
TESTING MICROSERVICE APPLICATIONS

A Thesis Submitted to
 the Graduate School of Engineering and Sciences of

 İzmir Institute of Technology
 in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

 in Computer Engineering

 by
Özgür ÖZTÜRK

December 2023
İZMİR

We approve the thesis of Özgür ÖZTÜRK

Examining Committee Members:

Prof. Dr. Tolga AYAV

Department of Computer Engineering, İzmir Institute of Technology

Prof. Dr. Onur DEMİRÖRS

Department of Computer Engineering, İzmir Institute of Technology

Assoc. Prof. Dr. Tuğkan TUĞLULAR

Department of Computer Engineering, İzmir Institute of Technology

Assoc. Prof. Dr. Ahmet Tuncay ERCAN

Department of Management Information Systems, Yaşar University

Asst. Prof. Emrah İNAN

Department of Computer Engineering, İzmir Institute of Technology

8 December 2023

___________________ _______________________
Prof. Dr. Tolga AYAV Prof. Dr. Onur DEMİRÖRS
Supervisor, Department of Computer Supervisor, Department of Computer
Engineering, Engineering,
İzmir Institute of Technology İzmir Institute of Technology

__________________________________ _____________________
Prof. Dr. Cüneyt Fehmi BAZLAMAÇCI Prof. Dr. Mehtap EANES
Head of Computer Engineering Department Dean of the Graduate School of
 Engineering and Sciences

ACKNOWLEDGMENTS

First of all, I would like to thank you my thesis advisor, Assoc. Prof. Tolga

Ayav. He always guided and encouraged me throughout my graduate education.

Whenever I encountered a problem or got stuck, he calmed me down and guided me in

the right direction. Therefore, I thank you very much for both your guidance and your

patience.

I would also like to thank you Prof. Dr. Onur Demirörs and Assoc. Prof. Tuğkan

Tuğlular for sharing their knowledge and inspiring interest in my thesis topic. Thanks to

the training they provided, I have completed this study.

Finally, I must express my deepest gratitude to my wife, mother, father and

sisters, who provided me with constant support and constant encouragement throughout

my working years and throughout the research and writing of this thesis. Without them

this success would not have been possible. Thank you.

ABSTRACT

TESTING MICROSERVICE APPLICATION

This thesis contributes to the testing processes of microservice architecture.

Microservices provide a scalable, reliable and cloud-based environment that is

frequently preferred in today's technology applications. It consists of small, loosely

coupled, isolated applications that work in harmony. In this study, microservice

application is modeled using timed automata and model checker-based testing methods

are exploited to generate test cases automatically. To this end, UPPAAL model checker

tool is utilized. The model of the microservice application is mutated with respect to a

set of fault hypotheses and these mutant models are verified against certain properties

defined by system or application specifications. The returned counterexamples from the

model checker are used to constitute the test cases. The entire process is automated and

experimentally run for an example application. The generated test cases are also shown

to be efficiently detect the errors. The proposed testing methodology has the benefits

like a faster test generation process and achieving test cases with better fault detection

capability.

 iii

ÖZET

MİKROSERVİS UYGULAMALARININ TESTİ

Bu tez, mikroservis mimarisinin test süreçlerine katkıda bulunmaktadır.

Mikroservisler günümüz teknoloji uygulamalarında sıklıkla tercih edilen ölçeklenebilir,

güvenilir ve bulut tabanlı bir ortamda sağlamaktadır. Uyum içinde çalışan küçük,

gevşek bağlı, izole uygulamalardan oluşur. Bu çalışmada, mikroservis uygulaması

zamanlanmış otomatlar kullanılarak modellenmiş ve test senaryolarının otomatik olarak

oluşturulması için model denetleyici tabanlı test yöntemlerinden yararlanılmıştır. Bu

amaçla UPPAAL model denetleyici aracından yararlanılmaktadır. Mikroservis

uygulamasının modeli, bir dizi hata hipotezine göre mutasyona uğratılır ve bu mutant

modeller, sistem veya uygulama spesifikasyonları tarafından tanımlanan belirli

özelliklere göre doğrulanır. Model denetleyiciden döndürülen karşı örnekler, test

senaryolarını oluşturmak için kullanılır. Tüm süreç otomatikleştirilmiştir ve örnek bir

uygulama için deneysel olarak çalıştırılmıştır. Oluşturulan test senaryolarının aynı

zamanda hataları etkili bir şekilde tespit ettiği de gösterilmiştir. Önerilen test

metodolojisi, daha hızlı bir test oluşturma süreci ve daha iyi hata tespit kapasitesine

sahip test senaryoları elde etme gibi avantajlara sahiptir.

 iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS..i

ABSTRACT..ii

TABLE OF CONTENTS...iv

LIST OF FIGURES..vi

LIST OF TABLES...viii

CHAPTER 1. INTRODUCTION..1

CHAPTER 2. DESIGN SPECIFICATION...4

2.1. Monolithic Architecture..4

2.2. Microservice Architecture..6

CHAPTER 3. MODEL CHECKER-BASED TESTING AND UPPAAL......................10

3.1. Model Checker-Based Testing..10

3.2. Uppaal...11

CHAPTER 4. PROPOSED METHOD...16

4.1. Creating the Model...17

4.2. Verifying the Model..29

4.3. Simulating the Model..31

4.4. Creating Test Cases..34

4.4.1. Deleting transitions ..35

4.4.2. Updating Guard and Transition Values36

4.5. Cleaning Test Scenarios ...40

4.6. Verifying Test Models ...42

 v

4.7. Making Sense of Verify Output of Test Models43

CHAPTER 5. DISCUSSIONS AND RESULT..46

CHAPTER 6. CONCLUSION AND FUTURE WORK ..50

CHAPTER 7. REFERENCES...52

 vi

LIST OF FIGURES

Figure Page

Figure 1. Monolithic Architecture...5

Figure 2. Microservice Architecture..8

Figure 3. The editor in the Uppaal GUI...13

Figure 4. The simulator in the Uppaal GUI...14

Figure 5. The verifier in the Uppaal GUI..14

Figure 6. The Test Strategy Flow ...17

Figure 7. Model template structure..18

Figure 8. BusinessProcess template structure..19

Figure 9. BusinessProcess .xml file structure..20

Figure 10. Circuit breaker structure...22

Figure 11. Gateway template structure..23

Figure 12. Gateway Template .xml file structure..24

Figure 13. Microservice template structure...25

Figure 14. Microservice template .xml file structure..26

Figure 15. Transaction between “START” and “Before Microservice Response”
has been broken...27

Figure 16. Only in Microservice3, the tarasaction between “START” and
“BeforeMicroserviceResponse” is broken...27

Figure 17. MicroserviceFail template .xml file structure..28

Figure 18. Uppaal verifier tab..29

Figure 19. Uppaal simulator tab..31

Figure 20. Enabled transitions...32

Figure 21. Simulation trace..32

Figure 22. Variables and constraints...33

Figure 23. Simulation trace screen..33

Figure 24. Simulation screen...34

Figure 25. Transitions deleted model..36

Figure 26. Model sytem declarations section..36

 vii

Figure 27. BusinessProcess1 object...37

Figure 28. Gateway1 object...38

Figure 29. Microservice1, Microservice2 and Microservice3 object..............................40

Figure 30. Fail scenario example for Microservice1...41

Figure 31. Fail scenario example for Microservice2...41

Figure 32. Verify function...42

Figure 33. XTR file format example...43

Figure 34. A certain part of the expansion of the XTR file format.................................44

Figure 35. Uppaal visual version of Figure 34..45

 viii

LIST OF TABLES

Table Page

Table 1. Transitions creation data of deleted scenarios...47

Table 2. Transitions query test data of deleted scenarios..48

Table 3. Data of scenarios created by updating Transitions and Guard values...............48

Table 4. Query test data created by updating Transitions and Guard values..................49

 ix

CHAPTER 1

INTRODUCTION

Microservice architecture is a highly popular architecture today. It has increased

rapidly in the technology sector since 2015 (1). Nowadays, scalable, reliable and cloud-

based environments are preferred when developing applications. New approaches and

patterns have been prepared for development in these environments. One of these is

microservice architecture (2). Microservice architecture creates small, loosely coupled,

isolated applications that work in harmony. While microservices have high

dependencies within themselves, their dependencies on other microservices are low. As

the use of this popular architecture increases, new needs emerge. One of these areas is

testing processes.

