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ABSTRACT

GRAPHLET MINING IN BIG DATA

This thesis explores graphlet counting algorithms, which are crucial for under-

standing the structural principles of complex networks such as bioinformatics, social

networks, and network model evaluation. Counting graphlets in large networks is com-

putationally challenging due to the combinatorial explosion of possibilities, particularly

for larger graphlet sizes. To address this, we focus on clique graphlets, fully connected

subgraphs, which reveal critical patterns in areas like protein structure analysis, social

network modeling, community detection, and spam detection. Counting k-cliques (sub-

graphs with 𝑘 nodes) becomes infeasible for large datasets and high 𝑘 values. Existing

exact and approximate algorithms struggle with large 𝑘 , often failing when 𝑘 exceeds

10. To tackle these limitations, we propose BDAC (Boundary-Driven Approximations of

K-Cliques), a novel algorithm that efficiently approximates k-clique counts using classical

extremal graph theorems. BDAC uniquely provides lower and upper bounds for k-clique

counts at both local (per vertex) and global levels, making it particularly suited for large,

dense graphs with high 𝑘 values. Unlike existing methods, the algorithm’s complexity

remains unaffected by the value of 𝑘 . We validate BDAC’s efficiency and scalability

through extensive comparisons with leading algorithms on diverse datasets, spanning k

values from minor (e.g., 8) to large (e.g., 50). Parallelization techniques enhance its

performance, making it highly scalable for analyzing large and dense networks. BDAC

offers a significant advancement in k-clique counting, enabling the analysis of previously

considered computationally intractable networks.
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ÖZET

BÜYÜK VERİDE ALT ÇİZGE MADENCİLİĞİ

Bu tez, biyoenformatik, sosyal ağlar ve ağ modeli değerlendirmesi gibi karmaşık

ağların yapısal prensiplerini anlamak için kritik öneme sahip olan alt çizge sayma algo-

ritmalarını incelemektedir. Büyük ağlarda alt çizgelerin sayılması, özellikle daha büyük

alt çizge boyutları için olasılıkların kombinatoryel patlaması nedeniyle hesaplama açısın-

dan zorludur. Bu zorlukları ele almak için, protein yapısı analizi, sosyal ağ modelleme,

topluluk tespiti ve spam tespiti gibi alanlarda kritik desenleri ortaya çıkaran tam bağlı alt

çizgeler olan k-klik alt çizgelerine odaklanıyoruz. K-klik’lerin (𝑘 düğümlü alt çizgeler)

sayılması, büyük veri kümeleri ve yüksek 𝑘 değerleri için uygulanamaz hale gelmekte-

dir. Mevcut kesin ve yaklaşık algoritmalar, 𝑘 10’u aştığında genellikle başarısız olur.

Bu sınırlamaların üstesinden gelmek için, klasik ekstremal çizge teoremlerini kullanarak

k-klik sayılarını verimli bir şekilde yaklaşık olarak hesaplayan yenilikçi bir algoritma olan

BDAC’ı (K-kliklerin Sınır Tabanlı Yaklaşımı) öneriyoruz. BDAC, k-klik sayımları için

hem yerel (düğüm bazında) hem de küresel seviyelerde benzersiz bir şekilde alt ve üst

sınırlar sağlayarak, özellikle yüksek 𝑘 değerlerine sahip büyük ve yoğun çizgeler için son

derece uygundur. Mevcut yöntemlerin aksine, algoritmanın karmaşıklığı 𝑘 değerinden

etkilenmez. BDAC’ın verimliliğini ve ölçeklenebilirliğini, küçük (ör. 8) ile büyük (ör.

50) arasında değişen 𝑘 değerlerini kapsayan çeşitli veri kümeleri üzerinde önde gelen al-

goritmalarla yapılan kapsamlı karşılaştırmalarla doğruluyoruz. Paralelleştirme teknikleri,

performansını daha da artırarak, büyük ve yoğun çizgelerin analizinde oldukça ölçek-

lenebilir hale getirmektedir. BDAC, k-klik sayımı konusunda önemli bir ilerleme sunarak,

daha önce hesaplama açısından ulaşılamaz kabul edilen çizgelerin analizine olanak tanı-

maktadır.

v



To my lovely daughter, Azra.

vi



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1. Directed and Undirected Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2. Connected and Unconnected Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3. Tree, Forest, and Arboriticy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Subgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1. Induced vs Non-induced Subgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2. Subgraph Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3. Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. Graphlets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1. Clique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2. GFD Vector (Graphlet frequency distribution) . . . . . . . . . . . . . . . . . 11

2.3.3. Edge Density, Triangle Density, and Induced Density . . . . . . . . . 12

2.4. Extremal Graph Theorems on Clique Existence . . . . . . . . . . . . . . . . . . . . 13

2.4.1. Turán’s Theorem (Turán 1941) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2. Erdős’s Theorem (Erdős 1969) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3. Zykov’s Theorem (Zykov 1949) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.4. Kruskal-Katona Theorem (Katona 1987; Kruskal 1963) . . . . . . 14

2.4.5. Reiher’s Theorem (Reiher 2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5. Parallel and Distributed Computing Paradigms. . . . . . . . . . . . . . . . . . . . . 15

vii



2.5.1. Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2. Distributed Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.3. Graphics Processing Units (GPUs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

CHAPTER 3. Graphlet Mining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1. Problem Definition, Challenges and Applications . . . . . . . . . . . . . . . . . . 18

3.2. Preprocessing: Graph Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. Graphlet Mining Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1. Induced or Non-Induced Graphlet Counting . . . . . . . . . . . . . . . . . . . 22

3.3.2. Local or Global Graphlet Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3. Exact or Approximate Graphlet Counting . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3.1 Exact Graphlet Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3.2 Approximate Graphlet Counting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4. Graphlet Counting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1. Exact Graphlet Counting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1.1 RAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1.2 ORCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1.3 PGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1.4 E-CLOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1.5 ESCAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1.6 EVOKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2. Approximate Graphlet Counting Algorithms. . . . . . . . . . . . . . . . . . . 32

3.4.2.1 Doulion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2.2 Approximating the Number of Network Motifs. . . . . . . . . . . . 33

3.4.2.3 GUISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2.4 Colorful Triangle Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2.5 Sahad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2.6 GRAFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2.7 Wedge Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2.8 Path Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2.9 GSparsify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2.10 4-Prof-Dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2.11 Parallel Five-Cycle Counting Algorithms . . . . . . . . . . . . . . . . . . 39

viii



CHAPTER 4. Clique Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1. Problem Definition and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2. Applications of Clique Counts Across Domains. . . . . . . . . . . . . . . . . . . . 41

4.3. Clique Counting Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1. Base Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1.1 Algorithm 457 (Bron and Kerbosch 1973) . . . . . . . . . . . . . . . . . 43

4.3.1.2 ARBO (Chiba and Nishizeki 1985) . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2. Exact Clique Counting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2.1 Akkoyunlu’s Algorithm (Akkoyunlu 1973) . . . . . . . . . . . . . . . 46

4.3.2.2 MACE (Makino and Uno 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2.3 MemoryEfficient CliqueCounting (Tomita, Tanaka, and

Takahashi 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2.4 DegenClique (Eppstein, Löffler, and Strash 2010) . . . . . . . . . 47

4.3.2.5 pbitMCE (Dasari, Ranjan, and Mohammad 2014) . . . . . . . . 48

4.3.2.6 kClist (Danisch, Balalau, and Sozio 2018) . . . . . . . . . . . . . . . . . 48

4.3.2.7 Clique Counting with Ordering Heuristics (R. Li et

al. 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2.8 ARB-COUNT (Shi, Dhulipala, and Shun 2021) . . . . . . . . . . . 49

4.3.2.9 Clique Counting with MapReduce (Finocchi, Finocchi,

and Fusco 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2.10 Pivoter (Jain and Seshadhri 2020) . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2.11 GPU-accelerated Clique Counting (Almasri et al. 2022). . 51

4.3.2.12 SDegree and BitCol (Z. Yuan et al. 2022) . . . . . . . . . . . . . . . . . 51

4.3.2.13 EBBkC (Wang, Yu, and Long 2024) . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3. Approximate Clique Counting Algorithms . . . . . . . . . . . . . . . . . . . . . 54

4.3.3.1 Turán-shadow (Jain and C. Seshadhri 2017) . . . . . . . . . . . . . . . 54

4.3.3.2 YACC (Jain and Tong 2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3.3 ERS (Eden, Ron, and Seshadhri 2018) . . . . . . . . . . . . . . . . . . . . . 55

4.3.3.4 SR-kCCE (Chang, Gamage, and Yu 2024) . . . . . . . . . . . . . . . . . 56

4.3.3.5 DPColorPath Clique Counting (Ye et al. 2023) . . . . . . . . . . . . 56

4.3.4. Discussion on Clique Counting Algorithms . . . . . . . . . . . . . . . . . . . . 58

4.4. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



CHAPTER 5. Proposed K-Clique Approximations Algorithms . . . . . . . . . . . . . . . . . . . . . . 69

5.1. BDAC (Boundary-Driven Approximations of K-cliques) . . . . . . . . . . 69

5.2. Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3. Time and Space Complexity Comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4. Parallel BDAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

CHAPTER 6. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2. Experimental results of BDAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3. Experimental results of parallel BDAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4. Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

CHAPTER 7. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



LIST OF FIGURES

Figure Page

Figure 2.1. Undirected and directed graph example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.2. Connected and unconnected graph example. . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.3. An example of a forest with three trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.4. A graph 𝐺 and a subgraph 𝐺𝑠 example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.5. Isomorphic graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.6. The examples of vertex orbits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.7. The examples of edge orbits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.8. Example of 4-graphlets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.9. Clique and its types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.10. All 3,4,5 connected and undirected graphlets (Rahman, Bhuiyan,

and Al Hasan 2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 3.1. An example of induced and non-induced graphlet. . . . . . . . . . . . . . . . . . 22

Figure 3.2. Linear transformation between vectors of induced and non-induced

counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.3. Examples of counting graphlets without enumeration. . . . . . . . . . . . . . 24

Figure 5.1. Visualization of a graph (a) and its node relationships after apply-

ing degeneracy ordering (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.2. An induced subgraph 𝐻 formed by nodes 2 and 5 separately. . . . . . 74

xi



LIST OF TABLES

Table Page

Table 3.1. Distinct graphlet counts for different numbers of vertices. . . . . . . . . . . 19

Table 3.2. Wedge counts after degree and degeneracy orientations. . . . . . . . . . . . . 21

Table 3.3. Categorization of exact graphlet counting algorithms.. . . . . . . . . . . . . . . 31

Table 3.4. Categorization of approximate graphlet counting algorithms. . . . . . . 40

Table 4.1. A comparison of algorithms based on different characteristics. . . . . . 64

Table 4.2. A comparison of algorithms based on additional characteristics. . . . 65

Table 6.1. Dataset properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 6.2. Comparison of the boundaries provided by BDAC, the exact values

(if available) from Pivoter, and the estimated values from Turán-

Shadow and DPColorPath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Table 6.3. Execution time comparison of BDAC, Pivoter, TuránShadow, and

DPColorPath algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 6.4. Comparison of BDAC, YACC, and DPColorPath regarding estima-

tion results for k=20,40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 6.5. Execution time comparison of both sequential and parallel versions

of BDAC and DPColorPath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xii



CHAPTER 1

INTRODUCTION

The process of extracting usable data from a larger set of raw data is commonly

referred to as data mining. Finding important patterns and trends requires examining

and analyzing large datasets. The significance of using data analysis to obtain actionable

knowledge has grown as datasets get larger for many application areas. As a result, data

mining and knowledge discovery have become important research topics in recent years.

Data can take many forms, including vectors, tables, graphs, text, images, and more, and

can be represented in various ways.

Graph data consists of a collection of nodes connected by edges, which can be

used to naturally represent structured and semi-structured data. The data across numerous

domains, such as social media (Nocaj, Ortmann, and Brandes 2015; Chakraborty et

al. 2018; X. Yang et al. 2021), molecular biology (Huber et al. 2007; Rosselló and Valiente

2005b), chemical reactions (Rosselló and Valiente 2005a; Ralaivola et al. 2005), protein

interactions (Jha, Saha, and Singh 2022; F. Yang et al. 2020), and computer networks

(McQuillan 1977; Jahnke, Thul, and Martini 2007), can be represented via graphs.

Graphlets, also known as motifs, are small, induced subgraphs representing large

data’s underlying structure. Analyzing the number of graphlets in a dataset can provide

valuable insights into the complex network’s properties, functions, and dynamics. For

example, this analysis can help elucidate community structures in the context of social

media data (Dourisboure, Geraci, and Pellegrini 2009). Similarly, it can be used to

study interactions between proteins in bioinformatics and to analyze interactions between

molecules in chemistry. Common graphlets such as triangles, cycles, and cliques are

widely used in various domains such as spam detection (Leon-Suematsu et al. 2011; Bec-

chetti et al. 2006), link prediction (X. Li et al. 2019), uncovering patterns in biological

networks (Betzler et al. 2011; Saha et al. 2010), anomaly detection (Yan et al. 2021;

Gibson, Kumar, and Tomkins 2005), social network analysis (Foucault Welles, Van De-

vender, and Contractor 2010; Son et al. 2012; Han, Pei, and Kamber 2006), conducting

clustering (Seeland et al. 2010) and classification (Acosta-Mendoza, Gago-Alonso, and

Medina-Pagola 2012) tasks. However, graphlet counting is computationally challenging,
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as the number of possible graphlets increases exponentially with their size, leading to a

combinatorial explosion. For instance, there are two induced graphlets with three nodes,

six induced graphlets with four nodes, 21 induced graphlets with five nodes, and 112

induced graphlets with six nodes. This makes counting large graphlets (with larger nodes)

infeasible, particularly for large datasets. Furthermore, large datasets contain millions or

billions of nodes and edges, making exhaustive enumeration impractical.

