behaviour of GNPs. The lack of conclusion on the 
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role of protein corona formation in mediating cellular uptake behaviour was not due to a 

limitation of our meta-analysis but rather highlights an important deficiency in published 

studies that fail to account for NP-protein interactions 245. With further developments in 

nanometrology (i.e., a subfield of metrology that is concerned with the science of 

measurement at the nanoscale level), the quality of generated data in nanosafety and the 

accuracy of computational models trained on them is likely to improve. 
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CHAPTER 6 

 

 

CONCLUSION 

 

 

NPs, possessing at least one dimension within the range of 1-100 nm, exhibit 

distinct physical and chemical properties significantly different from those of macro-scale 

particles. For instance, the increased surface area of NPs predisposes them to more 

intensive interactions. While the NPs of natural sources have existed in nature since the 

origin of life on Earth, one of the first intentionally synthesized NPs was arguably the 

gold particles (10-100 nm) produced through chemical reactions by Michael Faraday in 

1857 369. The unique optical properties and reactivity exhibited by gold NPs could be 

regarded as a significant breakthrough in the field. The lack of widespread usage of the 

term 'NM' until the 20th Century might have delayed the universal acceptance of this 

discovery in the scientific community. The lecture titled "There is Plenty of Room at 

the Bottom" by Richard Feynman marked a pivotal moment, establishing the field of 

nanotechnology within the scientific arena. The synthesis of the fullerene (C60) molecule 

in 1985 by Robert Curl, Richard Smalley, and Harold Kroto represents a seminal work in 

this field, despite ongoing debates regarding its classification as either a particle or a 

complex molecule 370, 371. The discovery of fullerene has subsequently led to an 

exponential increase in the production of various nanotechnology products. 

Together with the quantum effects that begin to dominate the behaviour of matter 

at the nano-scale, the increased surface area of NPs makes them highly suitable for a 

variety of novel and advanced applications. Today, the applications of NMs are extensive 

and can be categorized as follows: 

Food and Beverages: NMs are employed to enhance the taste, texture, and shelf-

life of food and beverages. Examples include nano-encapsulated food colorings, 

antimicrobial packaging agents, and clarified fruit juices utilizing cellulose nanofibers. 
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Cosmetics and Personal Care: In sunscreens, lotions, and makeup products, NMs 

are used for UV protection, controlled release, and improved properties, frequently 

utilizing titanium dioxide, zinc oxide, and silica NPs. 

Clothing: Nanotechnology is applied in the development of self-cleaning fabrics, 

enhancing water and dirt resistance, wrinkle prevention, and antimicrobial properties, 

often employing silver NPs. 

Electronics and Home Appliances: NMs such as quantum dots and cerium oxide 

are used in batteries, displays, solar panels, and other electronic components to improve 

efficiency, lifespan, and conductivity. 

Medicine and Health: Various NMs have been developed for drug delivery, 

diagnostic imaging agents, and biosensors, including liposomal carriers and iron oxide 

NPs. 

The ambiguity in defining, regulating, categorizing, and standardizing NMs (so-

called nano ambiguities) complicates the precise determination of the number of NMs 

present on the market. This study is premised on the potential of NMs, coupled with the 

notion that "There is Plenty of RISK at the Bottom" emphasizing the need for 

comprehensive risk assessment. 

A decade ago, the main problem hampering efforts to understand and explain the 

effects of NMs on human health and the environment was the lack of consistent and 

reliable data. The last decade witnessed the generation of a large volume of nano-safety 

data, which were then gradually uploaded to various databases. The efforts to generate 

data in the field have later been replaced with converting them into a uniformly recorded 

and publicly accessible format, resulting in the generation of various data repositories 

such as eNanoMapper, Toxbank, Cananolab, S2Nano Data, and Nano Health-

Environment Commented Database. As a first step, the available databases were searched 

but numerous forms of database-related problems were encountered. The main challenges 

encountered in these databases include: 

 

• Inaccessibility (due to outdated or closed URLs), 

• Subscription fees, 

• Lack of suitable data for model development, 

• Incompatibility in the formats of stored data, 

• Co-storage of textual and numerical data in the same cells, 
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• Difficulty in extracting comparable data from different studies due to 

variations in experimental designs, 

• Absence of raw data within the systems.  

 

Then, an extensive literature review was carried out using different scientific 

search engines. This step revealed a substantial volume of scientific work related to NMs. 

Key observations from these studies include: 

 

• A tendency to share only graphically transformed data rather than raw 

data. 

• Repetition of similar tests with the same NMs by different researchers. 

• Despite the abundance of data, a lack of sufficient meta-analytical 

studies in this area. 

 

To overcome these challenges, the following steps were undertaken: 

 

• Conducting an extensive literature review to identify potential gaps, 

• Accessing academic sources through targeted keyword searches, 

• Manually converting graphical data into numerical formats and storing 

data in a standardized format, 

• Cleaning the data with various exclusion and inclusion criteria, 

• Preparing and visualizing the data, applying transformations and scaling, 

when necessary, 

• Identifying the heterogeneity of the dataset, 

• Developing models ranging from simple to complex using various 

machine learning algorithms and attempting to predict targeted 

endpoints, 

• Visualizing, interpreting, and documenting the model, 

• Storing and publishing the raw data, developed models, and codes used 

for these models as open-source resources. 

 

The aim of this study is to use computational power to complement and extend 

existing knowledge on NM safety and to maximize the use of accumulated nanotoxicity 

data. The overarching goal is to support the safe(r)-by-design concept which requires an 
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early integration of the safety component into the design plan of NMs by means of 

structural manipulation strategies. In the first study, we assessed the correlation between 

the toxicity of zinc oxide NPs and both internal (i.e., intrinsic NM properties) and external 

(i.e., cellular system and assay-related features) parameters. Overall, a negative 

correlation between cell viability and exposure dose/duration was found, meaning that 

the higher concentration of NPs and extended exposure to them caused an increase in the 

cytotoxicity level. Particle size measured by SEM/TEM or DLS was positively correlated 

with cell viability, with increasing particle size leading to an increase in the percentage 

of viable cells. Another important parameter was surface characteristics.  Variations in 

coatings were observed to alter cell viability. Next, a decision tree was constructed that 

identified a NP concentration of 20 µg/ml and a particle size of 10 nm to be critical 

thresholds differentiating cytotoxic responses. The primary mechanism of action of zinc 

oxide NPs has been identified as the generation of reactive oxygen species in various 

studies. It is speculated that high concentrations and small sizes of particles increase their 

internalization by cells, and the increase in exposure time, along with the increase in 

reactive oxygen species formation, may lead to a decrease in cell viability. 

The second case study was focused on maximizing the use of individual risk 

assessments with potentially biased estimates of toxicological effects. A large pool of 

data on the cytotoxicity of nanosilver was collected and modeled to unravel potential 

triggers of toxicity, by leveraging the power of a meta-analytic dataset and machine-

learning approaches. Such machine learning-assisted efforts are critical to developing 

commercially viable and safe nanosilver-containing products in the ever-expanding nano-

biomaterials market. The main conclusions of the exploratory analysis are summarized 

below: 

• Descriptive statistics, effect size, and heterogeneity analyses 

demonstrated statistically significant differences between various 

categories and the endpoint of cell viability. 

• Similar to the zinc oxide study, concentration, size, and exposure time 

emerged as significant factors in cell viability. 

• Coating of silver NPs with organic macromolecules such as proteins or 

DNA was found to increase cell viability, 

• The use of green synthesis approaches involving plant extracts, bacteria, 

or algae significantly reduced cell viability (attributed to substances from 
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the extracts and microorganisms adhering to the NPs, acting as surface-

modifying agents). 

• Similarly, silver NPs were found to exhibit a slightly higher cytotoxic 

effect on cancer cells compared to healthy cells. 

 

In the modeling part, the collated dataset was divided into 15 different sub-

sections (varying concentration ranges, different coatings, data integrity, etc.) and 

analyzed using five different machine learning algorithms (Decision Tree (DT), Logistic 

Regression (LR), Gaussian Naive Bayes (GNB), K-Nearest Neighbors (KNN), Random 

Forest (RF)). Validation metrics such as accuracy, precision, sensitivity, and area under 

the curve were calculated and used to compare the performance of developed models. 

The highest accuracy was achieved with the decision tree model trained on the dataset 

excluding missing and zero concentration values. Visualization of the optimal decision 

tree facilitated the determination of thresholds for potential toxicity, including zeta 

potential, concentration, particle size, and exposure time. Analysis of the dataset with 

Artificial Neural Networks (ANN) revealed that coating was another significant 

parameter driving the toxicity of silver NPs. 

Nano-sized gold displays useful characteristics not seen in bulk gold, making 

them especially useful for medical applications such as drug/gene delivery and targeting. 

Their surfaces can be easily modified for specific cell-targeting applications to improve 

disease management and to treat conditions not responsive to available medications. Once 

bound to disease cells, they are taken up through different uptake mechanisms depending 

on their size and shape. The potential cellular uptake mechanisms of NPs are shown in 

Figure 6.1. (adapted from 372 and 353 ). An important research challenge here is 

deciphering how to control cellular internalization and safe uptake of gold NPs by altering 

the shape, size, and surface properties in different cell configurations. 

To resolve controversies arising from inconsistent findings in prior research and 

to critically appraise total bodies of evidence, multiple machine learning models were 

trained on a large pool of literature data to predict the cellular uptake level of gold NPs. 

A total of 18 different machine learning algorithms (ensemble learners, discrete nonlinear 

methods, and linear methods) were tested. To the best of our knowledge, this is the first 

meta-analytic study that focuses on predicting the cellular uptake profile of the NPs (i.e., 

existing meta-analytic studies report NPs' cellular toxicity but not cellular uptake). 

Analysis of the size effect and heterogeneity of the collected dataset showed that 
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variations in cellular uptake of NPs were mainly caused by the shape of the NP and 

surface modifications. Surface modifications with small molecules increased cellular 

uptake, while protein-based coatings reduced it. Similar trends were observed in cell 

viability studies involving zinc oxide and silver NPs. This supports the possibility of a 

negative correlation between cellular uptake and cell viability. In the cellular uptake 

study, the predictive capacities of various regression-based machine learning algorithms 

were examined. A total of 19 models were trained (10 linear methods, 4 discrete nonlinear 

methods, and 5 ensemble learning methods), and the best results across all metrics (R2, 

RMSE, MAE) were achieved with ensemble learning methods. The critical drivers of 

cellular uptake were particle size, zeta potential, concentration, and exposure duration. 

 

 

 

Figure 6.1. Cellular internalization mechanisms of nanoparticles. 

 

 

Overall, this thesis aims to contribute to Safer-By-Design strategies that are 

critical to developing commercially viable and safe NMs. The results obtained here are 

expected to foster the more effective use of accumulated data on NPs and enable the 

optimization of experimental parameters when engineering NPs for biomedical applications. 



 

118 

The models developed in this thesis demonstrate that such complex interactions can only 

be modeled with equally complex algorithms. The findings suggest that the typical 

approach of toxicity evaluation which is solely based on the core of materials should be 

expanded as different dimensions of physicochemical features and experimental 

procedures directly affect their in vitro toxicity. 

 

 

6.1. Future Work 

 

 

While the critical role of size, shape, and surface chemistry in determining NM 

behavior has been pronounced for almost two decades now, there remain substantial gaps 

in our understanding. The observation that different coatings on the analyzed NMs in this 

thesis (zinc oxide, silver, and gold) have distinct effects, particularly the decrease in 

toxicity and altered cellular uptake associated with protein coatings, suggests a close link 

between protein interactions and NM behavior. As proteins can modify NM surfaces, 

influencing their toxicity and cellular uptake, and can also form a dynamic protein corona 

(Figure 2.3.) that significantly alters their characteristics, this interaction undoubtedly 

plays a crucial role in determining their overall behavior. Furthermore, just as NMs can 

enter the body through various routes like inhalation, digestion, and oral uptake, their 

cellular entry mechanisms are also diverse, as illustrated in Figure 6.1. This underscores 

the necessity for future research to prioritize the rigorous modeling of the protein corona 

structure, integrating this crucial information into our understanding of NM-biological 

interactions. By doing so, we can pave the way for the systematic design of inherently 

safer and more efficacious NMs with wider applicability across various fields. 

