

MICROARC: AN ANALYSIS AND DESIGN
METHOD FOR MICROSERVICE BASED

SYSTEMS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by
Ali YILDIZ

December 2024
İZMİR

We approve the thesis of Ali YILDIZ

Examining Committee Members:

Prof. Dr. Onur DEMİRÖRS
Department of Computer Engineering, Izmir Institute of Technology

Prof. Dr. Tuğkan TUĞLULAR
Department of Computer Engineering, Izmir Institute of Technology

Prof. Dr. Oğuz DİKENELLİ
Department of Computer Engineering, Ege University

Assoc. Prof. Dr. Rıza Cenk ERDUR
Department of Computer Engineering, Ege University

Asst. Prof. Dr. Emrah İNAN
Department of Computer Engineering, Izmir Institute of Technology

12 December 2024

Prof. Dr. Onur DEMİRÖRS
Supervisor, Department of Computer
Engineering, Izmir Institute of Technology

_________________________ _______________________
Prof. Dr. Onur DEMİRÖRS Prof. Dr. Mehtap EANES
Head of Department of Computer Dean of the Graduate School of
Engineering, Izmir Institute of Technology Engineering and Sciences

ACKNOWLEDGMENTS

 First of all, I express my sincere gratitude to my supervisor, Prof. Dr. Onur

Demirörs. I am thankful to him for his continuous guidance, support, patience, and

encouragement throughout my study.

 I am grateful to my committee members, Prof. Dr. Tuğkan Tuğlular and Prof. Dr.

Oğuz Dikenelli, for their ideas and support throughout the thesis study.

 I would like to thank Assoc. Prof. Dr. Rıza Cenk Erdur and Asst. Prof. Dr. Emrah

İnan for their valuable advice.

 iv

ABSTRACT

MICROARC: AN ANALYSIS AND DESIGN METHOD FOR

MICROSERVICE BASED SYSTEMS

 The rapidly developing internet infrastructure has enabled software applications

to leverage almost unlimited and scalable resources. Microservice-based architecture

(MSbA) has emerged as a solution to harness the benefits of a distributed cloud-based

infrastructure.

 MSbA is becoming a popular approach for creating distributed software systems,

emphasizing the design and development of maintainable, easily scalable, and highly

available systems. It comprises loosely coupled and highly cohesive independent

services, known as Microservices, which communicate over a network to execute high-

level processes. Microservices can be updated or deployed independently, and

interruptions in their operations do not affect the entire system. They can communicate

using technology-independent protocols, such as HTTP and REST, and developers can

choose different development languages or platforms for each microservice based on

what best suits its functionality.

 Event-driven architecture is a powerful approach for addressing challenges in

distributed systems, such as scalability, distributed data, and sharing of data at scale. In

event-driven Microservices architecture, decoupled services interact by responding to

events, and event streams facilitate data sharing between them.

 Despite these advantages, there is no de facto method for the analysis and design

of MSbA. Organizations often face difficulties in developing microservice-based

systems, owing to the lack of well-defined methodologies for analysis and design. This

thesis proposed an event-oriented analysis and design method for MSbA. The method

comprises three main components; the processes to be employed in the analysis and

design phases, the modeling notations utilized in these processes, and the heuristics that

support the analysis and design phases.

 v

ÖZET

MICROARC: MİKROSERVİS TABANLI SİSTEMLER İÇİN BİR

ANALİZ VE TASARIM METODU

 Hızla gelTşen İnternet altyapısı, yazılım uygulamalarının neredeyse sınırsız ve

ölçeklenebTlTr kaynaklardan yararlanmasını sağlamıştır. MTkroservTs tabanlı mTmarT

(MSbA), dağıtılmış bulut tabanlı bTr altyapının faydalarından yararlanmak TçTn bTr çözüm

olarak ortaya çıkmıştır.

 MSbA, bakımı kolay, kolayca ölçeklenebTlTr ve yüksek oranda kullanılabTlTr

sTstemlerTn tasarımını ve gelTştTrTlmesTnT sağlaması nedenTyle dağıtılmış yazılım

sTstemlerT oluşturmak TçTn popüler bTr yaklaşım halTne gelmektedTr. MTkroservTsler , üst

düzey süreçlerT yürütmek TçTn bTr ağ üzerTnden TletTşTm kuran, gevşek bTr şekTlde

bağlanmış ve son derece uyumlu bağımsız hTzmetlerden oluşur. MTkroservTsler bağımsız

olarak güncellenebTlTr ve dağıtılabTlTr ve operasyonlarındakT kesTntTler tüm sTstemT

etkTlemez. HTTP ve REST gTbT teknolojTden bağımsız protokollerT kullanarak TletTşTm

kurabTlTrler ve gelTştTrTcTler, her bTr mTkroservTs TçTn TşlevsellTğTne en uygun olan farklı

gelTştTrme dTllerT veya platformları seçebTlTrler.

 Olay odaklı mTmarT, ölçeklenebTlTrlTk, dağıtılmış verT ve ölçeklenmTş verT

paylaşımı gTbT dağıtılmış sTstemlerdekT zorlukların üstesTnden gelmek TçTn güçlü bTr

yaklaşımdır. Olay odaklı MTkroservTs mTmarTsTnde, ayrıştırılmış hTzmetler olaylara yanıt

vererek etkTleşTme gTrer ve olay akışları aralarında verT paylaşımını kolaylaştırır.

 Bu avantajlara rağmen, bu mTmarTdekT sTstemlerTn analTzT ve tasarımı TçTn yaygın

kullanılan bTr yöntem yoktur. Kuruluşlar, analTz ve tasarım TçTn TyT tanımlanmış

metodolojTlerTn olmaması nedenTyle genellTkle mTkroservTs tabanlı sTstemler gelTştTrmede

zorluklarla karşılaşırlar. Bu tez, mTkroservTs mTmarTsTnde yazılım gelTştTrme TçTn olay

odaklı bTr analTz ve tasarım yöntemT önermTştTr. Yöntem üç ana bTleşenden oluşur; analTz

ve tasarım aşamalarında kullanılacak süreçler, bu süreçlerde kullanılan modelleme

notasyonları ve analTz ve tasarım aşamalarını destekleyen sezgTsel yöntemlerdTr.