There are lots of algorithms in the literature that can count the occurrences of

graphlets up to 4 nodes exactly; there are only a few that can count up to 5 nodes

(Ahmed et al. 2015; Jha, Seshadhri, and Pinar 2015; Pinar, Seshadhri, and Vishal 2017;

Ribeiro et al. 2021). Due to the complexity of the problem, many algorithms resort to

approximation schemes that trade some accuracy for faster execution times. Additionally,

some algorithms count global graphlet counting for the entire dataset, while others focus

on local graphlet counting in an edge or vertex context. It has been observed that parallel

computing can significantly improve execution time and enable scalable graphlet counting

computation.

Due to the combinatorial explosion, exact graphlet counting in large datasets

is not tractable. Therefore, it is essential to sparsify large datasets while preserving

the essential structural properties of a graph and staying computationally manageable.

Typically, sampling strategies and statistical methods are employed to estimate graphlet

counts close to their exact values. In approximate methods, a suitable sampling size must

be selected. The sampling size affects both the computational efficiency and accuracy of

the algorithm. The sampling strategies represent the large datasets by a smaller subset

and enable the analysis of large datasets impractical to handle using exact algorithms.

A well-chosen sample size accelerates analysis, conserves computational resources, and

provides meaningful insights.

Each type of graphlet has distinct characteristics, such as its node and edge counts,

degree distribution, and overall density. The sampling strategies are built upon these

characteristics, so providing a sampling strategy that preserves each graphlet type and size

is another challenge. Finding a base structure that encompasses each graphlet type and

size is challenging. Consequently, the research shifted focus towards counting cliques,

among the most widely used graphlets across various application areas. Fully connected

𝑘 vertices represent a dense subgraph known as a k-clique.
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The cliques in a social or communication network can help to detect communities,

spams, or groups of individuals with strong connections (Holland and Leinhardt 1977;

Jackson, Rodriguez-Barraquer, and Tan 2012; Cleemput 2012; Yildiz and Kruegel 2012;

Lu, Wahlström, and Nehorai 2018; Nedioui et al. 2020; Shi et al. 2021; Gregori, Lenzini,

and Mainardi 2012; Jayanthi 2012; Faust 2010; Han, Pei, and Kamber 2006; Pan et

al. 2023; Foucault Welles, Van Devender, and Contractor 2010; Son et al. 2012). Similarly,

cliques can be used to analyze functional modules, identify protein complexes, and uncover

key interactions critical for understanding biological processes in protein networks (X.-L.

Li et al. 2005; H. Yu et al. 2006; Chen et al. 2013; Milik, Szalma, and Olszewski 2003;

Betzler et al. 2011; Pržulj, Corneil, and Jurisica 2004; Saha et al. 2010). This sheds light

on biological pathways and disease mechanisms such as epilepsy prediction (Prokopyev

et al. 2007; Iasemidis et al. 2003). Cliques can enhance the accuracy of suggestions

in recommendation systems, where they can help identify groups of closely connected

users or items with similar preferences (Vilakone, Xinchang, and Park 2019; Vilakone

et al. 2018; Manoharan et al. 2020; Gong et al. 2019; Tsourakakis et al. 2011). In fraud

detection applications, the collusive groups of actors who engage in fraudulent activities

(J. Yu et al. 2023) can be detected with the help of clique counts. Moreover, clique counting

finds applications in diverse fields such as graph compression (Buehrer and Chellapilla

2008) and clustering (Duan et al. 2012). However, dealing with the number of k-cliques for

larger values of 𝑘 poses significant algorithmic challenges, mainly due to the exponential

growth of the search space associated with large cliques.

There are two algorithms serve as the foundation of clique counting algorithms:

the Bron-Kerbosch algorithm (Bron and Kerbosch 1973), the foundation for maximal

clique listing, and the ARBO algorithm (Chiba and Nishizeki 1985), designed explicitly

for k-clique listing. Many subsequent algorithms either build upon these base algorithms

or incorporate enhancements inspired by them (Finocchi, Finocchi, and Fusco 2015;

Danisch, Balalau, and Sozio 2018; Jain and C. Seshadhri 2017, 2020; Jain and Tong

2022; Ye et al. 2023). Finocchi et al. (Finocchi, Finocchi, and Fusco 2015) present a

MapReduce-based adaptation of the Chiba and Nishizeki’s approach (ARBO) (Chiba and

Nishizeki 1985) -a k-clique listing algorithm- with degree orientation. Similarly, the kClist

algorithm (Danisch, Balalau, and Sozio 2018) enhances the ARBO (Chiba and Nishizeki

1985) algorithm by incorporating parallelization techniques and degeneracy orientation
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to eliminate duplicate clique enumeration. Turán-shadow (Jain and C. Seshadhri 2017)

introduces an innovative method for approximate clique counting, using Turán’s theorem

(Turán 1941) to enumerate cliques up to size 10. Meanwhile, Pivoter (Jain and Seshadhri

2020) has revolutionized clique counting by eliminating the need for enumeration, allowing

the exact computation of k-clique counts for all 𝑘 values across different graphs. However,

the authors state that it is unsuitable for large datasets such as ”𝑐𝑜𝑚 − 𝑙 𝑗” (Leskovec and

Krevl 2014) beyond 𝑘 > 10. The Yacc algorithm (Jain and Tong 2022) approximates

k-cliques up to 40 by revisiting the Turán-shadow algorithm and incorporating various

insights to achieve faster clique counting. The DPColorPath (Ye et al. 2023) algorithm

combines the strengths of both exact and approximate solutions. It divides the graph

into sparse and dense regions. For the sparse region, it employs exact solutions, utilizing

the Pivoter algorithm (Jain and Seshadhri 2020). The algorithm introduces three distinct

dynamic programming-based sampling approaches for the dense region.

1.1. Contribution of the Thesis

This section clarifies the contribution of the thesis.

• The graphlet counting algorithms in the literature are analyzed, highlighting the

challenges of the problem, as well as the advantages and disadvantages of the

proposed algorithm. Detailed examination of these algorithms is given in the scope

of the thesis. Additionally, potential research directions are identified.

• As a potential research directions, clique-a special graphlet type- counting al-

gorithms are analyzed, and a comprehensive survey is presented for researchers

(Çalmaz and Bostanoğlu 2024b). This survey provides a detailed review of the

algorithms.

• We propose an algorithm, BDAC (Boundary-driven approximations of k-cliques),

which uses the Turán theorem (Turán 1941) and additional extremal graph theorems

(Erdős 1969; Zykov 1949; Kruskal 1963; Reiher 2016) from previous literature

to approximate the number of k-cliques (Çalmaz and Bostanoğlu 2024a). The

proposed method differs from existing methods in eliminating the need for sampling

procedures and repetitive recursive calls. Instead, it provides lower and upper
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bounds for local (per-vertex) and global on the k-clique count over the entire range

of k-values up to 50. Unlike existing algorithms, our algorithm’s complexity is

unaffected by the k-values. We evaluate our algorithm by comparing it with state-

of-the-art clique counting algorithms across a wide range of 𝑘 values, from 8 to

50.

• To enhance the BDAC algorithm’s performance and scalability, we also provide the

parallel version of BDAC throughCPU-based parallelization techniques. TheBDAC

algorithm is compared with the state-of-the-art algorithms in the literature and has

shown competitive performance. The parallel version enhances the performance

and scalability, and the algorithm becomes suitable for large and dense datasets. We

are preparing a conference paper that focuses on the parallel implementation of the

BDAC algorithm.

1.2. Outline of the Thesis

The thesis is structured as follows: Chapter 2 introduces essential terminology.

Chapter 3 reviews the graphlet mining problem, covering challenges, applications, pre-

processing steps, and algorithmic variants. It also surveys existing graphlet counting

algorithms. Chapter 4 discusses the problem, presents the applications in different do-

mains, reviews and discusses the relevant literature on clique counting algorithms, and

finally, presents the motivation behind this thesis. Chapter 5 details the proposed k-clique

approximation algorithms. The experimental result of the proposed algorithm is pre-

sented in Chapter 6. Finally, Chapter 7 concludes the paper and suggests future research

directions.
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CHAPTER 2

PRELIMINARIES

This section presents concepts and terminology associated with graphlet count-

ing that will be employed throughout this study. Our research focuses only on simple,

connected, non-isomorphic subgraphs on a single graph.

2.1. Graph

An undirected simple graph𝐺 (𝑉, 𝐸), comprises a collection of vertices (or nodes)

denoted by |𝑉 |, with cardinality n = |𝑉 |, and a set of edges represented by 𝐸 , with

cardinality m = |𝐸 |. A k-graph refers to a graph with k vertices.

The degree (denoted as 𝑑 (𝑢)) of a node 𝑢 is the number of its neighboring vertices,

in other terms, the count of adjacent edges connected to that node. The degeneracy (𝑑) of

a graph G is the smallest number d, so the vertices can be arranged in a sequence where

each vertex is adjacent to at most 𝑑 of the vertices that come before it in the sequence.

2.1.1. Directed and Undirected Graph

A directed graph comprises nodes and edges, with the latter having a direction that

indicates a one-way flow of information or a relationship between the connected nodes. In

contrast, an undirected graph lacks such direction. Figure 2.1a represents the undirected

graph example, and Figure 2.1b is an example of a directed graph.

(a) Undirected graph. (b) Directed graph.

Figure 2.1. Undirected and directed graph example.

6



2.1.2. Connected and Unconnected Graph

Suppose every pair of vertices is connected via a path; such a graph is called

connected. If any pair has no path between them, such a graph is called unconnected

or disconnected. Figure 2.2a and Figure 2.2b illustrate the connected and unconnected

graphs, respectively. Suppose a connected graph, if there are no multiple edges between

any pair of vertices or a node to itself, is called a simple graph. A path is a series of

connected vertices, each connected to the next by an edge. Suppose a graph, a path starts

from a vertex and ends with the same vertex; this graph contains a cycle. This graph is

called acyclic if no such path exists.

(a) Connected graph. (b) Unconnected graph.

Figure 2.2. Connected and unconnected graph example.

2.1.3. Tree, Forest, and Arboriticy

A connected graph with no cycles is called a tree. A disconnected acyclic graph is

called forest. Any of the two vertices of a forest are connected by at most one path. Figure

2.3 is an example of a forest consisting of three trees. The minimum number of forests

required to cover the graph is known as the arboricity of that graph.
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Figure 2.3. An example of a forest with three trees.

2.2. Subgraph

Given a graph 𝐺 = (𝑉, 𝐸), a graph 𝐺𝑠=(𝑉𝑠,𝐸𝑠 ) is a subgraph of 𝐺 if and only

if 𝑉𝑠 ⊆ 𝑉 and 𝐸𝑠 ⊆ 𝐸 . Figure 2.4a, and Figure 2.4b are the examples of a graph and

subgraph.

(a) 𝐺. (b) 𝐺𝑠 .

Figure 2.4. A graph 𝐺 and a subgraph 𝐺𝑠 example.

2.2.1. Induced vs Non-induced Subgraph

Suppose a subgraph that consists of a subset of vertices of another graph. If this

subgraph contains all edges between pairs of vertices within the subset, this subgraph is

called induced subgraph. Otherwise, it is called as non-induced subgraph.

2.2.2. Subgraph Isomorphism

Suppose 𝐺 and 𝐻 are two graphs. There is an isomorphism between 𝐺 and 𝐻 if

there is a bĳection 𝑓 between the vertices ( 𝑓 : 𝑉 (𝐺) → 𝑉 (𝐻)), that is, any two adjacent

vertices (𝑢 and 𝑣) in graph 𝐺, if and only if 𝑓 (𝑢) and 𝑓 (𝑣) are adjacent in 𝐻. These
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two graphs are called isomorphic since they are topologically identical. An isomorphism

from a graph to itself is called automorphism. Embeddings in a graph dataset refer to

isomorphic graphs of a subgraph within that dataset.

Figure 2.5. Isomorphic graphs.

2.2.3. Orbit

In a graph, 𝐺, the equivalence classes of vertices under automorphism actions

are referred to as vertex orbits, while those of edges are termed edge orbits. If two

edges belong to the same orbit, their degrees must be identical. Orbits represent unique

configurations of subgraphs, where nodes sharing the same label in Figure 2.6 share the

same orbit and possess topological equivalence.

aa

a

b

c d

dc

e

e e
e

Figure 2.6. The examples of vertex orbits.

In Figure 2.7, if we disregard the vertex labels u and v, the two graphlets in Figure

2.7a and Figure 2.7b are topologically identical. However, if we consider the vertex labels,

Figure 2.7b represents a non-local edge orbit of the 3-path shown in Figure 2.7a. When two

edges are part of the same orbit, they must have the same degree pair. In calculating the
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local count of graphlets, certain types of graphlets with distinct edge orbits are excluded,

even if they are isomorphic to each other.

u v

y x

(a) 3-path.

u v

y x

(b) Non-local edge orbit of 3-path.

Figure 2.7. The examples of edge orbits.

