MICROM: A SIZE MEASUREMENT METHOD
FOR MICROSERVICE-BASED
ARCHITECTURES

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
Izmir Institute of Technology
in Partial Fulfillment of the Requirements of the Degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by
Hiiseyin UNLU

December 2024
IZMiR

We approve the thesis of Hiiseyin UNLU

Examining Committee Members:

Prof. Dr. Onur DEMIRORS
Department of Computer Engineering, izmir Institute of Technology

Prof. Dr. Tolga AYAV '
Department of Computer Engineering, Izmir Institute of Technology

Prof. Dr. Oguz DIKENELLI
Department of Computer Engineering, Ege University

Assoc. Prof. Dr. Riza Cenk Erdur
Department of Computer Engineering, Ege University

Assist. Prof. Dr. Emrah INAN '
Department of Computer Engineering, [zmir Institute of Technology

12 December 2024
Prof. Dr. Onur DEMIRORS
Supervisor Department of Computer
Engineering, [zmir Institute of Technology
Prof. Dr. Onur DEMIRORS Prof. Dr. Mehtap EANES
Head of Department of Computer Dean of the Graduate School

Engineering, [zmir Institute of Technology

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my
advisor, Prof. Dr. Onur Demirdrs, for his invaluable guidance, unwavering support, and
encouragement throughout my research. His expertise and mentorship have been
instrumental in shaping my academic life.

I am sincerely thankful to my thesis monitoring committee members, Prof. Dr.
Tolga Ayav and Prof. Dr. Oguz Dikenelli, for their insightful feedback and constructive
suggestions during my monitoring meetings. I am also deeply grateful to jury
members, Assoc. Prof. Dr. Riza Cenk Erdur and Assist. Prof. Dr. Emrah Inan, for their
thoughtful review and valuable comments.

This thesis was supported by TUBITAK ARDEB 1001 [Project Number:
121E389] program, and I extend my gratitude for their financial support.

I express my special thanks to my colleague Tuna Hacaloglu, whose opinions
have made significant contributions to my work. I am also deeply thankful to my friends,
who not only believed in me but also shared countless moments of laughter and joy
throughout this journey. A special mention goes to the Gorillas: Samet Tenekeci, Eren
Uzyildirim, and Altug Yigit.

My sincere thanks go to my mother Emine Betiil Aksoy, my father Ahmet Unlii, and
my brother Ata Unlii for their love, encouragement and support throughout my life. I also
extend my heartfelt thanks to Ulviye Sareg, Serif Sarec, Unzile Yanar, Savas Yanar, Irem
Yanar, and Kaan Yanar for their kindness, support, and belief in me throughout this journey.

I owe my most special thanks to my wife Merve. I am extremely grateful for
motivating and supporting me and not letting me give up. Thank you for loving me,

believing in me and always supporting me.

ABSTRACT

MICROM: A SIZE MEASUREMENT METHOD FOR
MICROSERVICE-BASED ARCHITECTURES

The paradigm shift in architectures has led the new generation of software
projects, such as microservice-based software architecture (MSSA), to move away from
being data-driven and to evolve into a behavior-oriented structure. The usage of a single
database is replaced by the structures in which each microservice is developed
independently and has its own database. While traditional monolithic architectures rely
on functions for data transfer, MSSA wuses structures like event queues for
communication. As a primary input for effort and cost estimation, Functional Size
Measurement (FSM) methods have been used widely for objective size measurement of
monolith software architectures. However, these methods may not respond to the size
measurement of today’s applications, such as MSSA, as they are based on data
movements. In this thesis, we proposed a size measurement method called MicroM,
developed explicitly for MSSAs, which uses events, the base components of MSSAs, for
size measurement. MicroM considers the characteristics of MSSAs and addresses the
shortcomings of existing FSM methods. The proposed method uniquely categorizes
events into functional, architectural, and algorithmic levels. We evaluated the success of
the proposed method by comparing it with the COSMIC FSM method in effort estimation
using real-world data across three different case studies. MicroM achieved an
improvement of up to 32% in Mean Magnitude of Relative Error (MMRE) in the effort
estimation models compared to the COSMIC FSM method.

v

OZET

MICROM: MIKROSERVIS TABANLI MIMARILER ICIN BUYUKLUK
OLCUM YONTEMI

Yazilim mimarisindeki paradigma degisimi, mikroservis tabanli yazilim mimarisi
(MSYM) gibi yeni nesil yazilim projelerinin veri odakli olmaktan uzaklagmasina ve
davranig odakli bir yapiya evrilmesine neden olmustur. Tek bir veri taban1 kullanimi, her
mikroservisin bagimsiz olarak gelistirildigi ve kendi veri tabanina sahip oldugu yapilarla
degistirilmistir. Geleneksel monolitik mimariler veri transferi i¢in fonksiyonlara
dayanirken, MSYM iletisim i¢in olay kuyruklart gibi yapilar kullanmaktadir. Efor ve
maliyet kestirimi i¢in birincil girdi olarak Islevsel Biiyiikliik Ol¢iim (IBO) yéntemleri,
monolitik yazilim mimarilerinin nesnel boyut 6l¢iimii i¢in yaygin olarak kullanilmistir.
Ancak, bu yontemler veri hareketlerine dayandiklari i¢in giiniimiiz uygulamalariin,
ornegin MSYM’nin biiyiikliikk 6l¢climiine yanit vermeyebilir. Bu tezde, MSYM’ler igin
ozel olarak gelistirilmis, MSYM’nin yap1 taslar1 olan olaylar1 biiytliklik Sl¢iimii i¢in
kullanan MicroM adli bir biiyiiklik 6l¢iim yontemi Onerilmistir. MicroM, MSYM’nin
ozelliklerini dikkate alir ve mevcut IBO yéntemlerinin eksikliklerini giderir. Onerilen
yontem, olaylar1 islevsel, mimari ve algoritmik diizeylere 6zgiin bir sekilde kategorize
eder. Onerilen yontemin basarisini, gercek organizasyon verileri kullanarak ii¢ farkl1 vaka
calismasinda COSMIC IBO yéntemiyle karsilastirarak degerlendirilmistir. MicroM
yontemi ile olusturulan efor kestirim modellerinde, COSMIC iBO yo6ntemine kiyasla

Ortalama Goreli Hata (MMRE) oraninda %32'ye varan iyilesme saglanmstir.

to my lovely wife, Merve

vi

TABLE OF CONTENTS

AB S T R A CT . e v
OZ T e v
DE DI C A TTION .. e Vi
TABLE OF CONTENT S ..ottt e e, vii
LIST OF FIGURES ...ttt e e X1
LIST OF T ABLES .ottt e, Xii
LIST OF ABBREVIATTIONS ..ttt e e, X1il
CHAPTER 1. INrOAUCTION ettt 1
1.1. Problem Statementooveiiiiiiiiiii 1

1.2. Objectives and Contributionsccoeviiiiiiiiiiiiiiiiiieiiineeannnnn. 4

1.3. Research Strategyoouiiniiiiiiii e, 5

1.4, TRESIS SIIUCTULE ...ttt ettt e 6
CHAPTER 2. Literature ReVIEW ...oooviiiiiii e, 7
2.1.Background ..ot 7

2.1.1. Microservice-Based Software Architectureooveeeeeeeiin.... 7

2.1.2. Size Measurement Methodsoooveeeeeeeeeeee e, 8

2.1.2. 1. COSMIC FSM .. e, 8

2122 . Event Point ... 10

2.1.3. Extended Event-Driven Process Chainoovveieeiieiiiinii. 11

2.2 . Related WOTK ..o 12

2.3. Summary of the Chaptercooiiiiiiiiii e 14

vii

CHAPTER 3. Research Methodologyc.ooviiiiiiiiiiiiiii e, 15

3.1. Problem Identificationc.oooiiiiiiiiiiii e 17
3.2, Solution DeSi@Nvviniiiii i 18
3.3 Evaluation ... 19
3.4. Summary of the Chaptercooiiiiiiii i, 21
CHAPTER 4. Development of the Size Measurement Method 22
N 1) 22
4.1.1. Research Methodooiiiiiiii i 22
4.1.1.1. Goal and Research Questionscoeeeveennnn... 23

4.1.1.2. Sampling Method ... 23

4.1.1.3. Designing Survey QUestionso.veuiereenneninnnns 24

4.1.1.4. Survey Piloting and Executionooeeeens 25

4.1.1.5. Criteria for Validationcoviiiiiiiiiiinnnn 26
4.1.2.Survey Resultsco.ooiiiiiiii 26
4.1.2.1. Participant Demographicsocovveiiiiineiniiinen.s 26

4.1.2.2. Experience with MiCrOServiCesccco.euvvuinuienenenn. 28

4.1.2.3. Size Measurement and Effort Estimation 30

4.1.3. Implications from the Surveycoooviiiiiiiii i, 32
N (<5 o 1 P 32
4.2.1. Research Methodcoooiiiiiiiii 32
4.2.1.1. Goal and Research Questionscoeevviennn.... 33

4.2.1.2. Target Audiencec.ooevvviiiiiiiiieiiiiiiiieaeeenen, 33

4.2.1.3. Interview Design and Executiones 33

4.2.1.4. Interview Piloting and Execution 36

4.2.1.5. Criteria for Validationcocoiiiiiiiiiiinnnn 36

4.2.2. Interview Resultscooooiiiiiiiii 37
4.2.2.1. Participant Demographicsocovvviiiiineniiinnnn. 37

4.2.2.2. Organizational Informationccoeeeeen. . 39

4.2.2.3. Size Measurement and Effort Estimation 41

4.2.3. Implications from the Interviewccooiiiiiiiiinnn. 45
4.3. Exploratory Case Study 1ooooiiiiiiiiiiiii e 46
4.3.1. Case Study Designoviiuiiniiiiiiiiie e, 46
4.3.1.1. Case Selection Criteriaooeviieineieininiiennn 46

viii

4.3.1.2. Description ofthe Casec...ceveieeiiiiinninnnnn.

4.3.2. Execution of the Case Study...........ccovviiiiiiiiiiiininin...
4.3.3 RESUILS. . ceert et
4.3.4. Implications from the Exploratory Case Study 1
4.4. MicroM — The Initial Versioncooeveiiiiinniiiiiiniineens.
4.5. Exploratory Case Study 2ovviiiiiiiiiiiie et e
4.5.1. Case Study Designovvviiiniiiiiiiiiiii i
4.5.1.1. Case Selection Criteriaooeveviiiineiennnn..

4.5.1.2. Description ofthe Casec...coveeeeiiiiiininnnn..

4.5.2. Execution of the Case Study...........ooovvviiiiiiiiiiiiininin...
4.5.3. RESUILS. . oot
4.5.4. Implications from the Exploratory Case Study 2
4.6. Summary ofthe Chapteroooviiiiiiiii i

CHAPTER 5. MicroM: A Size Measurement method for Microservice-based

ATCRITECTUIES ...ttt e
5.1. Description of MicroM Size Measurement Method
5.2. Application of MicroM Size Measurement Method
5.3. Summary of the Chapteroooiiiiiiiiiiiiiie

CHAPTER 6. Evaluationcoiiuiiiiiiiiii e
6.1. Evaluation Case Studiesc.coovviiiiiiiiiiiiiiiiieeene
6.1.1. Case Study Designc.ovviiiiiiiiiiiiiiiiiieeeeaa
6.1.1.1. Case Selection Criteriac.ooevuevuierineennenenan..

6.1.1.2. Description of the Casesc..oceevvviniveninnnnn..

6.1.2. Evaluation Case Study 1oooiiiiiiiiiiiiiii e
6.1.2.1. Execution of the Case Studyccccceeeiiiinninn.

6.1.2.2. ReSUILS ...t

6.1.3. Evaluation Case Study 2cooiiiiiiiiiiiiiieeeen
6.1.3.1. Execution of the Case Studyccccceeoviiinninn.

6.1.3.2. ReSUILS ...t

6.1.4. Evaluation Case Study 3coiiiiiiiiiiiieeen
6.1.4.1. Execution of the Case Studyccccceeeviiiinninn.

6.1.4.2. ReSUILS ...oniiiiie i

60
64
67

68
68
68
68
69
70
70
70
73
73
73
76
76
76

X

0.2, DISCUSSION ..ttt 79

6.2.1. Answering Evaluation Research Questionsc........ 79

6.2.2. Additional FIndingsccoooiiiiiiiiiiiiiii e, 80

6.3. Threats to Validitycooeiiiiiii e, 82

6.4. Summary of the Chaptercooiiiiiiiiii e, 84
CHAPTER 7. Conclusion and Future Workcooiiiiiiiiiiiiiiiiiiiee e, 85
REFERENCES ... e 88

APPENDIX. DETAILED RESULTS OF THE CASESTUDIES ...t 95

Figure

Figure 2.1.
Figure 2.2.
Figure 3.1.
Figure 3.2.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 4.8.
Figure 4.9.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 5.5.
Figure 5.6.
Figure 5.7.
Figure 6.1.
Figure 6.2.
Figure 6.3.

LIST OF FIGURES

Page
The four types of data movementcooiiiiiiiiiiiiii i, 9
Major element connections in eEPC modeling notation 12
DSR PIOCESS v eveeteeitt ettt e 16
Adapted DSR PrOCESS . ..uuetteititt et 17
Survey responses regarding demographicsoooveiiiiiiiiiiniinn.... 27
Survey responses regarding eXpPerienceovveereertenrienreeenneaneennnnns 29
Survey responses regarding size measurement and effort estimation 31
Interview responses regarding demographicsocoevviiiiiiiiiinninni. 38
Interview responses regarding XPerienceooveereereenreeneeneenneennennn 40

Interview responses regarding size measurement and effort estimation 42

Effort estimation models for exploratory case study 1 48
MicroM size measurement method (version 1)ooooiiiiiiinn... 51
Effort estimation models for exploratory case study 2oeeeneenn. 54
MicroM size measurement methodoooiiiiiiiiiiiiiiiiii 60
Functional level eVentsoooiiiiiiiiiii e, 61
Architectural level events ..o 62
Algorithmic level eVentscooeiiiiiiiiii e, 63
Application 0f MICTOMo.uitiiii i 64
Application of MicroM —example 1cooiiiiiiiiiiiiiiiii, 65
Application of MicroM —example 2ooieiiiiiiiiiiiiiii, 66
Effort estimation models for evaluation case study 1 71
Effort estimation models for evaluation case study 2c..e. 74
Effort estimation models for evaluation case study 3 77

xi

LIST OF TABLES

Table Page
Table 4.1. SUIVEY QUESTIONSuueiet ettt ettt et et e e et et ete e eaanaas 24
Table 4.2. INterVIEW QUESTIONSttt eitett ettt et e e e et eeeeeaanaas 34
Table 4.3. Exploratory case study 1 resultscc.ooviiiiiiiiiiiiiiiiiii e, 49
Table 4.4. Multiple linear regression analysis for exploratory case study 2 55
Table 4.5. Exploratory case study 2 r€SUltScccoeeiiiniiiiiiiiiii e, 56
Table 6.1. Summary of the evaluation case Studiesccccevviiiiiiiiiiiinniinnn.n 69
Table 6.2. Multiple linear regression analysis for evaluation case study 1 72
Table 6.3. Evaluation case study 1 1esultsccooeiiiiiiiiiiii e 72
Table 6.4. Multiple linear regression analysis for evaluation case study 2 75
Table 6.5. Evaluation case study 2 1eSultscooieiiniiiiiiii e, 75
Table 6.6. Multiple linear regression analysis for evaluation case study 3 78
Table 6.7. Evaluation case study 3 1eSultscoviiiiiiiiiiii e, 78

Xii

DDD
DM
DSR
eEPC
EPC
ER
FP
FPA
FSM
FUR
HSEC
MdMRE
MIS
MMRE
MRE
MS
MSSA
(0]0)
PBI
PRED
REST
SDLC
SOA
SOAP
SP
ucCp
UML

LIST OF ABBREVIATIONS

Domain Driven Design

Data Movement

Design Science Research

extended Event-Driven Process Chain
Event-Driven Process Chain

Entity Relationship

Functional Process

Function Point Analysis

Functional Size Measurement
Functional User Requirement
Human Subjects Ethics Committee
Median Magnitude of Relative Error
Management Information System
Mean Magnitude of Relative Error
Magnitude of Relative Error
Microservice

Microservice-based Software Architecture
Object of Interest

Product Backlog Item

Percentage Relative Error Deviation
REpresentational State Transfer
Software Development Life Cycle
Service Oriented Architecture
Simple Objects Access Protocol
Story Point

Use Case Point

Unified Modeling Language

Xiii

CHAPTER 1

INTRODUCTION

This thesis aims to develop an objective size measurement method tailored
explicitly for microservice-based software architectures (MSSA). This chapter provides
an overview of the key elements guiding this thesis. It begins with a detailed problem
statement, highlighting the challenges that motivate this research. Following that, the
chapter outlines the objectives and contributions of the study, focusing on the
development of an objective size measurement method for microservice-based
architectures. Next, the summary of the research strategy is presented, explaining the
approach and methodology employed to achieve the study's goals. Finally, the chapter
concludes with the thesis outline, offering a roadmap of the subsequent chapters and their

content.

1.1. Problem Statement

The software industry is currently undergoing a significant paradigm shift. Over
the past decade, MSSA has emerged as a favored design paradigm for an increasing
number of organizations. First introduced in 2011, this paradigm evolved in response to
the new demands from modern software systems.! Since 2015, MSSA’s popularity has
surged, with major service providers like Amazon, LinkedIn, Netflix, SoundCloud, Uber,
and Verizon embracing this architecture.?

MSSA promotes building systems using a collection of small, independent
services. Each service manages its own data and is designed to be isolated, scalable, and
resistant to failure. These services work together to create a unified system that is much
more flexible and resilient than the traditional monolith systems commonly developed
during the past decade.’ They can be developed, deployed, tested, and scaled
independently 243
MSSA can be associated with Service-Oriented Architecture (SOA). The

relationship between SOA and MSSA is rooted in their shared foundational goals, such

as decoupling, isolation, composition, integration, and the use of discrete and autonomous
services. In this sense, MSSA can be seen as an evolution of SOA, as both aim to achieve
similar objectives. However, MSSA differs from SOA in three key aspects: size, bounded
context, and autonomy.® In MSSA, each microservice focuses on delivering a single
business capability. Second, it consolidates all related functionalities within that
capability. Third, because each microservice has a specific, defined responsibility, they
operate as independent services. Changes in one microservice should not impact others.
MSSA is often linked with event-driven asynchronous communication and ledger-style
data persistence, which enhances scalability, reliability, and performance in real-world
applications.>”® The use of events in asynchronous communication between services
enables faster decision-making, lowers costs, and improves scalability in microservices.’

MSSA naturally complements the Agile development methodology.!? In 2001,
the Agile Manifesto was introduced as a response to the challenges posed by traditional
software development approaches.!! Since then, Agile has become widely adopted by
organizations looking to streamline and modernize their software development
processes.'? One of the fundamental principles of the Agile Manifesto is that delivering
working software frequently can be achieved through independent microservices, each
focused on a single business capability. Additionally, agile teams are likely to find it
easier to understand domain concepts within a limited context, given that these services
are related to one another.'” However, organizations must balance decentralization and
autonomy with the effective management and integration of outputs from all teams to
deliver software on time and within budget.

In a software project, meeting customer expectations on time and within the
planned budget is achieved through effective project management, especially with precise
effort estimation.!® As the primary input for effort estimation, size measurement methods
can be divided into two main categories: formal methods and expert opinion-based
methods.'*

In today’s Agile world, subjective (expert opinion-based) methods like Story
Point (SP) and Use Case Point (UCP) are more commonly used than objective (formal)
methods such as Functional Size Measurement (FSM) methods.!> Supporters of
subjective size measurement often point out the simplicity and the flexibility they provide
to estimators.'® The common use of SP among agile practitioners is due to their
adaptability, allowing teams to estimate the size of functional requirements and a variety

of tasks, including social and technical efforts.!” Practitioners also use SP to indicate

different concepts such as size, effort, time, and complexity.'® Their versatility means
that using SP doesn't require special training or extra costs. Additionally, agile teams
value self-organization and want control over decision-making, which aligns well with
the subjective nature of SP.'!8 On the other hand, they are criticized for issues such as
misinterpretation of size, complexity, subjectivity, and lack of transferability between
teams.16’19*22

FSM-based methods provide an objective process to mitigate these drawbacks.
FSM not only aids in estimating effort and cost but also serves other purposes, such as
controlling and monitoring project scope and risks, evaluating process performance, and
establishing standardized measures at the organizational level.?> FSM has a long history
that spans nearly five decades. Over this time, the concept has evolved into widely
accepted methods.?*?° Several FSM methods are recognized as ISO standards: IFPUG
CPM?¢, FiSMA?’, NESMA?®, MK I1?, and COSMIC*. In the literature, many

studies!8-31-33

show successful use of FSM-based objective size measurement methods in
agile settings.

FSM methods have been widely used for objective size measurement of
monolithic software architectures. However, these methods may not adequately address
the size measurement of modern applications, such as MSSA. MSSA moved away from
being data-driven and evolved into a behavior-oriented structure. The usage of a single
database is replaced by the structures in which each microservice is developed
independently and has its own database. With the paradigm shift, today’s systems differ
from the software for which FSM methods are designed. For instance, COSMIC, a
second-generation FSM method, illustrates this mismatch as follows.

COSMIC FSM aims to count data movements associated with a specific object of
interest by combining functionality with that object, defining project size as the total of
these data movements. It recommends using techniques like Entity Relationship (ER)
diagrams, Unified Modeling Language (UML) class diagrams, or relational data analysis
to identify these objects.®* In contrast, MSSA typically utilizes non-relational NoSQL
databases due to their distributed nature.>> While traditional monolithic architectures rely
on functions for data transfer (such as method parameters), MSSA uses structures like
event queues for communication. MSSA requires a more behavioral structure over service
calls/requests (such as REST API) instead of a structural form such as data flow to

integrate the services.*® Consequently, the relational data-based approach is rarely applied

in MSSA, making it challenging to achieve efficient outcomes, such as accurate effort or
cost estimations, when this approach underpins software size measurement.

The literature search showed a lack of studies on size measurement in MSSA. We
also found that no de facto method is used in the industry for microservice-based (MS-
based) projects.’’*® However, the increasing prevalence of MSSA in the software
industry has led to the need for a new base component in software size measurement. The
concept of data movement in FSM methods found in the literature is no longer a
fundamental element of MSSA. Consequently, organizations face unique challenges in
size measurement and effort estimation for these projects. All these findings led to the
need to develop a size measurement method tailored explicitly for MSSA. The following
section summarizes the objectives and contributions of the proposed size measurement

method: MicroM.

1.2. Objectives and Contributions

The shift from database and transaction-oriented structures to behavioral and
event-oriented structures in the software world, driven by the ongoing paradigm change,
has highlighted the inadequacy of existing FSM methods in addressing this change and
the lack of a size measurement method specifically developed for this paradigm. This
paradigm shift has led to the need to develop a unique size measurement method for
MSSAs.

A size measurement method developed specifically for an architecture should
define size in terms of the base components of that architecture. To illustrate, the
COSMIC method, successfully used in database and transaction-oriented monolithic
structures, expresses software size through data movement units.?® In an MSSA, the base
components can be expressed as events.® Therefore, we aimed to develop an event-based
size measurement method for MSSAs.