The structure and composition of adsorbed protein corona provide an important 

resource for understanding the interactions of NMs with the cell.  However, the 

measurement and identification of corona proteins is currently a time- and cost-intensive 

analysis, often requiring the isolation of proteins from NP surfaces. Researchers have 

been interested in developing computational models to predict NP corona in diverse 

environments by leveraging the relatively small number of experimental studies. Findlay 

and coworkers proposed one of the first predictive models of protein corona formation on 

NM surfaces 373. They developed a random forest model that related characteristics of 
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proteins (e.g. isoelectric point, protein weight and abundance, percent of positively and 

negatively charged amino acids), NMs (e.g., particle size and surface charge), and solvent 

(e.g., salt concentration) to protein corona formation. Duan et al. combined a similar set 

of protein descriptors (e.g., the isoelectric point, molecular weight, grand average of 

hydropathy, and percentage of negative/positive/aromatic amino acids) with novel NM 

descriptors (e.g., the fluorescence changes upon protein binding) to build predictive 

models for corona formation 374. Ban et al. used a pool of qualitative (e.g., NP type, shape, 

core, modification, dispersion medium, incubation plasma source, and culture) and 

quantitative (e.g., particle size, dispersion medium pH and concentration, charge, 

polydispersity index, NP and plasma concentration, incubation time and temperature, 

centrifugation speed, time, temperature and repetitions) descriptors to predict the 

functional protein compositions of coronas 375. Movadi and coworkers used a set of 

experimental descriptors including surface area, primary and hydrodynamic particle size, 

density, zeta potential, and polydispersity index to predict the percentage of nine 

particular proteins adsorbed on the surface of four different NPs ( CeO2, Si-CeO2, BaSO4, 

and ZnO) 376. The initial attempts to predict protein corona formation and composition 

were severely hampered by the scarcity of large and robust datasets on NP-protein 

interactions and the lack of interpretable nano-specific descriptors. The key to the future 

success of computational predictions of protein corona on NPs rests squarely on the 

availability of high-quality NP-protein corona datasets and a suite of computable 

descriptors that accurately represent biologically relevant features of NPs. The 

availability of such datasets will improve the accuracy of protein corona predictions by 

enabling the development of machine learning-based platforms that unveil different 

aspects of how proteins interact with NPs. 

The exploration of atoms through quantum mechanical calculations (QMC) offers 

us a valuable perspective in assessing the risks and behaviors of NMs. These calculations 

are not just theoretical exercises; they provide us with practical insights into the atomic 

structure and behaviors, revealing the nuances of electron configurations, bonding 

patterns, and charge distributions. From these insights, we can draw meaningful 

connections to the safety profiles of NMs. By correlating the theoretical data with 

empirical findings on aspects like toxicity, cellular uptake and genotoxicity, it is possible 

to develop predictive models. These models have the potential to identify NMs that might 

pose risks before they are widely used, contributing to the creation of safer alternatives. 
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Building upon these insights from quantum mechanics, the behavior of NMs in 

biological environments can be predicted. By integrating these calculations into 

predictive models, one can simulate how NMs interact with biomolecules, providing a 

clearer picture of their uptake, transport, and potential impact on cellular functions. This 

holds significant promise for the future of nanomedicine, particularly in the areas of drug 

delivery and bioimaging. In Fig. 6.2, six gold atoms in different starting orientations (left; 

front-F, right-R) and their relaxed positions after QMC simulations are shown (right, F 

and R). The observed atomic orientation under these experimental conditions potentially 

correlates with the (111) planes of the face-centered cubic crystal structure of gold. By 

varying the number of atoms and the proposed experimental conditions (e.g., 

temperature), the possible geometry of final products can be predicted. By comparing 

these predictions with the developed models, the simulations can iteratively be refined 

until safer structures are obtained. 

 

 

 

 

Figure 6.2. Molecular dynamics study on six gold atoms with different starting 

positions 
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Moving beyond individual elements like gold, the true power of quantum 

mechanical calculations lies in its ability to decipher the complex behaviors underlying 

the diverse world of NMs. By performing such calculations, it is possible to uncover a 

rich spectrum of novel descriptors that define and predict the complicated interaction of 

these materials with their environment. This deeper understanding, encompassing factors 

beyond the traditional ones like size, shape, composition, and surface charges, would 

illuminate the nuanced interplay between NMs and their surroundings, directly impacting 

their efficacy, toxicity, and overall performance. Studies within this scope can lead to the 

development of experimental conditions with the necessary precision to allow for the very 

accurate determination of the properties of NMs. While quantum mechanical descriptors 

provide information about the electronic structure and mechanical properties of NPs 

which can help predict their behaviors such as chemical reactivity, stability, and 

biological activity, it is important to note that the computational costs of such calculations 

increase with decreasing size of particles. In addition to high computational costs, there 

are also other difficulties associated with computing quantum mechanical descriptors for 

NPs, such as limited applicability to ultra-fine NPs, the high error introduced by 

approximations/simplifications and the choice of basis set representing the wavefunctions 

of electrons, solvent and dispersion effects, and lack of experimental validation. Once 

these issues are addressed quantum mechanical descriptors can provide a better 

understanding of the mechanistic behaviors of NPs. 

Given the complexity of NMs, it becomes apparent that traditional molecular 

representation approaches fall short in capturing their unique properties. Traditional 

methods such as SMILES and InChI, while effective for standard chemical structures, 

struggle to adapt to the diverse and dynamic nature of nanoscale materials. This limitation 

poses a significant challenge in the field of Chemoinformatic, where accurate 

representation of these materials is essential for understanding their behaviour and 

interactions in biological systems. As we delve deeper into the field of nanotechnology, 

the need to develop more advanced and refined representation systems that can effectively 

encompass the complexities of NMs becomes increasingly evident. This need marks a 

critical turning point in our discovery and understanding of nanostructures and ushers in 

an era of research focused on renewing and improving the way we represent and 

comprehend these small but powerful entities. 

In chemoinformatics, the data scientist is confronted with a fundamental question 

concerning how to represent and store chemical entities on a computer. One of the most 
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common machine-readable chemical representations is the concept of a molecular graph, 

showing the geometric arrangement of atoms within a molecule. Two other widely-used 

chemical structure file formats are simplified input line entry system (SMILES) and 

molfile. The SMILES is a line notation representing atoms, bonds and their connectivity. 

Molfile is a connection table containing information about the atoms, bonds, connectivity 

and coordinates of a molecule. An alternative identifier that provides unique labels for 

well-defined chemical structures is the International Chemical Identifier (InChI) which 

converts a chemical structure (in connection table format) into a series of ASCII 

characters. Similarly, the Chemical Abstracts Service (CAS) number is a numerical 

identifier that is uniquely assigned to a chemical compound when it enters the CAS 

registry database. While these chemical ‘naming’ approaches are suited for well-defined 

structures, the complex chemistry of nanostructures makes their use problematic in nano-

domain. In particular, conventional naming procedures, such as connection tables, 

graphic visualizations, line notations or other descriptive forms, are incapable of 

providing unique labels for compositionally similar NMs of different sizes, shapes, or 

coatings. Clearly, there is a strong need for better machine-readable and machine-

actionable representations of nanostructures. This need has been partly addressed by the 

development of nano extensions to the standard SMILES and InChI notations 377, 378. 

However, not all questions on how these extended identifiers will be used to represent 

biologically relevant features of NMs have been answered as yet. 

Consistent substance identification and naming is critically important for the 

development of NM databases with cheminformatics functionalities including searching 

by names, chemical structures, substructures or chemical patterns. Having an agreed set 

of rules and language to represent the molecular identity of nanoscale substances is also 

important to simplify the development of interpretable descriptors that encode relevant 

structural properties of NMs and to quantitatively represent nanostructure diversity. 

Computed theoretical descriptors are arguably the most important element in various 

cheminformatics applications, including similarity searching, clustering and predictive 

modelling. While the definition of ‘similar’ can vary a lot in structural context, the core 

principle of machine learning in chemical domain is the expectation that structurally 

similar compound will have similar biological activities. Producing materials in 

nanoscale often results in novel characteristics that differ from those of the bulk form. 

Traditional descriptors are often able only to indicate physico-chemical aspects that are 

independent of the particle size or the physiological environment The novelty of nano-
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characteristics calls for new kind of descriptors that are able to encode structures and 

interactions at the nanoscale. Molecular descriptors are commonly used in studies of 

molecular similarity to quantify the degree of structural overlap. However, almost all 

existing theoretical descriptors currently used are not nano-specific, meaning they are 

incapable of reliably discriminating between different-size forms of the same chemical 

substance. Development of novel descriptors that capture the specificity of nanoscale 

properties and the changes they undergo in different biological environments remains a 

challenging task and will be an area of active research for some time. Further development 

and adaptation of spectra-derived descriptors to NPs and the extraction of structural 

information from their microscopic images would greatly facilitate meaningful 

representation of nanostructures. 

Predictive models of NPs can provide better understanding of the complex 

interactions between nanoscale entities and biological systems only if the descriptors used 

to train the model are interpretable and able to distinguish between ordinary and 

nanosized particles. Therefore, special attention must be given to the interpretability as 

well as efficacy of nano-descriptors so that they can be used to develop models that are 

both predictive and explanatory. To systematically overcome these challenges, further 

investigation is needed in following research areas:  

 

✓ Development of efficient ways to represent nanostructures in machine-

readable and machine-actionable format, 

✓ Development of nanostructure descriptors that are (1) easy to compute 

and interpret, (2) compact enough to represent large sets of structures, 

(3) generalizable to multi-dimensional nanostructures and (4) able to 

represent physically and biologically relevant properties of NMs, 

✓ Development of accessible, self-updating and domain-specific NM 

databases that impose specific requirements on the quality and 

reporting format of the data to be included, 

✓ Development of computational tools that allows for integration of 

heterogenous data sources, transformation of data into a form that can 

be used in NM modeling and implementation of data analysis in a 

single environment, 

✓ Development of globally-harmonized nano-hazard classification 

systems that can distinguish the more toxic NMs from the less toxic or 
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non-toxic ones, and hence, aid in the selection of NMs for synthesis 

and detailed toxicity testing. 

 

It is clear that there are many areas that require in-depth study in the field of NM 

safety. To achieve the targeted success in these areas, it is necessary to strengthen 

interdisciplinary communication, accelerate the flow of data between theoretical and 

experimental working groups, and cyclically nourish every stakeholder with the obtained 

results. Thus, eventually, common denominators (the highlighted points above) that 

seemed very challenging for small molecules a few decades ago can also be achieved for 

NMs, and the synthesis of inherently safer materials, which is one of the ultimate goals, 

can be successfully accomplished
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APPENDICES 

 

 

FUNDAMENTAL CODES THROUGHOUT THE THESIS 

 

 

Importing Libraries 

 

!pip install dtreeviz #For decision tree visualization 

import dtreeviz 

import sys 

import os 

import dtreeviz.trees 

import pandas as pd 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt  

 

The Packages Below Are Used For Decision Trees 

 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import train_test_split  

from sklearn import metrics 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.metrics import accuracy_score 

from sklearn import tree 

from sklearn.utils import shuffle 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import ( 

    confusion_matrix, 

    accuracy_score, 

    precision_score, 

    recall_score, 
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    f1_score 

) 

from sklearn.utils import shuffle 

 

The Packages Below Are Used For Classifiers Other Than Decision 

Trees. 

 

from sklearn.linear_model import LogisticRegression 

from sklearn.naive_bayes import GaussianNB 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score 

from sklearn.model_selection import train_test_split 

 

To Read and Assign Dataset to a Dataframe 

 

df = pd.read_csv('/path_of_your_dataset/dataset_name.csv',sep=',',decimal='.') 

To see column names 

 

df.columns 

 

To see dataframe's head and tail 

 

df 

 

To assign a new dataframe that only contains the requested columns, 

use the following code 

 

df2=df[['column_name1','column_name2','column_name3','column_name4','column_na

me7',]] 

 

#In this thesis, the bioactivity threshold value is determined as 50.  
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#Therefore, those with cytotoxicity values of 50 or less are labeled as toxic,  

#and those above 50 are labeled as non-toxic. By updating the following code  

#according to your own threshold values, you can add these categories to a new 

column. 

