
KNOWLEDGE HIDING ON GRAPH DATA

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by
Leyla TEKİN

December 2024
İZMİR

We approve the thesis of Leyla TEKİN

Examining Committee Members:

Prof. Dr. Onur DEMİRÖRS
Department of Computer Engineering, İzmir Institute of Technology

Asst. Prof. Dr. Emrah İNAN
Department of Computer Engineering, İzmir Institute of Technology

Prof. Dr. Adil ALPKOÇAK
Department of Computer Engineering, İzmir Bakırçay University

Assoc. Prof. Dr. Fatih SOYGAZİ
Department of Computer Engineering, Aydın Adnan Menderes University

Assoc. Prof. Dr. Belgin ERGENÇ BOSTANOĞLU
Department of Computer Engineering, İzmir Institute of Technology

Assoc. Prof. Dr. Belgin ERGENÇ BOSTANOĞLU
Supervisor, Department of Computer Engineering
İzmir Institute of Technology

19 December 2024

Prof. Dr. Onur DEMİRÖRS
Head of the Department of
Computer Engineering

Prof. Dr. Mehtap EANES
Dean of the Graduate School

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Assoc. Prof. Dr. Belgin Ergenç Bostanoğlu,

who guided me with her knowledge and experience throughout this thesis period, for her

support and patience.

I would like to thank my thesis monitoring committee Prof. Dr. Adil Alpkoçak and

Prof. Dr. Tolga Ayav for their valuable feedback and time.

I would also like to thank Prof. Dr. Onur Demirörs, Assoc. Prof. Dr. Fatih Soygazi

and Asst. Prof. Dr. Emrah İnan for taking part in my thesis examination.

Finally, I am profoundly grateful to my precious family for the unwavering support

and encouragement they have given me throughout my life.

ABSTRACT

KNOWLEDGE HIDING ON GRAPH DATA

Subgraphs and communities, which are meaningful substructures in graphs,

provide important information for a deeper understanding of network structures. However,

as graph analysis tools become more advanced, this introduces a new challenge, such as the

risk of over-mining of knowledge from graph data. Thus, it has led to the investigation of

knowledge hiding techniques. Within the scope of this dissertation, as privacy-preserving

techniques for graph data, subgraph hiding and community hiding are examined. Subgraph

hiding involves identifying sensitive subgraphs in a transactional graph database, and

transforming the database to prevent them from being disclosed after publication of data,

while preserving the original data as much as possible. Community hiding, on the other

hand, involves hiding or obfuscating communities by strategically modifying the graph.

With the work on community hiding that protects the privacy of users’ sensitive information,

such as community membership, the need for robust community detection algorithms that

can effectively counter hiding becomes more evident.

In this thesis, first subgraph hiding techniques have been examined and various

edge deletion-based algorithms have been proposed. Then, community hiding techniques

have been investigated, and a research has been conducted to address the comprehensive

overview of the techniques at three scales. Further, an algorithm has been offered for global

community hiding using cliques.

iv

ÖZET

ÇİZGE VERİSİNDE BİLGİ GİZLEME

Çizgelerde anlamlı alt yapılar olan alt çizgeler ve topluluklar, ağ yapılarının daha

derinlemesine anlaşılması için önemli bilgiler sağlar. Ancak çizge analiz araçları daha

gelişmiş hale geldikçe, bu durum, çizge verilerinden gereğinden fazla bilgi çıkarılması

riski gibi yeni bir zorluğu da beraberinde getirir. Böylelikle, bilgi gizleme tekniklerinin

araştırılmasına yol açmıştır. Bu tez kapsamında, çizge verilerinin mahremiyetini ko-

ruyan teknikler olarak alt çizge gizleme ve topluluk gizleme incelenmektedir. Alt çizge

gizleme, işlemsel çizge veritabanındaki hassas alt çizgeleri tanımlamayı ve verilerin

yayınlanmasından sonra onların ifşa edilmesini önlemek için veritabanını dönüştürmeyi

içerirken, orijinal verileri mümkün olduğunca korur. Topluluk gizleme ise çizgeyi stratejik

olarak değiştirerek toplulukların gizlenmesini veya karartılmasını içerir. Kullanıcıların

topluluk üyeliği gibi hassas bilgilerinin gizliliğini koruyan topluluk gizlemeye yönelik

çalışmalarla birlikte, gizlemeye etkili bir şekilde karşı koyabilecek dayanıklı topluluk tespit

algoritmalarına olan ihtiyaç daha da belirgin hale gelir.

Bu tezde öncelikle alt çizge gizleme teknikleri incelenmiş ve çeşitli kenar silme

tabanlı algoritmalar önerilmiştir. Daha sonra, topluluk gizleme teknikleri araştırılmış

ve tekniklerin üç ölçekte kapsamlı bir şekilde ele alınması için bir araştırma yapılmıştır.

Ayrıca, klikler kullanılarak küresel topluluk gizleme için bir algoritma önerilmiştir.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF ABBREVIATIONS. xii

CHAPTER 1. INTRODUCTION . 1

1.1. Contribution of the Thesis . 3

1.2. Organization of the Thesis . 4

CHAPTER 2. BACKGROUND . 6

2.1. Basic Graph Terminology. 6

2.2. Graph Mining. 8

2.2.1. Subgraph Mining . 8

2.2.2. Community Detection . 10

2.3. Graph Hiding . 13

2.3.1. Subgraph Hiding . 14

2.3.2. Community Hiding . 15

2.4. Measures used in Graph Hiding . 17

2.4.1. Measures for Subgraph Hiding . 17

2.4.2. Measures for Community Hiding . 18

2.5. Subgraph Entropy for Privacy Preservation on Graphs. 23

CHAPTER 3. RELATED WORK. 27

3.1. Subgraph Hiding . 27

3.2. Community Hiding . 29

3.2.1. Target Node Attack . 29

3.2.2. Target Community Attack . 33

3.2.3. Global Attack . 40

vi

CHAPTER 4. PROPOSED METHODS FOR KNOWLEDGE HIDING ON

GRAPH DATA . 50

4.1. Subgraph Hiding Methods . 50

4.1.1. Edge Deletion-Based Heuristic (EDH) Algorithm 51

4.1.2. EdgeDegree Algorithm . 54

4.1.3. Matchings & EdgeDegree Algorithm . 56

4.1.4. Subgraph Hiding with Edge Entropy . 60

4.2. Community Hiding Methods . 62

4.2.1. 4-clique Community Hiding (4clqCH) . 62

CHAPTER 5. PERFORMANCE EVALUATION OF THE PROPOSED METHODS 65

5.1. Performance Evaluation of Subgraph Hiding Algorithms. 65

5.1.1. Datasets . 66

5.1.2. Experimental Results of the EDH and Masking Algorithms . . 66

5.1.3. Experimental Results of the Edge Deletion-Based Algorithms 70

5.2. Performance Evaluation of Community Hiding Algorithms 72

5.2.1. Community Detection Algorithms . 73

5.2.2. Datasets . 75

5.2.3. Experimental Results of the 4clqCH Algorithm 76

CHAPTER 6. CONCLUSION AND FUTURE WORK . 86

vii

LIST OF FIGURES

Figure Page

Figure 2.1. An example of subgraph isomorphism. 7

Figure 2.2. The process of frequent subgraph hiding. 15

Figure 2.3. The process of community hiding. 16

Figure 2.4. An example graph to show the influence of node 1. The 𝑆𝐷𝐶𝑖
values of the nodes in the subgraph. 25

Figure 2.5. An example graph of calculating the edge entropy. 26

Figure 3.1. A local sanitization example with Heuristic2; (a) a sensitive graph

containing three matches of the sensitive pattern given in Figure

2.1b, (b) the sanitized graph, and (c)-(d) potential artifact patterns. 28

Figure 3.2. Illustration of a target node attack. (a) Community structure of the

original graph with the target node border highlighted in red. (b)

Community structure identified after applying a target node attack. 30

Figure 3.3. Illustration of target community attack. (a) Community structure

of the original graph with the borders of target community nodes

highlighted in red. (b) Community structure after applying a target

community attack. 34

Figure 3.4. A toy example illustrating the calculation of permanence of two nodes. 37

Figure 3.5. Illustration of a global attack. (a) Community structure of the orig-

inal graph. (b) Community structure after applying a global attack. 41

Figure 3.6. The objective of global community obfuscation is demonstrated: (a)

original community structure; (b) community dispersion occurring

by dividing the original community; (c) optimal case of community

obfuscation, with nodes of each community spread among various

communities (11). 41

Figure 4.1. An example graph with the two matches of a sensitive pattern. Each

match is shown with a color. 51

Figure 4.2. The graph after sanitizing with the EDH algorithm. 54

viii

Figure 4.3. The representation of the edgeMatches structure used in the Match-

ings & EdgeDegree Algorithm. 58

Figure 4.4. An example showing the calculation of the edge entropy of the

edge (1, 8) on the graph, and the 𝑆𝐷𝐶𝑖 values of the nodes in the

formed subgraph. 61

Figure 4.5. Core patterns for 4-clique counting (Source: (135)). 63

Figure 5.1. Selected sensitive patterns from the datasets Chemical, Movielens

and NCI109, respectively. 67

Figure 5.2. Execution time (ms) results of the EDH and masking algorithms

for different disclosure threshold values. 68

Figure 5.3. Information loss (%) results of the EDH and masking algorithms

for different disclosure threshold values. 69

Figure 5.4. Artifact patterns results of the EDH and masking algorithms for

different disclosure threshold values. 69

Figure 5.5. Distance results of the EDH and masking algorithms for different

disclosure threshold values. 70

Figure 5.6. Execution time (ms) results of the edge deletion-based algorithms

for different disclosure threshold values. 71

Figure 5.7. Information loss (%) results of the edge deletion-based algorithms

for different disclosure threshold values. 71

Figure 5.8. Distance results of the edge deletion-based algorithms for different

disclosure threshold values. 72

Figure 5.9. Clique distribution in each graph.. 75

Figure 5.10. NMI/ONMI of community hiding algorithms according to the

budget on karate dataset. 77

Figure 5.11. NMI/ONMI of community hiding algorithms according to the

budget on polbooks dataset. 78

Figure 5.12. NMI/ONMI of community hiding algorithms according to the

budget on football dataset. 79

Figure 5.13. NMI/ONMI of community hiding algorithms according to the

budget on email dataset. 80

ix

Figure 5.14. NMI/ONMI of community hiding algorithms according to the

budget on CA-GrQc dataset. 81

x

LIST OF TABLES

Table Page

Table 3.1. Summary of target node attacks. 32

Table 3.2. Summary of target community attacks. 39

Table 3.3. An individual representation in the Q-Attack (8). 42

Table 3.4. Summary of global attacks. 49

Table 5.1. The properties of graph datasets used to evaluate subgraph hiding

algorithms. 65

Table 5.2. The properties of the datasets used to evaluate community hiding

algorithms. 75

Table 5.3. ONMI results of 4clqCH, Degree (122), and Random-Del algorithms

to deceive CPM (54) algorithm on amazon dataset. 82

Table 5.4. ONMI results of 4clqCH and Degree (122) algorithms to deceive

CPM (54) algorithm on youtube dataset. 83

xi

LIST OF ABBREVIATIONS

CS . Community Structure

EDH . Edge Deletion-Based Heuristic

4clqCH. 4-clique Community Hiding

FSM . Frequent Subgraph Mining

CAM . Canonical Adjacency Matrix

DFS . Depth-First Search

SBM . Stochastic Block Model

CPM . Clique Percolation Method

FSH . Frequent Subgraph Hiding

HF . Hiding Failure

AP. .Artifact Patterns

IL. Information Loss

Dist .Distance

NMI .Normalized Mutual Information

ARI . Adjusted Rand Index

ONMI . Overlapping Normalized Mutual Information

CommS . Community Splits

CommU . Community Uniformity

MNMI . Modified Normalized Mutual Information

VI . Variation of Information

SJD . Split-Join Distance

CC . Constant Community

AE .Attack Efficiency

FGA . Fast Gradient Attack

GCN . Graph Convolutional Network

SNMF . Symmetric Non-negative Matrix Factorization

DICE . Disconnect Internally, Connect Externally

CDA . Community Detection Attack

DBA . Degree-Based Attack

MPL . Maximization of Persistence Loss
xii

GNN. .Graph Neural Network

SAEP . Self-Adaptive Evolutionary Deception

DFP . Degree First Deception

GAE. .Graph Auto-Encoder

ST . Sanitization Table

DAG . Directed Acyclic Graph

UMST . Union of Maximum Spanning Trees

xiii

CHAPTER 1

INTRODUCTION

Complex networks are inside nearly every domain of daily life, including social

networks to analyze human relationships, such as friendships, professional ties, and shared

interests, transportation networks of urban and national systems to enhance service delivery,

population networks to monitor and control disease transmission, and biological networks

that reveal gene and protein interactions to drive advancements in genomics. These

networks are represented using graph structures composed of nodes and edges. In these

models, nodes symbolize entities within the network, and edges signify the connections or

interactions between them.

Analyzing the substructures of a graph, such as its subgraphs, is an effective method

for understanding the graph because subgraphs are the fundamental components of the

graph. The following examples of their widespread usages in different applications can be

given: For anomaly detection, subgraphs play a crucial role in identifying patterns that

are indicative of anomalies, like fraudulent activities (1). They can be utilized to identify

patterns that define functional connections in protein-protein interaction networks or to

discover common features in molecular compounds for drug development (2). They can

enhance classification of structural brain graphs (3). Further, they are applied in graph

clustering (4–6). In summary, subgraphs demonstrate local structural characteristics and

are valuable in many graph mining tasks.

Communities, on the other hand, are other substructures that appear in a network

graph. A community is a group of nodes that have dense internal connections but relatively

sparse connections to the rest of the network. Community detection is the process of

identifying the community structure (CS), which in turn provides valuable insights into

the underlying dynamics and organizational patterns within the network. Numerous

algorithms have been developed across various disciplines for the community detection

problem. As discussed in the study (7), the applications of community detection are

widespread: it enables identifying social media users with similar views or behaviors, finding

terrorist groups by analyzing the extended social connections, optimizing retail strategies,

1

segmenting customers for tailored recommendations, revealing hidden relationships between

research publications, and predicting financial trends in stock market data.

As graph analysis tools have been improved, a new challenge has emerged, namely

over-mining of knowledge on graph data (8). That is why, the issue of preserving privacy

of sensitive knowledge has become increasingly important. In this thesis, two problems

of knowledge hiding on graph data (Subgraph Hiding and Community Hiding) are

examined.

Publishing a graph database involves privacy risks since some knowledge in the

database, which may be sensitive for the database owner, may be learned upon publication.

Subgraph Hiding, as the first studied problem of this thesis, is applied to facilitate

publishing while preserving the disclosure of sensitive subgraphs. For this, first subgraph

mining techniques are applied to the database. Sensitive subgraphs are identified among

the knowledge obtained as a result of subgraph mining. In order to prevent the sensitive

subgraphs from being obtained through similar subgraph mining techniques in the database

to be published, an appropriate transformation (i.e., sanitization) process is defined. There

are two parameters that are taken into consideration for the transformation process: First,

the transformation process must ensure that it eliminates sensitive subgraphs, and secondly,

it must preserve the originality of the database as much as possible. The former one shows

whether the transformation process is correct or not, and the later one shows the quality

of the transformation process. The transformation process can be done through various

operations. Most often, this involves modifying or deleting some data in the database so

that it does not contain knowledge designated as sensitive. The modification operation may

result in the creation of some information in the database that did not exist in its original

state and therefore is not real. Unlike modification, deletion is generally a preferred method

because it does not produce unreal information (9, 10).

Community Hiding, as the second problem of this thesis, is a privacy-preserving

task that involves concealing or obfuscating communities by imperceptibly altering

connections. For example, if some members in a community work for the same organization,

it is likely that other community members are also affiliated with this organization. Such a

data breach could cause consequences such as targeted advertising. Therefore, to preserve

user privacy from malicious community detection, community hiding is studied (11).

Another example is that some groups, such as activists and police, collaborate on social

2

networks like Twitter or Facebook but do not want to be detected by detection tools, so they

strategically manage their connections to avoid detection. Community hiding techniques

can be used maliciously, such as by terrorists seeking to communicate covertly. It highlights

the need for new community detection algorithms that can effectively counter (i.e., that are

robust to) deception (12, 13).

Community hiding means launching attacks against community detection algorithms

to degrade their performance and reduce the accuracy of their results. Hence, it is also

known as ‘community detection attack’. This problem is defined in three distinct scales in

the study (14) as (i) global attack (global community hiding), (ii) target community attack

(target community hiding) and (iii) target node attack (target node hiding). That is, they

aim to maximize the change in community structure, hide a target community, or hide

target node(s), respectively, by modifying the minimum number of edges in the graph.

1.1. Contribution of the Thesis

This thesis aims to give a contribution to the field of knowledge hiding on graph

data, specifically “Subgraph Hiding” and “Community Hiding”. The contributions can be

explained as follows:

For Subgraph Hiding, five different edge deletion-based algorithms are proposed,

which are Edge Deletion-based Heuristic (EDH) algorithm, EdgeDegree algorithm, Match-

ings & EdgeDegree algorithm, EdgeEntropy algorithm and Matchings & EdgeEntropy

algorithm. The EDH algorithm developed as part of this thesis was published (15). The

idea of the EDH algorithm is to select the most frequent edge in the matches of a sensitive

subgraph pattern inside a graph as the victim edge to be deleted. Removing the most

frequent edge from the graph eliminates most of the matches of the sensitive subgraph.

Then, the EdgeDegree algorithm aims to improve the EDH. It chooses the most frequent

edge with ‘minimum sum of node degrees’ in the matches. Further, the Matchings &

EdgeDegree algorithm chooses the victim edge by considering the multiple patterns’

matches. If sensitive patterns share a common edge, removing this edge deletes the matches

of multiple patterns in one step. Lastly, the concept of graph entropy is applied for subgraph

hiding problem and the edge entropy is offered in the process of choosing the victim

edge. By leveraging the edge entropy, the EdgeEntropy and Matchings & EdgeEntropy

3

algorithms are proposed.

For Community Hiding, first existing community hiding algorithms are investigated.

In the literature, there is no survey that includes all of the hiding (i.e., attack) scales. Hence,

a review is written to cover all of them. For each hiding scale, strategies are examined

and a summary table is formed to provide the key characteristics associated with each

strategy. After completing the exhaustive review on community hiding (community

detection attacks), an article (16) has been prepared and published. Furthermore, for global

community hiding, an algorithm, namely 4-clique Community Hiding (4clqCH), is offered.

The 4clqCH algorithm removes the most common edges in the four-cliques of the graph

in order to disrupt the cliques, thereby changing the communities extracted from them.

Although there are community hiding algorithms (17, 18) to attack against overlapping

community detection algorithms, they hide target nodes in the overlapping areas. There

is no study that examines global community hiding for overlapping community detection

algorithms that allow nodes to be in more than one community as in the real-world. The

effectiveness of the 4clqCH algorithm against such algorithms is analyzed.

1.2. Organization of the Thesis

Chapter 2 first provides the basic graph concepts to understand the research presented

in this thesis. The chapter then delves into two critical tasks in graph mining: Subgraph

Mining and Community Detection. Following this, the concept of graph hiding is explored,

positioned as the complementary counterpart to graph mining. The chapter examines two

core tasks within graph hiding, Subgraph Hiding and Community Hiding. Subsequently,

the chapter presents the evaluation measures used to assess the effectiveness of graph

hiding techniques. Lastly, the chapter concludes with an exploration of subgraph entropy, a

key approach for privacy preservation in graph-based data.

Chapter 3 presents a comprehensive review of the related work on Subgraph Hiding

and Community Hiding. The problem of Community Hiding has been studied in the

literature at three distinct scales of attack. These include the target node attack, which

aims to hide the community of a specific node within a graph; the target community attack,

which seeks to conceal a particular community; and the global attack, which is designed to

disrupt the overall community structure of the network.

4

Chapter 4 introduces the algorithms developed and proposed in this thesis for

addressing the problem of graph hiding. The chapter begins with the algorithms designed

for subgraph hiding problem, which include the Edge Deletion-based Heuristic (EDH)

algorithm (15), EdgeDegree algorithm, Matchings & EdgeDegree algorithm, EdgeEntropy

algorithm, and Matchings & EdgeEntropy algorithm. Following this, the chapter shifts its

focus to the proposed global community hiding algorithm, 4-clique Community Hiding

(4clqCH), which is designed as the global attack to destroy the overall community structure

within a graph.

Chapter 5 focuses on the performance evaluation of the proposed methods for

graph hiding, offering an analysis of their effectiveness. For the subgraph hiding section,

the evaluation begins by benchmarking the EDH algorithm against three existing vertex

masking algorithms to establish its relative performance. Subsequently, a comparative

analysis is conducted among the edge deletion-based subgraph hiding algorithms introduced

in this thesis, including EDH, EdgeDegree, Matchings & EdgeDegree, EdgeEntropy and

Matchings & EdgeEntropy. In the community hiding section, the evaluation centers on the

proposed 4-clique Community Hiding (4clqCH) algorithm. Its performance is compared

with that of the existing community hiding algorithms, particularly in terms of their ability

to deceive community detection algorithms and effectively obscure community structures.

Chapter 6 concludes the thesis by summarizing the key findings from the proposed

algorithms and their performance evaluations for the fields of subgraph hiding and

community hiding. Furthermore, the chapter gives potential avenues for future research in

these fields.

5

CHAPTER 2

BACKGROUND

This chapter introduces the foundational concepts necessary to understand the

research covered in this thesis. It begins with the basic graph theory terminology. It

then proceeds with two key tasks within graph mining, Subgraph Mining and Community

Detection. The chapter further explores graph hiding, which is considered as the other side

of the same coin. Two fundamental tasks of graph hiding, Subgraph Hiding and Community

Hiding, are examined. Next, the measures employed to evaluate the effectiveness of graph

hiding methods are presented, offering insight into how their performance is assessed.

Finally, the last section of this chapter presents the subgraph entropy for privacy preservation

on graphs.

2.1. Basic Graph Terminology

A graph consists of a set of 𝑛 vertices (or nodes), denoted as V, and a set of𝑚 edges,

denoted as E, which represent the relationships or connections between the vertices. If the

edges of a graph do not have a specific direction, it is an undirected graph. Otherwise,

it is a directed graph. For instance, social networks like Facebook, where connections

are mutual and symmetric (i.e., both users agree to be friends), can be represented as

undirected graphs. In contrast, social networks like Twitter can be modeled as directed

graphs, where relationships are not necessarily mutual. One user follows another, but the

reverse may not be true.

If the vertices and/or edges of a graph are assigned labels from a symbol set,

then such a graph is called a labeled graph. An unlabeled graph does not have these

assignments. Figure 2.1a and 2.1b illustrate graphs whose vertices and edges are labeled.

In a weighted graph, the edges are associated with the weights (i.e., numerical values) that

typically reflect certain properties of the connections, such as cost, capacity, or distance.

If no weights are assigned to the edges, or all edges carry the same weight, the graph

is considered unweighted. Whether a graph is weighted or unweighted depends on the

6

specific characteristics of the problem it represents.

A connected graph is one in which a path exists between every pair of vertices,

allowing traversal from one vertex to another via a sequence of edges. In undirected graphs,

this implies that all vertices belong to a single connected component. In the case of directed

graphs, the graph is termed strongly connected if a directed path links any vertex to every

other vertex, and weakly connected if it would be connected by ignoring the direction of

the edges.

A graph dataset may take the form of either a single, large graph integrating all

vertices and edges within one structure, or it may consist of multiple smaller graphs. In the

latter case, where the dataset is composed of several graph transactions, it is referred to

as a transactional graph database. This distinction is critical for various graph mining

applications, where the focus may shift between examining a single graph and exploring a

collection of smaller, separate graphs.

Given graphs H and G, subgraph isomorphism can be explained as follows; These

graphs are isomorphic if there exists a bijection f between their vertex sets (specified as f :

V(H)→ V(G)). That is, in graph H, any two vertices, u and v, are adjacent if and only if

their corresponding vertices f(u) and f(v) are adjacent in graph G. Additionally, when the

graphs have vertex and/or edge labels, the labels of vertices u and f(u) and/or the labels of

edges (u,v) and (f(u),f(v)) must be equal. The problem of subgraph isomorphism checks

whether a graph contains a subgraph that is isomorphic to another graph. Figure 2.1 depicts

an example for subgraph isomorphism.

A0

B1

C

2

B 4

Y
Z

X

T T

(a)

A0

B

1

C

2

X Z

(b)

Figure 2.1. An example of subgraph isomorphism.

An induced subgraph means that it includes all the edges linking the corresponding

vertices of the graph. In Figure 2.1, the subgraph (2.1b) is not an induced subgraph of

the graph (2.1a) because there is no edge between nodes 1 and 2 in the subgraph as the

correspondence of the edge (4, 2) of the graph.
7

2.2. Graph Mining

Data mining refers to the uncovering meaningful and valuable knowledge from

data through the use of specific algorithms and tools (19). As the volume of data grows

exponentially in the digital age, there is an increasing need to extract precise and relevant

information from this vast amount of data, making data mining a vital area of research.

The data involved in data mining can come from a variety of sources and exist in

different forms, such as text, audio, graphs, and images. Graphs, in particular, are effective

at modeling complex structures and their relationships, making them widely applicable

across many fields. In social networks (20), for example, graphs are used to depict users as

nodes and their relationships as edges. Similarly, in chemical structures (21), atoms and

their bonds are represented as graph nodes and edges, respectively. Biological networks

(2, 22) leverage graphs to map proteins and their interactions, while in wireless sensor

networks (23), graphs model the communication between sensor motes.

Graph mining has grown into a pivotal and thriving domain within data mining,

offering profound insights into graph-based data. It allows for the discovery of hidden

patterns, detection of anomalies, and identification of key individuals or communities

within complex networks. For instance, recommendation systems can leverage graph

mining techniques to suggest new movies to users by identifying preferences shared by

similar users, thereby enhancing user experience and personalization. Graph mining

encompasses various tasks, such as discovering frequent subgraph patterns, node/graph

classification, clustering, community detection, link prediction, and other forms of analysis.

Within the scope of this thesis, two graph mining tasks are investigated: Subgraph Mining

and Community Detection. They are the tasks for the other side of the picture, where the

idea is to hide the information that can be discovered by them.

2.2.1. Subgraph Mining

One key task in graph mining is frequent subgraph mining (FSM), which is

concerned with discovering subgraphs that occur frequently within a given graph dataset.

Identifying recurring structures within data is essential since these patterns can reveal

alternative perspectives on the underlying data. The extracted frequent patterns can further

8

be used in subsequent tasks like clustering, classification, constructing graph indices, and

enabling similarity searches within graph databases (24).

Definition 1 (Frequent Subgraph Mining) Let D be a graph dataset (a single large graph

or a transactional graph database with multiple graphs) and let 𝜎 be a predefined minimum

support threshold. Frequent subgraph mining finds all frequent subgraphs in the dataset D

such that the support of each of such subgraphs is greater than or equal to the support

threshold 𝜎.

The method for calculating the support 𝜎 of a subgraph (0 < 𝜎 < 1) in the dataset

varies by the dataset setting. In the multiple-graph setting, the support of the subgraph

refers to the ratio of the number of graphs in which it appears to the number of graphs in

the dataset, that is, it ignores how frequently the subgraph occurs in each individual graph.

Conversely, in the single graph setting, the support of the subgraph means the number of

occurrences of the subgraph within that graph.

Before mining the frequent subgraphs, the input graph data is transformed into a

properly encoded form. Adjacency matrix and adjacency list are among the most widely

adopted methods for graph representation. Since multiple adjacency matrices (or adjacency

lists) may represent the same graph, ensuring a unique representation of graphs is essential

for efficient subgraph isomorphism testing. So, canonical labeling methods like canonical

adjacency matrix (CAM) and minimum DFS (Depth-First Search) code have been proposed.