Categorizing events into different abstraction levels of the software
representations while considering the characteristics of the architecture is essential for
creating a method applicable at every stage of the SDLC. For example, during the
requirements phase, the communication between microservices remains undefined.

However, these details become clearer as we advance through the SDLC phases.

Therefore, we defined the event levels in the developed method by considering the details
identified during the SDLC phases in MS-based projects.

This thesis contributes to the literature by introducing an event-based size
measurement method called MicroM that considers the characteristics of MSSAs and
addresses the shortcomings of utilizing existing FSM methods on event-based systems.
MicroM, specifically developed for MSSAs, uniquely categorizes the concept of events
into abstraction levels of the software representations while considering the
characteristics of microservice architecture. Accordingly, this thesis provides the
following contributions:

e Revealing the size measurement and effort estimation methods used in MS-based
projects within the software industry, as well as the challenges encountered during
this process

e [Evaluating the relevance of using events as a size measure in MS-based projects

e Developing a new size measurement method that categorizes the concept of
events into abstraction levels of the software representation, considering the
characteristics of MSSAs, and can be applied at every stage of the SDLC

e Evaluating the success and relevance of the developed method in real-world cases

MicroM aims to reduce organizations' challenges in the software industry when
measuring size and estimating effort in their MS-based projects. Organizations can
measure the size of their MS-based projects based on the events that are the base
components of the architecture, define this size at different abstraction levels of the

software representation, and estimate effort based on various size levels or the total size.

1.3. Research Strategy

In this thesis, we aimed to develop a method to measure the size of MS-based
projects in terms of base components: events. We formulated the following research
questions for this aim:

e RQI. What are the common practices and challenges encountered in software size
measurement and effort estimation in MS-based projects?

e RQ2. Is "event" relevant as a size measure in MSSAs?

e RQ3. What types of events can be used as base components at different levels of
software representation?
e RQA4. How successful is the proposed MicroM size measurement method for effort

estimation in MS-based projects?

We used Design Science Research (DSR) as our research methodology to answer
the research questions we identified. We followed the guidelines for DSR proposed by
Hevner et al.** and the DSR process model suggested by Offermann et al.*. In the
Problem Identification phase, we conducted a literature review, survey, and interview to
answer RQI1 (see Chapter 2, Sections 4.1, and 4.2). For RQ2, we performed an
exploratory case study on event-based size measurement in an MS-based project (see
Section 4.3). In the Solution Design phase, we developed our proposed MicroM method
iteratively and incrementally to address RQ3 (see Sections 4.4, 4.5, and Chapter 5).
Finally, in the Evaluation phase, we assessed the success of the MicroM method through

three separate case studies to answer RQ4 (see Chapter 6).

1.4. Thesis Structure

This thesis is structured as follows: Chapter 2 summarizes the related work.
Chapter 3 describes the research methodology. Chapter 4 presents the development
process of the size measurement method. Section 5 describes the proposed size
measurement method. Section 6 presents the evaluation of the proposed method. Lastly,

Section 7 concludes the thesis by stating further research suggestions.

CHAPTER 2

LITERATURE REVIEW

This chapter first provides essential background information and summarizes the

related work in the following sections.

2.1. Background

In this section, we provide the essential background on (1) MSSA, (2) size
measurement methods involved in the thesis (COSMIC FSM and Event Point), and (3)
the extended Event-Driven Process Chain (eEPC) modeling notation proposed by

MicroM method for identifying events.

2.1.1. Microservice-based Software Architectures (MSSA)

The foundations of MSSA began to emerge in the early 2000s, influenced by
SOA. In 2005, Peter Rodgers introduced the term “Micro Web Services” and pioneered
the adoption of REpresentational State Transfer (RESTful) services during a period when
Simple Objects Access Protocol (SOAP) was predominant.*! However, due to
technological limitations, this concept remained largely theoretical for a period. In March
2014, Martin Fowler's article titled “Microservices”, published on his website,
significantly impacted the understanding and adoption of microservices within the
software development community.*? Following this, Netflix adopted a microservice
architecture to enhance scalability and resilience. Additionally, cloud computing services
like Amazon Web Services (AWS) have become indispensable facilitators for
microservices. With the launch of Docker containers, which provide a lightweight and
consistent environment for smooth transitions between development and production, and
Kubernetes, a container orchestration platform, the deployment, scaling, and management

of containerized applications became simpler, promoting microservices.>%* Major

technology organizations, including Amazon, Google, and Microsoft, embraced
microservices to enhance agility.> The emergence of microservice design patterns,
serverless computing, and event-driven tools have made MSSA a popular architecture in
today's software world.!

In MSSA, communication between microservices can occur in a request-driven
or event-driven way. 78364445 Request-driven MSSA relies on a synchronous
communication model. When one service needs data or functionality from another, it
sends a direct request and waits for a response before continuing its process. On the other
hand, event-driven MSSA uses an asynchronous communication model uses events to
trigger and communicate between decoupled microservices. In this approach, services
publish events when specific actions occur, and other services can subscribe to these
events. This allows services to respond to changes in real time without direct
dependencies.

Although event-driven architecture enables real-time communication, a large
amount of data handling, and data updates in real-time, request-driven architecture may
be more suitable for specific scenarios, such as authentication, where a request-response
model is better suited for managing security. Choosing between request-driven and event-
driven microservices depends on the response time requirements, scalability needs,

complexity tolerance, coupling requirements, and development speed.

2.1.2. Size Measurement Methods

We used the COSMIC FSM for comparison purposes and the Event Point to
evaluate the relevance of an event-based measurement method in MSSA during the

development of the proposed MicroM method.

2.1.2.1. COSMIC FSM

In 1979, Albrecht introduced Function Points (FP) and Function Point Analysis
(FPA) with the goal of measuring software size based on the "functionality" it offers to

users.*” Following this, various functional size measurement methods were developed

using the same principle. Several FSM methods are recognized as ISO standards: IFPUG
CPM?°, FiSMA?’, NESMA?® MK 11?°, and COSMIC?°. While all these FSM methods use
Functional User Requirement (FUR) to calculate size, they differ in their measurement
approach and units.?

As a second-generation FSM method, COSMIC FSM is based on data
movements.>* For this purpose, the method suggests identifying FURs and the functional
processes (FP) related to these requirements and the data movements (DM) within these
processes. These data movements are identified as the flow of data groups that define a
single Object of Interest (OOI). In other words, for a movement to be classified as a DM,
it must be associated with a single OOI. DM can appear in four different forms: Entry
(E), Exit (X), Read (R), and Write (W). Figure 2.1 illustrates the DM types and their

relationship with a functional process.

Boundary
| .
| Functional
|
] : 1 entering process
Functional users: | data group ﬁE ‘
» Humans | niry Functional
= Other software I Exit Sub-processes
» Hardware devices : 1 exiting
: data group ‘ Rea | [Write
: 1 retrieved 1 data group
' data group i to be stored
Persistent
storage

Figure 2.1. The four types of data movement3*.

COSMIC FSM defines the unit of measurement as the COSMIC Function Point
(CFP), which is assigned to each identified DM in a functional process. The size of a
functional process is determined by summing all the identified DMs within that process.
To calculate the size of each software component within a layer, the size of its functional
processes is aggregated based on the identified FUR for the software.

COSMIC FSM provides various measurement guidelines with varying levels of

detail for measuring software size in different domains, such as business application

software*®, real-time software®, and service-oriented software’®. The method is
applicable in data-rich (such as management information system (MIS) applications),
control-rich (such as elevators, washing machines, and cars), and hybrid (such as real-
time reservation systems) software domains. On the other hand, it is not applicable in
algorithm-rich (such as expert systems, simulation software, and weather forecasting
systems) and large file processing-rich (such as games and musical instruments) due to
its data movement-based measurement strategy. The method can be used at every stage
of the SDLC, but as the measurement artifacts mature, the accuracy of the measurements

improves.

2.1.2.2. Event Point

Event Point®' provides an alternative approach to software sizing compared to
traditional data-centric methods like COSMIC FSM. The method is based on events
triggered by functional user interactions with the system. The method introduces the
concept of a computation event. An event is generated as a result of computation activities
in the system, such as display, recording, calculation, retrieval, decision, and
communication. Event Point categorizes computation events as “System Boundary
Event,” “Display Event,” “Calculation/Processing Event,” “Record Event,” “Decision
Event,” “Retrieval Event,” and “Communication Event.”

The method suggests drawing eEPC diagrams to identify events. Each
computation event is assigned one Event Point, similar to how COSMIC FSM assigns
equal weight to data movements. A system is expected to consist of a sequence of events,
so the size of a functional user requirement is the total number of computation events it
includes. Thus, the software's total size is the sum of the Event Points across all functional
requirements.

Event Point method's “System Boundary,” “Retrieval,” “Record,” and “Display”
events can be mapped to COSMIC FSM's “Entry,” “Read,” “Write,” and “Exit” data
movements, respectively. The distinction between DMs and events is that while COSMIC
FSM associates each DM with a data group linked to a specific object of interest, event-

based definitions do not follow a data-centric approach, allowing the measurer to

10

disregard the software's data structure and model. The method can be used at every stage
of the SDLC, similar to COSMIC FSM.

The Event Point method is the first to propose events as a software size measure.
It has proven more relevant and provides more accurate effort estimation than the
traditional COSMIC FSM method in contemporary software projects.’> However, the
method has been developed generally for modern software and does not consider the

characteristics of MSSA.

2.1.3. Extended Event-Driven Process Chain (eEPC)

The extended Event-Driven Process Chain (eEPC) is based on the Event-Driven
Process Chain (EPC) modeling notation developed by the University of Saarland in
Germany in 1992.5 The essential elements of EPC are events, functions, and control
flows. A function is defined as "an activity (task, process step) which needs to be
executed," while an event is "the pre-/post-condition of a function". Due to its readability,
user-friendliness, and ease of modeling, the EPC modeling notation has been used by
business users for more than 30 years.>*>* Since the development of EPC, various
versions have been created, and eEPC is one of these 14 variations.>*>® eEPC extends the
EPC, which includes functions, events, and connectors, by adding elements such as
"organizational units," "information objects," and "IT systems". Figure 2.2 illustrates the
major element connections in eEPC modeling notation.

In the literature, several studies on EPC emphasize its role in software
engineering. Liibke>® proposed a procedure to transform use cases into EPC models,
addressing the lack of control flow in use case diagrams. Gross and Doerr>® investigated
the effectiveness of EPC and Activity Diagrams in requirements engineering, showing
that both methods can support this process. Dragicevic et al.>> developed a method for
Agile software development, using eEPC for elicitation, documentation, and validation
of user requirements. Amjad et al.®® argued that EPC is suitable for modeling and
verifying simple business requirements, though it struggles with complex event

processing, leading to limitations in modeling more complex systems.

11

Entity Type m

supports

is input for
has output of/
creates,

Document
(Information

Document
(Information

Event activates(triggers) - creates
: : unction
Triggering L J

performs/
responsible from supports

Position -
/Role /Drganizational a7 be user ||[APplication
— || System
Type

Figure 2.2. Major element connections in eEPC modeling notation®’.

The MicroM method developed in this thesis proposes using eEPC notation to
identify events, highlighting its compatibility with the event-driven approach of MSSA.
Existing literature also supports the recommendation of eEPC for analysis and design
within microservice-based projects. We previously compared the effectiveness of object-
oriented and event-oriented approaches for analyzing and designing microservice-based
systems.” We modeled project requirements for event-oriented analysis and design using
eEPC. We observed that the event-oriented approaches offer significant advantages over

the object-oriented approaches, particularly in light of the characteristics of MSSA.

2.2. Related Work

In the literature, a limited number of studies attempted to measure the size of MS-
based systems. Asik and Selcuk® proposed a size measurement framework for MSSA

that counts resources and clients responsible for interactions between microservices and

12

external services. Vural, Koyuncu, and Misra®? measured the size of a monolith using the
COSMIC FSM method in a case study and then measured the size of the microservices
created by splitting this monolith using Domain Driven Design (DDD). Taibi and Systa®
proposed a measurement framework for microservices based on coupling, number of
classes, number of duplicated classes, and frequency of external calls, associating the
number of classes and duplicated classes with size.

The literature review showed that the proposed size measurement methods require
design-time decision elements such as coupling, number of classes, resource, and client
count. However, a software size measurement method needs to be applicable at every
stage of the SDLC for effective project management. Project size should be measurable
starting from the early requirements phase. Furthermore, none of these studies evaluated
the success of their proposed method in activities such as effort estimation, cost
estimation, or project planning, where software size is used as the primary input.
Consequently, despite MSSA's presence in the software industry for over a decade, the
literature lacks an established size measurement method specifically for MSSA, similar
to the recognized methods such as COSMIC?? or IFPUG?® used for traditional monolithic
architectures.

Existing FSM methods can be mapped to MSSA. For instance, IFPUG published
a white paper that describes the application of Function Point Analysis (FPA) to
microservices-based systems.® Similarly, MS-based systems can also be measured using
the communication rules between services discussed in the COSMIC SOA Measurement
Guideline, which suggests counting requests as exits and responses as entries.’® FSM
methods are architecture-independent; however, in the current paradigm shift, the data-
oriented systems for which these methods were developed have evolved into behavior-
oriented systems, with service calls/requests replacing data flow and event queues taking
the place of functions for data transfer. In MSSA, events, rather than data, form the base
components.

The event, which forms the foundation of the proposed MicroM method, is
articulated in philosophy as the “exemplification of objects or properties of objects within
the context of the time”. Event theory has been examined in different ways by
philosophers.®® Jaegwon Kim®® suggested that events are essentially examples of
properties. In contrast, Donald Davidson®’ identified events based on their causes and
effects but later changed his view to define events by their location in spacetime. David

Lewis® 7! described an event as a property of a specific area in space and time. Choosing

13

a theory of events is not something decided independently; it is influenced by one’s other
philosophical beliefs and interests.

The concept of events has been applied in software engineering literature across
different types and levels of abstraction such as atomic®, business’?, complex®,

composite’’, computation’!, domain’>7%, external’>”’, hardware’®, primitive’>7*

, state
describing’’, software’”’, system’>”’, triggering®*%°, trivial®?, and user’>”’"” events.
However, no study in the literature categorizes the concept of events into different levels

of abstraction, considering the characteristics of MSSA.

2.3. Summary of the Chapter

This section provided a concise overview of the essential background on (1)
MSSA, (2) the size measurement methods discussed in the thesis (COSMIC FSM and
Event Point), and (3) the extended Event-Driven Process Chain (eEPC) along with related
research. The literature review indicates that only a few studies have attempted to measure
the size of MS-based systems, and no method has been explicitly developed for this

purpose. The subsequent section outlines the research methodology adopted in this thesis.

14

CHAPTER 33

RESEARCH METHODOLOGY

Software Engineering, as an interdisciplinary field, integrates both technical and
social aspects, making empirical methods crucial due to the human-intensive nature of
software development.®! Research in software engineering can be categorized into two
main categories: (1) Empirical Research and (2) Design Science Research (DSR).%
Empirical research focuses on answering exploratory, base rate, and relationship
questions, while DSR addresses design-oriented questions, such as determining the most
effective method for achieving a specific objective through an artifact. While both
methodologies can be combined in a research study, DSR is considered superior as it
employs empirical research to evaluate solutions. DSR's advantage lies in its suitability
for cases where problem-solving requires creating a solution through an iterative, flexible,
and exploratory process.®?

This thesis adopts DSR to develop a novel software size measurement model for
MSSAs. The human-made nature of software engineering artifacts aligns well with DSR,
which focuses on understanding and improving human-created designs.® Hevner et al.*®
first introduced DSR for information systems, and Wieringa®* later expanded its use in
software engineering. DSR seeks to create innovative artifacts that enhance human and
organizational capabilities. The goal of this thesis involves designing a new size
measurement model for MSSAs; therefore, DSR’s proactive and technology-driven
approach fits this research well. Following the guidelines by Hevner et al.*® and the
research process outlined by Offermann et al.*°, we structured our research methodology.

Hevner et al.** provide useful insights into the nature of the DSR process in their
proposed guidelines. However, the suggested guideline does not specify the steps a
research study adopting DSR should follow. Offermann et al.* highlighted the lack of a
clear approach for integrating a research methodology within DSR and proposed a
detailed research process that formally combines qualitative and quantitative methods.
The process proposed by Offermann et al.*° consists of three iterative phases: (1) Problem

Identification, (2) Solution Design, and (3) Evaluation (see Figure 3.1).

15

Literature
research—
part |

Identify
problem

Expert
interviews

\ Problem
1 identification
|
Pre-evaluate |
relevance [\
I \ —
I \ ™
] \
Literature D / \ Solution
research— £ ~ | ™ design
i artefact N . \ 4
\ \
y ! =
\]
Refine V!
; v
hypothesis \

= Fvaluation

Case study /
action
research

Laboratory
experiment

Summarise
results

Figure 3.1. DSR process™®.

In this thesis, we adapted the process shown in Figure 3.1 as our research
methodology (see Figure 3.2). The following sections describe the research activities

adapted from DSR steps.

Problem Identification Solution Design and Evaluation

. MicroM
»
Literature Search e > -Imitial Version-
v A J
Exploratory
Survey Case Study 2
e -~ . v
v A 4
—)
. MicroM
Interview -Final Version-
—) T
v v

Exploratory) Evaluation &l Reporting the
Case Study 1 Case Studies = Results
.« @@ J \ ¥

Figure 3.2. Adapted DSR process.

3.1. Problem Identification

The problem identification phase includes steps such as literature review, expert
interviews, and pre-evaluation of the problem's relevance.*® Understanding the current
situation is crucial for identifying improvement opportunities.®’

As the first step of this phase, we conducted a literature review on size
measurement in microservices-based projects. The literature review showed a lack of
studies on size measurement and effort estimation in MSSAs. Subsequently, we
conducted a survey to identify size measurement and effort estimation methods used in
microservices-based projects in the industry, as well as the challenges organizations face.
We designed the survey based on the guidelines proposed by Shull et al. 3¢ and Linekar
etal.y’.

The survey offered valuable insights to software organizations looking to adapt
their culture to MSSAs. However, we noted that the questionnaire-based format limited

our ability to fully capture the in-depth perspectives of practitioners, especially in a

17

domain undergoing significant transformation. Therefore, we performed a follow-up
structured interview with the practitioners who develop MS-based solutions. The survey
and interview results showed that organizations encounter difficulties implementing
objective size measurement in MS-based projects, as no widely accepted standard method
is utilized in the industry for these projects.

We concluded that utilizing events as a size measurement in MSSAs could be
relevant since events represent the base components of microservices. Consequently, we
conducted an exploratory case study to assess the accuracy and relevance of event-based
size measurement in microservices. In this study, we evaluated the success and suitability
of the Event Point®' method, an event-based size measurement approach identified in our
literature review, in MS-based projects. We developed effort estimation models using
both the Event Point>! and COSMIC?* size measurement methods. The results indicated
a better correlation between effort and event-based size than COSMIC size. The
following section outlines the details of the solution design phase that we performed

based on all these findings.

3.2. Solution Design

Offermann et al.*’ recommend conducting artifact design and literature search as
part of the solution design process. Additionally, Hevner et al.** and Offermann et al.*
highlight the iterative and incremental nature of the design process. We adapted an
iterative and incremental approach while developing the MicroM size measurement
method within these frameworks. During the problem identification phase, we found a
correlation between using events, base components of microservices, as a size unit and
effort. Based on our literature search, we developed the first version of the MicroM
method, considering the characteristics of microservices and the shortcomings of existing
FSM methods. We evaluated this method's accuracy and architectural alignment through
an exploratory case study. Following the findings from this case study, we improved our
method and developed the final version of the MicroM size measurement method. Lastly,
we evaluated our proposed size measurement method, which is described in the following

section.

18

3.3. Evaluation

Offermann et al.** suggest using expert judgment, lab experiments, or case studies
as evaluation methods in the DSR process. We selected the case study method®® to
evaluate our model. The method is also recommended by Hevner et al.’® as an
observational evaluation method for DSR. A case study is an empirical research method
that rigorously examines a contemporary phenomenon within a real-world context, where
the boundaries between the phenomenon and its context may be unclear.®® The case study
is based on observation and allows researchers to concentrate intensely, holistically, and
with a real-world perspective on a phenomenon.®>% One additional advantage of case
studies over experimental or survey-based research is their ability to explain real-life
situations, including their complexities.®’

Case study research is frequently applied in disciplines such as sociology,
psychology, and political science, as well as practical fields like accounting, healthcare,
and software engineering.®® The interdisciplinary nature of the software engineering field,
bringing together disciplines where case studies are already used, makes it naturally
suited for software engineering.”® Moreover, by helping avoid scaling issues, case studies
are particularly well-suited for evaluating software engineering methods and tools in
industrial environments. In this context, a "case" in software engineering can be a project,
an organization, a process, or a technology.”’

A case study can be conducted on any subject and increases understanding of the
phenomenon being studied.’®°! Therefore, it is possible to apply case studies for
exploratory purposes, to understand and explain a phenomenon, or to build a theory both
prospectively and retrospectively.”?> Additionally, Wohlin et al.®® note that case studies
are conducted as a comparative research strategy where it is possible to compare the
results of multiple methods.

Yin®® classifies case studies into three categories: exploratory, descriptive, and
explanatory case studies. Exploratory case studies are conducted to investigate a
phenomenon in the data that serves as an area of interest; descriptive case studies are
conducted to describe the natural phenomenon that emerges from the data; and
explanatory case studies are conducted through surface and in-depth research to explain

the phenomenon in the data.

19

Case studies can be classified as single or multiple, depending on how they are
applied.®® By allowing for replication, multiple case studies create a more robust research
framework, enhance the reliability of findings, and provide greater validity to the research
outcomes,38:8%.93.94

In this thesis, we planned to perform an exploratory multiple case study method
to provide the first discovery of phenomena to build theories and develop hypotheses.”
Since this thesis aims to define a new software size measurement method for MSSAs, we
could explore the strengths and weaknesses of current size measurement methods in MS-
based projects. We adopted multiple case studies process, consisting of six main steps:
planning, designing, preparing, collecting, analyzing, and sharing.®

We used quantitative analysis techniques, including descriptive statistics,
correlation analysis, predictive modeling, and hypothesis testing, to evaluate the case
studies. We applied regression analysis to estimate the effort to assess the method
empirically. Regression analysis, a technique for examining relationships between
variables, is commonly used for data description, parameter estimation, and
prediction.”> Tt is also widely used for effort estimation purposes in the

literature.3!-32:97-98

There are two types of regression based on the number of explanatory
variables: simple and multiple regression.” In this thesis, to estimate effort, we used
simple linear regression if the size measurement method provided a single dimension of
size and multiple linear regression if it provided multiple dimensions.

In regression analysis, R-squared (coefficient of determination) is used to measure
the strength of the relationship between the regression model and the dependent variable.
Humphrey®® proposes the following criteria for correlation relationships in software
engineering for planning purposes:

e (0.9 <R-squared; a predictive relationship

e (.7 <R-squared < 0.9; a strong relationship

e (0.5 <R-squared< 0.7; an adequate relationship
e R-squared < 0.5; not reliable for planning

We used widely recognized metrics from the literature to evaluate the prediction
accuracy of the regression-based effort estimation models we developed: (1) Magnitude
of Relative Error (MRE), (2) Mean Magnitude of Relative Error (MMRE), (3) Median
Magnitude of Relative Error (MdMRE), and (4) Percentage Relative Error Deviation

20

within X (PRED (X)).”® The MRE metric, used to evaluate prediction accuracy, forms the

basis for other metrics.