 

#For example, you can consider the values between 90% and 110% as non-toxic,  

#above 110% as proliferative, and between 50% and 90% as intermediate toxicity.  

#You can add these values to a list called "bioactivity_threshold" and  

#then append it to the "toxicology_class" column. 

 

#numeric_column_name is Cell_viability for our raw dataset 

bioactivity_threshold = [] 

for i in df2.numeric_column_name:         

  if float(i) >= 90 and float(i)<= 110: 

    bioactivity_threshold.append("nontoxic") 

  if float(i)>50 and float(i)<90: 

    bioactivity_threshold.append('nontoxic') 

  elif float(i) <= 50: 

    bioactivity_threshold.append("toxic") 

  elif float(i)>110: 

    bioactivity_threshold.append("nontoxic") 

bioactivity_class = pd.Series(bioactivity_threshold, name='toxicology_class') 

df3 = pd.concat([df2, bioactivity_class], axis=1) 

df4=df3[df3.toxicology_class.notna()] 

df5=df4[df4.Cell_viability.notna()] 

df5 

 

#Since categorical and binary data are more useful for classification algorithms,  

#we can create a new column called 'toxicology_category' using the data in the  

#'toxicology_class' column we previously created and  

#add it to a new dataframe called df6 using the following code: 

 

class_cat = [] 

for i in df5.toxicology_class:         
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  if i=='toxic': 

    class_cat.append("0") 

  if i=='nontoxic': 

    class_cat.append("1") 

 

class_category = pd.Series(class_cat, name='toxicology_category') 

df6 = pd.concat([df5, class_category], axis=1) 

df6 

 

#As an alternative, you can use this code 

 

df6 = pd.get_dummies(df5, drop_first=True) # to create categorical versions of all 

columns including toxicology_class 

 

To drop unwanted rows you can use the code below: 

 

df5.drop(df5.loc[df5['Concentration_category']==1].index, inplace=True) #in this article 

concentration divided into 9 different category, not to create bias from untreated cells we 

preferred to drop those raws. 

 

To discard NA values 

 

#If you have numeric rows with NA values, you can discard them  

#by writing the relevant column name in the following code. 

df6 = df5[df5.colum_name.notna()] 

 

Separating Target Columns 

 

#Since toxicology_class_toxic will be the endpoint we used in the article, we can separate 

it from the dataframe and  

#assign it to a different variable for later use in classification. 

encoded_x = df6.drop('toxicology_class_toxic', axis=1) 

encoded_y=df6['toxicology_class_toxic'] 
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To see distributions in dataframe: 

 

item_counts = df6["toxicology_class_toxic"].value_counts() 

item_counts 

 

Analyzes 

 

#After completing the preparation process,  

#We can start the analysis on the dataframe with the following codes 

 

shuffled = shuffle(df6) #To shuffle the dataframe in a way that does not create bias: 

feature_cols = ['Feautre_column1','Feature_column2', 'Feature_column3', 

'Feature_column4'] 

X = shuffled[feature_cols] # Features 

 

y = shuffled.toxicology_class_toxic # Target variable 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state = 

12345, stratify = y)  

# 70% training and 30% test,  

#stratify=y ensures that the target binary variable (such as toxic=0, non-toxic=1) 

is distributed  

#in the test and train sets in the same proportion as it is distributed  

#throughout the entire dataframestratify=y ensures random split of data  

 

To create Decision Tree classifier object 

 

clf = DecisionTreeClassifier(max_depth=5, min_samples_leaf=15) #you can change the 

depth and leaf number  

 

Train Decision Tree Classifer 

 

clf = clf.fit(X_train,y_train) 
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y_pred = clf.predict(X_test) 

print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) 

 

To get metrics  

 

precision = precision_score(y_test, y_pred) 

recall = recall_score(y_test, y_pred) 

f1score = f1_score(y_test, y_pred) 

accuracy = accuracy_score(y_test, y_pred) 

print('Precision: ',precision) 

print('Recall: ', recall) 

print('f1score: ', f1score) 

 

shuffled.to_csv('<path_to_computer>/shuffled_dataset.csv') 

 

Visualization 

 

#TO CREATE PLOT THAT SHOWS FEATURE IMPORTANCE WITH VALUES 

 

Create plot 

 

fig, ax = plt.subplots() 

 

Create plot title 

 

ax.set_title("Feature Importance") 

 

 

Add bars 

 

bars = ax.bar(range(X.shape[1]), importances[indices]) 
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Add feature names as x-axis labels 

 

ax.set_xticks(range(X.shape[1])) 

ax.set_xticklabels(names, rotation=90 

 

Show values on bar 

 

for bar in bars: 

    height = bar.get_height() 

    ax.text(bar.get_x() + bar.get_width() / 2, height, round(height, 2), ha="center", 

va="bottom") 

 

Save Plots 

 

plt.savefig('featureDT1_valued.svg', format='svg') 

 

See plot 

 

plt.show() 

 

Parameter Check 

 

#To see whether the included feature used in the model use the code below 

 

Define the feature columns and target variable 

 

feature_cols = ['Feature1', 'Feature2', 'Feature3', 'Feature4'] 

X = shuffled[feature_cols] 

y = shuffled['target_variable'] 

 

 

 



 

162 

Split the dataset into training and testing sets 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state=12345, stratify=y) 

 

Train the decision tree classifier 

 

clf = DecisionTreeClassifier(max_depth=5, min_samples_leaf=15, random_state=0) 

clf.fit(X_train, y_train) 

 

Get the features used in the decision tree 

 

used_features = set() 

for feature, threshold, _, _ in zip(clf.tree_.feature, clf.tree_.threshold, 

clf.tree_.children_left, clf.tree_.children_right): 

    if feature >= 0: 

        used_features.add(feature_cols[feature]) 

 

print("Features used in the decision tree:") 

print(used_features) 

 

 

To get area under curves for different classifier 

 

Instantiate the classifiers and make a list 

 

classifiers = [LogisticRegression(random_state=1234),  

               GaussianNB(),  

               KNeighborsClassifier(),  

               DecisionTreeClassifier(random_state=1234), 

               RandomForestClassifier(random_state=1234)] 
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Define a result table as a DataFrame 

 

result_table = pd.DataFrame(columns=['classifiers', 'fpr','tpr','auc']) 

 

Train the models and record the results 

 

for cls in classifiers: 

    model = cls.fit(X_train, y_train) 

    yproba = model.predict_proba(X_test)[::,1] 

     

    fpr, tpr, _ = roc_curve(y_test,  yproba) 

    auc = roc_auc_score(y_test, yproba) 

     

    result_table = result_table.append({'classifiers':cls.__class__.__name__, 

                                        'fpr':fpr,  

                                        'tpr':tpr,  

                                        'auc':auc}, ignore_index=True) 

 

Set name of the classifiers as index labels 

 

result_table.set_index('classifiers', inplace=True) 

 

To visualize the ROC curve 

 

fig = plt.figure(figsize=(8,6)) 

 

for i in result_table.index: 

    plt.plot(result_table.loc[i]['fpr'],  

             result_table.loc[i]['tpr'],  

             label="{}, AUC={:.3f}".format(i, result_table.loc[i]['auc'])) 

     

plt.plot([0,1], [0,1], color='orange', linestyle='--') 
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plt.xticks(np.arange(0.0, 1.1, step=0.1)) 

plt.xlabel("Flase Positive Rate", fontsize=15) 

 

plt.yticks(np.arange(0.0, 1.1, step=0.1)) 

plt.ylabel("True Positive Rate", fontsize=15) 

 

plt.title('ROC Curve Analysis', fontweight='bold', fontsize=15) 

plt.legend(prop={'size':13}, loc='lower right') 

 

plt.savefig('roc_curve.svg', format='svg') 

plt.show() 

 

To compare classifiers 

 

Define feature columns and target variable 

 

feature_cols = ['Feature1', 'Feature2', 'Feature3', 'Feature4'] 

target_col = 'target_variable' 

 

Split data into training and test sets 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state=12345, stratify=y) 

 

Define models 

 

models = [ 

    ('Logistic Regression', LogisticRegression()), 

    ('Gaussian Naive Bayes', GaussianNB()), 

    ('K-Nearest Neighbors', KNeighborsClassifier()), 

    ('Random Forest', RandomForestClassifier()), 

    ("Decision Tree", DecisionTreeClassifier(max_depth=5, min_samples_leaf=15)) 

] 
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Evaluate models 

 

results = [] 

for name, model in models: 

    model.fit(X_train, y_train) 

    y_pred = model.predict(X_test) 

    accuracy = round(accuracy_score(y_test, y_pred), 2) 

    precision = round(precision_score(y_test, y_pred), 2) 

    recall = round(recall_score(y_test, y_pred), 2) 

    f1score = round(f1_score(y_test, y_pred), 2) 

    results.append((name, accuracy, precision, recall, f1score)) 

 

Convert results to dataframe 

 

results_df = pd.DataFrame(results, columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1 

Score']) 

 

Display results as table 

 

print(results_df) 

 

Save table as image 

 

fig, ax = plt.subplots(figsize=(10, 5)) 

ax.axis('off') 

ax.axis('tight') 

ax.table(cellText=results_df.values,colLabels=results_df.columns, loc='center') 

plt.savefig('path_to_computer/Comparison.svg', dpi=900, bbox_inches='tight') 

 

To visualize decision tree 

 

%config InlineBackend.figure_format = 'retina' # Make visualizations look good 

%config InlineBackend.figure_format = 'svg'  
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%matplotlib inline 

 

if 'google.colab' in sys.modules: 

  !pip install -q dtreeviz 

import pandas as pd 

from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor 

 

import dtreeviz 

dataset=shuffled 

random_state = 12345  

stratify=y # get reproducible trees 

features = ['Concentration','Size_nm', 'Exposure_time_h', 'Coat_categorical'] 

target = "toxicology_class_toxic" 

 

tree_classifier = DecisionTreeClassifier(max_depth=4, random_state=random_state) 

tree_classifier.fit(dataset[features].values, dataset[target].values) 

viz_model = dtreeviz.model(tree_classifier, 

                           X_train=dataset[features], y_train=dataset[target], 

                           feature_names=features, 

                           target_name=target,class_names=["nontoxic", "toxic"]) 

viz_model.rtree_feature_space3D 

viz_model.view(fancy=True) 

#viz_model.view(fancy=False) #you can activate if you want a more detailed 

visualization 

 

v = viz_model.view()     # render as SVG into internal object  

v.show()                 # pop up window 

v.save("/path_to_your_computer/decisiontree.svg")  # optionally save as svg 

 

BPNN – ANN  

 

The snippet below consists back propagation neural networ with sigmoid 

activation function with 2-3 neurons and linear output activation function. You can also 
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use this code the compare different activation functions namely 'relu', 'tanh', 'sigmoid', 

'linear', 'elu', 'leaky_relu' and graph the best results of each run with defined regression 

metrics. 