2.3. Graphlets

Graphlets (or motifs) are induced subgraphs that are connected and consist of a

small number of nodes. A k-graphlet refers to the k nodes graphlet. The Figures between

2.8a and 2.8f are examples of 4-graphlets.

(a) 3-path. (b) Tailed triangle. (c) 3-star

(d) 4-cycle. (e) Diamond. (f) 4-clique.

Figure 2.8. Example of 4-graphlets.
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2.3.1. Clique

A clique is a maximal subgraph where each vertex pair is connected via an edge,

defining a complete subgraph. A k-clique indicates a clique with k vertices. There are

different types of cliques.

• Maximal clique: A maximal clique is a clique that cannot be expanded by adding

another adjacent vertex, i.e., it is not a subset of any larger clique in the graph.

• Bi-clique: Suppose a bipartite graph whose vertices can be divided into two distinct,

non-overlapping groups if every vertex of the first group is connected to every vertex

of the second group. Such a graph is called a complete bipartite graph or bi-clique.

• Quasi-clique: A quasi-clique is a group of vertices in a graph where each vertex is

connected to many vertices; unlike the cliques, it is not necessarily to all.

Figure 2.9 illustrates the clique and its different types.

(a) Clique. (b) Quasi-clique.

(c) Triangle(3-

clique). (d) Bi-clique.

Figure 2.9. Clique and its types.

2.3.2. GFD Vector (Graphlet frequency distribution)

TheGraphlet FrequencyDistribution (GFD) is a vector of a graph that characterizes

the relative frequencies of the various graphlets in the graph. Constructing GFD requires

the frequencies of all graphlets of sizes 3, 4, and 5. There are 29 connected and undirected
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k-graphlets for 𝑘 = 3, 4, 5 (see Figure 2.10). Assume f(i) be the frequency of graphlet 𝑔𝑖

where i ∈ {1, 2, ..., 29}. Each entry in the GFD is calculated with this formula:

𝑙𝑜𝑔(
𝑓 (𝑖) + 1Í29

𝑖=1 𝑓 (𝑖) + 29
) (2.1)

Figure 2.10. All 3,4,5 connected and undirected graphlets (Rahman, Bhuiyan, and Al

Hasan 2014).

In this formula 2.1, 1 is added to the frequency of each graphlet to normalize the

frequency of each graphlet and avoid the undefined problem log 0. The resulting value is

then divided by the total frequency of all graphlets and adjusted by adding 29 (the number

of graphlets considered) to account for the smoothing factor applied to each graphlet.

2.3.3. Edge Density, Triangle Density, and Induced Density

The edge density of a graph is the ratio of the number of edges to the number of

possible edges based on the number of vertices in the graph. It is calculated by dividing

the number of actual edges (m) by the total number of possible edges (n), mathematically

defined as 𝑚

(𝑛2)
.

Let’s assume that 𝑡𝑣 denotes the number of triangles that form by node 𝑣, and 𝑑𝑣

refers to the degree of node 𝑣. The triangle density can be computed using this formula:

𝑡𝑣

(𝑑𝑣2 )
.

Suppose 𝐻 is a graph with 𝑘 vertices and𝐺 is a graph with 𝑛 vertices. The induced
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copies of 𝐻 in 𝐺 are denoted as 𝐼𝑛𝑑 (𝐻;𝐺). The induced density of 𝐻 is calculated as:

𝑑 (𝐻;𝐺) = |𝐼𝑛𝑑 (𝐻;𝐺) |

(𝑛2)
(Huang et al. 2016).

In this paper, the k-clique density of node 𝑣 is denoted as 𝑑 (𝐾𝑘 )𝑣, k-clique density of graph

𝐺 is denoted as 𝑑 (𝐾𝑘 ;𝐺).

2.4. Extremal Graph Theorems on Clique Existence

This section presents the theorems that provide insights into the conditions under

which cliques are present. These methods are instrumental for approximation techniques.

Several algorithms leverage these theorems for approximation purposes. In our work, we

have applied these theorems to enhance our approaches. To access the formal proofs of the

referenced theorems, refer to the provided references, which offer thorough and rigorous

demonstrations of their validity.

2.4.1. Turán’s Theorem (Turán 1941)

In extremal graph theory, Turán posed a question regarding a positive number 𝑛

and a graph 𝐹. He asked for the maximum number of edges a graph with 𝑛 vertices can

have without containing graph 𝐹 as a subgraph. Turán provided a complete solution for

the case where 𝐹 is a clique. In other words, Turán’s theorem focuses on determining

whether a graph contains a complete subgraph (clique) of a given size k using edge density

information.

Theorem 1 For any integer 𝑘 , 𝑑 (𝐾𝑘 ;𝐺) = 0 if 𝑑 (𝐾2;𝐺) ≤ 𝑘−2
𝑘−1

.

The expression 𝑘−2
𝑘−1

is denoted as Turán threshold. This threshold indicates the

maximum number of edges a graph can have without k-clique. For clarity, if the edge

density 𝑑 (𝐾2;𝐺) satisfies the Turán threshold, the graph contains at least one k-clique

(𝐾𝑘 ).

2.4.2. Erdős’s Theorem (Erdős 1969)

Erdős’ theorem states that if the edge density of a graph 𝐺 exceeds a certain

threshold relative to 𝑘 , then it indicates the minimum number of 𝑘-cliques present in the
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graph.

Theorem 2 A graph with 𝑛 vertices, if 𝑑 (𝐾2;𝐺) > 𝑘−2
𝑘−1

, this graph contains at least

( 𝑛
𝑘−1

)𝑘−2 k-cliques.

This theorem provides a lower bound for the number of k-cliques in a graph that meets the

Turán threshold.

2.4.3. Zykov’s Theorem (Zykov 1949)

Zykov generalized Turán’s theorem. Let’s refer this expression
(𝑘−1) (𝑘−2)...(𝑘−𝑟)

(𝑘−1)𝑟
as

Zykov threshold. Another point of view is that if 𝐾𝑟 density of a graph 𝑑 (𝐾𝑟 ;𝐺) satisfies

the Zykov threshold, this graph contains at least one k-clique.

Theorem 3 For integers2 ≤ 𝑟 ≤ 𝑘 , if 𝑑 (𝐾𝑘 ;𝐺) = 0 then 𝑑 (𝐾𝑟 ;𝐺) ≤
(𝑘−1) (𝑘−2)...(𝑘−𝑟)

(𝑘−1)𝑟
(Huang

et al. 2016).

If we know the density for 𝑟 > 2, the Zykov theorem provides a much lower threshold than

the Turán threshold. For 𝑟 = 2, it corresponds to the Turán threshold, as observed.

2.4.4. Kruskal-Katona Theorem (Katona 1987; Kruskal 1963)

Based on the known density of r-cliques, the theorem provides an upper bound on

the density required for the existence of k-cliques.

Theorem 4 if 𝑑 (𝐾𝑟 ;𝐺) = 𝛼 then 𝑑 (𝐾𝑘 ;𝐺) ≤ 𝛼𝑘/𝑟

This theorem establishes an upper bound on the number of k-cliques within a given

graph. We can derive the upper bound by applying the following formula, where |𝐾𝑘 |

denotes the count of k-cliques, 𝑛 denotes the number of vertices.

|𝐾𝑘 | ≤ (𝛼𝑘/𝑟)
(𝑛
𝑘

)
.

2.4.5. Reiher’s Theorem (Reiher 2016)

Reiher addresses the question by determining the minimum number of k-cliques

that must exist in graphs with n vertices and more edges than 𝑘−2
2(𝑘−1)

𝑛2. Consider a graph
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𝐺 with 𝑛 vertices and 𝑚 edges. Let 𝛾 = 𝑚/𝑛2. Thus, if 𝛾 > 𝑘−2
2(𝑘−1)

, How many k-cliques

does this graph contain at a minimum, guaranteed?

Theorem 5 If 𝑘 ≥ 3 and 𝛾 ∈
[
0, 1

2

)
], then every graph on n vertices with at least 𝛾𝑛2

edges contains at least

1
(𝑠+1)𝑘

(𝑠+1
𝑘

)
(1 + 𝛽)𝑘−1(1 - (𝑘 - 1)𝛽)𝑛𝑘

k-cliques, where 𝑠 � 1 is an integer with 𝛾 ∈
h
𝑠−1
2𝑠 ,

𝑠
2(𝑠+1)

i
and 𝛽 ∈

[
0, 1

𝑠

]
is implicitly

defined by 𝛾 = 𝑠
2(𝑠+1)

(1 - 𝛽2) (Reiher 2016).

According to this theorem, in a graph, if we know the number of vertices (n) and edges

(m), we calculate 𝛾 as 𝛾 = 𝑚/𝑛2, so by rearranging the interval 𝛾 ∈
h
𝑠−1
2𝑠 ,

𝑠
2(𝑠+1)

i
in terms

of 𝑠, we obtain an interval for s as follows:

2𝛾
1−2𝛾 ≤ 𝑠 ≤ 1

1−2𝛾

Then, we compute 𝛽 by substituting 𝛾 and 𝑠 into the equation. Finally, we The theorem

indicates that, it can predict the existence of any k-cliques if 𝛾 > 𝑘−2
2(𝑘−1)

. The 𝑘−2
𝑘−1

represents

the Turán threshold. If 𝑠 < 𝑘 − 2, the binomial coefficient
(𝑠+1
𝑘

)
becomes zero. According

to Turán’s theorem, this scenario does not predict the existence of 𝑘-cliques.

2.5. Parallel and Distributed Computing Paradigms

It is inevitable to harness the power of parallel architectures to provide scalable

approaches that can reduce the computing time needed. Parallelization strategies com-

prise methodologies designed to break down intricate computational tasks into smaller,

manageable components, executed concurrently to bolster efficiency and tackle scala-

bility challenges. Leveraging shared memory systems, MapReduce frameworks (Dean

and Ghemawat 2004), and distributed platforms like Hadoop harness computational re-

sources. These methods decompose computations into parallel sub-tasks executed simul-

taneously across distributed systems. Significant performance enhancements are achieved

by distributing workload and executing tasks concurrently, circumventing the constraints

of sequential processing and effectively addressing computationally intensive problems.

Multiple parallelization strategies exist, but this work focuses on the methods used in clique

counting. This chapter introduces types of parallel and distributed computing paradigms.
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Different parallel platforms offer different advantages and are better suited for specific

strategies.

2.5.1. Shared Memory

Shared memory can run on single processor systems, parallel multiprocessors,

or clustered microprocessors. The workers use the same memory resources for higher

performance. The communication is accomplished via Inter-Process Communication

(IPC) technology. Shared memory is not highly scalable, and data consistency can be

an issue. In addition, the number of cores is usually deficient compared to distributed

memory environments.

2.5.2. Distributed Memory

In this system, multiple (heterogeneous) machines speed up the computation in a

parallel cluster. Work-sharing can be done in two ways: One is to have a master node

mediating work-sharing, and the other is to have workers who steal work directly from each

other. Communication is accomplished by sending messages over the network (message

passing interface(MPI)), so network bandwidth is a bottleneck in these systems.

Map-reduce paradigm (Dean and Ghemawat 2004) simplifies parallel processing

by the map and reduces semantics. The map phase deals with the splitting and mapping

of data, while the Reduce phase shuffles and reduces the data. It partitions data randomly

across machines and achieves data-parallel computing. It is not generally well suited for

dependent computation due to the random data partition. It has a high I/O cost of data

shuffling at every iteration, so it is unsuitable for iterative computation algorithms. Hadoop

(Borthakur 2007) is an open-source framework that implements the MapReduce model,

consisting of the Hadoop Distributed File System (HDFS) for distributed storage and the

Hadoop MapReduce framework for distributed processing, handling task scheduling, data

partitioning, and fault tolerance.
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2.5.3. Graphics Processing Units (GPUs)

GPUs are specialized hardware devices optimized for parallel processing. They

have many parallel threads and many cores, so while they seem well suited for parallel

tasks, GPUs are known to be challenging to program. With thousands of processing

cores, GPUs are particularly adept at executing numerous computations simultaneously.

By offloading computations from the CPU to the GPU, parallel tasks can be processed

more efficiently. This parallel processing capability enables significant performance im-

provements, especially for tasks suitable for parallel execution. GPUs distribute workloads

across multiple cores, allowing for concurrent execution of independent sub-tasks, which

leads to enhanced efficiency and faster processing times. Irregular data accesses are one

of the significant challenges affecting performance in GPUs.

In conclusion, the preliminary section has laid out the basic graph terminology,

including graphs, subgraphs, graphlets, and extremal graph theorems, necessary to clarify

the concept of this study. It lays the foundation for understanding the development of

k-clique counting in the literature, its challenges, and our proposed algorithm. This

understanding is critical as we continue with more extensive analysis and comparisons in

subsequent chapters.
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CHAPTER 3

GRAPHLET MINING

This section formally defines the graphlet mining problem, discusses the chal-

lenges, explores various applications, and details a common preprocessing step. It then

examines the variants of this preprocessing step based on the different characteristics of

algorithms.