Actual Effort—Estimated Effort
Actual Effort

MRE = | | (1)

MMRE is calculated by taking the average of the MRE values. The value of n
represents the number of observations. In the literature, different threshold values have
been proposed for MMRE.!%:191 According to Hastings and Sajeev!’!, models with an
MMRE less than 0.20 are considered predictive, those with an MMRE between 0.20 and
0.50 are deemed acceptable, and models with an MMRE greater than 0.50 are regarded

as not acceptable.

MMRE = =3, MRE;)

The MMRE metric is frequently used in the literature. However, it is criticized for
being sensitive to high MRE values present among the data.!®>-1% In these cases,
MdAMRE, which is less affected by extreme values, can be used.'"’

In the equation shown for PRED(X), "n" represents the total number of
observations, while "k" indicates the number of observations with an MRE value less than
"x". In the literature, PRED(0.25) and PRED(0.30) are recognized as the most commonly
used PRED values.!?®1% MacDonell and Gray'!? suggest that a model with a PRED(30)

accuracy of 60% can be considered a good model.

PRED(x) = = (4)

n

3.4. Summary of the Chapter

In this section, we describe the research methodology applied to our thesis. We
adapted DSR to develop a novel software size measurement model for MSSAs. The DSR
process consists of three iterative phases: (1) Problem Identification, (2) Solution Design,
and (3) Evaluation. We explained how we adapted these three phases proposed by
Offermann et al.** in our thesis. The following sections describe the execution of the

adapted DSR research methodology.

21

CHAPTER 4

DEVELOPMENT OF THE SIZE MEASUREMENT
METHOD

Following the DSR stages, after the literature review, we conducted a survey,
interviews, and an exploratory case study during the problem identification phase before
finalizing the MicroM size measurement method. In the solution design phase, we first
developed the initial version of our MicroM size measurement method and then evaluated
its success in the exploratory case study. The details of all these steps are explained in the

following sections.

4.1. Survey

The literature review showed a lack of studies on size measurement and effort
estimation in MSSAs. To determine the practices organizations, prefer for size
measurement and effort estimation in MS-based projects, which have been present in the

38

software world for about ten years, we conducted a survey.”® The details of the survey

are provided in the following sections.

4.1.1. Research Method

We used a survey method to understand how organizations handle MSSAs. We
opted for an anonymous online survey for three main reasons. First, it allowed us to reach
a large number of organizations worldwide quickly. Second, anonymity encouraged
companies and employees to share information about their development processes
without hesitation. Finally, we wanted the collected data to be easy to categorize and
analyze. We chose Google Forms as our survey platform because it's user-friendly and

free, exports result in XLSX format and presents data clearly.

22

One common issue with surveys is unclear questions.®® To address this, we
conducted a pilot survey to identify any ambiguous questions. This pilot survey also
helped us gauge the time it took for a first-time respondent to complete the survey and
allowed us to collect feedback. We made some adjustments before launching the survey
based on the pilot feedback. Following these adjustments, we submitted the survey to the
Human Subjects Ethics Committee (HSEC) at Izmir Institute of Technology (IZTECH)

for approval.

4.1.1.1. Goal and Research Questions

The primary goal of this survey is to understand the practices organizations follow
when working with MSSAs. From the results, we aim to identify which practices are
widely adapted, which are less common, and what their limitations are. Thus, we
formulated the research question for this study as follows:

o What are the industrial common practices and challenges encountered in software

size measurement and effort estimation in MS-based projects?

4.1.1.2. Sampling Method

We employed accidental non-probabilistic sampling in the survey.?” Our target
participants were professionals in the software field with experience in MSSAs. We
primarily relied on personal and company contacts, forums, mailing lists, and LinkedIn
to reach these individuals. We also encouraged participants to share the survey with their
colleagues as long as no more than five individuals from the same company participated.
As the survey was widely shared, we were unable to track who completed it due to its
anonymity. However, we categorized participants based on whether they had experience

with MSSAs to facilitate data analysis.

23

4.1.1.3. Designing Survey Questions

Our survey is divided into four sections. The first section provides an overview of

the survey and asks participants to give their consent. The second section focuses on

demographics, collecting general information about the participants, their organization,

their overall experience, and whether they have experience with microservices. If a

participant indicates they have no experience with microservices, the survey ends at this

point. The third section is dedicated to experience with microservices, and the fourth

section gathers information about the size measurement and effort estimation techniques

used by participants in MSSAs. Survey questions are presented in Table 4.1.

Table 4.1. Survey questions.

Section Survey Question Type of Answers
Single Multiple Free Likert
Answer Answer Text Scale

2 What is the origin of your current organization? X

What is your formal undergraduate education? X

What is your latest formal graduate education? X

What is your role in your organization? X

How long (in years) have you been working in your X

current role?

How long (in years) have you been working in the X

software field?

Do you have any experience with microservice- X

based architecture?
3 How long (in years) have you been working with X

microservices?

What is the domain of your current microservice- X

based project?

What is the type of your current microservice-based X

project?

Which software development methodology do you X

follow when working with microservices?

(cont. on next page)

24

Table 4.1 (cont.). Survey questions.

Section Survey Question Type of Answers

Single Multiple Free Likert

Answer Answer Text Scale

Which software development methodology do you X

follow when working with microservices?

What is the team on your current microservice- X
based project?
How many microservice-based projects are running X

concurrently in your organization?
4 Which software size measurement method do you X
use in your microservice-based projects?
How do you perform effort estimation in your X
microservice-based projects?
Which tasks are included in effort estimation in X
your microservice-based projects?
Have you been able to predict effort more precisely X
when utilizing microservice architectures?
Have you observed changes in the efficiency of the X
effort estimation process when utilizing
microservices architectures?
How frequently is actual individual effort recorded X

in your organization?

4.1.1.4. Survey Piloting and Execution

A pilot test was conducted with three individuals from different companies and
roles to clarify and avoid misunderstandings. The survey's completion time was
calculated, and the following adjustments were made based on the given feedback.

e We removed the requirement to log in with a Gmail account.
e We added a control question to verify whether the participant had experience with

microservices, with the survey ending for those who did not.

25

e We changed the questions regarding the participant's experience from monthly to
yearly intervals.
e We replaced some open-ended questions with multiple-choice options, including

an "Other" option for flexibility.

4.1.1.5. Criteria for Validation

We validated the survey primarily through the seventh question (Q7), which asked
participants if they had experience with MSSAs. Although we emphasized
"microservice" in both the survey title and participant invitations, some individuals
without this experience still completed the survey. To address this, we included a final
question in Section 2 to confirm their experience and end the survey early if they selected
"No." After collecting the responses, we excluded participants without microservice

experience from the data analysis.

4.1.2. Survey Results

We summarize the survey results from 67 participants as follows:

4.1.2.1. Participant Demographics

The 67 participants in the survey were from nine countries across four continents:
Turkey, Australia, Germany, Italy, China, the Netherlands, Southern Cyprus, the United
Kingdom, and the USA (see Figure 4.1a). Most participants (85%) were from Europe,
12% from America, and 3% from Asia and Australia. In terms of education, participants
had undergraduate degrees in fields such as Computer Engineering, Computer Science,
Software Engineering, Information Systems, Electrical and Electronics Engineering,

Industrial Engineering, and other disciplines like Mechanical/Mechatronics Engineering,

26

(a)

Other I 3

America . 12

0 20 40 60 80
Percentage of Participants

100

(c)

. 27

None
Other W 9
Information Systems Wl 6
Software Engineering W 6
Computer Science [l 10
Comouter Engineering [N 42

0 20 40 60 &0 100
Percentage of Participants

(e)

>=10years] 6
<10 years - 16

0 20 40 60 80
Pecentage of Participants

100

(b)

Other

Electrical and I
Electronics Engineering

Computer Science I

0 20 40 60 80 100
Percentage of Participants

Computer Engineering

(d)

Other 1R 12

Analyst I 3
Il 10

Il 10

Project Manager
Software Architect
9
I 46

Senior Developer
Developer

0 20 40 60 80 100
Percentage of Participants

(H
>=10years [26
<10 years - 19

0 20 40 60 80
Percentage of Participants

100

Figure 4.1. Survey responses regarding demographics - (a) organizations' geographical

distribution, (b) undergraduate studies, (c) graduate studies, (d) role in the organization,

(e) experience in the current role, and (f) experience in the software field.

27

Mathematics Engineering, Business, Economics, and Industrial Engineering (see Figure
4.1b). Nearly 73% of participants also had graduate degrees in areas like Computer
Engineering, Computer Science, Information Systems, and Software Engineering, as well
as in Business, Cyber Security, Sustainable Development, Electrical and Electronics
Engineering, Industrial Engineering, and Management Science (see Figure 4.1c).

Participants held various roles within their organizations (see Figure 4.1d). Most
participants worked as developers (46%) or senior developers (19%), with 10% as
software architects, 10% as project managers, and 3% as analysts. Their experience in
these roles ranged from 1 to 15 years, with an average of 2.95 years (see Figure 4.1e).
Most had less than five years of experience in their current role. Participants' total
experience in the software field ranged from 1 to 30 years, averaging 6.5 years (see Figure
4.1f). Most participants had fewer than five years of experience in their current role.

To analyze the results, we divided participants based on whether they had
experience with MSSAs, using a question at the end of the survey to determine this. After
completing the survey, participants without microservice experience were excluded from

the analysis. Of the 67 participants, 45 (67%) had experience with microservices.

4.1.2.2. Experience with Microservices

The participants had an average of 2.4 years of experience with microservices,
indicating that most had less than five years of experience. (see Figure 4.2a). Their most
recent MS-based projects spanned 20 different domains, with finance, telecom, mobile
software, web-based productivity apps, e-commerce, and entertainment being the most
common.

In examining their last MS-based project, we found that 47% developed a new
MS-based system, 36% reimplemented a monolithic system as microservices, 16%
reengineered parts of an existing system to work with a monolith, and 2% replatformed
an already MS-based system (see Figure 4.2b). Most participants (53%) used Scrum as
their software development methodology, 24% favored Kanban, and 9% followed

Extreme Programming (see Figure 4.2c).

28

(a)

<10 years I 7

0 20 40 60 80 100
Percentage of Participants

(c)

Other . 14

Extreme Programming . 9

Kanban - 24
Serum - [53

0 20 40 60 &0 100
Percentage of Participants

(e)
>=10 projects - 34
<10 projects - 18
<5 projects _ 48

0 20 40 60 80 100
Percentage of Participants

(b)

Replatforming an
already microservice- I 2
based system
Reengineering parts of a
system as microservices - 16
to work with a monolith

Reimplementing a

monolithic system from - 36
scratch as microservices

Developing a new

microservice-based _ 46

system

0 20 40 60 80 100
Percentage of Participants

(d)

>=10 members - 31

<10 members

38

L]
<5 members - 31
0 20 4

0 60 80 100
Percentage of Participants

("

One project - 40
Multiple projects - 60

0O 20 40 60 80 100

Percentage of Participants

Figure 4.2. Survey responses regarding experience - (a) experience with microservices,

(b) the type of the current MS-based project, (c) applied agile methodology, (d) average

team size, (e) the number of projects in the organization, and (f) the number of projects
teams usually work on.

29

The average team size for their MS-based projects was 9.3, indicating that most
teams had fewer than ten members (see Figure 4.2d). Participants reported a median of 5
projects concurrently running MS-based projects within their organizations (see Figure
4.2e). Lastly, most participants reported being involved in multiple projects

simultaneously (see Figure 4.2f).

4.1.2.3. Size Measurement and Effort Estimation

Most participants (38%) use story points to measure software size in MS-based
projects. 18% use T-shirt sizing, 9% use source lines of code, and 9% use use-case points.
Notably, 22% do not use any size measurement method (see Figure 4.3a).

For effort estimation, planning poker is the most common approach, utilized by
31% of organizations. Twenty-four percent (24%) rely on expert judgment, 16% use ad-
hoc methods, and 11% apply parametric techniques (see Figure 4.3b). Effort estimation
includes various tasks: 91% include development effort, 76% include testing effort, 58%
include analysis effort, 51% include design effort, and 38% include operational effort. In
11% of organizations, effort is not estimated (see Figure 4.3c).

Most participants believe that effort estimation is more accurate with microservice
architectures: 9% strongly agree, and 42% agree with this statement. Meanwhile, 29%
feel microservice architectures do not affect precision (see Figure 4.3d). Regarding the
efficiency of effort estimation, 51% see no change, 24% find it more efficient, and 13%
find it very efficient when using microservices (see Figure 4.3¢).

Most participants track their actual individual effort daily (31%) or weekly (37%),
while 22% do not record their individual effort (see Figure 4.3f). This percentage matches

the proportion of participants who do not use any size measurement method.

30

None

Other

Use-case points
Source lines of code
T-shirt Size

Story Points

Effort not estimated
Operations Effort
Design Effort
Analysis Effort
Test Effort

Development Effort

0 20 40

(a)

N 22
i4
Y
Mo
18
I 33

0 20 40 60 80 100
Percentage of Participants

(c)

1

I 38
I 51
I 53
I 76
I 01

60 80 100
Percentage of Participants

None

Other

Parametric estimation
Ad-hoc

Expert judgment

Planning Poker

5 - Strongly agree
4 - Agree

3 - Neutral

2 - Disagree

1 - Strongly disagree

(b)

H s
| 10
1!
Hl 16
I 24
I 31

0 20 40 60 80 100
Percentage of Participants

(d)

B
-
.
N 3

| I

0 20 40 60 80 100
Percentage of Participants

(e) ()
5 - Strongly agree [l 13 Effort not recorded [22
4-Agrec N 24 Monthly | 6
3 -Neutral [HINEGEE 51 Biweekly | 4
2 - Disagree | 8 Weekly I 37
1 - Strongly disagree | 4 Daily I 31
0 20 40 60 80 100 0 20 40 60 80 100

Percentage of Participants Percentage of Participants

Figure 4.3. Survey responses regarding size measurement and effort estimation - (a)
software size measurement methods, (b) effort estimation techniques, (c¢*) included
tasks in effort estimation, (d) precision of the effort prediction, (e) changes in the
efficiency of the effort estimation, and (f) actual individual effort record frequency
(*: multiple answers).

4.1.3. Implications from the Survey

The survey results showed that organizations generally rely on subjective size
measurement and effort estimation methods in their MS-based projects. However, it is
important to investigate why they choose these methods: Do they face challenges when
using existing objective size measurement methods in MS-based projects, or do they find
subjective methods to be more effective overall? Secondly, participants generally
indicated that effort estimation is more accurate in MS-based projects. We believe the
independent design of microservices in these projects may lead to more consistent effort
estimation than complex monolithic systems. The survey results revealed that a detailed

analysis of these findings is necessary.

4.2. Interview

The survey offered valuable insights to software organizations looking to adapt
their culture to MSSAs. However, we noted that the questionnaire-based format limited
our ability to fully capture the in-depth perspectives of practitioners, especially in a
domain undergoing significant transformation. Therefore, we performed a structured
interview to explore the organizational choices and the challenges in size measurement,

and effort estimation®’. The details of the interview are provided in the following sections.

4.2.1. Research Method

We conducted structured interviews to investigate how organizations apply size
measurement and effort estimation in projects that adopt the MSSA paradigm. The
questionnaire-based survey is another widely used method for gathering information in
software engineering. Each approach has its pros and cons. Surveys allow researchers to
quickly reach a larger number of practitioners, but in transformation projects, they can
lead to misunderstandings and make it harder to identify innovative practices. Structured

interviews, though more time-consuming and labor-intensive, offer key advantages. They

32

facilitate in-depth discussions, reduce the risk of misinterpreting questions, and provide

researchers with a deeper understanding of the topic.

4.2.1.1. Goal and Research Questions

This work aims to provide insights into how software size measurement and effort
estimation are carried out in MS-based projects. By gathering information from industry
practitioners, we seek to identify the commonly used methods, techniques, and tools,
along with their advantages and limitations. Additionally, we aim to uncover the typical
challenges faced when transitioning from monolithic to MSSAs, particularly in size
measurement and effort estimation approaches. Thus, we formulated the research
question for this study as follows:

o What are the industrial common practices and challenges encountered in software

size measurement and effort estimation in MS-based projects?

4.2.1.2. Target Audience

Our target participants were software professionals involved in MS-based projects
using agile methodologies. We primarily relied on personal or company contacts and
LinkedIn to reach these individuals. During the selection process, we ensured that the
participants represented companies from various countries and industries to capture

diverse perspectives.

4.2.1.3. Interview Design and Execution

In designing the interview process, we ensured that all questions were carefully
aligned with the research scope and objectives, with the intent of eliciting information
relevant to addressing the research questions.

The interview questions were organized into four sections, each focusing on a

specific area of interest. The first section was designed to inform participants about the

33

objectives of the interview and how the collected data would be used. Participants were

informed that their participation was entirely voluntary, with the option to withdraw at

any time. The following two sections covered demographic information and general

details about the participants and their respective organizations. The last focused on size

measurement and effort estimation. The interview included various types of questions,

such as single-answer multiple-choice, multiple-answer multiple-choice, and Likert

scale-based questions.

Most questions included a free-text option, allowing participants to provide

additional details or explanations or to specify an option not listed. This design aimed to

collect as much relevant information and insight as possible. A complete list of interview

questions can be found in Table 4.2.

Table 4.2. Interview questions.

Section Survey Question Type of Answers
Single Multiple Free Likert
Answer Answer Text Scale

2 What is the origin country of your organization? X

What is the field of your formal undergraduate X X

education?

Do you have a graduate degree? If yes, what is the X X

field of your latest formal graduate (MSc. or PhD.)

education?

What is your role in your organization? X X

How long (in years) have you been working in a X

software engineering-related field

How long (in years) have you been working i in X

your current role?

How long (in years) has your organization been X

working in the software field?
3 What is the domain of your current company/team? X X

How long (in years) has your organization been X

using an Agile methodology like Scrum?

Which agile methodology do you use? X X

(cont. on the next page)

34

Table 4.2 (cont.). Interview questions.

Section Survey Question Type of Answers

Single Multiple Free Likert

Answer Answer Text Scale

3 How long (in years) has your organization been X
working with MSSAs?
What is the average team size for your current X
company/team?
In your organization, do team members generally X

work on one project?

4 How do you perform effort estimation in X X
microservice-based projects?
Do you measure the size of the projects to estimate X X

the effort? If yes, which method?

Which tasks are included in effort estimation? X X
What is the smallest unit that you record/estimate X X
the effort?

How frequently is actual individual effort recorded X X

in your organization?

Do you use any tool for effort estimation/size X X
measurement?
Have you observed challenges during the effort X X

estimation process when utilizing MSSAs? What
are they?
Have you observed any change in the precision of X X

estimated effort when utilizing MSSAs?

The interviews were conducted remotely via Microsoft Teams, with each session
lasting approximately 50 minutes. At the outset, the objectives of the interview were
clearly communicated, and the intended use of the data was explained. Following this, a
series of structured questions was presented to the participants, with the questions
displayed on-screen. One interviewer read and clarified each question while all
interviewers took detailed notes. The participants were able to view the notes in real-time,
which helped to minimize potential misunderstandings of their responses.

Each interview involved at least two, and occasionally three, interviewers who

actively clarified questions and sought further elaboration where necessary. Additionally,

35

with the participant's consent, the interviews were recorded to facilitate the review and

resolution of any ambiguities in the responses.

4.2.1.4. Interview Piloting and Execution

After drafting the initial set of interview questions, the interview was reviewed by
three experts in the field. Based on their feedback, we revised the questions to improve
clarity and alignment with our research objectives. We conducted a pilot interview to
further reduce the risk of misunderstandings and ambiguities and ensure the interview
design effectively met our goals. Following discussions between the participants and
interviewers, additional revisions were made.

Once the necessary updates were finalized, we scheduled interviews with the
selected participants. A total of 21 professionals with experience in MS-based projects
utilizing agile methodologies were interviewed. Upon completing the interviews, the
interviewers collectively analyzed the responses and generated detailed reports based on

the findings.

4.2.1.5. Criteria for Validation

A key criterion for participant selection was their experience in the microservice
domain. Preselected candidates not meeting this requirement were excluded from the pool
before initial contact. During preliminary discussions, some candidates indicated they
lacked the necessary expertise to adequately respond to the interview questions and were
subsequently removed from consideration.

Following the completion of the interviews, the responses were subjected to a
thorough analysis. During this phase, it was identified that several participants had
misunderstood a question regarding effort estimation, leading to unreliable data. As a
result, this question was excluded from the final analysis, and the corresponding
responses were disregarded. Furthermore, it became evident that one participant lacked

sufficient domain knowledge, and their responses were deemed unreliable. Consequently,

36

this participant's interview data were excluded from the study. Therefore, the final

analysis is based on the interview results from 20 qualified participants.

4.2.2. Interview Results

In this section, we present a summary of the interview results from the 20
participants, organized into three main sections: (1) demographics, (2) organizational

information, (3) size measurement and effort estimation.

4.2.2.1. Participant Demographics

In this section, we aimed to collect general information about the participants in
the study. The sample consisted of 20 individuals working on MS-based projects from
seven countries. Figure 4.4a illustrates the distribution of the countries where the
participants' organizations are located.

Most participants hold undergraduate degrees in computer engineering, with 90%
graduating in this field, while 5% have degrees in software engineering and another 5%
in computer science (see Figure 4.4b). Additionally, 60% of participants do not possess a
graduate degree. Among those who do, 15% have a graduate degree in computer
engineering, 10% in software engineering, 10% hold a Master of Business Administration
(MBA), and 5% have a graduate degree in information systems (see Figure 4.4c¢).

Participants occupy various roles within their organizations, including software
engineer, senior software engineer, developer, senior developer, and positions such as
chief executive officer and project manager. Most participants work as software
engineers, with the distribution of roles illustrated in Figure 4.4d.

Experience in software engineering-related fields among participants ranges from
2 to 29 years. Notably, 45% of participants have over ten years of experience, while 30%
have between 5 and 10 years, and 25% have less than five years of experience (see Figure
4.4e). Participants' experience varies from 1 to 18 years in their current roles. Specifically,
15% have more than ten years of experience in their current positions, 20% have between

5 and 10 years, and 65% have less than five years (see Figure 4.4f).

37

The organizations represented by participants also vary in their experience within
the software field, with durations ranging from 3 to 47 years. Ten percent of the
organizations have been established for over 40 years, while 5% have been in operation
for 30 to 40 years, 35% for 20 to 30 years, 30% for 10 to 20 years, and 20% for less than
ten years (see Figure 4.4g).