The FSM process is composed of two primary phases. The initial phase of FSM

begins with the generation of candidate subgraphs—potential frequent subgraphs—that

will then be checked for frequency evaluation. Different strategies can be used for candidate

generation, such as level-wise join, extension, etc. In the level-wise join strategy, two

subgraphs of size 𝑘 are combined to generate a new subgraph of size (𝑘 + 1). For this

join operation to be feasible, both 𝑘-size subgraphs must share a common subgraph of

size (𝑘 − 1). The main drawbacks of this strategy are that multiple candidates can be

produced by one join operation and duplicate candidates can be produced due to distinct

join operations. Alternatively, the extension strategy involves creating a new connected

subgraph of size (𝑘 + 1) by adding an additional edge to a 𝑘-size subgraph. The issue with

this strategy is that subgraph extension can occur at multiple nodes, which may result in

the creation of unnecessary candidates. A specialized form of this strategy, the right-most

9

path extension strategy, restricts the addition of new edges specifically to nodes on the

right-most path.

Following the candidate generation, the next phase in the FSM process is to count

occurrences of each candidate subgraph within the graph dataset. Frequency counting

often represents the most computationally demanding part in subgraph mining; hence,

search space pruning and redundancy elimination are typically employed to filter out

non-promising candidates prior to counting. The frequency counting stage yields the

frequency of each candidate subgraph generated, which is then evaluated whether it is

frequent or not. However, as mentioned above, frequency counting of a subgraph varies

based on the type of the graph dataset.

Frequent subgraph mining algorithms are primarily divided into two categories

according to their candidate generation methods: the Apriori approach and the pattern-

growth approach. The Apriori approach employs the level-wise candidate generation

strategy, requiring all frequent subgraphs of size (𝑘 − 1) to be known to generate the

candidate subgraphs at the next iteration. The pattern-growth approach expands a frequent

subgraph by adding an edge, bypassing the need to generate and test all possible candidates.

AGM (25), FSG (26), and HSIGRAM (27) algorithms follow the Apriori approach, and

FFSM (28), gSpan (29), MoFa (30), CloseGraph (31) and VSIGRAM (27) algorithms are

examples for pattern-growth apprach.

Graphs employed in the field of FSM may be directed or undirected, and they may

also be labeled or unlabeled. The objective of a subgraph mining algorithm can vary, which

may be extracting all frequent subgraphs in a graph dataset or finding a specific subset

of the frequent subgraphs, such as closed or maximal subgraphs. Furthermore, different

FSM algorithms can be designed according to the dynamicity of the graph structure (i.e.,

static or dynamic graph data). This diversity offered for various characteristics allows the

development of tailored FSM algorithms depending on the specific needs and constraints

of the underlying data and objectives.

2.2.2. Community Detection

Complex networks often have an inherent community structure, being considered

one of their characteristics. A community (i.e., cluster or group) within a network is

10

expressed as a subset of nodes that are densely interconnected with one another, while they

have relatively sparse links to nodes outside of this subset. Community detection refers

to the task of revealing and identifying these cohesive substructures within the network,

hence serving as a foundational step in understanding the organization and patterns of

connectivity and obtaining insights into the functional interactions that arise from these

groupings.

Definition 2 (Community Detection) Consider a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set

of nodes (vertices) and 𝐸 is the set of edges. The community detection problem determines

the community structure indicated by 𝐶, that is, it partitions the graph nodes 𝑉 into 𝐾

distinct communities, such that 𝐶 = {𝐶1, . . . , 𝐶𝐾}, with each subset 𝐶𝑖 ⊆ 𝑉 corresponding

to a specific community.

Networks are categorized as either static or dynamic, based on whether their

structure remains fixed or changes over time. For static networks, community detection

aims to reveal the underlying community structure, while for dynamic networks it requires

approaches that can account for the evolving nature of communities, addressing temporal

changes to accurately capture their changing structures. Since community hiding algorithms

have not yet been developed in dynamic networks, this study focuses on methods developed

for static networks. Within the realm of static network analysis, community detection

methods are typically classified into (i) traditional methods, (ii) spectral methods, (iii)

optimization methods, (iv) statistical methods, and (v) dynamics-driven methods (32, 33).

Traditional methods include ‘partitional clustering, graph partitioning, hierarchical

clustering’, which are the basic approaches for community detection, and their general

characteristics can be given as follows. Partitional clustering splits the graph vertices into

a predefined number of clusters (i.e., K) through optimizing a given cost function with

respect to the distances, with the widely known k-means algorithm and its many variations

exemplifying this approach (34, 35). Graph partitioning, on the other hand, segments the

vertices into K groups of a certain size by minimizing inter-group edges, as demonstrated by

the Kernighan-Lin algorithm (36). In networks with hierarchical structures, multiple levels

of clusters can exist. Hierarchical clustering techniques can either be agglomerative or

divisive. Notably, Girvan and Newman’s divisive algorithm (37) iteratively removes edges

with the highest betweenness (shortest path) to uncover community structure. Spectral

methods, meanwhile, utilize the spectral properties of graph-associated matrices, such
11

as the adjacency or Laplacian matrices, to reveal community structure, as illustrated in

references (38–41).

Optimization-based methods in community detection aim to maximize or minimize

an objective function that evaluates the partitioning quality. Modularity is the most prevalent

measure used for this purpose; however, maximizing modularity is NP-hard (42), which

has spurred the creation of various approximation algorithms, including greedy approaches,

genetic algorithms, and simulated annealing techniques (43). Newman (44) introduces a

hierarchical agglomerative algorithm that optimizes modularity using a greedy strategy,

and Clauset et al. (45) further improve its computational efficiency through strategic

enhancements and sophisticated data structures. To refine modularity optimization within

spectral methods, Newman (46) proposes a series of refinement procedures. Additionally,

integer programming has been explored to address challenges in community detection

(42). Among the notable modularity-based algorithms, the Louvain method proposed

by Blondel et al. (47) applies a two-phase iterative process to maximize modularity.

Other prominent algorithms within this category include the Leiden (48) and Combo (49)

algorithms.

Statistical approaches to community detection are generally based on probabilistic

models that interpret network data through a generative framework. The stochastic

block model (SBM) is the most widely employed generative model for community-

structured graphs. Dynamics-driven methods leverage dynamic processes occurring within

the network—such as random walks, spin dynamics, and synchronization—to identify

communities. Methods based on random walks, for example, assume that nodes with

similar properties are more likely to cluster within the same community. In this context,

Pons and Latapy’s Walktrap method (50) employs a distance matrix generated from random

walks to group nodes. Rosvall and Bergstrom’s Infomap algorithm (51) minimizes the

description length of a random walk. Some techniques also draw on models from statistical

mechanics, such as the spin glass model (52), where a Hamiltonian function is optimized.

Additionally, Raghavan et al. (53) propose the label propagation algorithm, an efficient and

straightforward method in which each node initially holds a unique label that is iteratively

updated based on the majority label of neighboring nodes.

Communities can be categorized into two distinct types: overlapping communities

and disjoint (non-overlapping) communities. Overlapping communities enable nodes to

12

belong to more than one groups simultaneously, reflecting the real-world scenarios where

individuals often join several groups at the same time. But, non-overlapping communities

are strictly partitioned, with each node allocated to a single community, thus creating

distinct and mutually exclusive groups. A well-known method for detecting overlapping

communities is the Clique Percolation Method (CPM) (54), operating on the principle

of overlapping cliques, where a clique is defined as a complete subgraph. The methods

(55–58) are other examples for overlapping community detection.

So far, the attention has primarily been directed towards examining conventional

community detection techniques since community hiding algorithms try to fool them.

Nevertheless, the field has advanced notably, particularly through the parallelization of

such conventional techniques to enhance their effectiveness and practical usability (59, 60).

Furthermore, deep learning has also shown impressive results in the field of community

detection (61).

2.3. Graph Hiding

Graph mining extracts meaningful and valuable knowledge from graph data. In the

domain of graph mining, a range of critical tasks is studied to extract knowledge, including

community detection, frequent subgraph mining, link prediction, node classification,

anomaly detection. The knowledge extracted from a graph mining task may represent

hidden patterns, relationships, or structures within the network that reveal insights.

While graph mining is used to extract the knowledge, graph hiding tries to degrade

the performance of graph mining algorithms. This may arise from the need for privacy

protection (62). For instance, social media users who prefer to keep certain undisclosed

connections private may seek heuristic strategies to confound link prediction algorithms,

preventing the revelation of sensitive relationships (63). Similarly, individuals may wish to

obscure their profiles from being linked through node similarity measures, thereby evading

analyses that rely on such measures (64). Additionally, certain groups may attempt to avoid

identification as tightly connected communities to conceal group affiliation and shared

interests (12, 13). In another case, techniques are applied to obscure the origin of network

diffusion against source detection algorithms (65). Moreover, some methods aim to protect

specific sensitive subgraphs within graph data, ensuring that critical structures remain

13

hidden from mining processes (9, 15). Through these techniques, graph hiding seeks to

counter knowledge extraction efforts, promoting the privacy and security of individuals

and organizations within complex networks.

Within the scope of this thesis, subgraph hiding and community hiding, which are

two subdivisions of graph hiding, are investigated.

2.3.1. Subgraph Hiding

Subgraph hiding enables graph data to be shared with external parties or used

in collaborative environments without compromising the privacy or confidentiality of

subgraph structures that may contain sensitive information. Hence, it strikes a balance

between data utility and privacy preservation, thereby addressing the growing demand

for secure data sharing in graph-based applications. This problem has been studied for

transactional graph databases. Let us start by introducing the terminology to explain

subgraph hiding:

Definition 3 (Sensitive pattern) Given a graph database D, a set of sensitive patterns,

denoted by SP, is determined by the owner of the graph data. In the work (9), SP is chosen

from the frequent subgraph patterns FP, that is SP⊂FP, where FP is extracted by mining

on the database D based on the support threshold 𝜎.

Definition 4 (Disclosure threshold) It is a hiding threshold indicated by 𝜓. All the

sensitive patterns in the set SP are hidden according to the defined disclosure threshold.

The frequency of each sensitive pattern 𝑃 is decreased below it, so freq(P) < 𝜓.

Definition 5 (Sensitive graph) A graph is a sensitive graph if it contains any sensitive

pattern from SP. Formally, let G be a graph in a database D, and SP be the set of sensitive

patterns. For any P ∈ SP, if P is a subgraph of G, then G is called a sensitive graph.

The problem of frequent subgraph hiding (FSH) converts a graph database 𝐷 into

a sanitized graph database 𝐷′ by satisfying the following constraints: (i) hiding all the

sensitive patterns, that is, the frequency of each sensitive pattern is less than the disclosure

threshold in the sanitized database 𝐷′ and (ii) preserving the non-sensitive frequent patterns,

that is, each non-sensitive pattern that was frequent in 𝐷 should be frequent in 𝐷′ as much

14

as possible. Thus, the objective of FSH is to modify the given database to get the sanitized

one such that when a frequent subgraph mining tool is executed on 𝐷′, it does not reveal

any sensitive patterns, while minimizing its effect on the non-sensitive patterns and original

data. Figure 2.2 depicts the process of frequent subgraph hiding. Its inputs are a graph

database D and a set of sensitive patterns SP along with a disclosure threshold 𝜓. It outputs

the sanitized database 𝐷′. Now, 𝐷′ can be shared since if a subgraph mining algorithm is

used on 𝐷′, only non-sensitive patterns can be discovered.

Graph
Database
(𝐷)

Frequent Subgraph Patterns
(𝐹𝑃)

Non-sensitive
Patterns
(𝑁𝑃)

Sensitive
Patterns
(𝑆𝑃)

Subgraph Hiding
Algorithm

Disclosure
Threshold
(𝜓)

Sanitized
Graph

Database
(𝐷′)

Frequent
Subgraph
Patterns
(𝐹𝑃′)

Non-sensitive
Patterns
(𝑁𝑃′)

Frequent
Subgraph

Mining
(𝜎)

Frequent
Subgraph

Mining
(𝜎)

Mining Frequent Subgraphs

Hiding Sensitive Subgraphs
Mining After Hiding

Figure 2.2. The process of frequent subgraph hiding.

To solve the FSH problem, two subproblems need to be addressed. The first

subproblem is identifying sensitive graphs to be sanitized in the database for every sensitive

pattern. The second one is to sanitize a determined sensitive graph so that it does not

support the sensitive pattern anymore.

2.3.2. Community Hiding

Community detection algorithms can be significantly perturbed when only a small

fraction of network links is allowed to be modified, as each link plays a distinct role in

preserving the community structure. A community hiding algorithm attempts to deceive

community detection algorithms and can be seen as a symmetrical process on the other

side of the wall. This process involves strategic adjustments to the network structure,

such as edge and/or node update operations, with the objective of fooling the detection

algorithms in the identification of the community structure, so that obscuring the correct

community affiliations and interactions in the network. Consequently, the hiding algorithms
15

aim to achieve a targeted level of obfuscation by making changes to the network structure

according to the number of allowed connections.

Definition 6 (Budget) It represents the upper limit on the number of edge modifications

that a community hiding algorithm is allowed to execute within the network. This restriction

constrains the extent of adversarial changes applied to the graph structure to ensure that

the hiding is undetectable. Budget is symbolized as 𝛽.

Definition 7 (Rewiring) It refers to a specific edge operation in which an edge linked to a

node is deleted, followed by the addition of another edge to the same node, leaving the

total degree of the node unchanged. This technique subtly changes the connections of the

node to other nodes while maintaining its overall connectivity, hence reducing the effect of

hiding in the network structure.

Figure 2.3 presents an overview of the community hiding process. Initially,

the community structure is detected from the original graph through a particular community

detection algorithm. Following this, a community hiding algorithm is applied to the

graph that executes update operations (i.e., edge operations, such as addition, deletion,

and rewiring, and/or node operations, such as addition, deletion, and moving) constrained

by a predefined budget. The modified graph is then re-evaluated using the community

detection algorithm, which may reveal notable alterations in the resulting community

structure. For example, nodes that were a part of a single community may become dispersed

across different communities, or the number of communities may change substantially.

It should be noted that this figure serves as a conceptual overview; specific community

hiding algorithms may leverage varying types of knowledge or require additional inputs.

Original
Graph
(𝐺)

Community
Hiding

Algorithm

Original
communities

(𝐶)

Modified
Graph
(𝐺′)

Attacked
communities

(𝐶)

Community
Detection
Algorithm

Community
Detection
Algorithm

Figure 2.3. The process of community hiding.
16

Section 3.2 details the specific knowledge utilized by each algorithm. Throughout this

thesis, ‘community hiding’ and ‘community detection attack’ can be used interchangeably.

2.4. Measures used in Graph Hiding

This section summarizes the measures for evaluating the performance of graph

hiding methods. The first subsection gives the measures for subgraph hiding, and the

second subsection presents the measures for community hiding.

2.4.1. Measures for Subgraph Hiding

The Frequent Subgraph Hiding (FSH) problem has some side-effects (66), which

are outlined below. To assess the efficiency of an FSH algorithm, these side-effects can be

measured.

• Hiding Failure (HF). The amount of sensitive patterns that are mined after sanitiza-

tion. It is computed as;

𝐻𝐹 = |𝑆𝑃′|
/
|𝑆𝑃 |, (2.1)

where |𝑆𝑃′| and |𝑆𝑃 | represent the number of sensitive patterns that are found on the

output (sanitized) database 𝐷′ and the original database 𝐷, respectively.

• Artifact Patterns (AP). The number of the identified patterns that are artifacts. For

some vertices, they include the masking symbol as the vertex label. It is calculated

as;

𝐴𝑃 = |𝐹𝑃′| − |𝐹𝑃 ∩ 𝐹𝑃′|, (2.2)

where |𝐹𝑃′| and |𝐹𝑃 | are the number of frequent patterns that are found on the

output database 𝐷′ and the original database 𝐷, respectively.

• Information Loss (IL). The ratio of non-sensitive patterns that are hidden uninten-

tionally during the hiding process. It is computed as;

𝐼𝐿 =
(
(|𝐹𝑃 | − |𝑆𝑃 |) − (|𝐹𝑃 ∩ 𝐹𝑃′| − |𝑆𝑃′|)

) /
(|𝐹𝑃 | − |𝑆𝑃 |), (2.3)

where it filters out the frequent patterns that include the masking symbol by the
17

|𝐹𝑃 ∩ 𝐹𝑃′|. This formula is derived from calculation of the side-effects in the

reference (67). The loss of a frequent pattern containing a sensitive pattern is not

taken into account as it will be hidden once the sensitive one is hidden (67).

• Distance (Dist). The total number of vertices and edges that are altered (masked/deleted)

due to the sanitization, and calculated as;

𝐷𝑖𝑠𝑡 = |𝑉 | − |𝑉 ′𝑈 | + |𝐸 | − |𝐸′𝑈 |, (2.4)

where 𝑉 ′
𝑈

is the set of the vertices unchanged in 𝐷′, and 𝐸′
𝑈

is the set of the edges

unchanged in 𝐷′. It is formalized to assess the distance of subgraph hiding algorithms

following different approaches by utilizing graph concepts.

2.4.2. Measures for Community Hiding

This section outlines the key performance evaluation measures commonly employed

to assess the effectiveness of community hiding algorithms. The measures detailed below

capture various aspects of the hiding algorithms, including partition quality, similarity

between two partitions, and hiding success.

• Modularity: To evaluate the quality of a network division, the modularity—originally

introduced by the study (68)—is defined as 𝑄 =
∑
𝑖 (𝑒𝑖𝑖 − 𝑎2

𝑖
). Here, 𝑒𝑖𝑖 represents

the proportion of edges within community 𝐶𝑖 that connect nodes within the same

community, while 𝑎𝑖 =
∑
𝑗 𝑒𝑖 𝑗 denotes the fraction of edges connected to nodes in

𝐶𝑖. Essentially, modularity assesses the difference between the observed count of

intra-community edges and the expected count if edges were randomly assigned.

Higher modularity values indicate a better community structure. This measure is

particularly useful for networks with unknown community structure. For weighted

networks, the modularity formulation is extended (69).

• Normalized Mutual Information (NMI): This measure quantifies the similarity

between two community partitions (𝑋 and 𝑌) through an information-theoretic lens.

Here, 𝐻 (𝑋) represents the entropy associated with partition 𝑋 , while 𝐼 (𝑋,𝑌) denotes

the mutual information between the partitions, capturing the extent to which one

18

partition informs us about the other. It is calculated as 𝑁𝑀𝐼 =
2𝐼 (𝑋,𝑌)

𝐻 (𝑋) + 𝐻 (𝑌) . This

expression can be applied to the community structures (𝐶 and 𝐶) detected before

and after a hiding process, respectively, as follows:

𝑁𝑀𝐼 =

−2
∑|𝐶 |
𝑖=1

∑|𝐶 |
𝑗=1𝑚𝑖 𝑗 log

(
𝑚𝑖 𝑗𝑛

𝑀𝑖𝑀 𝑗

)
∑|𝐶 |
𝑖=1 𝑀𝑖 log

(𝑀𝑖

𝑛

)
+∑|𝐶 |

𝑗=1 𝑀 𝑗 log
(𝑀 𝑗

𝑛

) , (2.5)

where𝑚 represents the confusion matrix with rows indicating the actual communities

and columns indicating the found communities, 𝑚𝑖 𝑗 is the number of nodes shared

between the actual community 𝑖 and found community 𝑗 , 𝑀𝑖 is the sum of elements

in row 𝑖, 𝑀 𝑗 is the sum of elements in column 𝑗 , and 𝑛 is the total number of nodes

in the network (i.e., the sum of all matrix elements). A higher NMI score reflects a

greater degree of similarity between the two community partitions (70).

• Adjusted Rand Index (ARI): It quantifies the similarity between two partitions by

using a pair-counting approach. It is formally defined as follows (71):

𝐴𝑅𝐼 =

∑
𝑖 𝑗

(𝑚𝑖 𝑗

2
)
−

[∑
𝑖

(𝑀𝑖

2
) ∑

𝑗

(𝑀 𝑗

2
)] / (𝑛

2
)

1
2

[∑
𝑖

(𝑀𝑖

2
)
+∑

𝑗

(𝑀 𝑗

2
)]
−

[∑
𝑖

(𝑀𝑖

2
) ∑

𝑗

(𝑀 𝑗

2
)] / (𝑛

2
) . (2.6)

The ARI has a value range [−1, 1]. Higher ARI values indicate greater similarity

between the two partitions being compared.

• Overlapping NMI (ONMI): It is a measure used to compare overlapping communi-

ties (72), which is defined as 𝑂𝑁𝑀𝐼 =
𝐼 (𝑋,𝑌)

𝑚𝑎𝑥(𝐻 (𝑋), 𝐻 (𝑌)) .

• Success rate: It measures the proportion of target nodes that are incorrectly clustered,

relative to the total number of target nodes (73), or the percentage with which the

target node is assigned to a community other than its original one when the process

is conducted repeatedly (74).

• AML: The average number of link modifications required to successfully hide a

target node (73).

• Percentage degree increase: It refers to the percentage of the target node’s degree

increase as a result of the hiding (14).
19

• Community retention probability: It represents the likelihood that the target nodes

remain within their initial communities following the execution of the hiding (75).

• Miss ratio: It is expressed as 𝐹𝑁/|𝑉 − 𝐶 |, where 𝐶 denotes the target community

and 𝐹𝑁 represents the proportion of nodes of the target community that are assigned

to a different community. This measure indicates the proportion of the target

community nodes within the network segment where they try to hide (76).

• Concealment measure (M): It evaluates the effectiveness of hiding a target commu-

nity 𝐶 inside a community structure 𝐶. Two measures, 𝑀 ′ and 𝑀 ′′ , are proposed to

capture different aspects of this concealment process. 𝑀 ′ evaluates how well the

members of 𝐶 are dispersed across the communities in 𝐶, while 𝑀 ′′ quantifies the

extent to which 𝐶 is hidden within the crowd (12).

𝑀 = 𝛼𝑀
′ + (1 − 𝛼)𝑀 ′′

(2.7)

𝑀
′
=
|{𝐶𝑖 ∈ 𝐶:𝐶𝑖 ∩ 𝐶 ≠ ∅}| − 1

max(|𝐶 | − 1, 1) max
𝐶𝑖∈𝐶
(|𝐶𝑖 ∩ 𝐶 |)

(2.8)

𝑀
′′
=

∑︁
𝐶𝑖∈𝐶

|𝐶𝑖 \ 𝐶 |
max(𝑛 − |𝐶 |, 1) (2.9)

where 𝛼 is a parameter that is in the interval [0, 1] and 𝑛 is the number of nodes in

the graph.

• Community deception score (𝐻): Fionda and Pirro (13) propose three key indicators

of good hiding of a target community 𝐶: (i) reachability preservation, the members

of 𝐶 should reach one another, meaning that modifications should not disrupt the

connectivity; (ii) community spread, the members of 𝐶 should distribute across as

many communities within the network as possible; and (iii) community hiding, the

members of 𝐶 should be positioned within the largest possible communities. The

deception score 𝐻 is introduced to capture these three indicators. Let 𝐶 be a target

community and 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑘 } be a community structure, the score 𝐻 is

defined as:

20

𝐻 (𝐶,𝐶) =
(
1 − |𝑆(𝐶) | − 1

|𝐶 | − 1

)
×
(
1
2

(
1 −max

𝐶𝑖∈𝐶
{𝑅(𝐶𝑖, 𝐶)}

)
+ 1

2

(
1 −

∑
𝐶𝑖∩𝐶≠∅ 𝑃(𝐶𝑖, 𝐶)
|𝐶𝑖 ∩ 𝐶 ≠ ∅|

))
,

(2.10)

where |𝑆(𝐶) | refers to the count of connected components in the subgraph generated

by the members of community 𝐶, and recall (𝑅) and precision (𝑃) of a community

detection algorithm 𝐴𝐷 in relation to 𝐶 are formally defined as follows:

𝑅(𝐶𝑖, 𝐶) =
𝐶 members in 𝐶𝑖

|𝐶 | ∀𝐶𝑖 ∈ 𝐶. (2.11)

𝑃(𝐶𝑖, 𝐶) =
𝐶 members in 𝐶𝑖

|𝐶𝑖 |
∀𝐶𝑖 ∩ 𝐶 ≠ ∅. (2.12)

The objectives (i), (ii), and (iii) outlined above are achieved by the left factor, the first

term of the right factor, and the second term of the right factor, respectively. Now, let

us consider whether the deception score 𝐻 can be directly applied (via maximizing

it) to address the target community hiding problem. The score incorporates the

knowledge of the community structure 𝐶, and therefore, it would require the

knowledge of the community detection algorithm 𝐴𝐷 that generated 𝐶. It means

that the deception would be dependent on 𝐴𝐷 .

• Community splits (CommS): It quantifies the number of communities within the

modified network that include the members of the target community (77).

• Community uniformity (CommU): It quantifies how the target community members

are distributed across the communities in the modified network by utilizing the

entropy concept (77).

• Modified NMI (MNMI): In large networks, the concealment of a target community

may not substantially affect those communities that do not share direct connections

with it. Therefore, this measure assesses the NMI between the community member-

ships of nodes in the target community and their directly linked neighbors before and

after the hiding process. Its range is consistent with that of NMI (77).

• Fitness: The proposed fitness function can be utilized to evaluate the hiding

effect (14).

21

• Variation of information (VI): It is a measure used to compare two partitions, 𝑋

and 𝑌 , based on the principles of information theory. It is defined as (78):

𝑉𝐼 = (𝐻 (𝑋) − 𝐼 (𝑋,𝑌)) + (𝐻 (𝑌) − 𝐼 (𝑋,𝑌)). (2.13)

A lower VI value indicates a higher similarity between the two partitions.

• Split-join distance (SJD): It quantifies the distance between two community

partitions, denoted as 𝑋 and𝑌 (79). It is defined by 𝑆𝐽𝐷 (𝑋,𝑌) = 𝑃𝐷𝑌 (𝑋)+𝑃𝐷𝑋 (𝑌),

where the 𝑃𝐷𝑌 (𝑋) represents the projection distance of partition 𝑌 from partition

𝑋 and computed as follows: For each community in 𝑌 , identify the community in

𝑋 with which it shares the maximum overlap. The summation of these maximal

overlap sizes is then subtracted from the number of elements in 𝑌 . A smaller SJD

value indicates a higher similarity between the partitions.

• Jaccard index: It is used for comparing two community partitions (𝑋 and 𝑌) (80).

It is defined as 𝐽 (𝑋,𝑌) = |𝑋 ∩ 𝑌 |/|𝑋 ∪ 𝑌 |.

• Recall: It is used for comparing two community partitions (𝑋 and 𝑌) (80). It is

calculated as 𝑅(𝑋,𝑌) = |𝑋 ∩ 𝑌 |/|𝑋 |.

• Precision: It is used for comparing two community partitions (𝑋 and 𝑌) (81). It is

computed as 𝑃(𝑋,𝑌) = |𝑋 ∩ 𝑌 |/|𝑌 |.

• Node-centric measures: It involves the increase in the graph safeness and the

reduction in the graph persistence (82). The equations for node safeness and

persistence (which is quite similar to the permanence) are presented in Section 3.2.2,

enabling the computation across the graph by summing the node-based values.

• Constant community (CC) measures: Constant communities represent groups of

nodes appearing consistently within the same community for different community

detection algorithms. The measures found from CCs include the number of nodes

that form CCs, the average density of these communities, and the average hub

dominance (82).

• Attack efficiency (AE): It quantifies the effectiveness of a hiding. It is the number

of incorrectly grouped nodes with a limited number of edge alterations (𝛽). It is
22

defined as (83):

𝐴𝐸 =
Number of altered nodes

𝛽
. (2.14)

• BN (𝛽 * NMI): It refers to the hiding cost. It quantifies the number of edge

alterations necessary to reduce the NMI value. Its lower value indicates more

effective hiding (84).