3.1. Problem Definition, Challenges and Applications

Graphlet mining algorithms aim to count the frequencies of small, induced con-

nected subgraphs 𝐻, also known as motifs or graphlets, within a dataset 𝐺. The counting

can be achieved by listing and checking all induced graphlets in the dataset or using com-

binatorial methods without examining each one individually. Finding common subgraphs

in graph datasets is a well-researched problem in data mining. Having a scalable and exact

algorithm is crucial, especially for large-scale datasets. However, due to the problem’s

complexity, counting graphlets with five or more nodes in large datasets is very challeng-

ing. As the size of the graph or the desired clique size increases, the problem becomes

exponentially more difficult. The complexity of graphlet counting is O(| 𝑉 | �𝑘 ), where

� is the max degree of a graph, 𝑘 represents the possible subgraphs count, | V | denotes

vertex count.

Graphlet mining has extremely high computational complexity because it involves

solving two intractable problems:

• Computational expense: Counting the frequency of a given graphlet requires

finding all instances of that graphlet in the dataset. This process involves subgraph

isomorphism, which is an NP-complete problem (Garey, Johnson, and Stockmeyer

1974).

• Combinatorial explosion: The algorithm’s complexity is influenced by the number

of nodes and edges in the input. The number of possible graphlets increases super-

exponentially with their size (Table 3.1).
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Table 3.1. Distinct graphlet counts for different numbers of vertices.

Vertex
Count

Graphlet
Count

2 1

3 2

4 6

5 21

6 112

7 853

A dataset’s graphlet frequencies (or counts) provide insight into complex networks.

They reveal details about the properties, structure, and roles of individual nodes and their

relationships in areas as diverse as social, biological, and computer networks, including

tasks such as community or anomaly detection. In social networks, they help dissect

crucial structural aspects such as social balance, the strength, and stability of ties, and trust

(Granovetter 1983) or detect event precursors (Abou Jamra, Savonnet, and Leclercq 2021).

In biological networks, they aid in uncovering the functions of proteins (Milenković and

Pržulj 2008). Moreover, graphlets can function as features to help tasks like graph clus-

tering (Schaeffer 2007) or classification (Vishwanathan et al. 2010), as well as improving

community (Lu, Wahlström, and Nehorai 2018; Tsourakakis 2015), and anomaly detection

(Abou Jamra, Savonnet, and Leclercq 2021). In large and complex datasets, examining

the number of small subgraphs provides a powerful method for revealing hidden patterns

and structures in these complex networks.

3.2. Preprocessing: Graph Orientation

In graphlet counting algorithms, a common approach to reducing the search space

involves converting an undirected graph into a directed cyclic graph (DAG) based on an

ordering technique. The objective is to attain an acyclic orientation of an undirected graph,

where each edge is assigned a direction, ensuring the absence of any directed cycles. This

orientation is performed using a specific ordering of the vertices. The edges between any

two vertices are directed from the lower vertex to the higher vertex based on their position

in the ordering, ensuring no cycles are formed. This orientation technique aims to reduce
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the number of outgoing or incoming edges for each vertex, thus reducing search space and

eliminating duplicate graphlet discoveries. Let’s explain it with some sample codes to be

more descriptive. The Algorithm 1 presents the brute-force triangle counting algorithm

on a undirected graph.

Algorithm 1 Triangle counting without orientation (Seshadhri and Tirthapura 2019)

1: for all vertices 𝑢 do
2: for all pairs of neighbors 𝑣, 𝑤 do ⊲ this is a wedge

3: if (𝑣, 𝑤) is an edge then
4: Check if (𝑣, 𝑤) is an edge

5: end if
6: end for
7: end for

Performing an edge lookup for every wedge incurs a high cost, especially for

vertices with high degrees. The total number of edge lookups is given by Σ𝑣
(𝑑𝑣

2

)
, where

𝑑𝑣 denotes the degree of vertex 𝑣.

Algorithm 2 Triangle Counting with Out-Neighbors (Seshadhri and Tirthapura 2019)

1: for all vertices 𝑢 do
2: for all pairs of out-neighbors 𝑣, 𝑤 do
3: Check if (𝑣, 𝑤) is an edge

4: end for
5: end for

Algorithm 2 presents the triangle counting algorithm on a directed acyclic graph

(DAG).With the introduction of orientation, the algorithm significantly reduces the degrees

of nodes by considering only outgoing edges (outdegree < degree), thus reducing the

number of edge lookups. This provides a significant improvement in graphlet counting.

For example, a triangle consists of three edges, each triangle rediscovered three times, once

for each of its edges. With orientation, only checking outgoing edges and the neighbors

with higher order eliminates duplicate enumeration.

There are three methods commonly employed to perform orientation, which based

on ordering techniques:

• Degree orientation: In this technique, nodes are ordered according to priority. This

priority depends on the degree of the nodes; that is, nodes with higher degrees have

higher priority by resolving ties based on the vertex ID, which ensures uniqueness.

So, all the directed edges point from vertices lower in the ordering to higher ones.
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• Degeneracy orientation: This technique iteratively removes min-degree vertices

and updates all remaining vertice degrees. Nodes are prioritized based on removal

time. Ties are resolved based on the vertex ID to ensure uniqueness. The goal is

to order the vertices so each vertex has fewer neighbors than the preceding one in

the sequence. Table 3.2 presents the wedge counts of different datasets after degree

and degeneracy orientations (Seshadhri and Tirthapura 2019). An out-wedge refers

to a graphlet consisting of a node with its outgoing neighbors and their connecting

edges. This table demonstrates a significant reduction in the number of wedges after

orientation, particularly for large datasets.

Table 3.2. Wedge counts after degree and degeneracy orientations.

Graph Wedges
Out-Wedge

(degree)

Out-Wedge

(degeneracy)

ca-AstroPh 1.3E7 2.0E6 1.9E6

cit-Patents 3.4E8 5.1E7 4.4E7

web-Google 7.2E8 1.7E7 1.6E7

LiveJournal 7.3E9 6.7E8 6.4E8

tech-as-skitter 1.6E10 9.5E7 8.7E7

com-Orkut 4.6E10 4.0E9 3.8E9

• Color-based orientation: This technique employs a greedy graph coloring algo-

rithm (Hasenplaugh et al. 2014; L. Yuan et al. 2017) to assign a color to each vertex

between 1, 2, ...., 𝑚 using 𝑚 colors. The aim is to assign different colors to two

adjacent nodes. The graph orientation is performed based on this ordering (R. Li

et al. 2020).

3.3. Graphlet Mining Variants

In the literature, graphlet counting algorithms provide various solutions to reduce

problem complexity, develop more efficient algorithms, or meet specific objectives. These

variations can be categorized based on the algorithmic output:

• Induced or non-induced graphlet counting,
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• Global or local graphlet counting,

• Exact or approximate graphlet counting,

• Parallel graphlet counting.

3.3.1. Induced or Non-Induced Graphlet Counting

The literature features numerous algorithms that count induced or non-induced

graphlets or both. Typically, non-induced subgraphs are more straightforward to count,

but induced subgraphs are more informative and valuable. For example, in Figure 3.1b,

the presence of the dotted edge signifies a 4-cycle, whereas its absence indicates a 3-path.

The total number of wedges (Figure 3.1a) induced on all edges represents the combined

frequencies of 4-cycles and 3-paths. Without distinguishing between induced and non-

induced graphlets, it becomes challenging to separate the frequencies of graphlets like

the 3-path and the 4-cycle, as illustrated in Figure 3.1b. However, these graphlets are

individually significant and often require individual counts. For instance, using graphlet

counts as a cost function in an optimization algorithm can yield network topologies that

resemble real brain networks (Sporns and Kötter 2004). Notably, for any size 𝑘 , an

invertible linear transformation exists between the vectors of induced and non-induced

counts (Figure 3.2). Consequently, one can also derive induced subgraph counts by

obtaining non-induced subgraph counts.

(a) Wedge.

u v

(b) 3-path and 4-cycle(with dotted edge)

graphlet.

Figure 3.1. An example of induced and non-induced graphlet.
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Non-induced counts Induced counts

=
1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

Figure 3.2. Linear transformation between vectors of induced and non-induced counts.

3.3.2. Local or Global Graphlet Counting

Local subgraph counting focuses on the frequencies of a graphlet within the neigh-

borhoods of an edge or vertex. Tasks such as machine learning, link prediction, classifi-

cation, and clustering require a comprehensive set of vertex features. To generate such a

feature set, local counts are necessary. This means that for every vertex 𝑣 or edge 𝑒 in a

dataset, the count of the graphlets involving 𝑣 or 𝑒 (also called vertex orbit counts or edge

orbit counts) must be determined. For example, how many 4-cycle patterns are formed by

the edge 𝑒 or vertex 𝑣, and how many triangles do they participate in? The local counts

are extremely difficult to obtain and require algorithms that obtain much finer-grained

information, and the output size makes it difficult to design scalable algorithms.

Global graphlet counting focuses on the total frequency of graphlets within a large

input dataset. While local counting focuses on neighborhood-specific occurrences of

graphlets and provides insight into the local structure and connectivity around individual

vertices or edges, global counting provides a broader perspective by considering the overall

frequency of graphlets.

3.3.3. Exact or Approximate Graphlet Counting

In the literature there are plenty of graphlet counting algorithm either provides

exact counts or approximate counts. Due to the complexity of the problem, exact counting

methods are preferred when accuracy is critical and for smaller datasets. In contrast,

approximate methods are generally used for large datasets where computational resources

are limited and exact methods are infeasible or ineficcient.
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3.3.3.1 Exact Graphlet Counting

Exact techniques meticulously identify all induced graphlets or ascertain their

presence within a graph. There are two distinct approaches to exact counting:

• Enumeration approach: This approach aims to identify and list all isomorphic

instances of the graphlet. However, solving the subgraph isomorphism problem is

NP-complete (Garey, Johnson, and Stockmeyer 1974), making this method imprac-

tical for large datasets.

• Analytic approach: Instead of explicitly enumerating every connected k-size

graphlet, this method decomposes each graphlet into smaller components, such

as common neighbors or triangles connecting the two vertices. It then counts only

these smaller graphlets and uses combinatorial arguments to derive the count of

all others. For example, the non-induced count of wedges formed by node 𝑣 can

be computed using the provided formula given in Figure 3.3a in linear time. The

formula in Figure 3.3b allows us to find the number of diamond patterns formed by

an edge 𝑒. The binary combination of triangle counts formed by an edge gives the

diamond count.

v

(a) The number of wedges formed by 𝑣 :
(𝑑𝑣

2

)

e

(b) The number of diamonds formed by 𝑒 :(𝑡𝑒
2

)
Figure 3.3. Examples of counting graphlets without enumeration.

3.3.3.2 Approximate Graphlet Counting

The approximate counting methods offer valuable estimations for analyzing large,

intricate graphs in contrast to the exact methods, which obtain the actual value—the re-

search objectives and the graph’s scale guide the methodology choice. Exact techniques
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are well-suited for smaller or medium-sized graphs, while approximate counting is ad-

vantageous for exploring larger network structures. Current state-of-the-art algorithms

for determining exact subgraph frequencies can take hours or even days to process ex-

tensive networks. Given the increasing volume of data, counting all possible subgraphs

in datasets like Facebook and Twitter is impractical. In such scenarios, approximate re-

sults are also valuable. To address this challenge, subgraph counting research has shifted

towards approximating these frequencies, striking a balance between accuracy and time

efficiency.

This study examines various graph sparsification and sampling methods as approx-

imation techniques. These methods are outlined below:

• Spectral Sparsification: For an undirected graph 𝐺 = (𝑉, 𝐸) with the set of nodes

𝑉 = 1, 2, ..., 𝑛 and the set of edges 𝐸 ⊆ 𝑉𝑥𝑉 , let 𝐴 be the adjacency matrix with

𝐴𝑖, 𝑗 = 1 if (𝑖, 𝑗) ∈ 𝐸 and 𝐴𝑖, 𝑗 = 0 otherwise. Let 𝐷 be the diagonal matrix with

node degrees 𝑑𝑖 =
Í

𝑗∈𝑉 𝐴𝑖, 𝑗 on the diagonal. Laplacian of original graph G can

be defined as 𝐿𝐺 = 𝐷 − 𝐴. Laplacian 𝐿𝐻 of a sparsified graph 𝐻 can be defined

similarly.

In this method, two graphs are considered close if their Laplacian matrices are

close as linear operators. The purpose of spectral graph sparsity is to preserve the

Laplacian quadratic form. More formally, a spectral sparser 𝐻 is a subgraph of the

original 𝐺 whose Laplacian quadratic form is approximately the same as that of the

G on all real vector 𝑥 inputs. Laplacian quadratic form, which on 𝑥 ∈ R𝑛 as follows:

𝑥𝑇 𝐿𝐺𝑥

Then 𝐻 satisfies the following inequality for every 𝑥 ∈ R𝑛, known as the spectral

similarity (Spielman and Teng 2011). The concept of effective graph resistance is

derived from electrical circuit analysis, which is defined as the accumulated effective

resistance between all pairs of vertices. The effective resistance distances between

all pairs of vertices are similar in spectrally similar graphs (Batson et al. 2013). The

goal is to minimize the total effective resistance, the sum of the resistances between

all pairs of nodes.
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(1 − 𝜀)𝑥𝑇 𝐿𝐺𝑥 ≤ 𝑥𝑇 𝐿𝐻𝑥 ≤ (1 + 𝜀)𝑥𝑇 𝐿𝐺𝑥 (3.1)

This method has a robust theoretical guarantee but has a severe drawback. When

applied to extensive networks, access to the entire graph is required to calculate the

effective resistances of all edges. Also, the computation requires a complex linear

system solver by Spielman and Teng (Spielman and Teng 2011), which is not easy to

implement in practice. Due to this problem, various methods have been developed

that offer more straightforward and faster solutions.