Microservice architectures are complex structures, therefore they are complex

and costly in testing processes. Testing processes are a very important step in

application development processes. The testing processes of this architecture, which is

highly dependent and costly, are equally affected by this situation and are costly and

complex.

Nowadays, more than one testing method is applied to test microservice

architectures. Because when microservice architectures are developed, they are

developed on an event-based basis, and these events may or may not be dependent on

other events. Therefore, when we develop an application, we can create it using one or

more microservices. At the same time, microservice architecture may require more than

one software language, more than one database technology and more than one server

technology. Considering all these flows, testing processes appear as a costly, complex

and difficult process in the face of monolithic applications. In microservice architecture,

multiple testing methods are mainly used to evaluate security, compatibility,

traceability, complexity, performance, effectiveness and scalability. Some of these test

methods; unit testing, component testing, integration testing, contract testing and end to

end testing (E2E) (3). Testing processes consist of a complex strategy. Because it is

necessary to consider microservices as a whole, both within themselves and with their

dependencies, and to develop a testing strategy.

Unit tests: Testing the smallest part that can be used in services. In this way, we

 1

isolate the smallest parts in applications and make sure they work correctly. Since

microservices are created on an event-based basis, there will be a testing process

suitable for our architecture and it will be easy to implement.

Component tests: We create microservices based on events. After testing the

smallest parts in microservices, we need to consider them as a whole. For this reason, it

is the method by which we test whether the microservice we have created provides the

functionality we promise.

Contract tests: APIs make a contract among themselves to communicate with

each other. We can see this contract as the data format that APIs send to each other. Any

significant change to the APIs may cause this format to be incorrect and communication

may not occur. To avoid this situation, the accuracy of the contracts must be tested.

Microservices may also communicate with each other, so this is an important test to

ensure that there are no errors in these communications.

Integration tests: Integration tests are used to detect and fix interface errors.

There can be more than one API in a microservice architecture. Therefore, we must

make sure that these APIs present the right information in the right format. In this way,

we can evaluate how all modules work when combined.

End-to-end tests (E2E): End-to-end tests generally test the functionality of the

application. It is tested considering the application's scope of use and features.

It is very important that applications that receive constant updates appear to the

user with minimum errors. Any mistake can cause great damage or face severe

repercussions within seconds. For this reason, it was a source of motivation for us to

work within the scope of microservice architecture, which is a popular application

architecture, and the testing processes that are critical when developing applications.

In our study, we used the Uppaal tool, which is a modeling tool that models real-

time systems using time automata and allows these systems to communicate using time

variables, simulate and verify them. Using the Uppaal tool, we created a general

application flow simulation by modeling our business process, gateway model and

microservice modules in our system. We used the model checker-based testing method

as the testing approach. Thus, we were able to create test scenarios and test our

processes. We have automated the testing processes using the Python programming

language. In this way, we can quickly create test cases of the model we have previously

created with the values we have given and verify them. In this way, we can see at what

point in our model, in which time period it works and in which time period it receives

 2

errors. In this way, we can detect and correct fault areas during testing processes.

 3

 4

CHAPTER 2

 DESIGN SPECIFICATION

Today, software applications are built on specific architectures according to

needs and preferences. Built software applications are divided into layers within

themselves. These are the client (frontend) layer where users experience and interact,

the server layer where the service and logic components of the applications are located,

and finally the database layer where the data obtained in the applications are collected

(4). We will talk about two architectures used when developing software applications.

These; Monolith Architecture and Microservice Architecture.

There are differences between Microservice and Monolithic architectures. In

microservice architecture, each service has an event and should have as little

dependency on other services as possible. However, in monolithic architecture, all

services are collected in one place. For this reason, if there is an interruption in any of

the services in applications developed with microservice architecture, the service of the

relevant service will be disrupted. However, in applications developed with monolithic

architecture, the entire structure is affected by this situation (5). Let's evaluate Netflix,

one of the popular applications today. Basically, it consists of three microservices audio,

video and subtitles. Even if one of these services is unable to provide service, we may

not miss the flow of the movie we are watching because other services can provide

service. However, considering that it is developed with a monolithic architecture, we

may miss the flow of events of the movie we are watching in case any service cannot

provide service.

2.1.Monolithic Architecture

Structures that collect software components under a single roof are called

monolith structures. Since monolith structures do not have separate components and

modules, they do not need a distribution tool to organize the communication between

these modules (6). The client, server and database layers we mentioned in monolith

structures are under a single roof. Therefore, a negative situation that may occur in any

of these areas will affect the whole system.

 5

Figure 1. Monolithic Architecture.

In monolith structures, when system growth is needed, vertical growth is

generally achieved.

Vertical growth; In order to increase the performance of the system, it ensures

faster processing of incoming traffic to the system by increasing processor power,

capacity and bandwidth. Thus, faster data flow is provided to the system, and since the

provided data will be processed faster, the user will be returned in a shorter time. But

this growth structure has disadvantages. Structures that achieve vertical growth also

have limited redundancy, scaling and flexibility capabilities. For this reason, we may

experience problems in the future. As a result, we can increase the resources of the

existing server to a certain level.

 6

2.2. Microservice Architecture

In the developing software world, it has prepared the infrastructure to develop

scalable, reliable and cloud-based applications rather than preferring traditional

monolithic applications. New architectural approaches and patterns have been

developed to carry out these works. Microservice architecture is one of them. The goal

of microservice architecture is to create small, loosely coupled, isolated applications that

work in harmony (2).

The increasing capabilities of cloud systems combined with the latest

developments in software architectures have paved the way for the development of

much more scalable, responsive and reliable applications. With the provision of these

opportunities, microservices-based architecture is becoming widespread in leading

institutions. When developing microservice-based systems, they consist of multiple

microservices that are compatible with each other and have as few dependencies as

possible. While microservices have high dependency on themselves, their dependency

on other microservices is low. Multiple microservices can be used to provide complex

services (2).In this way, services can be scaled, shaped and fault tolerance is minimized

(4).

The popularity of microservice architecture has increased rapidly in the

technology sector, especially since 2015. Today, companies such as Netflix, Amazon,

LinkedIn, Uber, SoundCloud, and Verizon have adopted microservice-based approaches

in the services they provide (1). It seems that popular microservices will be used and

will continue to be used in smart city applications and many other areas (4).

We can position microservices on two basic features. These are evolutionary

design and choreography. Since we have more than one service in the applications,

these services need to communicate with each other. They establish this communication

without any center. Thus, this represents our choreography feature. Evolutionary

design, on the other hand, advocates the creation of new services for this new module

when a new module is added to our applications (4).

Microservice architecture is an architecture built on SOA (Service Oriented

Architecture). In SOA architecture, applications can be distributed on one or more

machines. It is the architecture that allows distributed applications to communicate in

the distribution system. However, while SOA is an architecture used at the enterprise

level, microservice architecture is an architecture used at the application level.