 vi

to my beloved family

 vii

TABLE OF CONTENTS

LIST OF FIGURES .. x

LIST OF TABLES .. xii

ABBREVIATIONS .. xiii

 CHAPTER 1. INTRODUCTION .. 1

 1.1. Background of the Problem ... 2

 1.2. Purpose of the Study .. 2

 1.3. Research Strategy .. 3

 1.4. Contribution and Significance of the Study ... 4

 1.5. Organization of the Thesis ... 5

 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 6

 2.1. Microservices Based Architecture ... 6

 2.2. Event Driven Architecture ... 9

 2.3. SOA and Microservices ... 11

 2.4. Domain Driven Design and Microservices .. 12

 2.5. Event Storming .. 14

 2.6. Related Researches .. 15

 2.7. A Brief Discussion of the State of the Art ... 17

 CHAPTER 3. ANALYSIS AND DESIGN METHOD FOR MICROSERVICES BASED

SYSTEMS AND TOOL SUPPORT ... 19

 3.1. MicroArc: Event-Driven Analysis and Design Method 19

 3.1.1. Business Model Canvas .. 19

 3.1.2. Event-Driven Process Chain ... 23

 3.1.3. Microservices Event Flow Diagram ... 25

 viii

 3.1.4. Integration of Diagrams .. 26

 3.1.5. Implementation Steps of MicroArc Method 27

 3.2. MicroArc Tool .. 29

 3.2.1. High Level Requirements ... 30

 3.2.2. Architecture of the Tool .. 32

 CHAPTER 4. CASE STUDIES .. 34

 4.1. Exploratory Study 1- Comparison of OO and EO 34

 4.1.1. Research Question in Exploratory Study 1 34

 4.1.2. Activity Planning in Exploratory Study 1 35

 4.1.3. Mitigation of Threats to Validity in Exploratory Study 1 36

 4.1.4. Exploratory Study 1 Design and Execution 36

 4.1.4.1 Case Selection in Exploratory Study 1 36

 4.1.4.2 Performing Event Oriented Analysis and Design (EOAD) . 37

 4.1.4.3 Performing Object Oriented Analysis and Design (OOAD) 39

 4.1.5. Analysis and Results of the Exploratory Study 1 41

 4.2. Exploratory Study 2- Establishing Microarc Method and Tool 42

 4.2.1. Research Questions in Exploratory Study 2 42

 4.2.2. Activity Planning in Exploratory Study 2 43

 4.2.3. Mitigation of Threats to Validity in Exploratory Study 2 43

 4.2.4. Exploratory Study 2 Design and Execution 43

 4.2.4.1 Case Selection in Exploratory Study 2 43

 4.2.4.2 Performing MicroArc Method .. 44

 4.2.5. Analysis and Results of the Exploratory Study 2 48

 4.3. Explanatory Case Study ... 49

 4.3.1. Research Questions in Explanatory Study 49

 4.3.2. Activity Planning in Explanatory Study 49

 4.3.3. Mitigation of Threats to Validity in Explanatory Study 50

 ix

 4.3.4. Design and Execution in Explanatory Study 50

 4.3.4.1 Case Selection in Explanatory Study 50

 4.3.4.2 Performing MicroArc Method .. 51

 4.3.5. Analysis and Results of the Explanatory Study 54

CHAPTER 5. CONCLUSION ... 56

 5.1. Contributions ... 56

 5.2. Limitations and Future Work ... 57

REFERENCES ... 59

APPENDIX A. HOW TO USE MICROARC TOOL ... 62

 x

LIST OF FIGURES

Figure Page

Figure 1.1. Research Strategy process .. 4

Figure 2.1. Microservice Based Architecture ... 7

Figure 2.2. Event-Driven Architecture ... 10

Figure 2.3. SOA Publish, Find, Bind paradigm .. 11

Figure 3.1. Meta-model for BMC elements and relations .. 21

Figure 3.2. BMC diagram ... 22

Figure 3.3. Meta-model of EPC elements and relations ... 23

Figure 3.4. EPC diagram .. 24

Figure 3.5. Meta-model for MEFD elements and relations .. 25

Figure 3.6. Microservice Event Flow diagram ... 26

Figure 3.7. Interactions between models .. 27

Figure 3.8. MicroArc method implementation phases ... 28

Figure 3.9. MicroArc tool Use-cases .. 31

Figure 3.10. MicroArc tool User-interface ... 33

Figure 4.1. EPC for graduate student application AS-IS .. 38

Figure 4.2. EPC for graduate student application TO-BE .. 39

Figure 4.3. Graduate student application Use-cases ... 40

Figure 4.4. Graduate student application Activity diagram .. 40

Figure 4.5. BMC model of AI Estimator .. 45

Figure 4.6. EPC of AI Estimator Model Training ... 46

Figure 4.7. MEFD of AI Estimator ... 47

Figure 4.8. BMC of Summer Internship Management ... 51

Figure 4.9. EPC of Internship Announcement Management .. 52

Figure 4.10. MEFD of Summer Internship Management ... 53

Figure 4.11. Undergrad Team Microservices for Summer Internship Management 53

Figure A.1. Create blank project ... 62

Figure A.2. Create new project ... 63

Figure A.3. Create BMC ... 63

Figure A.4. Create BMC model .. 64

 xi

Figure A.5. BMC model diagram ... 64

Figure A.6. Create EPC .. 65

Figure A.7. Create EPC Model ... 65

Figure A.8. EPC model diagram ... 66

Figure A.9. Create MEFD ... 66

Figure A.10. Create Microservices model .. 67

Figure A.11. Microservices model diagram .. 67

 xii

LIST OF TABLES

Table Page

Table 4.1. IzTech graduate student application activities ... 36

Table 4.2. AI Estimator Key Activities ... 44

Table 4.3. AI Estimator microservices definitions .. 47

Table 4.4. MicroArc’s Microservices and related events of Summer Internship 54

Table 4.5. Undergrad Team’s Microservices and related events of Summer Internship 55

 xiii

ABBREVIATIONS

API Application Programming Interface

BMC Business Model Canvas

CD Continuous Deployment

CI Continuous Integration

DB Data Base

DDD Domain Driven Design

EDA Event Driven Architecture

EPC Event-Driven Process Chain

EOAD Event Oriented Analysis and Design

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

HTTP Hyper Text Transfer Protocol

MEFD Microservice Event Flow Diagram

MSbA MicroService Based Architecture

OOAD Object Oriented Analysis and Design

REST Representational State Transfer

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

UML Unified Modeling Language

 1

CHAPTER 1

INTRODUCTION

 Currently, software applications can leverage nearly unlimited and scalable

resources, and cloud platforms are widely employed to provide these capabilities. The

distribution of an application's business logic across different platforms is facilitated by

the utilization of cloud platforms.1 Microservice-based architecture serves as a solution

to achieve this objective, where services operate with loose coupling and cohesion. In this

architecture, services can be deployed independently, are scalable, and offer testability.

Lightweight frameworks such as HTTP and REST are commonly utilized for establishing

connections between services.1,2

 Event-driven architecture handles business processes using the flow of messages

through loosely coupled services. Each service belonging to a given domain or bounded

context has a specific role and a limited responsibility within that domain. Each domain

processes relevant data and communicates these changes to the other domains.

 There are many benefits of using event-driven microservices.3 Granularity:

Services can be easily rewritten when business requirements change. Scalability: Services

can be scaled up or down as required. Technological independence: Services use the most

appropriate language and technology. Business requirement flexibility: Service

ownership can be easily recognized because there are fewer cross-team dependencies.

Loosely Coupling: Services are coupled with domain data. Continuous delivery support:

It is easy to ship small and modular services. High testability: Services tend to have fewer

dependencies than monoliths.

 In this study, an event-driven analysis and design method, along with modeling

approaches to support this method, is presented for building microservice-based

architectural systems. The event-driven analysis and design method comprises three main

components: the processes to be employed in the analysis and design phases, the

modeling notations utilized in these processes, and the heuristics that support the analysis

and design phases.

 2

1.1. Background of the Problem

 A microservice-based architecture is a new approach for building distributed

software systems. They focused on designing and producing maintainable, scalable, and

high-availability systems.4 Services in a microservice architecture are independent

components that use lightweight communication to achieve their goals. Microservices

can communicate with each other using technology-independent protocols. Therefore, the

selection of development languages and running platforms can differ for each

microservice. These are independently updated or changed, and the failure of the

microservice does not affect the entire system.

 The use of microservice-based architecture is continuously increasing among

software companies that want to build distributed, scalable, and highly available systems.

A survey5 conducted by the Software House in 2020 showed that companies prefer to use

Microservice-based architecture (MSbA) for applications that require high performance

and scalability (70% and 84%, respectively). Moreover, a survey6 conducted in Turkey in

2020 showed that microservice-based architecture uses different domains, such as

automation, ERP, e-commerce, web-based, logistics, finance, mobility,

telecommunication, and public service applications.

 Organizations face many difficulties in developing microservice-based systems

owing to the lack of well-defined methodologies for their analysis and design. Temporary

methods, mostly Object-Oriented Analysis and Design (OOAD), are used.6 However, the

structural decomposition of microservice-based systems differs significantly from that of

OOAD. Additionally, traditional analysis and design techniques have been found to be

ineffective for microservice architectures.7 Alternative approaches, such as Event

Storming, do not have systematic implementation processes, model notations used in

different stages, or software tools that support the methodology.8

1.2. Purpose of the Study

 This study aims to develop an efficient method and supporting tool for analysis

 3

and design of event-oriented microservice systems. The proposed method presents an

analysis and design approach for developing microservice based systems.

 Software development starts with eliciting requirements and then establishing an

architecture that defines tiers, components of the system to be built, and interactions

between them. The main objective of the requirements elicitation phase is to elicit

functional and quality requirements, business rules, and define business processes.

MicroArc method enables event-based modeling of business processes which is crucial

for event-oriented microservices systems. The method helps analysts to define boundaries

of microservices, events that trigger microservices, or are initiated by microservices. In

addition, it enables define event flows between microservices.

 The goals of this study are to help software organizations that want to develop

event oriented microservice systems. Using MicroArc method and tool, a software

company can model a system with different perspectives that are connected between

them, and define events and microservices from these modes.

1.3. Research Strategy

 The design-science approach used in this study.9 Offermann10 structured three

main phases for design-science process; problem identification, solution design, and

evaluation (Figure 1.1).

 In problem identification phase; a literature review was conducted to find out

which modeling notations already existed and which implementation processes are

mostly used for analysis and design of Microservice Based Systems. Based on literature

research, we found that there is no de-facto method for analysis and design of

Microservice Based Systems, however Object-Oriented Analysis and Design (OOAD)

approach mostly is used.6 An exploratory case study conducted to find “How successful

are Object Oriented Analysis and Design (OOAD) and Event Oriented Analysis and

Design (EOAD) in meeting the key characteristics required by a Microservices based

Architecture?”. The results showed that EOAD meets most key characteristics required

by a MSbA than OOAD.7 Moreover, modelling and implementation processes

requirements were identified.

 4

 In solution design phase; modeling notations and implementation processes are

defined based on requirements that were identified in problem identification phase, and

first version of MicroArc method has been formed. A second exploratory case study was

conducted in order to identify needs for effective use of MicroArc method. Based on the

case result, second version of MicroArc method has been formed. Additionally,

supporting tool requirements for the analysis and design of MSbA were identified, and

the MicroArc tool was developed.

 In evaluation phase; after the finalization of the MicroArc model and tool, an

explanatory case study was conducted to find out, “How effective is the MicroArc method

for events and microservices identification?” by comparing two studies that analyzed and

designed the same application.

Figure 1.1. Research Strategy process

1.4. Contribution and Significance of the Study

 The major contribution of this study is a method and tool, called MicroArc, which

is used to analyze and design microservice based systems. MicroArc tool consists of a

 5

modeling environment and modeling notations. By using the tool, an analyst can model

a software system from three different perspectives; BMC (Business Model Canvas)

provides to define key activities that show domains and ubiquitous languages, EPC

(Event-driven Process Chain) provides to model business processes in event-oriented

way, and identify events and microservices, MEFD (Microservice Event Flow Diagram)

provides to show event flows between microservices. Each model is connected to each

other, so any changes to a model can be reflected in other models.

 MicroArc method is a novel approach to analyze and design event-oriented

microservice systems. Additionally, MicroArc tool is the first tool that establishes

connections between models to reflect changes in a model to other models.

1.5. Organization of the Thesis

 The thesis is organized as follows: Chapter 1 briefly summarized the background

of the problem, purpose of the study, research strategy, contribution and significance of

the study. Chapter 2 gives a discussion about on microservice architecture and related

researches on analysis and design of microservices. Chapter 3 specifies the MicroArc

method and supporting tool. Chapter 4 describes the case studies which are conducted to

explore and validate the proposed method. Chapter 5 provides an overall discussion of

the contributions, limitations and future work regarding with this thesis.

 6

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

 This chapter consists of seven sections. The first describes Microservices Based

Architecture. The second section describes Event Driven Architecture. The third section

describes Service Oriented Architecture (SOA). The fourth section describes Domain

Driven Design (DDD). The fifth section describes Event Storming. The sixth section

describes related studies regarding to developing microservices based architecture.

Finally, the seventh section gives a brief discussion of the state of the art.