(a) (b)

Netherlands W 5
France W 5 Computer Science I 5
Azerbaijan W 5
UK = 10 Software Engineering I 5
USA mmmm 15

G . .
ermany M 15 Computer Engineering _ 90

Turkey I 45

0 20 40 60 80 100 0 20 40 60 80 100
Percentage of Participants Percentage of Participants
(c) (d)
Information Systems J| 5 SD Manager 5
Project Manager m 5
MBA [10 Managing Partner ® 5
Technical Manager m 5
Software Engineering] 10 CEO m 5
Senior Software.. mm 10
Computer Engineering [l 15 Senior Developer mmm 15

Developer mmmm 20

No N ©0

Software Engineer s 25

0 20 40 60 80 100 0 20 40 60 80 100
Percentage of Participants Percentage of Participants

Figure 4.4. Interview responses regarding demographics - (a) the origin country of the
organization, (b) undergraduate studies, (c) graduate studies, (d) current role in the
organization, (e) years of experience the organization has in the software field, (f) years
of experience in the current role, (g) years of experience in the software field
(cont. on next page).

38

(e) ("

>10years | + >10years [15

<10 years

(O8]
(e

<10 years - 20

20 40 60 80 100 0 20 40 60 80 100
Percentage of Participants Percentage of Participants

o

€]

>40 years [l 10

<40 years W 5

<30 years NN 35
<20 years | 30
<10 years | 20

0 20 40 60 80 100
Percentage of Participants

Figure 4.4 (cont.)

4.2.2.2. Organizational Information

We asked participants to respond to questions regarding their organizations to
better understand their expertise in agile methodologies and MSSAs. Our findings
indicate that 30% of participants are from the finance sector (see Figure 4.4a), followed
by software consulting at 25% and e-commerce at 10%. The remaining participants
identified with distinct categories, such as military software (5%) and other sectors (30%),

which include car rental and telecommunications.

39

(a) (b)

Other | 30

Finance | 30

Software Consulting [25 <10 years _ 50

E-commerce [10

<5 years I 5
Military | 5
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of Participants Percentage of Participants
(©) (d)
Other . jo >7 years . 10

Extreme Programming - 15

Kanban | S o

s o - I -5

0 20 40 60 80 100 0 20 40 60 80 100
Percentage of Participants Percentage of Participants
(e) &)

>2(0 members I 5

<20 members - 30
Many projects - 45
0 20 40

0 20 40 60 80 100 60 80 100
Percentage of Participants Percentage of Participants

Figure 4.5. Interview responses regarding experience - (a) domain of organization, (b)
years of experience the organization has in using an agile methodology, (c¢*) applied
agile methodology, (d) years of experience the organization has with microservice
architecture, (e) average team size, (f) the number of projects teams usually work on (*:
multiple answers).

40

Regarding experience with agile methodologies (see Figure 4.5b), half of the
participants (50%) have utilized such methodologies for between 5 and 10 years, while
45% have done so for less than five years. Only 5% reported using agile methodologies
for more than ten years. To gain insights into industry trends, we inquired about the
specific agile methodologies employed in participants' current organizations, allowing for
multiple responses. Notably, the total percentage exceeds 100, as many participants
indicated using more than one methodology. According to the responses (see Figure
4.5¢), most participants utilize Scrum (95%), followed by Kanban (60%). Only 15%
reported using Extreme Programming, while 10% mentioned other methodologies, such
as SAFe. An interesting observation is that all participants who reported using Kanban
stated that they do so in conjunction with Scrum, with some also mentioning the use of
Extreme Programming alongside Kanban, whereas many indicated using Scrum
independently.

In response to a question about their experience with MSSAs (see Figure 4.5d),
we found that 55% of teams have been utilizing this architecture for less than three years,
35% for between 3 and 7 years, and 10% for more than seven years. Team sizes (see
Figure 4.5¢) predominantly consist of fewer than ten members, with 65% falling into this
category. Only 5% of teams comprised more than 20 members, while 30% had between
10 and 20 members.

In the last question, we examined whether teams were working on a single project
or multiple projects simultaneously (see Figure 4.5f). The results revealed a close
distribution, with 55% of participants indicating that they are engaged in a single project,

while 45% reported working on multiple projects concurrently.

4.2.2.3. Size Measurement and Effort Estimation

We began by asking how organizations approach effort estimation in their MS-
based projects (see Figure 4.6a). Most (65%) utilize Planning Poker, and 50% apply
Expert Judgment. Notably, many teams combine these two methods. A smaller
percentage of organizations use Parametric Estimation (5%), Wide-band Delphi (5%),
and Ad-hoc Estimation (5%). Additionally, 10% of participants reported that their

organizations do not estimate effort at all.

41

(a) (b)
Planning poker |G -5 Story points I 55
Expert judgment [N 50 T-shirt size NENEEE 25
) o Use-case points Wl 10
Pararametric estimation W 5
COSMIC W 5
Ad-hoc B 5
SLOC W 5
Wide-band delphi B 5 Other W 5
Effort not estimated [l 10 Size not measured WM 15
0 20 40 60 80 100 0 20 40 60 80 100

Percentage of Participants

Percentage of Participants

() (d)
Development effort | INEEG_—_—— 75 Product backlog item | I 40
Test effort | INEEG_—_ .
estenor 63 Requirement [20
Operations effort [N 40
Epic | 10
Analysis effort I 35
. Other 25
Design effort I 35 —
Effort not estimated [l 10 Effort not estimated [J| 10
0 20 40 60 80 100 0 20 40 60 80 100

Percentage of Participants

Percentage of Participants

Figure 4.6. Interview responses regarding size measurement and effort estimation - (a*)
method used for effort estimation, (b*) method used for size measurement, (c*) tasks
included in effort estimation, (d*) smallest unit used in effort estimation, (e) frequency
of recording individual work, (f) tool used for measurement or effort estimation, (g)
difficulty of effort estimation, (h) precision of effort estimation (*: multiple answers)
(cont. on next page).

42

(e)

Daily [25

Yes 50

Weekly JJj 10

other [30
Effort not recorded - 35

0 20 40 60 80 100

()
0 20 40

60 80 100

Percentage of Participants Percentage of Participants
(2) (h)
1-Veryeasy [20 1- Much lower = 0
2-Easy | 20 2-Lower | 20
3 -Neutral | 35 3 - About the same || NN 40
4 - Difficult [N 25 4 - Higher I 35
5 - Very difficult | 0 5 - Much higher] 5
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of Participants Percentage of Participants

Figure 4.6 (cont.)

Next, we inquired whether organizations measure software size and, if so, which
methods they employ (see Figure 4.6b). The findings align closely with those on effort
estimation, with most organizations favoring subjective approaches. Specifically, 55%
use Story Points, 25% use T-shirt Sizing, and 10% employ Use-case Points. Some
organizations combine Story Points and T-shirt Sizing depending on the project. On the
formal side, 5% of organizations use COSMIC, and another 5% use Source Lines of Code
(SLOC). However, 15% of participants indicated that their organizations do not measure

software size.

We then explored which tasks are typically included in effort estimation (see
Figure 4.6c). Among participants who perform effort estimation, 75% include
Development effort, 65% include Testing effort, 40% include Operations effort, and 35%
account for Analysis and Design separately. The results show that most teams incorporate
Development, Testing, and Design efforts together in their estimates.

We also asked about the smallest unit used for effort estimation (see Figure 4.6d).
A significant number of participants (40%) estimate at the Product Backlog Item (PBI)
level, 20% at the Requirement level, and 10% at the Epic level. Additionally, 25%
estimate at varying levels, such as User Story, component, or sprint, while 5% do not
perform effort estimation at all.

Regarding the frequency of recording actual individual effort (see Figure 4.6e),
we found that although most organizations estimate effort, 35% do not record actual
individual effort. Among those that do, 25% record effort daily, and 10% do so weekly.
In 30% of organizations, effort is recorded in various ways, including hourly with
automation, sprint-based, or by tracking only the remaining time to complete tasks.

We then inquired whether any tools are used for size measurement or effort
estimation (see Figure 4.6f). Half of the organizations (50%) use tools, with Planning
Poker applications being common, while the other 50% prefer not to use any tools.

In the seventh question, we asked about the challenges encountered during effort
estimation in MS-based projects (see Figure 4.6g). Thirty-five percent of participants
reported no significant changes in the challenges compared to traditional projects.
Twenty-five percent found effort estimation in MS-based projects more difficult, whereas
20% found it easy, and another 20% found it very easy. Participants who found the
process easy or very easy mentioned that although the migration posed initial difficulties,
they became more experienced and successfully completed the transition.

Finally, we asked participants to assess the precision of effort estimation in MS-
based projects (see Figure 4.6h). The results mirror the trends observed with challenges.
Forty percent of teams reported that the precision of effort estimation was comparable to
traditional projects, while 35% observed higher precision, and 5% reported much higher
precision. Conversely, 20% of participants noted lower precision. As with challenges,
those who achieved higher precision had typically completed the migration process

successfully.

44

4.2.3. Implications from the Interview

In agile development, subjective methods like Planning Poker and Expert
Judgment dominate.!> Our interview findings reflect this, with many organizations
combining these two methods—teams estimate using Planning Poker, but management
often adjusts the final numbers.

Software size measurement, essential for effort estimation and process
improvement, follows a similar trend. Most organizations rely on subjective methods,
with Story Points being the most common in MS-based projects. While widespread, these
methods have drawbacks such as inconsistent size perceptions and team-specific biases,
making them hard to apply across different teams. This reliance on subjective methods
highlights the potential need for formal approaches in agile MS-based projects.

Although formal methods like FSM have been successfully applied in agile
projects, they are challenging to implement in MSSAs. Methods like COSMIC, which
depend on data movement analysis, are difficult to apply to microservices, where events
and minimal documentation complicate traditional measurement techniques. This
suggests a need for new, microservice-specific effort estimation methods.

Participants highlighted challenges in effort estimation for microservices,
particularly due to the dependencies between teams. Despite microservices'
independence, inter-service communication creates synchronization issues. Some
participants reported that effort estimation became so complex due to these dependencies
that they abandoned the practice altogether. However, experienced teams found fewer
challenges, emphasizing the importance of team familiarity with the domain and
architecture.

Most participants found the precision of estimates similar to that of traditional
architectures. Organizations that had completed their migration to microservices and
those that struggled with precise estimation, in general, both reported this. However,
teams that succeeded in improving precision attributed it to clearly defined microservices.
Still, larger projects with multiple interconnected microservices often saw deviations

from initial estimates due to the complexity of their systems.

45

4.3. Exploratory Case Study 1

During our Problem Identification phase, based on the findings from the literature
review, survey, and interview, we determined that using events to measure size in MSSAs
would be suitable, as events serve as the base components of microservices. Therefore,
we conducted an exploratory case study to evaluate the success and suitability of event-
based size measurement in microservices. In this study, we estimated effort in an MS-
based project using the Event Point method, an event-based size measurement approach
proposed by Hacaloglu®!, alongside the COSMIC method??. The details of this study are

outlined in the following sections.

4.3.1. Case Study Design

This case study aims to identify the challenges organizations face when applying
software size measurement and effort estimation practices to MS-based projects in agile
software development. Additionally, it seeks to provide recommendations to address
these difficulties and improve the overall process. To achieve this, we formulated the
following research questions:

o RQI. Is "event" relevant as a size measure in MSSAs?

o RQI.1. How successful are the Event Points and COSMIC methods for
size measurement and effort estimation in organizations using agile
practices within MSSAs?

e RQ2. What are the difficulties encountered in terms of software size measurement
and effort estimation practices for MSSAs in organizations utilizing agile

methods?

4.3.1.1. Case Selection Criteria

The key criterion for selecting a project for this case study is that it should be
developed using the agile software development method in MSSA. Additionally, the

project's requirements should be documented to allow for accurate measurement. Lastly,

46

the effort data corresponding to these measured requirements must be recorded to build

the effort estimation model.

4.3.1.2. Description of the Case

The case study focuses on a project designed to help businesses better manage and
control their field service operations. Initially targeting the air conditioning sector, the
software is expected to expand into other industries in the future. It offers various
functionalities in both mobile and web versions, catering to a diverse range of customers
with different package options. The project exemplifies modern software design using an
event-based architecture.

The organization behind the project specializes in software that helps clients
digitize their sales, logistics, and service operations, and it has over 30 years of industry
experience. They manage more than 130 active projects and serve over 25,000 mobile
users. The organization has a workforce of over 160 employees, including 40+ in research
and development. In this case study, six developers contributed to the project, with their

experience reflecting the average skill level within the company.

4.3.2. Execution of the Case Study

The case study began with a meeting between the measurers and the organization
to understand their development process, which uses Scrum. In the organization, business
analysts define requirements linked to Epic items, which are later broken down into
Product Backlog Items (PBIs) and assigned to developers. We performed our
measurements on 16 Epics. These selected epics contain a minimum of 1, a maximum of
6, and an average of 2.56 PBIs.

Two independent measurers measured the project's functional size using
COSMIC and Event Points methods to ensure objectivity. After measuring the items
using both methods, meetings were held to review assumptions, adjust measurements,
and exclude any change requests. During the effort estimation process, two Epics were

identified as possible outliers. After discussions with the organization, these outliers were

47

removed, and the models were updated. The following section summarizes the result from

the updated model constructed with 14 Epics.

4.3.3. Results

We performed linear regression analysis based on size measurement results. We
used "total Event Point/COSMIC size" as the independent variable and "effort" as the
dependent variable. Figure 4.7 shows the linear regression-based effort estimation
models, including assessed residual plots, regression equations, and R-squared values.
The analysis results show that Event Point demonstrates a strong relationship, and
COSMIC demonstrates an adequate relationship with actual effort, considering the R-

squared values.”

(a) COSMIC Size vs Effort

14

12 °

10
£ 8 y=0.1998x +0.7166
6 R™= 03388
m ST e

Y e e o

2. e i g °e s

0

0 10 20 30 40 50 60
COSMIC Size
(b) Event Point Size vs Effort
14
12 °
y=0.159x +0.2962

10 R2=0.7491..+"
284 e
S & L
61 e

440 g

) e ® ...s °

.o
0
0 10 20 30 40 50 60 70
Event Point Size

Figure 4.7. Linear regression-based effort estimation models for
exploratory case study 1.

48

The evaluation results show that Event Point provided acceptable effort
estimation, considering the MMRE metric.'”! On the other hand, COSMIC could not
give an acceptable estimate of effort. Although the PRED(30) value for the Event Point
model is higher than those for the COSMIC Size model, neither model met the threshold

for successful estimation. A detailed summary of these values is presented in Table 4.3.

Table 4.3. Exploratory case study 1 results.

Method Regression MMRE MdMRE PRED(30)
COSMIC Linear Regression 0.51 0.35 0.31
Event Point Linear Regression 0.41 0.32 0.43

4.3.4. Implications from the Exploratory Case Study 1

This case study demonstrated that event-based size measurement provides better
effort estimation results in MS-based projects than data movement-based measurement
methods. This indicates the potential to develop an event-based size measurement
approach tailored explicitly for microservice architectures.

Upon examining the evaluation metrics, although the Event Point method
outperforms the COSMIC method, it does not demonstrate the ability to produce reliable
predictive effort estimations. While an MMRE value of 0.41 falls within the acceptable
range, it does not meet the rigorous standards required for a practical effort estimation
model in the software industry. Thus, despite its relative improvement, the model lacks
the precision necessary for widespread adaptation in predictive scenarios. There are two
primary reasons behind this: (1) the actual effort provided by the organization was derived
through several calculations rather than being directly tracked, and (2) the requirements
used for measurement contained excessive technical details.

One factor contributing to the lack of precision in effort estimation is the
organization's use of sprint-based effort tracking. Since the measurements were done at
the PBI level, actual effort data for each PBI was needed. However, because such data
was not consistently available, effort for each PBI had to be calculated using sprint-based
actual effort and estimated PBI level effort provided by the organization. This calculated

effort was then used as input for the model. For more accurate effort estimation models,

49

it's crucial for organizations using agile methods to record actual effort at the PBI level
or smaller work units. We recommended that the organization track effort data at the
lowest level to improve accuracy in future estimations.

Another factor for the less-than-expected accuracy in effort estimation was the
highly technical nature of the PBIs being measured. In FSM methods, requirements are
expected to be defined at a functional level. However, due to the nature of Agile,
requirements are broken down into PBIs, which often include design-phase decisions. As
a result, while measuring these PBIs, we encountered both functional requirements and
technical details, such as communication between microservices and algorithmic
specifics. This led to certain abstractions in both methods during measurement, which
may have impacted the reliability of the results.

Consequently, we observed that in Agile organizations working with MS-based
projects, a measurement method capable of accurately assessing projects throughout all
stages of the SDLC should also include size units at the design level. The following
section describes the initial version of the MicroM method, which was developed based

on the implications derived from this case study.

4.4. MicroM — The Initial Version

The MicroM method expresses software size in terms of events, which are the
base components of microservices. While developing the method, we aimed to answer
the question: “What types of events can be used as base components at different levels of
software representation?”

MicroM categorizes the concept of events by considering their MS-based
characteristics, as well as the limitations of FSM methods. MicroM defined three event
categories: Interaction, Communication, and Process (see Figure 4.8).

Interaction Events encompass events triggered by user actions within the flow and
any resulting outputs from the system to the user, primarily focusing on front-end layer
activities. These events can be mapped to the COSMIC method's Entry and Exit data
movements, but without relying on the Object of Interest (OOI) concept. Instead,

interactions are measured by counting events.

50

Communication Events involve events that arise from publishing, subscribing,

and messaging activities, mainly covering backend communication between

microservices. The communication event is designed as a specific category tailored to

MSSAs.

Tri
Interaction rigger
Event
Publish
Communication
Event Subscribe
Message
Process

Figure 4.8. MicroM size measurement method (version 1).

Process Events encompass the calculations and decision-making events that occur
during the flow, primarily focusing on backend layer activities. The calculation activities
include tasks related to data manipulation, filtering, reporting, and file operations.
Decision-making activities cover decision structures such as "OR", "XOR", and "AND",
This category introduced by MicroM addresses gaps present in FSM methods like
COSMIC, offering significant value in software development, particularly in capturing
and representing algorithmic complexities.

The MicroM method recommends using eEPC diagrams to define events (see
Section 2.1.3). Different abstraction levels of the software representations can be
employed during each measurement process, considering the project characteristics;
however, this abstraction must be maintained at a consistent level throughout the entire
measurement process. Therefore, the first step of the measurement should involve
determining the appropriate level of abstraction. In order to identify communication
events in MicroM size measurement, the system must be decomposed into microservices.

Additionally, process events can only be determined if the requirements are defined at a

51

detailed level. Therefore, efficient MicroM measurement requires that design-level
decisions have been made.

The process of measuring the size of a software project begins with a thorough
analysis of the project's requirements, followed by identifying the specific requirements
to be measured. Once identified, these requirements are conceptually categorized into
three distinct types of events: Interaction, Communication, and Process Events. Each of
these events is then counted separately based on their respective categories. The overall
size of the requirement is determined by aggregating the total number of identified events;
alternatively, it can be expressed as totals for each category. This approach offers a more
nuanced understanding of the software's complexity and functionality. The following
section presents the exploratory case study conducted to evaluate the success of the initial

MicroM method.

4.5. Exploratory Case Study 2

The details of Exploratory Case Study 2, conducted to assess the success of the
MicroM method we developed and to examine the benefits of the recommendations we

made in the project from Exploratory Case Study 1, are provided in the sections below.!!!

4.5.1. Case Study Design

This case study aims to assess the success of our proposed MicroM method, which
categorizes the event in a more microservice-centric approach. We also sought to evaluate
how our previous recommendations improved the size measurement and effort estimation
processes within the agile organization involved in Exploratory Case Study 1. To achieve
this, we formulated the following research questions:

e RQI. How successful/precise is the proposed event categorization in the size
measurement and effort estimation of MS-based projects?

o RQ2. What other purposes is this categorization useful for?

52

4.5.1.1. Case Selection Criteria

The most critical case selection criterion in this study is the selection of
requirements for which actual effort was entered, and descriptions were written as a result

of the recommendations we made to the organization in Exploratory Case Study 1.

4.5.1.2. Description of the Case

The project involved in this case is the same as the one in Exploratory Case Study
1. However, the effort was recorded on a PBI basis in this case, and regular descriptions

were written for the PBIs as part of our recommendations.

4.5.2. Execution of the Case Study

The case study began with a meeting between the measurers and the organization
to determine the requirements to be measured, during which it was revealed that the
organization had started recording actual efforts for PBIs, as recommended in Exploratory
Case Study 1. However, since the project was completed during this process, most PBIs
for which effort was recorded were change requests. In this meeting, 17 non-outlier PBIs
were selected for size measurement.

The project's functional size was measured using COSMIC and MicroM methods
by three independent and experienced measurers who were not involved in the
development process, ensuring objectivity. To maintain consistency, they jointly
measured the size of 17 PBIs and discussed assumptions before finalizing the
measurements. Data collected during the case study included COSMIC size, MicroM size
(categorized by Process, Communication, and Interaction), PBI effort in person-hours,
and any encountered difficulties. The process was followed by the creation of an effort
estimation models. The following section summarizes the result from the effort estimation

models constructed with 17 PBIs.

53

4.5.3. Results

We first performed linear regression analysis based on size measurement results.
We used "total MicroM/COSMIC size" as the independent variable and "effort" as the
dependent variable. Figure 4.9 shows the linear regression-based effort estimation
models, including assessed residual plots, regression equations, and R-squared values.
The analysis results show that Event Point demonstrates a strong relationship, and
COSMIC demonstrates an adequate relationship with actual effort, considering the R-

squared values.”

(a) COSMIC Size vs Effort
25.00
y = 0.699x + 3.632 ..+
20.00 ® R>=0.6217"
+ 15.00 T
£ ° &
@ 10.00 ° o«
PRI
5.00 “®oe
34
0.00
0 5 10 15 20 25 30
COSMIC Size
(b) MicroM v1.0 Size vs Effort
25.00
y=0.7797x + 1.857
20.00 o &R>=0.7448 ..
........ °
£ 15.00 o .
g e . ®
m 10.00 o ..
500 ° .’,’ ° [}
: e %o
0.00
0 5 10 15 20 25 30
Microm v1.0 Size

Figure 4.9. Linear regression-based effort estimation models for
exploratory case study 2.

54

We performed multiple linear regression to evaluate the impact of each COSMIC
data movement and MicroM event category on effort. We used three "MicroM event
categories (Interaction, Communication, and Process) and four "COSMIC data movement
types (Entry, Exit, Read, and Write)" as the independent variables and "effort" as the
dependent variable. We used Pearson's correlation coefficient to measure correlation. The
multiple regression analysis results, including intercept, slope coefficients, R-squared,
and Significance F values of the projects, are presented in Table 4.4. The analysis results
show that considering the R-squared values, the MicroM method demonstrates a higher

correlation with actual effort than the COSMIC method.

Table 4.4. Multiple linear regression analysis for exploratory case study 2.

COSMIC MicroM v1.0

Number of Observations 17 17
Intercept 2.72 1.72
Slope Coefficient for Entry 0.25 -
Slope Coefficient for Read -0.31 -
Slope Coefficient for Write 0.70 -
Slope Coefficient for Exit 2.12 -
Slope Coefficient for Interaction - 1.06
Slope Coefficient for Communication - 0.22
Slope Coefficient for Process - 0.94
R-squared 0.69 0.76
Significance F 0.00 0.00

The evaluation results show that all models provided acceptable!®! effort
predictions (see Table 4.5). The MicroM models performed better than the COSMIC
models, approaching the level of predictive accuracy with multiple linear regression. We
observed a 13% improvement in the MMRE (Mean Magnitude of Relative Error) value
in the MicroM-based model created with multiple linear regression compared to linear
regression. We also obtained better results with the MicroM method than the COSMIC
method based on the MAMRE and PRED(30) metrics.