 7

Microservice-based architectures of service-oriented architecture (SOA) are

distinguished from each other under three main headings. These ; Size, boundary

context and independence. In terms of size, microservices are smaller and have only one

task. Considering the boundary context, a microservice combines all dependent

functions into a single service. Regarding independence, microservices are independent

services (1).

The software language or database technology in which the application is used

may not be suitable for performing some tasks brought by the application using

microservices. Therefore, we may need to choose different programming languages and

different database technologies. Microservice architecture makes this possible. Thus, we

may have used more than one programming language and database technology in the

applications we developed. Developing applications as separate components also allows

developers to better understand the written code and intervene faster. Thus,

microservice architecture provides modularity, high cohesion and loose coupling.

Microservice architecture helps us manage code duplication and increasing complexity

by separating independent services in large-scale applications. This helps us isolate

errors that may occur in the services and prevents the error from affecting the entire

system. Since each microservice has a separate service in applications created in

microservice architecture, the duties and responsibilities of the teams to be formed in

the development of the services will be clear. In this way, the management of processes

can be easily achieved by both the application side and the teams. These situations

affect each other and create a chain positive effect in the fields of testing processes,

security processes, user feedback and application reputation.

Microservices have advantages as well as disadvantages. First of all, managing

applications consisting of more than one microservice as a whole can become both

costly and complex. Testing processes and examining error situations are equally costly

and complex. When we consider the reverse processes, we will need to first test the

dependencies of each microservice and then test itself.

Key features of microservices:

• Decoupling: Services should be largely independent of each other.

• Componentization: We need to switch services easily.

• Business Capabilities: Its structure should be simple and task specific.

• Autonomy: Each service should have its own specific task so that

development and testing will be faster.

 8

• Continuous Delivery: If the services are separate, the distribution cost will

decrease.

• Decentralized Governance: Separate tools and programming languages can

be used in each service.

• Agility: When we update services we can do it quickly.

Figure 2. Microservice Architecture.

In microservice architecture, horizontal growth is suitable when system growth

is needed. By achieving horizontal growth in systems, redundancy, scalability and

flexibility are ensured.

Redundancy; Since systems can grow horizontally, they consist of more than

one server. For this reason, in case of a negative situation that may occur in the servers

(due to malfunction, increase in traffic, etc.), we may need to increase server resources.

Therefore, we can increase the number of servers in our system.

 9

Scalability; If an increase in load is observed in our system, we increase the

performance of the system by increasing the number of servers to respond to users.

Thus, our system becomes responsive to users.

Flexibility; Due to the situations mentioned above, we can quickly increase or

decrease the resources of our system when necessary.

 10

CHAPTER 3

MODEL CHECKER-BASED

TESTING AND UPPAAL

3.1. Model Checker-Based Testing

If an application you will test is based on scenarios, you can use model checker-

based testing. Since our study is based on scenarios, we applied the model checker-

based testing method. In this testing method, we designed a model for applications and

then created the states and relationships of this designed model. Thus, when we tested

our application, we determined when and in what state our model would be and where

and how it would proceed. This model we created was created to reflect the behaviors

expected from the system. Thus, we were able to create and evaluate test scenarios

based on the model designed to realize the expected behaviors.

During the model creation processes, we viewed the application as a whole

from a framework. In this way, we were able to better see the details we needed to pay

attention to while performing our tests. In the Model Checker-Based Testing method,

we generally experienced our model by performing process flow scenarios to check our

model. We updated our model again by seeing the parts that we overlooked and forgot

to model in these flow scenarios. This allowed us to make sure that the entire system

was working as we wanted.

Model Checker-Based Testing is based on testing by taking into account the

scenarios in the counter example rather than the scenarios we will test. The states and

relationships of the model were created by multiple variables. Developing the model

relationally and parametrically in this way enabled us to automatically create counter

scenarios that may be outside our scenarios. Thus, the inputs taken from the scenarios

became our test inputs, and the processing of these values by the model and producing a

result formed the output of our test scenarios (7).

In the Model Checker-Based Testing testing method, the models of the

applications and the situations in these models are taken as input, and the time-

dependent value affecting the transactions is taken as input. Queries were written to test

 11

that the model we designed worked to reflect the behavior expected from the system.

While writing these queries, we wrote them according to Uppaal's query standards. The

syntax used in queries to test our model are as follows;

• A <> (condition) When the expression is used with a condition, it means

that the model will take at least one journey in time and only in one time

period.

• A [] (condition) When used with a condition, it means that the model will

always take at least one journey over time.

• E <> (condition) When the expression is used with a condition, it means

that all journeys in the model will take place in only one time period.

• E [] (condition) When used with a condition, it means that all journeys in

the model will always occur over time.

 To determine whether the created model is suitable, we verified our model by

creating conditions with the syntax mentioned above. The model checker created output

by checking the input it received. This output gave us an output of the progress of the

scenarios realized on the model (8).

To carry out the testing processes with the Model Checker-Based Testing

method, we evaluated the counter tests as test scenarios and created more test scenarios

by making changes to the input values of these test scenarios. We used the mutation

method on our model to increase the test scenarios (9).

3.2. Uppaal

Uppaal is a tool for modeling real-time systems and allowing us to simulate and

verify these systems. The Uppaal vehicle was built jointly by two universities. These are

the Fundamental Research in Computer Science at Aalborg University and the

Department of Information Technology at Uppsala University in Sweden (10). The

Uppaal tool takes its name from the names of the two universities that played a role in

its development.

The Uppaal tool allows the creation of large models. While doing this, it creates

timed automata in parallel. It also allows created models to communicate using shared

discrete and clock variables (11). It has channels for communication between processes.

 12

Of these channels, binary ones are used to synchronize a pair of operations. The other

channel, the broadcast channel, sends events to all processes (12). The Uppaal tool uses

“Timed Automata” when creating models. Timed Automata are used when modeling

the behavior of real-time systems. Timed Automata use a finite number of real-valued

clock variables and realize transitions in states using timing constraints (13). The

transitions of the automata are compared with the clock variables to ensure the

transitions, thus determining the behavior of the automata.

We can represent Timed Automata formally as follows.

Timed Automaton is a tuple <C,Σ,L, L0, I, E>

• C: Elements is a finite set of clocks of timed automaton,

• Σ: Elements is a finite set of labels of timed automaton,

• L: Elements is a finite set of locations of timed automaton,

• L0 L is a set of initial locations of timed automaton,⊆

• I L is the set of accepting locations of timed automaton.⊆

• E L × Σ × 2⊆ C × Φ(C) × L is a set of edges, called transitions of timed

automaton,

• 2C is the set of clock constraints involving clocks from C,

• Φ(C) is the powerset of C

Timed automaton (s, σ, g, λ, s’) represents an edge from E is a transition from

locations s to s’ with action σ, g is guard value and λ is a clock resets. (13,14).As a

result, the models we created in Uppaal consist of timed automatons.

 13

Figure 3. The editor in the Uppaal GUI (10).

We can examine the Uppaal tool in three main sections. These; Description

language, Simulator, Model-Checker.

Description Language: It is a protected command language that has the data

types required to create the model. It has an extended content with time and data

variables (10).

Simulator: It is a verification tool where we can see the whole of the designed

model and its relationships, and also correct our mistakes before verifying (10).

 14

Figure 4. The simulator in the Uppaal GUI (10).

Model-Checker: It analyzes and checks the accessibility of the created

scenarios by looking at the state space of the created system (10).

Figure 5. The verifier in the Uppaal GUI (10).

 15

With the Uppaal tool, you can simulate the models you created with scenarios

and exportthem. In this way, it provides an output that shows how your model

performed in which situations and variable values. In this way, you can improve your

model.