• Monte-Carlo Markov Chain Sampling: Monte Carlo is a technique that randomly

samples a probability distribution and approximates a desired quantity. On the

other hand, the Markov chain is a systematic method for constructing a sequence

of random variables in which the current value is probabilistic dependent on the

value of the previous variable. By combining these two methods, Markov Chain

Monte Carlo (MCMC) sampling provides a class of algorithms to approximate the

posterior distribution of a parameter of interest by systematic random sampling in

a high-dimensional probabilistic space. A Markov Chain is a mathematical process

that transitions from one state to another. 𝑃𝑟 (𝑋𝑛+1 = 𝑥 |𝑋1 = 𝑥1, 𝑋2 = 𝑥2, ..., 𝑋𝑛 =

𝑥𝑛) = 𝑃𝑟 (𝑋𝑛+1 = 𝑥 |𝑋𝑛 = 𝑥𝑛)

𝑋 is a random variable with a defined range of values (states) in a state space

S, and 𝑋𝑡 specifies the value (state) of 𝑋 at 𝑡(discrete) time. There are transition

probabilities between a pair of states in 𝑆, depending only on the current value(state)

of 𝑋 . These probabilities can be expressed in a Transition Probability Matrix (T)

matrix. The entry 𝑇 (𝑖, 𝑗) denotes the transition probability from state i to state j.

For all 𝑖, 𝑗 ∈ 𝑆, 0 ≤ 𝑇 (𝑖, 𝑗) ≤ 1, 𝑎𝑛𝑑
Í

𝑗 𝑇 (𝑖, 𝑗) = 1.

The key features of a Markov process are that it is random, and at each step in the

process, the future state depends only on the current state of the process, not on

the past. This method allows it to narrow in on the quantity from the distribution,

even if there are many random variables. Random walk is used to construct the

Markov sample chain. With this random walk, distribution is sampled repeatedly

in small steps, independent of the previous movement and therefore memoryless.
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This process then defines a distribution or estimates fixed parameters such as means,

variances, and expected values.

A Markov chain converges to a stationary distribution if its probability of being in

a given state is independent of its initial state (𝜋 = 𝜋𝑇) (Goodfellow, Bengio, and

Courville 2016).

• Random Sampling: In the random sampling method, vertices or edges are uni-

formly selected regardless of their attributes or relevance within the graph. This

method provides an unbiased estimation and graph representation but risks the crit-

ical structural components or nodes crucial to graph dynamics that need attention.

• Edge Sampling: In the edge sampling method, some edges are eliminated, preserv-

ing as much as possible the key characteristics and properties of the original graph,

such as sparsity and connectivity. The aims to select only important edges while

preserving the original nodes, thus reducing the search space. Edges are sampled

based on specific edge scores, for example, the Jaccard similarity score (Satuluri,

Parthasarathy, and Ruan 2011), the number of triangles (Hamann et al. 2016),

wedges (Comandur Seshadhri, Pinar, and Kolda 2013), or paths (Jha, Seshadhri,

and Pinar 2015). Research has demonstrated that sampling and storing 𝑂 (𝑛𝑙𝑜𝑔𝑛)

weighted edges is sufficient to preserve the original graph’s important topological

structure (Spielman and Srivastava 2008). Most generally, in the edge sampling

method,

– A probability 𝑝𝑖, 𝑗 is assigned to each edge (𝑖, 𝑗) ∈ 𝐺,

– Each edge is selected according to its probability 𝑝𝑖, 𝑗

– When edge (𝑖, 𝑗) is chosen to be in the graph, multiply its weight by 1/𝑝𝑖, 𝑗 .

This procedure guarantees that:

𝐸 [𝐿𝐻] = 𝐿𝐺

𝑝𝑖, 𝑗 = 𝑚𝑖𝑛(1,
𝛾

𝑚𝑖𝑛(𝑑𝑖 ,𝑑 𝑗 )
), for all edges (𝑖, 𝑗)

𝛾 : Controls the number of edges to find in the graph. In this approach, the key step

is to determine the sampling probability for each edge. There is a tension between
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– choosing small 𝑝𝑖, 𝑗 generates a sparser H,

– choosing larger 𝑝𝑖, 𝑗 approximates G more accurately.

Edge sampling methods have three main problems in real applications.

– They have to modify edge weights to approximate the total weight of the

sparsified graph to the original graph.

– The number of edges removed before sparsification is unknown, as the number

of edges removed can vary even under the same parameter(s).

– When considering a random selection method, the importance of the selected

edges is not taken into account.

• Color-Coding Method and Color-Based Sampling: Let 𝐻 be a graphlet with 𝑘

vertices, and 𝐺 = (𝑉, 𝐸) be a graph. In this method, a random color 𝑐 (𝑐 ≥ 𝑘) is

assigned independently and uniformly to each vertex of 𝐺 from the color set [𝑐] =

{1, , 𝑐}. An embedding of 𝐻 in𝐺 is said to be colorful if a distinct color colors each

vertex. The probability that all its vertices are assigned unique colors is 𝑝 = 𝑐!/𝑐𝑐.

If the endpoints of an edge have the same color, that edge is called a monochro-

matic edge. This method is known as the color-coding technique. A subgraph is

constructed from these monochromatic edges. Initially, this method is proposed

by (Pagh and Tsourakakis 2012) and counts the number of triangles (3-cliques) in

this subgraph using either an exact or approximate triangle counting method. The

resulting estimation value is scaled by multiplying 𝑝−2 for the total number of tri-

angles in the original. The focus is to create a subgraph that preserves the original

graph’s structural attribute based on the connectivity of vertices according to their

color. Thus, large graphs can be analyzed computationally more efficiently using

smaller samples representing them. This can also highlight the more meaningful

structural patterns or cliques by eliminating less significant edges in the graph.

• Rejection Sampling: This method is a Monte Carlo-based (Mackay 1998) tech-

nique that generates samples from a target probability distribution function when

direct sampling is impractical or infeasible. Firstly, a simpler distribution, which is

relatively easy to sample from and covers the support of the target distribution, also

known as the proposal distribution, is chosen. The samples are generated from this
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distribution, and then a decision is made whether to accept or reject them based on

their adherence to the characteristics of the target distribution. At each proposed

sample point, the ratio of the probability density function of the target distribution is

calculated to that of the proposal distribution. Accordingly, it is decided whether the

sample is accepted or rejected. The purpose of this selective approach is to ensure

that the samples generated are consistent with the properties of the target distribu-

tion. The effectiveness of rejection sampling depends on choosing an appropriate

proposal distribution. Overly simplistic or complex choices can lead to inefficiency.

3.4. Graphlet Counting Algorithms

This section overviews the methods for the exact or approximate graphlet counting

problem. While exact algorithms try to count all occurrences of induced graphlet, which

is computationally challenging for large datasets, approximate algorithms try to give an

approximate value close to the exact value, which uses sampling, probabilistic, or heuristic

approaches as explained in Section 3.3.3 to reduce the computational cost.

3.4.1. Exact Graphlet Counting Algorithms

Exact algorithms for counting cliques fall into two main categories: those that

enumerate cliques, where each is explicitly identified in the graph, and those that count

cliques without explicitly listing each as explained in Section 3.3.3.1. Identifying each

clique is computationally intensive due to the combinatorial explosion. Counting-based

algorithms determine the total number of cliques using combinatorial methods. It is

optional to list all cliques, especially when there is a need for more efficient algorithms.

This section outlines and compares the exact graphlet counting algorithms in the literature.

3.4.1.1 RAGE

RAGE algorithm (Marcus and Shavitt 2012) counts non-induced, connected sub-

graphs and orbits of sizes 3 and 4. This algorithm is based on merging the neighborhoods

of the vertex pairs to ensure that a given quartet of vertices has the desired edges to create

a particular subgraph. RAGE is the first practical method to use combinatorial methods
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for subgraph counting.

3.4.1.2 ORCA

ORCA algorithm (Hočevar and Demšar 2014) is an analytic approach based on

matrix multiplication for graphlet counting. It is based on orbits and not directly graphlets.

It counts the orbits in graphlets up to 5 vertices and counts specifically induced, connected

subgraphs. The algorithm builds a system of linear equations connecting the orbit counts

from graphlets of up to five nodes; this allows the calculation of all orbit counts by

enumerating only one. It enumerates (k-1)-node graphlets and a single k-node graphlet to

count the k-node graphlets orbits.

3.4.1.3 PGD

PGD algorithm (Ahmed et al. 2015) is a parallel algorithm that counts undirected

subgraphs up to 4 nodes. It is one of the fastest algorithms in the literature. It is based

on the classical triangle counting algorithm to count with several primitives, which are

then used to obtain the frequency of each subgraph. It provides a new theoretical analysis

of combinatorial arguments explaining the relationships between graphs. It enumerates

a few graphlets for each edge and obtains the count of others in constant time using

combinatorial arguments. Thus, it achieves a significant improvement in the scalability of

graphlet counting.

3.4.1.4 E-CLOG

E-CLOG (Dave, Ahmed, and Al Hasan 2017) is a parallel local subgraph counting

algorithm that counts all 3, 4, and 5-size local graphlets, taking into account all possible

edge orbits of a graph. This algorithm only enumerates only a subset of local graphlets.

Using these graphlet counts obtained by enumeration and combinatorial methods, the

remaining graphlet counts are obtained in constant time.

3.4.1.5 ESCAPE

The ESCAPE algorithm (Pinar, Seshadhri, and Vishal 2017) is a single thread

algorithm based on a divide and conquer approach that counts the undirected subgraphs

up to 5 nodes and defines the substructures of each counting subgraph to partition into
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smaller patterns. This is a very general method, and it is possible to explain several

formulas to calculate the frequency of each subgraph when the correct decomposition

choices are made.

3.4.1.6 EVOKE

EVOKE algorithm (Pashanasangi and Seshadhri 2020) counts the vertex orbits,

that is, for every vertex v of the input graph, counts the graphlets involving v. The

difference between EVOKE and E-Clog algorithms is that Evoke is a vertex-centric local

subgraph counting algorithm. At the same time, E-Clog is an edge-centric local subgraph

counting algorithm. EVOKE algorithm counts vertex orbits for all 5-vertex graphlets.

This algorithm is built on the ESCAPE algorithm and divides graphlets like it into smaller

graphlets. Rather than enumerating all the graphlets, it simply enumerates a few small

graphlets and obtains the frequency of much larger graphlets with combinatorial methods.

Table 3.3. Categorization of exact graphlet counting algorithms.

Algorithm
Local/
global

counting
tested k Input

type
Output

type
Algorithmic

Design

RAGE (Marcus and Shavitt 2012) both ≤4 directed both sequential

ORCA (Hočevar and Demšar 2014) both ≤5 undirected both single threaded

PGD (Ahmed et al. 2015) global ≤4 undirected induced parallel

E-CLOG (Dave, Ahmed, and Al Hasan 2017) local ≤5 undirected induced both

ESCAPE (Pinar, Seshadhri, and Vishal 2017) global ≤5 undirected both sequential

EVOKE (Pashanasangi and Seshadhri 2020) local ≤5 undirected both both

Table 3.3 categorizes exact graphlet counting algorithms. They are classified based

on whether they perform graphlet (global counting) or orbit (local counting) counting,

with some algorithms capable of both. The variable k denotes the maximum number of

vertices in a graphlet considered in their respective research papers. These algorithms

can handle input data in the form of either directed or undirected graphlets. While

induced graphlets provide significantly more information than non-induced graphlets,

counting them is considerably more challenging. Consequently, some algorithms count

non-induced graphlets and convert these counts to obtain induced graphlet counts, whereas
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others directly count induced graphlets. To enhance scalability and improve runtime, many

studies have developed parallel algorithms.

RAGE and ORCA algorithms count graphlets and orbits. The difference is that

RAGE works with up to 4 nodes, while ORCA works with graphs with up to 5 nodes.

Another difference is that instead of directly counting the induced subgraphs, RAGE

reconstructs them from the noninduced subgraph counts. In addition, studies have shown

that ORCA’s performance is better than RAGE’s.

PGD and ESCAPE are the fastest algorithms that count graphlets exactly, but PGD

counts graphlets up to 4 nodes while ESCAPE counts up to 5. PGD algorithm outperforms

RAGE and ORCA algorithms. Also, RAGE and ORCA work on connected subgraphs,

while PGD and ESCAPE algorithms work on connected and unconnected graphlets. Since

the ESCAPE algorithm is serial, its comparison with PGD is based on the execution of

PGD on a single thread. ESCAPE has been observed to be much more scalable than PGD

as the dataset size increases.

E-CLOG and EVOKE algorithms do local subgraph counting. While E-CLOG

counts edge orbit, EVOKE counts vertex orbit. EVOKE algorithm provides both serial

and parallel implementations. However, EVOKE and ORCA are compared with the serial

implementation of EVOKE to get a fair comparison with ORCA. EVOKE algorithm has

shown that it is more scalable and performs better than ORCA.

3.4.2. Approximate Graphlet Counting Algorithms

While exact approaches are computationally challenging for large, dense datasets,

approximate methods have become a practical alternative. These techniques try to avoid

exhaustive enumeration estimates; instead, they use sampling and statistical methods,

explained in Section 3.3.3.2. A representative subset of nodes and edges are selected, so

essential graph properties are preservedwhile reducing computational overhead. Choosing

an appropriate sample size is critical, as it directly impacts both the accuracy of results and

the algorithm’s efficiency. Such approaches enable the analysis of large-scale datasets,

which are otherwise impractical to handle with exact algorithms. This section reviews key

approximate graphlet counting methods in the literature.
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3.4.2.1 Doulion

The Doulion algorithm (Tsourakakis et al. 2009) offers a parallel approximate

triangle counting method within the MapReduce framework (Dean and Ghemawat 2004).