 

Importing necessary libraries 

 

import pandas as pd 

import numpy as np 

import time 

import matplotlib.pyplot as plt 

import tensorflow as tf 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import r2_score 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, LeakyReLU, 

Activation 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras.callbacks import EarlyStopping, 

LearningRateScheduler, Callback 

 

 

Main Code 

 

print("...............Reading the Dataset and Dataset Pre-

Processing ................") 

start_time = time.time() 

 

Loading the dataset 

 

# Adjust your path accordingly 

data = pd.read_csv('path_to_your_data') 

 

Transforming the target variable by applying a logarithmic function to 

make the distribution more symmetric. 
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data['Target_log'] = np.log(data['Target'] + 1) 

 

Data preparation by dropping irrelevant columns 

 

X = data.drop(columns=['List_of_columns_to_drop']) 

y = data['Target_log']  # Specifying the target variable 

 

Encoding categorical variables 

 

for col in X.select_dtypes(include='object').columns: 

    le = LabelEncoder() 

    X[col] = le.fit_transform(X[col]) 

 

Train-test split 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.3, random_state=42) 

 

Scaling 

 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

y_train = y_train.values.reshape(-1, 1) 

y_test = y_test.values.reshape(-1, 1) 

 

end_time = time.time() 

total_time = end_time - start_time 

print("Time Cost for Pre-processing and Reading the Dataset: %f 

seconds \n " % total_time) 

 

BPNN Model 

 

def build_bpnn_model(input_dim): 
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    model = Sequential() 

    model.add(Dense(128, activation=activation_function, 

input_dim=input_dim))  # Input layer 

    model.add(Dense(3, activation='sigmoid'))  # Hidden layer with 

2-3 neurons and sigmoid activation 

    model.add(Dense(1, activation='linear'))  # Output layer with 

linear activation 

    model.compile(optimizer=Adam(learning_rate=0.001), 

loss='mean_squared_error', metrics=['mae']) 

    return model 

class R2Callback(Callback): 

    def __init__(self, train_data, validation_data): 

        super(R2Callback, self).__init__() 

        self.train_data = train_data 

        self.validation_data = validation_data 

        self.train_r2s = [] 

        self.validation_r2s = [] 

 

    def on_epoch_end(self, epoch, logs=None): 

        y_train_pred = self.model.predict(self.train_data[0]) 

        train_r2 = r2_score(self.train_data[1], y_train_pred) 

        self.train_r2s.append(train_r2) 

        y_val_pred = self.model.predict(self.validation_data[0]) 

        val_r2 = r2_score(self.validation_data[1], y_val_pred) 

        self.validation_r2s.append(val_r2) 

        print(f" - train_r2: {train_r2:.4f} - val_r2: 

{val_r2:.4f}") 

 

activation_functions = ['relu', 'tanh', 'sigmoid', 'linear', 'elu', 

'leaky_relu'] 

histories = {} 

r2_callbacks = {} 

results = [] 

 

for activation_function in activation_functions: 

    print(f"Training BPNN model with {activation_function} 

activation function") 

    ann_model = build_ann_model(x_train.shape[1], 

activation_function) 
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    early_stop = EarlyStopping(monitor='val_loss', patience=10) 

    r2_callback = R2Callback(train_data=(x_train, y_train), 

validation_data=(x_test, y_test)) 

    history = ann_model.fit(x_train, y_train, epochs=100, 

batch_size=32, validation_data=(x_test, y_test), 

callbacks=[early_stop, r2_callback], verbose=1) 

    histories[activation_function] = history 

    r2_callbacks[activation_function] = r2_callback 

    results.append({ 

        'Model': f'BPNN_{activation_function}', 

        'Final Train Loss': history.history['loss'][-1], 

        'Final Validation Loss': history.history['val_loss'][-1], 

        'Final Train MAE': history.history['mae'][-1], 

        'Final Validation MAE': history.history['val_mae'][-1], 

        'Final Train R²': r2_callback.train_r2s[-1], 

        'Final Validation R²': r2_callback.validation_r2s[-1] 

    }) 

 

Visualization  

 

plt.figure(figsize=(20, 15)) 

 

for i, activation_function in enumerate(activation_functions): 

    plt.subplot(3, len(activation_functions), i + 1) 

    plt.plot(histories[activation_function].history['loss'], 

label='Train Loss') 

    plt.plot(histories[activation_function].history['val_loss'], 

label='Validation Loss') 

    plt.title(f'{activation_function} Loss') 

    plt.xlabel('Epoch') 

    plt.ylabel('Loss') 

    plt.legend() 

 

    plt.subplot(3, len(activation_functions), i + 1 + 

len(activation_functions)) 

    plt.plot(histories[activation_function].history['mae'], 

label='Train MAE') 

    plt.plot(histories[activation_function].history['val_mae'], 

label='Validation MAE') 



 

171 

    plt.title(f'{activation_function} MAE') 

    plt.xlabel('Epoch') 

    plt.ylabel('MAE') 

    plt.legend() 

 

    plt.subplot(3, len(activation_functions), i + 1 + 2 * 

len(activation_functions)) 

    plt.plot(r2_callbacks[activation_function].train_r2s, 

label='Train R²') 

    plt.plot(r2_callbacks[activation_function].validation_r2s, 

label='Validation R²') 

    plt.title(f'{activation_function} R²') 

    plt.xlabel('Epoch') 

    plt.ylabel('R²') 

    plt.legend() 

 

plt.tight_layout() 

plt.show() 

 

results_df = pd.DataFrame(results) 

print("Tabulated Results: ") 

print(results_df) 

 

 

Instead of running a BPNN algorithm in which some layer informations already 

defined, you can run the below ANN code to search the best hperparameters for each 

activation functions. If your local machine is struggleing to run the code because the 

intense computation needed, use the example code which is revised for the tanh activation 

algorithm. You can use that code for other activation functions too by changing the name 

of the activaiton functions. 

 

class R2Callback(Callback): 

    def __init__(self, train_data, validation_data): 

        super(R2Callback, self).__init__() 

        self.train_data = train_data 

        self.validation_data = validation_data 

        self.train_r2s = [] 

        self.validation_r2s = [] 
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    def on_epoch_end(self, epoch, logs=None): 

        X_train, y_train = self.train_data 

        X_val, y_val = self.validation_data 

        y_train_pred = self.model.predict(X_train) 

        y_val_pred = self.model.predict(X_val) 

        train_r2 = r2_score(y_train, y_train_pred) 

        val_r2 = r2_score(y_val, y_val_pred) 

        self.train_r2s.append(train_r2) 

        self.validation_r2s.append(val_r2) 

 

print("...............Reading the Dataset and Dataset Pre-

Processing ................") 

start_time = time.time() 

# Adjust your path accordingly 

# Loading the dataset 

data = pd.read_csv('path_to_your_data') 

 

# Transforming the target variable by applying a logarithmic 

function to make the distribution more symmetric 

data['Target_log'] = np.log(data['Target'] + 1) 

 

# Data preparation by dropping irrelevant columns 

X = data.drop(columns=['List_of_columns_to_drop']) 

y = data['Target_log']  # Specifying the target variable 

 

# Encoding categorical variables 

for col in X.select_dtypes(include='object').columns: 

    le = LabelEncoder() 

    X[col] = le.fit_transform(X[col]) 

 

# Train-test split 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.3, random_state=42) 

 

# Scaling 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 
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def build_model(input_dim, num_hidden_layers, activation='relu', 

is_leaky_relu=False): 

    model = Sequential() 

    model.add(Dense(128, input_dim=input_dim)) 

    if is_leaky_relu: 

        model.add(LeakyReLU(alpha=0.01)) 

    else: 

        model.add(Activation(activation)) 

    model.add(Dropout(0.2)) 

 

    for _ in range(num_hidden_layers - 1): 

        model.add(Dense(64)) 

        if is_leaky_relu: 

            model.add(LeakyReLU(alpha=0.01)) 

        else: 

            model.add(Activation(activation)) 

        model.add(Dropout(0.2)) 

 

    model.add(Dense(32, activation=activation)) 

    model.add(Dense(1, activation='linear')) 

    model.compile(optimizer=Adam(learning_rate=0.001), 

loss='mean_squared_error', metrics=['mae']) 

    return model 

 

# Hyperparameters 

activation_functions = ['relu', 'tanh', 'sigmoid', 'linear', 'elu', 

'leaky_relu'] 

num_hidden_layers_list = [1, 2, 3, 4, 5] 

additional_learning_rates = [0.01, 0.0001] 

additional_batch_sizes = [32, 128] 

 

early_stop = EarlyStopping(monitor='val_loss', patience=15, 

restore_best_weights=True) 

 

best_val_r2 = float('-inf') 

results = [] 

 

for activation_function in activation_functions: 
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    for num_hidden_layers in num_hidden_layers_list: 

        for batch_size in [32, 64] + additional_batch_sizes: 

            for learning_rate in [0.001] + 

additional_learning_rates: 

                print(f"Training model with 

activation_function={activation_function}, 

num_hidden_layers={num_hidden_layers}, batch_size={batch_size}, 

learning_rate={learning_rate}") 

 

                r2_callback = R2Callback(train_data=(X_train, 

y_train), validation_data=(X_test, y_test)) 

                lr_schedule_callback = LearningRateScheduler(lambda 

epoch, lr: lr if epoch < 10 else lr * 0.9) 

 

                is_leaky_relu = activation_function == 'leaky_relu' 

                ann_model = build_model(X_train.shape[1], 

num_hidden_layers, activation_function, is_leaky_relu) 

                ann_model.optimizer.lr.assign(learning_rate) 

 

                history = ann_model.fit(X_train, y_train, 

epochs=100, batch_size=batch_size, 

                        validation_data=(X_test, y_test), 

verbose=1, 

                        callbacks=[r2_callback, 

lr_schedule_callback, early_stop]) 

 

                final_train_r2 = r2_callback.train_r2s[-1] if 

r2_callback.train_r2s else float('-inf') 

                final_val_r2 = r2_callback.validation_r2s[-1] if 

r2_callback.validation_r2s else float('-inf') 

 

                results.append({ 

                    'Activation Function': activation_function, 

                    'Number of Hidden Layers': num_hidden_layers, 

                    'Batch Size': batch_size, 

                    'Learning Rate': learning_rate, 

                    'Final Train Loss': history.history['loss'][-1] 

if 'loss' in history.history else float('nan'), 
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                    'Final Validation Loss': 

history.history['val_loss'][-1] if 'val_loss' in history.history 

else float('nan'), 

                    'Final Train MAE': history.history['mae'][-1] 

if 'mae' in history.history else float('nan'), 

                    'Final Validation MAE': 

history.history['val_mae'][-1] if 'val_mae' in history.history else 

float('nan'), 

                    'Final Train R²': final_train_r2, 

                    'Final Validation R²': final_val_r2 

                }) 

 

results_df = pd.DataFrame(results) 

print(results_df) 

 

# Plot the best model 

if best_model: 

    activation_function, num_hidden_layers, history, r2_callback = 

best_model 

    metrics = ['loss', 'mae', 'R²'] 

    num_metrics = len(metrics) 

    fig, axs = plt.subplots(1, num_metrics, figsize=(5 * 

num_metrics, 5)) 

 

    train_metrics = [history.history['loss'], 

history.history['mae'], history.history['train_r2']] 

    val_metrics = [history.history['val_loss'], 

history.history['val_mae'], history.history['val_r2']] 

 

    for i, metric in enumerate(metrics): 

        axs[i].plot(train_metrics[i], label=f'Train {metric}') 

        axs[i].plot(val_metrics[i], label=f'Validation {metric}') 

        

axs[i].set_title(f'{activation_function}_{num_hidden_layers}hidden 

{metric}') 

        axs[i].set_xlabel('Epoch') 

        axs[i].set_ylabel(metric) 

        axs[i].legend() 
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    plt.tight_layout() 

    # Saving the plot in PNG format with 1000 dpi 

    plt.savefig(f"{save_directory}best_model_plot.png", dpi=1000) 

    # Saving the plot in TIFF format with 1000 dpi 

    plt.savefig(f"{save_directory}best_model_plot.tiff", dpi=1000) 

    plt.show() 

 

save_directory 

 

 

Individual Activation Functions, change the activation function which is 

"sigmoid" here to the name of the activation function you want to investigate. 