To test the model you have developed, it is developed using the model checker-

based testing method. First, the workflow of the system you plan to test is determined.

The workflow of the system you specify is adapted to the model. You take the system

apart to adapt it to the model. Breaking it into parts is to carry out testing studies in

detail and comprehensively by updating the dependencies as desired while performing

the test scenarios to be implemented in the system. Each separated piece is referred to as

a template in uppaal. The templates created consist of “locations”. Templates are a set

consisting of “Timed Automaton”. Since templates consist of "Timed Automaton",

template behavior is determined by restricting the behavior of locations in time-

dependent changes and conditions. After the model is created, the scenarios prepared for

the model are checked by going to the verifier tab of the Uppaal tool. To examine the

flows of the model in detail, go to the simulator tab and examine the verified scenario in

detail.

 16

CHAPTER 4

PROPOSED METHOD

We develop our applications modularly using microservice architectures, one of

today's popular architectures. Each module has different tasks and these services should

be as loose coupling as possible. Since services have low dependency and are modular,

services can be scaled, shaped and fault tolerances can be minimized.

In order for applications to work stably, tests and maintenance must be carried

out. In this study, we carried out a study on model checker-based based testing of

microservices. Testing is necessary to ensure that microservices encounter the least

errors and problems. However, considering the modular structure of microservices and

the possibility of their dependence on other services, testing costs and complexity

increase.

In our study, the Model Checker-Based Testing method was used together with

the UPPAAL tool. We prepared a sample application model so that we can apply the

Model Checker-Based Testing method. There were situations we had to pay attention to

while preparing the model.

These;

• The model we will prepare should be as close as possible to the architecture

used in real-life applications and have a structure that can be developed,

• Being able to change our model in a generic way,

• Being able to automatically generate test-case scenarios,

• Being able to make sense of the results of the test cases we wrote,

We carried out our study considering the above mentioned situations. While

preparing the model, we made sure that the model could be improved if necessary and

that it was as close as possible to the architecture used in real-life applications.

We used parameters in our model to automatically create test cases, so we did

not have to create the model again and again so that we could test as many scenarios as

we needed. Creating the model in this way made it easier for us to create test cases. At

the same time, we will be able to create mutant scenarios and increase our number of

scenarios.

 17

To create test cases, we wrote test case generation using the python

programming language. Thus, you can create test scenarios automatically.

In order to make sense of the results of the written test cases, scripts were

written using the python programming language. Therefore, we automatically made

sense of the entire process and evaluated our testing processes.

Figure 6. The Test Strategy Flow

We carried out our study to improve testing processes in microservice

applications. In our study, we used the model checker-based testing method with the

UPPAAL tool. We carried out our study by following the steps below.

4.1. Creating the Model

We created our main model using the uppaal tool. “Templates” are used to

 18

create our models in the uppaal tool. In templates, we associate states, which we call

locations, with transactions. Since the response times of the services are evaluated in

milliseconds, we evaluated the "clk" and "c" values, which are the clock type we used in

our model, in milliseconds (ms). We used four templates to create our model.

These;

• BusinessProcess,

• Gateway,

• Microservice,

• MicroserviceFail

Figure 7. Model template structure.

BusinessProcess: This template is our starter template (Fig 8). Test Cases have

been prepared based on parameters in order to automatically create scenarios.Thus, the

template is to create test cases by giving parametric values, determining time intervals

according to the parameters we want. It starts with the “START” location. We aimed to

make accurate measurements in terms of time by updating the c(clock) value to "0" in

the first location. Invariant value c<=0 indicates the time when the incoming request

will leave the specified location. Then, the request comes to the

“BeforeGatewayRequest” location. It determines when to leave this location and how

long to wait by looking at c<delay and c>=startclk values. After the

"BeforeGatewayRequest" location, the request was transferred to the "GatewayRequest"

location and directed to the "Gateway" template. If the request is successful, the

transaction will be concluded in the "GatewayResponse" and "END" locations.

 19

Figure 8. BusinessProcess template structure.

The output of the model created in the Uppaal tool is kept in the .xml file

extension. The .xml file extension output of the BusinessProcess model is shown in

Figure 9.

 20

Figure 9. BusinessProcess .xml file structure.

Gateway; This template is our second template (Fig 11). It was developed

based on parameters to automatically create test scenarios. Gateway template provides

the relationship between BusinessProcess template and Microservice template. In

microservice applications, gateways forward the request to the relevant microservices.

The gateway template starts with the “START” location. At the “START” location, the

c(clock) value is updated with the value “0” to evaluate the time correctly. At the same

time, we assigned the value "errorrate" to the "temperrorrate" value in order to operate

on the "errorrate" value. Before the microservice template goes, the request goes to the

“BeforeMicroserviceRequest” location. The conditions we set here are the “delay” and

“startclk” values. The “delay” value indicates the maximum time to wait at the location.

The “startclk” value specifies how long it takes to move to the next location. In this

 21

way, we determine the "Microservice" template arrival interval of the request as [delay,

start clk].

Our next location is “CircuitBreakerClose”, this location is a critical location for

model. It is a pattern used in gateway structures. The reason why it is used is if the

microservice to which the requests will be sent gives an error, we do not send the

requests back to the server of the faulty microservice. In this way, we prevent service

interruptions, excessive resource usage and blocking. Instead, we pass it through

gradual checks and send it to the server. We can group these stages under three

headings.

These;

• Closed: At this stage, CircuitBreaker is closed. In this case, since the status

in the microservice is less than the threshold value, it forwards the requests

to the relevant microservice. This tells us that everything is going well.

• Open: At this stage Circuit Breaker is open. In this case, since the status in

the microservice is greater than the threshold value, we do not forward the

requests to the relevant microservice. This indicates that there is a problem

in the microservice and directs the request according to the determined rules

to prevent other problems in the system.

• Half-Open: At this stage, Circuit Breaker is half-open. In this case, it

decides whether to send incoming requests to the microservice by looking at

the threshold value or the defined rules. In order to switch from half-open

state to “Close” state and transmit requests, the "errorrate" value must be

less than the "threshold" value, and in order to pass from the “Open” state to

the "threshold" value, the "errorrate" value must be greater than the

"threshold" value.

 22

Figure 10. Circuit breaker structure.

Circuit Breaker is a pattern used in projects using gateways. We included this

pattern in our model to make it related to real-life. The part where we position the

Circuit Breaker is after the "BeforeMicroserviceRequest" location and before the

"MicroserviceRequest" location. Thus, we will evaluate the requests sent to

microservices.

When the request coming to our model reaches the "CircuitBreakerClose"

location, the "threshold" value is compared with the "errorrate" value. If the "threshold"

value is higher than the "errorrate" value, the request goes to the microservice. If it is

low, the Circuit Breaker structure comes into play and prevents the request from being

sent. Thus, it moves to the “CircuitBreakerOpen” section. It keeps the request as open as

the "error count" number we define with the parameter here, without sending it to the

microservice. After receiving the number of "errorcount" requests, we reach the

"CircuitBreakerHalfOpen" location by decreasing the "temperrorrate" value at the rate

we defined. Here, if the "threshold" value is higher than the "temperrorrate" value, the

request goes to the microservice, or if the "threshold" value is lower than the

"temperrorrate" value, the request cannot go to the microservice. The main purpose of

Circuit Breaker is to prevent service interruptions, excessive resource usage and

blocking. Therefore, in order to prevent these situations in the modeled system, different

Circuit Breaker scenarios can be developed by taking into account the priority criteria of

 23

the application. For example, you can switch between the Circuit Breaker stages, close,

open and half-open, depending on the number of requests, the time period on the servers

or the response codes received by grouping the response codes. We created this scenario

by determining a rate by which we would reduce the number of failed requests

(errorcount) and the "errorrate" value along with it.