The algorithm is not considered as powerful as other triangle counting algorithms but

rather viewed as a complementary tool. This algorithm can be utilized as a preprocessing

step when dealing with graph data that either fits or does not fit in memory. In this

approach,

• A coin is tossed for each edge; if the probability is p, this edge is preserved in the

sparsified graph; if 1-p, it is eliminated. Since each edge has a probability 𝑝, and a

triangle consists of three edges, the probability that a triangle will be preserved in

the sparsified graph is 𝑝3.

• The weight of each protected edge is re-weighted by multiplying it by 1/p. (The

initial graph is unweighted.)

• Count each triangle in the sparse graph as the product of the weights of the edges

that constituent the triangle.

It is stated that any triangle counting algorithm can be applied after the coin toss. However,

some situations need to be addressed. If the original graph is too large, the sparse graph

may still need to fit in memory. In this case, it states that stream or semi-stream algorithms

should be preferred. It is also stated that the random sampling method, like the reject

method (Vitter 1984), can be used in cases where the dataset significantly exceeds the

memory. This method is based on sequentially selecting random records from a file on a

hard disk. According to the results of the experiments, it was observed that the accuracy

was more than %99 for the probability varying between 0.1 and 0.9. A simple integer

algorithm using DOULION as the first step has been observed to speed up about 130 times

compared to itself.

3.4.2.2 Approximating the Number of Network Motifs

This algorithm (Gonen andShavitt 2009) approximates, for each vertex, the number

of graphlets that the vertex participates in. The approximate amount of that graphlet in

the entire graph is obtained by summing the information obtained from each edge. In this
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study, an algorithm is presented for each graphlet, and some of these algorithms are based

on the color-coding technique. According to the color-coding technique, each node is

colored with one of the k-specified colors, and if all nodes of a graphlet consist of different

colors, it is called colorful.

To find the k-cycle count for each edge (u,v), in this method, the number of colorful

paths of length k-1 between u and v are counted. Since the nodes u and v are neighbors,

the k-cycle is obtained with nodes u and v and k-1 colorful path.

To find the count of k-cycle with a chord (Figure 2.8e is an example of 4-cycle

(Figure 2.8d) with a chord), let assume a chord edge (u,v), and 𝑙 be the distance between

the endpoints of the chord u, v on the cycle. On the other hand, the path between u and

v to complete the circle is 𝑘 − 𝑙. Like the cycle algorithm, the final result is obtained by

calculating the number of these two colored paths that make up the cycle.

Tailed triangles are calculated over that node (let us say u) connecting the triangle

and the edge. So, to find the triangle that is formed by node u, it uses the approximate

k-cycle algorithm for 𝑘 = 3. Then, with this triangle information, the neighbors of node u

are traversed, and the tailed triangles are counted.

Also, this work presents an exact 4-clique (Figure 2.8f) algorithm that counts 4-

cliques for each edge. It checks for each edge (u,v) and whether the neighbors of u and v

form a triangle. It detects cliques by examining whether the third nodes other than u and

v, which form a triangle, are adjacent. 4-clique consists of 6 edges, so the total value is

divided by 6.

3.4.2.3 GUISE

This publication (Bhuiyan et al. 2012) proposes a method using a uniform sam-

pling method to generate an approximate GFD (graphlet frequency distribution) of an

extensive network. The Graphlet Frequency Distribution (GFD) is a vector of a graph

that characterizes the relative frequencies of the various graphlets in the graph (Bhuiyan

et al. 2012). GFD can be viewed as a fingerprint created from local topological templates

to analyze large networks. In this method, the GFD vector is generated for graphlets up to

five nodes due to the complexity of the problem, and Markov Chain Monte Carlo (MCMC)

sampling is used as the sampling method. The frequencies of the graphlets are needed to

generate the GFD. The algorithm uses the relative frequencies of the graphlets to construct
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GFD using the sampling strategy rather than the exact frequencies of each graphlet.

Suppose a set S contains all k-graphlets (3 ≤k≤ 5) (see figure 2.10). |𝑆 | =
Í29

1 𝑓 (𝑖)

( 𝑓 (𝑖) denotes the count of graphlet 𝑖). The task is to sample one of these k-graphlets em-

beddings from 𝑆 uniformly at random. The probability of selecting each graphlet is 1/|𝑆 |.

However, since exact graphlet counting is not practical, this method uniformly samples a

graphlet without enumerating all graphlet embeddings. The problem’s characteristics are

similar to those solved by Monte Carlo Markov Chain (MCMC) algorithms.

MCMC algorithms perform a random walk, and a distribution is sampled in small

steps over the sample space, such that the 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 distribution of the random walk

is aligned with the 𝑖𝑖𝑑 probability distribution. (Independent and identically distributed

random variables: if each random variable has the same probability distribution as the

others and all are mutually independent, we can say they are independent and identically

distributed.)

In this method, GUISE selects a particular graphlet from 𝑆, then walks to one

of the neighboring states with the probability defined by an appropriate state transition

probability matrix. The probability of transition between two non-adjacent graphlets is

zero. This algorithm constructs a symmetric transition probability matrix 𝑇 to achieve

stationary distribution. This method considers each graphlet as a node. It assumes an

edge between them if it is adjacent to another graphlet. The random walk can be viewed

along the graph’s edges. It assumes that the degree of a graphlet is equal to the sum of its

neighbors in the random walk. When calculating the probability of transitioning from one

graphlet to another, the algorithm examines the degrees of two adjacent graphlets (𝑥, 𝑦)

and defines 𝑇 (𝑥, 𝑦) = 𝑇 (𝑦, 𝑥) = min(1/deg(𝑥), 1/deg(𝑦)).

The first step of this method is to select a particular graphlet (𝑔𝑥) from 𝑆. Then,

all potential neighbor graphs of this graph are generated. A graphlet 𝑔𝑦 is chosen from

this graphlet (𝑔𝑥) neighbor list with uniform distribution (probability is 1/|𝑑𝑔𝑥 |) and finds

its neighbors. Then acceptance probability is calculated with 𝑚𝑖𝑛( |𝑑𝑔𝑥 |/|𝑑𝑔𝑦 |, 1). if the

move is accepted, the current graphic 𝑔𝑥 is replaced by 𝑔𝑦. Also, the frequencies of 𝑔𝑥 are

incremented by 1. These steps are repeated for a user-defined value. A comparison is not

presented, as no other studies sampled graphlets from a large graph and generated a GFD.
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3.4.2.4 Colorful Triangle Counting

This algorithm (Pagh and Tsourakakis 2012) is a parallel randomized algorithm

that sparsifies the graph and sample triples based on vertex degree partitioning. The basic

idea of the algorithm is that if two edges of a triangle are sampled, the third edge is always

sampled. Let an edge 𝑒 = (𝑢, 𝑣); if the colors of nodes u and v are the same, this edge

is called a 𝑚𝑜𝑛𝑜𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑐 edge. This method selects each monochromatic edge with

probability N=1/p (n number of colors) and processes a triangle counting algorithm among

these selected edges. Since the algorithm assumes that when the two edges forming the

triangle are sampled, the third one will be sampled, the probability of choosing two edges

is 𝑝2, so the probability of choosing a triangle is 𝑝2. Therefore, the number of triangles

multiplied by 1/𝑝2. This method is implemented in the MapReduce framework (Dean and

Ghemawat 2004).

3.4.2.5 Sahad

This paper (Zhao et al. 2012) proposes an algorithm for relational subgraph analysis

using the MapReduce framework where the subgraph is in the form of a tree. It is a

randomized approximation algorithm based on the color coding method for subgraph

counting. It counts graphlets (tree-formed ones) up to 12 nodes. According to the color

coding method, graph G is colored with 𝑘 colors (𝑘 > the number of vertices of the

searched graphlets), and then colorful embeddings (where each node has a different color)

of the searched graphlet are counted. In this method, the graphlet is divided into sub-parts

and a dynamic program is used to count the frequency of these sub-parts. In this method,

each sub-part is counted only once, so it is well suited for computing graphlets where

common subparts such as single nodes, edges, or simple paths are shared since it reduces

the computational cost. However, in this study, disk I/O is observed to be a bottleneck for

scalability.

3.4.2.6 GRAFT

GRAFT (Rahman, Bhuiyan, and Al Hasan 2014) counts the frequencies of graphs

up to five nodes to generate the GFD vector. This method processes a random subset

of edges iteratively. Checks if each edge is part of a graphlet. The total frequency of a

graphlet is calculated by summing the partial counts obtained from each edge. A specific
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edge 𝑒𝑔 of the graphlet 𝑔 is selected and aligned with an edge 𝑒 from the sampled edges,

and all the embeddings of a graphlet are enumerated based on edge 𝑒. Two different way

to enumerate a graphlet is proposed according to graphlet type (tree ( i.e. 𝑔1 on Figure

2.10) or cyclic ( i.e. 𝑔22 on Figure 2.10) graphlet). The choice of this specific edge is not

random. If the graphlet type is a tree graphlet, the edge with the largest edge orbit should

be selected.

The GRAFT selects a subset of the edges from an 𝑖𝑖𝑑 distribution, but the edges

adjacent to nodes with higher degrees are much more part of the graph. This results in

high variance and low sampling accuracy. GRAFT adopts the edge sampling algorithm.

It divides the edges into homogeneous sub-population of edges corresponding to a set of

edges that have similar partial counts for a given graphlet. Finally, a set of sampled edges

is selected by the p-fraction of the edges from each of the subpopulations.

3.4.2.7 Wedge Sampling

This algorithm (Seshadhri, Pinar, and Kolda 2014) proposes a sampling method

that samples wedge patterns from a uniform distribution. Consider a vertex 𝑣 and a wedge

centered with this vertex 𝑣. The number of wedges can be calculated with this formula:

𝑊𝑣 =
(𝑑𝑣

2

)
. So, total wedge count is calcuted with 𝑊 =

Í
𝑣

(𝑑𝑣
2

)
. This algorithm assigns

a probability 𝑝 to each vertex (𝑝 = 𝑊𝑣/𝑊). It selects the vertex 𝑣 with probability 𝑝𝑣

and takes the uniform random neighbor pair of 𝑣. Thus assuming it produces a uniform

random wedge.

3.4.2.8 Path Sampling

This algorithm (Jha, Seshadhri, and Pinar 2015) proposes a sampling algorithm

that approximates the frequencies of all 4-vertex pattern subgraphs (see Figure 2.8. It is a

randomized algorithm based on 3-path sampling and makes no distributional assumption.

The algorithm begins by sampling the 3-path patterns uniformly. For each edge,

it computes 𝜏𝑒 ( an edge 𝑒(𝑢, 𝑣), 𝜏𝑒 = (𝑑𝑢−)(𝑑𝑣 − 1) and𝑊 =
Í
𝑒 𝜏𝑒). Then a probability

𝑝𝑒 = 𝜏𝑒/𝑊 is assigned to each edge. An edge is selected according to its probability.

Then, a 3-path graphlet is sampled by choosing uniformly random neighbors among the

nodes of the selected edge. This step is repeated 𝑘 times to create a set 𝑆. 4-node graphlets

are searched on this set.
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It has been observed that this method does not perform well on 4-cycle containing

graphlets, because it requires too much sample to take. So, a better algorithm called as

centered 3-path is proposed to estimate them. According to this algorithm, nodes are

sorted according to their degrees and ids. Let assume an edge 𝑒 = (𝑢, 𝑣), 𝐿𝑢,𝑣 denotes

the number of neighbors of u greater than v and 𝐿𝑣,𝑢 denotes the number of neighbors of

v greater than u. For each edge, it computes 𝜆𝑒 as 𝐿𝑢,𝑣 .𝐿𝑣,𝑢. Let Λ𝑒 =
Í
𝑒 𝜆𝑒. Then a

probability 𝑝𝑒 = 𝜆𝑒/Λ𝑒 is assigned each edge. And similar steps as above are followed.

The results of the method presented in this study are compared with GUISE

(Bhuiyan et al. 2012), GRAFT (Rahman, Bhuiyan, and Al Hasan 2014) and some color

coding methods (Hormozdiari et al. 2007), (Betzler et al. 2011), (Zhao et al. 2012). This

algorithm shows that it predicts graphlets within %1 relative error and is much faster than

counting and other sampling-based algorithms.

3.4.2.9 GSparsify

This algorithm (Zhao 2015) provides a graph sparsification algorithm that preserves

a small subset of edges from a graph that is more likely to be in clusters and eliminates

others with little or no structure correlation to clusters. It states that densely knitted

edges in a cluster often form frequently small-sized graphlets. Based on this approach,

a sparsification algorithm has been developed to preserve the clustering significant edges

without sacrificing the clustering quality. It decides the importance of an edge for clustering

by examining the short-path cycle patterns of which that edge is a part. Specifically, edges

within the cluster participate in the cycle pattern more than edges between clusters. In

addition, two other methods of counting short-length cycles are proposed to calculate

graph motif-based cluster importance.

According to the proposed method, let an edge (𝑢, 𝑣) constituent the cycle pattern.