2.5. Subgraph Entropy for Privacy Preservation on Graphs

Let us begin with describing the Shannon’s entropy (85). The entropy of a set of

probabilities (𝑝1, 𝑝2, ..., 𝑝𝑛) is defined as follows:

𝐻 = −
𝑛∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖 . (2.15)

To introduce information-theoretical graph measures, a tuple (𝜆1, 𝜆2, ..., 𝜆𝑛) of

non-negative integers is offered to form a probability distribution (86)

𝑝𝑖 =
𝜆𝑖∑𝑛
𝑗=1 𝜆 𝑗

𝑖 = 1, 2, ..., 𝑛. (2.16)

Hence, the entropy can be indicated as

𝐻 = −
𝑛∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖 = log

(
𝑛∑︁
𝑖=1

𝜆𝑖

)
−

𝑛∑︁
𝑖=1

𝜆𝑖∑𝑛
𝑗=1 𝜆 𝑗

log𝜆𝑖 . (2.17)

Qiao et al. (87) propose a centrality measure to quantify the influence of nodes in

networks. This measure uses an entropy centrality model and can be utilized to detect the

vital nodes. It computes the influence of a node by calculating the local influence of it on

one-hop neighbors and the indirect influence of it on two-hop neighbors, and summing up

their weighted values.

To find the local influence of a node 𝑣𝑖, first a subgraph consisting of the node

𝑣𝑖 and its one-hop neighbors is considered. For each node in the subgraph, the 𝑆𝐷𝐶𝑖 is

calculated as

𝑆𝐷𝐶𝑖 =

𝑀∑︁
𝑗=1

𝑏𝑖 𝑗 , (2.18)

23

where 𝑀 indicates the number of one-hop neighbors of node 𝑖, and 𝑏𝑖 𝑗 represents the

existence of the edge between node 𝑖 and node 𝑗 . The value of 𝑏𝑖 𝑗 is 0 or 1. The tuple is

defined as (𝜆1, 𝜆2, ..., 𝜆𝑀+1) and 𝜆𝑖 = 𝑆𝐷𝐶𝑖. Thus, the local influence of node 𝑖 (𝐿𝐼𝑖) is

𝐿𝐼𝑖 = log

(
𝑀+1∑︁
𝑖=1

𝑆𝐷𝐶𝑖

)
−
𝑀+1∑︁
𝑖=1

𝑆𝐷𝐶𝑖∑𝑀+1
𝑗=1 𝑆𝐷𝐶 𝑗

log 𝑆𝐷𝐶𝑖 . (2.19)

If the node 𝑖 has a two-hop neighbor node 𝑘 , 𝑁𝑖𝑘 is the number of common neighbors

of these nodes. Assume that node 𝑗 is one common neighbor of them. The 𝐿𝐼𝑖 and 𝐿𝐼 𝑗
have already been calculated. If 𝑁𝑖𝑘 = 1, the indirect influence of node 𝑖 on 𝑘 (𝐼 𝐼𝑖𝑘) is

𝐼 𝐼𝑖𝑘 = 𝐼𝑖 𝑗 × 𝐼 𝑗 𝑘 = 𝐿𝐼𝑖 × 𝐿𝐼 𝑗 . (2.20)

With the assumption that each path from node 𝑖 to node 𝑘 has the equal weight, it

will be written as

𝐼 𝐼𝑖𝑘 =

𝑁𝑖𝑘∑︁
𝑘=1

𝐿𝐼𝑖 × 𝐿𝐼 𝑗
𝑁𝑖𝑘

. (2.21)

The indirect influence of node 𝑖 (𝐼 𝐼𝑖) is written by considering all of its two-hop

neighbors as follows:

𝐼 𝐼𝑖 =

∑𝑀𝑖

𝑘=1 𝐼 𝐼𝑖𝑘

𝑀𝑖

, (2.22)

where 𝑀𝑖 is the number of two-hop neighbor nodes of the node 𝑖. After calculating the

local influence and indirect influence, the total influence of node 𝑖 is computed as

𝐼𝑖 = 𝑤1𝐿𝐼𝑖 + 𝑤2𝐼 𝐼𝑖, (2.23)

where 𝑤1 and 𝑤2 are the weights and 𝑤1 + 𝑤2 = 1.

An example graph is demonstrated in Figure 2.4 to point out the overall influence

of node 1. The subgraph containing node 1, its one-hop neighbors, and the edges between

any two of them are shown with green color. Additionally, it shows the 𝑆𝐷𝐶𝑖 values of the

nodes in the subgraph.

By setting the logarithm base to 10, the local influence is found using the Equation

2.19 as follows:

24

1

2 6
4

5

8

3 7

Node 𝑆𝐷𝐶𝑖
1 3
2 2
4 2
6 1

Figure 2.4. An example graph to show the influence of node 1. The 𝑆𝐷𝐶𝑖 values of the
nodes in the subgraph.

𝐿𝐼1 = log10

(4∑︁
𝑖=1

𝑆𝐷𝐶𝑖

)
−

4∑︁
𝑖=1

𝑆𝐷𝐶𝑖∑4
𝑗=1 𝑆𝐷𝐶 𝑗

log10 𝑆𝐷𝐶𝑖 = 0.5737.

The indirect influence of node 1 on its two-hop neighbors (i.e., nodes 3, 5, and 7) is

found by the Equation 2.22 as

𝐼 𝐼1 =
(
𝐿𝐼1 × 𝐿𝐼2 + (𝐿𝐼1 × 𝐿𝐼2 + 𝐿𝐼1 × 𝐿𝐼4 + 𝐿𝐼1 × 𝐿𝐼6)/3 + 𝐿𝐼1 × 𝐿𝐼6

)
/3 = 0.3584.

Sen et al. (88) introduce subgraph entropy as an information-theoretic metric for

human brain graphs. Additionally, node and edge entropies that are the types of subgraph

entropies are used to rank the regions (nodes) and edges in a brain graph. It is stated that

the important nodes (or edges) are the ones with the maximum entropy in subgraphs. A

node (a brain region) in a functional brain graph is associated with one mean time-series,

and an edge weight represents the absolute value of correlation coefficient between the

mean time-series of the vertices.

Node entropy of a node 𝑣𝑖 is calculated from the subgraph consisting of the node

𝑣𝑖 and its one-hop neighbors. Let 𝑉𝑣𝑖 be the set of nodes in the subgraph and 𝐸𝑣𝑖 be the

one-hop edges from 𝑣𝑖. Let

𝑞′𝑘𝑚 =


𝑒′
𝑘𝑚∑(𝑒′

𝑘𝑚
∈ 𝐸𝑣𝑖)

if 𝑘 ≠ 𝑚,

0 otherwise,
(2.24)

where 𝑒′
𝑘𝑚

’s are the normalized edge values and 𝑞′
𝑘𝑚

’s are the normalized values in the

25

adjacency matrix. The node entropy is defined as

𝐻 = −
∑︁

𝑘,𝑚∈𝑉𝑣𝑖
𝑞′
𝑘𝑚

≠0

𝑞′𝑘𝑚 log2 𝑞
′
𝑘𝑚 . (2.25)

Edge entropy of an edge 𝑒𝑖 𝑗 is found from the subgraph which combines the

one-hop subgraphs of the nodes 𝑣𝑖 and 𝑣 𝑗 . Its vertex set is 𝑉𝑒𝑖 𝑗 = (𝑉𝑣𝑖 ∪𝑉𝑣 𝑗) and edge set

is 𝐸𝑒𝑖 𝑗 = (𝐸𝑣𝑖 ∪ 𝐸𝑣 𝑗). Then,

𝑞′𝑘𝑚 =


𝑒′
𝑘𝑚∑(𝑒′

𝑘𝑚
∈ 𝐸𝑒𝑖 𝑗)

if 𝑘 ≠ 𝑚,

0 otherwise,
(2.26)

where 𝑞′
𝑘𝑚

’s are the normalized values in the adjacency matrix. The edge entropy is defined

as

𝐻 = −
∑︁

𝑘,𝑚∈𝑉𝑒𝑖 𝑗
𝑞′
𝑘𝑚

≠0

𝑞′𝑘𝑚 log2 𝑞
′
𝑘𝑚 . (2.27)

An example graph of calculating the edge entropy is illustrated in Figure 2.5a. The

subgraph containing the edge (1,2) is given in Figure 2.5b. The edge values are normalized

so that their sum becomes 1. Its edge entropy is calculated as −[0.6 × log2 0.6 + 0.2 ×

log2 0.2 + 0.1 × log2 0.1 + 0.1 × log2 0.1] = 1.5710.

1 2

5 6

4

7

3

0.05

0.3

0.050.1

0.1

0.0
5 0.1

0.1

0.1 0.0
5

(a)

1 2

5 6

3

0.1

0.6

0.1

0.2

(b)

Figure 2.5. An example graph of calculating the edge entropy.

26

CHAPTER 3

RELATED WORK

This chapter presents a detailed review of the existing literature in the fields of

Subgraph Hiding and Community Hiding to offer a thorough understanding of prior work.

In the domain of Community Hiding, studies have primarily focused on three distinct scales

of attack, each targeting a specific aspect of community detection (14, 16). The first is the

target node attack, which aims to obscure the community membership of a specific node.

The second is the target community attack, which seeks to conceal a specific community.

The third scale is the global attack, which adopts a broader approach, aiming to disrupt the

overall community structure of the network.

3.1. Subgraph Hiding

Before delving into subgraph hiding, first research on association rule hiding and

frequent itemset hiding is explored to gain a better understanding of solutions for tabular

data. Their approaches can be categorized into five different classes: 1) Border Based

Approaches (89–92) concentrate on adjusting the boundaries within the lattice of frequent

and non-frequent itemsets in the dataset. 2) Exact Approaches (93–95) formulate the

problem as a constraint satisfaction problem and solve it using integer programming. While

this approach guarantees optimal solutions, it requires significant computational resources.

3) Reconstruction Based Approaches (96, 97) rebuild the sanitized database using the

non-sensitive frequent itemsets. 4) Evolutionary Approaches (98–100) are suggested as

solutions for the problem of sensitive pattern hiding using genetic algorithms, ant colony

system algorithms, etc. 5) Heuristic Approaches use fast and efficient algorithms with two

main subgoals in the hiding process: concealing as many sensitive patterns as possible and

minimizing side effects. However, they do not guarantee the optimality. There are two

heuristic approaches, which are distortion-based (66, 101–105) and blocking-based (106,

107) approaches. Blocking approaches change the real values in the selected transactions

to unknowns (like question marks) without adding false information to the database, while

27

distortion approaches change 0s to 1s or vice versa in the selected transactions.

Abul and Gökçe (9) introduce the concept of subgraph hiding. To hide sensitive

subgraphs, they propose three blocking-based algorithms that mask the labels of some

vertices. While these algorithms can effectively hide sensitive subgraphs, they generate

fake subgraphs, affect all edges of the masked vertices, and may potentially compromise

privacy. Their approach chooses sensitive graphs with fewer matches for sanitization and

gives three heuristics for the local sanitization of a sensitive graph to remove the matches

of a sensitive pattern: Heuristic1, Heuristic2, and Heuristic3.

• Heuristic1: It identifies unique vertex labels in the sensitive pattern and then for each

label determines the number of vertices in the graph with that label. It then masks

the vertices having the label that appears the least in the graph.

• Heuristic2: It detects the most frequent vertex in all matches of the sensitive pattern.

The label of this vertex is then masked in the graph, and the matches that include this

vertex are removed from the match set. It is repeated until no matches remain.

• Heuristic3: The frequency of each unique graph vertex in all matches of the sensitive

pattern is computed. The frequencies found are sorted in decreasing order. The first i

vertices are selected for masking, ensuring that the sum of their frequencies is equal

to or greater than the match set size. However, the chosen vertices might be in the

same matches, and the process from the beginning is repeated until no matches are

left. It may need to execute a subgraph matching algorithm multiple times.

𝐵0

𝐵1

𝐴 2

𝐶3

𝐶 4

𝐴5

Y

X

XX

Z Y

Z

Y

X

(a)

𝐵0

𝐵1

Δ 2

𝐶3

𝐶 4

Δ5

Y

X

XX

Z Y

Z

Y

X

(b)

Δ0

B1 C 2

X Z

(c)

Δ0 B 1
X

(d)

Figure 3.1. A local sanitization example with Heuristic2; (a) a sensitive graph containing
three matches of the sensitive pattern given in Figure 2.1b, (b) the sanitized graph, and
(c)-(d) potential artifact patterns.

28

Figure 3.1 shows an example of sanitizing a sensitive graph with Heuristic2.

Suppose that the subgraph in Figure 2.1b is considered as the sensitive pattern and the

sensitive graph in Figure 3.1a is provided. There are three matches of the pattern in

this graph: {2:0, 0:1, 3:2}, {2:0, 1:1, 3:2}, and {5:0, 0:1, 4:2}. Heuristic2 selects the most

frequent vertex in the matches. If there is more than one such vertex, it chooses randomly.

The vertex 2 is one of the most frequent ones in the matches, appearing in the two matches.

So, Heuristic2 masks it in the graph. Then, there is one match left after removing its

matches. Heuristic2 chooses the vertex 5 and masks it. Figure 3.1b displays the resulting

sanitized graph. This masking technique may create artifact patterns with missing vertex

labels, as depicted in Figure 3.1c and Figure 3.1d.

3.2. Community Hiding

Community detection attacks try to deteriorate the performance of community

detection algorithms. In this section, the problem of community detection attacks is given

in three scales; target node, target community, and global attacks (16). The available attack

algorithms in the literature for each scale are explained. Some algorithms are designed for

multi-scale problems like EPA (14) or CH-SNMF (75); the algorithm explanation is given

in the subsection where it first appears in these cases.

3.2.1. Target Node Attack

In certain cases, a specific node within a network may prefer to avoid detection as

part of any particular community. This node may have affiliation with sensitive or private

groups, such as political or religious groups, or may not want its group to be known due to

personal preferences. The main goal of a target node attack is to obscure the community

membership of a target node within a network, ensuring that the community it belongs to

cannot easily be detected. This can be executed by altering the connections around the

target node, making it harder to accurately place the node within its original community.

Definition 8 (Target Node Attack) Given a target node 𝑢, suppose it is a member of

community 𝐶𝑖 in the original graph 𝐺 = (𝑉, 𝐸). The target node attack problem is to avoid

the target node 𝑢 from being identified as part of its initial community 𝐶𝑖 by altering the
29

connections around it. After the attack, suppose that it is included in 𝐶 𝑗 in the adversarial

graph 𝐺′, which is as different as possible from 𝐶𝑖. That means the target node is clustered

into the wrong community.

Figure 3.2 illustrates an example of a target node attack on Zachary’s Karate

network (108). The community structure, comprising four distinct communities, is found

using the Louvain algorithm (47). Node 19 is chosen as the target node, with its border

highlighted in red. Initially, it belongs to the blue community indicated by the circle.

Given an attack budget of 2, the target node removes its connection with node 1, which is

in the same community, and establishes a new connection with node 29 from a different

community. That means edge (19, 1) is deleted within the community of the target node

and edge (19, 29) is added between communities. After the attack, when the Louvain

is re-applied to the modified network, as shown on the right, the target node is assigned

to a different community, marked with plum color and hexagon shape. The goal here is

to determine the optimal structural modification to the neighborhood of the target node.

This modification should ensure that the target node remains hidden. It is considered

successful when the original community and the new community involving the target node

are different.

0 1

2

3
45

6 7

8
9

10
11 12

13

14

15

16

17

18

19

20

21

22

2324 25

26

27

28

29

30

31
32

33

(a)

0

1
23

4
5

6

7

8

9

10 11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

2728

29

30

31

32
33

(b)

Figure 3.2. Illustration of a target node attack. (a) Community structure of the original
graph with the target node border highlighted in red. (b) Community structure identified
after applying a target node attack.

Chen et al. (73) put forward fast gradient attack (FGA) on network embedding to

avoid target nodes from being identified (i.e., wrongly clustered in community detection).

FGA comprises two parts: (i) generation of the adversarial network based on the graph
30

convolutional network (GCN) gradient and (ii) using the adversarial network to attack the

GCN or other network embedding methods. In the first stage, for a target node, a target loss

function is computed. The partial derivative of it concerning each element of the adjacency

matrix is calculated. Then, the link with the maximum absolute gradient is chosen to

add/delete since it affects the result of the target node more. In the experiments, the K-means

algorithm is used to obtain the community detection results from the embedding vectors.

The problem of community detection attacks is formalized in three scales, global,

target community, and target node attacks, by the study (14). Each attack problem is

modeled as an optimization algorithm, and a genetic algorithm-based EPA method is

proposed. The index (ID) of a link (added or deleted link) is used as a gene. Each

chromosome represents an attack. For a target node attack, the fitness function is based on

only the degree change 𝑓 = Ψ(𝑑′), where Ψ(𝑑′) = 𝑒𝑥𝑝(𝑐 × 𝑑′), 𝑐 is a constant to control

decay speed, 𝑑′ = 𝑑/|𝐸 |, 𝑑 = 1
4
∑𝑛
𝑖=1 |𝑑𝑖 − 𝑑𝑖 |, 𝑛 is the number of nodes in the graph, and 𝑑𝑖

and 𝑑𝑖 are the degrees of node 𝑖 before and after the attack. Unequal crossover is adopted so

that the chromosome length can be changeable. In the mutation process, network structural

properties (i.e., between pairs of two nodes, betweenness for deletion, and the shortest path

lengths for addition) are used.

Bernini et al. (74) address the problem of community membership hiding. The goal

of the node deception task is to disassociate a target node 𝑢 from its original com-

munity 𝐶𝑖. The objective is defined by setting a threshold for the similarity between

the target node’s original community 𝐶𝑖 and new community 𝐶′
𝑖

by excluding it, that

is, 𝑠𝑖𝑚(𝐶𝑖 − {𝑢}, 𝐶′𝑖 − {𝑢}) ≤ 𝜏, where 𝜏 ∈ [0, 1]. The loss function is formulated as

𝑙𝑜𝑠𝑠 = 𝑙𝑑𝑒𝑐𝑒𝑝𝑡 + 𝜆𝑙𝑑𝑖𝑠𝑡 . The first part evaluates to 1 if node 𝑢 remains in the community 𝐶𝑖

or 0 otherwise (the goal is achieved). The second part assesses the distance between two

graphs (𝐺 and 𝐺′) and their corresponding community structures (𝐶 and 𝐶). The target

node can delete edges within its community and add new edges to nodes outside its

community. The hiding problem is solved using deep reinforcement learning, and the

advantage actor-critic framework is used (109).

A unified framework (CH-SNMF) is introduced for the three scales of community

hiding (75). It utilizes the clustering properties of symmetric non-negative matrix

factorization (SNMF). Rather than constructing the feature matrix, the adjacency matrix A

is used. Matrix U = 𝑈𝑖 𝑗 (community indicator) specifies the probability of a node 𝑣𝑖 being

31

part of community 𝐶 𝑗 . 𝑚𝑖𝑛| |A − UU𝑇 | |2
𝐹

is obtained such that U ≥ 0. At each iteration,

nodes having a high membership are chosen when updating the matrix U. For rewiring, it

removes the edges between nodes with high membership in a community and creates edges

to nodes with high membership that belong to other communities.

Table 3.1 summarizes and compares target node attack algorithms. For each study,

reference of the study, target node attack algorithm name(s), update operation, whether

intra-/inter-commmunity edges are used or not, knowledge needed (if any prior information

required), and measures used to compare the attack algorithms with the algorithms in the

comparison column are specified in the table. When the table is examined, it can be seen

that the EPA algorithm employs only edge addition, while other methods incorporate both

edge addition and removal to modify the network’s structure. Rewiring is only applied in

CH-SNMF. Considering the community of the target node and the external communities,

the algorithms that delete the intra-community edges and add inter-community edges are

DRL-Agent and CH-SNMF. The aim is concealing a specific node in target node attacks,

but all attack algorithms utilize the entire network. Some algorithms, such as DRL-Agent

and CH-SNMF, even rely on prior knowledge of communities. Although success rate

is used as a performance measure in two studies, different measures are also preferred.

Comparisons of the algorithms are typically made against random baselines.

Table 3.1. Summary of target node attacks.

Ref.
Community

Hiding
Update

Intra/

Inter
Knowledge Measure Comparison

(73) FGA EDel, EAdd ✗ G
Success rate,

AML

Rand, Nettack,

DICE

(14) EPA EAdd ✗ G
Percent. degree

increase
Rand

(74) DRL-Agent EDel, EAdd ✓ G, CS
Success rate,

NMI

Rand, Degree,

ROAM

(75) CH-SNMF
EDel, EAdd

(Rewire)
✓ G, |𝐶𝑆 |

Comm.

retention

prob.

ROAM

32

3.2.2. Target Community Attack

There may be scenarios where a group, such as police enforcement or activists, needs

to interact and cooperate in a network without disclosing their community membership. A

target community attack, also known as community deception, involves disguising a specific

community that may be private or sensitive. This attack aims to conceal the existence of a

target community within the network. For this, the connections of members of the target

community are altered, which complicates the detection. Changing the connections of

the target community may spread its members to other communities, causing the target

community to become obscure.

Definition 9 (Target Community Attack) Given a target community 𝐶 ⊆ 𝐶, identified

by a community detection algorithm 𝑓 on the original graph 𝐺 = (𝑉, 𝐸), the target

community attack problem is to hide the target community 𝐶 by altering the connections of

its members within a specified budget 𝛽. After the attack, 𝐶 is no longer detectable by the

community detection algorithm 𝑓 . That is, in the adversarial graph 𝐺′, the nodes in 𝐶 are

distributed among a set of new communities, denoted by 𝐶 = {𝐶′1, 𝐶
′
2, . . . , 𝐶

′
𝐿
}.

An illustrative example for a target community attack on the Karate network (108)

is depicted in Figure 3.3. The community structure identified with the Louvain algorithm

on the original network consists of four communities. Assume that the community whose

members are shown as octagons and bordered in red is targeted, that is, target community

members are {23, 24, 25, 27, 28, 31}. Considering that the update budget is 4 and the

following updates are applied to the graph (deleting edges (23, 27) and (24, 31), and adding

edges (24, 4) and (25, 4)), the community detection result on the updated network is

obtained, as shown on the right, pointing out (13) (i) its members are evenly distributed

in two communities, (ii) its members are better ‘hidden’ within the larger communities,

and (iii) all its members are reachable from one another.

Nagaraja (76) first introduced the concept of hiding a community to counter

community detection algorithms by allowing the community to alter its structure. The study

considers only two communities where the nodes of the hidden community try to enter the

main network (i.e., the other community). Their strategies are only based on link additions

to the nodes with high centrality values, chosen from each of the two communities.

33

0 1

2

3
45

6 7

8
9

10
11 12

13

14

15

16

17

18

19

20

21

22

2324 25

26

27

28

29

30

31
32

33

(a)

0

1
2

3

4

5 6

7

8 9

10

11
12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30

31

32
33

(b)

Figure 3.3. Illustration of target community attack. (a) Community structure of the original
graph with the borders of target community nodes highlighted in red. (b) Community
structure after applying a target community attack.

Waniek et al. (12) also focus on how a community can disguise itself to reduce

the likelihood of being discovered through community detection. A heuristic algorithm

named “disconnect internally, connect externally” (DICE) is proposed, which works by

randomly deleting the links between members of the target community (intra-community

edges) and adding the links between members and non-members of the target community

(inter-community edges). The DICE algorithm is inspired by modularity. It does not

require knowing the entire network topology and can be applied by any group of people.

Fionda and Pirro (13) model community deception as an optimization problem and

propose “community safeness”. Before giving it, firstly node safeness 𝜎(𝜇, 𝐶) of node 𝜇

in 𝐺 is defined to measure hiding of it in the community 𝐶 as follows:

𝜎(𝜇, 𝐶) = 1
2
|𝑉𝑢
𝐶
| − |𝐸 (𝑢, 𝐶) |
|𝐶 | − 1

+ 1
2
|�̃� (𝑢, 𝐶) |
𝑑𝑒𝑔(𝑢) , (3.1)

where 𝑉𝑢
𝐶
⊆ 𝐶 is the set of nodes of 𝐶 reachable from 𝑢 by passing only via nodes in 𝐶,

𝐸 (𝑢, 𝐶) is the set of internal edges of node 𝑢 ∈ 𝐶, �̃� (𝑢, 𝐶) is the set of external edges

of node 𝑢 ∈ 𝐶, and 𝑑𝑒𝑔(𝑢) is the degree of node 𝑢. Node safeness of 𝑢 considers two

factors related to the indirect connections of the node 𝑢 with the nodes in the community

𝐶 and the external connections of the node 𝑢. That is, the first factor explains how well

𝑢 transmits information in 𝐶. The second factor explains how 𝑢 is concealed in the

network with respect to its degree. The second one is used to confuse detection because

it leads to a better community deception if 𝑢 is diverse in terms of its edges. Moreover,

34

the community safeness 𝜎(𝐶) is defined as 𝜎(𝐶) = ∑
𝑢∈𝐶 𝜎(𝑢, 𝐶)/|𝐶 |. Higher community

safeness means finding the correct set of updates. Based on the community safeness, the

Ds algorithm is proposed to deceive a detection algorithm by changing (adding/deleting)

a certain number of links of the target community. Let Δ(𝐶) = 𝜎(𝐶′) − 𝜎(𝐶) be the

safeness gain, where 𝐶′ is the community after one or more link updates. The Ds is a

greedy algorithm which selects the edge update that gives the highest Δ(𝐶) at each step.

The Ds algorithm only considers inter-community edge additions and intra-community

edge deletions. Additionally, in the study (13), the Dm algorithm that is based on the

modularity loss is presented for community deception. However, it needs the knowledge

of the community structure. Later, Fionda and Pirro (110) offer the SECRETORUM

algorithm, in which node safeness is re-defined to work with weighted networks. Further,

the same author group explores community deception for directed and/or weighted graphs

in the studies (111–113).

In the EPA method (14), for target community and global attacks, the fitness function

is calculated using entropy and degree change. Entropy is employed to assess the attack

effect using the community detection results before and after the attack. Therefore, the EPA

method requires the knowledge of the community structure discovered by a particular

detection algorithm. The fitness function for a global attack is designed as follows:

𝑓 = Ψ(𝑑′) × (𝐸𝑛𝑡𝐴/log2 |𝐶 | + 𝐸𝑛𝑡𝐵/log2 |𝐶 |), (3.2)

𝐸𝑛𝑡𝐴 and 𝐸𝑛𝑡𝐵 are the entropy for new communities and original communities, respectively,

𝑚 is the confusion matrix of two community distributions, 𝑚𝑖 𝑗 is the number of common

nodes between the original community 𝐶𝑖 and the new community 𝐶′
𝑗
, 𝑛 is the number of

nodes in the graph, and

𝐸𝑛𝑡𝐴 = −
|𝐶 |∑︁
𝑖=1

|𝐶 |∑︁
𝑗=1

𝑀𝑖

𝑛

(
𝑚𝑖 𝑗

𝑀𝑖

log2
𝑚𝑖 𝑗

𝑀𝑖

)
. (3.3)

The maximum value of 𝐸𝑛𝑡𝐴 (resp., 𝐸𝑛𝑡𝐵) is obtained if the values of each row (resp.,

column) are equal. For a target community attack, the fitness function given in Equation (3.2)

can be adapted to limit the search space (14).

Chen et al. (114) give a new definition for community safeness that considers the

35

total shortest path for every pair of nodes in the target community 𝐶. For this, the degree of

dispersion of the community𝐶 is defined as 𝜌(𝐶) = ∑
𝑢

∑
𝑣 𝑠𝑝(𝑢, 𝑣), where 𝑢, 𝑣 ∈ 𝐶, 𝑢 ≠ 𝑣

and 𝑠𝑝(𝑢, 𝑣) is the length of the shortest path between node 𝑢 and node 𝑣. The higher 𝜌(𝐶)

is, the better the community hiding. The 𝜌(𝐶) is normalized to maintain it in the range

[0, 1], that is, 𝜓(𝐶) = (𝜌(𝐶) − 𝜌(𝐶)𝑚𝑖𝑛)/(𝜌(𝐶)𝑚𝑎𝑥 − 𝜌(𝐶)𝑚𝑖𝑛). Then, the community

safeness is defined as 𝜎(𝐶) = 1
2
𝜓(𝐶) + 1

2
𝜑(𝐶), where 𝜑(𝐶) = ∑

𝑢∈𝐶
|�̃� (𝑢, 𝐶) |
𝑑𝑒𝑔(𝑢) . The Ds

algorithm is improved, and the Hs algorithm, which is based on the new safeness definition,

is proposed.