We also studied error rate, threshold, error count and rate values parametrically

to create scenarios during the testing processes.

The structure of the gateway template can be seen in Figure 11.

Figure 11. Gateway template structure.

The output of the Gateway template we created is included in our model file

as .xml file format (Fig. 12).

 24

Figure 12. Gateway Template .xml Dosya Yapısı

Microservice; This template is our third template (Fig. 13). It was developed

based on parameters to automatically create test cases. It starts with the “START”

location. We aimed to make accurate measurements on the time side by updating the

 25

c(clock) value to "0" in the first location. It continues with

“BeforeMicroserviceResponse”. At this location, we split into two roads. If our

microservice has a dependency on another microservice, we direct it there with the

“BeforeMSChannel” location. We continue the process by taking into account the

"delay" and "startclk" values in the microservice we direct. If there is no dependency on

any microservice, we perform the response operation in the "delay" and "startclk" value

ranges ([delay, startclk]) that we have given in the parameters and direct it to the

"BusinessProcess" template. With the microservice template, we can define more than

one microservice and associate them with each other.

Figure 13. Microservice template structure.

The location and transaction links of the microservice template we created are

included in the .xml file extension (Fig. 14).

 26

Figure 14. Microservice template .xml file structure

 27

MicroserviceFail; This template is our fourth template (Fig. 17). It is exactly

the same as the Microservice template. We develop models via templates. Therefore, if

we make a change in the location or transaction processes of a template, it affects all

templates. This situation affects our processes in a way we do not want. For example, if

we have two microservices, there are cases where we break the relationships between

the locations to create test-case scenarios. But we only want to break the relationship

between a microservice and the locations. That's why we created the “MicroserviceFail”

template. As seen in Figure 15, the transaction values of both microservices are broken.

But we only want to disconnect one microservice. For this reason, in our model, we

create the microservice from which we want to break the transaction with the

"MicroserviceFail" template. We create the microservice whose transaction we do not

want to break with the "Microservice" template. In this way, we do not break the

transaction in all microservices, but we break the transaction in the ones we will test

(Fig. 16).

Figure 15. Transaction between “START” and “Before Microservice Response” has

 been broken.

Figure 16. Only in Microservice3, the tarasaction between “START” and

 “BeforeMicroserviceResponse” is broken.

 28

Figure 17. MicroserviceFail template .xml file structure.

 29

4.2. Verifying the Model

We need to verify the main model we created. Because we need to make sure

that our main scenario works correctly so that the other mutant scenarios we create can

work correctly. Therefore, we used the Uppaal tool to verify our model. We can test the

queries we wrote in the “Verifier” tab of the Uppaal tool (Fig. 18).

Figure 18. Uppaal verifier tab

We wrote queries for our main model. We will check the accuracy of our main

model according to the queries. There are certain rules for writing queries in Uppaal.

We can show the following queries as examples of these rules;

• A<>: The situation we wrote in the expression indicates that the model will

take at least one journey in time and only in one time period.

• A[]: The situation or feature in which we write the expression indicates that

the model will always take place at least one journey over time.

 30

• E<>: The situation in which we wrote the expression indicates that all

journeys in time in the model will take place in only one time period.

• E[]: The situation in which we wrote the expression indicates that all

journeys will always take place over time in the model.

We prepared the following queries to reverse our model.

Prepared queries;

• A[] deadlock

• A<>(BusinessProcess1.END)

• A<>(BusinessProcess1.END and clk<=2500)

 A[] deadlock => The part of the model that the query controls is that it enters an

infinite loop at every time period in at least one trip. We do not expect this query to be

validated. Because if it is verified, it means there is a problem with the model we

prepared. This issue means that the request ends up going into an infinite loop before

completing successfully.

 A<>(BusinessProcess1.END) => The part the query verifies in the model is

whether the location of the BusinessProcess1 object is "END" in just one time period of

at least one trip. In this case, requesting when the request comes means giving us a

successful response. In this case, this is what we want and expect for our model.

 A<>(BusinessProcess1.END and clk<=2500) => The part that the query verifies

in the model is that at least one journey must occur only in a time period if the location

of the BusinessProcess1 object is “END” and the “clk” value is less than or equal to

2500. In this case, it means that the request responds to us within "2500 milliseconds"

when the request starts. In this case, this is the situation we want and expect for our

model.

As a result, in order to know that the request to our model has been successful,

the BusinessProcess1 state must be in the "END" location, and when it is in this

location, the "clk" value must be less than or equal to 2500. Thus, the verify result we

get from this query shows that the model we created works correctly (Fig. 18).

 31

4.3. Simulating the Model

We examined the model in detail by simulating the model we created (Fig.

19).The Simulator tab consists of five sections.

These;

• Enabled Transitions,

• Simulation Trace,

• Variables and Constraints,

• Simulation Trace Screen

• Simulation Screen

Figure 19. Uppaal simulator tab.

Enabled Transitions: This area allows us to proceed step by step in the

simulation. It shows the next step or steps that the model can go through (Fig. 20).

 32

Figure 20. Enabled transitions.

Simulation Trace: This area shows all steps traced in the simulation. By

navigating through these steps, you gain information about variables, constraints and

transitions. Additionally, if we have a trace file, we can read it or save the existing trace

file (Fig. 21).

Figure 21. Simulation trace.

 33

Variables and Constraints: This area holds the variables and constraints we

defined in the simulation. Thus, when we run the simulations step by step, we can see

the values of variables and constraints changing in the stages (Fig. 22).

Figure 22. Variables and constraints.

Simulation Trace Screen: This area visualizes the trace of the model we

created. In this way, we can see which transaction we went from which template (Fig.

23).

Figure 23. Simulation trace screen

 34

Simulation Screen: This area visually presents us with the simulation of the

model we created. Thus, we see the entire simulated model and examine the flow

through the visual (Fig. 24).

Figure 24. Simulation screen.

4.4. Creating Test Cases

We chose the mutation method to create test cases of the model we created. We

used our previously prepared model to apply the mutation method. Because the model

we prepared resembles the structures of applications used in real life and is designed

with the microservice architecture we want to test. The situations we call transitions in

our model represent the communication between services or functions in the structures

we use in real life. We used transitions in the model, service connections and transitions

in critical situations for us. In this way, we aimed to quickly detect which service or

critical situation had an error in our testing processes. Therefore, if we delete the

transition points, we have mutated our model that works correctly. Thus, we performed

tests for our application and module by creating test cases based on the transitions we

deleted. Thus, we tested how it could affect our system in case of any communication

breakdown. Another example of mutation is updating guard and transition values. In this

case, these values include the transitions of the communication parts in our application

at certain time intervals and under certain conditions. In other words, we mutated by

 35

updating the conditions required to move from one state to another. Thus, we tested how

our application would react according to the arrival times of the data in the services and

the conditions that may occur. Using these two mutation examples in our model, we

created test cases for scenarios that may occur in application by mutating our model in

desired time, value ranges and possible conditions. Based on the results of the test cases

we create, we can learn how our application will react, and if it gives an error, we can

determine where it originates from.

We developed functions using the python programming language to automate

the processes performed while creating test cases of the model we created. Among the

functions we developed, we wrote functions that mutate our model and turn into test

cases. We chose two ways to mutate our model.

These;

• Deleting transitions,

• Updating guard and transition values

4.4.1 Deleting transitions

In order to create test cases of the model we created, we had to create scenarios

by mutating. Therefore, we started by deleting transitions to create mutations. We export

out the .xml file of the model we created in Uppaal. We first parsed the xml file using

the python programming language. Then, we navigated through each template, deleted

the transitions and saved the model.