This pattern is divided into three sub-parts: An edge (𝑢, 𝑣), a path from 𝑢 to 𝑤, and another

path from 𝑣 to 𝑤. These two paths are enumerated to get the cycle count formed by these

paths and edge (𝑢, 𝑣).

Gsparsify first calculates the cluster significance score based on a series of cycle

motifs for each edge. It then ranks these edges according to that score. gSparsify first

calculates the cluster importance score for each edge. It then ranks these edges according

to that score. This algorithm implements a node-centered sparsification method. The top
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𝑑
𝛾
𝑢 (user-specified threshold value 0 ≤ 𝛾 < 1) edge of each node is preserved while the

others are eliminated (𝑑𝑢 is the degree of node 𝑢).

3.4.2.10 4-Prof-Dist

Many algorithms have been introduced in the literature that try to take advantage

of the power of parallel architectures to provide scalable approaches that can reduce the

required computation time. One of them is the distributed estimation of graph 4-profiles

(4-Prof-Dist) (Elenberg et al. 2016). It is a novel distributed algorithm for counting all

4-node-induced subgraphs. This algorithm also estimates the local 4-profiles centered

at each vertex of the graph. The algorithm has been implemented using the GraphLab

framework (Low et al. 2014) based on a message-passing scheme between nodes and their

neighbors. There are 11 possible graphlets with 4-nodes (including unconnected ones).

It creates a vector (a profile) with 11 elements for each vertex depending on whether it

is part of 11 different 4-node graphlets. That means this algorithm thinks of each node

as an embedding in an 11-dimensional space that characterizes the local geometry of its

neighbor. The algorithm estimates local 4-node graphlets using the profiles obtained.

3.4.2.11 Parallel Five-Cycle Counting Algorithms

This algorithm (Shi, Huang, and Shun 2022) proposes two exact and two approx-

imate parallel algorithms to count five cycle patterns. Two exact algorithms are parallel

implementations of Kowalik’s algorithm (Kowalik 2003) and the ESCAPE algorithm

(Pinar, Seshadhri, and Vishal 2017). Finding the five-cycle pattern requires finding all

directed two paths and three paths.

In the parallel version of Kowalik’s algorithm, all nodes are sorted and processed

in non-increasing degree order. Then, the graph is oriented by arboricity (degeneracy)

orientation. All five-cycles are counted once and only over the highest-ranked node. The

difference between the parallel ESCAPE algorithm and serial ESCAPE is that the serial

algorithm orients the graph according to degree orientation. However, in the parallel

version, the graph is oriented according to arboricity orientation.

This chapter also presents two different approximation algorithms based on edge

sparsification and color coding techniques. In the edge sparsification algorithm, each

edge is preserved uniformly at random with probability 𝑝, and then two exact parallel
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algorithms are proposed to run over the sparsified graph. The color coding-based method

colors the vertices of graphs with 𝑐 colors and preserves monochromatic edges. It runs

two exact parallel algorithms over the sparsified graph.

Table 3.4. Categorization of approximate graphlet counting algorithms.

Algorithm tested k Graphlet
type

Algoritmic
Design

Approx.
method

Doulion (Tsourakakis et al. 2009) 3 triangle parallel edge sampling

Approx. network motifs (Gonen and Shavitt 2009) O(log n)∗ k-cycle sequential color coding

Guise (Bhuiyan et al. 2012) ≤ 5 all sequential uniform sampling

Colorful triangle (Pagh and Tsourakakis 2012) 3 triangle parallel color coding

Sahad (Zhao et al. 2012) ≤12
k-graphlets

in tree form
parallel color coding

GRAFT (Rahman, Bhuiyan, and Al Hasan 2014) ≤5 all parallel edge sampling

Wedge sampling (Seshadhri, Pinar, and Kolda 2014) 3 wedges sequential wedge sampling

Path sampling (Jha, Seshadhri, and Pinar 2015) 4 k-graphlets sequential path sampling

gSparsify (Zhao 2015) k ≤4 4-cycle sequential edge sampling

4-Prof-Dist (Elenberg et al. 2016) k ≤ 4 all parallel edge sampling

Parallel 5-cycle (Shi, Huang, and Shun 2022) 5 cycle
sequential /

parallel

edge sampling

color coding

Table 3.4 categorizes approximate graphlet counting algorithms based on several

criteria: the size of the graphlets, the types of graphlets they count, whether the algorithms

are designed sequentially or in parallel, and the approximation methods used. In summary,

this chapter details the proposed methods and techniques for identifying and examining

small subgraph patterns within extensive networks. This understanding is essential for

advancing k-clique counting algorithms and forms a robust basis for the enhancements our

method introduces. The approaches discussed align with those utilized in existing litera-

ture. As we progress, this foundation will enable a deeper comprehension of algorithmic

advancements and their practical applications in network research, as well as their future

potential.
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CHAPTER 4

CLIQUE COUNTING

This section first explains the problem, emphasizes the challenges of the clique

counting problem, and presents the practical applications of cliques in different domains.

Then, a comprehensive review of clique counting algorithms in literature is presented. In

light of the challenges and the importance of cliques, in the last section, we explain the

motivation of our work. Our proposed algorithm uses these extremal graph theorems, and

the novelty of our approach lies in their application to clique counting.

4.1. Problem Definition and Challenges

K-clique refers to a fully connected graph with 𝑘 nodes; every pair of nodes is

connected with an edge. The clique counting algorithm aims to obtain the number of

k-cliques per vertex/edge or in the entire dataset. The k-clique counts can be obtained by

exact or approximate methods similar to strategies explained in Section 3.3.3.

Counting k-cliques leads to combinatorial explosion as 𝑘 grows; the number of

potential cliques grows exponentially, making the search space unmanageable for large

graphs. This problem has high computational complexity; exact algorithms typically

have exponential time complexity. As the size of the dataset increases, the number of

possible subgraphs needed to check for the presence of cliques also increases, making the

computational burden even heavier.

4.2. Applications of Clique Counts Across Domains

Cliques in social or communication networks play an important role in detecting

communities, spams, or groups of individuals with strong connections (Holland and Lein-

hardt 1977; Jackson, Rodriguez-Barraquer, and Tan 2012; Cleemput 2012; Yildiz and

Kruegel 2012; Nedioui et al. 2020; Shi et al. 2021; Gregori, Lenzini, and Mainardi 2012;

Jayanthi 2012; Foucault Welles, Van Devender, and Contractor 2010; Son et al. 2012).

Similarly, in biological networks, cliques are used to analyze functional modules, iden-
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tify protein complexes and reveal critical interactions that help to understand biological

processes (X.-L. Li et al. 2005; H. Yu et al. 2006; Chen et al. 2013; Milik, Szalma, and

Olszewski 2003; Betzler et al. 2011; Pržulj, Corneil, and Jurisica 2004; Saha et al. 2010).

This also sheds light on biological pathways and disease mechanisms such as epilepsy

prediction (Prokopyev et al. 2007; Iasemidis et al. 2003).

In recommender systems, cliques improve the accuracy of recommendations by

identifying closely connected groups of users or items with similar preferences (Vilakone,

Xinchang, and Park 2019; Vilakone et al. 2018; Manoharan et al. 2020; Gong et al. 2019;

Tsourakakis et al. 2011). In fraud detection applications, cliques are useful for revealing

hidden groups of actors engaged in fraudulent activities (J. Yu et al. 2023). In addition,

clique counting has several applications in areas such as graph compression (Buehrer and

Chellapilla 2008) and clustering (Duan et al. 2012).

4.3. Clique Counting Algorithms

This section introduces two fundamental algorithms: the Bron-Kerbosch algo-

rithm (Bron and Kerbosch 1973), the foundation for maximal clique listing, and the

ARBO algorithm (Chiba and Nishizeki 1985), designed explicitly for k-clique listing.

Many subsequent algorithms either build upon these base algorithms or incorporate en-

hancements inspired by them. Thus, it is essential to present these foundational algorithms

first before delving into the details of others.

The methodologies for clique identification and enumeration are categorized based

on their level of precision: Exact or approximate algorithms. Exact techniques meticu-

lously identify all cliques or count their existence within a graph, whereas approximate

counting methods provide estimations that are especially useful for analyzing large, in-

tricate graphs. The research objectives and the graph’s scale determine the methodology

choice. Exact techniques are well-suited for smaller or medium-sized graphs, while ap-

proximate counting is advantageous for exploring larger network structures. Within the

scope of this study, the investigated approximate approaches rely on different sampling

strategies, including random sampling, rejection sampling, and color-based sampling (ex-

plained in Section 3.3.3.2). This section presents a review of exact and approximate clique

counting algorithms.
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4.3.1. Base Algorithms

This section introduces two basic algorithms: the Bron-Kerbosch algorithm (Bron

and Kerbosch 1973), which is the basis of maximal clique listing, and the ARBO algorithm

(Chiba and Nishizeki 1985), which is designed explicitly for k-clique listing. Many sub-

sequent algorithms have either built on these basic algorithms or included improvements

inspired by them. It is, therefore, essential to present these basic algorithms before going

into the details of the others.

4.3.1.1 Algorithm 457 (Bron and Kerbosch 1973)

Algorithm 457 (Bron and Kerbosch 1973) presents a seminal method for identi-

fying all maximal cliques within an undirected graph. This algorithm, commonly called

the Bron-Kerbosch algorithm, employs a backtracking strategy to systematically traverse

the graph’s vertices and edges, rigorously enumerating all possible maximal cliques. The

initial approach of the Bron-Kerbosch algorithm makes a recursive call for every clique,

so this causes inefficiency, especially in graphs with many non-maximal cliques. To im-

prove efficiency, a strategy is provided that involves strategically selecting a pivot vertex

from the graph. The vertices with higher degrees are prioritized for this selection. This

strategy eliminates the redundant checks by focusing the search on the pivot’s neighboring

vertices. Any maximal cliques among the pivot’s neighbors would also be found when

testing the pivot itself or its non-neighboring vertices. The vertices adjacent to the current

clique are incrementally added to explore the maximum possible expansion of the clique

until no more vertices can be appended. All possible maximal cliques are explored by

traversing exhaustively and avoiding redundant paths. The presented Algorithm 3 (Bron

and Kerbosch 1973) finds all maximal cliques, including all R vertices, some P, and none

in 𝑋 . The time complexity of this algorithm is𝑂 (3𝑛/3), where 𝑛 is the number of vertices.

4.3.1.2 ARBO (Chiba and Nishizeki 1985)

The article ARBO (Chiba and Nishizeki 1985) introduces graphlet counting al-

gorithms for triangles, quadrangles, complete subgraphs, and cliques using the arboricity

concept. It discusses efficient methods for computing the arboricity of a graph. The
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Algorithm 3 BronKerboschWithPivoting(𝑅, 𝑃, 𝑋) (Bron and Kerbosch 1973)

1: if 𝑃 = {} and 𝑋 = {} then
2: report 𝑅 as a maximal clique

3: end if
4: choose a pivot vertex 𝑢 in 𝑃 ∪ 𝑋
5: for each vertex 𝑣 in 𝑃 \ 𝑁 (𝑢) do
6: BronKerboschWithPivoting(𝑅 ∪ {𝑣}, 𝑃 ∩ 𝑁 (𝑣), 𝑋 ∩ 𝑁 (𝑣))
7: 𝑃 ← 𝑃 \ {𝑣}
8: 𝑋 ← 𝑋 ∪ {𝑣}
9: end for

algorithm ARBO operates by selecting a vertex 𝑣 within the graph and scanning the edges

of the subgraph induced by 𝑣’s neighbors to identify pattern subgraphs containing 𝑣.

Notably, this algorithm employs an iterative search for each vertex 𝑣 in a non-increasing

order of degree. Then, 𝑣 is removed after processing to prevent duplication and provide

computational efficiency. Thus, it also ensures a systematic and comprehensive enumera-

tion of subgraphs. The ARBO has a time complexity of 𝑂 (𝑘𝑚𝛼𝑘−2), where 𝛼 represents

the arboricity of the graph, 𝑚 is the number of edges, 𝑘 is the size of the cliques being

examined.

The algorithm 4 is the pseudocode of ARBO, which starts by sorting vertices by

degree order. Then, constructs and induced subgraphs from the neighbors of each vertices.

The algorithm recursively searches (k-1)-cliques in the neighborhood of the current vertex

using the 𝐿𝑖𝑠𝑡𝐶𝑙𝑖𝑞𝑢𝑒𝑠 function. The processed vertices are removed from the graph at the

end of each iteration to eliminate the duplicate discovery of cliques in subsequent steps.

These two algorithms, the Bron-Kerbosch and ARBO, can be seen as the foun-

dation of other methods for clique enumeration. Therefore, their detailed analysis and

pseudocodes are presented to make the other sections more understandable. Although

both algorithms serve the same purpose, they differ in their innovative strategies, effi-

ciency, and computational characteristics. Bron-Kerbosch uses a backtracking approach

and explores all potential maximal cliques by traversing the graph’s vertices and edges.

It chooses a pivot vertex to maximize performance and avoid duplicate recursive calls

by focusing the search on neighboring vertices of the pivot. On the other hand, using

the arboricity concept, ARBO introduces algorithms for enumerating various types of

subgraphs within a graph, including cliques. The algorithm ARBO operates by iterative

scanning subgraphs induced by vertices in a non-increasing order of degree, efficiently

identifying cliques containing each vertex. Due to the ARBO algorithm’s complexity
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Algorithm 4 The Algorithm ARBO (Chiba and Nishizeki 1985)

1: function ARBO(𝐺, 𝑘)
2: Let 𝐶𝑙𝑖𝑞 denotes ∅.