55

Table 4.5. Exploratory case study 2 results.

Method Regression MMRE MdMRE PRED(30)

COSMIC Linear Regression 0.46 0.32 0.47
Multiple Linear Regression 0.47 0.27 0.53

MicroM v1.0 Linear Regression 0.31 0.28 0.71
Multiple Linear Regression 0.27 0.26 0.59

4.5.4. Implications from the Exploratory Case Study 2

In this study, we aimed to achieve two primary objectives: first, to evaluate the
success of our proposed MicroM size measurement method for MS-based projects, and
second, to explore additional applications of this categorization. Our previous research
(Exploratory Case Study 1) showed that event-based size measurement yielded more
accurate effort estimations than COSMIC, highlighting the importance of aligning
measurement methods with the assessed architecture.

We developed a MicroM size measurement method tailored for microservices,
categorizing events according to the architecture. This method enabled us to create a more
accurate effort estimation model than the COSMIC-based one. However, although we
achieved more accurate results compared to the COSMIC method, we were unable to
create a predictive effort estimation model (MMRE=0.27 for MicroM). This could likely
be attributed to the nature of the measured PBIs, most of which were change requests.

Despite this, the MicroM measurement approach offers insights beyond effort
estimation, particularly regarding coupling complexity within projects. By analyzing the
ratio of communication events to total events, we can gauge coupling complexity; an
increase in this ratio signifies heightened coupling, which can complicate management
among microservices and make implementing change requests more challenging. This
insight can aid in decision-making regarding change request approvals by considering
both effort and complexity.

Additionally, we observed improvements in the organization's practices. Our
previous study identified specific challenges in size measurement and effort estimation
in agile environments, such as the lack of recorded actual effort at the PBI level and

insufficient descriptions. Our recommendations to include detailed descriptions and

56

record actual effort at the PBI level proved effective in this study, leading to quicker and
more precise measurements and effort estimations based on actual data.

In this study, we also evaluated the suitability of the developed method for
MSSAs. We found that the event categories we defined exhibited varying correlations
with effort. The multiple regression model we developed yielded more accurate effort
estimations than the linear regression model based on the total number of events.
However, we recognized that each microservice might have its own database, and we had
not accounted for database interactions in our event categories. While the initial version
of our method is suitable for measurement during the design phase of the SDLC because
it incorporates design-level decisions, it should ultimately be applicable across all SDLC

phases, including the requirements phase, to enhance its utility.

4.6. Summary of the Chapter

In the literature review, we observed a transition in today's software world from
monolithic architectures, database, and transaction-oriented structures to MS-based, more
behavioral, and event-oriented architectures. However, the objective FSM methods,
which have been successfully used in traditional monolithic architectures, may not be
able to respond to measuring the behavioral and event-oriented structure in MSSAs, as
they typically rely on a data movement-based counting approach. In the surveys and
interviews we conducted after the literature review, we found that organizations face
difficulties when performing measurements in MS-based projects and are unable to use
objective measurement methods.>’*® These findings have led to the development of an
objective sizing measurement method for MSSAs.

In the method we developed, we drew inspiration from events, which are the base
components of microservices. Accordingly, we first conducted an exploratory case study
to evaluate the success and suitability of the Event Point>! method in MSSAs. As a result
of this study, we found that the event-based measurement method performed better in
MS-based projects compared to the data movement-counting FSM method**. However,
when counting events in the method to be developed, it is essential to consider the

characteristics of MSSAs.

57

In the first version of the MicroM, considering the shortcomings of existing sizing
measurement methods, we categorized events into three groups: interaction,
communication, and process events. In this initial version, interaction events cover user
interactions, communication events cover communication between the microservices,
and process events cover calculation and decision. We evaluated this version by
conducting a second exploratory case study on an MS-based project. Similar to the first
exploratory case study, it yielded better results than the COSMIC method. Additionally,
we observed that the event categories we defined had different correlations with effort.
The multiple regression model we created provided a more accurate effort estimation than
the linear regression model that used the total number of events. However, during this
study, we realized that each microservice could have its own database, and we had not
defined an event category that accounts for database interactions. The initial version of
the method is suitable for measurement during the SDLC design phase as it includes
design-level decisions. However, for the method to be useful, it should be measurable
across all phases of the SDLC, such as requirements level. We improved the first version

method and created MicroM version 2, which is explained in the next chapter.

58

CHAPTER 5

MICROM: A SIZE MEASUREMENT METHOD FOR

MICROSERVICE-BASED ARCHITECTURES

In this chapter, we introduce the most recent version of MicroM. We developed

the final version based on the findings from the performed phases of our research

methodology. These findings are as follows:

In the software industry, there is a paradigm shift moving from the database and
transaction-oriented structures, as seen in "monoliths," to more behavioral and
event-oriented structures, as in "microservices".

Objective FSM methods, effective in traditional monolithic architectures, may
struggle with measuring behavioral and event-oriented structures in MSSAs due
to their reliance on data movement-based counting approaches.

Organizations face challenges in applying objective size measurement in MS-
based projects. There is no de facto standard method used in the industry for
microservice projects.

There is a correlation between size based on events, the base components of MS-
based projects, and effort.

The event categories (interaction, communication, and process) defined in
MicroM version 1 have different correlations with effort.

MicroM version 1 does not include events that count interactions with databases;
it only counts communication between microservices. In an MSSA, database
operations should also be considered.

MicroM version 1 requires the project to make design-level decisions to count the
defined event categories. However, the developed method needs to be applicable
throughout all phases of the SDLC.

Considering our findings, we aimed to answer the question: “What types of events

can be used as base components at different levels of software representation?” The

following section presents the improved version of the MicroM Size Measurement

Method.

59

5.1. Description of MicroM Size Measurement Method

MicroM is an objective size measurement method tailored for MSSAs. It focuses
on the events that form the foundation of microservices, categorizing these events into
different abstraction levels of the software representations based on the architectural
characteristics. This method is designed to be applicable throughout all stages of the
SDLC.

MicroM classifies events into three abstraction levels: (1) Functional Level, (2)
Architectural Level, and (3) Algorithmic Level (see Figure 5.1). The varying levels of
abstraction in the method allow the MicroM approach to be utilized from the requirements
phase through to the post-project stage of the SDLC. As the project details mature, the

quality of the measurements improves.

User
Interaction
Functional
(Interaction)
DB Input
Database -
Interaction DB Output
Publish
Architectural
(Communication) Subscribe
Algorithmic
(Process)

Figure 5.1. MicroM size measurement method.

The functional level covers the events during user and database interaction. User
interaction events consist of user inputs and outputs while database interaction events
consist of database inputs and database outputs. This level abstracts the system between
the functional user and persistent storage. The concept of a functional user is as in the

COSMIC method and refers to "a type of user that is a sender and/or an intended recipient

60

of any data in the functional user requirements of a piece of software”. Functional-level
events can be mapped to the Entry, Read, Write, and Exit data movements in the COSMIC
method. However, MicroM does not apply the OOI concept; instead, it measures
interactions by counting events. In this method, interaction events include all the data that
can be sent to the system by the user on a single screen or displayed by the system to the
user on a single screen. For instance, filling in all fields on a form is counted as a single
interaction event. Similarly, a form displayed to the user is also counted as a single
interaction event, even if the data originates from different OOIs. Database interaction
events are also at the same level of abstraction as user interaction events. For example,
writing all the data entered through a single screen to the database or reading all the data
that can be displayed to the user on a single screen from the database is counted as a single

event. Functional-level event examples can be found in Figure 5.2.

Fill the form Show order summary

User
Interactions
Form is filled Ordes S
shown
Delete order Read order
Database
Interactions
Order is deleted Order read

Figure 5.2. Functional level events.

61

The architectural level covers the events during communication within the system.
Therefore, design-level decisions should already be made to identify events at this level.
This abstraction level has been developed in the MicroM method as a specific level
tailored for MSSAs. Architectural-level events consist of communication between
microservices, including message exchanges, as well as events triggered by publish and
subscribe mechanisms in event-based systems. At this level, in request-driven MSSA,
each request-response pair is counted as one communication event. In event-driven
MSSA, each message published to the event queue by a microservice and each
subscription of a microservice to the event queue are also counted as one communication

event. Architectural level event examples can be found in Figure 5.3.

Subscribe to the Publish the Send customer info
"applications" queue application result to the "order" service

Notification service Aveliean e
is subscribed to the BRSO niE Customer info is sent
published

queue

Figure 5.3. Architectural level events.

The algorithmic level covers the events during the processing issues, such as
decision and calculation. This level introduced by MicroM addresses aspects missing in
FSM methods like COSMIC but holds significant value in software development,
particularly in representing algorithmic complexities. Decision events include events that
result from decision mechanisms such as "OR", "XOR", and "AND", while calculation
events encompass tasks involving data manipulation, such as arithmetic calculations,
filtering, reporting, and file creation. Events at this level are algorithmic events that occur
at the functional requirement level. For example, each event resulting from a decision
determined at the functional requirement level is counted as a decision event (e.g., yes/no,

younger than 18 years/older than 18 years, etc.). Unlike the COSMIC method, events

62

resulting from tasks such as report generation in different templates, creating files in
different formats, and data manipulation involving calculations like tax, discount, etc.,
are counted as one calculation event. Algorithmic level event examples can be found in

Figure 5.4.

RS

P

Figure 5.4. Algorithmic level events.

In summary, MicroM's classification of events into Functional, Architectural, and
Algorithmic Levels provides a clear framework for measuring the software size of MS-
based systems throughout the SDLC. Each level focuses on different aspects: the
Functional Level deals with user and database interactions, the Architectural Level
addresses communication between microservices, and the Algorithmic Level covers
decision-making and data-processing tasks. These levels help to provide a more detailed
view of software size, complementing the existing FSM methods and offering a valuable

approach for sizing MSSAs.

63

5.2.

Application of MicroM Size Measurement Method

The application of the MicroM size measurement method to project requirements

involves the following steps (see Figure 5.5):

A.

The software project's requirements are analyzed, and the requirements that will
be measured are determined. The abstraction level of the requirements is defined.
Based on the defined abstraction level, the MicroM levels to be included in the
measurement scope are determined. For example, since determining architectural
level events at the requirements stage can be challenging, they may be excluded
from the scope of measurement.

Each identified requirement is modeled using the eEPC notation. Events in the
model are conceptually categorized into Interaction, Communication, and Process
Events according to the MicroM rules.

The identified events are counted separately based on their levels.

. The size of the requirement is determined by the total number of events.

Alternatively, the size of the requirement is expressed as totals for different levels.

Figure 5.5. Application of MicroM.

64

Interaction

Communication

Process Process

Interaction Interaction

Communication

Figure 5.6. Application of MicroM — example 1.

65

These application steps are illustrated with the following two examples. The first
example is a login process, and the requirement is identified as "When the user enters
their email address and password to log into the system, the service checks the credentials
from the database. If the credentials are correct, a "Login successful”" message is
displayed to the user, and if incorrect, a "Login failed" message is shown, and the status
is published to log.". The events for the requirement are identified in Figure 5.6. The
MicroM size for this requirement is determined to be a total of 7 events: 4 Interaction

events, 2 Process events, and 1 Communication event.

Update the order
status

v

Status is updated as Interaction
"ready".

|
J AND l

Save the status Publish the updated
timestamp status
Interaction Slistus Blslesinp Updatedistatis Communication
saved published
Send "on the way"
notification
\ 4
Notification sent Interaction

Figure 5.7. Application of MicroM — example 2.

66

The second example is from a food order application. The selected requirement is
about a notification process. The requirement is identified as "When the order is ready,
the restaurant changes the status of the order. The order service writes the timestamp to
the database and publishes the new status. The notification service sends the customer a
"your order is on the way" push notification.". The events for the requirement are
identified in Figure 5.7. The MicroM size for this requirement is determined to be a total

of 4 events: 3 Interaction events, and 1 Communication event.

5.3. Summary of the Chapter

In this chapter, we introduced the final version of the MicroM method, a size
measurement approach designed explicitly for MSSAs. It addresses the limitations of
traditional FSM methods by focusing on events as the base components of microservices,
categorizing them into three abstraction levels of the software representation: Functional,
Architectural, and Algorithmic. These levels encompass user interactions,
communication between microservices, and processing tasks. MicroM is applicable
throughout the entire SDLC with the quality of measurements improving as project details
mature. We also provided examples from a login process and a food order notification to
demonstrate the method in practice. We showed how it can accurately measure software
size based on event counting, offering a tailored solution for MS-based systems. The next
chapter provides a detailed analysis of the results from evaluating the final version of the

model.

67

CHAPTER 6

EVALUATION

In this chapter, we first provide a detailed analysis of the results from evaluation

case studies. Then, we discuss our findings and mention the possible threats to validity.

6.1. Evaluation Case Studies

In the following sections, we describe the details of the case studies conducted to

evaluate the MicroM Size Measurement Method.

6.1.1. Case Study Design

These case studies aim to assess the success and reliability of the size
measurement method proposed in the "solution design" phase. To guide this evaluation,
we aimed to determine the effectiveness of the proposed MicroM size measurement
method for estimating effort in MS-based projects. For this aim, we defined the following
research questions:

e RQI. Is MicroM relevant as a size measure for MSSAs?

e RQ2. Is MicroM vrelevant as a size measure for traditional monolith
architectures?

e RQ3. How does MicroM perform in estimating effort compared to other size

measurement methods?

6.1.1.1. Case Selection Criteria

We selected our cases based on specific criteria. The first criterion includes

projects developed with MSSAs and a counter case that features a project developed using

68

traditional monolithic architecture. The second criterion is that these projects should have
software artifacts with enough details to be measurable and related effort data. The
maturity of the documentation is essential for reliable evaluation, and access to relevant
organizations is necessary if needed. The last criterion is to include organizations that
develop projects using both Agile and Waterfall methodologies to evaluate the success

and adaptability of the MicroM method across different SDLC approaches.

6.1.1.2. Description of the Cases

We conducted three evaluation case studies to answer the research questions.
Based on the defined criteria, Cases 1 and 2 involve projects developed with MSSAs. In
contrast, Case 3 is the counter case, involving a project developed with a traditional
monolithic architecture. This allowed us to assess how MicroM performs in non-
microservice architectures. In Cases 1 and 2, the organizations use Agile methodology,
while in Case 3, the Waterfall methodology is used.

In all cases, we evaluated the success of effort estimation models using both
MicroM and COSMIC methods. Table 6.1 summarizes the cases, and the following

sections describe each case study in detail.

Table 6.1. Summary of the evaluation case studies.

Case 1 Case 2 Case 3
Domain Finance MIS Aviation
Architecture Microservice Microservice Monolith
Development Type Backend Full Stack Full Stack
Documentation Level Design Design Requirement
Measured Artifacts Issue (Jira) Task (Notion) Requirement Document
Measurement Methods MicroM & COSMIC ~ MicroM & COSMIC MicroM & COSMIC
Number of Samples 45 17 14

69

6.1.2. Evaluation Case Study 1

Organization 1 is a software development and consultancy company with over 25
years of experience. The project included in the case study is in the finance sector and is
being developed using an event-based MSSA. The organization adopts Agile
methodology and is primarily responsible for the backend development of the project.
The project is currently in development, and the measurements were conducted based on
completed issues in Jira. The actual efforts are recorded in Jira on an issue-by-issue basis

as person-hours.

6.1.2.1. Execution of the Case Study

The case study began with a meeting between the measurer and the organization
to identify the issues to be measured. In this meeting, 45 issues were selected, all of which
have actual effort data, are completed, involve new development tasks, and have enough
descriptions for measurement. In the first cycle, we measured the issues and constructed
effort estimation models for both MicroM and COSMIC. In a later meeting with the
organization, the assumptions made during the measurement process were clarified,
during which we identified an outlier issue considering the productivity. This outlier issue
was completed in more time than expected, and it was noted that the reason was the
complexity of the task, which was being done for the first time. Consequently, new effort
estimation models were developed using the remaining 44 issues. The following section

summarizes the result from the updated model constructed with 44 issues.

6.1.2.2. Results

We first performed linear regression analysis based on size measurement results.
We used "total MicroM/COSMIC size" as the independent variable and "effort" as the
dependent variable. Figure 6.1 shows the linear regression-based effort estimation

models, including assessed residual plots, regression equations, and R-squared values.

70

The analysis results show that MicroM demonstrates an acceptable relationship with
actual effort, considering the R-squared values.”® On the other hand, the relation between

COSMIC size and effort is not reliable for planning.

(a) COSMIC Size vs Effort
16 o
14
12 °
e 10 .y:0.8299lx+ 1.531'?_'..
S 8 ° & :03042
2 6 e o _ ... e o
e o .. o
.o 0 @
! s 3 o
2
0
0 2 4 6 8 10
COSMIC Size
(b) MicroM Size vs Effort
16 o
14
1(2) y=10109%+1.%559
5 R2=0.5768%""g
e 8 { : e
M6 °. .. -0 °
. 0@ e o
4 . @ @
R
2
0
0 2 4 6 8 10
MicroM Size

Figure 6.1. Linear regression-based effort estimation models for case study 1.

We performed multiple linear regression to evaluate the impact of each COSMIC
data movement and MicroM event level on effort. We used three "MicroM event levels
(Interaction, Communication, and Process) and four "COSMIC data movement types
(Entry, Exit, Read, and Write)" as the independent variables and "effort" as the dependent
variable. We used Pearson's correlation coefficient to measure correlation. The multiple
regression analysis results, including intercept, slope coefficients, R-squared, and

Significance F values of the projects, are presented in Table 6.2.

71

Table 6.2. Multiple linear regression analysis for evaluation case study 1.

COSMIC MicroM

Number of Observations 44 44
Intercept 1.49 1.49
Slope Coefficient for Entry 0.52 -
Slope Coefficient for Read 1.17 -
Slope Coefficient for Write 0.80 -
Slope Coefficient for Exit 1.13 -
Slope Coefficient for Interaction - 1.06
Slope Coefficient for Communication - 0.74
Slope Coefficient for Process - 1.22
R-squared 0.32 0.59
Significance F 0.00 0.00

The multiple linear regression-based analysis results show that the R-squared
value was improved for both COSMIC and MicroM. The models constructed with the
MicroM method represent adequate relationships considering the R-squared values.”” On

the other hand, although some improvements occurred, the models with the COSMIC

method could not present a reliable relationship with the effort.

The evaluation results of the regression-based models are presented in Table 6.3.
In this case, all models provided acceptable effort predictions, considering MMRE
metric.!°! The MicroM models performed better accuracy than the COSMIC models,
approaching the level of predictive accuracy (MMRE=0.21 for multiple linear regression).
The results also indicate that multiple linear regression did not show improvement for the

COSMIC method. However, for the MicroM method, while the improvement was not

substantial, there was some noticeable enhancement in terms of MMRE and MdMRE.

Table 6.3. Evaluation case study 1 results.

Method Regression MMRE MdMRE PRED(30)

COSMIC Linear Regression 0.31 0.28 0.59
Multiple Linear Regression 0.31 0.28 0.52

MicroM Linear Regression 0.22 0.18 0.73
Multiple Linear Regression 0.21 0.13 0.70

72

6.1.3. Evaluation Case Study 2

Organization 2 is a software development company with over 30 years of
experience. The project included in the case study is an MIS project and is being
developed using an MSSA. The organization adopts the Agile methodology. The project
is currently in development, and the measurements were conducted based on completed

tasks in Notion. The actual efforts are recorded in Notion task-by-task as person-hours.

6.1.3.1. Execution of the Case Study

The case study began with a meeting between the measurer and the organization
to identify the issues to be measured. In this meeting, 17 tasks were selected, all of which
have actual effort data, are completed, involve new development tasks, and have enough
descriptions for measurement. In the first cycle, we measured the tasks and constructed
effort estimation models for both MicroM and COSMIC. In a later meeting with the
organization, the assumptions made during the measurement process were clarified,
during which we identified two outlier tasks considering productivity. These outlier tasks
were completed in less time than expected, and it was noted that the reason was the
repeated code. Consequently, new effort estimation models were developed using the
remaining 15 tasks. The following section summarizes the result from the updated model

constructed with 15 tasks.

6.1.3.2. Results

We first performed linear regression analysis based on size measurement results.
We used "total MicroM/COSMIC size" as the independent variable and "effort" as the
dependent variable. Figure 6.2 shows the linear regression-based effort estimation
models, including assessed residual plots, regression equations, and R-squared values.
The analysis results show that the relation between both methods and effort is not reliable

for planning, considering the R-squared values.”

25

20

15

Effort

10

25

20

15

Effort

10

(a) COSMIC Size vs Effort

° y = 0.044x + 13.296
L4 R>=0.0104

10 20 30
COSMIC Size

(b) MicroM Size vs Effort

y =0.5142x + 7.0309

e
R*§03136 o .

MicroM Size

40

25

Figure 6.2. Linear regression-based effort estimation models for case study 2.

We performed multiple linear regression to evaluate the impact of each COSMIC
data movement and MicroM event level on effort. We used three "MicroM event levels
(Interaction, Communication, and Process) and four "COSMIC data movement types
(Entry, Exit, Read, and Write)" as the independent variables and "effort" as the dependent
variable. We used Pearson's correlation coefficient to measure correlation. The multiple

regression analysis results, including intercept, slope coefficients, R-squared, and

Significance F values of the projects, are presented in Table 6.4

74

Table 6.4. Multiple linear regression analysis for evaluation case study 2.

COSMIC MicroM

Number of Observations 15 15
Intercept 8.94 7.52
Slope Coefficient for Entry 1.26 -
Slope Coefficient for Read 1.33 -
Slope Coefficient for Write 0.19 -
Slope Coefficient for Exit -1.13 -
Slope Coefficient for Interaction - 0.21
Slope Coefficient for Communication - 0.82
Slope Coefficient for Process - 1.87
R-squared 0.43 0.62
Significance F 0.18 0.01

The multiple linear regression-based analysis results show that the R-squared
value was improved for both COSMIC and MicroM. The models constructed with the
MicroM method represent adequate relationships considering the R-squared values.”® On

the other hand, although some improvements occurred, the models with the COSMIC

method could not present a reliable relationship with the effort.

The evaluation results of the regression-based models are presented in Table 6.5.
In this case, all models provided acceptable effort predictions, considering MMRE
metric.'”! The MicroM models performed better accuracy than the COSMIC models, with
a predictive accuracy (MMRE=0.18 for multiple linear regression). The results also
indicate that multiple linear regression improved effort estimation accuracy for both

methods. Furthermore, we also obtained the best PRED(30) value with a multiple linear

regression-based MicroM model.

Table 6.5. Evaluation case study 2 results.

Method Regression MMRE MdMRE PRED(30)

COSMIC Linear Regression 0.31 0.27 0.67
Multiple Linear Regression 0.22 0.12 0.80

MicroM Linear Regression 0.25 0.21 0.73
Multiple Linear Regression 0.18 0.15 0.87

75

6.1.4. Evaluation Case Study 3

Organization 3 is an enterprise technology company that develops software
solutions for the aviation domain. It has over 18 years of experience and more than 1500
employees. The projects included in the case study are in the aviation sector and are being
developed using a traditional monolith architecture. The organization adopts Waterfall
methodology and develops full-stack projects. The selected projects were completed
previously, and the measurements were conducted based on requirement documents. The

actual efforts are recorded on a project-by-project basis as person-day.