The point we pay attention to here is that in each scenario we create, we delete

and save only one transition of our main model. The transaction in the red circled

section of Microservice1 shown in Figure 25 is an example of this situation. There are

three microservices in the study. For this reason, this study was conducted for all three

microservices. As seen in Mikroservice2 and Mikroservice3, the specified transaction

has not been deleted. Because in the example shown, only Microservice1 is derived

from the “MicroserviceFail” template, while the others are derived from the

“Microservice” template.

As a result, we derived whichever microservice we wanted to test from the

"MicroserviceFail" template. Figure 25 shows the scenario derived from Microservice1.

However, this work has also been done in other microservices, respectively.

 36

Figure 25. Transitions deleted model.

4.4.2 Updating Guard and Transition Values

We mutated our models by updating the "Guard" and "Transitions" values of

the model we created. While creating our model, we created it depending on the

parameters. Because we wanted to automatically generate new scenarios using values

within a certain range, instead of trying test cases manually. In this way, our test cases

would be created.

Figure 26. Model sytem declarations section.

We updated the "System Declarations" section of the model to create mutation

models. This is the part that controls the templates of our model. Since we create

templates according to parameters, the changes we make in the "System Declarations"

 37

section will affect the "Guard", "Transition" and structure of our model.

What's in the System Declarations section;

• BusinessProcess1 = BusinessProcess(0,100,17);

• Gateway1=Gateway(0,500,10,550,600,50,5);

• Microservice1=MicroserviceFail(0,1,300,10);

• Microservice2=Microservice(1,2,300,10);

• Microservice3=Microservice(2,0,300,10);

• system BusinessProcess1, Gateway1, Microservice1, Microservice2,

Microservice3;

 BusinessProcess1=BusinessProcess(0,100,17) => In this section, we create an

object named “BusinessProcess1” from the “BusinessProcess” template (Fig. 27).

 The values taken by BusinessProcess1 are respectively;

• 0 = It is the "id" number of the object.

• 100 = It is the "delay" value of the object. It was defined as the maximum

waiting time in the defined location.

• 17 = It is the “startclk” value of the object. The transition in which it is

defined is also defined as the minimum waiting time.

Figure 27. BusinessProcess1 object.

 38

 Gateway1 = Gateway(0,500,10,550,600,50,5) => In this part, we create an object

named “Gateway1” from the “Gateway” template (Fig. 28).

 The values taken by Gateway1 are respectively;

• 0 = It is the "id" number of the object.

• 500 = It is the "delay" value of the object. It was defined as the maximum

waiting time in the defined location.

• 10 = It is the “startclk” value of the object. The transition in which it is

defined is also defined as the minimum waiting time.

• 550 = It is the "threshold" value of the object. It determines the status of the

Circuit Breaker in the Gateway together with the "error rate".

• 600 = It is the "errorrate" value of the object. It determines the Circuit

Breaker status in the Gateway together with the "threshold".

• 50 = It is the "rate" value of the object. The "errorcount" value of the

Circuit Breaker in the Gateway counts as the value we specify when

changing from open to half-open. Then we subtract the “rate” value from

the “errorrate” value. Thus, the system determines which state it will enter.

• 5 = It is the “errorcount” value of the object. It represents how many

requests Circuit Breaker expects in the open state.

Figure 28. Gateway1 object.

 39

Microservice1 = MicroserviceFail(0,1,300,10) => In this section, we create an object

named “Microservice1” from the “MicroserviceFail” template (Fig. 29).

 The values taken by Microservice1 are respectively;

• 0 = It is the "id" number of the object.

• 1 = It is the "id" number of the microservice it will go to.

• 300 = It is the "delay" value of the object. It was defined as the maximum

waiting time in the defined location.

• 10 = It is the “startclk” value of the object. The transition in which it is

defined is also defined as the minimum waiting time.

 Microservice2=Microservice(1,2,300,10) => Bu kısımda “Microservice” template

den “Microservice2” adında bir nesne üretiyoruz (Fig. 29).

 The values taken by Microservice2 are respectively;

• 1 = It is the "id" number of the object.

• 2 = It is the "id" number of the microservice it will go to.

• 300 = It is the "delay" value of the object. It was defined as the maximum

waiting time in the defined location.

• 10 = It is the “startclk” value of the object. The transition in which it is

defined is defined as the minimum waiting time.

 Microservice3=Microservice(2,0,300,10) => In this section, we create an object

named “Microservice3” from the “Microservice” template (Fig. 29).

 The values taken by Microservice3 are respectively;

• 2 = It is the "id" number of the object.

• 0 = It is the "id" number of the microservice it will go to.

• 300 = It is the "delay" value of the object. It was defined as the maximum

waiting time in the defined location.

• 10 = It is the “startclk” value of the object. The transition in which it is

defined is also defined as the minimum waiting time.

 40

Figure 29. Microservice1, Microservice2 and Microservice3 object.

4.5. Cleaning Test Scenarios

We carried out a cleaning effort in the scenarios in case similar ones to the

scenarios we created occurred. The reason why similar scenarios occur is that the

microservices we derived from the "MicroserviceFail" theme are common objects. For

example, Figure 31 is an example of a fail scenario for Microservice1, and Figure 31 is

an example of a fail scenario for Microservice2. However, the BusinessProcess1 object,

which is common to both, does not have a transition in the red circle. Therefore, this

scenario needs to be deduplicated.

 41

Figure 30. Fail scenario example for Microservice1

Figure 31. Fail scenario example for Microservice2

 42

4.6. Verifying Test Models

After cleaning the test scenarios we created, we verified the scenarios. Since

one of our goals was to optimize the testing processes, we carried out the verify process

using the “pyuppaal” library in the python programming language (15). The function we

created takes four parameters (Fig. 32).

These;

• VerifytaPath = We are giving the verify path of Uppaal application.

• ModelPath = We give the path to the model we will verify.

• ModelQuery = We write which query will verify the model.

• NewModelPath = We determine the path to save the model created with

Query.

Figure 32. Verify function.

In our study, we determined two methods to create test scenarios. One of these

methods is “Deleting Transitions” and the other is “Updating Guard and Transition

Values”, so we prepared queries to verify the models.

We prepared the following queries to reverse our model.

Prepared queries;

• A[]deadlock

• A<>(BusinessProcess1.END)

• A<>(BusinessProcess1.END and clk<=2500)

 A[]deadlock => It ensures that the request coming to the model does not enter an

infinite loop within the model and thus verifies the model.

 A<>(BusinessProcess1.END) => It verifies whether the request to the model is

 43

successful.

 A<>(BusinessProcess1.END and clk<=2500) => It verifies the response time of

the request that must be received by the model.

4.7. Making Sense of Verify Output of Test Models

In our study, we verified the test scenarios. We create the outputs of the verified

scenarios in the .xtr extension file format (Fig. 33). The specified file format is not a

readable file format. That's why we worked to convert it into a readable file format. We

functionalized it to automate our work.

Figure 33. XTR file format example.

We showed the data in our work to make the XTR file format readable. At first

glance, we learn in which location, at which clock value or in which transaction it is left.

 44

In this way, when the model gets an error, we can see at which stage we got an error.