Mittal et al. (77) use permanence for community deception. Permanence is a

node-based metric which quantifies the belongingness of a node 𝑣 to its community 𝐶

(115):

𝑃𝑒𝑟𝑚(𝑣) = 𝐼 (𝑣)
𝐸𝑚𝑎𝑥 (𝑣)

× 1
𝑑𝑒𝑔(𝑣) − (1 − 𝑐𝑖𝑛 (𝑣)), (3.4)

which is based on three factors: 1) internal pull 𝐼 (𝑣), the internal connections of 𝑣 inside

its own community; 2) maximum external pull 𝐸𝑚𝑎𝑥 (𝑣), the maximum connections of

𝑣 to its neighboring communities; and 3) 𝑣’s internal clustering coefficient 𝑐𝑖𝑛 (𝑣), the

fraction of the actual and possible number of links among the internal neighbors of 𝑣.

The permanence of a node increases if its internal pull is greater than its external pull

or its internal neighbors are densely connected. Figure 3.4 illustrates a toy example

of the calculation of the permanence of two nodes. The permanence of a network

𝐺 is calculated as 𝑃𝑒𝑟𝑚(𝐺) = ∑
𝑢∈𝑉 𝑃𝑒𝑟𝑚(𝑣)/|𝑉 |. Mittal et al. propose NEURAL,

a permanence-based deception method that aims to reduce the network permanence to hide

a target community 𝐶. NEURAL is a greedy strategy that maximizes the permanence loss

𝑃𝑙 = 𝑃𝑒𝑟𝑚(𝐺) − 𝑃𝑒𝑟𝑚(𝐺′) by choosing the edge update giving the highest 𝑃𝑙 at every

iteration. NEURAL also allows only intra-community edge deletions and inter-community

edge additions. The work (116) then adapts the permanence formula to operate on weighted

networks and offers the PERMDEC algorithm using the permanence loss.

The Matthew effect caused by traditional quality function (i.e., modularity)-based

methods is identified, where earlier edge perturbation influences the placement of subsequent

perturbations at the community level (81). To address this issue, a probabilistic framework,

ProHiCo, is designed to hide a set of target communities. The core concept behind it is

to initially allocate the resource of perturbations randomly and sequentially, followed by

selecting the suitable edges for perturbation through likelihood minimization. By integrating

36

1

2

Node 𝑣 1 2

𝑑𝑒𝑔(𝑣) 6 5

𝐼 (𝑣) 2 2

𝐸𝑚𝑎𝑥 (𝑣) 3 2

𝑐𝑖𝑛 (𝑣) 1 1

𝑃𝑒𝑟𝑚(𝑣) 0.11 0.2

Figure 3.4. A toy example illustrating the calculation of permanence of two nodes.

the stochastic block model and its degree-corrected version into the ProHiCo framework,

two scalable algorithms, SBM and DCSBM, employing sampling and pruning techniques,

are proposed. Then, the scalable ComDeceptor method (117), leveraging the Laplacian

spectrum, also hides an arbitrary set of target communities. It first allocates the resources of

perturbations fairly, giving either a pair of communities for edge addition or a community

for edge deletion in each round. The method performs inter-community edge additions by

maximizing the second smallest Laplacian eigenvalue while performing intra-community

edge deletions by minimizing the largest Laplacian eigenvalue. It incorporates heuristics

for approximately solving them.

A node-centric approach (118) is introduced for community deception by allowing

node updates, where each node operation (node addition or node deletion) results in several

edge updates. It relies on node safeness defined in Equation (3.1). A greedy algorithm,

nSAF, is proposed that selects the node operation (between a node addition candidate

and a node deletion candidate) that yields the best safeness gain for each step, along with

the respective edges. For deletion, the node with the least safeness is chosen among the

target community nodes, and its edges are determined as the edges to be deleted. For the

addition of a new node (natural or bot), the edges to be added are determined as follows:

first, only one edge is established with a node in the target community to form a single

component, and then, the remaining edges are established with nodes outside the target

community. Another greedy algorithm with a node-centric approach, nDec (119), is based

on modularity and considers three node operations (addition, deletion, and moving). Node

addition is essential when new members join the network. While moving nodes between

communities is generally preferable, node deletion may be necessary in cases where the

complete concealment of the target community is critical. A deleted node can be re-added

37

with carefully chosen edge additions.

Chang et al. (120) offer three genetic algorithms for hiding a target community

using escape score, dispersion score (deception score 𝐻 in (13)), and hiding score as the

fitness functions. The escape score quantifies the number of nodes in the target community

that are concealed. The hiding score formula is obtained from the first two scores.

A swarm intelligence-based method, SCP, is introduced for target community

attacks (121). The edge pool is initialized according to permanence, as in (11) (explained

in Section 3.2.3), but only the edges related to the target community are considered.

The search space is tailored for each particle. A self-adaptive mechanism is implemented

to balance global and local search resources. The fitness function is derived from the

structural entropy given in Equation (3.6).

Table 3.2 summarizes and compares target community attack algorithms. For each

study, reference of the study, target community attack algorithm name(s), update opera-

tion, whether intra-/inter-commmunity edges are used or not, knowledge needed (if any

prior information required), and measures used to compare the attack algorithms with

the algorithms in the comparison column are specified in the table. The table indicates

that manipulation of the network structure exclusively through the addition of edges

is achieved only in the study (76). The other algorithms modify the network by both

adding and removing edges. Additionally, nSAF and nDec algorithms also perform

node updates. Notably, edge rewiring is implemented only in the EPA and CH-SNMF

algorithms. Rewiring is not applied in greedy optimization-based methods (i.e., Ds, Dm,

SECRETORUM, Hs, NEURAL, nSAF, and nDec). Except for EPA, nSAF, and nDec, all

of them perform inter-community link addition and intra-community link deletion since

the target community to be concealed is known and other communities can be treated as

external communities. Some algorithms may need additional prior information to hide a

target community. For example, information about neighboring communities is needed

to calculate the permanence value in the NEURAL algorithm. Certain algorithms even

demand a community structure extracted from the network by a community detection

algorithm, implying the necessity of knowing the entire network. This requirement may

potentially restrict the practical applicability of these methods in real-world scenarios.

When evaluation measures are analyzed, it is observed that the community deception

score H, which captures all three desiderata of effective community hiding, and NMI are

38

Table 3.2. Summary of target community attacks.

Ref.
Community

Hiding
Update

Intra/

Inter
Knowledge Measure Comparison

(76) Naga. EAdd ✓
𝐶, Vertex

centralities
Miss ratio No

(12) DICE EDel, EAdd ✓ 𝐶 M No

(13) Ds, Dm EDel, EAdd ✓
𝐶 for Ds,

CS for Dm
H, NMI DICE

(14) EPA
EDel, EAdd

(Rewire)
✗

G, A part of

CS
Fitness, H DICE, Ds

(110) SECRETORUM EDel, EAdd ✓ 𝐶 H, NMI
Rand, DICE, Ds,

NEURAL

(114) Hs EDel, EAdd ✓ 𝐶 H Ds, Dm

(77) NEURAL EDel, EAdd ✓

Node info

for a subset

of nodes

NMI, MNMI,

CommS,

CommU

Rand, Naga., DICE,

Ds

(81)

ProHiCo

(SBM,

DCSBM)

EDel, EAdd ✓ G, CS J, R, P, NMI Ds, REM

(117) ComDeceptor EDel, EAdd ✓ G, CS J, R, P, NMI Ds, REM, DCSBM

(74) DRL-Agent EDel, EAdd ✓ G, CS H, NMI Ds, Dm

(118) nSAF
EDel, EAdd,

NDel, NAdd
✗ 𝐶 H, NMI

Rand, DICE, Ds,

Dm, NEURAL

(119) nDec

EDel, EAdd,

NDel, NAdd,

NMov

✗ G, CS
H, MNMI,

NMI

Rand, DICE, Ds,

Dm, NEURAL

(75) CH-SNMF
EDel, EAdd

(Rewire)
✓ G, |𝐶𝑆 | H, M DICE, Ds

(120)

CEHA,

CDHA,

CCHA

EDel, EAdd ✓ G, CS NMI, Q, M
Rand, DICE, Ds,

NEURAL

(121) SCP EDel, EAdd ✓ G, CS
NMI, VI, SJD,

Local

Rand, DICE, Ds,

NEURAL, MOD

39

predominantly preferred. Following them, the measure M is preferred. In the comparative

analysis of the attack algorithms, the Ds algorithm emerges as the most frequently

utilized, indicating its widespread acceptance and effectiveness in the context of target

community attacks.

3.2.3. Global Attack

In a global attack, all communities within the network are regarded as sensitive.

This attack focuses on modifying the least number of connections to significantly alter the

overall community structure, thereby ensuring privacy.

Definition 10 (Global Attack) Let 𝐺 = (𝑉, 𝐸) be a graph. 𝑓 is a community detection

algorithm that discovers the community structure 𝐶 = {𝐶1, . . . , 𝐶𝐾} on 𝐺. The global

attack problem aims to maximize the change in the community structure by allowing a

certain number (𝛽) of edge modifications (addition or deletion) in the network, where 𝛽 is

the budget. After the attack, the adversarial graph 𝐺′ is obtained. The community structure

discovered from 𝐺′ is 𝐶 = {𝐶′1, . . . , 𝐶
′
𝐿
} through the community detection algorithm

𝑓 . The community structure 𝐶 is as different as possible from the original community

structure 𝐶.

Figure 3.5 presents a visualization of a global attack on the Karate network (108).

The implementation of the Louvain algorithm divides the nodes in the original network

into four communities, each represented by a different shape to indicate the membership of

the individuals. Performing a global attack, consisting of four strategically selected edge

rewirings, produces the adversarial network; the resulting community structure on it by

the same detection algorithm is illustrated in Figure 3.5b (8), revealing the change in the

number of communities and exhibiting disorganization at a broader scale by modifications

across the network.

The attack strategies for global attacks are designed to disrupt the community

structure. Figure 3.6 shows an ideal case for community obfuscation.

Chen et al. (8) tackle the problem of global community structure deception and

develop strategies to attack community detection algorithms by rewiring the minimal

number of links. Two heuristic attack strategies, community detection attack (CDA) and

degree-based attack (DBA), as baselines, and a genetic algorithm-based strategy, Q-Attack,
40

0 1

2

3
45

6 7

8
9

10
11 12

13

14

15

16

17

18

19

20

21

22

2324 25

26

27

28

29

30

31
32

33

(a)

0

1
2

3
4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

2930

31

32

33

(b)

Figure 3.5. Illustration of a global attack. (a) Community structure of the original graph.
(b) Community structure after applying a global attack.

are given to fool the detection algorithms. These strategies rely on rewiring, that is, adding

an edge to a node while deleting one from it. The CDA strategy uses knowledge of the

community structure found by a specific detection algorithm. Since there is no target

community, it randomly selects a certain number of nodes from the network. In every

iteration, for a chosen node, an existent intracommunity edge is deleted and a non-existent

inter-community edge is added. The DBA heuristic strategy is also similar to CDA but

chooses the nodes of larger degree from the network.

The genetic algorithm is used to search for the optimal set of rewiring links (8).

The Q-Attack algorithm is mainly composed of three parts: encoding, fitness function,

and design of genetic operators. For encoding, an attack is represented by a chromosome

and a rewiring (a deleted edge and an added edge) is represented by a gene. An example

individual consisting of four rewirings is demonstrated in Table 3.3. The fitness function

(a) (b) (c)

Figure 3.6. The objective of global community obfuscation is demonstrated: (a) original
community structure; (b) community dispersion occurring by dividing the original commu-
nity; (c) optimal case of community obfuscation, with nodes of each community spread
among various communities (11).

41

used is 𝑓 = 𝑒−𝑄 , which indicates that individuals with lower modularity will have larger

fitness. The probability of selecting an individual is proportional to its fitness, represented

as 𝑝𝑖 = 𝑓 (𝑖)/∑𝑛
𝑗=1 𝑓 (𝑗). A single-point crossover between two individuals is adopted with

the probability 𝑝𝑐, and to promote the diversity, three types of mutation operators, such as

link deletion, link addition, and link reconnection, are proposed with probability 𝑝𝑚.

Table 3.3. An individual representation in the Q-Attack (8).

(19, 38) (29, 21) (25, 33) (20, 15)
(19, 13) (29, 14) (25, 28) (20, 5)

In the study (80), structural entropy for a graph 𝐺 = (𝑉, 𝐸) is expressed as follows:

H(𝐺) = −
|𝑉 |∑︁
𝑖=1

𝑑 (𝑖)
2|𝐸 | log2

𝑑 (𝑖)
2|𝐸 | , (3.5)

where 𝑑 (𝑖) is the degree of node 𝑖. Then, the structural entropy for the graph with respect

to the community structure 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑘 } is defined, in which 𝑣(𝑗) is the sum of

degrees in community 𝐶 𝑗 and 𝑔(𝑗) is the number of external edges from community 𝐶 𝑗 .

H
𝐶
(𝐺) = −

𝑘∑︁
𝑗=1

[
𝑣(𝑗)
2|𝐸 |

(
−

∑︁
𝑖∈𝐶 𝑗

𝑑 (𝑖)
𝑣(𝑗) log2

𝑑 (𝑖)
𝑣(𝑗)

)
− 𝑔(𝑗)

2|𝐸 | log2
𝑣(𝑗)
2|𝐸 |

]
. (3.6)

Todisruptthecommunitystructure, their REM method minimizes 𝜌 = (H (𝐺)−H
𝐶
(𝐺))/H (𝐺).

It only performs edge additions between communities by considering nodes with a low degree.

The study (122) first examines the effects of attacks with different edge-importance

measures, like edge degree (Deg), betweenness centrality (Bet), and closeness centrality

(Clo). Edges are removed based on these measures. It then addresses building robust

community structures that can tolerate such failures.

Network embedding algorithms map the nodes of a network into the vectors in a

Euclidean space. These vectors then can be used by downstream network tasks, such as

node classification, community detection, and link prediction. Yu et al. (123) focus on

attacking the network embedding process. An attack method, namely EDA, is proposed for

disturbing the distances between the embedding vectors through minimal changes of the

network structure. For embedding, the DeepWalk method is used. To obtain the optimal set

of modified links, a genetic algorithm is used. The EDA method iteratively calls DeepWalk
42

and the genetic algorithm and returns the adversarial network at the end. This attack

method disturbs the global network structure. Moreover, to observe the effectiveness of the

attack on community detection, nodes are converted into vectors using DeepWalk and the

embedding vectors are clustered via the K-means algorithm. As an unsupervised attack,

EDA does not need any knowledge of communities.

Persistence, which includes the same three factors and is too similar to permanence,

is defined in the study (82). However, persistence is used for global attacks. Two attack

strategies, maximization of persistence loss (MPL) and a rewiring strategy, are offered.

The MPL strategy aims to maximize the persistence loss of the network. A node is moved

to a neighboring community if its persistence score decreases. All the nodes in the network

are checked. In MPL, the structure is not altered. A rewiring strategy can be applied after

MPL to change the structure of the network. For every shifted node, an edge from the old

community is deleted and a new edge is added to a node in the new community.

Modularity vitality reflects the role of a node (i.e., bridge or hub) within a given

community structure (124). This measure can be utilized to execute global attacks, with a

greedy approach by removing community hub nodes—those with high modularity vitality.

Even an approximation is offered with the calculation of the values only once. Experiments

on a network reveal that a specific level of attack effect can be achieved by removing a few

nodes or by removing a large number of edges. The suggestion is that users seeking to

safeguard their community identity break their connections with community leaders.

Graph neural networks (GNNs) have been widely preferred in graph-related tasks.

Liu et al. (83) apply a graph auto-encoder (125) to handle the community hiding problem

and propose a method called GCH. A graph auto-encoder is used to reconstruct the

probability adjacency matrix. The GCH method takes the community structure discovered

by a detection algorithm to generate the adversarial network. The original network is

perturbed by deleting the edges with the highest probability within communities and adding

the edges with the lowest probability between communities. In this manner, the global

community structure is disturbed, which leads the structure to be very different.

Liu et al. (84) propose a community hiding algorithm based on genetic algorithms

using normalized mutual information (NMI), called CGN. This algorithm realizes global

community structure hiding. It mainly consists of four parts: creating a gene pool with prior

information, encoding, fitness function, and genetic operators. A gene pool is established

43

according to preliminary information about the community structure of the original graph

found by a community detection algorithm. That means rather than considering all existent

graph edges for deletion and all non-existent graph edges for addition, the gene pool

includes existent edges within the communities (intra-community edges) for deletion

and non-existent edges between the communities (inter-community edges) for addition.

In encoding, a chromosome corresponds to an attack and an edge randomly chosen from the

gene pool corresponds to a gene. The fitness function is designed as 𝑓 = 1 − 𝑁𝑀𝐼, which

indicates the chromosome with a lower NMI value will have larger fitness and produce

a better attack. The benefit of employing NMI as a fitness function is that the minimum

value of NMI shows that the community structure of the network has changed significantly

after the attack. The roulette wheel selection is used. The chromosomes in a population

are mapped to a wheel, where those with higher fitness values have a higher probability of

being selected. A single-point crossover is applied between two chromosomes with the

probability 𝑝𝑐, and mutation is performed with probability 𝑝𝑚.

Zhao et al. (11) develop SAEP (a self-adaptive evolutionary deception) framework.

It offers a permanence-based edge pool initialization mechanism. The permanence of a

node is a measure of loyalty to the community it belongs to. A permanence value is in

(−1, 1]. A value close to 1 means a loyal node, while close to −1 means a tendency to

leave. For the edge deletion, intra-community edges are sorted by the product of their

nodes’ permanence in increasing order. This implies that in a community, the nodes with

low loyalty are more likely to leave because they lose the attraction from the ones with

high loyalty. For the edge addition, it focuses on the non-existent inter-community edges

that are sorted by the product of the nodes’ permanence in increasing order. It means that a

node with low permanence in community A receives an invitation from a node loyal to

an external community B. Further, a penalty for adding edges to the node from unrelated

communities is defined by multiplying the result by 0.5. Then, edges are sampled from the

pool with a probability 𝑝𝑟𝑜𝑏(𝑖) =
𝑥−𝜃
𝑖

Σ
|𝑃 |
𝑘=1𝑥

−𝜃
𝑖

, where 𝑥𝑖 is the 𝑖th element in the sorted pool,

|𝑃 | is the pool size, and 𝜃 is empirically assigned to 0.3.

A fitness function is proposed to capture local and global community change

(11). It consists of multiple components (𝑓 = 𝑓1 ∗ 𝑓2 ∗ 𝑓3). To capture local change, the

assumption is that if an edge is modified (added/deleted), its two nodes should be affected

first. The aim is to observe if the nodes of the modified edge join the other communities.

44

A set of nodes Δ(𝑉 ′) related to the modified edges Δ(𝐸′), which includes nodes whose

community is not the same as that of its most loyal neighbor after the attack, are identified.

𝑓1 is designed as 𝑓1 =
∑
𝑣∈Δ(𝑉 ′) log2 𝑑 (𝑣). To capture global change, two functions are

defined based on the confusion matrix. 𝑓2 is 𝐸𝑛𝑡𝐴 defined in the study (14). This will

force nodes to leave their initial community. 𝑓1 cannot capture local obfuscation if the

entire community (the affected node and its most loyal neighbor) combines with another

community after the attack. To solve the issues, a variant of the confusion matrix 𝑚′, is

introduced as 𝑚′
𝑖 𝑗
=
𝑚𝑖 𝑗

|𝐶′
𝑗
| ∗ log2 |𝐶′𝑗 |. The first part

𝑚𝑖 𝑗

|𝐶′
𝑗
| is the proportion of nodes of the

original community 𝐶𝑖 that form the new community 𝐶′
𝑗
. The log part is to prevent a

situation like a community with one node. 𝑓3 is defined as 𝑓3 = 𝑒−𝑚𝑎𝑥(𝑚
′) and tries to make

the maximum value as small as possible.

In the SAEP (11), each chromosome is assigned a strength vector to evaluate the

strength or weakness of its genes. The vector for the 𝑗 th chromosome is𝑊 𝑗 = [𝑊 𝑗

1 , . . . ,𝑊
𝑗

𝛽
].

An edge distance is introduced to ensure that the edges in the solution are close to each

other. The penalty 𝑄 of a modified edge is 𝑄(𝑒) = Σ𝑘
𝑖=1𝜎

𝑖, where 𝜎 is set in [0, 1] and

𝑘 indicates there are no modified edges at 𝑘-hop distance. The strength of the 𝑖th edge

(gene) in its chromosome is updated as 𝑊𝑖 = 𝑊𝑖 ∗
1

1 + 𝑒𝑥𝑝(𝑄(𝑒)) if 𝑘 > 1. Moreover,

adaptive crossover and mutation operations are designed according to the strength vectors.

To exchange only the inferior genes, a uniform crossover operation is used; exchanging

of two genes is performed if a random number is greater than the maximum of the 𝑊𝑚
𝑖

and 𝑊 𝑓

𝑖
that represent the 𝑖th gene of the mother chromosome and father chromosome,

respectively. Then, the weights of the changed genes are updated according to the fitness

gain. In mutation, the weaker a gene is, the more likely it is to mutate. Also, the weight of

the changed gene is updated.

A heuristic algorithm, degree first deception (DFP), is proposed (11). It assumes

that nodes with a large degree have a greater impact on the community structure. Therefore,

it prioritizes the deletion of intra-community edges between large-degree and small-degree

nodes and the addition of inter-community edges with large-degree nodes. That is, it sorts

the edges using the following rule:

𝑆(𝑢, 𝑣) =

𝑚𝑖𝑛(𝑑𝑢, 𝑑𝑣)
𝑚𝑎𝑥(𝑑𝑢, 𝑑𝑣)

, (𝑢, 𝑣) ∈ 𝐸,𝐶𝑢 = 𝐶𝑣

𝑑𝑢 + 𝑑𝑣, (𝑢, 𝑣) ∈ 𝐸,𝐶𝑢 ≠ 𝐶𝑣 .
(3.7)

45

where 𝐸 and 𝐸 are all edges and non-existent edges in the graph, 𝑑𝑥 is the degree of node

𝑥, and 𝐶𝑥 is the community that 𝑥 belongs to. The study (126) later proposes a modified

version called DFP-R, which uses the same metric for the addition and removal of edges,

but the created edge is chosen to have a vertex in common with the removed edge.

A coevolutionary method (127), called CoeCo, to obfuscate the community structure

is offered to also apply on large-scale datasets. It divides the graph into multiple similar-

sized subgraphs, and each is optimized separately. In the method, to reduce the search

space, initialization is performed. Edges are sorted according to permanence multiplication

as in the SAEP (11) for addition and motif weights (the number of triangles containing the

edge) for deletion. Two fitness functions are adapted, namely the fitness function for the 𝑖th

subgraph 𝑓𝑖 = H(𝑠𝑢𝑏𝐺𝑖) defined in Equation (3.6) (80) and the fitness function for the

global graph 𝑓𝑔𝑙𝑜𝑏 = 𝑓1 ∗ 𝑓2 ∗ 𝑓3 introduced in (11). In the coevolution part, they support

each other to identify the optimal set of edges.

Another genetic algorithm-based method for global attack is EPCG (128), which

employs two different fitness functions (based on NMI and the difference between an

individual and the best one to preserve the population diversity). For better concealment of

attack, the number of edge additions and deletions is kept equal. It adopts a co-evolution

mechanism with two elite populations to improve evolution.

The study by (129) combines a graph auto-encoder (GAE) and genetic algorithm

to deceive community detection algorithms. Initially, small subnetworks are sampled

and reconstructed using the GAE with an added community hiding constraint in the loss

function. Subsequently, a genetic algorithm is applied to improve the hiding effects through

the network, treating each reconstructed subnetwork as an individual. The genetic algorithm

fitness function and operators utilized follow those in Chen et al. (8), with elitism retaining

the top 15% of individuals.

A heuristic approach based on local structures, namely LSHA, is proposed (126). It

does not depend on the community structure produced by a particular community detection

algorithm. Instead, local structures are detected using the local information of nodes.

A community can contain multiple local structures. LSHA chooses two local structures

(a low degree one and a high degree one) using the modularity concept for attack. Then,

to choose the edge in the low-degree structure, an edge vulnerability metric is proposed,

which measures the significance of the edge in preserving the structure. This metric can be

46

formally defined as follows:

𝑉𝑢𝑙 (𝑒) =
|𝑁 (𝑣𝑖) | − |𝑁 (𝑣𝑖) ∩ 𝑁𝐿𝑆 (𝑣𝑖) | + |𝑁 (𝑣 𝑗) | − |𝑁 (𝑣 𝑗) ∩ 𝑁𝐿𝑆 (𝑣 𝑗) |

|𝑁 (𝑣𝑖) | + |𝑁 (𝑣 𝑗) |
, (3.8)

where 𝑒 is an edge (𝑣𝑖, 𝑣 𝑗), 𝑁 (𝑣𝑥) is the set of neighbors of 𝑣𝑥 , and 𝑁𝐿𝑆 (𝑣𝑥) is the set

of nodes within the local structure to which 𝑣𝑥 belongs. For deletion, the edge with the

high vulnerability is chosen, and its lower degree node is chosen for rewiring around it.

For addition, the other node is selected from the high degree structure according to the

node entropy metric that quantifies the perplexity level of a node for the partition. For a

node 𝑣, it is formally defined as

𝐸𝑛𝑡 (𝑣) = −
𝑀∑︁
𝑖

|𝐿𝑆𝑖 ∩ 𝑁 (𝑣) |
|𝑁 (𝑣) | log

(
|𝐿𝑆𝑖 ∩ 𝑁 (𝑣) |
|𝑁 (𝑣) |

)
, (3.9)

where 𝐿𝑆𝑖 is the local structure that has connections with node 𝑣 and 𝑀 is the number of

such structures. The entropy increase is calculated for each node, and the node with the

most increase is selected to connect with.

Table 3.4 summarizes and compares global attack algorithms. For each study,

reference of the study, global attack algorithm name(s), update operation, whether intra-

/inter-commmunity edges are used or not, knowledge needed (if any prior information

is required), and measures used to compare the attack algorithms with the algorithms

in the comparison column are specified in the table. The table shows that in the REM

algorithm, modification is performed solely through the addition of edges, while other

algorithms, except for the studies (122) and (124), employ both edge addition and removal

to alter the network structure. Rewiring is applied in heuristic approaches, such as DBA,

CDA, LSHA, DFP-R, and Custom Rewiring (82). Although some genetic algorithm-

based methods (Q-Attack and EPA) incorporate rewiring, some of them (EDA, CGN,

SAEP, CoeCo, EPCG, and GAE+Genetic alg (129)) do not, with the assumption that the

genetic algorithm might not achieve its full potential efficiency (84). Heuristic methods,

with the exception of (122) and (124), leverage intra-community and inter-community

information (intra-community edge deletion and inter-community edge addition) to guide

their structural adjustments. While some genetic algorithm-based methods (Q-Attack, EPA,

EDA, EPCG, and GAE+Genetic alg) do not utilize intra/inter-community information,

recent methods like CGN, SAEP, and CoeCo have integrated it to enhance their effectiveness.
47

Moreover, most global attack methods rely on a community structure, though some methods

(EDA, GAE+Genetic alg, LSHA, and the methods in the study (122)) are designed to

function without prior knowledge of the communities, broadening their applicability

in various scenarios. When evaluating the performance of the attack algorithms, NMI

emerges as the most frequently used measure, with ARI being the second most commonly

employed measure.

48

Table 3.4. Summary of global attacks.