2.1. Microservices Based Architecture

 A microservice-based architecture is a new approach for building distributed

software systems. They focused on designing and producing maintainable, scalable, and

high-availability systems.4 Services in a microservice architecture are independent

components that use lightweight communication to achieve their goals. Microservices

can communicate with each other using technology-independent protocols such as HTTP

and REST. Therefore, the selection of development languages and running platforms may

differ for each microservice. Microservices are updated or changed independently, and

failure of a microservice does not affect the entire system. Based on this definition a

microservice can be independently deployable, scalable, testable, and has a single

responsibility. Microservice based architecture is depicted in Figure 2.1.

 The main characteristics of microservices are given below:

• Independently deployable: a microservice has low coupling between them so it

can be run on different environments and can be deployable independently

without affecting others.

• Independently scalable: Low coupling between microservices enable them

easily scale up or down when more request and resource needed.

 7

• Independently testable: a microservice can be tested independently without

need any interaction with other microservices. It makes preparing test cases

and testing simpler and smoother.

• Single responsibility: it means that microservice should have one, only one

reason to change or to be replaced.11

Figure 2.1. Microservice Based Architecture

 Microservices Based Architectures have the following characteristics:

• Componentization via Services: It is desirable to create software systems

through components. In many software platforms this is provided by libraries.

Using libraries as components in microservice architectures creates high cohesion

since libraries are directly accessible from within the program. While libraries are

linked into a program and called using in-memory function calls, services are out

of process components who communicate via networks. It becomes services

independently deployable and it is one main reason to use services as components

rather than libraries. This approach also provides well defined interfaces.

 8

• Organized around Business Capabilities: Many software development

organizations have a horizontal distribution of responsibilities between project

teams. Each team develops different part of software that is under their

responsibility such as user interface, business logic, database. Any change can

lead to many cross-team communication and take time. Services are organized

around business capability in microservice architecture, and project teams are

responsible for each service. Teams are cross-functional with all skills necessary

to develop a service such as project management, database, etc. This reduces

cross-team communications and enables rapid software development.

• Products not Projects: In a project model, aim is to deliver working code. When

a project completed software development team delivers software to the

maintenance team and starts to another project. The goal in microservice approach

is to develop a software that assist its user to enhance the business capability rather

than looking at the software as a set of functionalities to be completed. A software

development team takes full responsibility for the software in production. Same

team maintains and updates the software through its full lifetime. This establishes

a long-term relationship with customers to develop their necessary needs and

increases customer satisfactions.

• Smart endpoints and dump pipes: Most products or approaches include

advanced features in the communication mechanism when building a

communication structure between different processes. Enterprise Service Bus

(ESB) used by Service Oriented Architecture (SOA) is an example for this. ESB

products include advanced capabilities for message routing, choreography,

transformation, and applying business rules. This approach makes communication

complex and difficult to manage it. In the microservice architecture,

communication is done with simple protocols, each service receives a request,

applies its business capability, and produces a response. This speeds up

development and simplifies maintenance of an application.

• Decentralized Governance: In most software development organizations; a

defined set of software development platforms and databases, etc. are commonly

used in all software development projects. It is difficult and uncommon to use

different structures in different parts of an application. In microservice

architecture, each team is responsible for the service to be developed and decides

 9

the structures to be used. It allows to use most appropriate technologies for a

service’s business capability.

• Decentralized Data Management: Using a shared database in a software

application has many benefits in terms of database creation, management and cost.

However, in case of inaccessibility to the database, whole system becomes

inoperable. In microservice architecture, every service has its own database. It

allows the use of appropriate databases according to business capabilities of

services and prevents become unusable of entire system when a problem occurs.

• Infrastructure Automation: Infrastructure automation reduces the operational

complexity of building, integration, testing, deploying, and operating of software

applications, also it provides short development life cycle. In microservice

architecture, infrastructure automation is important for short development cycle,

therefore infrastructure automation approaches such as Continuous Integration

(CI) and Continuous Deployment (CD) are widely used.

• Design for failure: In microservice architecture, services work together to

perform business capabilities and they communicate over network. Since service

can fail at any time, monitoring status of services, detecting the failures quickly,

and automatically compensate and restoring service, take into account. Thus,

system reliability is established.

• Evolutionary Design: The fundamental principle of an evolutionary design is

change. Microservices are designed in such a way that allows them to be updated,

improved, and extended over time. The system is broken into components that are

independently replaceable and upgradable, to perform evolutionary design.

2.2. Event Driven Architecture

 An event is a well-defined record that contains all the information about what

happened in the business.12 It is typically based on entities or on relationships between

them. Events are named in the past tense. For example, an e-commerce order may result

in a “payment received” event. Event is immutable, meaning that once published, it

cannot be changed.

 10

 Event Driven Architecture (EDA) is an architectural concept in which services of

autonomous software components interact via event notifications.13 EDA has three main

components; event producer, event consumer, and event router (Figure 2.2). Event

producer generates events in response to specific occurrence or changes inside the system.

Event consumer listens for specific events and responds according to event data. Event

router orchestrates events and routes events from producers to interested consumers.

 Decoupling and asynchronous events are the key concepts related to EDA. Both

make systems resilient and flexible. In decoupling, components in systems exchange

information through events, and there is not directly communication between

components. Decoupling enables developers to modify individual components and scale

down or up them without impacting the whole system. It also improves the

maintainability and prevents the occurrences of cascading failures. Asynchronous events

allow components to communicate without being locked up and waiting for instant

response or acknowledgement from other components.

 An event-driven microservices architecture is a design paradigm that integrates

event-driven architecture with microservices, yielding solutions composed of loosely

linked services that interact via asynchronous events. So, a microservice can be

developed, tested, deployed, upgraded and scaled independently of other microservices.

Figure 2.2. Event-Driven Architecture

 11

2.3. SOA and Microservices

 Service Oriented Architecture (SOA) is a way of designing software that uses

software components called services to create business applications, each accessible

through standard interfaces and messaging protocols.14 In SOA, independent software

components provide services to end-user applications or other services. The three primary

participants in SOA are the service registry, service provider, and service consumer. The

interactions between them involve publish, find, and bind operations.14 The service

provider defines a service description of the service and publishes it to a service registry

to make a service description that is published and made discoverable. The service

consumer discovers the service description on the service registry by using the find

operation. Using the bind operation, the service consumer invokes the service from the

service provider (Figure 2.3).

Figure 2.3. SOA Publish, Find, Bind paradigm

 Microservice Based Architecture (MSbA) which aims to create, small, isolated,

loosely-coupled applications that work in cohesion, is considered as an evolution of SOA.

The goal of MSbA and SOA is to decompose monolithic applications to modular services.

 12

However, SOA concentrates on enterprise-wide integration with centralized management,

MSbA prioritize autonomous, single-purpose services with decentralized governance.

 Main differences between SOA and Microservices are summarized below:

• Communication: SOA uses ESB (Enterprise Service Bus) communication

channel to manage and coordinate services. The ESB can become a risk of a single

point of failure for the whole system. Microservices communicate using API in

order to avoid this risk.

• Interoperability: SOA uses multiple message protocols like SOAP (Simple

Object Access Protocol), and AMQP (Advanced Messaging Queuing Protocol).

Microservices use lightweight messaging protocols like HTTP/REST, JMS (Java

Messaging Service), and Kafka.

• Governance: In SOA, component reusability is desired, and services share

resources. This requires the implementation of common data governance

standards for all services. Instead, in MSbA does not implement consistent data

governance to provide independence for all microservices.

• Granularity: In SOA, services can range from small specialized to relatively

large enterprise-wide. Microservices, on the other hand, are smaller, highly

specialized services, each of which is designed to serve a specific purpose.

• Storage: In SOA, services share a single data storage layer. However, this creates

dependencies across services. MSbA provides independent data storage for each

service as required to maintain loose coupling among microservices.

2.4. Domain Driven Design and Microservices

 Domain-Driven Design is a methodology for developing complex software

systems that emphasizes the core domain. It encourages innovative collaboration between

domain experts and software developers to create models.15 DDD is typically considered

from two perspectives; Strategic design, and Tactical design.

 The goal of Strategic Design is to define a software system's general design and

structure in a way that is consistent with the problem domain. It tackles high-level

 13

problems including how to divide the system into manageable parts, how to clearly define

the boundaries between different components, and how to arrange domain concepts.

Strategic design involves employing a ubiquitous language throughout the organization,

dividing the system into distinct bounded contexts, and clearly defining the relationships

between these contexts. This approach ensures that the entire team or organization is in

alignment with the overall system structure and design. Main key concepts of Strategic

Design are Bounded Context and Ubiquitous Language.

• Bounded Context: It is a conceptual boundary within a problem domain where

it has a domain model and ubiquitous language. It allows to develop specific

models for each context and sets clear boundaries to prevent confusion and

inconsistency.

• Ubiquitous Language: It is a common language that all stakeholders use to

define the domain model. It helps create a common understanding of domain

concepts and requirements among technical and non-technical team members.

 The goal of Tactical Design is to structure and organize the domain model within

a software system. It helps clearly define rules and processes of the software system. It

focuses on building and designing individual components in bounded context. Some key

concepts of Tactical Design are: Entities, Value Objects, Services, Domain Events,

Aggregates.

• Entities: An entity is an object that have a unique identity. It is mutable over time.

Customers and Products in an e-shopping application would be entities.

• Value Objects: The value object has no identity, but it is defined by only by the

values of its attributes. It is immutable. Address and Phone Number in an e-

shopping application would be value objects.

• Services: a service is an object that implements some logic without holding any

state. In DDD, domain services encapsulate domain logic, wheras application

services provide technical functionality such as authorization.

• Domain Events: They are important events that occur within the domain, and

they are used the notify other parts of the system.

 14

• Aggregates: An aggregate is an encapsulation of entities and value objects which

always need to be consistent, and are treated as a single of work. It helps to

maintain consistency and integrity of the objects. In an e-shopping application, an

aggregate would be an order that contains products, supliers, and should be

modified together.