6.1.4.1. Execution of the Case Study

The case study began with an analysis of the requirement documents provided by
the organization to evaluate whether they are measurable or not. We selected 14 project
requirement documents, all of which have actual effort data, are completed, involve new
development tasks, and have enough descriptions for measurement. In the first cycle, we
measured the projects and constructed effort estimation models for both MicroM and
COSMIC. In a later meeting with the organization, the assumptions made during the
measurement process were clarified, and possible outlier projects were discussed. As a
consensus of this meeting, we eliminated three outlier projects that could potentially
affect the model's accuracy. Consequently, new effort estimation models were developed
using the remaining 11 projects. The following section summarizes the result from the

updated model constructed with 11 projects.

6.1.4.2. Results

We first performed linear regression analysis based on size measurement results.
We used "total MicroM/COSMIC size" as the independent variable and "effort" as the
dependent variable. Figure 6.3 shows the linear regression-based effort estimation

models, including assessed residual plots, regression equations, and R-squared values.

The analysis results show that both COSMIC and MicroM methods demonstrate

predictive relationships with actual effort.”

(a) COSMIC Size vs Effort
1400
1200 y=3.0513x - 7.4291 .0
1000 RE=0.9709-
é 800
= 600
400 o ..M
200 ’..
0
0 100 200 300 400 500
COSMIC Size
(b) MicroM Size vs Effort
1400
1200 y=2.6988x + 17.737..@
1000 RE=0.971k
e oen e
el e
5 600
400 . 2
200 oo
0 ‘-’3
0 100 200 300 400 500
MicroM Size

Figure 6.3. Linear regression-based effort estimation models for case study 3.

We performed multiple linear regression using three "MicroM event levels
(Interaction, Communication, and Process) and four "COSMIC data movement types
(Entry, Exit, Read, and Write)" as the independent variables and "actual effort" as the
dependent variable. The multiple regression analysis results are presented in Table 6.6.
The analysis results show that the R-squared values are still predictive for both COSMIC
and MicroM.

The evaluation results of the regression-based models are presented in Table 6.7.
The results show that all models provided acceptable effort predictions.”® The COSMIC

models performed better than the MicroM models, approaching the level of predictive

77

accuracy with linear regression (MMRE=0.21 for linear regression). In contrast to the
other case studies, we could not see any improvement with the MicroM method. Instead,
COSMIC provided better effort estimation results. Here, we should note that Case Study
3 is designed as a counter case that involves projects developed in traditional architecture.
Additionally, multiple linear regression-based models provided lower accuracy for both

methods.

Table 6.6. Multiple linear regression analysis for evaluation case study 3.

COSMIC MicroM
Number of Observations 11 11
Intercept 6.38 20.39
Slope Coefficient for Entry 12.05 -
Slope Coefficient for Read 5.01 -
Slope Coefficient for Write 0.61 -
Slope Coefficient for Exit -3.03 -
Slope Coefficient for Interaction - 3.17
Slope Coefficient for Communication - 5.22
Slope Coefficient for Process - -0.81
R-squared 0.98 0.97
Significance F 0.00 0.00

Table 6.7. Evaluation case study 3 results.

Method Regression MMRE MdMRE PRED(30)

COSMIC Linear Regression 0.21 0.23 0.73
Multiple Linear Regression 0.27 0.26 0.64

MicroM Linear Regression 0.26 0.26 0.64

Multiple Linear Regression 0.28 0.26 0.55

6.2. Discussion

This section begins by addressing the research questions posed for the evaluation

case studies, followed by a discussion of additional findings.

6.2.1. Answering Evaluation Research Questions

The evaluation case studies aimed to assess whether the MicroM method
developed for MSSA is a relevant size measurement technique. To achieve this, we
measured projects from various organizations using both the MicroM and COSMIC
methods across three distinct case studies and constructed effort estimation models using
actual effort data. Additionally, we evaluated the relevance of MicroM, which was
developed explicitly for MSSA, in a project implemented using a traditional monolithic
architecture as a counter case. We used the R-squared value to assess the correlation
between size and effort in simple linear and multiple linear regression analyses. We
employed the MMRE, MdMRE, and PRED(30) metrics to evaluate the accuracy of the
constructed effort estimation models.

We conducted Case Studies 1 and 2 to evaluate the relevance of the MicroM
method for MSSA. In both case studies, the MicroM size provided a better R-squared
value than the COSMIC size when correlated with actual effort. This was consistent for
models created based on both the total number of events and different event levels.
Furthermore, the results of both case studies demonstrated that the relationship between
COSMIC size and effort is not reliable for planning.

In evaluating the accuracy of the effort estimation models, similar to the R-
squared results, the models constructed using MicroM showed improvement over those
developed using COSMIC. In Case Study 1, a 32% improvement was achieved
(MMRE=0.32 vs. MMRE=0.22), while in Case Study 2, a 22% improvement was
observed (MMRE=0.22 vs. MMRE=0.18). Despite significant improvements in both case
studies, the greater improvement observed in Case Study 1 may be related to the type of
the MS-based project. The project in Case Study 1 was event-driven, whereas the project
in Case Study 2 was a request-driven MSSA. Since the MicroM method is based on

counting events, it is expected to yield better results in event-based MSSA projects.

79

The multiple linear regression models, utilizing the event-level categories
proposed by the MicroM method as input, demonstrated improvements in both case
studies. In the first case study, this improvement was particularly observed in the MAMRE
metric, while in the second case study, enhancements were noted in the MMRE, MdMRE,
and PRED(30) metrics. These results suggest that utilizing multiple regression models,
in addition to simple regression, in effort estimation with the MicroM method may lead
to the development of more predictive models. In conclusion, both the total number of
events and the event categories exhibited a stronger correlation with effort compared to
the COSMIC method, resulting in a more predictive effort estimation model. This
demonstrates the applicability of the MicroM method in MSSAs.

Finally, in Case Study 3, which was planned as a counter case involving a
monolithic architecture, the R-squared values for both methods were very close and quite
strong. However, the effort estimation models developed using the COSMIC method
outperformed the models created with the MicroM method in both simple and multiple
linear regression analyses. This result indicates that the COSMIC method continues to
demonstrate success in monolithic architectures and confirms the MicroM method's

relevance to MSSA.

6.2.2. Additional Findings

The evaluation case studies yielded additional findings, which are discussed as
follows. The first additional finding is related to the type of measured items in Agile
projects. In the first and second case studies, we observed that many of the issues and
tasks were change requests, which emerged from the initial sprints of the project. Given
the nature of Agile software development, where change requests are naturally part of
sprints, we excluded these from our measurements. However, during discussions with
both organizations, they indicated that they faced significant challenges in effort
estimation related to change requests. In interviews conducted for this thesis, we
identified that as the coupling between microservices increases in MSSA, the difficulties
associated with bug fixes, testing, and change requests also rise. MicroM showed another
utilization of software size in terms of events. The ratio of communication events in the

MicroM method to the total number of events can be used to calculate coupling

80

complexity in MSSA. High coupling complexity leads to many connections between
microservices, which can cause management problems. Therefore, a change request
related to any requirement will be more challenging to implement in a MS-based project
with high coupling complexity. This finding can help software project management by
improving decision-making for change request approvals, particularly by looking at
change requests in terms of effort and complexity.

The second additional finding is related to the varying effects of event levels on
effort in MS-based projects. In Case Studies 1 and 2, we found that functional,
architectural, and algorithmic level events affect effort differently. In particular,
algorithmic level events significantly impacted effort more than the other levels. When
we discussed this finding with the organizations, they argued that tasks related to front-
end and database operations at the functional level, as well as communication between
microservices at the architectural level, have become standard in their projects. However,
algorithmic-level tasks vary based on projects. Algorithmic-level tasks involve
understanding the project's business rules correctly. Organization representatives stated
that they often discuss the business rules related to the project and that these tasks require
more effort. This situation may vary in other organizations, where the effects of functional
or architectural-level events on effort could be more significant. Therefore, the MSSA-
based event level categorization of MicroM, combined with multiple regression, will be
a useful practice for improving effort estimation accuracy in organizations.

In the MicroM method, the communication events at the architectural level can be
argued to be similar to the COSMIC method's Entry and Exit data movements. An event
consumed by a microservice from a queue can be seen as an Entry, while an event
published by the microservice can be seen as an Exit data movement. However, it is
essential to define these events at different abstraction levels. User interaction and
communication between microservices are not at the same abstraction level. User
interaction can be determined during the requirements phase, while communication
between microservices is defined during the design phase. Additionally, we observed that
the effects of the abstraction levels in the MicroM method on effort are different. In the
MicroM method, the architectural level was explicitly defined for MSSA, but these events
can adapt based on other architectures.

The final additional finding relates to the eEPC modeling notation proposed by
the MicroM method for identifying events. It can be discussed that UML notations can

also be used to identify events. For example, in a UML sequence diagram, communication

81

occurs through objects. Therefore, this approach does not facilitate event identification.
On the other hand, in an eEPC diagram, requirements are defined through events, making

it better aligned with MSSA.

6.3. Threats to Validity

Yin®® identifies four types of validity threats in case studies: construct validity,
external validity, internal validity, and reliability. Since this thesis involves multiple case
studies for evaluation, we applied Yin's framework for addressing these threats. In this
section, we discuss the potential threats to the validity and how we mitigated them.

Construct validity deals with the question whether appropriate operational
measures are established for the concepts under research. Yin recommends using multiple
sources of evidence to ensure construct validity. In our evaluation case studies, we utilized
projects from three distinct software development companies, encompassing various
domains and developed using different methodologies, each with unique requirement
formats and levels of detail.

External validity addresses the generalizability of findings. According to Yin,
single-case studies are used to develop theory, while multiple-case studies are employed
to test its replication across different contexts. In this thesis, we performed single-case
studies in real-world software organizations during the problem identification and
solution design phases, followed by multiple-case studies during the evaluation phase.
For the evaluation, we performed multiple case studies on projects from three different
organizations, distinct from those involved in the problem identification and solution
design phases, to increase the generalizability of findings. For the evaluation, we
conducted multiple case studies on projects from three different organizations, distinct
from those involved in the problem identification and solution design phases, to enhance
the generalizability of the findings. The evaluation included measurements performed on
projects covering three different domains -finance, MIS, and aviation- using three
different architectures: event-driven MSSA, request-driven MSSA, and monolith. The
projects also featured two types of software development -backend and full stack- along
with two levels of documentation at the requirement and design stages. Additionally, the

measured artifacts included three categories: issues, tasks, and requirement documents.

82

Internal validity is concerned with the challenge of establishing a causal
relationship whereby certain conditions are shown to lead other conditions as
distinguished from spurious relationships. In this thesis, we developed the MicroM
method for measuring size specifically tailored for microservices. To validate this
objective, we evaluated the success of the MicroM method in two case studies involving
microservice-based architecture, and as a counter case, we conducted a third case study
on a traditional monolithic project. MicroM demonstrated improvements in Case Studies
1 and 2, while it did not yield any improvements in Case Study 3. Another threat to
internal validity may arise from the limited sample size from a statistical analysis
perspective. However, in the field of software engineering, such conditions are observed
due to the inherent challenges of obtaining practical and large samples.’?°297-112 Apran!!?
argues that high correlation values in small samples do not necessarily represent a valid
statistical reality and that these results must be interpreted with caution. Furthermore, he
emphasizes that models developed using small sample sizes can still be valuable and
useful for the organization where the data was collected, serving as indicators for projects
conducted under similar conditions. In this thesis, we evaluated the validity of the method
we developed by examining its relationship with effort. However, other factors may also
influence effort in software projects. To mitigate this, we selected issues and tasks
completed within the same team for Case 1 and Case 2 during the measurement process,
ensuring that the developers implemented these requirements were at the same skill level.
For Case Study 3, we measured projects belonging to teams with similar levels.

Reliability refers to the extent to which a study can be repeated with consistent
data collection methods, yielding similar results. Yin suggests ensuring reliability in case
studies by adhering to a defined protocol and creating a case study database. In this thesis,
we first developed a case study plan and established case selection criteria for all case
studies. We conducted the studies according to the defined plan and selected the cases
based on the predetermined criteria. In the conducted case studies, the reliability of the
measurements could pose a threat to validity. Although the MicroM and COSMIC size
measurement methods are based on objective rules, when applying these rules to real-life
projects. Although the measurement rules are well-defined, measurers may make
assumptions when the requirements are not adequately specified. To mitigate potential
threats related to this human judgment, we established criteria in the case selection
process to ensure that organizations were accessible when needed. We completed our

measurements in two phases. After the initial phase, the assumptions made by the

83

measurer were discussed in a meeting with the organization, allowing for necessary
adjustments. Any unclear measurements were revisited in collaboration with
representatives from the organization. As a result, precautions were taken to ensure
accurate measurements. For future MicroM measurements to be conducted by various
researchers, this thesis provides a detailed, step-by-step explanation of the method,
supported by examples. In this way, other researchers who want to repeat this research

can reach similar results using these procedures.

6.4. Summary of the Chapter

This chapter presented the three case studies conducted to evaluate the MicroM
method and discussed the findings. The evaluation results showed that the MicroM
method correlates more strongly with effort than the COSMIC method in MS-based
projects. MicroM achieved an improvement of up to 32% in Mean Magnitude of Relative
Error (MMRE) in the effort estimation models compared to the COSMIC FSM method.
The multiple linear regression models, utilizing the event-level categories proposed by
the MicroM method as input, also demonstrated improvements in effort estimation
accuracy. In addition, it was observed that the impact of algorithmic-level events on effort
is more significant than that of other levels. Finally, it was found that the COSMIC
method provided a more accurate estimation of effort for projects developed in traditional
monolithic architecture. This result indicated that the COSMIC method continues to
demonstrate success in monolithic architectures and confirmed the MicroM method's

relevance to MSSA.

84

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

With the paradigm shift in today's software industry, MSSA has emerged as a
preferred design approach for a growing number of organizations. MSSA has shifted from
a data-driven to a behavior-oriented structure, where the traditional single database is
replaced by independent microservices, each with its own database. Every service
manages its own data, designed to be isolated, scalable, and fault tolerant. These services
work together to form a unified system, offering much greater flexibility than traditional
monolithic systems.

In software projects, meeting customer expectations on time and within budget is
achieved through effective project management, particularly with accurate effort
estimation. FSM methods have long been used for objective size measurement in
monolithic architectures. However, these methods are often inadequate for measuring the
size of modern MS-based applications. Unlike monolithic architectures that rely on data
flow through functions (such as method parameters), MSSA employs structures like event
queues for communication. MSSA requires a behavior-focused approach using service
calls (e.g., REST API), making the relational data-based FSM methods less effective for
accurate effort or cost estimation in MSSA projects.

The literature review revealed a lack of research on size measurement methods
tailored to MSSA. Surveys and interviews we conducted confirmed that there is no de
facto method in the industry for sizing MS-based projects. Additionally, organizations
face distinct challenges in size measurement and effort estimation for such projects. These
findings highlighted the need to develop a new size measurement method specifically
designed for MSSA: MicroM.

This thesis aimed to create an objective size measurement method specifically for
MSSA, using the DSR methodology to develop MicroM. An iterative and incremental
approach was applied within the DSR process, drawing inspiration from events, the base
components of microservices. We first conducted an exploratory case study to assess the
effectiveness of event-based size measurement and found that it performed better than the

data movement-counting FSM methods in MSSA. As a result, we developed MicroM

85

method, considering the characteristics of MSSA and the limitations of existing FSM
methods.

MicroM focuses on categorizing events at three abstraction levels of the software
representation based on architectural characteristics: (1) Functional Level, (2)
Architectural Level, and (3) Algorithmic Level. These levels allow MicroM to be used
throughout the SDLC, from the requirements phase to post-project stages. The Functional
Level covers user and database interaction events, the Architectural Level focuses on
internal system communication events, and the Algorithmic Level addresses processing
events such as decision-making and calculations. This detailed approach complements
existing FSM methods and provides a more precise size measurement for MSSA.

Three case studies were conducted to evaluate MicroM’s success and reliability.
The results showed that MicroM had a stronger correlation with effort compared to the
COSMIC FSM method in MS-based projects, improving effort estimation accuracy by
up to 32% in Mean Magnitude of Relative Error (MMRE). Multiple linear regression
models using MicroM's event-level categories further enhanced effort estimation
accuracy. However, COSMIC performed better in monolithic architectures, confirming
that while COSMIC remains effective for traditional systems, MicroM is better suited for
MSSA. Consequently, this thesis has led to the identification of the following research
prospects:

¢ In the evaluation case studies, we measured size in MS-based projects using small
items such as tasks and issues and developed effort estimation models. The
variance between the measured items was minimal. In other words, the size and
effort of the measured requirements were very close to each other. Future studies
could focus on effort estimation using larger items, such as sprints or other
grouped elements. Additionally, in these case studies, we used tasks and issues
developed by multiple developers as input for the same effort estimation model.

Future studies could focus on developer-specific effort estimation models by

constructing distinct effort estimation models for each developer. Both

approaches may improve the accuracy of effort estimations.

e In this thesis, we evaluated the method in three case studies from three different
domains to ensure the generalizability of the results. These case studies
represented three different domains, two software architectures, two software

development types, two levels of documentation, and three types of measured

86

artifacts. To further improve the generalizability, additional case studies could be
conducted in future research, such as organizations in different domains.

This thesis emphasized the critical role of change requests in the software
development lifecycle, particularly within Agile methodologies. Future research
could focus on developing a method designed to measure the size of change
requests. In such a method, the coupling complexity framework established by the
MicroM method may serve as a valuable foundation.

The interviews conducted in this thesis revealed that organizations often struggle
to allocate resources and expert workforce for objective size measurement.
Therefore, developing automated tools that can measure size using both the
MicroM method and other objective size measurement approaches would
represent a valuable avenue for future research. In today's context, advanced

artificial intelligence models could be leveraged for this purpose.

87

10.
11.

12.

REFERENCES

Di Francesco, P.; Lago, P.; Malavolta, I. Architecting with Microservices: A
Systematic Mapping Study. Journal of Systems and Software 2019, 150, 77-97.
https://doi.org/10.1016/].jss.2019.01.001.

Larrucea, X.; Santamaria, I.; Colomo-Palacios, R.; Ebert, C. Microservices. IEEE
Software 2018, 35 (3), 96-100. https://doi.org/10.1109/MS.2018.2141030.

Bonér, J. Reactive Microservices Architecture; O’Reilly Media, Inc., 2016.

Thones, J. Microservices. IEEE Software 2015, 32 (1), 116-116.
https://doi.org/10.1109/MS.2015.11.

Sampaio, A. R.; Kadiyala, H.; Hu, B.; Steinbacher, J.; Erwin, T.; Rosa, N.;
Beschastnikh, I.; Rubin, J. Supporting Microservice Evolution. In 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME); 2017;
pp 539-543. https://doi.org/10.1109/ICSME.2017.63.

Dragoni, N.; Giallorenzo, S.; Lafuente, A. L.; Mazzara, M.; Montesi, F.; Mustafin,
R.; Safina, L. Microservices: Yesterday, Today, and Tomorrow. In Present and
Ulterior Software Engineering; Mazzara, M., Meyer, B., Eds.; Springer International
Publishing: Cham, 2017; pp 195-216. https://doi.org/10.1007/978-3-319-67425-
4 12.

Unlu, H.; Tenekeci, S.; Yildiz, A.; Demirors, O. Event Oriented vs Object Oriented
Analysis for Microservice Architecture: An Exploratory Case Study. In 2021 47th
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA); 2021; pp 244-251. https://doi.org/10.1109/SEAAS53835.2021.00038.
Bonér, J. Reactive Microsystems; O’Reilly Media, Inc., 2017.
Rolfe, D. What is an Event-Driven Microservices Architecture?. Volt Active Data.
https://www.voltactivedata.com/blog/2022/10/what-is-event-driven-microservices-
architecture/ (accessed 2023-05-13).

Newman, S. Building Microservices; O’Reilly Media, Inc., 2021.

Fowler, M.; Highsmith, J. The Agile Manifesto. Sofiware development 2001, 9 (8),
28-35.

Garousi, V.; Coskuncay, A.; Betin-Can, A.; Demirérs, O. A Survey of Software
Engineering Practices in Turkey. Journal of Systems and Software 2015, 108, 148—
177. https://doi.org/10.1016/].jss.2015.06.036.

88

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Standish Group Chaos Report; T.S.G. International, 2020.

Jorgensen, M.; Boehm, B.; Rifkin, S. Software Development Effort Estimation:
Formal Models or Expert Judgment? /EEE software 2009, 26 (2), 14—-19.

Usman, M.; Mendes, E.; Weidt, F.; Britto, R. Effort Estimation in Agile Software
Development: A Systematic Literature Review. In Proceedings of the 10th
International Conference on Predictive Models in Software Engineering; PROMISE
’14; Association for Computing Machinery: New York, NY, USA, 2014; pp 82-91.
https://doi.org/10.1145/2639490.2639503.

Hacaloglu, T.; Demirdrs, O. Challenges of Using Software Size in Agile Software
Development: A Systematic Literature Review. Academic Papers at IVSM Mensura
2018 2018.

Hacaloglu, T.; Demirors, O. Measureability of Functional Size in Agile Software
Projects: Multiple Case Studies with COSMIC FSM. In 2019 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA); 2019; pp
204-211. https://doi.org/10.1109/SEAA.2019.00041.

Commeyne, C.; Abran, A.; Djouab, R. Effort Estimation with Story Points and
Cosmic Function Points-an Industry Case Study. Software Measurement News 2016,
21 (1), 25-36.

Kang, S.; Choi, O.; Baik, J. Model-Based Dynamic Cost Estimation and Tracking
Method for Agile Software Development. In 2010 IEEE/ACIS 9th International
Conference on Computer and Information Science; 2010; pp 743-748.
https://doi.org/10.1109/1CIS.2010.126.

Hohman, M. M. Estimating in Actual Time [Extreme Programming]. In Agile
Development Conference (ADC"05); 2005; pp 132-138.
https://doi.org/10.1109/ADC.2005.22.

Huijgens, H.; Solingen, R. van. A Replicated Study on Correlating Agile Team
Velocity Measured in Function and Story Points. In Proceedings of the 5Sth
International Workshop on Emerging Trends in Software Metrics; WETSoM 2014;
Association for Computing Machinery: New York, NY, USA, 2014; pp 30-36.
https://doi.org/10.1145/2593868.2593874.

Buglione, L.; Trudel, S. Guideline for Sizing Agile Projects with COSMIC.
Proceedings of the IWSM/MetriKon/Mensura, Stuttgart, Germany 2010.

&9

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Ozkan, B.; Turetken, O.; Demirors, O. Software Functional Size: For Cost
Estimation and More. In European Conference on Software Process Improvement;
Springer, 2008; pp 59-69.

Czarnacka-Chrobot, B. Standardization of Software Size Measurement. In Internet
— Technical Development and Applications; Tkacz, E., Kapczynski, A., Eds.;
Advances in Intelligent and Soft Computing; Springer: Berlin, Heidelberg, 2009; pp
149-156. https://doi.org/10.1007/978-3-642-05019-0 17.