Ref.
Community

Hiding
Update

Intra/

Inter
Knowledge Measure Comparison

(8)
DBA, CDA EDel, EAdd

(Rewire)

✓ G, CS
Q, NMI Rand-R

Q-Attack ✗ G, CS, Q

(80) REM EAdd ✓ G, CS J, NMI, R MOM, Rand-Add

(14) EPA
EDel, EAdd

(Rewire)
✗ G, CS NMI, ARI

Q-Attack, EPA with

H, two heuristics

(122) Deg, Bet, Clo EDel ✗ G NMI Rand-Del

(123) EDA EDel, EAdd ✗ G NMI
Rand, DICE, RLS,

DBA

(82)

MPL,

Custom

Rewiring

EDel, EAdd

(Rewire)
✓ G, CS

Node-centric,

NMI, CCs
Ds

(124)
Modularity

Vitality
EDel, NDel ✗ G, CS

Modularity

Minimization
No

(83) GCH EDel, EAdd ✓ G, CS
NMI,

Attack Effic.
Rand, DICE, Ds

(84) CGN EDel, EAdd ✓ G, CS
Q, NMI,

BN (𝛽 * NMI)

Rand, DICE, Ds,

Q-Attack, NEURAL

(11) SAEP, DFP EDel, EAdd ✓ G, CS NMI, VI, SJD
Rand, REM,

Q-Attack, DFP

(127) CoeCo EDel, EAdd ✓ G, CS NMI, ARI
Rand, REM,

Q-Attack, DFP

(128) EPCG
EDel, EAdd

|𝐸+ | = |𝐸− |
✗ G, CS

NMI, ARI,

Purity

Rand, CDA,

Q-Attack

(129)
GAE +

Genetic alg
EDel, EAdd ✗ G NMI, ARI

Rand, Barabasi

Albert, CDA,

Q-Attack

(126) LSHA
EDel, EAdd

(Rewire)
✓ G NMI, ARI

Rand-R, CDA, DBA,

DFP-R

(75) CH-SNMF
EDel, EAdd

(Rewire)
✓ G, |𝐶𝑆 | NMI, ARI Rand, Q-Attack

49

CHAPTER 4

PROPOSED METHODS FOR KNOWLEDGE HIDING ON

GRAPH DATA

This chapter presents the algorithms developed in this thesis to tackle the problems

associated with graph hiding. It begins by introducing a set of algorithms specifically

designed to address the subgraph hiding problem, including the Edge Deletion-based

Heuristic (EDH) (15), EdgeDegree, Matchings & EdgeDegree, EdgeEntropy, and Matchings

& EdgeEntropy. These algorithms employ strategic modifications to the graph database,

effectively concealing sensitive subgraph patterns while maintaining the utility of the

graph data for other analyses. Following this, the chapter moves on to the proposed

global community hiding algorithm, referred to as 4-clique Community Hiding (4clqCH).

This algorithm is designed to disrupt the detection of overlapping cohesive communities

by targeting the cliques appearing in the graph, hence reducing the effectiveness of the

community detection algorithms. Together, these algorithms offer different solutions to

safeguard privacy in graph-based systems through graph manipulation techniques.

4.1. Subgraph Hiding Methods

In this thesis, different subgraph hiding algorithms are proposed; EDH, EdgeDegree,

Matchings & EdgeDegree, EdgeEntropy and Matchings & EdgeEntropy. These algorithms

hide the sensitive subgraphs by decreasing their frequencies under the predefined disclosure

threshold through deleting the victim edges from some sensitive graphs. To simplify the

complexity of the solution, various heuristics are used in the design of the algorithms,

which are for (i) determining the graphs for sanitization and (ii) determining the edges to

be removed from the chosen graphs.

The edge deletion-based subgraph hiding algorithms are expressed on an example

graph given in Figure 4.1. On the graph, the matches of a sensitive pattern are shown with

red and green colors. There are two matches; one of them includes the edges with the

green and both colors, and the other one with the red and both colors.
50

0

1

0
0

0
2

0 3

0 5

0

4

6

10

10

13

4
11

5 14

2 12

3 15

9

16

1 18

1

17

1

19

1 6 1 9

1 7 1 8

3

3

0

3
0

3

0

3

0

3
0

0

0

0

0

1

0

0

0

0

Figure 4.1. An example graph with the two matches of a sensitive pattern. Each match is
shown with a color.

4.1.1. Edge Deletion-Based Heuristic (EDH) Algorithm

The Edge Deletion-based Heuristic (EDH) algorithm sanitizes the transactional

graph database to hide the set of sensitive subgraph patterns by decreasing the frequency

of every sensitive pattern below the predefined disclosure threshold. If all matches of a

sensitive pattern are deleted from a sensitive graph in the database, its frequency decreases

by one. That means, a sensitive pattern is hidden by removing sufficient amount of edges

from sufficient amount of sensitive graphs. The EDH algorithm hides all the sensitive

patterns without hiding failure. The main idea of the EDH algorithm is to remove the

most common edge in all matches of a sensitive pattern within a selected sensitive graph.

Removing the most frequent edge from the graph will eliminate most of matches of the

sensitive pattern at the same time. The EDH algorithm consists of five main steps as

follows:

Step1: Calculating the relevance of the graphs and and the sensitive patterns. To

determine the relevance of each graph to the set of the sensitive patterns, the number

of matches of all sensitive patterns in each graph is found. Also, the relevance of each

sensitive pattern to the graph database is determined by calculating the number of matches

it has in all the graphs.

Step2: Sorting the graphs. The graphs are sorted in non-descending order based on

their relevance numbers calculated in Step 1.

Step3: Sorting the sensitive patterns. The sensitive patterns are sorted in non-

51

descending order based on their relevance numbers calculated in Step 1.

Step4: Calculating the number of sensitive graphs for sanitization. Based on the

given disclosure threshold 𝜓, the number of sensitive graphs required to be sanitized to

conceal each sensitive pattern 𝑃 is calculated by 𝑓 𝑟𝑒𝑞(𝑃) −𝜓 +1. The disclosure threshold

is a direct measure, rather than a percentage in order to balance the disclosure and privacy,

which ensures that no sensitive pattern is revealed.

Step5: Sanitizing a sensitive graph (called local sanitization). This step involves

sanitizing a sensitive graph by removing all the matches of a given sensitive pattern. Local

sanitization in the EDH algorithm is achieved by deleting the chosen edges from the graph.

Algorithm 1 EDH Algorithm.
Input: Database 𝐷, Sensitive patterns 𝑆𝑃, Disclosure threshold 𝜓
Output: Modified Database 𝐷′.

1: for each sensitive pattern 𝑃 ∈ 𝑆𝑃 do ⊲ Set 𝑃.𝑚𝑎𝑡𝑐ℎ𝑒𝑠 and 𝐺.𝑚𝑎𝑡𝑐ℎ𝑒𝑠 to 0.
2: 𝑝𝑀𝑎𝑡𝑐ℎ𝑁𝑢𝑚 ← 0
3: for each 𝐺 ∈ 𝐷 do
4: 𝑚𝑎𝑡𝑐ℎ𝑁𝑢𝑚 ← |𝑀 (𝐺, 𝑃) | where 𝑀 (𝐺, 𝑃) keeps the matches
5: 𝑝𝑀𝑎𝑡𝑐ℎ𝑁𝑢𝑚 ← 𝑝𝑀𝑎𝑡𝑐ℎ𝑁𝑢𝑚 + 𝑚𝑎𝑡𝑐ℎ𝑁𝑢𝑚
6: 𝐺.𝑚𝑎𝑡𝑐ℎ𝑒𝑠← 𝐺.𝑚𝑎𝑡𝑐ℎ𝑒𝑠 + 𝑚𝑎𝑡𝑐ℎ𝑁𝑢𝑚
7: end for
8: 𝑃.𝑚𝑎𝑡𝑐ℎ𝑒𝑠← 𝑝𝑀𝑎𝑡𝑐ℎ𝑁𝑢𝑚

9: end for
10: Sort 𝐷 by 𝐺.𝑚𝑎𝑡𝑐ℎ𝑒𝑠 in non-descending order
11: Sort 𝑆𝑃 by 𝑃.𝑚𝑎𝑡𝑐ℎ𝑒𝑠 in non-descending order
12: for each sensitive pattern 𝑃∈ 𝑆𝑃 do
13: 𝑁𝑢𝑚𝐺𝑟𝑎𝑝ℎ𝑠𝐹𝑜𝑟𝑆𝑎𝑛𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛← 𝑓 𝑟𝑒𝑞(𝑃) − 𝜓 + 1
14: for 𝑖 ← 1 to 𝑁𝑢𝑚𝐺𝑟𝑎𝑝ℎ𝑠𝐹𝑜𝑟𝑆𝑎𝑛𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 do
15: Get next sensitive graph 𝐺 ∈𝐷 that includes 𝑃
16: LocalSanitizationOfEDH(𝐺, 𝑃)
17: end for
18: end for
19: 𝐷′← 𝐷

The EDH algoritm is depicted in Algorithm 1. Step 1 calculates the relevance of

the graphs and sensitive patterns outlined in lines 1 to 9. The 𝑚𝑎𝑡𝑐ℎ𝑁𝑢𝑚 represents the

number of matches of a sensitive pattern appearing in a graph in the database. The total

𝑝𝑀𝑎𝑡𝑐ℎ𝑁𝑢𝑚 value for each sensitive pattern across all graphs in the dataset is calculated

and stored in 𝑃.𝑚𝑎𝑡𝑐ℎ𝑒𝑠. For each graph, the 𝐺.𝑚𝑎𝑡𝑐ℎ𝑒𝑠, which is the total number of

matches across all sensitive patterns, is calculated. In step 2, the graphs are sorted in non-

descending order based on the values of𝐺.𝑚𝑎𝑡𝑐ℎ𝑒𝑠 at line 10. In step 3, sorting the sensitive

52

patterns in non-descending order is performed at line 11. After that, the followings are done

for each sensitive pattern 𝑃∈ 𝑆𝑃: in step 4, 𝑁𝑢𝑚𝐺𝑟𝑎𝑝ℎ𝑠𝐹𝑜𝑟𝑆𝑎𝑛𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is determined

as the number of graphs to sanitize at line 13, and 𝑁𝑢𝑚𝐺𝑟𝑎𝑝ℎ𝑠𝐹𝑜𝑟𝑆𝑎𝑛𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 sensitive

graphs (containing the sensitive pattern) are sanitized by removing all the matches of the

pattern. Therefore, in Step 5 to sanitize a chosen sensitive graph for a sensitive pattern

locally, LocalSanitizationOfEDH (Algorithm 2) is called:

1. All matches of the sensitive pattern in the graph are identified (𝑀). Each match in

𝑀 includes the pairs of the vertex id in the graph and its associated vertex id in the

pattern. The keys in each match are exchanged with their values, and 𝑀 is sorted

based on the values.

2. All the graph edges in 𝑀 are identified (lines 5-11).

3. The most frequent graph edge appeared in 𝑀 is found. If multiple graph edges have

the same frequency in 𝑀 , the first one listed in 𝐸 is chosen.

4. The chosen graph edge is deleted from the graph.

5. The matches that include the graph edge are removed from the 𝑀 , and the process is

repeated starting from 2 until no matches remain.

Algorithm 2 LocalSanitizationOfEDH(𝐺, 𝑃).
1: 𝑀 ← Determine the matches 𝑴 (𝑮, 𝑷)
2: Replace values with keys in each match of 𝑀
3: Sort 𝑀 acc to values
4: while 𝑀 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do
5: 𝐸 ← list
6: for each match 𝑚 ∈ 𝑀 do
7: for (𝑢, 𝑣) ∈ 𝑃.𝑒𝑑𝑔𝑒𝑠 do
8: (𝑔𝑢, 𝑔𝑣) ← (𝑚 [𝑢], 𝑚 [𝑣])
9: Insert (𝑔𝑢, 𝑔𝑣) into 𝐸

10: end for
11: end for
12: 𝑒 ← The most frequent graph edge in 𝐸
13: Delete edge 𝑒 from graph 𝐺
14: Remove 𝑀𝑒 from 𝑀 where 𝑀𝑒 keeps the matches containing 𝑒
15: end while

Let us use the EDH algorithm for local sanitization of the sensitive graph given in

Figure 3.1a to compare it with the masking-based algorithm. As explained in the algorithm,

all matches of the sensitive pattern displayed in Figure 2.1b are deleted. For this, the

EDH identifies all the matches present in the graph. The graph edges in the matches are

53

determined. The EDH identifies the edge (2, 3) as the most common graph edge in the

matches and deletes it. The matches containing the edge (2, 3) are deleted from the 𝑀.

Then, only one match remains and the process continues with this match. It finds (0, 5) as

one of the most common edges in the match, and deletes it. Figure 4.2 shows the graph after

sanitizing with the EDH algorithm. This algorithm does not produce new fake patterns.

𝐵0

𝐵1

𝐴 2

𝐶3

𝐶 4

𝐴5

Y

X

XX

Y

Z

Y

Figure 4.2. The graph after sanitizing with the EDH algorithm.

4.1.2. EdgeDegree Algorithm

As the EDH algorithm, the EdgeDegree algorithm is proposed for subgraph hiding.

The EdgeDegree algorithm also hides the given sensitive subgraphs by decreasing their

frequencies below the predefined disclosure threshold. To do this, some edges are deleted

from the chosen sensitive graphs. The aim of the EdgeDegree algorithm is to preserve

the maximum number of non-sensitive patterns appearing in the original database (i.e., to

reduce the information loss).

The EdgeDegree algorithm has also five steps as the EDH algorithm. The first four

steps are the same with the EDH. But, local sanitization on a sensitive graph differs. That

means, it also selects the sensitive graphs with less matches of the sensitive pattern set for

sanitization, whereas it chooses the edges to be removed from a selected sensitive graph

in a different way. Therefore, its pseudocode is similar to the Algorithm 1, but it calls

Algorithm 3 at line 16.

The LocalSanitizationOfEdgeDegree algorithm takes a graph 𝐺 and a sensitive

pattern 𝑆𝑃, and removes all the matches of the given pattern in the graph. For this, at first,

the algorithm finds all the matches 𝑀. In a match of 𝑀, keys are graph vertex ids and

values are sensitive pattern vertex ids. The keys and values in 𝑀 are replaced, and 𝑀 is
54

Algorithm 3 LocalSanitizationOfEdgeDegree(𝐺, 𝑃).
1: 𝑀 ← Determine the matches 𝑴 (𝑮, 𝑷)
2: Replace values with keys in each match of 𝑀
3: Sort 𝑀 acc to values
4: while 𝑀 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do
5: 𝐸 ← list
6: for each match 𝑚 ∈ 𝑀 do
7: for (𝑢, 𝑣) ∈ 𝑃.𝑒𝑑𝑔𝑒𝑠 do
8: (𝑔𝑢, 𝑔𝑣) ← (𝑚 [𝑢], 𝑚 [𝑣])
9: Insert (𝑔𝑢, 𝑔𝑣) into 𝐸

10: end for
11: end for
12: mostFreqEdges←Most frequent edges of 𝐺 in 𝐸
13: Create dictionary edgeRel
14: for each edge ∈ mostFreqEdges do
15: rel← Sum of node degrees of edge
16: Insert edge and rel pair into edgeRel
17: end for
18: minRelEdge← Get the edge with min relevance from edgeRel
19: Delete edge minRelEdge from 𝐺

20: Remove 𝑀𝑒 from 𝑀 where 𝑀𝑒 keeps the matches containing minRelEdge
21: end while

sorted based on values. The graph edges corresponding to the sensitive pattern edges in

the matches are found. The most frequent edges 𝑚𝑜𝑠𝑡𝐹𝑟𝑒𝑞𝐸𝑑𝑔𝑒𝑠 among these edges are

identified. Then, the relevance of each edge in 𝑚𝑜𝑠𝑡𝐹𝑟𝑒𝑞𝐸𝑑𝑔𝑒𝑠 is calculated by summing

the degrees of its nodes. Next, the edge with minimum relevance 𝑚𝑖𝑛𝑅𝑒𝑙𝐸𝑑𝑔𝑒 is deleted

from the graph, and the matches with the edge are removed from the 𝑀 . Local sanitization

continues till there is no match in 𝑀 .

Let us see the local sanitization on the graph given in Figure 4.1 for the pattern

(𝑠𝑝𝑖𝑑 = 2) whose matches are marked on the graph. The edges contained in the matches

are the colored ones (green, red, or both colors). The most frequent edges are the edges

with both colors since they are involved in the two matches and the others are included in

only one match. From the most frequent ones, (3, 8) and (5, 9) have the minimum sum of

node degrees, and (3, 8) is selected as the victim edge. The (3, 8) is deleted from the graph,

and the matches containing it are removed. Since there is no match left, the sanitization

completes.

55

4.1.3. Matchings & EdgeDegree Algorithm

The Matchings & EdgeDegree algorithm is an edge deletion-based subgraph hiding

algorithm. The aim of this algorithm is to reduce the distance (i.e., to cause the minimum

edge removal on the graph database) and to minimize the execution time. Thus, the

algorithm employs the edgeMatches structure to identify the matches of more than one

sensitive pattern containing an edge in one step. Since the identifiers of the matches are

taken from the edgeMatches structure, the matches of the sensitive patterns are not found

again while creating the sanitization information.

The Matchings & EdgeDegree algorithm consists of three main processes. The

first process creates the structures from the database D. The second process creates the

Sanitization Table (ST), which stores the modification information that will be applied to

D. The last process is the sanitization process, in which a copy of the database is created

and the sanitization information kept in the ST is applied to the copy of the database.

Creating Structures. The algorithm to create the structures for a given database 𝐷

and a sensitive pattern set 𝑆𝑃 is illustrated in Algorithm 4. The edgeMatches structure is a

3-level dictionary, in which the keys are graph ids (𝑔𝑖𝑑), edges of the graph involved in the

matches, and ids of sensitive patterns (𝑠𝑝𝑖𝑑) whose matches include the edge, respectively.

For each sensitive pattern 𝑃 in 𝑆𝑃, each graph 𝐺 in the database 𝐷 is checked. All matches

of the pattern in the graph (𝑀) are found. The keys and values of a match in 𝑀 are graph

vertex ids and corresponding sensitive pattern vertex ids. The keys and values of the

matches in 𝑀 are replaced, and 𝑀 is sorted based on values. Every match in 𝑀 is inserted

one by one as follows; for each graph 𝑒𝑑𝑔𝑒 in the match, the match identifier is added

into the edgeMatches to the active graph 𝑔𝑖𝑑 and pattern 𝑠𝑝𝑖𝑑. If there was not entry for

𝑒𝑑𝑔𝑒 or 𝑠𝑝𝑖𝑑, it is created in edgeMatches before insertion. Besides, the grMatchCounts

structure keeps the total match counts of each graph for the sensitive pattern set 𝑆𝑃. It is

going to be used to determine the order of the graphs to be sanitized. Additionally, the

nodeAdj structure stores the number of neighbors of the nodes contained in the matches for

each graph, not of all the nodes in the graph.

The edgeMatches structure for a graph (𝑔𝑖𝑑 = 254 and represented in Figure 4.1) in

Chemical dataset and the chosen sensitive pattern set from the dataset is denoted in Figure

4.3. The edges (3, 8), (3, 4), etc. are the graph edges included in the matches. The edge

56

Algorithm 4 Creating Structures.
Input: Database 𝐷, Sensitive patterns 𝑆𝑃
Output: Edge MatchesedgeMatches, Graph Match CountsgrMatchCounts, Neigh-

bors nodeAdj
1: Initialize dictionaries named edgeMatches, grMatchCounts, nodeAdj
2: for each 𝑔𝑖𝑑 ∈ 𝐷.𝑘𝑒𝑦𝑠 do
3: Set edgeMatches[𝑔𝑖𝑑] and nodeAdj[𝑔𝑖𝑑] empty dictionaries
4: grMatchCounts[𝑔𝑖𝑑] ← 0
5: end for
6: for each sensitive pattern 𝑃 ∈ 𝑆𝑃 do ⊲ Set 𝑃.𝑚𝑎𝑡𝑐ℎ𝑒𝑠 and 𝐺.𝑚𝑎𝑡𝑐ℎ𝑒𝑠 to 0.
7: 𝑝𝑀𝑎𝑡𝑐ℎ𝑁𝑢𝑚 ← 0
8: for each 𝐺 ∈ 𝐷 do ⊲ 𝑔𝑖𝑑 and 𝑠𝑝𝑖𝑑 are identifiers.
9: 𝑀 ← Determine the matches 𝑴 (𝑮, 𝑷)

10: Replace values with keys in each match of 𝑀
11: Sort 𝑀 acc to values
12: 𝑙𝑒𝑛𝑀𝑎𝑡𝑐ℎ𝑒𝑠← Number of matches in 𝑀
13: for 𝑖 ← 1 to 𝑙𝑒𝑛𝑀𝑎𝑡𝑐ℎ𝑒𝑠 do
14: for (𝑢, 𝑣) ∈ 𝑃.𝑒𝑑𝑔𝑒𝑠 do
15: 𝑒𝑑𝑔𝑒 ← (𝑚 [𝑢], 𝑚 [𝑣]) ⊲ u is min, v is max.
16: if 𝑒𝑑𝑔𝑒 ∉ edgeMatches[𝑔𝑖𝑑] .𝑘𝑒𝑦𝑠 then
17: Set edgeMatches[𝑔𝑖𝑑] [𝑒𝑑𝑔𝑒] to an empty dictionary
18: end if
19: if 𝑠𝑝𝑖𝑑 ∉ edgeMatches[𝑔𝑖𝑑] [𝑒𝑑𝑔𝑒] .𝑘𝑒𝑦𝑠 then
20: Set edgeMatches[𝑔𝑖𝑑] [𝑒𝑑𝑔𝑒] [𝑠𝑝𝑖𝑑] to an empty list
21: end if
22: Add 𝑖 to edgeMatches[𝑔𝑖𝑑] [𝑒𝑑𝑔𝑒] [𝑠𝑝𝑖𝑑]
23: if 𝑢 ∉ nodeAdj[𝑔𝑖𝑑] then
24: Set nodeAdj[𝑔𝑖𝑑] [𝑢] to len of neighbors of 𝑢
25: end if
26: if 𝑣 ∉ nodeAdj[𝑔𝑖𝑑] then
27: Set nodeAdj[𝑔𝑖𝑑] [𝑣] to len of neighbors of 𝑣
28: end if
29: end for
30: end for
31: 𝑝𝑀𝑎𝑡𝑐ℎ𝑁𝑢𝑚 ← 𝑝𝑀𝑎𝑡𝑐ℎ𝑁𝑢𝑚 + 𝑙𝑒𝑛𝑀𝑎𝑡𝑐ℎ𝑒𝑠
32: grMatchCounts[𝑔𝑖𝑑] ← grMatchCounts[𝑔𝑖𝑑] + 𝑙𝑒𝑛𝑀𝑎𝑡𝑐ℎ𝑒𝑠
33: end for
34: 𝑃.𝑚𝑎𝑡𝑐ℎ𝑒𝑠← 𝑝𝑀𝑎𝑡𝑐ℎ𝑁𝑢𝑚

35: end for

(3, 8) is included in the sensitive patterns 2 and 4. The sensitive pattern 2 has two matches

(match ids; 0 and 1) containing this graph edge.

Creating Sanitization Table. This process creates the Sanitization Table (𝑆𝑇) and

updates the edgeMatches and nodeAdj structures. The algorithm for creating the ST is

demonstrated in Algorithm 5. The ST keeps the list of edges to be removed from each

57

254

(3,8)

(3,4)

(4,5)

(5,9)

(0,5)

(0,1)

(1,11)

(1,2)

(2,3)

(0,6)

(11,14)

(2,7)

2
4

2

2

2
4

2
4

2
4

2
4

2
4

2
4

4

4

4

0 1

0

0 1

0 1

0 1

1

0

1

0 1

0 1

0 1

0 1

0 1

0 1

1

0

0

0 1

1

Figure 4.3. The representation of the edgeMatches structure used in the Matchings &
EdgeDegree Algorithm.

graph. At the beginning of the process, the sensitive patterns and graphs are sorted in non-

decreasing order of match counts. Among sensitive patterns in the set (𝑆𝑃), the pattern 𝑃

with the least match count is selected first. The number of graphs to be sanitized is computed.

Then, the 𝑃 is checked for each graph with 𝑔𝑖𝑑 in such a way; For each edge involved in

the matches of the 𝑃, the number of matches of 𝑃 the edge is included is calculated from

𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑠. The most frequent edges are determined according to 𝑃 match counts.

Then, for each candidate edge, count matches of all patterns in 𝑆𝑃 that the edge is contained

using 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑠. This time the most frequent edges are identified according to 𝑆𝑃

match counts. Next, sum of node degrees of each candidate edge is calculated using

𝑛𝑜𝑑𝑒𝐴𝑑𝑗 , and the edge with the minimum total node degree is chosen as victim. After that,

the ids of sensitive patterns and their match ids supporting the victim edge are uncovered

from 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑠 and set to the variable 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠𝑀𝑎𝑡𝑐ℎ𝑒𝑠. The 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑠 is

updated by removing the match ids of sensitive patterns in 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠𝑀𝑎𝑡𝑐ℎ𝑒𝑠 from other

edges in 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑠[𝑔𝑖𝑑], and deleting the victim edge from 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑠[𝑔𝑖𝑑]. The

58

Algorithm 5 Creating Sanitization Table.
Input: Edge Matches edgeMatches, Graph Match Counts grMatchCounts, Neigh-

bors nodeAdj, Sensitive patterns 𝑆𝑃, Disclosure threshold 𝜓
Output: Sanitization Table 𝑆𝑇 .

1: Initialize dictionary ST with an empty list for each 𝑔𝑖𝑑
2: Sort 𝑔𝑖𝑑s in grMatchCounts in non-decreasing order of 𝑐𝑜𝑢𝑛𝑡𝑠
3: Sort 𝑆𝑃 in non-decreasing order of 𝑃.𝑚𝑎𝑡𝑐ℎ𝑒𝑠
4: for each sensitive pattern 𝑃∈ 𝑆𝑃 do
5: 𝑁𝑢𝑚𝐺𝑟𝑎𝑝ℎ𝑠𝐹𝑜𝑟𝑆𝑎𝑛𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛← 𝑓 𝑟𝑒𝑞(𝑃) − 𝜓 + 1
6: for 𝑖 ← 1 to 𝑁𝑢𝑚𝐺𝑟𝑎𝑝ℎ𝑠𝐹𝑜𝑟𝑆𝑎𝑛𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 do
7: Get next 𝑔𝑖𝑑 such that graph with 𝑔𝑖𝑑 contains 𝑃
8: while true do
9: Set edgeMCounts to an empty dictionary

10: for each 𝑒𝑑𝑔𝑒 ∈ edgeMatches[𝑔𝑖𝑑] .𝑘𝑒𝑦𝑠 do
11: if 𝑠𝑝𝑖𝑑 ∈ edgeMatches[𝑔𝑖𝑑] [𝑒𝑑𝑔𝑒] .𝑘𝑒𝑦𝑠 then
12: edgeMCounts[𝑒𝑑𝑔𝑒] ← len(edgeMatches[𝑔𝑖𝑑] [𝑒𝑑𝑔𝑒] [𝑠𝑝𝑖𝑑])
13: end if
14: end for
15: if len(edgeMCounts) < 1 or max(edgeMCounts.𝑣𝑎𝑙𝑢𝑒𝑠) < 1 then
16: break
17: end if
18: mostFreqEdges←Most frequent edges in edgeMCounts
19: edgeTotalMCounts ← Get total match counts from

edgeMatches[𝑔𝑖𝑑] for each edge in mostFreqEdges
20: mostFreqEdges←Most frequent edges in edgeTotalMCounts
21: Create dictionary edgeRel
22: for each edge ∈ mostFreqEdges do
23: rel← Sum of node degrees of edge using nodeAdj
24: Insert edge and rel pair into edgeRel
25: end for
26: victimEdge← Get the edge with min relevance from edgeRel
27: patternsMatches← Determine sensitive pattern ids and their match

ids containing victimEdge using edgeMatches[𝑔𝑖𝑑]
28: Remove match ids of sensitive patterns in patternsMatches from

other edges in edgeMatches[𝑔𝑖𝑑]
29: Delete victimEdge from edgeMatches[𝑔𝑖𝑑]
30: Decrease the values of nodes of victimEdge by 1 in nodeAdj
31: Add victimEdge to ST[𝑔𝑖𝑑]
32: end while
33: end for
34: end for

values of the nodes of the victim edge are reduced by 1 in 𝑛𝑜𝑑𝑒𝐴𝑑𝑗 . The victim edge is

added to the sanitization table 𝑆𝑇 for 𝑔𝑖𝑑. Checking for sanitization on the graph 𝑔𝑖𝑑 for

the pattern 𝑃 completes when no edge remains in the graph or no matches remain.