 

 

class R2Callback(Callback): 

    def __init__(self, train_data, validation_data): 

        super(R2Callback, self).__init__() 

        self.train_data = train_data 

        self.validation_data = validation_data 

 

    def on_epoch_end(self, epoch, logs=None): 

        X_train, y_train = self.train_data 

        X_val, y_val = self.validation_data 

        y_train_pred = self.model.predict(X_train) 

        y_val_pred = self.model.predict(X_val) 

        train_r2 = r2_score(y_train, y_train_pred) 

        val_r2 = r2_score(y_val, y_val_pred) 

        logs['train_r2'] = train_r2 

        logs['val_r2'] = val_r2 

 

print("...............Reading the Dataset and Dataset Pre-

Processing ................") 

start_time = time.time() 

# Adjust your path accordingly 

# Loading the dataset 

data = pd.read_csv('path_to_your_data') 
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# Transforming the target variable by applying a logarithmic 

function to make the distribution more symmetric 

data['Target_log'] = np.log(data['Target'] + 1) 

 

# Data preparation by dropping irrelevant columns 

X = data.drop(columns=['List_of_columns_to_drop']) 

y = data['Target_log']  # Specifying the target variable 

 

# Encoding categorical variables 

for col in X.select_dtypes(include='object').columns: 

    le = LabelEncoder() 

    X[col] = le.fit_transform(X[col]) 

 

# Train-test split 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.3, random_state=42) 

 

# Scaling 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

def build_model(input_dim, num_hidden_layers, 

activation='sigmoid'): 

    model = Sequential() 

    model.add(Dense(128, input_dim=input_dim)) 

 

    if activation == 'leaky_relu': 

        model.add(LeakyReLU(alpha=0.01)) 

    else: 

        model.add(Activation(activation)) 

 

    model.add(Dropout(0.2)) 

 

    for _ in range(num_hidden_layers - 1): 

        model.add(Dense(64)) 

 

        if activation == 'leaky_relu': 

            model.add(LeakyReLU(alpha=0.01)) 
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        else: 

            model.add(Activation(activation)) 

 

        model.add(Dropout(0.2)) 

 

    model.add(Dense(32, activation=activation)) 

    model.add(Dense(1, activation='linear')) 

    model.compile(optimizer=Adam(learning_rate=0.001), 

loss='mean_squared_error', metrics=['mae']) 

    return model 

 

activation_functions = ['sigmoid'] 

num_hidden_layers_list = [1, 2, 3, 4, 5] 

additional_batch_sizes = [32, 128] 

additional_learning_rates = [0.01, 0.0001] 

 

early_stop = EarlyStopping(monitor='val_loss', patience=15, 

restore_best_weights=True) 

best_val_r2 = float('-inf') 

best_model = None 

results = [] 

 

for activation_function in activation_functions: 

    for num_hidden_layers in num_hidden_layers_list: 

        for batch_size in [32, 64] + additional_batch_sizes: 

            for learning_rate in [0.001] + 

additional_learning_rates: 

                print(f"Training model with 

activation_function={activation_function}, 

num_hidden_layers={num_hidden_layers}, batch_size={batch_size}, 

learning_rate={learning_rate}") 

 

                r2_callback = R2Callback(train_data=(X_train, 

y_train), validation_data=(X_test, y_test)) 

                lr_schedule_callback = LearningRateScheduler(lambda 

epoch, lr: lr if epoch < 10 else lr * 0.9) 

 

                ann_model = build_model(X_train.shape[1], 

num_hidden_layers, activation_function) 
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                ann_model.optimizer.lr.assign(learning_rate) 

 

                history = ann_model.fit(X_train, y_train, 

epochs=100, batch_size=batch_size, validation_data=(X_test, 

y_test), verbose=1, 

                                        callbacks=[r2_callback, 

lr_schedule_callback, early_stop]) 

                # Print metrics after the first training iteration 

to verify the results. 

                print("Train Loss:", history.history['loss'][0]) 

                print("Validation Loss:", 

history.history['val_loss'][0]) 

                print("Train MAE:", history.history['mae'][0]) 

                print("Validation MAE:", 

history.history['val_mae'][0]) 

                print("Train R²:", history.history['train_r2'][0]) 

                print("Validation R²:", 

history.history['val_r2'][0]) 

                final_val_r2 = history.history['val_r2'][-1] if 

'val_r2' in history.history else float('-inf') 

 

                if final_val_r2 > best_val_r2: 

                    best_val_r2 = final_val_r2 

                    best_model = (activation_function, 

num_hidden_layers, history, r2_callback) 

 

                results.append({ 

                    'Activation Function': activation_function, 

                    'Number of Hidden Layers': num_hidden_layers, 

                    'Batch Size': batch_size, 

                    'Learning Rate': learning_rate, 

                    'Final Train Loss': history.history['loss'][-1] 

if 'loss' in history.history else float('nan'), 

                    'Final Validation Loss': 

history.history['val_loss'][-1] if 'val_loss' in history.history 

else float('nan'), 

                    'Final Train MAE': history.history['mae'][-1] 

if 'mae' in history.history else float('nan'), 
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                    'Final Validation MAE': 

history.history['val_mae'][-1] if 'val_mae' in history.history else 

float('nan'), 

                    'Final Train R²': history.history['train_r2'][-

1] if 'train_r2' in history.history else float('nan'), 

                    'Final Validation R²': final_val_r2 

                }) 

 

results_df = pd.DataFrame(results) 

print(results_df) 

 

# Define a directory to save the plots 

save_directory = "/saving_directory_for_plots/" 

 

 

# Plot the best model 

if best_model: 

    activation_function, num_hidden_layers, history, r2_callback = 

best_model 

    metrics = ['loss', 'mae', 'R²'] 

    num_metrics = len(metrics) 

    fig, axs = plt.subplots(1, num_metrics, figsize=(5 * 

num_metrics, 5)) 

 

    train_metrics = [history.history['loss'], 

history.history['mae'], history.history['train_r2']] 

    val_metrics = [history.history['val_loss'], 

history.history['val_mae'], history.history['val_r2']] 

 

    for i, metric in enumerate(metrics): 

        axs[i].plot(train_metrics[i], label=f'Train {metric}') 

        axs[i].plot(val_metrics[i], label=f'Validation {metric}') 

        

axs[i].set_title(f'{activation_function}_{num_hidden_layers}hidden 

{metric}') 

        axs[i].set_xlabel('Epoch') 

        axs[i].set_ylabel(metric) 

        axs[i].legend() 
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    plt.tight_layout() 

    # Saving the plot in PNG format with 1000 dpi 

    plt.savefig(f"{save_directory}best_model_plot.png", dpi=1000) 

    # Saving the plot in TIFF format with 1000 dpi 

    plt.savefig(f"{save_directory}best_model_plot.tiff", dpi=1000) 

    plt.show() 

 

save_directory 

 

After running each code, you can save the results_df dataframe to csv file to check 

the results. You can also save the plots for the best results too. 

 

results_df.to_csv('path_to_saving_directory/file_name.csv', 

index=False) 

 

Regression Future Importance and Residuals  

 

!pip install catboost 

!pip install pygam 

 

import pandas as pd 

import numpy as np 

import warnings 

from sklearn.linear_model import (HuberRegressor, RANSACRegressor, 

TheilSenRegressor, 

                                  OrthogonalMatchingPursuit, 

PoissonRegressor, 

                                  TweedieRegressor, RidgeCV, Lasso, 

                                  ElasticNet, SGDRegressor, 

BayesianRidge) 

from sklearn.kernel_ridge import KernelRidge 

from sklearn.model_selection import GridSearchCV, train_test_split 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

from sklearn.metrics import r2_score 

from sklearn.ensemble import (RandomForestRegressor, 

GradientBoostingRegressor, 

                              AdaBoostRegressor, BaggingRegressor, 

StackingRegressor) 
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from sklearn.tree import DecisionTreeRegressor 

from sklearn.svm import SVR 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.gaussian_process import GaussianProcessRegressor 

from xgboost import XGBRegressor 

from lightgbm import LGBMRegressor 

from pygam import LinearGAM, s, f 

 

warnings.simplefilter(action='ignore', category=Warning) 

 

warnings.simplefilter(action='ignore', category=Warning) 

 

# Load the dataset 

data = pd.read_csv('path_to_your_file/file_name.csv') 

 

# Log-transform the target variable 

data['Cellular_Uptake_pg_Au_cell_log'] = 

np.log(data['Cellular_Uptake_pg_Au_cell'] + 1) 

 

# Data preparation, you can change the column names to adjust your 

dataset 

always_drop_columns = ['Row_number', 'row_number', 

'Cell_source_system', 'Particle_ID', 'Coating_type', 

'Coating_category', 'Coating category new','NP_mass_pg', 

'Reference_DOI', 'Cellular_Uptake_pg_Au_cell_log', 

'Cellular_uptake_number_of_NP', 'Cellular_Uptake_pg_Au_cell'] 

X = data.drop(columns=always_drop_columns + ['Coating_type', 

'Coating_category', 'Coating category new']) 

y = data['Cellular_Uptake_pg_Au_cell_log'] 

 

# Encoding categorical variables 

for col in X.select_dtypes(include='object').columns: 

    le = LabelEncoder() 

    X[col] = le.fit_transform(X[col]) 

 

# Train-test split 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.3, random_state=42) 
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# Scaling 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

# Hyperparameters for tuning, use this part to ensure which 

hyperparameters are better for that individual regressor 

"""rf_params = { 

    'n_estimators': [50, 100, 150], 

    'max_depth': [None, 10, 20, 30], 

    'min_samples_split': [2, 5, 10], 

    'min_samples_leaf': [1, 2, 4] 

} 

 

xgb_params = { 

    'learning_rate': [0.01, 0.05, 0.1], 

    'n_estimators': [100, 150, 200], 

    'max_depth': [3, 5, 7], 

    'subsample': [0.8, 0.9, 1], 

    'colsample_bytree': [0.8, 0.9, 1] 

} 

 

bagging_params = { 

    'n_estimators': [10, 20, 30], 

    'max_samples': [0.5, 0.8, 1.0], 

    'max_features': [0.5, 0.8, 1.0] 

} 

 

dt_params = { 

    'criterion': ['mse', 'friedman_mse', 'mae'], 

    'splitter': ['best', 'random'], 

    'max_depth': [None, 10, 20, 30], 

    'min_samples_split': [2, 5, 10], 

    'min_samples_leaf': [1, 2, 4] 

} 

 

# GridSearchCV for each model 

rf_grid = GridSearchCV(RandomForestRegressor(random_state=42), 

rf_params, cv=5, n_jobs=-1) 
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rf_grid.fit(X_train, y_train) 

print("Best parameters for Random Forest:", rf_grid.best_params_) 

 

xgb_grid = GridSearchCV(XGBRegressor(random_state=42), xgb_params, 

cv=5, n_jobs=-1) 

xgb_grid.fit(X_train, y_train) 

print("Best parameters for XGBoost:", xgb_grid.best_params_) 

 

bagging_grid = GridSearchCV(BaggingRegressor(random_state=42), 

bagging_params, cv=5, n_jobs=-1) 

bagging_grid.fit(X_train, y_train) 

print("Best parameters for Bagging:", bagging_grid.best_params_) 

 

dt_grid = GridSearchCV(DecisionTreeRegressor(random_state=42), 

dt_params, cv=5, n_jobs=-1) 

dt_grid.fit(X_train, y_train) 

print("Best parameters for Decision Tree:", 

dt_grid.best_params_)""" 

 

# Define and train various regressors with the training data, the 

hyperparameters in this code has been determined by running the 

codes between the """grid search""" statements 

 

regressors = { 

    'Random Forest': RandomForestRegressor(n_estimators=100, 

max_depth=None, min_samples_leaf=1, min_samples_split=2, 

random_state=42), 

    'Gradient Boosting': 

GradientBoostingRegressor(random_state=42), 

    'AdaBoost': AdaBoostRegressor(random_state=42), 

    'Bagging': BaggingRegressor(n_estimators=30, max_features=1.0, 

max_samples=1.0, random_state=42), 

    'Decision Tree': 

DecisionTreeRegressor(criterion='friedman_mse', max_depth=9, 

min_samples_leaf=2, min_samples_split=2, splitter='best', 

random_state=42), 

    'Support Vector': SVR(), 

    'K-Neighbors': KNeighborsRegressor(), 

    'RidgeCV': RidgeCV(), 
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    'Lasso': Lasso(), 

    'ElasticNet': ElasticNet(), 

    'SGD': SGDRegressor(), 

    'Gaussian Process': GaussianProcessRegressor(), 

    'BayesianRidge': BayesianRidge(), 

    'XGBoostRegressor': XGBRegressor(colsample_bytree=0.9, 

learning_rate=0.1, max_depth=7, n_estimators=200, subsample=0.8, 

random_state=42), 

    'LightGBMRegressor': LGBMRegressor(), 

    'SVR_poly': SVR(kernel='poly'), 

    'SVR_sigmoid': SVR(kernel='sigmoid'), 

    'SVR_rbf': SVR(kernel='rbf'), 

    'HuberRegressor': HuberRegressor(), 

    'RANSACRegressor': RANSACRegressor(), 

    'TheilSenRegressor': TheilSenRegressor(), 

    'KernelRidge': KernelRidge(), 

    'OMP': OrthogonalMatchingPursuit(), 

    'PoissonRegressor': PoissonRegressor(), 

    'TweedieRegressor': TweedieRegressor() 