 Although Tactical Design is not exclusively linked to the object-oriented

paradigm, it leverages the benefits offered by the Objet Oriented (OO) approach, such as

encapsulating data and behavior into objects. Entities, Value Objects, and Aggregates can

correspond to classes in OO.

 MSbA can have several benefits when applying the DDD principles. Bounded

context defines the boundaries that each boundary has a particular model, and makes sure

that each microservice has a unique model that is free from ambiguity. DDD establishes

a common (ubiquitous) language in order to held proper communication between project

stakeholders. Ubiquitous language helps microservices reflect business needs

unambiguously. Since, a microservice has its own domain logic, data, and interactions,

each microservice can be thought the implementation of a Bounded Context. However, a

microservice is a bounded context, not every bounded context is a microservice. A

Bounded Context defines boundaries of a service where it has a domain model that is

isolated and consistent inside a bounded environment. One of key features of a

microservice is that it has a single responsibility. A Bounded Context may have too many

responsibilities to map it to a microservice. For example, in the e-commerce system,

shipping can be identified as a Bounded Context. Shipping will most likely have multiple

responsibilities such as scheduling, packaging, delivering, etc.

2.5. Event Storming

 The Event Storming method was introduced by Brandolini8. It is a workshop-

based method. In this workshop, participants from different areas work together to

explore business domains by focusing on domain events generated in the context of a

business process. Event Storming is commonly used by DDD practitioners, where it is

 15

based on DDD’s main concepts such as domain events, commands, aggregates, etc. The

implementation of Event Storming consists of five steps:

1. Invitation of people: The idea is to explore people’s knowledge by meeting them

in a meeting room. Ideally, six to eight people would attend the workshop. The

group should consist of domain experts with knowledge of the domain and

analysts who want to gather this domain knowledge.

2. Providing modeling space: Attendees use colored stickies to explore knowledge

about the domain and stick it to the meeting room wall to see the whole.

3. Exploring Domain Events: A domain event is a trigger of an activity that

happens in the domain. It can be the predecessor of the next event. An orange

sticky note is used for an event. Events are placed on modeling space according

to a timeline. Any duplicate events are removed or merged.

4. Exploring sources of Domain Events: If an event is a direct consequence of a

user action, it is represented as a Command. A blue sticky note is used for a

command. Other events can be a consequence of something happening in external

systems that are represented using a purple sticky note. Other important

information is represented by sticky notes with different colors.

5. Searching for aggregates: Commands and events are organized around an

aggregate that represents a specific business concept.

 An Event Storming workshop requires physical space with sticky notes, a pen,

and large whiteboards. Although local teams can work well in this physical space, it can

be difficult for remote teams. In addition, documenting all knowledge on whiteboards can

be difficult. The involvement of all domain experts is desirable; however, participation

can be more difficult.

2.6. Related Researches

 Microservice analysis and design approaches can be separated in two;

decomposition of microservices from an existing monolithic application and developing

 16

a new application in a microservice manner.16-23

 A dataflow-driven approach for identifying microservices from monolithic

applications proposes a dataflow-driven semi-automatic decomposition approach.16 This

approach introduces a four-step decomposition procedure: first, conduct the business

requirements analysis to generate the use case and business logic specification; second,

construct fine-grained Data Flow Diagrams (DFD); third, extract the dependencies

between processes and datastores; and fourth, identify candidate microservices. This

method relies heavily on the detailed DFDs at different levels. The quality of DFDs is

critical for the decomposition results. Every process, external entity, data flow, and data

storage for all the DFDs must be carefully reviewed.

 Extracting Microservice Candidates from the Monolithic Application Code

proposes a method that identifies the candidates of microservices from the source code

using the software clustering algorithm SArF with the relation of “program groups” and

“data” which is defined.17

 A New Decomposition Method for Designing Microservices proposes an

approach for decomposing a monolithic application into a microservice application by

analyzing the application programming interface.18 This methodology uses word

embedding models to obtain word representations using operation names and a

hierarchical clustering algorithm to group similar operation names to obtain suitable

microservices.

 Graph-based and scenario-driven microservice analysis, retrieval, and testing

proposes an approach to the development of microservice-based systems, referred to as

GSMART (Graph-based and Scenario-driven Microservice Analysis, Retrieval and

Testing).19 This enables the automatic generation of a “Service Dependency Graph

(SDG)”. The SDG is used to visualize and analyze the dependency relationships between

microservices as well as between services and scenarios. It also enables automatic

retrieval of test cases required for system changes to reduce the time and costs associated

with regression testing. The GSMART approach mainly supports the Java-based spring-

boot framework. Users are expected to follow defined guidelines to allow GSMART to

retrieve the information required to produce and analyze SDGs. Moreover, GSMART

uses Gherkin documents to specify test scenarios and service requirements.

 A logical architecture design method for microservices architectures proposes a

model-based approach for designing the logical view of an MSA, called 4SRS-MSLA.20

This approach is based on modeling a business domain in UML use cases, thus deriving

 17

a UML component diagram for the domain and grouping the components into

microservices.

 Microservice Identification through Interface Analysis proposes a solution based

on the semantic similarity of the foreseen or available functionality described in the

OpenAPI specifications.21 This approach relies on well-defined and described interfaces

that provide meaningful names and follow programming-name conventions.

 Service Cutter: A Systematic Approach to Service Decomposition proposes an

approach to service decomposition based on 16 coupling criteria.22 In the Service Cutter

approach, coupling information is extracted from domain models and use cases and is

represented as an undirected, weighted graph to find and score densely connected clusters.

The resulting candidate service cuts promise to reduce coupling and promote cohesion

within services.

 Green Micro: Identifying Microservices from Use Cases in Greenfield

Development proposes a method that identify microservices from business use cases by

using a clustering algorithm on the combined similarity matrix.23

2.7. A Brief Discussion of the State of the Art

 Microservices architecture is inspired by many architectural approaches. In Event

Driven Architecture (EDA), services are autonomous components that interact via event

notifications, as in event-driven microservices architecture that loosely linked

microservices interact via asynchronous events.

 In SOA, business applications are created as software components called services,

each accessible through standard interfaces and message protocols. Microservices are

small isolated, loosely-coupled applications that work in cohesion in MSbA which can be

considered as an evolution of SOA. However, SOA concentrates on enterprise-wide

integration with centralized management on services, MSbA prioritize autonomous,

single-purpose services with decentralized governance.

 DDD focuses on understanding domain, modelling it by exploring domain

knowledge, defining sub-domains with bounded context in domain, employing a

ubiquitous language within each bounded context to establish common understanding

 18

between stakeholder. Bounded context defines the boundaries that each boundary has a

particular model, and makes sure that each microservice has a unique model that is free

from ambiguity. Ubiquitous language helps microservices reflect business needs

unambiguously.

 Event Storming is a workshop for exploration of business domains by focusing

on domain events that are essential for event-driven microservices architecture. A

workshop requires physical space, and attending of domain experts to explore domain

events. It can be challenging for remote participation and orchestrating many attendances.

 In brief, the literature reveals that there is no de-facto method for analysis and

design of Microservice-based architecture (MSbA). Our contribution in this study to

provide an event-driven analysis and design method, called MicroArc, and a supporting

tool for MSbA.

 19

CHAPTER 3

ANALYSIS AND DESIGN METHOD FOR

MICROSERVICES BASED SYSTEMS AND TOOL

SUPPORT

 In this chapter MicroArc method and tool for analysis and design of Microservices

Based Systems is presented. The first section describes MicroArc method. The second

section describes the MicroArc tool and its usage.

3.1. MicroArc: Event-Driven Analysis and Design Method

 MicroArc is a method for analyzing and designing microservice-based systems

that employs three modeling notations: Business Model Canvas (BMC), Event-driven

Process Chain (EPC), and Microservices Event Flow Diagram (MEFD). The method also

includes a guiding process that outlines the application of notations and a supporting tool

that enables modeling and transition between models.

3.1.1. Business Model Canvas

 Business Model Canvas (BMC) is utilized for modeling both new business ideas

and documenting existing ones.24 It encompasses nine building blocks within the business

model design template and is categorized into four groups: Infrastructures, Offering,

Customers, and Finances (Figure 3.1).

 Infrastructures include followings:

 20

• Key Activities: The vital activities necessary for the company's operations.

• Key Resources: The resources essential for performing key activities.

• Key Partnerships: The required suppliers and partners for business operations.

 Offering includes followings:

• Value Propositions: The products or services offered by the company.

 Customers include followings:

• Customer Segments: The target customers for the company's products or services.

• Channels: The delivery channels for the company's products or services.

• Customer Relationships: The types of relations the company maintains with

customers to ensure business success.

 Finances include followings:

• Cost Structure: The costs necessary to run the business.

• Revenue Streams: The income generated by serving products or services to

customers

 The BMC allows for a high-level analysis and provides overall information about

the system that will be built. The software system is conceptualized as a business idea

and evaluated from different perspectives. The offering perspective enables the

identification of the benefits (value propositions) provided by software to customers. The

customer perspective helps identify the users (customer segments) of the system, ways

(channels) customers can reach it, and types of relationships (relationships) that can be

established with customers. The infrastructure perspective enables the identification of

key elements, such as activities, resources, and partnerships that are necessary to operate

 21

and maintain the software. The finance perspective helps identify income from software

usage and expenditures on infrastructure facilities.

 A ubiquitous language is a set of unambiguous vocabularies shared by all

stakeholders in the domain.25 In order to successfully develop a software, it is necessary

to define it as early as possible. The customer perspective can help build a shared

vocabulary. Key activities in BMC enable the elicitation of high-level requirements for

the software that will be developed. Thus, rough boundaries about domains can be learned

from key activities.