To see how the local sanitization information is produced in Algorithm 5, let us

59

consider the edgeMatches in Figure 4.3. Suppose that the sensitive pattern 𝑃 with 𝑠𝑝𝑖𝑑 = 2

is hidden on the given graph. The edges included in the 𝑃 matches are (3, 8), (3, 4), (4, 5),

(5, 9), (0, 5), (0, 1), (1, 11), (1, 2), and (2, 3). For each edge, number of matches of 𝑃

including the edge is counted. The most frequent edges according to 𝑃 matches are (3, 8),

(3, 4), (4, 5), (5, 9), (0, 1), (1, 11), and (1, 2). Then, number of matches of all sensitive

patterns including each candidate edge is counted. The most frequent edges according to

𝑆𝑃 matches are (0, 1), (1, 11), and (1, 2). Now, their node degree sum values are counted.

For these edges, all values are equal, and (0, 1) is selected as the victim edge. The sensitive

pattern ids and their match ids including the (0, 1) are uncovered from 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑠 (the

match ids 0 and 1 of the pattern 2 and the match ids 0 and 1 of the pattern 4) and put into

the 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠𝑀𝑎𝑡𝑐ℎ𝑒𝑠 variable. The match ids of each pattern in 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠𝑀𝑎𝑡𝑐ℎ𝑒𝑠 are

deleted from the match id list of other edges. For this example, deleting the match ids

eliminates all the matches.

Sanitizing the Database. The final process of the Matchings & EdgeDegree

algorithm is sanitizing the database. This process creates a copy of the database 𝐷, and

uses the sanitization table (𝑆𝑇) produced in the previous process to apply the modification

information to this copy and get the sanitized database 𝐷′.

4.1.4. Subgraph Hiding with Edge Entropy

Sen et al. (88) formalize the edge entropy to rank the edges in a graph and find the

important edges. In that study, the edges have meaningful information and are weighted.

However, the edges in the graph may not have the weights like in functional brain graphs

or uncertain graphs. Moreover, Qiao et al. (87) quantify the influence of nodes using an

entropy model. The influence of a node is found by calculating the local influence of it on

one-hop neighbors and the indirect influence of it on two-hop neighbors. They deal with

the entropy for only the nodes.

In this thesis, the edge entropy of an edge in a given graph is calculated as follows;

First, a subgraph consisting of one-hop subgraphs of the incident nodes of the edge is

constructed. Because the edges are not associated with the weights, the degree-based graph

entropy as in Equation 2.19 is used to define the edge entropy. But, the size of the subgraph

is different because the subgraph is formed according to the edge. Hence, the edge entropy

60

of an edge is defined as

𝐻𝑒 = log

(
𝑛𝑆∑︁
𝑖=1

𝑆𝐷𝐶𝑖

)
−

𝑛𝑆∑︁
𝑖=1

𝑆𝐷𝐶𝑖∑𝑛𝑆
𝑗=1 𝑆𝐷𝐶 𝑗

log 𝑆𝐷𝐶𝑖, (4.1)

where 𝑛𝑆 is the size of the subgraph and 𝑆𝐷𝐶𝑖 is the degree of node 𝑖 in the subgraph.

In Figure 4.4, an example for the calculation of the edge entropy of the edge (1, 8)

on the graph is displayed. The subgraph colored in the red is constructed. The 𝑆𝐷𝐶𝑖 values

of the nodes in the subgraph can be seen from the figure. The edge entropy is calculated as

𝐻(1,8) = log

(6∑︁
𝑖=1

𝑆𝐷𝐶𝑖

)
−

6∑︁
𝑖=1

𝑆𝐷𝐶𝑖∑6
𝑗=1 𝑆𝐷𝐶 𝑗

.

Two algorithms are proposed for the subgraph hiding problem using the edge

entropy introduced in Equation 4.1. These algorithms are EdgeEntropy and Matchings &

EdgeEntropy. The EdgeEntropy algorithm works similarly to the EdgeDegree algoritm,

but it differs in the local sanitization. Rather than calculating the edge degree at the line 15

in LocalSanitizationOfEdgeDegree (Algorithm 3), it calculates the edge entropy.

As the Matchings & EdgeDegree algorithm, the Matchings & EdgeEntropy al-

gorithm is composed of three processes, which are creating the structures, creating the

sanitization table, and sanitizing the database. However, there are some differences in the

first two processes. In the process of creating the structures, the nodeAdj structure keeps

the neighbors of the nodes contained in the matches for each graph, instead of the number

of neighbors. The 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑠 and 𝑔𝑟𝑀𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠 are created as in the Matchings

& EdgeDegree algorithm. With 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑠 structure, this algorithm also does not

need to find the matches of a sensitive pattern in a graph while producing the sanitization

information. That means, graph matching is only performed during the creation of the

1 8

2 3

4

5 7

6

Node 1 2 3 5 7 8
𝑆𝐷𝐶𝑖 3 1 1 1 1 3

Figure 4.4. An example showing the calculation of the edge entropy of the edge (1, 8) on
the graph, and the 𝑆𝐷𝐶𝑖 values of the nodes in the formed subgraph.

61

structures. In the process of creating the sanitization table, while checking a sensitive

pattern 𝑃 on a graph to get the sanitization information, the followings are done; edges in

matches of the 𝑃 are chosen firstly according to the number of inclusions in the pattern

𝑃 matches, and then according to the number of inclusions in the sensitive pattern set

𝑆𝑃 matches. After the most frequent edges are determined, rather than finding the edge

degree, the edge entropy of each candidate edge is calculated using 𝑛𝑜𝑑𝑒𝐴𝑑𝑗 , and the edge

with the minimum edge entropy is chosen as the victim. The remaining steps are the same

except that nodes of the victim edge are deleted from the list of each other in 𝑛𝑜𝑑𝑒𝐴𝑑𝑗 .

4.2. Community Hiding Methods

A variety of methods have been devised to identify overlapping communities

in networks, enabling nodes to belong to multiple communities and better representing

the real-world systems. Among these, there are many overlapping community detection

algorithms designed using the concept of cliques, which can serve as the fundamental

units of communities. Recognizing this, we propose strategically manipulating the links in

the network to diminish the effectiveness of overlapping community detection algorithms,

particularly those that rely on clique structures or local expansion methods. Disrupting

cliques weakens the core elements of such algorithms, impairing their ability to accurately

identify overlapping communities.

4.2.1. 4-clique Community Hiding (4clqCH)

A clique is a set of nodes that are all linked to each other through edges, forming a

complete subgraph. A k-clique is a clique of size k, that is, every pair of 𝑘 vertices is linked

by an edge. The study (130) points out that several community detection methods based on

k-cliques (5, 53–55, 131–134) have been developed. In this thesis, 4-clique Community

Hiding, called 4clqCH, is proposed as a global community hiding algorithm. Its aim is to

disrupt the most common edges in the 4-cliques, thus changing the community structure

relying on the cliques as much as possible.

The 4clqCH algorithm first counts the number of 4-cliques that each edge is a part

of. For this, the fast method proposed by the study (135) is used. The counting method

62

employs degree ordering for clique counting. The degree ordering of the graph 𝐺 is

indicated by ≺. For vertices 𝑖 and 𝑗 , 𝑖 ≺ 𝑗 means that 𝑑𝑒𝑔(𝑖) < 𝑑𝑒𝑔(𝑗) or 𝑑𝑒𝑔(𝑖) = 𝑑𝑒𝑔(𝑗)

and 𝑖 < 𝑗 (comparing their vertex ids). The 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 DAG (directed acyclic graph)

is constructed by orienting all edges of 𝐺 based on ≺.

The pseudocode of the 4clqCH is depicted in Algorithm 6. Line 1 in the pseudocode

creates the degree ordered DAG, namely 𝐺𝑜𝑢𝑡, from the input graph. Every 4-clique in the

original graph is counted once. The 𝑝𝑒𝑟-𝑒𝑑𝑔𝑒 counts for 4-clique pattern are calculated

as follows (Lines 3-18); All edges (𝑖, 𝑗) are iterated, where 𝑖 ≺ 𝑗 . All the out-wedges

containing (𝑖, 𝑗) are enumerated, and all triangles containing (𝑖, 𝑗) with 𝑖 as the smallest

vertex are found. All pairs of such triangles formed by (𝑖, 𝑗) are iterated. For each pair, the

missing edge is checked whether it forms a four-clique. Figure 4.5 shows core patterns for

4-clique counting.

Out-wedge Directed Diamond

Figure 4.5. Core patterns for 4-clique counting (Source: (135)).

After counting, the edges with the highest count is detected from 𝑝𝑒𝑟-𝑒𝑑𝑔𝑒 counts

(Lines 20-21). The edge that has the min degree among the candidate edges is selected as

the victim edge (Line 22). Next, the 4-cliques that include the victim edge are determined.

The 𝑝𝑒𝑟-𝑒𝑑𝑔𝑒 count value of edges involved in these matches is reduced by 1 (Line27).

The victim edge is deleted from the graphs (Line 31).

63

Algorithm 6 4clqCH Algorithm.
Input: Graph 𝐺, Budget 𝛽
Output: Modified graph 𝐺′.

1: Create degree ordered 𝐺𝑜𝑢𝑡 from 𝐺

2: Create arrays 𝑡𝑟𝑖𝑒𝑛𝑑𝑠 of size |𝑉 | + 1, 𝑝𝑒𝑟𝐸𝑑𝑔𝑒 of size |𝐸 | + 1
3: for each vertex 𝑖 ∈ 𝑉 do
4: for each out-neighbor 𝑗 of 𝑖 do
5: for each next out-neighbor 𝑘 of 𝑖 do
6: if edge (𝑗 , 𝑘) exists then
7: Insert 𝑘 into 𝑡𝑟𝑖𝑒𝑛𝑑𝑠
8: end if
9: end for

10: for each vertex 𝑘 in 𝑡𝑟𝑖𝑒𝑛𝑑𝑠 do
11: for each next vertex 𝑙 in 𝑡𝑟𝑖𝑒𝑛𝑑𝑠 do
12: if edge (𝑘, 𝑙) exists then
13: Increase 𝑝𝑒𝑟𝐸𝑑𝑔𝑒 of edges formed with {𝑖, 𝑗 , 𝑘, 𝑙} by 1
14: end if
15: end for
16: end for
17: end for
18: end for
19: for 𝑡 = 0 to 𝛽 do
20: Find 𝑚𝑎𝑥𝐹𝑟𝑒𝑞 in 𝑝𝑒𝑟𝐸𝑑𝑔𝑒 ⊲ if 0, use triangles
21: 𝑚𝑜𝑠𝑡𝐹𝑟𝑒𝑞𝑠← Get edges with 𝑚𝑎𝑥𝐹𝑟𝑒𝑞
22: (𝑖, 𝑗) ← Find edge with min degree in 𝑚𝑜𝑠𝑡𝐹𝑟𝑒𝑞𝑠 ⊲ (𝑖, 𝑗) is victim
23: 𝑐𝑜𝑚𝑚𝑜𝑛𝑁𝑏𝑟𝑠← Find common neighbors of 𝑖 and 𝑗 (in 𝐺)
24: for each 𝑘 in 𝑐𝑜𝑚𝑚𝑜𝑛𝑁𝑏𝑟𝑠 do
25: for each next 𝑙 in 𝑐𝑜𝑚𝑚𝑜𝑛𝑁𝑏𝑟𝑠 do
26: if edge (𝑘, 𝑙) exists then
27: Decrease 𝑝𝑒𝑟𝐸𝑑𝑔𝑒 of edges formed with {𝑖, 𝑗 , 𝑘, 𝑙} by 1
28: end if
29: end for
30: end for
31: Update 𝐺 and 𝐺𝑜𝑢𝑡 by deleting edge (𝑖, 𝑗)
32: end for
33: 𝐺′← 𝐺

64

CHAPTER 5

PERFORMANCE EVALUATION OF THE PROPOSED

METHODS

This chapter is dedicated to the performance evaluation of the graph hiding methods

introduced in this thesis, providing a critical assessment of their effectiveness in achieving

the desired task. The first section presents the evaluation of the algorithms developed for

subgraph hiding. The second section presents the evaluation of the global community

hiding algorithms.

5.1. Performance Evaluation of Subgraph Hiding Algorithms

In this section, performance evaluation of subgraph hiding algorithms is given. First

of all, the EDH algorithm (15) is compared with the three vertex masking algorithms (9)

Heuristic1, Heuristic2 and Heuristic3, named VMask1, VMask2 and VMask3, respectively.

Then, the edge deletion-based subgraph hiding algorithms proposed in this thesis (EDH,

EdgeDegree, Matchings & EdgeDegree, EdgeEntropy and Matchings & EdgeEntropy) are

compared. All the algorithms including the masking ones are implemented in Python. The

experiments are carried out on a laptop with an Intel Core i7 8750 2.2 GHz CPU, 16GB

RAM, and Windows 10 operating system.

Table 5.1. The properties of graph datasets used to evaluate subgraph hiding algorithms.

Chemical Movielens NCI109
|𝐷 | 340 802 4127
|𝑉 | 9189 29001 122494
|𝐸 | 9317 202263 132603
Avg. vertices 27 36.2 29.7
Avg. edges 27.4 252.2 32.1
of vertex labels 66 5800 38
of edge labels 4 1 3

65

5.1.1. Datasets

The experiments are conducted on three datasets, which are Chemical (136),

Movielens (137) and NCI109 (138). Their properties are specified in Table 5.1. In the

Chemical dataset, graphs represent chemical compounds where vertices indicate atoms and

edges indicate bonds between atoms. Vertex labels correspond to the atom types and edge

labels correspond to the bond types. The Movielens dataset contains movie tags given by

users along with corresponding assignment times. It is a single graph that has 47,957 tag

assignments within a specific time frame. A graph is generated for each day based on the

single graph. In these daily graphs, each tagged movie represents a vertex, and an edge is

added between two movies if they share the same tag. Each vertex is labeled with a movie

id, while the edges are unlabeled. Hence, ‘0’ is used as the label and the number of distict

edge labels is written as 1 in the table. After removing the graphs without edges, the dataset

has a total of 802 graphs. The NCI109 dataset is a widely used cancer screening dataset.

Frequent patterns are extracted from the datasets using gspan algorithm (29). For

each dataset, five of these patterns are selected randomly as sensitive patterns. Figure

5.1 illustrates the chosen sensitive patterns from the datasets Chemical, Movielens, and

NCI109 that are located at the top, middle, and bottom, in order. Each sensitive pattern

is accompanied by its frequency. The VF2 algorithm (139) is used to find the matchings

of a subgraph in a graph. Experiments are conducted to assess how different disclosure

thresholds impact algorithm performance on various datasets. Each result is the average

of five runs. The support and disclosure thresholds are equal when assessing information

loss and artifact patterns. Movielens experiments are conducted with disclosure thresholds

ranging from 7 to 12 because frequent patterns cannot be identified using a threshold of 6

on our computer, and the least frequent sensitive pattern selected from it occurs 12 times.

5.1.2. Experimental Results of the EDH and Masking Algorithms

The study (9) measures the runtime, number of masking symbols, and percentage

of preserved frequent patterns. In the EDH and masking algorithms, hiding failure is zero.

The algorithms are evaluated in terms of execution time, information loss, artifact patterns,

and distance.

66

9

1

11

9

0

0

0

0

0

1 0

1

0 0

0

01

3

0

3
0

3

3

3

0

0

1 0

0

9 0

0

0
3 3

0
3 3

(a) Freq:71 (b) Freq:70 (c) Freq:62

0

1 0

0

1

0 0

4

0
0

3 3

0 3 3

0

3

0

1 0

4

5

0

0

1
0

3

0
3

0
3

0

(d) Freq:65 (e) Freq:66

3000

5971 5618

260 1196

1210 33493

7153

5952 4993 745 1148 296 7438

(a) Freq:12 (b) Freq:13 (c) Freq:24 (d) Freq:16 (e) Freq:18

1 2 2

2

222

2

2

2

2

1 0

1

0

10
1

0

0

1

1 2 2

2

2222

2

2

2

1 0

1

0

10

1

0 0 1

1 2 2

2

222

2

0

1

0

0

1

00

0

(a) Freq:180 (b) Freq:310 (c) Freq:163

1 2 2

2

222

2

2

2

2

0

1

0

1

0

1

0
1

0
1

0 2 2

0

222

02

0 0

0

0

00

00

(d) Freq:186 (e) Freq:263

Figure 5.1. Selected sensitive patterns from the datasets Chemical, Movielens and NCI109,
respectively.

Figure 5.2 displays the execution times (ms) of VMask1, VMask2, VMask3,

and EDH algorithms on the datasets Chemical, Movielens, and NCI109 across different

threshold values. VMask1 performs the best due to not considering the matchings of a

sensitive pattern in a sensitive graph, avoiding the need for a subgraph matching algorithm.

On the other hand, VMask3 shows the longest execution times as it may require multiple

runs of a subgraph matching algorithm. VMask2 and EDH demonstrate comparable

execution times. It is observed that execution times decrease with higher disclosure

67

thresholds due to fewer graphs being sanitized. The differences in results are more for the

Chemical and NCI109 datasets compared to the Movielens dataset, where each movie id

(vertex label) occurs at most once in a graph, causing at most one match for a sensitive

pattern. Additionally, the patterns in the Movielens dataset are with low support values.

10 20 30 40 50
1,600
1,800
2,000
2,200
2,400
2,600

Disclosure Threshold
7 8 9 10 11 12

580

600

620

640

660

Disclosure Threshold
80 90 100 110 120

1.03
1.05
1.08
1.1

1.13
1.15
1.18

·104

Disclosure Threshold

Chemical Movielens NCI109

Ex
ec

ut
io

n
Ti

m
e

(m
s)

VMask1 VMask2 VMask3 EDH

Figure 5.2. Execution time (ms) results of the EDH and masking algorithms for different
disclosure threshold values.

The information loss evaluates the proportion of unintentionally hidden non-

sensitive frequent patterns during sanitization. Figure 5.3 shows the information loss (%)

of the algorithms on the datasets Chemical, Movielens, and NCI109 at various threshold

values. The EDH algorithm outperforms the others across all datasets by deleting edges

rather than masking vertex labels. Masking a vertex label means that the associated

edges are also affected. This is because non-sensitive patterns present in the original data

involving that vertex are no longer extracted, indirectly impacting its edges. But, when

EDH deletes an edge, most non-sensitive patterns can still be extracted using the other

edges. Thus, it shows the best performance in preserving of the non-sensitive patterns. The

ratio changes from approximately 1.5 to 2.5 for VMask2 and VMask3, and from 2 to 4

for VMask1 in the Chemical dataset. In the Movielens dataset, the ratio is around 2 for

disclosure thresholds between 7 and 9, and decreasing as the threshold approaches 12. In

the NCI109 dataset, the ratio is about 3 for VMask2 and VMask3, and increasing to almost

4 for VMask1.

Masking the vertex labels in the sensitive graphs with a symbol that is not part of

the labels for vertices and edges leads to lots of vertices with this symbol, and frequent

patterns with this symbol emerge after sanitization. Figure 5.4 shows the artifact patterns
68

10 20 30 40 50

20

40

60

80

Disclosure Threshold
7 8 9 10 11 12

0

20

40

60

80

100

Disclosure Threshold
80 90 100 110 120

0

10

20

30

40

50

Disclosure Threshold

Chemical Movielens NCI109

In
fo

rm
at

io
n

Lo
ss

(%
)

VMask1 VMask2 VMask3 EDH

Figure 5.3. Information loss (%) results of the EDH and masking algorithms for different
disclosure threshold values.

produced by the algorithms for distinct disclosure thresholds on the datasets. The EDH

method does not create artifact patterns, unlike the masking algorithms because EDH

conceals sensitive patterns by deleting the selected edges so it does not employ a masking

symbol. Consequently, no new patterns emerge after the hiding process. The number of

artifact patterns generated by the other algorithms decreases as the disclosure threshold

ascends since fewer masking symbols are added when sanitizing fewer graphs.

10 20 30 40 50
0

500
1,000
1,500
2,000
2,500
3,000

Disclosure Threshold
7 8 9 10 11 12

0

20

40

60

80

100

Disclosure Threshold
80 90 100 110 120

0

0.4

0.8

1.2

1.6

2
·104

Disclosure Threshold

Chemical Movielens NCI109

A
rti

fa
ct

Pa
tte

rn
s

VMask1 VMask2 VMask3 EDH

Figure 5.4. Artifact patterns results of the EDH and masking algorithms for different
disclosure threshold values.

The original and sanitized databases should be similar with the minimal distance

between them. The distance is determined by counting the altered vertices and edges. In

the masking methods, the distance is the total masked vertices, and in EDH, it is the total

deleted edges. Figure 5.5 shows the distance results of the algorithms for the datasets,
69

10 20 30 40 50
0

250
500
750

1,000
1,250
1,500

Disclosure Threshold
7 8 9 10 11 12

20

30

40

50

60

Disclosure Threshold
80 90 100 110 120

0

1,200

2,400
3,600

4,800
6,000

Disclosure Threshold

Chemical Movielens NCI109

D
ist

an
ce

VMask1 VMask2 VMask3 EDH

Figure 5.5. Distance results of the EDH and masking algorithms for different disclosure
threshold values.

which are lower at higher disclosure thresholds due to sanitizing less graphs. In spite of

the close results, touching (masking/deleting) an edge has a smaller impact on the graph

structure compared to a vertex. Further, the values are the same across all algorithms for

the Movielens dataset.

5.1.3. Experimental Results of the Edge Deletion-Based Algorithms

Because all the proposed edge deletion-based subgraph hiding algorithms (EDH,

EdgeDegree, Matchings & EdgeDegree, EdgeEntropy and Matchings & EdgeEntropy) do

not cause the hiding failure and do not produce fake patterns, they are evaluated in terms of

execution time, information loss and distance.

Figure 5.6 demonstrates the execution times (ms) of the five algorithms on the

datasets Chemical, Movielens and NCI109 for distinct disclosure thresholds. The EDH,

EdgeDegree and EdgeEntropy algorithms exhibit the similar results because the latter

ones only change the local sanitization to choose the victim edge. On the Chemical and

NCI109 datasets, the Matchings & EdgeDegree and Matchings & EdgeEntropy algorithms

outperform the other algorithms since they employ the edgeMatches structure during the

process of creating the sanitization information, and find the matches only one time. On

the Movielens dataset, the execution times of the Matchings-based algorithms are worse

than the others because the average number of vertices and the average number of edges in

this dataset are more than those of the other datasets, that can be seen in Table 5.1.

70

10 20 30 40 50
1,700
1,800
1,900
2,000
2,100
2,200

Disclosure Threshold
7 8 9 10 11 12

600

620

640

660

680

Disclosure Threshold
80 90 100 110 120

1.02
1.04
1.06
1.08
1.1

1.12 ·104

Disclosure Threshold

Chemical Movielens NCI109

Ex
ec

ut
io

n
Ti

m
e

(m
s)

EDH EdgeDegree Matchings & EdgeDegree
EdgeEntropy Matchings & EdgeEntropy

Figure 5.6. Execution time (ms) results of the edge deletion-based algorithms for different
disclosure threshold values.

Figure 5.7 shows the information loss (%) of the five algorithms on the three

datasets for varying disclosure thresholds. On the Chemical dataset, the EdgeDegree and

EdgeEntropy algorithms produce the same results and are slightly better than the EDH

algorithm. Then, the Matchings & EdgeDegree and Matchings & EdgeEntropy algorithms

generate the same results for the information loss on this dataset. On the Movielens dataset,

the EDH yields the different results from all the other algorithms and causes less losses than

the others. However, the Movielens dataset represents movies and tags, and each graph

includes a movie id (label) only once. Thus, there is one matching in a graph for a sensitive

pattern. Additionally, the supports of patterns are very low in this dataset. Therefore,

10 20 30 40 50

10

20

30

40

Disclosure Threshold
7 8 9 10 11 12

0

20

40

60

80

100

Disclosure Threshold
80 90 100 110 120

0

3

6

9

12

15

Disclosure Threshold

Chemical Movielens NCI109

In
fo

rm
at

io
n

Lo
ss

(%
)

EDH EdgeDegree Matchings & EdgeDegree
EdgeEntropy Matchings & EdgeEntropy

Figure 5.7. Information loss (%) results of the edge deletion-based algorithms for different
disclosure threshold values.

71

10 20 30 40 50

100

200

300

400

Disclosure Threshold
7 8 9 10 11 12

20

30

40

50

60

Disclosure Threshold
80 90 100 110 120

400
450
500
550
600

Disclosure Threshold

Chemical Movielens NCI109

D
ist

an
ce

EDH EdgeDegree Matchings & EdgeDegree
EdgeEntropy Matchings & EdgeEntropy

Figure 5.8. Distance results of the edge deletion-based algorithms for different disclosure
threshold values.

removing an edge critically affects the results. On the NCI109 dataset, the Matchings &

EdgeDegree algorithm outperforms the other algorithms for all the disclosure thresholds.

Other subgraph hiding algorithms proposed in this study are better than the EDH according

to the information loss on this dataset.

Figure 5.8 illustrates the distance between the original and sanitized databases on

the three datasets. On the Chemical dataset, the Matchings-based algorithms yield the

better results than the other algorithms. On the Movielens dataset, all the algorithms result

in the same distance. On the NCI109 dataset, the Matchings & EdgeDegree and Matchings

& EdgeEntropy algorithms have the same results, and they have better results than the other

three algorithms. Further, the EdgeDegree and EdgeEntropy algorithms give the same

results and are better than the EDH for this dataset. Reducing (deleting) less edges means

the smaller impact on the database. Because the idea of the Matchings-based algorithms is

based on that if sensitive patterns share a common edge, removing this edge eliminates

more than one sensitive pattern at the same time.

5.2. Performance Evaluation of Community Hiding Algorithms

We conduct a comparative analysis to systematically evaluate the results of the

4clqCH algorithm against those produced by Random-Rewire (8), LSHA (126), importance

measure-based methods (Degree, Betweenness, and Closeness) (122), and Random-Del.

The motivation for choosing these community hiding algorithms is that (i) they can work

72

independently of the result produced by a community detection method during the hiding

process, and (ii) they are heuristic approaches.

In our experiments, we employ the Python implementation of the LSHA algorithm

provided by its authors and correct it by appropriately setting the local structure index

of the deleted edge. As the clique counting method (135), the 4clqCH algorithm is also

implemented in C++. Since the code of the other algorithms is not publicly available, we

also implement all these algorithms (Random-Rewire, Degree, Betweenness, Closeness,

and Random-Del) in C++. The details of the centrality definitions are not given in the

study (122), thus edge degree is considered as the sum of node degrees, and edge closeness

is calculated according to the definition in the study (140). The interactive version of these

algorithms is considered, that is, the updated value of the centrality is taken into account

after an edge update.