} 

results_log_transformed = [] 

for model_name, model in regressors.items(): 

    model.fit(X_train, y_train) 

    y_train_pred = model.predict(X_train) 

    y_test_pred = model.predict(X_test) 

    r2_train = r2_score(y_train, y_train_pred) 

    r2_test = r2_score(y_test, y_test_pred) 

    results_log_transformed.append({ 

        'Model': model_name, 

        'Train R2 Score': r2_train, 

        'Test R2 Score': r2_test 

    }) 

 

# Training and evaluating GAM separately 

gam = LinearGAM(s(0) + s(1) + f(2)).fit(X_train, y_train) 

gam_train_pred = gam.predict(X_train) 

gam_test_pred = gam.predict(X_test) 

results_log_transformed.append({ 

    'Model': 'GAM', 
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    'Train R2 Score': r2_score(y_train, gam_train_pred), 

    'Test R2 Score': r2_score(y_test, gam_test_pred) 

}) 

# Perform stacking using top models and append results to 

results_log_transformed, 

 

stacked_models = [] 

 

for i in [2, 3, 4]: 

    # Filter out already stacked models 

    top_models = sorted([r for r in results_log_transformed if 

r['Model'] not in stacked_models], 

                        key=lambda x: x['Test R2 Score'], 

reverse=True)[:i] 

 

    estimators = [(model['Model'], regressors[model['Model']]) for 

model in top_models] 

 

    stacking_regressor = StackingRegressor(estimators=estimators, 

cv=5) 

    stacking_regressor.fit(X_train, y_train) 

    stacked_train_pred = stacking_regressor.predict(X_train) 

    stacked_test_pred = stacking_regressor.predict(X_test) 

 

    stacked_r2_train = r2_score(y_train, stacked_train_pred) 

    stacked_r2_test = r2_score(y_test, stacked_test_pred) 

 

    stacked_model_name = f'StackingRegressor_Top{i}' 

    results_log_transformed.append({ 

        'Model': stacked_model_name, 

        'Train R2 Score': stacked_r2_train, 

        'Test R2 Score': stacked_r2_test 

    }) 

    stacked_models.append(stacked_model_name) 

 

results_df = 

pd.DataFrame(results_log_transformed).sort_values(by='Test R2 

Score', ascending=False) 

print(results_df) 
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#by running this code snippet it is achiavable to get test and 

train R^2's of both individual and stacked models. 

 

 

Since the R2 values of the stacked models did not improve much, only individual 

regressors had been chosen to plot feature importances. The selection of algorithms for 

visualization was made by manually sorting the R2 values. If you want to do this through 

code, you can modify your snippet with the line below. 

 

IMPORTANT NOTE: Not every algorithm may contain the feature importance 

attribute. 

 

# Extract the names of the top-performing models 

top_models = sorted(results_log_transformed, key=lambda x: x['Test 

R2 Score'], reverse=True)[:4]  # Top 4 models 

top_model_names = [model['Model'] for model in top_models if 

model['Model'] in regressors and 

hasattr(regressors[model['Model']], 'feature_importances_')] 

 

# Define positions of bars for each model 

positions = np.array(range(len(sorted_idx))) 

 

# Plotting bars 

for idx, name in enumerate(top_model_names): 

    values = importances[name] 

    plt.barh(positions + width*idx, values[sorted_idx], 

color=colors[idx], label=name, height=width) 

 

Feature Importance Visualization 

 

plt.figure(figsize=(15, 12)) 

 

# Define the models you want to plot according to R^2's you got 

from running the code above 

models_to_plot = ['XGBoostRegressor', 'Random Forest', 'Bagging', 

'Gradient Boosting', 'LightGBMRegressor'] 
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# Colors for the models 

colors = ['#5081bc', '#7298bc', '#fe70bc', '#fab8dc', '#76b4a8'] 

 

# Normalize feature importances, the scale of the feature 

importances for LightGBMRegressor is different from others so 

normalizing would be a good option 

for name, importance_values in importances.items(): 

    importances[name] = importance_values / 

np.sum(importance_values) 

 

# Define positions of bars for each model 

positions = np.array(range(len(sorted_idx))) 

 

# Calculate width of a bar 

width = 0.15 

 

# Adjust the positions array to ensure bars are side-by-side 

positions = positions - (width * len(models_to_plot) / 2) 

 

# Plotting bars 

for idx, name in enumerate(models_to_plot): 

    values = importances[name] 

    plt.barh(positions + width*idx, values[sorted_idx], 

color=colors[idx], label=name, height=width, align='center') 

 

# Updating y-ticks to be in the center of grouped bars 

plt.yticks(positions + width*(len(models_to_plot) - 1)/2, 

X.columns[sorted_idx]) 

 

plt.xlabel('Importance', fontsize=14) 

plt.ylabel('Features', fontsize=14) 

plt.title('Feature Importances\n', fontsize=16) 

plt.legend(loc='best', fontsize=14) 

plt.tight_layout() 

 

# Directory to save the plot 

output_directory = 

"path_for_saving_the_feature_importance_bar_graphs" 
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# Save the plot in PNG and TIFF formats, do not forget 1000 dpi for 

tiff could take large amount of space in your memory so adjust the 

resolution properly 

plt.savefig(f"{output_directory}/Feature_Importances_results.png", 

format='png', dpi=1000) 

plt.savefig(f"{output_directory}/Feature_Importances_results.tiff", 

format='tiff', dpi=1000) 

 

plt.show() 

 

Residuals Visualization 

 

plt.figure(figsize=(15, 12)) 

 

# Define the models you want to plot according to R^2's you got 

from running the code above 

models_to_plot = ['XGBoostRegressor', 'Random Forest', 'Bagging', 

'Gradient Boosting', 'LightGBMRegressor'] 

 

# Colors for the models 

colors = ['#5081bc', '#7298bc', '#fe70bc', '#fab8dc', '#76b4a8'] 

 

# Normalize feature importances, the scale of the feature 

importances for LightGBMRegressor is different from others so 

normalizing would be a good option 

for name, importance_values in importances.items(): 

    importances[name] = importance_values / 

np.sum(importance_values) 

 

# Define positions of bars for each model 

positions = np.array(range(len(sorted_idx))) 

 

# Calculate width of a bar 

width = 0.15 

 

# Adjust the positions array to ensure bars are side-by-side 

positions = positions - (width * len(models_to_plot) / 2) 
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# Plotting bars 

for idx, name in enumerate(models_to_plot): 

    values = importances[name] 

    plt.barh(positions + width*idx, values[sorted_idx], 

color=colors[idx], label=name, height=width, align='center') 

 

# Updating y-ticks to be in the center of grouped bars 

plt.yticks(positions + width*(len(models_to_plot) - 1)/2, 

X.columns[sorted_idx]) 

 

plt.xlabel('Importance', fontsize=14) 

plt.ylabel('Features', fontsize=14) 

plt.title('Feature Importances\n', fontsize=16) 

plt.legend(loc='best', fontsize=14) 

plt.tight_layout() 

 

# Directory to save the plot 

output_directory = 

"path_for_saving_the_feature_importance_bar_graphs" 

 

# Save the plot in PNG and TIFF formats, do not forget 1000 dpi for 

tiff could take large amount of space in your memory so adjust the 

resolution properly 

plt.savefig(f"{output_directory}/Feature_Importances_results.png", 

format='png', dpi=1000) 

plt.savefig(f"{output_directory}/Feature_Importances_results.tiff", 

format='tiff', dpi=1000) 

 

plt.show() 

 

Regression Feature Importance with Hyper Parameters 

 

!pip install catboost 

!pip install pygam 

 

The code snippet below is to get permutation importance graphs of both train and 

test sets individually for the defined models to plot. You can change the models_to_plot 
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variable according to your model or define a sorting criteria to choose the models to be 

graphed. 

 

 

import pandas as pd  # Importing pandas library for data 

manipulation and analysis 

import numpy as np  # Importing numpy library for numerical 

operations 

import warnings  # Importing warnings to manage warnings during the 

runtime 

import os  # Importing os for operating system dependent 

functionalities 

 

# Importing necessary classes and functions from sklearn for model 

building, preprocessing, and evaluation 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

from sklearn.metrics import r2_score 

from sklearn.ensemble import RandomForestRegressor, 

GradientBoostingRegressor, BaggingRegressor 

from xgboost import XGBRegressor 

from sklearn.inspection import permutation_importance 

import matplotlib.pyplot as plt  # Importing matplotlib for 

plotting graphs 

 

# Loading the dataset 

data = pd.read_csv('path_to_your_data') 

 

# Transforming the target variable by applying a logarithmic 

function to make the distribution more symmetric 

data['Target_log'] = np.log(data['Target'] + 1) 

 

# Data preparation by dropping irrelevant columns 

X = data.drop(columns=['List_of_columns_to_drop']) 

y = data['Target_log']  # Specifying the target variable 

 

# Encoding categorical variables 

for col in X.select_dtypes(include='object').columns: 
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    le = LabelEncoder() 

    X[col] = le.fit_transform(X[col]) 

 

# Train-test split 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.3, random_state=42) 

 

# Scaling 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

# Best parameters 

rf_best_params = {'max_depth': None, 'min_samples_leaf': 1, 

'min_samples_split': 2, 'n_estimators': 100} 

xgb_best_params = {'colsample_bytree': 0.9, 'learning_rate': 0.1, 

'max_depth': 7, 'n_estimators': 200, 'subsample': 0.8} 

bagging_best_params = {'max_features': 1.0, 'max_samples': 1.0, 

'n_estimators': 30} 

dt_best_params = {'criterion': 'friedman_mse', 'max_depth': 9, 

'min_samples_leaf': 2, 'min_samples_split': 2, 'splitter': 'best'} 

 

# Create a dictionary of models 

regressors = { 

    'Random Forest': RandomForestRegressor(n_estimators=100, 

max_depth=None, min_samples_leaf=1, min_samples_split=2, 

random_state=42), 

    'Gradient Boosting': 

GradientBoostingRegressor(random_state=42), 

    'AdaBoost': AdaBoostRegressor(random_state=42), 

    'Bagging': BaggingRegressor(n_estimators=30, max_features=1.0, 

max_samples=1.0, random_state=42), 

    'Decision Tree': 

DecisionTreeRegressor(criterion='friedman_mse', max_depth=9, 

min_samples_leaf=2, min_samples_split=2, splitter='best', 

random_state=42), 

    'Support Vector': SVR(), 

    'K-Neighbors': KNeighborsRegressor(), 

    'RidgeCV': RidgeCV(), 
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    'Lasso': Lasso(), 

    'ElasticNet': ElasticNet(), 

    'SGD': SGDRegressor(), 

    'Gaussian Process': GaussianProcessRegressor(), 

    'BayesianRidge': BayesianRidge(), 

    'XGBoostRegressor': XGBRegressor(colsample_bytree=0.9, 

learning_rate=0.1, max_depth=7, n_estimators=200, subsample=0.8, 

random_state=42), 

    'LightGBMRegressor': LGBMRegressor(), 

    'SVR_poly': SVR(kernel='poly'), 

    'SVR_sigmoid': SVR(kernel='sigmoid'), 

    'SVR_rbf': SVR(kernel='rbf'), 

    'HuberRegressor': HuberRegressor(), 

    'RANSACRegressor': RANSACRegressor(), 

    'TheilSenRegressor': TheilSenRegressor(), 

    'KernelRidge': KernelRidge(), 

    'OMP': OrthogonalMatchingPursuit(), 

    'PoissonRegressor': PoissonRegressor(), 

    'TweedieRegressor': TweedieRegressor() 

} 

# Fit models and extract permutation importances 

perm_importances = {}  # Initializing the dictionary 

def plot_permutation_importance(model, X_train, y_train, X_test, 

y_test, title='', save_path=''): 