Figure 34. A certain part of the expansion of the XTR file format

As in Figure 34, we see a certain part of the .xtr file format. We can examine the

part taken as a sample from the file as follows:

 Our model is now in Microservice3, as a transition from

"BeforeMicroserviceResponse" to "MicroserviceResponse" state, the other objects,

BusinessProcess1, is in "END" state, Gateway1 is in "START" state, Microservice1 and

Microservice2 are in "START" state, and Microservice3 is in "START" state. The rest

of the file shows us the clock, invariant, global variable and guard values. In time period

t(0), Microservice3>=10, BusinessProcess1<=0, clk-Gateway1.c [17,100],∈

Gateway1.c- Microservice1.c [10,500], Microservice1.c-Microservice2.c [10,300],∈ ∈

Microservice2.c - Microservice3.c [10,300]. We see that the response, id, target, delay∈

values are “0”, temperature = 500 and gtwcount = 5.

We compared the results with the Uppaal tool to verify that the algorithm we

prepared made the xtr file extension format readable (Fig. 35).

 45

Figure 35. Uppaal visual version of Figure 34.

 46

CHAPTER 5

 DISCUSSIONS AND RESULT

We carried out the testing processes in microservice applications with the model

checker-based method. There are two important concepts in this study. One of them is

microservice architecture and the other is model checker-based testing method.

Our work can be used in applications that use microservice architecture. While

testing the developed application, the communication and dependency between the

services are important for the testers. Therefore, this study eliminates this problem.

Since we have created the model of the application, we can determine which services

the request will pass from the starting point to the end point, through which parts of

these services and in what time interval.

With the method we recommend, you can create a topology of the entire

application and determine the time intervals of the critical points you see. This way, you

can write tests for these critical points, regardless of internal or external services.

The person who will use the Model-Checker-Based testing method in

microservices must have technical experience in more than one field.

First of all, she/he must have knowledge in the field of software. It is necessary

to know what stages an application goes through while it is being developed and what

kind of problems may arise at these stages. If these are known, it should be known what

to pay attention to during the testing processes and what kind of model to prepare. If this

competence is not possessed, the model will not be able to be built well.

Secondly, it is necessary to have knowledge about application architectures.

Each application is developed according to different needs and different usage areas.

Therefore, different architectures can be preferred. It may be found suitable for

implementing microservice architecture, but may not be suitable for using a gateway.

For this reason, when an application is running, the architecture needs to know what

kind of life circle it should be.

The person who will use the method must know time-automata and Uppaal tool.

With this study, we wanted to contribute to the testing processes of applications

implemented in microservice architecture. While carrying out this process, it was

important to automate the test processes and quickly create and verify test cases. The

 47

computer specifications in the study were carried out on a computer with Intel(R)

Core(TM) i5-4460 CPU 3.20GHz, 16.0GB RAM and 64-bit operating system.

There is a BusinessProcess part, a Gateway part and three Microservice parts in

our model. As an approach, we have determined two methods for creating test cases, as

explained in Chapter 4.

First of all, we created test cases that we could create using the transition

deletion method. There are a total of thirty-one transactions in our model. This means

we can create a total of thirty-one different scenarios. For this reason, we ran the

transaction deletion method that we wrote in python programming language for each

section. And thirty-one scenarios were created for each part. However, since there were

similar scenarios, we simplified our test scenarios by clearing similar scenarios. As a

result, we have as many test cases as the number of transactions of each section (Table

1).

Number of
Transitions
in the
Model

Number of
Scenarios
Created

Total
creation
time of the
scenarios

Number of
Scenarios
Cleaned

Total
Number of
Scenarios

BusinessProcess 4 31 66 27 4

Gateway 9 31 84 22 9

Microservice1 6 31 77 25 6

Microservice2 6 31 77 25 6

Microservice3 6 31 77 25 6

Table 1. Transitions creation data of deleted scenarios.

To avoid an endless loop between the templates in our model, we first ran the

"A[]deadlock" query. By seeing that not all scenarios can be verified, we have seen

that they are not infinite loops. Then, we ran the “A<>(BusinessProcess1.END)” query

to see if the model was still working despite the broken transactions. However,

according to the stable working model we created, we saw that if the transaction breaks

in the BusinessProcess and Gateway sections, a total of 13 scenarios fail. However, we

saw that out of a total of 18 scenarios, 7 scenarios were successful in the broken

transactions in Microservice1, Microservice2, Microservice3 sections (Table 2).

 48

Total
Number
of
Scenarios

A[]
deadlock
not
Verify

A[]
deadlock
Verify The
time
(ms)

A<>(Business
Process1.END
) Clock Verify

Clock
Verify The
time
(ms)

BusinessProcess 4 4 438 0 445

Gateway 9 9 962 0 977

Microservice1 6 6 647 2 632

Microservice2 6 6 683 2 681

Microservice3 6 6 701 3 658

Table 2. Transitions query test data of deleted scenarios.

Secondly, we applied the method of updating Guard and Transition values. In

this method, we updated the "delay" and "startclk" values of the parts in our model with

the function we wrote. Our function produces two values, one of which represents the

“delay” value and the other represents the “startclk” value. Since the “delay” value is an

invariant value, we made it larger than the “startclk” value. For this reason, the "delay"

value starts from 10 and increases 50 by 50 until it reaches the value "3000". The

"startclk" value starts from 100 and progresses 50 by 50 up to 3000. Thus, we showed

the number of scenarios that occurred for each part and the times during which they

occurred in Table 3.

Number of Scenarios Created Total creation time of the
scenarios

BusinessProcess 1769 3196

Gateway 1769 3156

Microservice1 1769 3211

Microservice2 1769 3135

Microservice3 1769 3278

Table 3. Data of scenarios created by updating Transitions and Guard values.

We performed the verification processes of the resulting scenarios and showed

the results in Table 4. Of the total 8845 scenarios we created, 1260 were verified. The

A<>(BusinessProcess1.END and clk<=2500) query tests that the request we send

responds in at least one journey and only in one time period, less than or equal to 2500

 49

milliseconds.

Total Number of
Scenarios

A<>(BusinessProcess1.
END and clk<=2500)
Clock Verify

Clock Verify
The time
(ms)

BusinessProcess 1769 252 189211

Gateway 1769 252 202754

Microservice1 1769 252 204746

Microservice2 1769 252 207235

Microservice3 1769 252 208664

Table 4. Query test data created by updating Transitions and Guard values.

As a result, if we can model our applications correctly, we can carry out testing

processes quickly. As we showed in section 5.7, we can analyze the results in more

detail and fix any errors or problems.

 50

CHAPTER 6

 CONCLUSION AND FUTURE WORK

In this study, we presented a new approach for using applications developed in

microservice architecture in testing processes. With this approach, we carried out a

study in which we can automatically create some scenarios that we have difficulty

creating in our projects or that sometimes escape our attention even if we create them,

and test the resulting scenarios. In this way, we can automatically create our scenarios in

our projects and test which of the scenarios we create will be successful and which will

fail. We can also see at what points the unsuccessful scenarios fail. To automate our

work, we just used the uppaal tool to create the model of our application. Thus, we were

able to create and test test scenarios by mutating our application model. We

implemented the software of the processes in the Python programming language to

create test scenarios, clean these scenarios, perform the verify operation and make the

output files meaningful, and perform all these processes automatically (16). Thus, we

have automated all scenario processes. With this approach, we automatically produced

test scenarios of important points regarding communication and time in the applications

we use today. Since we prepared the model parametrically, we can add a new

microservice to our model in seconds and create the scenarios of this added service in

seconds. In this way, our scenarios are produced both automatically and quickly, as we

mentioned in the Result and Discussions section. We quickly verified the scenarios we

produced, and in the unverified scenarios, we determined where the problem was. In

this way, we can determine in which time intervals the communication points that are

critical for us in our real-life applications and other points that are important in terms of

time should work, or whether the application will work or not if communication is

broken at which points. When our applications receive updates, they can see how the

time and communication costs incurred in our application will affect our application and

its processes. Thus, when we test our applications with the approach we offer, we can

transition to the production environment without any problems in time and

communication.