The 4clqCH is compared with the chosen algorithms (Random-Rewire (8), LSHA

(126), Degree (122), Betweenness (122), Closeness (122), and Random-Del) regarding

normalized mutual information (NMI) and overlapping NMI (ONMI) depending on the

disjoint and overlapping nature of the community detection algorithm (refer to Figures

5.10 – 5.14). In addition to the overlapping community detection algorithms, such as

Clique Percolation Method (CPM) (54), PercoMCV (55), UMSTMO (56), Demon (57),

GREESE (58), the disjoint algorithm Core Expansion (141) is chosen due to its reliance on

a seed-based approach. The UMSTMO, Demon and GREESE are chosen to fool although

they are not clique-based methods. To find the k-clique communities with CPM, the parallel

implementation (COS) (142) is used to solve the scalability issues.

5.2.1. Community Detection Algorithms

The functionalities of the community detection algorithms are explained to provide

a more comprehensive understanding of how well the community hiding methods succeed

in obfuscating the community structure.

CPM (54) is a clique-based algorithm to detect overlapping communities in networks.

It characterizes a k-clique community as the union of all k-cliques that are connected

through a sequence of adjacent k-cliques, where adjacency is defined by the sharing of k-1

nodes. The process of identifying k-clique communities begins with locating all cliques in

73

the network. Subsequently, analysis is performed on the clique-clique overlap matrix to

determine the community structure.

PercoMCV (55) is a hybrid method. It begins by leveraging the CPM (54) to

identify initial community structure. Following this, eigenvector centrality is applied to the

preliminary results to minimize the proportion of unclassified nodes.

Core Expansion (141) first detects the core of each potential community in the

network. The core is then expanded iteratively by adding nodes to generate the final

communities. It is based on the neighborhood overlap, which is formalized for an edge

(𝑢, 𝑣) as 𝑐𝑢𝑣/(𝑑𝑢 + 𝑑𝑣 − 𝑐𝑢𝑣 − 2), where 𝑑𝑢 and 𝑑𝑣 are the degrees of nodes 𝑢 and 𝑣,

respectively, and 𝑐𝑢𝑣 is the number of common neighbors of 𝑢 and 𝑣. The initial cores are

local maximum nodes, where the weight of a node is the sum of the neighborhood overlap

values of its edges.

UMSTMO (56) leverages the union of maximum spanning trees (UMST) as its

foundational approach. The method operates in three distinct phases: first, the construction

of the UMST 𝑇 ; second, the identification of local communities from 𝑇 , wherein nodes A,

B, and C are considered part of the same community if nodes B and C are connected to A

within the UMST 𝑇 and collectively form a triangle in the original graph 𝐺; and third, the

integration of preliminary communities based on the importance of their shared nodes.

Demon (57) identifies overlapping communities by analyzing the ego networks

(local neighborhoods) of nodes. The local communities for a node are found with the Label

Propagation Algorithm (53), which are then merged according to the similarity threshold

to obtain the global communities.

GREESE (58) employs a coupled-seed expansion approach for detecting overlapping

communities. A coupled-seed is formed by selecting a node along with its most similar

neighboring node, serving as the starting point for expansion. This seed is then iteratively

expanded using a fitness function designed to enhance the detection of local communities.

Ultimately, local communities with substantial overlap are merged to produce the final set

of communities.

74

5.2.2. Datasets

Different real world datasets are used from the Network Repository (143) and

SNAP (144) platforms, each exhibiting distinct characteristics. Table 5.2 summarizes

their properties, such as the number of nodes, the number of edges, the average clustering

coefficient, and the size of the maximum clique. We make a graph undirected if it is

directed, and the self-loops and multiple edges are removed.

Table 5.2. The properties of the datasets used to evaluate community hiding algorithms.

Graph Nodes Edges Avg. CC Max clique
Karate 34 78 0.571 5
Polbooks 105 441 0.487 6
Football 115 613 0.403 9
Email 1,133 5,451 0.254 12
CA-GrQc 5,242 14,496 0.530 44
Amazon 262,111 1,234,877 0.420 7
Youtube 1,134,890 2,987,624 0.081 17

Figure 5.9 illustrates the frequency distribution of k-cliques within the datasets.

Specifically, the x-axis represents the size of the cliques (k), while the y-axis indicates the

corresponding count of k-cliques present in the dataset. This visualization provides an

overview of the prevalence of cliques of various sizes in the datasets.

5 10 15 20 25 30 35 40 45

100

101

102

103

104

105

Clique Size (k)

Fr
eq

ue
nc

y

Karate
Polbooks
Football
Email
CA-GrQc
Amazon
Youtube

Figure 5.9. Clique distribution in each graph.

75

5.2.3. Experimental Results of the 4clqCH Algorithm

This section presents the discussion regarding the results of the 4clqCH algorithm

in comparison to the other algorithms, as well as the complexities of the algorithms.

Comparison of the algorithms: The 4clqCH algorithm produces low ONMI

scores across most scenarios when evaluated against the CPM and PercoMCV for the

datasets karate, polbooks, football, and email. This is primarily due to its targeted approach

of disrupting cliques, particularly 4-cliques, which significantly diminishes the ability of

clique-based algorithms, such as CPM and PercoMCV. Additionally, it demonstrates strong

performance in deceiving the Core Expansion method across these datasets. Since the Core

Expansion relies on neighborhood overlap, the 4clqCH disrupts critical edges in localized

regions, thereby reducing neighborhood overlap scores and making it harder for the Core

Expansion to identify and expand the cores. Similarly, the Degree (122) algorithm, which

focuses on removing high-degree edges, shows some good effectiveness in deceiving the

clique-based methods and Core Expansion (on karate, polbooks, and email), meaning

that high-degree edges are often included within cliques and are important in terms of

neighborhood overlap.

The GREESE algorithm operates based on common neighbors and functions

similarly to weak clique percolation. The 4clqCH algorithm is highly effective in most

scenarios for reducing the ONMI scores of the GREESE algorithm. This effectiveness

stems from its strategy of removing edges that are frequently shared among 4-cliques, which

play a crucial role in ensuring high neighborhood overlap and supporting the expansion of

communities.

When the effect of the community hiding algorithms to the Demon algorithm is

analyzed on these datasets, it is observed that none of them is superior to the other. Moreover,

the hiding algorithms effectively disrupt the functionality of the Demon algorithm on email

dataset, indicating that the targeted alterations to edges appear to significantly perturb the

structures of the ego neighborhoods and overlapping substructures that the Demon relies

upon for its community detection process.

There is no consistency in the success of fooling the UMSTMO algorithm (except

for the Betweenness (122) algorithm), that is, the effectiveness of the community hiding

algorithms varies according to the characteristics of the datasets. While the 4clqCH

76

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Budget (𝛽)

N
M

I

(a) Core Expansion

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(b) PercoMCV

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(c) Demon

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(d) CPM (k=4)

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(e) UMSTMO

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(f) GREESE

Random-Rewire LSHA 4clqCH Degree
Betweenness Closeness Random-Del

Figure 5.10. NMI/ONMI of community hiding algorithms according to the budget on
karate dataset.

77

4 8 12 16 20 24 28 32
0.4

0.6

0.8

1

Budget (𝛽)

N
M

I

(a) Core Expansion

4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(b) PercoMCV

4 8 12 16 20 24 28 32

0.4

0.5

0.6

0.7

0.8

Budget (𝛽)

O
N

M
I

(c) Demon

4 8 12 16 20 24 28 32

0.2

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(d) CPM (k=4)

4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(e) UMSTMO

4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(f) GREESE

Random-Rewire LSHA 4clqCH Degree
Betweenness Closeness Random-Del

Figure 5.11. NMI/ONMI of community hiding algorithms according to the budget on
polbooks dataset.

78

4 8 12 16 20 24 28 32

0.6

0.7

0.8

0.9

1

Budget (𝛽)

N
M

I

(a) Core Expansion

4 8 12 16 20 24 28 32
0.8

0.85

0.9

0.95

1

Budget (𝛽)

O
N

M
I

(b) PercoMCV

4 8 12 16 20 24 28 32
0.3

0.4

0.5

0.6

0.7

0.8

Budget (𝛽)

O
N

M
I

(c) Demon

4 8 12 16 20 24 28 32
0.9

0.92

0.94

0.96

0.98

1

Budget (𝛽)

O
N

M
I

(d) CPM (k=4)

4 8 12 16 20 24 28 32

0.2

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(e) UMSTMO

4 8 12 16 20 24 28 32
0.8

0.85

0.9

0.95

1

Budget (𝛽)

O
N

M
I

(f) GREESE

Random-Rewire LSHA 4clqCH Degree
Betweenness Closeness Random-Del

Figure 5.12. NMI/ONMI of community hiding algorithms according to the budget on
football dataset.

79

20 40 60 80 100 120 140
0.5

0.6

0.7

0.8

0.9

1

Budget (𝛽)

N
M

I

(a) Core Expansion

20 40 60 80 100 120 140

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(b) PercoMCV

20 40 60 80 100 120 140
0.1

0.11

0.12

0.13

0.14

0.15

Budget (𝛽)

O
N

M
I

(c) Demon

20 40 60 80 100 120 140

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(d) CPM (k=4)

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Budget (𝛽)

O
N

M
I

(e) UMSTMO

20 40 60 80 100 120 140

0.5

0.6

0.7

0.8

0.9

1

Budget (𝛽)

O
N

M
I

(f) GREESE

Random-Rewire LSHA 4clqCH Degree
Betweenness Closeness Random-Del

Figure 5.13. NMI/ONMI of community hiding algorithms according to the budget on
email dataset.

80

190 290 390 490
0.9

0.92

0.94

0.96

0.98

1

Budget (𝛽)

N
M

I

(a) Core Expansion

190 290 390 490
0.85

0.9

0.95

1

Budget (𝛽)

O
N

M
I

(b) CPM (k=4)

190 290 390 490
0.75

0.8

0.85

0.9

0.95

1

Budget (𝛽)

O
N

M
I

(c) CPM (k=7)

190 290 390 490
0.55

0.6

0.65

0.7

Budget (𝛽)

O
N

M
I

(d) Demon

190 290 390 490
0.8

0.85

0.9

0.95

1

Budget (𝛽)

O
N

M
I

(e) GREESE

Random-Rewire LSHA 4clqCH Degree
Betweenness Closeness Random-Del

Figure 5.14. NMI/ONMI of community hiding algorithms according to the budget on
CA-GrQc dataset.

81

algorithm performs effectively on the karate, polbooks, and email datasets, it fails to

deceive the UMSTMO on the football dataset. The Betweenness algorithm, which

removes edges with the highest betweenness centrality, focuses on edges bridging different

communities and maintaining network connectivity. Removing these edges can fragment

the network, directly affecting the reliance of the UMSTMO on constructing maximum

spanning trees.

For CA-GrQc dataset, the results of some detection algorithms are not shown (due

to memory issues in PercoMCV and all results being very close to 1 in UMSTMO). The

Random-Del algorithm outperforms the other community hiding methods in terms of

NMI/ONMI in most of the scenarios (refer to Figure 5.14). The 4clqCH algorithm deletes

edges that are most commonly shared across 4-cliques. Hence, it starts to disrupt the

maximum clique in the graph, and continues with the cliques of lower sizes. The clique

distribution within CA-GrQc dataset can be seen from the Figure 5.9. Since the 4clqCH

algorithm spends the budget mostly toward dismantling the larger cliques, it struggles to

effectively deceive the CPM algorithm with k=4. However, when the k-clique communities

with the larger k value (k=7) are identified with the CPM algorithm, it is observed that the

4clqCH algorithm can decrease the ONMI value more.

Table 5.3 illustrates the ONMI results of the 4clqCH, Degree (122), and Random-

Del algorithms to deceive the CPM (54) algorithm on amazon dataset for different values

of k ranging from 4 to 7. The 4clqCH algorithm’s capability to reduce the ONMI result

can be seen even in the lower values of k, showing that it can effectively fool the CPM

algorithm. The results of 4clqCH and Degree algorithms against the CPM on youtube

dataset for k = 4, 5, and 10 are given in Table 5.4. Even though the maximum clique size in

Table 5.3. ONMI results of 4clqCH, Degree (122), and Random-Del algorithms to deceive
CPM (54) algorithm on amazon dataset.

k-clique communities Budget 4clqCH Degree Random-Del

k=4 3000 0.9196 0.9858 0.9902
4000 0.9069 0.9812 0.9868

k=5 3000 0.8351 0.9899 0.9794
4000 0.7911 0.9856 0.9722

k=6 3000 0.0336 0.9889 0.9541
4000 0.4609 0.9851 0.9402

k=7 3000 0.0000 1.0000 0.8889
4000 0.2667 1.0000 0.9111

82

Table 5.4. ONMI results of 4clqCH and Degree (122) algorithms to deceive CPM (54)
algorithm on youtube dataset.

k-clique communities Budget 4clqCH Degree
k=4 3000 0.7604 0.8851
k=5 3000 0.4380 0.8092
k=10 3000 0.0862 0.7449

youtube dataset is k = 17, the 4clqCH algorithm achieves better results than the Degree

algorithm starting from the small k values.

Complexity analysis: For four-clique counting, the undirected graph G is trans-

formed into a directed acyclic graph 𝐺→, and the four-clique pattern is decomposed

into smaller sub-patterns. These sub-patterns are enumerated within 𝐺→, leveraging

the directed nature to effectively reduce the combinatorial expansion of the enumeration

process. This approach provides a practical counting. The 𝑊++ and 𝐷𝐷 represent the

counts of out-wedges and directed diamonds, respectively, as illustrated in Figure 4.5. The

computational cost of determining the number of four-cliques per-vertex and per-edge is

𝑂 (𝑊++(𝐺→) + 𝐷𝐷 (𝐺→)), requiring an additional 𝑂 (𝑚) space, where 𝑚 is the number

of edges in the graph. After counting phase, finding the maximum frequency in per-edge

counts, getting the edges with the maximum frequency, and finding the victim edge to be

deleted takes 𝑂 (𝑚) time. Then, the common neighbors of the nodes of the chosen edge are

determined in 𝑂 (𝑑) time (𝑑 is the maximum node degree). Decreasing the per-edge count

of the edges included in the deleted four-cliques is 𝑂 (𝑑2). Hence, the complexity after

counting is 𝑂 (𝛽(𝑚 + 𝑑2)), where 𝛽 is the budget. So, the total complexity of the 4clqCH

algorithm is 𝑂 (𝑊++(𝐺→) + 𝐷𝐷 (𝐺→) + 𝛽(𝑚 + 𝑑2)).

The LSHA algorithm identifies local structures within the network and subsequently

executes a rewiring attack based on these structures. The complexity of detecting local

structures is𝑂 (𝑚 + 𝑑𝑛), where 𝑛 is the number of nodes in the graph. The attack procedure

comprises four main steps: 1) selecting the local structures to attack; 2) removing an edge

within the low-degree structure; 3) adding an edge between the target node and a node

within a high-degree structure; and 4) arranging the local structures. Since step 1 merely

selects local structures based on degree, and step 4 applies adjustments to only a small

subset of nodes, the primary computational cost lies in steps 2 and 3. The time complexity

of step 2 is 𝑂 (𝑑𝑚) because the vulnerability of each edge within the local structure should

83

be evaluated. For step 3, the complexity is 𝑂 (𝑑𝑛), as the entropy calculation represents

the most computationally intensive operation. Thus, the time complexity of the attack

phase is 𝑂 (𝑑 (𝑛 + 𝑚)). In conclusion, the overall time complexity of the LSHA algorithm

is 𝑂 (𝛽𝑑 (𝑛 + 𝑚)).

In the Degree algorithm, calculating the degree for all edges is 𝑂 (𝑚) time. Then,

in each iteration, identifying the edge with the maximum degree incurs a time cost of

𝑂 (𝑚) and updating the degrees of all edges incident to the endpoints is 𝑂 (𝑚). The time

complexity becomes𝑂 (𝛽𝑚). The space complexity is𝑂 (𝑚 + 𝑛), encompassing the storage

of the graph and the additional arrays used for node and edge degrees, adhering to a

complexity of 𝑂 (𝑚 + 𝑛).

Calculating the betweenness centrality and closeness centrality is computationally

expensive since they need all pairs shortest paths. The well-known Brandes’ algorithm (145)

operates at a time complexity of 𝑂 (𝑛𝑚) for unweighted graphs, and a space complexity

of 𝑂 (𝑚 + 𝑛). When an edge is removed, recalculating the centrality values for the entire

graph can become prohibitively costly, especially if this operation is repeated 𝛽 times, as

dictated by the budget. To address this challenge, new algorithms have been developed to

update centrality values in dynamic or evolving graphs (146).

The time complexity of Random-Del and Random-Rewire is 𝑂 (𝛽) and 𝑂 (𝛽𝑛),

respectively. Their space complexity is 𝑂 (𝑚 + 𝑛) for storing the graph.

In summary, since the runtime of 4clqCH is bounded by the numbers of particular

patterns, not 𝑚 and 𝑛, its time complexity can be directly compared with that of the Degree

and Random algorithms, which have better time complexity. The space complexity of the

4clqCH is 𝑂 (𝑚 + 𝑛), being the same as the other community hiding algorithms, except for

LSHA, whose space complexity is not reported in the related paper.

Discussion on Findings: Numerous overlapping community detection algorithms

leverage cliques or localized information to identify community structures. Attacks against

these algorithms aim to disrupt the identified community structures, thereby diminishing

their performance. The 4clqCH algorithm focuses on targeting edges mostly found within

4-cliques, prioritizing the disruption of larger cliques by starting with edges in the maximum

clique. This approach aligns with efforts in fields like crime detection and prevention,

where reducing the size of the maximum clique is critical. Large cliques often signify

cohesive substructures, which can serve as potential sources of coordinated activities, such

84

as terrorist attacks. As such, weakening the cohesiveness of criminal or terrorist networks

becomes a crucial objective (147).

The effectiveness of the 4clqCH algorithm has been assessed through experiments on

various datasets, demonstrating its success in deceiving overlapping community detection

algorithms, particularly those based on cliques or seed-based methodologies. Furthermore,

the clique distribution within datasets has been analyzed. According to the given budget,

when the frequency of large cliques is high, its performance decreases, as observed in the

CA-GrQc dataset; however, it remains effective in modifying communities derived from

large k-cliques. Additionally, it deceives CPM algorithm on larger datasets, such as amazon

and youtube, across different k-values. While the 4clqCH algorithm matches other hiding

methods in space complexity, it is outperformed by Degree and Random algorithms in time

complexity.

Although significant research has been dedicated to fooling disjoint community

detection algorithms, the domain of overlapping community detection has remained largely

unexplored when it comes to systematic hiding strategies at a global scale. This study

contributes to the field in two ways: first, by evaluating the efficacy of heuristic-based

global community hiding algorithms—independent of detection algorithm results—against

overlapping algorithms; and second, by proposing and assessing the performance of a new

clique-based method.

85

CHAPTER 6

CONCLUSION AND FUTURE WORK

Within the scope of this thesis, two fields of knowledge hiding techniques for graph

data are focused: Subgraph Hiding and Community Hiding. Subgraph hiding aims to

protect sensitive subgraphs in transactional graph databases. First, sensitive subgraphs

within a database are determined. Then, the database is transformed in a way that prevents

the disclosure of these sensitive subgraphs while still preserving the original data as much

as possible. That means, the goal is to maintain the utility of the database after publication

while ensuring the privacy of the sensitive knowledge it contains. Community hiding, also

known as community detection attack, systematically alters the structure of the graph in

order to hide communities. With this way, the community membership information of

nodes in the graph is preserved.

Various algorithms have been proposed in this thesis for subgraph hiding. These

algorithms are EDH, EdgeDegree, Matchings & EdgeDegree, EdgeEntropy and Matchings

& EdgeEntropy. All of them choose sensitive graphs with less matches according to the

set of sensitive subgraphs for sanitization. Each of them applies different heuristics for

local sanitization of a sensitive graph. These algorithms are compared with respect to the

execution time and side-effects. All of them have zero hiding failure and do not cause fake

patterns. According to the experimental results, the following conclusions can been drawn;

When the graphs are sanitized through deleting the selected victim edges, unlike vertex

masking, information loss decreases because non-sensitive patterns containing other edges

of a vertex may appear after the hiding process. If edges contained in multiple sensitive

subgraphs are removed, this causes to remove less edges and therefore the smaller impact

on the database. The edge entropy offered to choose the less important edges using the

concept of graph entropy has shown similar results to edge degrees. However, since it is

based on the subgraph of an edge rather than just its node degrees, it can effectively be

used for different tasks.

Following this, a global scale community hiding algorithm, 4clqCH, has been

proposed. The 4clqCH performs the modification on the graph by focusing on the four-

86

cliques and does not use the result of a community detection algorithm. The experimental

results have demonstrated the following observation; Since the 4clqCH disturbs the local

structures, such as cliques, in the graph, it can provide effective attacks against community

detection algorithms that use local information.

The future work can be considered for each problem. For the subgraph hiding

problem, transactional databases have been analyzed. But, networks can also be modeled

with a single large graph. Subgraph hiding algorithms can be devised to work on a

single large graph. For the community hiding problem, hiding algorithms consider only

the detection algorithms that focus on the topological structure of networks. But, user

characteristics can be set to the network in addition to the relations in the network. That

is, hiding techniques can be designed against detection algorithms that consider the

attributed networks. The studies in the literature mainly focus on disjoint community

detection algorithms. However, overlapping detection algorithms allow more flexible and

realistic modeling of systems. Hence, new hiding techniques can be developed to counter

overlapping community detection algorithms. For both problems, graphs can be used to

represent constantly changing data. Therefore, existing methods can be extended or new

solutions can be proposed to work with dynamic graphs.

87

BIBLIOGRAPHY

1. Potin, L.; Figueiredo, R.; Labatut, V.; Largeron, C. Pattern Mining for Anomaly

Detection in Graphs: Application to Fraud in Public Procurement. In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases, Turin,

Italy, Sept. 18–22, 2023; Springer: Cham, Switzerland, 2023; pp 69–87.

2. Mrzic, A.; Meysman, P.; Bittremieux, W.; Moris, P.; Cule, B.; Goethals, B.; Laukens,

K. Grasping Frequent Subgraph Mining for Bioinformatics Applications. BioData

Mining 2018, 11, 1–24.

3. Wang, L.; Lin, F. V.; Cole, M.; Zhang, Z. Learning Clique Subgraphs in Struc-

tural Brain Network Classification with Application to Crystallized Cognition.

NeuroImage 2021, 225, 117493.

4. Li, P.-Z.; Huang, L.; Wang, C.-D.; Lai, J.-H. EdMot: An Edge Enhancement

Approach for Motif-aware Community Detection. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

Anchorage, AK, USA, Aug. 4–8, 2019; pp 479–487.

5. Ma, J.; Fan, J. Local Optimization for Clique-Based Overlapping Community

Detection in Complex Networks. IEEE Access 2019, 8, 5091–5103.

6. Yin, H.; Benson, A. R.; Leskovec, J.; Gleich, D. F. Local Higher-Order Graph

Clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Halifax, NS, Canada, Aug. 13–17, 2017;

pp 555–564.

7. Javed, M. A.; Younis, M. S.; Latif, S.; Qadir, J.; Baig, A. Community Detection

in Networks: A Multidisciplinary Review. Journal of Network and Computer

Applications 2018, 108, 87–111.

8. Chen, J.; Chen, L.; Chen, Y.; Zhao, M.; Yu, S.; Xuan, Q.; Yang, X. GA-Based

Q-attack on Community Detection. IEEE Transactions on Computational Social

Systems 2019, 6, 491–503.

9. Abul, O.; Gökçe, H. Knowledge Hiding from Tree and Graph Databases. Data &

Knowledge Engineering 2012, 72, 148–171.

88

10. Gökçe, H. Ağaç ve Çizge Veritabanlarında Hassas Bilgi Gizleme, MA thesis, TOBB

Ekonomi ve Teknoloji Üniversitesi Fen Bilimleri Enstitüsü, 2010.

11. Zhao, J.; Wang, Z.; Cao, J.; Cheong, K. H. A Self-Adaptive Evolutionary Deception

Framework for Community Structure. IEEE Transactions on Systems, Man, and

Cybernetics: Systems 2023, 53, 4954–4967.

12. Waniek, M.; Michalak, T. P.; Wooldridge, M. J.; Rahwan, T. Hiding Individuals and

Communities in a Social Network. Nature Human Behaviour 2018, 2, 139–147.

13. Fionda, V.; Pirro, G. Community Deception or: How to Stop Fearing Community

Detection Algorithms. IEEE Transactions on Knowledge and Data Engineering

2017, 30, 660–673.

14. Chen, J.; Chen, Y.; Chen, L.; Zhao, M.; Xuan, Q. Multiscale Evolutionary Perturba-

tion Attack on Community Detection. IEEE Transactions on Computational Social

Systems 2020, 8, 62–75.

15. Tekin, L.; Bostanoglu, B. E. Edge Deletion Based Subgraph Hiding. WSEAS

Transactions on Information Science and Applications 2024, 21, 333–347.

16. Tekin, L.; Bostanoğlu, B. E. A Qualitative Survey on Community Detection Attack

Algorithms. Symmetry 2024, 16, 1272.

17. Liu, D.; Yang, G.; Wang, Y.; Jin, H.; Chen, E. How to Protect Ourselves from

Overlapping Community Detection in Social Networks. IEEE Transactions on Big

Data 2022, 8, 894–904.

18. Yang, G.; Wang, Y.; Chang, Z.; Liu, D. Overlapping Community Hiding Method

Based on Multi-Level Neighborhood Information. Symmetry 2022, 14, 2328.

19. Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. From Data Mining to Knowledge

Discovery in Databases. AI Magazine 1996, 17, 37–37.

20. Li, L.; Ding, P.; Chen, H.; Wu, X. Frequent Pattern Mining in Big Social Graphs.

IEEE Transactions on Emerging Topics in Computational Intelligence 2021, 6,

638–648.

21. Kong, X.; Huang, W.; Tan, Z.; Liu, Y. Molecule Generation by Principal Subgraph

Mining and Assembling. Advances in Neural Information Processing Systems 2022,

35, 2550–2563.
89

22. Queiroz, F. C.; Vargas, A. M.; Oliveira, M. G.; Comarela, G. V.; Silveira, S. A. ppi-

GReMLIN: A Graph Mining Based Detection of Conserved Structural Arrangements

in Protein-Protein Interfaces. BMC Bioinformatics 2020, 21, 1–25.

23. Yigit, Y.; Akram, V. K.; Dagdeviren, O. Breadth-First Search Tree Integrated Vertex

Cover Algorithms for Link Monitoring and Routing in Wireless Sensor Networks.

Computer Networks 2021, 194, 108144.

24. Han, J.; Pei, J.; Kamber, M. Graph Mining, Social Network Analysis, and Multirela-

tional Data Mining. Data Mining: Concepts and Techniques 2006, 535–589.

25. Inokuchi, A.; Washio, T.; Motoda, H. An Apriori-Based Algorithm for Mining

Frequent Substructures from Graph Data. In Proceedings of the 4th European

Conference on Principles of Data Mining and Knowledge Discovery, Lyon, France,

Sept. 13–16, 2000; Springer-Verlag: Berlin, Heidelberg, 2000; pp 13–23.

26. Kuramochi, M.; Karypis, G. An Efficient Algorithm for Discovering Frequent

Subgraphs. IEEE Transactions on Knowledge and Data Engineering 2004, 16,

1038–1051.

27. Kuramochi, M.; Karypis, G. Finding Frequent Patterns in a Large Sparse Graph.

Data Mining and Knowledge Discovery 2005, 11, 243–271.

28. Huan, J.; Wang, W.; Prins, J. Efficient Mining of Frequent Subgraphs in the Presence

of Isomorphism. In Proceedings of the Third IEEE International Conference on

Data Mining, Melbourne, FL, USA, Nov. 22, 2003; pp 549–552.

29. Yan, X.; Han, J. gspan: Graph-Based Substructure Pattern Mining. In Proceedings

of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan,

Dec. 9–12, 2002; pp 721–724.

30. Borgelt, C.; Berthold, M. R. Mining Molecular Fragments: Finding Relevant Sub-

structures of Molecules. In Proceedings of the 2002 IEEE International Conference

on Data Mining, Maebashi City, Japan, Dec. 9–12, 2002; pp 51–58.