Figure 3.1. Meta-model for BMC elements and relations

 An example BMC diagram is depicted in Figure 3.2. In this example, software to

manage and automate Internship Application in educational institutes is modeled using

BMC:

• Value proposition: Software will maintain and automate internship applications in

education institutes.

• Customer Segments: The software will be used by educational institutes.

 22

• Customer Relationships: A support mechanism for customers will be held to

resolve issues when using the software.

• Channels: The software will be web based and be served SaS (software as a

Service)

• Key Activities: The software has the following functionalities; internship

announcement management, student internship application management, and

company internship opportunity management.

• Key Resources: Software developers will maintain the software, and support

persons will support customers.

• Key Partnerships: As the software will be run on a cloud server, a cloud service

providers will be key partner.

• Cost Structures: Software developers, Support persons, and Cloud service

providers will be expenses.

• Revenue Streams: Subscription of Educational institutes to the software will be

income.

Figure 3.2. BMC diagram

 23

3.1.2. Event-Driven Process Chain

 An Event-Driven Process Chain (EPC) is a flow diagram used to model business

processes.26 The core elements of the EPC are Event, Process and Logical Connectors

(XOR, AND, and OR) (Figure 3.3).

 Event is a state that controls or influences the progression of the process. Event

triggers the process, or is produced by the process. Process is the task or activity

performed to achieve an objective. Logical Connectors are used to control the flow. The

Flow is split or joined using the connectors. XOR considers only one path, AND considers

all paths, and OR considers at least one path.

 EPC allows you to model process flows from high level to low level. In EPC, a

process can have a sub-process, so a process can be modeled in more detail. This increases

the clarity of models.

Figure 3.3. Meta-model of EPC elements and relations

 A business process is modeled as a sequence of activities. It begins with an event

that triggers the process. When a process completes its task, it produces an event that

 24

triggers another process. An example EPC diagram is depicted in Figure 3.4. In this

example, a customer uses an e-shopping application to place an order. He/she places an

order. If the requested product is in stock, then it is prepared for shipping, and inventory

is updated by reducing the number of products in stock. If the requested product is out of

stock, it is reordered, and the customer is notified of the late shipment.

Figure 3.4. EPC diagram

 25

3.1.3. Microservices Event Flow Diagram

 The Microservices Event Flow Diagram (MEFD) enables the modeling of

microservices and their interactions, including event streams and auxiliary components

such as Event Brokers, API Gateways, Service Registries, etc. (Figure 3.5). It provides a

high-level overview of how various components communicate and collaborate in a micro-

service-based system.

Figure 3.5. Meta-model for MEFD elements and relations

 An example Microservice Event Flow diagram is depicted in Figure 3.6. In this

example, the Internship Management software is decomposed into five microservices and

 26

these microservices communicate asynchronously with each other using an event broker

that handles event flows.

Figure 3.6. Microservice Event Flow diagram

3.1.4. Integration of Diagrams

 MicroArc allows for the transition between models. In BMC model, the flow of

key activities (business processes) was modeled using the EPC model. Additionally, in

the MEFD, the flow of a microservice's activities (business processes) is modeled using

the EPC model. Therefore, integration between models can be established, and these

changes can be reflected in the connected models. Interactions between models are

depicted in Figure 3.7.

 27

Figure 3.7. Interactions between models

3.1.5. Implementation Steps of MicroArc Method

 MicroArc method consists of the phases of modeling a business idea, business

processes, and event flows between microservices (Figure 3.8).

 Business idea modeling is based on defining the business idea from different

perspectives using BMC. Key Activities in BMC provide information about the business

domain and define high-level system functionalities. Ubiquitous language, which is

important for establishing a common understanding between stakeholders, can be

identified from key activities.

 Business process modeling is based on defining the flow of the activities of a

system’s functionalities using EPC. EPC enables the identification of events and activities

(process) of the functionalities. In EPC, events enable the definition of boundaries of

 28

microservices based on the high cohesiveness of activities in a process flow. EPC can

model the flow of activities at different levels of detail. An activity (process) in EPC can

have a sub-model (sub-process) to model its internal flow in more detail.

 Event flow modeling is based on showing event flows between microservices

using MEFD. MEFD shows published events that are published from microservices and

subscribed events that are subscribed to by microservices.

Figure 3.8. MicroArc method implementation phases

 The Analysis and Design of microservices based systems using MicroArc Method

involves the following steps:

1. Build BMC of software system: The software system is initially conceptualized

as a business idea, and then a Business Model Canvas is created. The BMC model

helps identify the key activities related to the system.

2. Identify High-level Functionalities of software system: The key activities

identified in the BMC model are considered as high-level system functionalities.

3. Establish EPC for the functionalities of software system: An event-driven

process chain model is employed to conduct a detailed analysis of key activities.

 29

The EPC model defines the flow of each key activity by illustrating events,

activities (processes), and control points. This modeling technique offers a visual

representation of the system processes and their relationships.

4. Aggregate activities based on high cohesion: Activities identified in the EPC

model are aggregated based on their high cohesion. One of the main

characteristics of a microservices cohesion. Microservices encourages high

cohesive architecture. Cohesion refers to how well the individual elements within

an application work together. This aggregation step aims to group the related

activities, enhance modularity, and reduce dependency. The functionality of a

microservice consists of processes working in cohesion.

5. Identify Microservices and related events: Once activities are aggregated,

candidate microservices are identified based on these aggregated activities.

Selecting Microservices based on aggregated activities helps to define the

boundaries and responsibilities of each service.

6. Establish MEFD of microservices: The final step involves using the

Microservices Event Flow Diagram to model the interaction between

microservices and illustrate event streams. MEFD provides a visualization of how

microservices would communicate with each other by exchanging events.

 Although the MicroArc model appears to have sequential steps, it can handle any

requirement change. When a requirement change occurs to update an existing

functionality or to add a new functionality, the flow of activities of this functionality is

re-modeled using EPC. The newly created EPC model is then reviewed to identify new

events that can redefine the boundaries of microservices. Boundary changes can initiate

a new microservice or update its behavior.

3.2. MicroArc Tool

 A web-based tool to support MicroArc model has been developed. The MicroArc

tool enables analysts to use MicroArc method notations to perform event-driven analysis

and design for Microservice based architectures. The MicroArc tool is implemented using

 30

Eclipse Sirius platform. Eclipse Sirius allows creating a graphical modeling workbench

using Eclipse Modeling Framework (EMF). EMF enables the creation of custom models

that include rules and validations within the created model.

 This section presents the high-level functional requirements of the MicroArc tool

and its architecture.

3.2.1. High Level Requirements

 The high-level functional requirements of the MicroArc tool that supports the

MicroArc notation are depicted as a use case diagram in Figure 3.9.

 Main functionalities of MicroArc tool are classified as Project related, and Model

related. These functionalities and their definitions are given below:

• Create Project: The analyst creates a project to which models are assigned. The

project can be a new project that will be implemented or a new version of a project.

In the MicroArc tool, models are related to a project.

• List Project: Created projects are listed to open them to create models. Analysts

have the ability to perform various operations such as deletion, renaming, and

download on the listed projects.

• Delete Project: The analyst can delete a project from the listed ones. When a

project is deleted, all models belonging to it are also deleted.

• Download Project: All projects in MicroArc are stored in a database. Analyst can

download a project, if he/she wants to store it in his/her storage. When a project

is downloaded, all models belonging to it also get downloaded.

• Upload Project: Analyst can upload a project from his/her storage to MicroArc

tool. The uploaded project is stored in a database. When a project is uploaded, all

models belonging to it are also uploaded and stored in the database.

• Rename Project: Analyst can rename a project with a desired name.

• Create BMC Model: BMC model that is belongs to a project is created. Analyst

uses BMC model elements for model creation and connects related ones with

connectors.

 31

• Create EPC Model: EPC model that is belongs to a project is created. Analyst

uses EPC model elements for model creation and connects related ones with

connectors.

Figure 3.9. MicroArc tool Use-cases

 32

• Create Microservice Model: Microservice model that belongs to a project is

created. Analyst uses Microservice model elements for model creation and

connects related ones with connectors.

• List Model: The created models are listed, allowing analyst to open them and

create new ones. Analyst can make some operations (delete, rename, update,

download) on listed models.

• Delete Model: Analyst can delete a model from the listed ones.

• Rename Model: Analyst can rename a model with a desired name.

• Update Model: Analyst can update a model to rearrange its model element.

• Download Model: All models in MicroArc are stored in a database. Analyst can

download a model if he/she wants to store it in his/her storage.

• Upload Model: Analyst can upload a model from his/her storage to MicroArc tool.

Uploaded model is stored in a database. When a model is uploaded, it belongs to

a project.

3.2.2. Architecture of the Tool

 The MicroArc tool is developed as a web application that uses a database to store

models. The user interface of MicroArc tool has three areas: Model Explorer, Model

View, and Details View (Figure 3.10).

• Model Explorer allows analyst to manage models of a project. Analyst can see a

list of models with model’s elements and create, delete, update these models.

• Model View allows analyst to draw model by using Contextual Palette which

includes the model’s elements. Analysts can also create various visualizations on

models, including zooming in and out, full screen mode, importing SVG files, and

arranging all elements.

• Details View enables analyst to see properties of the model, and the model’s

elements. It also allows analyst to update properties.

 33

Figure 3.10. MicroArc tool User-interface

 34

CHAPTER 4

CASE STUDIES

 In this chapter, Case Studies (Exploratory and Explanatory) with their design and

results are presented respectively. The overall discussion of these studies is given in the

last section.

4.1. Exploratory Study 1- Comparison of OO and EO

 This exploratory study was performed to determine if the Object Oriented or

Event Oriented analysis approaches provide a good strategy for developing Microservices

based Systems (MSbS). In this study, two approaches were compared with respect to the

key MSbS characteristics, and the advantages and difficulties of each approach were

discussed.7

4.1.1. Research Question in Exploratory Study 1

 Following research question, related proposition, and validation method were

defined for exploratory study 1:

• Research question: How successful are Object Oriented Analysis and Design

(OOAD) and Event Oriented Analysis and Design (EOAD) in meeting the key

characteristics required by a Microservices based Architecture?