 51

In future studies, the entire process can be done using an interface. In this way,

the processes can be carried out faster and there may be no need for various competency

levels of the people who will carry out the testing processes. Architectures and patterns

can be given as templates in the created tools.

 52

CHAPTER 7

REFERENCES

(1) Ünlü, H.; Bı̂Lgı̂N, B.; Demı̂Rörs, O. A Survey on Organizational Choices for

Microservice-Based Software Architectures. Turkish Journal of Electrical Engineering

and Computer Sciences (2022), 30 (4), 1187–1203. https://doi.org/10.55730/1300-

0632.3843.

(2) Ünlü, H.; Tenekeci, S.; Yıldız, A.; Demirörs, O. Event Oriented vs Object Oriented

Analysis for Microservice Architecture: An Exploratory Case Study. 2021 47th

Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

(2021). https://doi.org/10.1109/seaa53835.2021.00038.

(3) Ghani, I.; Wan-Kadir, W. M.; Mustafa, A.; & Imran Babir, M. Microservice Testing

Approaches: A Systematic Literature Review. International Journal of Integrated

Engineering, 11(8), 65–80 (2019).

(4) Ma, S.; Fan, C.-Y.; Chuang, Y.; Liu, I.; Lan, C.-W. Graph-Based and Scenario-

Driven Microservice Analysis, Retrieval, and Testing. Future Generation Computer

Systems (2019), 100, 724–735. https://doi.org/10.1016/j.future.2019.05.048.

(5) Waseem, M.; Liang, P.; Shahin, M.; Di Salle, A.; Márquez, G. Design, Monitoring,

and Testing of Microservices Systems: The Practitioners’ Perspective. Journal of

Systems and Software (2021), 182, 111061. https://doi.org/10.1016/j.jss.2021.111061.

(6) Savchenko, D.; Radchenko, G.; Hynninen, T.; & Taipale, O. Microservice Test

Process: Design and Implementation. International Journal on Information

Technologies & Security, (2018)

(7) Fraser, G.; Wotawa, F. Mutant Minimization for Model-Checker Based Test-Case

Generation. Testing: Academic and Industrial Conference Practice and Research

Techniques - MUTATION (TAICPART-MUTATION 2007) (2007).

https://doi.org/10.1109/taic.part.2007.30.

(8) Fraser, G.; Wotawa, F. Using LTL Rewriting to Improve the Performance of Model-

Checker Based Test-Case Generation. A-MOST ’07: Proceedings of the 3rd

International Workshop on Advances in Model-Based Testing (2007).

https://doi.org/10.1145/1291535.1291542.

 53

(9) Fraser, G.; Wotawa, F. Ordering Coverage Goals in Model Checker Based Testing.

2008 IEEE International Conference on Software Testing Verification and Validation

Workshop (2008). https://doi.org/10.1109/icstw.2008.31.

(10) UPPAAL.(2023) [online] Available at: https://uppaal.org. (accessed 2023-08-20)

(11) Hessel, A.; Larsen, K. G.; Mikučionis, M.; Nielsen, B.; Pettersson, P.; Skou, A.

Testing Real-Time Systems Using UPPAAL. In Springer eBooks; (2008); pp 77–117.

https://doi.org/10.1007/978-3-540-78917-8_3.

(12) Gong, X.; Ma, J.; Li, Q.; Zhang, J. Automatic Model Building and Verification of

Embedded Software with UPPAAL. 2011IEEE 10th International Conference on Trust,

Security and Privacy in Computing and Communications (2011).

https://doi.org/10.1109/trustcom.2011.152.

(13) Alur, R. Timed Automata. In Lecture Notes in Computer Science; 1999; pp 8–22.

https://doi.org/10.1007/3-540-48683-6_3.

(14) Wikipedia. (2023). Timed Automaton. [online] Available at:

https://en.wikipedia.org/wiki/Timed_automaton. (accessed 2023-08-08)

(15) PypUppaal (2023) A Python Interface to UPPAAL [online] Available at:

https://pypi.org/project/pyuppaal/ (accessed 2023-05-11)

(16) GitHub. (2023). Model Checker-Based Testing with UPPAAL. [online] Available

at: https://github.com/Ozgur-OZTURK/Model-Checker-Based-Testing-Uppaal.

(accessed 2023-12-01)

	TESTING MICROSERVICE APPLICATIONS
	A Thesis Submitted to
	the Graduate School of Engineering and Sciences of
	İzmir Institute of Technology
	in Partial Fulfillment of the Requirements for the Degree of
	MASTER OF SCIENCE
	in Computer Engineering
	by
	Özgür ÖZTÜRK
	December 2023
	İZMİR
	We approve the thesis of Özgür ÖZTÜRK
	Examining Committee Members:

	Prof. Dr. Tolga AYAV
	Department of Computer Engineering, İzmir Institute of Technology

	Prof. Dr. Onur DEMİRÖRS
	Department of Computer Engineering, İzmir Institute of Technology

	Assoc. Prof. Dr. Tuğkan TUĞLULAR
	Department of Computer Engineering, İzmir Institute of Technology

	Assoc. Prof. Dr. Ahmet Tuncay ERCAN
	Department of Management Information Systems, Yaşar University

	Asst. Prof. Emrah İNAN
	Department of Computer Engineering, İzmir Institute of Technology
	8 December 2023
	___________________ _______________________
	Prof. Dr. Tolga AYAV Prof. Dr. Onur DEMİRÖRS
	Supervisor, Department of Computer Supervisor, Department of Computer
	Engineering, Engineering,
	İzmir Institute of Technology İzmir Institute of Technology
	__________________________________ _____________________
	Prof. Dr. Cüneyt Fehmi BAZLAMAÇCI Prof. Dr. Mehtap EANES
	Head of Computer Engineering Department Dean of the Graduate School of
	Engineering and Sciences
	ACKNOWLEDGMENTS
	ABSTRACT
	TESTING MICROSERVICE APPLICATION
	ÖZET
	MİKROSERVİS UYGULAMALARININ TESTİ
	TABLE OF CONTENTS
	LIST OF FIGURES
	Figure Page

	LIST OF TABLES
	Table Page

	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	DESIGN SPECIFICATION
	2.1. Monolithic Architecture
	2.2. Microservice Architecture

	CHAPTER 3
	MODEL CHECKER-BASED TESTING AND UPPAAL
	3.1. Model Checker-Based Testing
	3.2. Uppaal

	CHAPTER 4
	PROPOSED METHOD
	4.1. Creating the Model
	4.2. Verifying the Model
	
	We need to verify the main model we created. Because we need to make sure that our main scenario works correctly so that the other mutant scenarios we create can work correctly. Therefore, we used the Uppaal tool to verify our model. We can test the queries we wrote in the “Verifier” tab of the Uppaal tool (Fig. 18).
	4.3. Simulating the Model
	We examined the model in detail by simulating the model we created (Fig. 19).The Simulator tab consists of five sections.
	4.4. Creating Test Cases
	4.4.1 Deleting transitions
	4.4.2 Updating Guard and Transition Values
	We mutated our models by updating the "Guard" and "Transitions" values of the model we created. While creating our model, we created it depending on the parameters. Because we wanted to automatically generate new scenarios using values within a certain range, instead of trying test cases manually. In this way, our test cases would be created.
	4.5. Cleaning Test Scenarios
	4.6. Verifying Test Models
	4.7. Making Sense of Verify Output of Test Models

	CHAPTER 5
	DISCUSSIONS AND RESULT
	
	CHAPTER 6
	CONCLUSION AND FUTURE WORK
	CHAPTER 7
	REFERENCES