31. Yan, X.; Han, J. Closegraph: Mining Closed Frequent Graph Patterns. In Proceedings

of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Washington, DC, USA, Aug. 24–27, 2003; pp 286–295.

32. Fortunato, S. Community Detection in Graphs. Physics Reports 2010, 486, 75–174.

90

33. Fortunato, S.; Hric, D. Community Detection in Networks: A User Guide. Physics

Reports 2016, 659, 1–44.

34. MacQueen, J. Some Methods for Classification and Analysis of Multivariate

Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967;

Vol. 1, pp 281–297.

35. Hlaoui, A.; Wang, S. A Direct Approach to Graph Clustering. Neural Networks and

Computational Intelligence 2004, 4, 158–163.

36. Kernighan, B. W.; Lin, S. An Efficient Heuristic Procedure for Partitioning Graphs.

The Bell System Technical Journal 1970, 49, 291–307.

37. Girvan, M.; Newman, M. E. Community Structure in Social and Biological Networks.

Proceedings of the National Academy of Sciences 2002, 99, 7821–7826.

38. Newman, M. E. Finding Community Structure in Networks Using the Eigenvectors

of Matrices. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics

2006, 74, 036104.

39. Newman, M. E. Spectral Methods for Community Detection and Graph Partitioning.

Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 2013, 88, 042822.

40. Higham, D. J.; Kalna, G.; Kibble, M. Spectral Clustering and Its Use in Bioin-

formatics. Journal of Computational and Applied Mathematics 2007, 204, 25–

37.

41. Ruan, J.; Zhang, W. An Efficient Spectral Algorithm for Network Community

Discovery and Its Applications to Biological and Social Networks. In Proceedings of

the Seventh IEEE International Conference on Data Mining (ICDM 2007), Omaha,

NE, USA, Oct. 28–31, 2007; pp 643–648.

42. Brandes, U.; Delling, D.; Gaertler, M.; Gorke, R.; Hoefer, M.; Nikoloski, Z.;

Wagner, D. On Modularity Clustering. IEEE Transactions on Knowledge and Data

Engineering 2007, 20, 172–188.

43. Chen, M.; Kuzmin, K.; Szymanski, B. K. Community Detection via Maximization

of Modularity and Its Variants. IEEE Transactions on Computational Social Systems

2014, 1, 46–65.

91

44. Newman, M. E. Fast Algorithm for Detecting Community Structure in Networks.

Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 2004, 69, 066133.

45. Clauset, A.; Newman, M. E.; Moore, C. Finding Community Structure in Very

Large Networks. Physical Review E 2004, 70, 066111.

46. Newman, M. E. Modularity and Community Structure in Networks. Proceedings of

the National Academy of Sciences 2006, 103, 8577–8582.

47. Blondel, V. D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of

Communities in Large Networks. Journal of Statistical Mechanics: Theory and

Experiment 2008, 2008, P10008.

48. Traag, V. A.; Waltman, L.; Van Eck, N. J. From Louvain to Leiden: Guaranteeing

Well-Connected Communities. Scientific Reports 2019, 9, 1–12.

49. Sobolevsky, S.; Campari, R.; Belyi, A.; Ratti, C. General Optimization Technique

for High-Quality Community Detection in Complex Networks. Physical Review E

2014, 90, 012811.

50. Pons, P.; Latapy, M. Computing Communities in Large Networks Using Ran-

dom Walks. In Proceedings of the Computer and Information Sciences-ISCIS

2005: 20th International Symposium, Istanbul, Turkey, Oct. 26–28, 2005; Springer:

Berlin/Heidelberg, Germany, 2005; pp 284–293.

51. Rosvall, M.; Bergstrom, C. T. Maps of Random Walks on Complex Networks Reveal

Community Structure. Proceedings of the National Academy of Sciences 2008, 105,

1118–1123.

52. Reichardt, J.; Bornholdt, S. Statistical Mechanics of Community Detection. Physical

Review E—Statistical, Nonlinear, and Soft Matter Physics 2006, 74, 016110.

53. Raghavan, U. N.; Albert, R.; Kumara, S. Near Linear Time Algorithm to Detect

Community Structures in Large-Scale Networks. Physical Review E 2007, 76,

036106.

54. Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T. Uncovering the Overlapping Community

Structure of Complex Networks in Nature and Society. Nature 2005, 435, 814–818.

92

55. Kasoro, N.; Kasereka, S.; Mayogha, E.; Vinh, H. T.; Kinganga, J. PercoMCV: A

Hybrid Approach of Community Detection in Social Networks. Procedia Computer

Science 2019, 151, 45–52.

56. Asmi, K.; Lotfi, D.; El Marraki, M. Overlapping Community Detection based on

the Union of All Maximum Spanning Trees. Library Hi Tech 2020, 38, 276–292.

57. Coscia, M.; Rossetti, G.; Giannotti, F.; Pedreschi, D. Demon: A Local-First Discovery

Method for Overlapping Communities. In Proceedings of the 18th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Beijing, China,

Aug. 12–16, 2012; pp 615–623.

58. Asmi, K.; Lotfi, D.; Abarda, A. The Greedy Coupled-Seeds Expansion Method for

the Overlapping Community Detection in Social Networks. Computing 2022, 104,

295–313.

59. Prat-Pérez, A.; Dominguez-Sal, D.; Larriba-Pey, J.-L. High Quality, Scalable and

Parallel Community Detection for Large Real Graphs. In Proceedings of the 23rd

International Conference on World Wide Web, Seoul, Republic of Korea, Apr. 7–11,

2014; pp 225–236.

60. Fazlali, M.; Moradi, E.; Malazi, H. T. Adaptive Parallel Louvain Community

Detection on a Multicore Platform. Microprocessors and Microsystems 2017, 54,

26–34.

61. Al-Andoli, M. N.; Tan, S. C.; Cheah, W. P.; Tan, S. Y. A Review on Community

Detection in Large Complex Networks from Conventional to Deep Learning Methods:

A Call for the Use of Parallel Meta-Heuristic Algorithms. IEEE Access 2021, 9,

96501–96527.

62. Waniek, M.; Woźnica, J.; Zhou, K.; Vorobeychik, Y.; Michalak, T. P.; Rahwan,

T. Hiding from Centrality Measures: A Stackelberg Game Perspective. IEEE

Transactions on Knowledge and Data Engineering 2023, 35, 10058–10071.

63. Waniek, M.; Zhou, K.; Vorobeychik, Y.; Moro, E.; Michalak, T. P.; Rahwan, T. How

to Hide One’s Relationships from Link Prediction Algorithms. Scientific Reports

2019, 9, 12208.

64. Dey, P.; Medya, S. Manipulating Node Similarity Measures in Networks. arXiv

2019, arXiv:1910.11529.
93

65. Waniek, M.; Holme, P.; Cebrian, M.; Rahwan, T. Social Diffusion Sources Can

Escape Detection. Iscience 2022, 25, 104956.

66. Oliveira, S. R.; Zaiane, O. R. Privacy Preserving Frequent Itemset Mining. In

Proceedings of the IEEE ICDM Workshop on Privacy, Security, and Data Mining,

Maebashi City, Japan, Dec. 2002; pp 43–54.

67. Gkoulalas-Divanis, A.; Loukides, G. Revisiting Sequential Pattern Hiding to Enhance

Utility. In Proceedings of the 17th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, San Diego, CA, USA, Aug. 21–24, 2011;

pp 1316–1324.

68. Newman, M. E.; Girvan, M. Finding and Evaluating Community Structure in

Networks. Physical Review E 2004, 69, 026113.

69. Newman, M. E. Analysis of Weighted Networks. Physical Review E 2004, 70,

056131.

70. Danon, L.; Diaz-Guilera, A.; Duch, J.; Arenas, A. Comparing Community Structure

Identification. Journal of Statistical Mechanics: Theory and Experiment 2005, 2005,

P09008.

71. Hubert, L.; Arabie, P. Comparing Partitions. Journal of Classification 1985, 2,

193–218.

72. McDaid, A. F.; Greene, D.; Hurley, N. Normalized Mutual Information to Evaluate

Overlapping Community Finding Algorithms. arXiv 2011, arXiv:1110.2515.

73. Chen, J.; Wu, Y.; Xu, X.; Chen, Y.; Zheng, H.; Xuan, Q. Fast Gradient Attack on

Network Embedding. arXiv 2018, arXiv:1809.02797.

74. Bernini, A.; Silvestri, F.; Tolomei, G. Community Membership Hiding as Counter-

factual Graph Search via Deep Reinforcement Learning. arXiv 2023, arXiv:2310.

08909.

75. Liu, D.; Jia, R.; Liu, X.; Zhang, W. A Unified Framework of Community Hiding

using Symmetric Nonnegative Matrix Factorization. Information Sciences 2024,

663, 120235.

94

76. Nagaraja, S. The Impact of Unlinkability on Adversarial Community Detection:

Effects and Countermeasures. In Proceedings of the International Symposium on

Privacy Enhancing Technologies Symposium, Berlin, Germany, July 21–23, 2010;

Springer: Berlin/Heidelberg, Germany, 2010; pp 253–272.

77. Mittal, S.; Sengupta, D.; Chakraborty, T. Hide and Seek: Outwitting Community

Detection Algorithms. IEEE Transactions on Computational Social Systems 2021,

8, 799–808.

78. Meilă, M. Comparing Clusterings by the Variation of Information. In Proceedings

of the Learning Theory and Kernel Machines: 16th Annual Conference on Learning

Theory and 7th Kernel Workshop, COLT/Kernel, Washington, DC, USA, Aug. 24–27,

2003; Springer: Berlin/Heidelberg, Germany, 2003; pp 173–187.

79. Van Dongen, S. Performance Criteria for Graph Clustering and Markov Cluster

Experiments. Report-Information Systems 2000, 1–36.

80. Liu, Y.; Liu, J.; Zhang, Z.; Zhu, L.; Li, A. REM: From Structural Entropy to

Community Structure Deception. Advances in Neural Information Processing

Systems 2019, 32.

81. Liu, X.; Fu, L.; Wang, X.; Hopcroft, J. E. Prohico: A Probabilistic Framework to

Hide Communities in Large Networks. In Proceedings of the IEEE INFOCOM

2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada,

May 10–13, 2021; pp 1–10.

82. Kumari, S.; Yadav, R. J.; Namasudra, S.; Hsu, C.-H. Intelligent Deception Techniques

against Adversarial Attack on the Industrial System. International Journal of

Intelligent Systems 2021, 36, 2412–2437.

83. Liu, D.; Chang, Z.; Yang, G.; Chen, E. Community Hiding using a Graph Autoen-

coder. Knowledge-Based Systems 2022, 253, 109495.

84. Liu, D.; Chang, Z.; Yang, G.; Chen, E. Hiding Ourselves from Community Detection

through Genetic Algorithms. Information Sciences 2022, 614, 123–137.

85. Shannon, C. E. A Mathematical Theory of Communication. The Bell System

Technical Journal 1948, 27, 379–423.

95

86. Cao, S.; Dehmer, M.; Shi, Y. Extremality of Degree-Based Graph Entropies.

Information Sciences 2014, 278, 22–33.

87. Qiao, T.; Shan, W.; Zhou, C. How to Identify the Most Powerful Node in Complex

Networks? A Novel Entropy Centrality Approach. Entropy 2017, 19, 614.

88. Sen, B.; Chu, S.-H.; Parhi, K. K. Ranking Regions, Edges and Classifying Tasks in

Functional Brain Graphs by Sub-graph Entropy. Scientific Reports 2019, 9, 1–20.

89. Sun, X.; Yu, P. S. A Border-Based Approach for Hiding Sensitive Frequent Itemsets.

In Fifth IEEE International Conference on Data Mining (ICDM’05), Houston, TX,

USA, Nov. 27–30, 2005; pp 426–433.

90. Moustakides, G. V.; Verykios, V. S. A Maxmin Approach for Hiding Frequent

Itemsets. Data & Knowledge Engineering 2008, 65, 75–89.

91. Sharma, S.; Toshniwal, D. MR-I MaxMin-Scalable Two-Phase Border Based

Knowledge Hiding Technique using MapReduce. Future Generation Computer

Systems 2020, 109, 538–550.

92. Krasadakis, P.; Futia, G.; Verykios, V. S.; Sakkopoulos, E. Graph based Hiding of

Sensitive Knowledge. In 2023 IEEE 35th International Conference on Tools with

Artificial Intelligence (ICTAI), Atlanta, GA, USA, Nov. 6–8, 2023; pp 199–203.

93. Menon, S.; Sarkar, S.; Mukherjee, S. Maximizing Accuracy of Shared Databases

when Concealing Sensitive Patterns. Information Systems Research 2005, 16, 256–

270.

94. Gkoulalas-Divanis, A.; Verykios, V. S. Hiding Sensitive Knowledge without Side

Effects. Knowledge and Information Systems 2009, 20, 263–299.

95. Verykios, V. S.; Stavropoulos, E. C.; Krasadakis, P.; Sakkopoulos, E. Frequent Itemset

Hiding Revisited: Pushing Hiding Constraints into Mining. Applied Intelligence

2022, 52, 2539–2555.

96. Guo, Y. Reconstruction-Based Association Rule Hiding. In Proceedings of SIG-

MOD2007 PhD Workshop on Innovative Database Research, Beijing, China, June 10,

2007; pp 51–56.

96

97. Li, S.; Mu, N.; Le, J.; Liao, X. Privacy Preserving Frequent Itemset Mining:

Maximizing Data Utility based on Database Reconstruction. Computers & Security

2019, 84, 17–34.

98. Lin, C.-W.; Hong, T.-P.; Yang, K.-T.; Wang, S.-L. The GA-Based Algorithms

for Optimizing Hiding Sensitive Itemsets through Transaction Deletion. Applied

Intelligence 2015, 42, 210–230.

99. Lin, J. C.-W.; Liu, Q.; Fournier-Viger, P.; Hong, T.-P.; Voznak, M.; Zhan, J. A

Sanitization Approach for Hiding Sensitive Itemsets based on Particle Swarm

Optimization. Engineering Applications of Artificial Intelligence 2016, 53, 1–18.

100. Telikani, A.; Gandomi, A. H.; Shahbahrami, A.; Dehkordi, M. N. Privacy-Preserving

in Association Rule Mining using an Improved Discrete Binary Artificial Bee

Colony. Expert Systems with Applications 2020, 144, 113097.

101. Dasseni, E.; Verykios, V. S.; Elmagarmid, A. K.; Bertino, E. Hiding Association

Rules by Using Confidence and Support. In International Workshop on Information

Hiding, Pittsburgh, PA, USA, Apr. 25–27, 2001; pp 369–383.

102. Oliveira, S. R.; Zaiane, O. R. Protecting Sensitive Knowledge by Data Sanitization.

In Third IEEE International Conference on Data Mining, Melbourne, FL, USA,

Nov. 19–22, 2003; pp 613–616.

103. Amiri, A. Dare to Share: Protecting Sensitive Knowledge with Data Sanitization.

Decision Support Systems 2007, 43, 181–191.

104. Hong, T.-P.; Lin, C.-W.; Yang, K.-T.; Wang, S.-L. Using TF-IDF to Hide Sensitive

Itemsets. Applied Intelligence 2013, 38, 502–510.

105. Cheng, P.; Roddick, J. F.; Chu, S.-C.; Lin, C.-W. Privacy Preservation through

a Greedy, Distortion-Based Rule-Hiding Method. Applied Intelligence 2016, 44,

295–306.

106. Saygin, Y.; Verykios, V. S.; Clifton, C. Using Unknowns to Prevent Discovery of

Association Rules. ACM Sigmod Record 2001, 30, 45–54.

107. Wang, S.-L.; Jafari, A. Using Unknowns for Hiding Sensitive Predictive Association

Rules. In IRI-2005 IEEE International Conference on Information Reuse and

Integration, Las Vegas, NV, USA, Aug. 15–17, 2005; pp 223–228.

97

108. Zachary, W. W. An Information Flow Model for Conflict and Fission in Small

Groups. Journal of Anthropological Research 1977, 33, 452–473.

109. Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.;

Kavukcuoglu, K. Asynchronous Methods for Deep Reinforcement Learning. In

Proceedings of the International Conference on Machine Learning, New York, NY,

USA, June 19–24, 2016; pp 1928–1937.

110. Fionda, V.; Pirró, G. Community Deception in Weighted Networks. In Proceedings

of the 2021 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining, Virtual Event Netherlands, Nov. 8–11, 2021; pp 278–282.

111. Fionda, V.; Madi, S. A.; Pirrò, G. Community Deception: From Undirected to

Directed Networks. Social Network Analysis and Mining 2022, 12, 74.

112. Fionda, V.; Pirrò, G. Community Deception in Attributed Networks. IEEE Transac-

tions on Computational Social Systems 2022, 11, 228–237.

113. Madi, S. A.; Pirrò, G. Community Deception in Directed Influence Networks. Social

Network Analysis and Mining 2023, 13, 122.

114. Chen, X.; Jiang, Z.; Li, H.; Ma, J.; Philip, S. Y. Community Hiding by Link

Perturbation in Social Networks. IEEE Transactions on Computational Social

Systems 2021, 8, 704–715.

115. Chakraborty, T.; Srinivasan, S.; Ganguly, N.; Mukherjee, A.; Bhowmick, S. Per-

manence and Community Structure in Complex Networks. ACM Transactions on

Knowledge Discovery from Data (TKDD) 2016, 11, 1–34.

116. Nallusamy, K.; Easwarakumar, K. PERMDEC: Community Deception in Weighted

Networks using Permanence. Computing 2024, 106, 353–370.

117. Zhang, C.; Fu, L.; Ding, J.; Cao, X.; Long, F.; Wang, X.; Zhou, L.; Zhang, J.; Zhou, C.

Community Deception in Large Networks: Through the Lens of Laplacian Spectrum.

IEEE Transactions on Computational Social Systems 2023, 11, 2057–2069.

118. Madi, S. A.; Pirrò, G. Node-Centric Community Deception Based on Safeness.

IEEE Transactions on Computational Social Systems 2023, 11, 2955–2965.

119. Pirrò, G. Community Deception From a Node-Centric Perspective. IEEE Transac-

tions on Network Science and Engineering 2023, 11, 969–981.
98

120. Chang, Z.; Liang, J.; Ma, S.; Liu, D. Community Hiding: Completely Escape from

Community Detection. Information Sciences 2024, 672, 120665.

121. Zhao, J.; Wang, Z.; Yu, D.; Cao, J.; Cheong, K. H. Swarm Intelligence for Protecting

Sensitive Identities in Complex Networks. Chaos, Solitons & Fractals 2024, 182,

114831.

122. Wang, S.; Liu, J. Constructing Robust Community Structure against Edge-Based

Attacks. IEEE Systems Journal 2018, 13, 582–592.

123. Yu, S.; Zheng, J.; Chen, J.; Xuan, Q.; Zhang, Q. Unsupervised Euclidean Distance

Attack on Network Embedding. In Proceedings of the 2020 IEEE Fifth International

Conference on Data Science in Cyberspace (DSC), Hong Kong, China, July 27–29,

2020; pp 71–77.

124. Magelinski, T.; Bartulovic, M.; Carley, K. M. Measuring Node Contribution to

Community Structure with Modularity Vitality. IEEE Transactions on Network

Science and Engineering 2021, 8, 707–723.

125. Kipf, T. N.; Welling, M. Variational Graph Auto-Encoders. arXiv 2016, arXiv:1611.

07308.

126. Yang, H.; Chen, L.; Cheng, F.; Qiu, J.; Zhang, L. LSHA: A Local Structure-

Based Community Detection Attack Heuristic Approach. IEEE Transactions on

Computational Social Systems 2023, 11, 2966–2978.

127. Zhao, J.; Cheong, K. H. Obfuscating Community Structure in Complex Network with

Evolutionary Divide-and-Conquer Strategy. IEEE Transactions on Evolutionary

Computation 2023, 27, 1926–1940.

128. Yang, S.; Chen, B.; Zhu, G. EPCG: An Elite Population Co-evolutionary Genetic

Algorithm for Global Community Deception. In Proceedings of the 7th International

Conference on Control Engineering and Artificial Intelligence, Sanya, China, Jan. 28–

30, 2023; pp 66–71.

129. Wang, X.; Li, J.; Guan, Y.; Yuan, J.; Tao, H.; Zhang, S. Enhancing Community

Deception based on Graph Autoencoder and Genetic Algorithm. In Proceedings of

the 2023 IEEE 9th International Conference on Computer and Communications

(ICCC), Chengdu, China, Dec. 8–11, 2023; pp 742–746.

99

130. Gupta, S. K.; Singh, D. P.; Choudhary, J. A Review of Clique-Based Overlapping

Community Detection Algorithms. Knowledge and Information Systems 2022, 64,

2023–2058.

131. Kumpula, J. M.; Kivelä, M.; Kaski, K.; Saramäki, J. Sequential Algorithm for Fast

Clique Percolation. Physical Review E 2008, 78, 026109.

132. Maity, S.; Rath, S. K. Extended Clique Percolation Method to Detect Overlapping

Community Structure. In 2014 International Conference on Advances in Computing,

Communications and Informatics (ICACCI 2014), Delhi, India, Sept. 24–27, 2014;

pp 31–37.

133. Zhang, X.; Wang, C.; Su, Y.; Pan, L.; Zhang, H.-F. A Fast Overlapping Community

Detection Algorithm based on Weak Cliques for Large-Scale Networks. IEEE

Transactions on Computational Social Systems 2017, 4, 218–230.

134. Gupta, S. K.; Singh, D. P. CBLA: A Clique Based Louvain Algorithm for Detecting

Overlapping Community. Procedia Computer Science 2023, 218, 2201–2209.

135. Pinar, A.; Seshadhri, C.; Vishal, V. Escape: Efficiently Counting All 5-vertex

Subgraphs. In Proceedings of the 26th International Conference on World Wide

Web, Perth, Australia, Apr. 3–7, 2017; pp 1431–1440.

136. Srinivasan, A.; King, R. D.; Muggleton, S. H.; Sternberg, M. J. The Predictive

Toxicology Evaluation Challenge. In Proceedings of the 15th International Joint

Conference on Artifical Intelligence, Nagoya, Japan, Aug. 23–29, 1997; pp 4–9.

137. Cantador, I.; Brusilovsky, P.; Kuflik, T. Second Workshop on Information Het-

erogeneity and Fusion in Recommender Systems (HetRec2011). In Proceedings

of the Fifth ACM Conference on Recommender Systems, Chicago, Illinois, USA,

Oct. 23–27, 2011; pp 387–388.

138. Nguyen, D.; Luo, W.; Nguyen, T. D.; Venkatesh, S.; Phung, D. Learning Graph

Representation via Frequent Subgraphs. In Proceedings of the 2018 SIAM Interna-

tional Conference on Data Mining, San Diego, California, USA, May 3–5, 2018;

pp 306–314.

139. Cordella, L. P.; Foggia, P.; Sansone, C.; Vento, M. A (Sub) Graph Isomorphism

Algorithm for Matching Large Graphs. IEEE Transactions on Pattern Analysis and

Machine Intelligence 2004, 26, 1367–1372.
100

140. Bröhl, T.; Lehnertz, K. A Straightforward Edge Centrality Concept derived from

Generalizing Degree and Strength. Scientific Reports 2022, 12, 4407.

141. Choumane, A.; Awada, A.; Harkous, A. Core Expansion: A New Community

Detection Algorithm based on Neighborhood Overlap. Social Network Analysis and

Mining 2020, 10, 1–11.

142. Gregori, E.; Lenzini, L.; Mainardi, S. Parallel K-Clique Community Detection on

Large-Scale Networks. IEEE Transactions on Parallel and Distributed Systems 2012,

24, 1651–1660.

143. Rossi, R. A.; Ahmed, N. K. The Network Data Repository with Interactive Graph

Analytics and Visualization. In Proceedings of the Twenty-Ninth AAAI Conference

on Artificial Intelligence, Austin, TX, USA, Jan. 25–30, 2015; pp 4292–4293.

144. Leskovec, J.; Krevl, A. SNAP Datasets: Stanford Large Network Dataset Collection,

http://snap.stanford.edu/data, 2014.

145. Brandes, U. A Faster Algorithm for Betweenness Centrality. Journal of Mathematical

Sociology 2001, 25, 163–177.

146. Shukla, K.; Regunta, S. C.; Tondomker, S. H.; Kothapalli, K. Efficient Parallel

Algorithms for Betweenness-and Closeness-Centrality in Dynamic Graphs. In Pro-

ceedings of the 34th ACM International Conference on Supercomputing, Barcelona,

Spain, June 29–July 2, 2020; pp 1–12.

147. Furini, F.; Ljubić, I.; Martin, S.; San Segundo, P. The Maximum Clique Interdiction

Problem. European Journal of Operational Research 2019, 277, 112–127.

101

http://snap.stanford.edu/data

Leyla Tekin
Vita

Academic Experience
2017–2024 Research/Teaching Assistant, Department of Computer Engineering, İzmir

Institute of Technology

Education
2015–2018 MSc in Computer Engineering, İzmir Institute of Technology
2010–2015 BSc in Computer Engineering, İzmir Institute of Technology

Publications
2024 Leyla Tekin and Belgin Ergenç Bostanoğlu. A qualitative survey on community

detection attack algorithms. Symmetry, 16(10):1272, 2024.

2024 Leyla Tekin and Belgin Ergenç Bostanoğlu. Edge deletion based subgraph hiding.
WSEAS Transactions on Information Science and Applications, 21:333-347,
2024.

2018 Leyla Tekin. Analysing the encrypted search algorithms on encrypted data.
Master’s thesis, İzmir Institute of Technology, 2018.

2018 Leyla Tekin, Hüseyin Güven Özgür, Burcu Sayin, Arzum Karataş, Pelin Şenkula,
Emre İrtem, and Serap Şahin. EDU-VOTING: An educational homomorphic
e-voting system. In International Conference on Advanced Technologies, Com-
puter Engineering and Science (ICATCES’18), pages 114-119, 2018.

2017 Leyla Tekin and Serap Şahin. Implementation and evaluation of improved
secure index scheme using standard and counting bloom filters. International
Journal of Information Security Science, 6(4):46-56, 2017.

2017 Leyla Tekin and Serap Şahin. Implementation and evaluation of improved secure
index scheme using standard and counting bloom filters. In 10th International
Conference on Information Security and Cryptology (ISCTurkey 2017), pages
167-174, 2017.

Awards & Honors
2015 The Rector’s List (3rd Highest-Ranked Student Award), İzmir Institute of

Technology

2015 2nd Highest-Ranked Student Award in Computer Engineering Graduates, İzmir
Institute of Technology

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Contribution of the Thesis
	Organization of the Thesis

	BACKGROUND
	Basic Graph Terminology
	Graph Mining
	Subgraph Mining
	Community Detection

	Graph Hiding
	Subgraph Hiding
	Community Hiding

	Measures used in Graph Hiding
	Measures for Subgraph Hiding
	Measures for Community Hiding

	Subgraph Entropy for Privacy Preservation on Graphs

	RELATED WORK
	Subgraph Hiding
	Community Hiding
	Target Node Attack
	Target Community Attack
	Global Attack

	PROPOSED METHODS FOR KNOWLEDGE HIDING ON GRAPH DATA
	Subgraph Hiding Methods
	Edge Deletion-Based Heuristic (EDH) Algorithm
	EdgeDegree Algorithm
	Matchings & EdgeDegree Algorithm
	Subgraph Hiding with Edge Entropy

	Community Hiding Methods
	4-clique Community Hiding (4clqCH)

	PERFORMANCE EVALUATION OF THE PROPOSED METHODS
	Performance Evaluation of Subgraph Hiding Algorithms
	Datasets
	Experimental Results of the EDH and Masking Algorithms
	Experimental Results of the Edge Deletion-Based Algorithms

	Performance Evaluation of Community Hiding Algorithms
	Community Detection Algorithms
	Datasets
	Experimental Results of the 4clqCH Algorithm

	CONCLUSION AND FUTURE WORK