• Proposition: The goal is to observe how OOAD or EOOD fulfill key MSbS

characteristics and what the advantages and difficulties of each approach are. This

 35

proposition would be validated by implementing a case study with two

approaches.

• Validation method for proposition: Key MSbS characteristics will be evaluated

whether they are met sufficiently by OOAD or EOAD.

4.1.2. Activity Planning in Exploratory Study 1

 The following activities were planned to performed within case study:

1. Case Selection: Four case selection criteria will be established in order to

effectively reach the research goal and satisfy the case study validity concerns.

The first criterion is that the selected case should include processes that can be

automated. The second criterion is that there should be specific events that will

trigger each process. The third criterion is that the case should be large enough to

implement at least two microservices; nonetheless it should be small enough to

be implemented as whole in an adequate time. The last criterion is that the selected

case should be sufficiently detailed described so that it can be implemented

without struggling with problem domain details.

2. Performing Event Oriented Analysis and Design (EOAD): Selected case will be

performed using the EOAD approach.

3. Performing Object Oriented Analysis and Design (OOAD): The selected case will

be performed using the OOAD approach. Two teams will implement the OOAD

approach to prevent potential bias in the implementation both approaches with the

same team.

4. Analyzing the result: Evaluation will be made based on implementations of both

EOAD and OOAD approaches on the case, which will then be compared with

prominent characteristics of MSbA.

 36

4.1.3. Mitigation of Threats to Validity in Exploratory Study 1

 The exploratory case study was performed with IzTech third-year students who

participated in OOAD and with a team who participated in EOAD, which is defined as a

graduate course in IzTech. Although the third-year student team was selected with some

experience with microservices, it can be thought they are relatively inexperienced. In

order to prevent potential bias of team implemented both approaches, the third-year

student team was involved as a second group in OOAD.

4.1.4. Exploratory Study 1 Design and Execution

4.1.4.1 Case Selection in Exploratory Study 1

 “The graduate student application and evaluation process” at IzTech was selected

as a case that satisfies all four criteria mentioned in the case activity planning section.

First, it is suitable for automation in a distributed execution manner by consisting of fair

enough small and isolated subprocesses. Second, all subprocesses can be triggered from

predefined events and executed in cohesion. Third, it is large enough to be implemented

in a semester. Last It is modeled by using the well-defined instructions on IzTech’s web

page. IzTech’s application to graduate programs process activities are given in Table 4.1.

Table 4.1. IzTech graduate student application activities

Activity Description

Application Criteria to apply to master or doctorate programs for applicants are

defined, and it defines how and when to apply.

Verification Applicants are verified based on application criteria.

Evaluation Applicants are evaluated by performing an interview or/and exam.

Notification Applicants who are successful are notified to enroll.

 37

4.1.4.2 Performing Event Oriented Analysis and Design (EOAD)

 The selected case was performed by using EOAD methodology. The selected

process is modelled (AS-IS) using eEPC (extended Event-Driven Process Chain)

notation. eEPC mainly consists of events, functions (processes), connectors (xor, and, or),

and other views (such as roles, product/service, Data Input/Output, etc.). Event triggers a

function (process) and the function produces an event. Process flow is modelled as event

driven process chain. eEPC allows modeling a process flow in any detail (from high level

to low level). Functions in a process flow can be modeled more detailed as sub-processes.

The eEPC model of the AS-IS process of the selected case is depicted in Figure 4.1. The

selected process starts with an announcement of application to the graduate programs,

after applicants apply the programs, verification of the applicants starts. Verified

applicants are interviewed and assessed. Finaly, the results are announced.

 In order to identify the bounded context of the microservices from model, the TO-

BE model of the process is modeled to become automated in Figure 4.2. In EOAD, events

draw the boundaries of bounded context. A microservice consists of related (high

cohesion) processes (activities), and, within this bounded context, processes perform their

functionalities assigned to them within collaboration. Application, Verification,

Evaluation and Notification microservices are identified from TO-BE model.

 38

Figure 4.1. EPC for graduate student application AS-IS

 39

Figure 4.2. EPC for graduate student application TO-BE

4.1.4.3 Performing Object Oriented Analysis and Design (OOAD)

 The selected case was performed by using OOAD methodology. First the use

The selected case was performed by using OOAD methodology. First the use cases were

identified (Figure 4.3). Then the classes were identified in a class diagram. The class

diagram provides a detailed representation of the main elements and the relations between

them. Finaly the system behaviors were shown in activity diagram (Figure 4.4).

Performing EOAD activities could have given some insight about Microservices and it

could be bias for finding Microservices from OOAD approach. A different team from

IzTech third-year students independently performed OOAD approach for same case.

 40

Figure 4.3. Graduate student application Use-cases

Figure 4.4. Graduate student application Activity diagram

 41

4.1.5. Analysis and Results of the Exploratory Study 1

 An exploratory case study was conducted and analyzed for exploratory purposes.

In EOAD approach, microservices and related events can be found from EPC model;

however, OOAD approach could not help to find microservices. As a result, OOAD was

unable to provide a strategy for developing an MSbA for the given case.

 The comparison and evaluation of two approaches (EOAD and OOAD) based on

prominent characteristics of MSbS are discussed:

• Loose coupling: Object-Oriented Analysis and Design provides loose coupling at

the class level but does not separate business capabilities. In EOAD, separation is

based on business capabilities.

• Cohesion: Object Oriented Analysis and Design focuses on the cohesion between

classes. Class-based decomposition does not help in keeping all the functionally

related processes together. In EOAD, separation on business capabilities provides

high cohesion for microservices.

• Isolation: It is not possible for Object Oriented Analysis and Design methods to

create a completely isolated class structure based on class decomposition.

• Asynchronous communication: In Object Oriented Analysis and Design,

communication is among the class methods that do not provide a strategy for

asynchronous communication. In EOAD, using events for message transfer

between microservices provides asynchronous communication

• Single responsibility: In Object Oriented Analysis and Design, the system is

separated by classes. However, the sole responsibility of the class may not

correspond to the microservice. In EOAD, separation on business capability

defines the boundaries of responsibilities.

• Fault tolerance: In Object Oriented Analysis and Design a system is less tolerant

to system failures as it causes an inter-process dependency between classes,

shared methods and data attributes used by multiple sub-processes.

 42

4.2. Exploratory Study 2- Establishing Microarc Method and Tool

 This exploratory study was performed to establish an event driven analysis and

design method, called MicroArc, for Microservices based systems. In this study tool

requirements were identified to support MicroArc method.

4.2.1. Research Questions in Exploratory Study 2

 Following research questions, related propositions, and validation methods were

defined for exploratory study 2:

• Research Question 1: How to discover microservices and related events from

event-driven process chain (EPC) model?

• Proposition 1: The goal is to define microservices and related events from EPC

model. This proposition would be validated by implementing a case study.

• Validation method for proposition 1: Identified microservices will be evaluated

whether they are high cohesive.

• Research Question 2: How to discover business domain and their sub domains?

• Proposition 2: The goal is to define sub domains of a software system. This

proposition would be validated by implementing a case study.

• Validation method for proposition 2: Software system will be modelled using

BMC and evaluated whether Key activities in BMC indicate sub domains.

• Research Question 3: How to show event flows between microservices?

• Proposition 3: The goal is to show event flows between microservices. This

proposition would be validated by implementing a case study.

• Validation method for proposition 3: An event flow model will be defined with

model elements and event flows between microservices will be modelled using

this diagram.

 43

4.2.2. Activity Planning in Exploratory Study 2

 The following activities were planned to performed within case study 2:

1. Case Selection: Following case selection criteria will be established in order to

effectively reach the research goals and satisfy case study validity concerns. (1)

Case should have activities that can be automated. (2) Case should be clearly

described so that it can be implemented without requiring a thorough

understanding of the problem domain.

2. Performing MicroArc method: Selected case will be performed using MicroArc

method, and supporting tool requirements will be identified.

3. Analyzing the result: Evaluation will be made based on implementation of

MicroArc method on the case, then results will be analyzed whether the goals of

research question have been met.

4.2.3. Mitigation of Threats to Validity in Exploratory Study 2

 The exploratory case study was performed by researcher. He was experienced

with Business Model Canvas (BMC), modelled many business processes using EPC, and

attended to a graduate course in IzTech.

4.2.4. Exploratory Study 2 Design and Execution

4.2.4.1 Case Selection in Exploratory Study 2

 “AI Estimator: AI Based Size and Effort Estimation Tool” definition was selected

as a case that satisfies all criteria mentioned in the case activity planning section. (1) It

 44

has activities that suitable for automation. (2) It will be caried out in a research project,

and has clear definition.

4.2.4.2 Performing MicroArc Method

 The selected case was performed by using MicroArc method. The AI Estimator is

a tool used to measure the size of a project using artificial intelligence models trained

previously based on completed software projects. Software Organizations use AI

Estimator to predict functional sizes of their potential projects and estimate their efforts.

The AI Estimator provides Software Size and Effort Estimation, AI Model Training, and

Benchmarking functionalities to users.

 Initially, it was modeled using the BMC model which is used to illustrate the

business perspective in Figure 4.5. Subsequently, key activities were modeled to identify

the flow of these activities by employing the EPC. Table 4.2 describes key activities and

their descriptions. An EPC diagram of the AI Estimator Model Training key activity is

shown in Figure 4.6. Then, candidate microservices were discovered by aggregating the

processes in the flow based on high-cohesion. Table 4.3 lists candidate microservices and

their triggered and produced events. Finally, events triggered and produced by the

microservice were selected, as shown in Figure 4.7.