Gencel, C.; Demirors, O. Functional Size Measurement Revisited. ACM Trans.
Sofiw. Eng. Methodol. 2008, 17 (3), 15:1-15:36.
https://doi.org/10.1145/1363102.1363106.

ISO/IEC 20926:2009 - IFPUG functional size measurement method 2009. 1SO.
https://www.iso.org/standard/51717.html (accessed 2023-06-06).

ISO/IEC 29881:2010 - FiSMA 1.1 functional size measurement method. 1S0.
https://www.iso.org/standard/56418.html (accessed 2023-06-06).

ISO/IEC 24570:2018 -NESMA functional size measurement method. 1SO.
https://www.iso.org/standard/72505.html (accessed 2023-06-06).

ISO/TIEC 20968:2002 - Software Engineering — Mk II Function Point Analysis.
https://www.iso.org/standard/35603.html (accessed 2024-10-02).

ISO/IEC 19761:2017 - Software Engineering — COSMIC: A Functional Size
Measurement Method; International Organization for Standardization, 2017.
Ungan, E.; Cizmeli, N.; Demirors, O. Comparison of Functional Size Based
Estimation and Story Points, Based on Effort Estimation Effectiveness in SCRUM
Projects. In 2014 40th EUROMICRO Conference on Software Engineering and
Advanced Applications; 2014; pp 77-80. https://doi.org/10.1109/SEAA.2014.83.
Salmanoglu, M.; Hacaloglu, T.; Demirors, O. Effort Estimation for Agile Software
Development: Comparative Case Studies Using COSMIC Functional Size
Measurement and Story Points. In Proceedings of the 27th International Workshop
on Software Measurement and 12th International Conference on Software Process
and Product Measurement; IWSM Mensura ’17; Association for Computing
Machinery: Gothenburg, Sweden, 2017; pp 41-49.
https://doi.org/10.1145/3143434.3143450.

Unlii, H.; Hacaloglu, T.; Biiber, F.; Berrak, K.; Leblebici, O.; Demirors, O.
Utilization of Three Software Size Measures for Effort Estimation in Agile World:

A Case Study. In 2022 48th Euromicro Conference on Software Engineering and
90

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Advanced Applications (SEAA); 2022; pp 239-246.
https://doi.org/10.1109/SEAA56994.2022.00045.

COSMIC Measurement Manual Version 5.0; The Common Software Measurement
International Consortium, 2021. https://cosmic-
sizing.org/publications/measurement-manual-v4-0-2/.

Banerjee, S.; Sarkar, A. Modeling NoSQL Databases: From Conceptual to Logical
Level Design. In 3rd International Conference Applications and Innovations in
Mobile Computing (AIMoC 2016), Kolkata, India, February; 2016; pp 10—12.
Sucaciu, B. How event-driven architecture solves modern web app problems. Stack
Overflow Blog. https://stackoverflow.blog/2020/03/16/how-event-driven-
architecture-solves-modern-web-app-problems/ (accessed 2021-09-22).

Unlii, H.; Kennouche, D. E.; Soylu, G. K.; Demirdrs, O. Microservice-Based Projects
in Agile World: A Structured Interview. Information and Software Technology 2024,
165, 107334, https://doi.org/10.1016/j.infsof.2023.107334.

Unlii, H.; Bilgin, B.; Demirors, O. A Survey on Organizational Choices for
Microservice-Based Software Architectures. Turkish Journal of Electrical
Engineering and Computer Sciences 2022, 30 (4), 1187-1203.
https://doi.org/10.55730/1300-0632.3843.

Hevner, A. R.; March, S. T.; Park, J.; Ram, S. Design Science in Information Systems
Research. MIS quarterly 2004, 75-105.

Offermann, P.; Levina, O.; Schonherr, M.; Bub, U. Outline of a Design Science
Research Process. In Proceedings of the 4th International Conference on Design
Science Research in Information Systems and Technology, DESRIST ’09;
Association for Computing Machinery: New York, NY, USA, 2009; pp 1-11.
https://doi.org/10.1145/1555619.1555629.

Rodgers, P. Service-Oriented Development on Netkernel-Patterns, Processes &
Products to Reduce System Complexity. In CloudComputingExpo; 2005.

Fowler, M.; Lewis. Microservices. martinfowler.com.
https://martinfowler.com/articles/microservices.html (accessed 2021-03-11).
Merkel, D. Docker: Lightweight Linux Containers for Consistent Development and
Deployment. Linux j 2014, 239 (2).

Thuman. RESTful vs Event-Driven in Microservices: Key Differences Explained.
Ambassador. https://www.getambassador.io/blog/request-driven-restful-vs-event-

driven-in-microservices (accessed 2024-10-07).

91

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Fogen, K. Event-driven Microservices with Request/Response APIs. Thoughtworks.
https://www.thoughtworks.com/insights/blog/apis/event-driven-microservices-
with-request-part-one (accessed 2024-10-07).

Demirors, O. CENG 555 - Analysis and Design of Microservice Based Systems.
https://ceng.iyte.edu.tr/courses/ceng-555/.

Albrecht, A. J. Measuring Application Development Productivity. In Proceedings of
IBM Applications Development Symposium; Monterey, 1979; Vol. 83, pp 14-17.
Guideline for Sizing Business Application Software;, The Common Software
Measurement International Consortium, 2017.

Guideline for Sizing Real-Time Software; The Common Software Measurement
International Consortium, 2015.

Guideline for Sizing Service-Oriented Architecture Software; The Common
Software Measurement International Consortium, 2015.

Hacaloglu, T. Event Points: A Software Size Measurement Model, Middle East
Technical University, Ankara, 2021.

Hacaloglu, T.; Demirors, O. An Exploratory Case Study Using Events as a Software
Size Measure. Inf Technol Manag 2023. https://doi.org/10.1007/s10799-023-00394-
y.

Scheer, A.-W.; Thomas, O.; Adam, O. Process Modeling Using Event-Driven
Process Chains. In Process-Aware Information Systems; John Wiley & Sons, Ltd,
2005; pp 119-145. https://doi.org/10.1002/0471741442.ch6.

van der Aalst, W. M. P. Formalization and Verification of Event-Driven Process
Chains. Information and Software Technology 1999, 41 (10), 639-650.
https://doi.org/10.1016/S0950-5849(99)00016-6.

Dragicevic, S.; Celar, S.; Novak, L. Use of Method for Elicitation, Documentation,
and Validation of Software User Requirements (MEDoV) in Agile Software
Development Projects. In 2014 Sixth International Conference on Computational
Intelligence, Communication Systems and Networks; 2014; pp 65-70.
https://doi.org/10.1109/CICSyN.2014.27.

Riehle, D. M.; Jannaber, S.; Karhof, A.; Thomas, O.; Delfmann, P.; Becker, J. On
the De-Facto Standard of Event-Driven Process Chains: How EPC Is Defined in
Literature; Gesellschaft fiir Informatik e.V., 2016; pp 61-76.

(Demirors, O. CENG 323 - Project Management - Lecture 2 - Problem Analysis,
2024. https://ceng.iyte.edu.tr/courses/ceng-323/.

92

58.

59.

60.

61.

62.

63.

64.

65.

66.

Liibke, D. Transformation of Use Cases to EPC Models. In 5. Workshop der
Gesellschaft fiir Informatik e.V. (GI) und Treffen ihres Arbeitskreises
"Geschdftsprozessmanagement mit Ereignisgesteuerten Prozessketten (WI-EPK),
CEUR Workshop Proceedings: Vienna, austria, 2006; pp 137-156.

Gross, A.; Doerr, J. EPC vs. UML Activity Diagram - Two Experiments Examining
Their Usefulness for Requirements Engineering. In 2009 17th IEEE International
Requirements Engineering Conference; 2009; pp 47-56.
https://doi.org/10.1109/RE.2009.30.

Amjad, A.; Azam, F.; Anwar, M. W.; Butt, W. H.; Rashid, M. Event-Driven Process
Chain for Modeling and Verification of Business Requirements—A Systematic
Literature Review. IEEE Access 2018, 0, 9027-9048.
https://doi.org/10.1109/ACCESS.2018.2791666.

Asik, T.; Selcuk, Y. E. Policy Enforcement upon Software Based on Microservice
Architecture. In 2017 IEEE 15th International Conference on Software Engineering
Research, Management and Applications (SERA); 2017; pp 283-287.
https://doi.org/10.1109/SERA.2017.7965739.

Vural, H.; Koyuncu, M.; Misra, S. A Case Study on Measuring the Size of
Microservices. In Computational Science and Its Applications — ICCSA 2018;
Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C. M., Rocha, A. M. A.
C., Taniar, D., Apduhan, B. O., Tarantino, E., Ryu, Y., Eds.; Lecture Notes in
Computer Science; Springer International Publishing: Cham, 2018; pp 454-463.
https://doi.org/10.1007/978-3-319-95174-4 36.

Taibi, D.; Systd, K. A Decomposition and Metric-Based Evaluation Framework for
Microservices. In Cloud Computing and Services Science; Ferguson, D., Méndez
Muiioz, V., Pahl, C., Helfert, M., Eds.; Communications in Computer and
Information Science; Springer International Publishing: Cham, 2020; pp 133-149.
https://doi.org/10.1007/978-3-030-49432-2 7.

IFPUG. White Paper: Applying FPA to Microservices; 2022.
https://ifpug.mclms.net/en/package/10193/course/19545/view (accessed 2024-10-
07).

Schneider, S. Events. Internet Encyclopedia of Philosophy.
https://iep.utm.edu/events/ (accessed 2024-10-05).

Kim, J. Supervenience and Mind: Selected Philosophical Essays; Cambridge
University Press, 1993.

93

67. Davidson, D.; Pollock, F. Essays on Actions and Events; 2001.

68. Lewis, D. Counterfactuals; John Wiley & Sons, 2013.

69. Lewis, D. New Work for a Theory of Universals. Australasian Journal of Philosophy
1983. https://doi.org/10.1080/00048408312341131.

70. Lewis, D. Philosophical Papers; Oxford University Press, 1983.

71. Lewis, D. On the Plurality of Worlds; 1986.

72. Aarab, Z.; Saidi, R.; Rahmani, M. D. Event-Driven Modeling for Context-Aware
Information Systems. In 2016 IEEE/ACS 13th International Conference of Computer
Systems and Applications (AICCSA); 2016; pp 1-8.
https://doi.org/10.1109/AICCSA.2016.7945785.

73. Kappel, G.; Proll, B.; Retschitzegger, W.; Schwinger, W. Modelling Ubiquitous Web
Applications - The WUML Approach. In Conceptual Modeling for New Information
Systems Technologies; Arisawa, H., Kambayashi, Y., Kumar, V., Mayr, H. C., Hunt,
L., Eds.; Springer: Berlin, Heidelberg, 2002; pp 183—197. https://doi.org/10.1007/3-
540-46140-X _15.

74. Kong, J.; Jung, J.-Y.; Park, J. Event-Driven Service Coordination for Business
Process Integration in Ubiquitous Enterprises. Computers & Industrial Engineering
2009, 57 (1), 14-26. https://doi.org/10.1016/j.cie.2008.08.019.

75.Fowler, M. Domain Event. martinfowler.com.
https://martinfowler.com/eaaDev/DomainEvent.html (accessed 2024-10-05).

76.Vernon, V. Implementing Domain-Driven Design; Addison-Wesley, 2013.

77.Davis, R. Business Process Modelling with ARIS: A Practical Guide; Springer
Science & Business Media, 2001.

78. Afshar, S.; Ralph, N.; Xu, Y.; Tapson, J.; Schaik, A. van; Cohen, G. Event-Based
Feature Extraction Using Adaptive Selection Thresholds. Sensors 2020, 20 (6), 1600.
https://doi.org/10.3390/520061600.

79.Chima, R. Blog: Event-Driven Applications In Software Development. Blueberry
Custom Software. https://www.bbconsult.co.uk/blog/event-driven-applications/
(accessed 2024-10-05).

80. Bogl, A.; Kobler, M.; Schrefl, M. Knowledge Acquisition from EPC Models for
Extraction of Process Patterns in Engineering Domains. In Multikonferenz

Wirtschaftsinformatik; 2008.

94

81.

82.
83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

Wohlin, C.; Runeson, P.; Host, M.; Ohlsson, M. C.; Regnell, B.; Wesslén, A.
Experimentation in Software Engineering; Springer Science & Business Media,
2012.

Rabhi, F.; Demirors, O. Software Engineering Research - White Paper; 2018.
Runeson, P.; Engstrom, E.; Storey, M.-A. The Design Science Paradigm as a Frame
for Empirical Software Engineering. In Contemporary Empirical Methods in
Software Engineering; Felderer, M., Travassos, G. H., Eds.; Springer International
Publishing: Cham, 2020; pp 127-147. https://doi.org/10.1007/978-3-030-32489-
6 5.

Wieringa, R. J. Design Science Methodology for Information Systems and Software
Engineering; Springer, 2014.

Wohlin, C.; Host, M.; Henningsson, K. Empirical Research Methods in Software
Engineering. In Empirical Methods and Studies in Software Engineering:
Experiences from ESERNET, Conradi, R., Wang, A. 1., Eds.; Lecture Notes in
Computer Science; Springer: Berlin, Heidelberg, 2003; pp 7-23.
https://doi.org/10.1007/978-3-540-45143-3 2.

Shull, F.; Singer, J.; Sjeberg, D. 1. Guide to Advanced Empirical Software
Engineering; Springer, 2007.

Linaker, J.; Sulaman, S. M.; Host, M.; de Mello, R. M. Guidelines for Conducting
Surveys in Software Engineering v. 1.1. Lund University 2015.

Yin Robert, K. Case Study Research and Applications: Design and Methods; Los
Angeles, CA: Sage Publications, 2017.

Zainal, Z. Case Study as a Research Method. Jurnal kemanusiaan 2007, 5 (1).
Runeson, P.; Host, M. Guidelines for Conducting and Reporting Case Study
Research in Software Engineering. Empir Software Eng 2008, 14 (2), 131.
https://doi.org/10.1007/s10664-008-9102-8.

Malhotra, R. Empirical Research in Software Engineering: Concepts, Analysis, and
Applications; CRC Press, 2016.

Perry, D. E.; Sim, S. E.; Easterbrook, S. M. Case Studies for Software Engineers. In
Proceedings. 26th International Conference on Software Engineering; 2004; pp
736-738. https://doi.org/10.1109/ICSE.2004.1317512.

Easterbrook, S.; Singer, J.; Storey, M.-A.; Damian, D. Selecting Empirical Methods

for Software Engineering Research. In Guide to Advanced Empirical Software

95

Engineering; Shull, F., Singer, J., Sjoberg, D. 1. K., Eds.; Springer: London, 2008;
pp 285-311. https://doi.org/10.1007/978-1-84800-044-5 11.

94. Runeson, P.; Host, M.; Rainer, A.; Regnell, B. Case Study Research in Software
Engineering: Guidelines and Examples; John Wiley & Sons, 2012.

95. Sykes, A. 0. An Introduction to Regression Analysis; 1993.

96. Montgomery, D. C.; Peck, E. A.; Vining, G. G. Introduction to Linear Regression
Analysis; John Wiley & Sons, 2021.

97. Abran, A.; Desharnais, J.-M.; Zarour, M.; Demirors, O. Productivity-Based Software
Estimation Models and Process Improvement: An Empirical Study. Int. J. Adv. Softw
2015, 8 (1 & 2), 103-114.

98. Unlii, H.; Yalcin, A. G.; Oztiirk, D.; Akkaya, G.; Kalecik, M.; Ekici, N. U.; Orhan,
0.; Ciftei, O.; Yumlu, S.; Demirors, O. Software Effort Estimation Using ISBSG
Dataset: Multiple Case Studies. In 2021 15th Turkish National Software Engineering
Symposium (UYMS); 2021; pp 1-6.
https://doi.org/10.1109/UYMS54260.2021.9659655.

99. Humphrey, W. S. 4 Discipline for Software Engineering; Pearson Education India,
1995.

100.Conte, S. D.; Dunsmore, H. E.; Shen, Y. E. Software Engineering Metrics and
Models; Benjamin-Cummings Publishing Co., Inc.: USA, 1986.

101.Hastings, T. E.; Sajeev, A. S. M. A Vector-Based Approach to Software Size
Measurement and Effort Estimation. IEEE Transactions on Software Engineering
2001, 27 (4), 337-350. https://doi.org/10.1109/32.917523.

102.Foss, T.; Stensrud, E.; Kitchenham, B.; Myrtveit, I. A Simulation Study of the Model
Evaluation Criterion MMRE. IEEE Transactions on Software Engineering 2003, 29
(11), 985-995. https://doi.org/10.1109/TSE.2003.1245300.

103.Kitchenham, B. A.; Pickard, L. M.; MacDonell, S. G.; Shepperd, M. J. What
Accuracy Statistics Really Measure. /IEE Proceedings - Software 2001, 148 (3), 81—
85. https://doi.org/10.1049/ip-sen:20010506.

104.Myrtveit, I.; Stensrud, E.; Shepperd, M. Reliability and Validity in Comparative
Studies of Software Prediction Models. IEEE Transactions on Software Engineering
2005, 31 (5), 380-391. https://doi.org/10.1109/TSE.2005.58.

105.Jorgensen, M. Experience with the Accuracy of Software Maintenance Task Effort
Prediction Models. IEEE Transactions on Software Engineering 1995, 21 (8), 674—
681. https://doi.org/10.1109/32.403791.

96

106.Jorgensen, M.; Halkjelsvik, T.; Liestel, K. When Should We (Not) Use the Mean
Magnitude of Relative Error (MMRE) as an Error Measure in Software Development
Effort Estimation? Information and Software Technology 2022, 143, 106784.
https://doi.org/10.1016/j.infsof.2021.106784.

107.Jeffery, R.; Ruhe, M.; Wieczorek, I. A Comparative Study of Two Software
Development Cost Modeling Techniques Using Multi-Organizational and Company-
Specific Data. Information and Software Technology 2000, 42 (14), 1009-1016.
https://doi.org/10.1016/S0950-5849(00)00153-1.

108.van Koten, C.; Gray, A. R. An Application of Bayesian Network for Predicting
Object-Oriented Software Maintainability. Information and Software Technology
2006, 48 (1), 59—67. https://doi.org/10.1016/].infsof.2005.03.002.

109.MacDonell, S. G. Establishing Relationships between Specification Size and
Software Process Effort in CASE Environments. Information and Software
Technology 1997, 39 (1), 35-45. https://doi.org/10.1016/0950-5849(96)01125-1.

110.MacDonell, S. G.; Gray, A. R. A comparison of modeling techniques for software
development effort prediction. 1998.

111.Unlii, H.; Hacaloglu, T.; Omiiral, N. K.; Caliskanel, N.; Leblebici, O.; Demirérs, O.
An Exploratory Case Study on Effort Estimation in Microservices. In 2023 49th
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA); 2023; pp 215-218. https://doi.org/10.1109/SEAA60479.2023.00040.

112.Yiiriim, O. R.; Unlii, H.; Demirors, O. Towards the Construction of a Software
Benchmarking Dataset via Systematic Literature Review. In The Joint Conference of
the 32nd International Workshop on Software Measurement (IWSM) and the 17th
International Conference on Software Process and Product Measurement
(MENSURA); 2023.

113.Abran, A. Software Project Estimation: The Fundamentals for Providing High
Quality Information to Decision Makers; John Wiley & Sons, 2015.

97

APPENDIX

DETAILED RESULTS OF THE CASE STUDIES

Table A.1. Exploratory case study 1 detailed results - COSMIC and Event Point (Eff-Ac:
Actual effort in person-hour, Eff-Pr: Predicted Effort in person-hour).

Item COSMIC Event Point Eff-Ac COSMIC Event Point

No Size Size Eff-Pr MRE Eff-Pr MRE
1 53 64 8.84 7.60 0.36 10.47 0.12
2 6 6 3.00 1.50 0.49 1.25 0.58
3 49 20 3.01 7.08 1.76 3.48 0.36
4 37 30 7.21 5.52 0.26 5.07 0.32
5 6 6 0.67 1.50 0.42 1.25 0.19
6 3 3 2.10 1.11 0.49 0.77 0.64
7 21 35 3.17 3.44 0.33 5.86 1.26
8 6 7 2.00 1.50 0.00 1.41 0.05
9 23 21 2.40 3.70 0.98 3.64 0.94
10 6 11 1.80 1.50 0.20 2.05 0.10
11 27 17 4.44 4.22 0.16 3.00 0.18
12 12 10 2.14 2.27 0.20 1.89 0.00
13 6 16 241 1.50 0.31 2.84 0.31
14 12 9 1.30 2.27 1.13 1.73 0.61
MMRE 0.51 MMRE 0.41

MdMRE 0.35 MdMRE 0.32

PRED(30) 031 PRED(30) 0.43

Table A.2. Exploratory case study 2 detailed results - COSMIC (Eff-Ac: Actual effort in
person-hour, Eff-Pr: Predicted Effort in person-hour, Lin. Reg: Linear Regression, Mult.
Lin. Reg: Multiple Linear Regression).

Item COSMIC Size Eff-Ac Lin. Reg. Mult. Lin. Reg.
No Entry Read Write Exit Total Eff-Pr MRE Eff-Pr MRE
1 2 0 0 2 4 2.50 6.43 1.57 7.45 1.98
2 1 0 1 1 3 2.50 5.73 1.29 5.79 1.32
3 2 2 0 2 6 4.00 7.83 0.96 6.84 0.71
4 1 1 0 2 4 4.00 6.43 0.61 6.90 0.72
5 2 1 1 1 5 4.50 7.13 0.58 5.73 0.27
6 2 0 0 2 4 6.00 6.43 0.07 7.45 0.24
7 3 2 2 2 9 6.50 9.92 0.35 8.49 0.31
8 1 1 0 1 3 7.00 5.73 0.18 4.78 0.32
9 2 2 1 2 7 8.00 8.53 0.07 7.54 0.06
10 4 0 0 3 7 8.00 8.53 0.07 10.07 0.26
11 1 1 0 1 3 10.00 5.73 0.43 4.78 0.52
12 2 2 0 2 6 11.50 7.83 0.32 6.84 0.41
13 4 4 0 4 12 13.00 12.02 0.08 10.95 0.16
14 2 0 2 3 7 15.00 8.53 0.43 10.97 0.27
15 9 8 3 8 28 18.00 23.20 0.29 21.54 0.20
16 7 2 1 7 17 20.00 15.52 0.22 19.37 0.03
17 7 3 2 5 17 20.50 15.52 0.24 15.53 0.24

MMRE 046 MMRE 047
MdMRE 032 MdAMRE 027
PRED(30) 047 PRED30) 0.53

Table A.3. Exploratory case study 2 detailed results - MicroM v1.0 (Int: Interaction, Com:
Communication, Pro: Process, Eff-Ac: Actual effort in person-hour, Eff-Pr: Predicted
Effort in person-hour, Lin. Reg: Linear Regression, Mult. Lin. Reg: Multiple Linear
Regression).