    # Compute permutation importance for training set 

    result_train = permutation_importance(model, X_train, y_train, 

n_repeats=10, random_state=42, n_jobs=2) 

    sorted_idx_train = result_train.importances_mean.argsort() 

 

    # Compute permutation importance for test set 

    result_test = permutation_importance(model, X_test, y_test, 

n_repeats=10, random_state=42, n_jobs=2) 

    sorted_idx_test = result_test.importances_mean.argsort() 

 

    # Convert the results to DataFrame for better visualization 

    importances_train = 

pd.DataFrame(result_train.importances[sorted_idx_train].T, 

columns=X.columns[sorted_idx_train]) 
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    importances_test = 

pd.DataFrame(result_test.importances[sorted_idx_test].T, 

columns=X.columns[sorted_idx_test]) 

 

    fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(12, 12)) 

 

    # Plotting for training set 

    importances_train.plot.box(vert=False, whis=10, ax=ax[0]) 

    ax[0].set_title(f"Permutation Importances (train set) - 

{title}") 

    ax[0].axvline(x=0, color="k", linestyle="--") 

    ax[0].set_xlabel("Decrease in accuracy score") 

 

    # Plotting for test set 

    importances_test.plot.box(vert=False, whis=10, ax=ax[1]) 

    ax[1].set_title(f"Permutation Importances (test set) - 

{title}") 

    ax[1].axvline(x=0, color="k", linestyle="--") 

    ax[1].set_xlabel("Decrease in accuracy score") 

 

    plt.tight_layout() 

    plt.show() 

    if save_path: 

        png_path = os.path.join(save_path, 

f"{title}_Permutation_Importance.png") 

        tiff_path = os.path.join(save_path, 

f"{title}_Permutation_Importance.tiff") 

#decrease the dpi if the resolution is larger than it should be 

        fig.savefig(png_path, dpi=1000) 

        fig.savefig(tiff_path, dpi=1000) 

 

    plt.close(fig)  # close the figure 

 

# Create directories if they don't exist 

save_directory = "path_to_save_directory" 

if not os.path.exists(save_directory): 

    os.makedirs(save_directory) 

    # Models to visualize 
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models_to_plot = ['XGBoostRegressor', 'Random Forest', 'Bagging', 

'Gradient Boosting',"LightGBMRegressor"] 

# Fit the models and visualize 

for name in models_to_plot: 

    model = regressors[name] 

    model.fit(X_train, y_train) 

    plot_permutation_importance(model, X_train, y_train, X_test, 

y_test, title=name, save_path=save_directory) 

 

To graph feature importances of which train set and test set located in one graph 

you can use the snippet below. 

 

 

import pandas as pd  # Importing pandas library for data 

manipulation and analysis 

import numpy as np  # Importing numpy library for numerical 

operations 

import warnings  # Importing warnings to manage warnings during the 

runtime 

import os  # Importing os for operating system dependent 

functionalities 

 

# Importing necessary classes and functions from sklearn for model 

building, preprocessing, and evaluation 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

from sklearn.metrics import r2_score 

from sklearn.ensemble import RandomForestRegressor, 

GradientBoostingRegressor, BaggingRegressor 

from xgboost import XGBRegressor 

from sklearn.inspection import permutation_importance 

import matplotlib.pyplot as plt  # Importing matplotlib for 

plotting graphs 

 

# Loading the dataset 

data = pd.read_csv('path_to_your_data') 
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# Transforming the target variable by applying a logarithmic 

function to make the distribution more symmetric 

data['Target_log'] = np.log(data['Target'] + 1) 

 

# Data preparation by dropping irrelevant columns 

X = data.drop(columns=['List_of_columns_to_drop']) 

y = data['Target_log']  # Specifying the target variable 

 

# Encoding categorical variables 

for col in X.select_dtypes(include='object').columns: 

    le = LabelEncoder() 

    X[col] = le.fit_transform(X[col]) 

 

# Train-test split 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.3, random_state=42) 

 

# Scaling 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

# Best parameters 

rf_best_params = {'max_depth': None, 'min_samples_leaf': 1, 

'min_samples_split': 2, 'n_estimators': 100} 

xgb_best_params = {'colsample_bytree': 0.9, 'learning_rate': 0.1, 

'max_depth': 7, 'n_estimators': 200, 'subsample': 0.8} 

bagging_best_params = {'max_features': 1.0, 'max_samples': 1.0, 

'n_estimators': 30} 

dt_best_params = {'criterion': 'friedman_mse', 'max_depth': 9, 

'min_samples_leaf': 2, 'min_samples_split': 2, 'splitter': 'best'} 

 

# Create a dictionary of models 

regressors = { 

    'Random Forest': RandomForestRegressor(n_estimators=100, 

max_depth=None, min_samples_leaf=1, min_samples_split=2, 

random_state=42), 

    'Gradient Boosting': 

GradientBoostingRegressor(random_state=42), 
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    'AdaBoost': AdaBoostRegressor(random_state=42), 

    'Bagging': BaggingRegressor(n_estimators=30, max_features=1.0, 

max_samples=1.0, random_state=42), 

    'Decision Tree': 

DecisionTreeRegressor(criterion='friedman_mse', max_depth=9, 

min_samples_leaf=2, min_samples_split=2, splitter='best', 

random_state=42), 

    'Support Vector': SVR(), 

    'K-Neighbors': KNeighborsRegressor(), 

    'RidgeCV': RidgeCV(), 

    'Lasso': Lasso(), 

    'ElasticNet': ElasticNet(), 

    'SGD': SGDRegressor(), 

    'Gaussian Process': GaussianProcessRegressor(), 

    'BayesianRidge': BayesianRidge(), 

    'XGBoostRegressor': XGBRegressor(colsample_bytree=0.9, 

learning_rate=0.1, max_depth=7, n_estimators=200, subsample=0.8, 

random_state=42), 

    'LightGBMRegressor': LGBMRegressor(), 

    'SVR_poly': SVR(kernel='poly'), 

    'SVR_sigmoid': SVR(kernel='sigmoid'), 

    'SVR_rbf': SVR(kernel='rbf'), 

    'HuberRegressor': HuberRegressor(), 

    'RANSACRegressor': RANSACRegressor(), 

    'TheilSenRegressor': TheilSenRegressor(), 

    'KernelRidge': KernelRidge(), 

    'OMP': OrthogonalMatchingPursuit(), 

    'PoissonRegressor': PoissonRegressor(), 

    'TweedieRegressor': TweedieRegressor() 

} 

# Fit models and extract permutation importances 

perm_importances = {}  # Initializing the dictionary 

from matplotlib.lines import Line2D 

 

def plot_overlapped_permutation_importance(model, X_train, y_train, 

X_test, y_test, title='', save_path=''): 

    # Compute permutation importance for training set 

    result_train = permutation_importance(model, X_train, y_train, 

n_repeats=10, random_state=42, n_jobs=2) 
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    sorted_idx_train = result_train.importances_mean.argsort() 

 

    # Compute permutation importance for test set 

    result_test = permutation_importance(model, X_test, y_test, 

n_repeats=10, random_state=42, n_jobs=2) 

    sorted_idx_test = result_test.importances_mean.argsort() 

 

    # Convert the results to DataFrame for better visualization 

    importances_train = 

pd.DataFrame(result_train.importances[sorted_idx_train].T, 

columns=X.columns[sorted_idx_train]) 

    importances_test = 

pd.DataFrame(result_test.importances[sorted_idx_test].T, 

columns=X.columns[sorted_idx_test]) 

 

    fig, ax = plt.subplots(figsize=(12, 12)) 

 

    # Plotting for training set 

    importances_train.boxplot(ax=ax, vert=False, 

positions=np.arange(len(importances_train.columns))*2.0-0.4, 

widths=0.4, boxprops=dict(color='blue'), 

medianprops=dict(color='blue'), whiskerprops=dict(color='blue'), 

capprops=dict(color='blue')) 

 

    # Plotting for test set 

    importances_test.boxplot(ax=ax, vert=False, 

positions=np.arange(len(importances_test.columns))*2.0+0.4, 

widths=0.4, boxprops=dict(color='red'), 

medianprops=dict(color='red'), whiskerprops=dict(color='red'), 

capprops=dict(color='red')) 

 

    # Tweaking the plot appearance 

    ax.set_yticks(np.arange(len(importances_train.columns))*2.0) 

    ax.set_yticklabels(importances_train.columns) 

    ax.axvline(x=0, color="k", linestyle="--") 

    ax.set_xlabel("Decrease in accuracy score") 

    ax.set_title(f"Overlapped Permutation Importances - {title}") 

    ax.grid(False) 

    # Custom legend 
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    custom_lines = [Line2D([0], [0], color="blue", lw=4), 

Line2D([0], [0], color="red", lw=4)] 

    ax.legend(custom_lines, ['Train', 'Test'], loc="lower right") 

 

    plt.tight_layout() 

    plt.show() 

 

    if save_path: 

        png_path = os.path.join(save_path, 

f"{title}_Overlapped_Permutation_Importance3.png") 

        tiff_path = os.path.join(save_path, 

f"{title}_Overlapped_Permutation_Importance3.tiff") 

 

        fig.savefig(png_path, dpi=1000) 

        fig.savefig(tiff_path, dpi=1000) 

 

    plt.close(fig)  # close the figure 

# Create directories if they don't exist 

save_directory = "path_to_save_directory" 

if not os.path.exists(save_directory): 

    os.makedirs(save_directory) 

    # Models to visualize 

models_to_plot = ['XGBoostRegressor', 'Random Forest', 'Bagging', 

'Gradient Boosting',"LightGBMRegressor"] 

# Fit the models and visualize 

for name in models_to_plot: 

    model = regressors[name] 

    model.fit(X_train, y_train) 

    plot_permutation_importance(model, X_train, y_train, X_test, 

y_test, title=name, save_path=save_directory) 

   

 

You can use the code below to get hyperparameters of all models that is used for 

the regression.In addition to test and train R2 values you can obtain other regression 

metrics such as MAE, MSE, RMSE, MAPE with the code below. 

 

import pandas as pd 

import numpy as np 
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import warnings 

from sklearn.linear_model import (HuberRegressor, RANSACRegressor, 

TheilSenRegressor, 

                                  OrthogonalMatchingPursuit, 

PoissonRegressor, 

                                  TweedieRegressor, RidgeCV, Lasso, 

                                  ElasticNet, SGDRegressor, 

BayesianRidge) 

from sklearn.kernel_ridge import KernelRidge 

from sklearn.model_selection import GridSearchCV, train_test_split 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

from sklearn.metrics import r2_score, mean_squared_error, 

mean_absolute_error 

from sklearn.ensemble import (RandomForestRegressor, 

GradientBoostingRegressor, 

                              AdaBoostRegressor, BaggingRegressor, 

StackingRegressor) 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.svm import SVR 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.gaussian_process import GaussianProcessRegressor 

from xgboost import XGBRegressor 

from lightgbm import LGBMRegressor 

from pygam import LinearGAM, s, f 

 

# Define a function to calculate Mean Absolute Percentage Error 

def mean_absolute_percentage_error(y_true, y_pred): 

    y_true, y_pred = np.array(y_true), np.array(y_pred) 

    return np.mean(np.abs((y_true - y_pred) / (y_true + 1e-6))) * 

100 

 

# Loading the dataset 

data = pd.read_csv('path_to_your_data') 

 

# Transforming the target variable by applying a logarithmic 

function to make the distribution more symmetric 

data['Target_log'] = np.log(data['Target'] + 1) 

 

# Data preparation by dropping irrelevant columns 
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X = data.drop(columns=['List_of_columns_to_drop']) 

y = data['Target_log']  # Specifying the target variable 

 

# Encode categorical features 

for col in X.select_dtypes(include='object').columns: 

    le = LabelEncoder() 

    X[col] = le.fit_transform(X[col]) 

 

# Split the dataset into train and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.3, random_state=42) 

 

# Standardize the features 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

# Define a dictionary with models 

regressors = { 

    'Random Forest': RandomForestRegressor(n_estimators=100, 

max_depth=None, min_samples_leaf=1, min_samples_split=2, 

random_state=42), 

    'Gradient Boosting': 