Table 4.2. AI Estimator Key Activities

Key Activities Description

Software size and Effort
estimation

Software size and effort estimation enable companies to
estimate the size and effort of a project based on requirements.
Size and Effort estimation can be performed using either
custom-trained or pre-trained AI models.

AI Model Training Size and Effort estimations are made using AI Models. AI
models are trained using previously labeled project
requirements and classified based on project types, software
development lifecycles, and programming languages.

Benchmarking Benchmarking allows companies to compare their effort per
size values with other companies based on project types,
development languages, life cycles, and so on.

 45

Figure 4.5. BMC model of AI Estimator

 46

Figure 4.6. EPC of AI Estimator Model Training

 47

Figure 4.7. MEFD of AI Estimator

Table 4.3. AI Estimator microservices definitions

Microservices Cohesion Triggered Event Produced Event

Project Management Project related
activities

- Model training
started,
Benchmarking
selected,
Estimation
started

Model Training Model training
activities

Model training
started

Model saved

Estimation Estimation
activities

Estimation
started

Estimation saved

Benchmarking Benchmarking
activities

Benchmarking
selected

Benchmarking
completed

Notification Notification
activities

Model saved
Estimation saved
Benchmarking
completed

Notification sent

 48

4.2.5. Analysis and Results of the Exploratory Study 2

 The case study was performed and analyzed for exploratory purposes.

The use of BMC provides the following benefits:

1. Key Activities give information about sub domains of AI Estimator

2. Key Activities give information about ubiquitous language that is used in sub

domains. They describe high-level functionalities of a system, knowledge within

these functionalities describe ubiquitous language

 During the case study key activities were modeled by using EPC to extract the

flow of activities. EPC is event-driven modeling approach, an activity flow is described

as event-process chains. Event triggers a process and initiates it to perform its job, after

the process completed its job, it produces a new event that can trigger other process. One

of the main characteristics of a microservices cohesion. Microservices encourages high

cohesive architecture. Cohesion refers to how well the individual elements within an

application work together. It was seen that aggregating processes based on cohesiveness

can indicate a microservice. The functionality of a microservice consists of processes

working in cohesion.

 Identified microservices and related events were modelled by using MEFD to

show event flows between microservices. MEFD helps to model synchronous or

asynchronous communications, published events that produced by microservices, and

subscribed events that subscribed to by microservices.

 Based on case study results, tool requirements were elicited. Supporting MicroArc

tool should have following functionalities:

1. Tool should support BMC, EPC and MEFD modeling.

2. Tool should have a model view that provides a modeling environment

3. Models should be stored in permanent storage

4. Integration between models should be supported.

5. There should be a microservice icon in EPC, so aggregated processes can be

linked to microservice icon.

 49

4.3. Explanatory Case Study

 This explanatory study was performed to validate the MicroArc method by

comparing with another study that uses the same problem definition and was developed

by İzTech undergraduate students using the Microservice Architecture.

4.3.1. Research Questions in Explanatory Study

 Following research question, related proposition, and validation method were

defined for explanatory study:

• Research Question: What are the perceived benefits of MicroArc Method and tool

when developing an event-driven microservices software?

• Proposition: Using MicroArc method and tool would bring benefits such as

discovering microservices and related events, reflecting changes between models.

• Validation method for proposition: Analysis and design of case will be made

using MicroArc method and results will be compared with another study that was

developed by undergraduate students to evaluate effectiveness of MicroArc

method.

4.3.2. Activity Planning in Explanatory Study

 The following activities were planned to performed within case study:

1. Case Selection: Three case selection criteria will be established in order to

effectively reach the goals and satisfy case study validity concerns. First, case

should have activities that can be automated. Second, case should be clearly

described so that it can be implemented without requiring a thorough

 50

understanding of the problem domain. Last, case should be implemented by others

and its architecture should include event-driven microservice architecture.

2. Performing case study: Selected case will be performed using MicroArc method

and compared with other study that implemented same case.

4.3.3. Mitigation of Threats to Validity in Explanatory Study

 The exploratory case study was performed by the researcher and IzTech

undergraduate students who implemented the same case. The researcher and students

have basic knowledge about EPC.

4.3.4. Explanatory Study Design and Execution

4.3.4.1 Case Selection in Explanatory Study

 "Summer Internship Management process" at IzTech was selected as a case that

satisfies all three criteria mentioned in the case activity planning section. First, it is

suitable for automation in a distributed execution manner by consisting of fair enough

small and isolated subprocesses. Second, it is modeled by using the well-defined

instructions on IzTech’s web page. Last, case was implemented by IzTech undergraduate

students as a homework.

 Summer Internship Management process has following requirements:

• Students should be informed about the internship rules,

• The documents required for the internship should be organized and updated, and

made them accessible to students,

• Internship opportunities from companies should be announced to students,

• Students’ SGK declarations should be submitted,

 51

• Students’ internship documents should be collected,

• Students should be graded according to their competence in the internship

4.3.4.2 Performing MicroArc Method

 The selected case was performed by using MicroArc method. MicroArc method

consists of 6 steps. First, Summer Internship Management process was modelled using

BMC. Second, Key Activities were identified as high-level functionalities (Figure 4.8).

Third, the flow of each key activity was modelled by using EPC, and events, activities

(processes), control points, that are related with a key activity, were elicited. Fourth,

related activities within a key activity were aggregated based on their high-cohesion

(Figure 4.9). Fifth, Aggregated activities were selected as candidate microservices. Last,

MEFD was created to model event flows between microservices (Figure 4.10).

Figure 4.8. BMC of Summer Internship Management

 52

Figure 4.9. EPC of Internship Announcement Management

 53

Figure 4.10. MEFD of Summer Internship Management

Figure 4.11. Undergrad Team Microservices for Summer Internship Management

 54

4.3.5. Analysis and Results of the Explanatory Study

 The explanatory case study was performed and analyzed for explanatory

purposes. The comparison and evaluation of two studies based on effectiveness of

MicroArc method.

 Microarc and other study (undergrad team) have used EPC to model internship

activities. Both studies have found similar microservices (Figure 4.10 and Figure 4.11).

Undergrand team uses the same microservice for handling internship announcements and

company opportunity requests; on the other hand, MicroArc suggests different

microservices. The microservices and events for both study is depicted in Table 4.4 and

Table 4.5.

Table 4.4. MicroArc’s Microservices and related events of Summer Internship

MicroArc Microservices MicroArc Events

Application Management: for handling

application requests

Pub: Application rejected, SSI certificate loaded,

Summer practice finished

Sub: Opportunity published, Opportunity unpublished

Opportunity Management: for handling

company opportunity requests

Pub: Opportunity published, Opportunity rejected,

Opportunity unpublished

Internship Announcement Management:

for handling internship announcement

Pub: Announcement published

Announcement unpublished

Notification: for sending message to

relevant users

Sub: Opportunity published, Opportunity rejected,

Opportunity unpublished, Application rejected, SSI

certificate loaded, Need update

Announcement published, Announcement

unpublished

Evaluation: for evaluating of summer

internship

Sub: Summer practice finished

Pub: Need update

Authentication activities are not handled in

this case study, a third-party application can

be used for authentication and

authorization.

 55

Table 4.5. Undergrad Team’s Microservices and related events of Summer Internship

Undergrad Team Microservices Undergrad Team Events

Application: for handling application

requests

Pub: Application file cannot uploaded

Announcement: for handling internship

announcement and company opportunity

requests

Pub: Announcement deleted, Announcement accepted,

Announcement rejected

Announcement: for handling internship

announcement and company opportunity

requests

Notification: for sending message to

relevant users

Sub: Graded, Report rejected, Document evaluation

process ended, Application file cannot uploaded

Evaluation: for evaluating of summer

internship

Pub: Graded, Report rejected, Document evaluation

process ended

Sub: internship ended

Authentication: for handling

authentication and registering activities

Pub: New company saved, Company accepted

 56

CHAPTER 5

CONCLUSION

 In this study, an event-driven analysis and design method for microservice-based

systems called MicroArc is presented. The application of the proposed method and

supporting tool are investigated in case studies (two exploratory and one explanatory). In

this chapter, the results and findings of the study are discussed, the limitations of the

proposed method, and directions for future works are presented.

5.1. Contributions

 The goal of this study is to establish a method and supporting tool for the analysis

and design of microservice-based systems in an event-driven manner. MicroArc method

comprises modeling notations, a guiding process to articulate how the method is applied,

and a supporting tool that enables modeling and transitions between models. It allows

users to identify events that are produced or consumed by microservices from the business

processes of an implemented software system and define candidate microservices based

on high cohesion.

 MicroArc allows transitions between models; therefore, integration between

models can be established, and changes can be reflected in the connected models. Using

this approach, developers can identify events and microservice candidates by modeling

the flow of processes in the early phase of development.

 The major contributions of this study are listed below:

• MicroArc method allows modeling a system from different perspectives and

enables the identification microservices with related events

- BMC helps identify the key activities related to the system.

 57

- EPC defines the flow of each key activity by illustrating events, activities

(processes), and control points. Candidate microservices are identified

based on aggregated activities.

- MEFD shows interactions between microservices and illustrates event

streams

• Since MicroArc method integrates models, any change in a model is reflected in

other models.

• The supporting tool helps an analyst to model a system by using MicroArc

method, and stores models in permanent storage.

• The supporting tool allows creating sub-processes in EPC. If a model is getting

too large to easily view and difficult to follow the flow of process, activities can

be divided into sub-processes to increase the readability of models.

 The minor contributions achieved as part of this study are listed bellows:

• BMC model enables modeler to make an early size estimation on Key

Activities.27 It helps to make predictions about the duration and effort of a

software system in the early stages.

• EPC model facilitates the estimation of the size of processes (activities).28 It

aids in estimating the effort required for the development phases of software

systems.