Item MicroM Size Eff-Ac Lin. Reg. Mult. Lin. Reg.
No Int Com Pro Total Eff-Pr MRE Eff-Pr MRE
1 2 1 0 3 2.50 4.20 0.68 4.06 0.62
2 2 1 0 3 2.50 4.20 0.68 4.06 0.62
3 4 2 0 6 4.00 6.54 0.63 6.40 0.60
4 1 1 1 3 4.00 4.20 0.05 3.94 0.02
5 3 2 0 5 4.50 5.76 0.28 5.34 0.19
6 2 1 0 3 6.00 4.20 0.30 4.06 0.32
7 4 5 0 9 6.5 8.87 0.35 7.06 0.09
8 2 1 3 6 7.00 6.54 0.07 6.87 0.02
9 6 3 2 11 8.00 10.43 0.30 10.62 0.33
10 5 1 1 7 8.00 7.31 0.09 8.18 0.02
11 2 1 3 6 10.00 6.54 0.35 6.87 0.31
12 6 2 8 16 11.50 14.33 0.25 16.02 0.39
13 8 6 4 18 13.00 15.89 0.22 15.27 0.17
14 5 2 5 12 15.00 11.21 0.25 12.15 0.19
15 16 9 0 25 18.00 21.35 0.19 20.67 0.15
16 8 4 4 16 20.00 14.33 0.28 14.83 0.26
17 10 6 1 17 20.50 15.11 0.26 14.58 0.29

MMRE 031 MMRE 027
MdAMRE 028 MdAMRE 026
PRED(30) 0.71 PRED30) 0.59

100

Table A.4. Evaluation case study 1 detailed results - COSMIC (Eff-Ac: Actual effort in
person-hour, Eff-Pr: Predicted Effort in person-hour, Lin. Reg: Linear Regression, Mult.

Lin. Reg: Multiple Linear Regression).

Item COSMIC Size Eff-Ac Lin. Reg. Mult. Lin. Reg.
No Entry Read Write Exit Total Eff-Pr MRE Eff-Pr MRE
1 0 2 0 2 4 6 5.13 0.15 6.10 0.02
2 3 3 0 3 9 10 9.62 0.04 9.96 0.00
3 1 1 0 1 3 7 4.23 0.40 431 0.38
4 1 1 2 1 5 5 6.03 0.21 591 0.18
5 2 0 0 2 4 3 5.13 0.71 4.79 0.60
6 2 0 0 2 4 3 5.13 0.71 4.79 0.60
7 1 0 1 1 3 5 4.23 0.15 3.94 0.21
8 1 1 0 3 5 5 6.03 0.21 6.58 0.32
9 2 0 0 2 4 4 5.13 0.28 4.79 0.20
10 1 1 0 2 4 4 5.13 0.28 5.44 0.36
11 1 1 0 1 3 4 4.23 0.06 431 0.08
12 1 1 0 1 3 4 4.23 0.06 431 0.08
13 2 0 0 3 5 5 6.03 0.21 5.92 0.18
14 2 2 1 3 8 6 8.72 0.45 9.07 0.51
15 2 0 0 3 5 9 6.03 0.33 5.92 0.34
16 1 2 0 2 5 4 6.03 0.51 6.61 0.65
17 1 1 0 1 3 3 4.23 0.41 431 0.44
18 1 1 0 1 3 4 4.23 0.06 431 0.08
19 1 1 0 1 3 5 4.23 0.15 431 0.14
20 2 0 0 2 4 5 5.13 0.03 4.79 0.04
21 1 1 1 3 6 5 6.93 0.39 7.38 0.48
22 1 1 0 1 3 6 4.23 0.30 431 0.28
23 1 2 0 1 4 8 5.13 0.36 5.48 0.31
24 1 1 0 1 3 3 4.23 0.41 431 0.44
25 1 1 0 1 3 3 4.23 0.41 431 0.44
26 1 1 1 1 4 8 5.13 0.36 5.11 0.36
27 2 1 0 2 5 4 6.03 0.51 5.96 0.49
28 3 0 0 3 6 8 6.93 0.13 6.44 0.19
29 1 1 0 3 5 15 6.03 0.60 6.58 0.56
30 1 1 1 1 4 6 5.13 0.15 5.11 0.15
31 3 0 0 3 6 3 6.93 1.31 6.44 1.15
32 1 1 1 1 4 7 5.13 0.27 5.11 0.27
33 2 0 2 1 5 6 6.03 0.00 5.26 0.12
34 1 1 0 1 3 5 4.23 0.15 431 0.14
35 1 0 1 2 4 4 5.13 0.28 5.07 0.27

101

Table A.4 (cont.). Evaluation case study 1 detailed results - COSMIC (Eff-Ac: Actual
effort in person-hour, Eff-Pr: Predicted Effort in person-hour, Lin. Reg: Linear
Regression, Mult. Lin. Reg: Multiple Linear Regression).

Item COSMIC Size Eff-Ac Lin. Reg. Mult. Lin. Reg.
No Entry Read Write Exit Total Eff-Pr MRE Eff-Pr MRE
36 1 0 2 4 7 7 7.83 0.12 8.14 0.16
37 1 1 0 1 3 4 423 0.06 431 0.08
38 4 0 0 4 8 12 8.72 0.27 8.09 0.33
39 2 0 0 3 5 4 6.03 0.51 5.92 0.48
40 2 0 2 4 8 12 8.72 0.27 8.66 0.28
41 2 0 2 4 8 7 8.72 0.25 8.66 0.24
42 2 0 0 2 4 5 5.13 0.03 4.79 0.04
43 2 0 0 2 4 3 5.13 0.71 4.79 0.60
44 1 0 1 1 3 3 423 0.41 3.94 0.31

MMRE 0.31 MMRE 0.31
MdMRE 0.28 MdMRE 0.28
PRED30) 0.59 PRED@30) 0.52

102

Table A.5. Evaluation case study 1 detailed results - MicroM (Fun: Functional Level
Events, Arc: Architectural Level Events, Alg: Algorithmic Level Events, Eff-Ac: Actual
effort in person-hour, Eff-Pr: Predicted Effort in person-hour, Lin. Reg: Linear
Regression, Mult. Lin. Reg: Multiple Linear Regression).

Item MicroM Size Eff-Ac Lin. Reg. Mult. Lin. Reg.
No Fun Arc Alg Total Eff-Pr MRE Eff-Pr MRE
1 2 2 0 4 6 5.20 0.13 5.09 0.15
2 1 3 4 8 10 9.24 0.08 9.67 0.03
3 1 2 2 5 7 6.21 0.11 6.48 0.07
4 1 3 3 7 5 8.23 0.65 8.45 0.69
5 0 2 0 2 3 3.18 0.06 2.98 0.01
6 0 2 0 2 3 3.18 0.06 2.98 0.01
7 1 1 1 3 5 4.19 0.16 4.51 0.10
8 1 4 2 7 5 8.23 0.65 7.97 0.59
9 0 3 2 5 4 6.21 0.55 6.17 0.54
10 0 2 2 4 4 5.20 0.30 5.42 0.36
11 0 2 0 2 4 3.18 0.21 2.98 0.26
12 0 2 1 3 4 4.19 0.05 4.20 0.05
13 0 3 2 5 5 6.21 0.24 6.17 0.23
14 2 3 2 7 6 8.23 0.37 8.28 0.38
15 1 5 3 9 9 10.25 0.14 9.94 0.10
16 1 1 1 3 4 4.19 0.05 4.51 0.13
17 1 1 0 2 3 3.18 0.06 3.29 0.10
18 1 1 0 2 4 3.18 0.21 3.29 0.18
19 1 2 0 3 5 4.19 0.16 4.03 0.19
20 0 4 0 4 5 5.20 0.04 4.46 0.11
21 2 4 2 8 5 9.24 0.85 9.02 0.80
22 1 2 1 4 6 5.20 0.13 5.25 0.12
23 1 2 1 4 8 5.20 0.35 5.25 0.34
24 1 1 0 2 3 3.18 0.06 3.29 0.10
25 2 1 0 3 3 4.19 0.40 4.34 0.45
26 3 1 1 5 8 6.21 0.22 6.62 0.17
27 1 2 0 3 4 4.19 0.05 4.03 0.01
28 0 3 1 4 8 5.20 0.35 4.94 0.38
29 1 4 4 9 15 10.25 0.32 10.42 0.31
30 2 2 1 5 6 6.21 0.04 6.31 0.05
31 0 3 0 3 3 4.19 0.40 3.72 0.24
32 2 2 1 5 7 6.21 0.11 6.31 0.10
33 1 2 1 4 6 5.20 0.13 5.25 0.12
34 1 2 1 4 5 5.20 0.04 5.25 0.05

103

Table A.5 (cont.). Evaluation case study 1 detailed results - MicroM (Fun: Functional
Level Events, Arc: Architectural Level Events, Alg: Algorithmic Level Events, Eff-Ac:
Actual effort in person-hour, Eff-Pr: Predicted Effort in person-hour, Lin. Reg: Linear
Regression, Mult. Lin. Reg: Multiple Linear Regression).

Item MicroM Size Eff-Ac Lin. Reg. Mult. Lin. Reg
No Fun Are Alg Total Eff-Pr MRE Eff-Pr MRE
35 1 2 0 3 4 4.19 0.05 4.03 0.01
36 2 2 1 5 7 6.21 0.11 6.31 0.10
37 1 1 1 3 4 4.19 0.05 4.51 0.13
38 0 4 3 7 12 8.23 0.31 8.14 0.32
39 0 2 2 4 4 5.20 0.30 5.42 0.36
40 2 4 2 8 12 9.24 0.23 9.02 0.25
41 2 2 2 6 7 7.22 0.03 7.53 0.08
42 0 4 1 5 5 6.21 0.24 5.69 0.14
43 0 2 1 3 3 4.19 0.40 4.20 0.40
44 1 1 0 2 3 3.18 0.06 3.29 0.10

MMRE 0.22 MMRE 0.21
MdMRE 0.15 MdMRE 0.13
PRED@30) 0.73 PRED@30) 0.70

104

Table A.6. Evaluation case study 2 detailed results - COSMIC (Eff-Ac: Actual effort in
person-hour, Eff-Pr: Predicted Effort in person-hour, Lin. Reg: Linear Regression, Mult.

Lin. Reg: Multiple Linear Regression).

Item COSMIC Size Eff-Ac Lin. Reg. Mult. Lin. Reg.
No Entry Read Write Exit Total Eff-Pr MRE Eff-Pr MRE
1 4 4 1 4 13 8.75 13.87 0.58 14.97 0.71
2 3 4 0 2 9 21 13.69 0.35 15.78 0.25
3 2 3 0 1 6 14 13.56 0.03 14.32 0.02
4 7 1 2 4 14 19 13.91 0.27 14.95 0.21
5 1 1 2 3 7 10.5 13.60 0.30 8.52 0.19
6 1 2 4 2 9 10.5 13.69 0.30 11.36 0.08
7 3 5 1 4 13 16 13.87 0.13 15.04 0.06
8 3 3 0 5 11 12.5 13.78 0.10 11.06 0.12
9 3 5 1 4 13 15 13.87 0.08 15.04 0.00
10 1 1 2 2 6 10.5 13.56 0.29 9.65 0.08
11 8 3 2 9 22 16 14.26 0.11 13.22 0.17
12 8 10 4 12 34 19 14.79 0.22 19.52 0.03
13 6 1 1 4 34 8.5 14.79 0.74 13.50 0.59
14 6 3 2 3 12 18 13.82 0.23 17.48 0.03
15 4 2 1 4 14 7 13.91 0.99 12.31 0.76
MMRE 0.31 MMRE 0.22
MdMRE 027 MdMRE 0.12
PRED(30) 0.67 PRED(30) 0.80

105

Table A.7. Evaluation case study 2 detailed results - MicroM (Fun: Functional Level
Events, Arc: Architectural Level Events, Alg: Algorithmic Level Events, Eff-Ac: Actual
effort in person-hour, Eff-Pr: Predicted Effort in person-hour, Lin. Reg: Linear
Regression, Mult. Lin. Reg: Multiple Linear Regression).

Item MicroM Size Eff-Ac Lin. Reg. Mult. Lin. Reg.
No Fun Arc Alg Total Eff-Pr MRE Eff-Pr MRE
1 7 1 0 8 8.75 11.15 0.27 9.81 0.12
2 10 0 4 14 21 14.23 0.32 17.10 0.19
3 4 1 2 7 14 10.63 0.24 12.92 0.08
4 9 5 2 16 19 15.26 0.20 17.25 0.09
5 7 0 0 7 10.5 10.63 0.01 8.99 0.14
6 9 1 1 11 10.5 12.69 0.21 12.10 0.15
7 13 0 5 18 16 16.29 0.02 19.60 0.23
8 4 2 3 9 12.5 11.66 0.07 15.61 0.25
9 11 0 1 12 15 13.21 0.12 11.70 0.22
10 13 0 0 13 10.5 13.72 0.31 10.25 0.02
11 19 3 1 23 16 18.86 0.18 15.84 0.01
12 14 4 3 21 19 17.83 0.06 19.35 0.02
13 9 3 0 12 8.5 13.21 0.55 11.87 0.40
14 9 3 1 13 18 13.72 0.24 13.74 0.24
15 11 1 0 12 7 13.21 0.89 10.65 0.52

MMRE 0.25 MMRE 0.18
MdMRE 0.21 MdMRE 0.15
PRED@30) 0.73 PRED(30) 0.87

106

Table A.8. Evaluation case study 3 detailed results - COSMIC (Eff-Ac: Actual effort in
person day, Eff-Pr: Predicted Effort in person day, Lin. Reg: Linear Regression, Mult.

Lin. Reg: Multiple Linear Regression).

Item COSMIC Size Eff-Ac Lin. Reg. Mult. Lin. Reg.
No Entry Read Write Exit Total Eff-Pr MRE Eff-Pr MRE
1 20 7 3 29 59 127 172.60 0.36 196.37 0.55
2 25 15 10 33 83 348 245.83 0.29 288.82 0.17
3 22 10 12 41 85 177 251.93 0.42 204.58 0.16
4 52 0 0 78 130 444 389.24 0.12 396.59 0.11
5 118 48 73 163 402 1217 1219.19 0.00 1219.11 0.00
6 17 2 0 26 45 103 129.88 0.26 142.44 0.38
7 5 10 0 16 31 112 87.16 0.22 68.18 0.39
8 17 3 14 20 54 205 157.34 0.23 174.18 0.15
9 8 19 1 27 55 163 160.39 0.02 116.65 0.28
10 27 18 5 47 97 207 288.55 0.39 282.44 0.36
11 8 0 0 12 20 52.75 53.60 0.02 66.41 0.26

MMRE 0.21 MMRE 0.26
MdMRE 0.23 MJdMRE 0.26
PRED(30) 0.73 PRED(30) 0.64

107

Table A.9. Evaluation case study 3 detailed results - MicroM (Fun: Functional Level
Events, Arc: Architectural Level Events, Alg: Algorithmic Level Events, Eff-Ac: Actual
effort in person-day, Eff-Pr: Predicted Effort in person-day, Lin. Reg: Linear Regression,

Mult. Lin. Reg: Multiple Linear Regression).

Item MicroM Size Eff-Ac Lin. Reg. Mult. Lin. Reg.
No Fun Arc Alg Total Eff-Pr MRE Eff-Pr MRE
1 33 9 15 57 127 171.57 0.35 159.90 0.26
2 84 0 16 100 348 287.62 0.17 274.05 0.21
3 83 0 19 102 177 293.01 0.66 268.44 0.52
4 78 26 26 130 444 368.58 0.17 382.48 0.14
5 389 2 55 446 1217 1221.40 0.00 1221.04 0.00
6 24 13 10 47 103 144.58 0.40 156.26 0.52
7 16 0 7 23 112 79.81 0.29 65.50 0.42
8 54 0 3 57 205 171.57 0.16 189.38 0.08
9 31 0 7 38 163 120.29 0.26 113.12 0.31
10 55 12 10 77 207 225.54 0.09 249.45 0.21
11 12 4 4 20 52.75 71.71 0.36 76.10 0.44

MMRE 0.27 MMRE 0.28
MdMRE 026 MdMRE 0.26
PRED(30) 0.64 PRED@0) 0.55

108

VITA

Hiiseyin Unlii

Academic Experience

2016 — 2019 | Research/Teaching Assistant
Department of Computer Engineering
Middle East Technical University Northern Cyprus Campus

2019 — 2024 | Research/Teaching Assistant
Department of Computer Engineering
Izmir Institute of Technology

Education

2010—-2016 | BSc in Computer Engineering
Middle East Technical University Northern Cyprus Campus

2016 —2019 | MSc in Sustainable Environment and Energy Systems
Middle East Technical University Northern Cyprus Campus

Services

2022 Organization Committee Member
The Joint Conference of the 3lst International Workshop on
Software Measurement (IWSM) and the 16th International
Conference on Software Process and Product Measurement
(Mensura). Cesme, Izmir.

2023 Proceedings Co-Chair
The Joint Conference of the 32nd International Workshop on
Software Measurement (IWSM) and the 17th International
Conference on Software Process and Product Measurement
(Mensura). Rome, Italy.

2024 Proceedings Co-Chair
The Joint Conference of the 33rd International Workshop on
Software Measurement (IWSM) and the 18th International
Conference on Software Process and Product Measurement
(Mensura). Montreal, Canada.

109

Publications

Journal Articles Indexed by SCI and SSCI

2021

2022

2023

2024

2024

2024

2024

Unlii, H, Yesilada, Y. Transcoding Web Pages via Stylesheets and
Scripts for Saving Energy on the Client. Software: Practice and
Experience.

Unlii, H, Bilgin, B, Demirors, O. A Survey on Organizational
Choices for Microservice-based Software Architectures. Turkish
Journal of Electrical Engineering & Computer Sciences.

Unlii, H, Yiiriim, O.R, Ozcan-Top, O, Demirors, O. How Software
Practitioners Perceive Work-Related Barriers and Benefits Based
on their Educational Background: Insights from a Survey Study.
IEEE Software.

Unlii, H, Kennouche, D.E, Kilinc Soylu, G, Demirérs, O.
Microservice-Based Projects in Agile World: A Structured
Interview. Information and Software Technology.

Unlii, H, Garousi, V, Demirdrs, O. Readiness and Maturity
Models for Industry 4.0: A Systematic Literature Review. Journal
of Software: Evolution and Process.

Hacaloglu, T, Unlii, H, Yildiz, A, Demirdrs, O. Software Size
Measurement: Bridging Research and Practice. IEEE Software.
Unlii, H, Yiiriim, O.R, Yildiz, A, O, Demirors, O. Application of a
Size Measurement Standard in Data Warehouse Projects.

Software: Practice and Experience.

Articles Published in Other Journals

2021

Unli, H, Bilgin, B, Demirdrs, O. Tirkiye’deki Yazilim
Organizasyonlarinin Mikroservis Tabanli Mimaride Uyguladig:
Analiz ve Tasarim Yontemleri Uzerine Bir Arastirma. EMO

Bilimsel Dergi.

110

Refereed Congress/Symposium Publications in Proceedings

2018

2019

2020

2020

2021

2021

2021

2022

Unlii, H, Yesilada, Y. Energy Efficient Mobile Web via
Scripts&Stylesheets Based Transcoding. /2th Turkish National
Software Engineering Symposium (UYMS).

Yasar, D, Caner, S, Unlii, H, Yildiz, A, Karabayir, A.K, Sokat, B,
Bilgin, B, Arik, G, Anil, L, Ozen, O.S, Demirdrs, O. Agility
Assessment AgilityMod and Process Capability Assessment
SPICE Models Field Applications. /3th Turkish National Software
Engineering Symposium (UYMS).

Hacaloglu, T, Unlii, H, Demirdrs, O, Abran, A. COSMIC light vs
COSMIC Classic Manual: Case Studies in Functional Size
Measurement. The Joint Conference of the 30th International
Workshop on Software Measurement (IWSM) and the 15th
International Conference on Software Process and Product
Measurement (Mensura).

Bilgin, B, Unlii, H, Demirors, O. Analysis and Design of
Microservices: Results from Turkey. [4th Turkish National
Symposium on Software Engineering (UYMS).

Unlii, H, Yal¢in, A.G, Oztiirk, D, Akkaya, G, Kalecik, M, Ekici,
N.U, Orhan, O, Cift¢i, O, Yumlu, S, Demirors, O. Software Effort
Estimation Using ISBSG Dataset: Multiple Case Studies. /5th
Turkish National Software Engineering Symposium (UYMS).
Unlii, H, Hacaloglu, T, Leblebici, O, Demirdrs, O. Effort
Prediction for Microservices: A Case Study. /5th Turkish National
Software Engineering Symposium (UYMS).

Unlu, H, Tenekeci, S, Yildiz, A, Demirors, O. Event Oriented vs
Object Oriented Analysis for Microservice Architecture: An
Exploratory Case Study. 47th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA).

Unlii, H, Yildiz, A, Demirdrs, O. Effort Prediction with Limited
Data: A Case Study for Data Warehouse Projects. 48th Euromicro
Conference Series on Software Engineering and Advanced

Applications (SEAA).

111

2022

2022

2023

2023

2023

2024

2024

Unlii, H, Hacaloglu, T, Biiber, F, Berrak, K, Leblebici, O,
Demirors, O. Utilization of Three Software Size Measures for
Effort Estimation in Agile World: A Case Study. 48th Euromicro
Conference Series on Software Engineering and Advanced
Applications (SEAA).

Hacaloglu, T, Say, B, Unlii, H, Kiigiikates Omiiral, N, Demirors,
O. A survey on COSMIC students estimation challenge. The Joint
Conference of the 3lst International Workshop on Software
Measurement (IWSM) and the 16th International Conference on
Software Process and Product Measurement (Mensura).

Unlii, H, Hacaloglu, T, Kiiciikates Omiiral, N, Caliskanel, N,
Leblebici, O, Demirors, O. An Exploratory Case Study on Effort
Estimation in Microservices. 49th Euromicro Conference Series
on Software Engineering and Advanced Applications (SEAA).
Kiling Soylu, G, Unlii, H, Shafique, I, Demirdrs, O. Size
Measurement and Effort Estimation in Microservice-based
Projects: Results from Pakistan. 7The Joint Conference of the 32nd
International Workshop on Software Measurement (IWSM) and
the 17th International Conference on Software Process and
Product Measurement (Mensura).

Unlii, H, Kiling Soylu, G, Shafique, I, Demirdrs, O. Analysis,
Design, and Test in Microservice-based Projects: Results from
Pakistan. 4th Agility with Microservices Programming Workshop
(AMP)

Unlii, H, Tenekeci, S, Ciftci, S, Oral, 1.B, Atalay, T, Hacaloglu, T,
Musaoglu, B, Demirors, O. Predicting Software Functional Size
Using Natural Language Processing: An Exploratory Case Study.
50th Euromicro Conference Series on Software Engineering and
Advanced Applications (SEAA).

Yiiriim, O.R, Unlii, H, Demirors, O. Towards the Construction of
a Software Benchmarking Dataset via Systematic Literature
Review. 50th Euromicro Conference Series on Software

Engineering and Advanced Applications (SEAA).

112

2024

Tenekeci, S, Unlii, H, Dikenelli, E, Selcuk, U, Kiling Soylu, G,
Demirors, O: Predicting Software Size and Effort from Code
Using Natural Language Processing. The Joint Conference of the
33rd International Workshop on Software Measurement (IWSM)
and the 18th International Conference on Software Process and

Product Measurement (Mensura).

113