GradientBoostingRegressor(random_state=42), 

    'AdaBoost': AdaBoostRegressor(random_state=42), 

    'Bagging': BaggingRegressor(n_estimators=30, max_features=1.0, 

max_samples=1.0, random_state=42), 

    'Decision Tree': 

DecisionTreeRegressor(criterion='friedman_mse', max_depth=9, 

min_samples_leaf=2, min_samples_split=2, splitter='best', 

random_state=42), 

    'Support Vector': SVR(), 

    'K-Neighbors': KNeighborsRegressor(), 

    'RidgeCV': RidgeCV(), 

    'Lasso': Lasso(), 

    'ElasticNet': ElasticNet(), 

    'SGD': SGDRegressor(), 

    'Gaussian Process': GaussianProcessRegressor(), 

    'BayesianRidge': BayesianRidge(), 
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    'XGBoostRegressor': XGBRegressor(colsample_bytree=0.9, 

learning_rate=0.1, max_depth=7, n_estimators=200, subsample=0.8, 

random_state=42), 

    'LightGBMRegressor': LGBMRegressor(), 

    'SVR_poly': SVR(kernel='poly'), 

    'SVR_sigmoid': SVR(kernel='sigmoid'), 

    'SVR_rbf': SVR(kernel='rbf'), 

    'HuberRegressor': HuberRegressor(), 

    'SVR_linear': SVR(kernel='linear'), 

    'RANSACRegressor': RANSACRegressor(), 

    'TheilSenRegressor': TheilSenRegressor(), 

    'KernelRidge': KernelRidge(), 

    'OMP': OrthogonalMatchingPursuit(), 

    'PoissonRegressor': PoissonRegressor(), 

    'TweedieRegressor': TweedieRegressor() 

} 

 

# Initialize lists to store results 

results = [] 

stacked_results = [] 

 

# Fit models and evaluate performance 

# Extend the script to save hyperparameters of each model 

for model_name, model in regressors.items(): 

    model.fit(X_train, y_train) 

    y_train_pred = model.predict(X_train) 

    y_test_pred = model.predict(X_test) 

 

    # Extract hyperparameters of the model 

    hyperparameters = model.get_params() 

 

    # Calculate metrics and store them along with hyperparameters 

in the results list 

    results.append({ 

        'Model': model_name, 

        'Hyperparameters': hyperparameters,  # Save hyperparameters 

as a nested dictionary 

        'Train R2 Score': r2_score(y_train, y_train_pred), 

        'Test R2 Score': r2_score(y_test, y_test_pred), 
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        'Train MSE': mean_squared_error(y_train, y_train_pred), 

        'Train RMSE': np.sqrt(mean_squared_error(y_train, 

y_train_pred)), 

        'Train MAE': mean_absolute_error(y_train, y_train_pred), 

        'Train MAPE': mean_absolute_percentage_error(y_train, 

y_train_pred), 

        'Test MSE': mean_squared_error(y_test, y_test_pred), 

        'Test RMSE': np.sqrt(mean_squared_error(y_test, 

y_test_pred)), 

        'Test MAE': mean_absolute_error(y_test, y_test_pred), 

        'Test MAPE': mean_absolute_percentage_error(y_test, 

y_test_pred) 

    }) 

# Define and fit a GAM model 

gam = LinearGAM(s(0) + s(1)).fit(X_train, y_train) 

gam_train_pred = gam.predict(X_train) 

gam_test_pred = gam.predict(X_test) 

 

# Also, save the hyperparameters of the GAM model 

gam_hyperparameters = {'terms': str(gam.terms)}  # Extract relevant 

hyperparameters or configurations 

 

results.append({ 

    'Model': 'GAM', 

    'Hyperparameters': gam_hyperparameters, 

    'Train R2 Score': r2_score(y_train, gam_train_pred), 

    'Test R2 Score': r2_score(y_test, gam_test_pred), 

    'Train MSE': mean_squared_error(y_train, gam_train_pred), 

    'Train RMSE': np.sqrt(mean_squared_error(y_train, 

gam_train_pred)), 

    'Train MAE': mean_absolute_error(y_train, gam_train_pred), 

    'Train MAPE': mean_absolute_percentage_error(y_train, 

gam_train_pred), 

    'Test MSE': mean_squared_error(y_test, gam_test_pred), 

    'Test RMSE': np.sqrt(mean_squared_error(y_test, 

gam_test_pred)), 

    'Test MAE': mean_absolute_error(y_test, gam_test_pred), 

    'Test MAPE': mean_absolute_percentage_error(y_test, 

gam_test_pred) 
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}) 

 

# For stacked models, you can save the names of the models being 

stacked as hyperparameters 

for stacked_model in stacked_results: 

    model_names = [estimator[0] for estimator in 

stacking_regressor.estimators_] 

    stacked_model['Hyperparameters'] = {'Models': model_names} 

 

# Save results to DataFrames and then to CSV or Excel 

results_df = pd.DataFrame(results) 

stacked_results_df = pd.DataFrame(stacked_results) 

results_df.to_csv('path_to_save_your_results/results_with_hyperpara

meters.csv', index=False) 

stacked_results_df.to_csv('path_to_save_your_results_of_stacked_mod

els/stacked_results_with_hyperparameters.csv', index=False) 

 

Box Plots 

 

You can adjust the code below to get different box plots. 

 

# Importing required libraries 

import seaborn as sns  # For data visualization 

import matplotlib.pyplot as plt  # For plotting graphs 

import pandas as pd  # For handling dataframes 

 

# Load the dataset from the specified path 

data = pd.read_csv('path_to_your_file/file_name.csv') 

 

# Log-transforming the target variable to adjust the scale and make 

the distribution more normal 

data['Cellular_Uptake_pg_Au_cell_log'] = 

np.log(data['Cellular_Uptake_pg_Au_cell'] + 1) 

 

# Correcting typo in 'Certain_column' column if exists 

if 'Wrong_typo' in data['Certain_column'].values: 

    data['Certain_column'] = data['Certain_column 

'].replace('Wrong_typo', 'Corrected_typo') 
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# Simplifying labels for 'Coating_subgrouped'; While collecting 

data, much more definitive column or row names could be exist, 

before visualize them it is better to simplify. 

label_replacements = { 

    'Albumin_containing': 'Albumin', 

    'DNA_modified_DNA': 'DNA', 

    'Small_molecule': 'Small molecule', 

    'Polymeric_protein': 'Polymer and protein', 

    'Metallic_metal_oxide': 'Metal', 

    'Peptide_antibody': 'Peptide' 

} 

data['Coating_subgrouped'].replace(label_replacements, 

inplace=True) 

 

# Defining bins for 'Concentration' and 'Exposure Time' since there 

should be lots of different individual concentration and exposure 

time values, 

# Same approach can be used for other continuous variables 

concentration_bins = [0, 2, 5, 10, 20, 30, 50, 80, 100, 200, 1000] 

exposure_bins = [0, 1, 2, 3, 4, 6, 8, 12, 16, 18, 24, 48, 72] 

 

# Creating new categorical variables representing the bins with 

labels as the upper limit of the bins 

data['Concentration_Binned'] = pd.cut(data['Concentration_µg/ml'], 

bins=concentration_bins, labels=concentration_bins[1:], right=True, 

include_lowest=True) 

data['Exposure_Binned'] = pd.cut(data['Exposure_time_h'], 

bins=exposure_bins, labels=exposure_bins[1:], right=True, 

include_lowest=True) 

 

# Specifying the output directory to save the plots 

output_directory = "output_directory_to_save_results/Box_plots" 

 

# Define a constant width for each box in the box plots; otherwise 

the widths will vary depending on the variables 

box_width = 0.3 
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# Defining a function to create and save box plots with specified 

parameters 

def create_and_save_box_plot(x, y, data, xlabel, title, filename): 

    plt.figure(figsize=(12, 6))  # Setting figure size 

    sns.boxplot(x=x, y=y, data=data, color='#e1e1e0', 

width=box_width)  # Creating a box plot with a constant width for 

each box with certain color 

    plt.title(title, fontsize=20)  # Setting title and font size 

    plt.xlabel(xlabel, fontsize=20)  # Setting x-label and font 

size 

    plt.ylabel('Cellular Uptake (pg Au/cell)\n', fontsize=20)  # 

Setting y-label and font size 

    plt.xticks(rotation=45, fontsize=20)  # Adjusting x-axis tick 

labels' rotation and font size 

    plt.yticks(fontsize=20)  # Adjusting y-axis tick labels' font 

size 

    plt.tight_layout()  # Adjusting layout to prevent clipping 

    plt.savefig(f"{output_directory}/{filename}2.png", 

format='png', dpi=1000)  # Saving the plot in PNG format with 

specified dpi 

    plt.show()  # Displaying the plot 

 

# Creating and saving box plots for various variables against 

cellular uptake 

create_and_save_box_plot('Concentration_Binned', 

'Cellular_Uptake_pg_Au_cell', data, 'Concentration (µg/ml)\n', 

'Cellular Uptake vs Concentration\n', 

'Concentration_Box_Plot_Not_Transformed') 

create_and_save_box_plot('Exposure_Binned', 

'Cellular_Uptake_pg_Au_cell', data, 'Exposure Duration (hours)\n', 

'Cellular Uptake vs Exposure Duration\n', 

'Exposure_Box_Plot_Not_Transformed') 

create_and_save_box_plot('Coating_category', 

'Cellular_Uptake_pg_Au_cell', data, 'Coating Category\n', 'Cellular 

Uptake vs Coating Category\n', 

'Coating_Category_Box_Plot_Not_Transformed') 

create_and_save_box_plot('Shape', 'Cellular_Uptake_pg_Au_cell', 

data, 'Shape\n', 'Cellular Uptake vs Shape\n', 

'Shape_Box_Plot_Not_Transformed') 



 

207 

create_and_save_box_plot('Coating_subgrouped', 

'Cellular_Uptake_pg_Au_cell', data, 'Coating Subgrouped', 'Cellular 

Uptake vs Coating Subgrouped\n', 

'Coating_Subgrouped_Box_Plot_Not_Transformed') 

 

 

GitHub 

 

 

In order to achieve publicly available data and code repository you may create 

files and folder in GitHub platform. Below you can find the steps to upload your codes 

and files to a publicly available repository. 

https://github.com/BilgiEyup 

 

1. Open the terminal and give your folders destination.  

cd /path_to_your_Github_folder 

2. Initialize a new Git repository; if you have already a repository you may pass 

these steps 

git init 

 

3. From remote you can open a repository as shown in below 

 

git remote add origin 

https://github.com/Your_Profile_Name/The_name_of_the_folders_you_want_to_create

.git 

 

4. Fetch the latest version of the remote repository 

 

git fetch origin main 

 

5. Create ne branch 

 

git checkout main 

 

https://github.com/Your_Profile_Name/The_name_of_the_folders_you_want_to_create.git
https://github.com/Your_Profile_Name/The_name_of_the_folders_you_want_to_create.git
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6. Merge the folders in your local space with the git folders 

 

git merge origin/main 

 

7. Add the changes within the your local folders to the git folders 

 

git add . 

 

8. Commit your changes 

 

git commit -m "Added new content from Github_folder" 

 

9. Push the changes to GitHub repository 

 

git push origin main 

 

10. You may have been asked to enter your Github profile informations. 

 

 

Link for the GitHub Repository Created for This Thesis 

 

 

Either you can visit it from https://github.com/BilgiEyup or you can scan the 

QRcode below and navigate through the repository. 

 

 

 

https://github.com/BilgiEyup
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Link to GitHub Repository with Uploaded Dataset 

 

 

In this thesis, the datasets utilized encompass nearly ten thousand rows. Due to 

the extensive volume of data, it has not been feasible to include all raw data within the 

thesis document. For comprehensive review and further analysis, interested parties are 

invited to access the complete datasets. These are available through the link and QR codes 

provided below, which direct to the thesis’ GitHub repository 

Either you can visit it from https://github.com/BilgiEyup/Data_Sets or you can 

scan the QRcode below and navigate through the repository. 

 

 

 

 

Format of the Datasets 

 

 

In Table S8, the first 35 rows of the gold nanomaterials dataset are presented. The 

complete datasets can be downloaded from the GitHub repositories, the 

links to which are provided above. 
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