5.2. Limitations and Future Work

 The limitations of the study are given below:

• MicroArc method relies on Business Model Canvas (BMC) and Event-Driven

Process Chain (EPC) methodologies. Using MicroArc method requires

knowledge of these methodologies. A modeler should have basic foundations for

BMC and EPC.

• Microservices based architecture has many challenges, like distributed system

architectures. Microservices functionalities and related events may undergo

changes to address challenges during the coding phase. However, these changes

 58

may result in technical dept and models may not accurately reflect the real

situations.

 The future works related to the study are given below:

• The following functionalities can be included in supporting tools:

- The tool can create code templates for microservices and export them to

various coding environments.

- The tool can create user stories from EPC diagrams and export them as

backlog items to various project management tools.

 59

REFERENCES

1. Sampaio, A. R.; Kadiyala, H.; Hu, B.; Steinbacher, J.; Erwin, T.; Rosa, N.;

Beschastnikh, I.; Rubin, J. Supporting Microservice Evolution. 2017 IEEE

International Conference on Software Maintenance and Evolution (ICSME) 2017.

https://doi.org/10.1109/icsme.2017.63.

2. Thönes, J. Microservices. IEEE Software 2015, 32 (1), 116–116.

https://doi.org/10.1109/ms.2015.11.

3. Bellemare, A. Building Event-Driven Microservices; O’Reilly Media, 2020.

4. Dragoni, N.; Giallorenzo, S.; Lafuente, A. L.; Mazzara, M.; Montesi, F.; Mustafin,

R.; Safina, L. Microservices: Yesterday, Today, and Tomorrow. Present and Ulterior

Software Engineering 2017, 195–216. https://doi.org/10.1007/978-3-319-67425-

4_12.

5. Mamczur, P.; Mol, T. C. M.; Nowak, M. State of Microservices; Software House,

2020

6. Bilgin, B.; Unlu, H.; Demirörs, O. Analysis and Design of Microservices: Results

from Turkey. Turkish National Software Engineering Symposium (UYMS) 2020, 1–

6. https://doi.org/10.1109/UYMS50627.2020.9247022.

7. Unlu, H.; Tenekeci, S.; Yıldız, A.; Demirors, O. Event Oriented vs Object Oriented

Analysis for Microservice Architecture: An Exploratory Case Study. IEEE Xplore

2021. https://doi.org/10.1109/SEAA53835.2021.00038.

8. Brandolini, A. Event Storming; Leanpub, 2019.

9. Hevner, A. R.; March, S. T.; Park, J.-S.; Ram, S. Design Science in Information

Systems Research. Management Information Systems Quarterly 2004, 28 (1), 75–

105. https://doi.org/10.5555/2017212.2017217.

10. Offermann, P.; Levina, O.; Schönherr, M.; Bub, U. Outline of a Design Science

Research Process. Proceedings of the 4th International Conference on Design Science

Research in Information Systems and Technology - DESRIST ’09 2009.

https://doi.org/10.1145/1555619.1555629.

11. Martin, Robert C. Agile Software Development; Pearson Education, 2003.

12. Bellemare, A. Building an Event-Driven Data Mesh; O’Reilly Media Inc, 2023.

 60

13. Woolf, B. Event-Driven Architecture and Service-Oriented Architecture. OOPSLA

2006: Workshop on Event Driven Architecture, 2006.

https://research.ibm.com/haifa/Workshops/oopsla2006/present/w06_eda_woolf.pdf

(accessed 2024-10-01).

14. Papazoglou, M. P. Service-oriented computing: concepts, characteristics and

directions. Proceedings of the Fourth International Conference on Web Information

Systems Engineering 2003, 3-12. https://doi.org/10.1145/944217.944233.

15. Evans, E. Domain-Driven Design Reference: Definition and Pattern Summaries;

Domain Languages Inc, 2015.

16. Li, S.; Zhang, H.; Jia, Z.; Li, Z.; Zhang, C.; Li, J.; Gao, Q.; Ge, J.; Shan, Z. A

Dataflow-Driven Approach to Identifying Microservices from Monolithic

Applications. Journal of Systems and Software 2019, 157, 110380.

https://doi.org/10.1016/j.jss.2019.07.008.

17. Kamimura, M.; Yano, K.; Hatano, T.; Matsuo, A. Extracting Candidates of

Microservices from Monolithic Application Code. IEEE Xplore 2018.

https://doi.org/10.1109/APSEC.2018.00072.

18. Al-Debagy, O.; Martinek, P. A New Decomposition Method for Designing

Microservices. Periodica Polytechnica Electrical Engineering and Computer

Science 2019, 63 (4), 274–281. https://doi.org/10.3311/ppee.13925.

19. Ma, S.; Fan, C.-Y.; Chuang, Y.; Liu, I-Hsiu.; Lan, C.-W. Graph-Based and Scenario-

Driven Microservice Analysis, Retrieval, and Testing. Future Generation Computer

Systems 100 (November) 2019, 724–735.

https://doi.org/10.1016/j.future.2019.05.048.

20. Santos, N.; Salgado, C. E.; Morais, F.; Nascimento, M.; Silva, S.; Martins, R.; Pereira,

M.; Rodrigues, H.; Machado, R. J.; Ferreira, N.; Pereira, M. A Logical Architecture

Design Method for Microservices Architectures. ECSA 2019 Companion

Proceedings 2019. https://doi.org/10.1145/3344948.3344991.

21. Baresi, L.; Garriga, M.; De Renzis, A. Microservices Identification through Interface

Analysis. Service-Oriented and Cloud Computing 2017, 19–33.

https://doi.org/10.1007/978-3-319-67262-5_2.

 61

22. Gysel, M.; Lukas Kölbener; Giersche, W. I.; Zimmermann, O. Service Cutter: A

Systematic Approach to Service Decomposition. Lecture Notes in Computer

Science 2016, 185–200. https://doi.org/10.1007/978-3-319-44482-6_12.

23. Bajaj, D.; Goel, A.; Gupta, S. C. GreenMicro: Identifying Microservices from Use

Cases in Greenfield Development. IEEE Access 2022, 10, 67008–67018.

https://doi.org/10.1109/access.2022.3182495.

24. Osterwalder, A. The Business Model Ontology: A Proposition in a Design Science

Approach. Ph.D. Thesis, University of Lausanne, 2004.

25. Evans, E. Domain-Driven Design : Tackling Complexity in the Heart of Software;

Addison-Wesley, 2014.

26. Scheer, A.-W.; Nüttgens, M. ARIS Architecture and Reference Models for Business

Process Management. Lecture Notes in Computer Science 2000, 376–389.

https://doi.org/10.1007/3-540-45594-9_24.

27. Yıldız, A.; Demirörs, O. Size Estimation From a Business Idea. Turkish National

Software Engineering Symposium UYMS 2022, 89–99.

28. Kaya, M.;Demirörs, O. E-Cosmic: A Business Process Model Based Functional Size

Estimation Approach. 37th EUROMICRO Conference on Software Engineering and

Advanced Applications 2011, 404-410. https://doi.org/10.1109/seaa.2011.60.

 62

APPENDIX A

HOW TO USE MICROARC TOOL

1. Click “Blank Project” to create a new project.

Figure A.1. Create blank project

 63

2. Enter the project name then click “Create”.

Figure A.2. Create new project

3. Click “BMC” in order to create a new BMC model.

Figure A.3. Create BMC

 64

4. Click “BMC Model Diagram” in order to create a new BMC Model Diagram.

Figure A.4. Create BMC model

5. Click “BMC Model Diagram” in Explorer View to open Model View and start

modeling.

Figure A.5. BMC model diagram

 65

6. Click “EPC” in order to create EPC model.

Figure A.6. Create EPC

7. Click "EPC Model Diagram" in order to create a new EPC Model Diagram.

Figure A.7. Create EPC Model

 66

8. Click “EPC Model Diagram” in Explorer View to open Model View and start

modeling.

Figure A.8. EPC model diagram

9. Click Microservices” in order to create Microservice Event Flow Diagram.

Figure A.9. Create MEFD

 67

10. Click "Microservices Model Diagram" in order to create a new Microservices

Model Diagram.

Figure A.10. Create Microservices model

11. Click "Microservices Model Diagram" in Explorer View to open Model View and

start modeling.

Figure A.11. Microservices model diagram

VITA

Ali YILDIZ

Education

• M.Sc.: 1994-1999, Dokuz Eylül University, Faculty of Engineering, Computer

Engineering

Thesis Title: “A Dashboard for personal software process improvement”

Advisor: Assoc. Prof. Dr. Onur DEMİRÖRS

• B.Sc.: 1984-1988, Dokuz Eylül University, Faculty of Engineering, Electronic

Engineering

Academic Experience

• 1997- 1999, Dokuz Eylül University, Research Assistant

Work Experience

• 1999-Continue, Bilgi Grubu, Software Engineer

Publications

• Yıldız, A., Demirörs, O. 2024. "MicroArc: Event-Driven Analysis and Design

Method for Microservices." In International Conference on Industry Sciences and

Computer Science Innovation (iSCSi), Porto, Portugal.

• Hacaloğlu, T., Ünlü, H., Yıldız, A., Demirörs, O. 2024. "Software Size

Measurement: Bridging Research and Practice." IEEE Software 41 (3): 49–58.

https://doi.org/10.1109/MS.2024.3358079.

• Yıldız, A., Demirörs, O. 2022. "Size Estimation From a Business Idea." In Turkish

National Software Engineering Symposium (UYMS 2022), Erzurum.

• Unlu, H., Yıldız, A., Demirörs, O. 2022. "Effort Prediction with Limited Data: A

Case Study for Data Warehouse Projects." In 48th Euromicro Conference on

Software Engineering and Advanced Applications (SEAA), 233–238. Gran Canaria,

Spain. https://doi.org/10.1109/SEAA56994.2022.00044.