3: Let 𝑉 denotes the list of degree ordered vertices in 𝐺.

4: for each vertex 𝑣 in 𝑉 do
5: 𝑁𝑏𝑟𝐿𝑖𝑠𝑡𝑣 ← getNeighbors(𝐺, 𝑣)
6: 𝐺𝑁𝑣 ← getInducedSubgraph(𝐺, 𝑁𝑏𝑟𝐿𝑖𝑠𝑡𝑣)
7: 𝐶𝑙𝑖𝑞𝑣 ← ListCliques(𝐺𝑁𝑏𝑟𝐿𝑖𝑠𝑡𝑣 , 𝑘 − 1, {𝑣})
8: 𝐶𝑙𝑖𝑞 ← 𝐶𝑙𝑖𝑞 ∪ 𝐶𝑙𝑖𝑞𝑣
9: DeleteVertex(𝐺, 𝑣)

10: end for
11: return 𝑘𝐶𝑙𝑖𝑞𝑢𝑒𝑠
12: end function

13: function ListCliques(𝐺, 𝑙, 𝐶)

14: if 𝑙 = 2 then
15: return {{𝑢, 𝑣} ∪ 𝐶 | (𝑢, 𝑣) ∈ 𝐸 (𝐺)}

16: end if
17: 𝑙𝐶𝑙𝑖𝑞 ← ∅

18: for 𝑢 in 𝑉 (𝐺) do
19: 𝑁𝑏𝑟𝐿𝑖𝑠𝑡𝑢 ← getNeighbors(𝐺, 𝑢)
20: 𝐺𝑁𝑢 ← getInducedSubgraph(𝐺, 𝑁𝑏𝑟𝐿𝑖𝑠𝑡𝑢)
21: 𝑙𝐶𝑙𝑖𝑞𝑢 ← ListCliques(𝐺𝑁𝑢 , 𝑙 − 1, 𝐶 ∪ {𝑢})
22: 𝑙𝐶𝑙𝑖𝑞 ← 𝑙𝐶𝑙𝑖𝑞 ∪ 𝑙𝐶𝑙𝑖𝑞𝑢
23: DeleteVertex(𝐺, 𝑢)
24: end for
25: return 𝑙𝐶𝑙𝑖𝑞
26: end function

and the graph’s arboricity being closely related, it provides practical efficiency to graphs

with low arboricity. Both algorithms form the basis of many algorithms in literature

and offer critical contributions to clique counting problems with different computational

advantages.

4.3.2. Exact Clique Counting Algorithms

Exact clique counting algorithms either enumerate cliques by identifying each

clique within a graph or count only cliques present without identifying each. Enumeration-

based algorithms explicitly list all cliques. Identifying each clique is computationally

intensive due to the combinatorial explosion. Counting-based algorithms determine the

total number of cliques using analytic approaches. It is optional to list all cliques, especially

when there is a need for more efficient algorithms. The following subsections presents
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clique counting algorithms based on either enumeration or counting based methodologies.

4.3.2.1 Akkoyunlu’s Algorithm (Akkoyunlu 1973)

The algorithm proposed by Akkoyunlu (Akkoyunlu 1973) is equivalent to the

Bron-Kerbosch algorithm, even though they are explained differently. Both algorithms

build the same search tree structure and yield the same results. The algorithm proposed

by Akkoyunlu efficiently finds maximal cliques in large graphs by decomposing the prob-

lem into smaller, non-overlapping sub-problems and managing them using a stack-based

approach. It begins by splitting the problem into smaller, disjoint sub-problems to avoid

generating duplicate or sub-maximal cliques. Subsequently, it employs a push-down stack

to store partially solved sub-problems, minimizing memory usage by focusing on the cur-

rent task. The algorithm iteratively divides each sub-problem into two disjoint parts —

one including a selected element and one excluding it — before pushing them onto the

stack for processing. This iterative refinement continues until specific criteria are met.

At this point, the algorithm applies a particular method to determine the maximal clique

associated with the subset. The algorithm systematically explores the graph structure

through these steps to identify all maximal cliques efficiently.

4.3.2.2 MACE (Makino and Uno 2004)

The paper MACE (Makino and Uno 2004) comprehensively explores algorithms

tailored for enumerating both maximal and bipartite cliques within graphs. For maximal

cliques, it introduces two distinct strategies. The first approach utilizes matrix multiplica-

tion, capitalizing on the parent-child relationship inherent in maximal cliques to efficiently

compute their children. This method constructs adjacency matrices to identify valid child

cliques, resulting in a streamlined computation process that significantly improves effi-

ciency, especially in denser graphs. The algorithm’s complexity is 𝑂 (𝑘𝑛𝑚𝛼𝑘−2), where 𝑛

is the number of vertices, 𝑚 is the number of edges, 𝛼 is the arboricity of the graph, and

𝑘 is the clique size. The second algorithm for maximal cliques leverages the maximum

degree of the graph. It recognizes that in sparse graphs, each maximal clique (except the

lexicographically largest one) can have at most �2 children, in which � represents the max-

imum degree. By avoiding the explicit construction of the complete set of candidate child

indices and checking candidates in lexicographic order, this method reduces computation
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time, particularly benefiting graphs with small maximum degrees.

4.3.2.3 Memory Efficient Clique Counting (Tomita, Tanaka, and Takahashi 2006)

The paper proposed by (Tomita, Tanaka, and Takahashi 2006) introduces a depth-

first search algorithm for efficiently generating all maximal cliques in an undirected graph,

leveraging pruning techniques reminiscent of the Bron-Kerbosch algorithm (Bron and

Kerbosch 1973). Unlike Bron-Kerbosch, which directly enumerates maximal cliques,

this new algorithm outputs them in a tree-like structure, conserving memory space. It

operates by iteratively expanding a global variable Q, representing the current clique,

from an empty starting point to larger cliques. At each step, the algorithm examines the

intersection of neighborhoods of vertices in Q, determining if it forms a maximal clique. If

not, it explores potential extensions by recursively considering induced subgraphs. During

the search process, the algorithm maintains two lists called FINI (processed vertices) and

CAND (remaining candidates). The Q is expanded only to the vertices in CAND. This

minimizes the unnecessary exploration. Another strategy to reduce the number of vertices

needing further exploration is to choose vertices from the neighborhood intersection.

When a maximal clique is discovered, the algorithm prints a marker instead of the clique

itself. The cliques can be reconstructed from this output. The complexity of algorithm is

𝑂 (3(𝑛/3)).

4.3.2.4 DegenClique (Eppstein, Löffler, and Strash 2010)

The algorithm (Eppstein, Löffler, and Strash 2010) presents a variation of the

Bron-Kerbosch algorithm (Bron and Kerbosch 1973). This algorithm orders the vertices

according to degeneracy ordering. Then, the neighbors of each vertex are divided into

two sets: P and X. P is the vertices that follow the current vertex in order of degeneration,

while X is the set of vertices that precede it. Thus, the size of P is limited by the graph’s

degeneracy. This algorithm uses the Bron-Kerbosch algorithm with the parameters P, X,

and current vertex. The pivot vertex is selected from the P and X sets during the recursive

iteration. This strategy optimizes the complexity of the Bron-Kerbosch algorithm by

reducing the number of recursive calls. The time complexity is𝑂 (𝑑𝑛3𝑑/3), where 𝑑 is the

degeneracy of a graph.
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4.3.2.5 pbitMCE (Dasari, Ranjan, and Mohammad 2014)

The pbitMCE method (Dasari, Ranjan, and Mohammad 2014) employs a degen-

eracy ordering strategy similar to that presented by Eppstein et al. However, it uses a

different strategy to represent the subgraphs. The algorithm presents a data structure

called a partial bit adjacency matrix (pbam). This pbam comprises sets of bit vectors.

It facilitates representing the necessary information for efficient vertex processing. This

algorithm is implemented on the Hadoop framework. The algorithm starts by ordering

vertices and determining the degeneracy 𝑑 of the graph. Thus, each vertex has at most

𝑑 neighbors appearing later in the ordering. Subsequently, each vertex’s adjacency list is

partitioned into pre and post-lists, containing vertices with lower and higher degeneracy

orders. This pbam consists of sets of bit vectors, each corresponding to vertices in the

pre and post-lists, encoding connections between the post-list and those in the candidate

set P. The pbam is generated using a renumbering technique to assign unique identities

to vertices in P and X. Following a similar structure to the algorithm proposed by (Epp-

stein, Löffler, and Strash 2010), pbitMCE counts maximal cliques by computing the sets

P and X for each vertex v in the degeneracy ordering and using the algorithm introduced

by (Tomita, Tanaka, and Takahashi 2006) for efficient exploration of the v-rooted search

tree. Each clique is associated with the node with the lowest number. This facilitates

the unique reporting of each maximal clique. The complexity is 𝑂 (𝑘𝑛3𝑘/3), where the

k-degree of a graph is defined as the minimum value such that every vertex 𝑣 has at most

𝑘neighbors with a degree greater than or equal to the degree of 𝑣. It is hard to compute

degeneracy ordering of vertices on a distributed environment. So, implementing pbitMCE

on Hadoop is a challenging task. This task requires extensive inter-node communication.

To reduce this complexity, the paper proposes to explore alternative vertex orderings, such

as degree-based ordering in some scenarios.

4.3.2.6 kClist (Danisch, Balalau, and Sozio 2018)

The kClist (Danisch, Balalau, and Sozio 2018) algorithm improves the ARBO

algorithm (Chiba and Nishizeki 1985) for listing all k-cliques. The degeneracy orientation

is used, and a directed acyclic graph (DAG) is constructed to eliminate duplicate discovery

of cliques. Besides, the algorithm utilizes parallelization techniques and special data

structures to improve its performance for large-scale graph analysis. The time complexity
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of kClist is 𝑂 (𝑘𝑚 𝑑
2

𝑘−2
), where 𝑑 represents the degeneracy of the graph G, 𝑚 is the

number of edges, 𝑘 is the size of the cliques being examined.

4.3.2.7 Clique Counting with Ordering Heuristics (R. Li et al. 2020)

A new heuristic for k-clique listing and counting algorithms, using a color ordering

method derived from greedy graph coloring techniques (Hasenplaugh et al. 2014; L. Yuan

et al. 2017) are proposed by (R. Li et al. 2020). A graph colorization technique using a

greedy coloring algorithm is employed to graph, and distinct color values are assigned to

adjacent nodes from 1 to the chromatic number 𝑥. The nodes are sorted in descending order

based on this color number, and then a DAG is constructed. Thus, inefficient search paths

are eliminated during the iterative enumeration process. The complexity of𝑂 (𝑘𝑚(Δ
2
)𝑘−2),

where 𝑘 is the clique size, Δ is the maximum degree, and 𝑚 is the number of vertices.

4.3.2.8 ARB-COUNT (Shi, Dhulipala, and Shun 2021)

The paper (Shi, Dhulipala, and Shun 2021) introduces a series of parallel algo-

rithms designed to address challenges in k-clique counting and densest subgraph detection.

At its core, the ARB-COUNT algorithm enhances Chiba-Nishizeki’s approach (Chiba and

Nishizeki 1985) by leveraging low out-degree orientations of graphs, achieved through effi-

cient parallel implementations of algorithms such as those by Goodrich-Pszona (Goodrich

and Pszona 2011) and Barenboim-Elkin (Barenboim and Elkin 2008). This orientation

reduces total work by peeling vertices parallel, leading to a poly-logarithmic span. ARB-

COUNT exploits parallelism by recursively intersecting out-neighbors of vertices to build

k-cliques efficiently. Utilizing parallel hash tables, filtering, and reduction operations,

it achieves notable speed-ups, particularly for large graphs and values of 𝑘 . The com-

plexity of ARB-COUNT is 𝑂 (𝑚𝛼𝑘−2). Additionally, the paper presents ARB-PEEL and

ARB-APPROX-PEEL algorithms for approximating k-clique densest subgraphs, which

capitalize on parallel k-clique counting to peel vertices in parallel based on their k-clique

counts iteratively. Colorful sparsification technique is employed to estimate k-cliques by

drawing inspiration from earlier work on approximating triangle and butterfly (bi-clique)

counts (Pagh and Tsourakakis 2012) (Sanei-Mehri, Sariyuce, and Tirthapura 2018). It

leverages the proposed ARB-COUNT algorithm as a subroutine to achieve this approxi-

mation. The time complexity of the approximate algorithm is 𝑂 (𝑝𝑚𝛼𝑘−2 + 𝑚), where 𝑚
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is the number of edges 𝑝 = 1/𝑐, and c is the number of colors used.

4.3.2.9 Clique Counting with MapReduce (Finocchi, Finocchi, and Fusco 2015)

The paper proposed by (Finocchi, Finocchi, and Fusco 2015) presents two exact

and approximate solutions for the issue of counting the number of k-cliques in large-

scale graphs by focusing on theoretical and experimental aspects. It introduces parallel

solutions using the degree orientation technique in the MapReduce framework. First, it

provides an exact approach, then presents a sampling-based approach that significantly

reduces the exact approach’s computational demands. The second step identifies all the

other nodes with a lower degree than those nodes and forms a triangle with them. In the

third and final stage, the reduce phase, the algorithm finds clique patterns for each node

using the information collected in the previous round. The paper explores approximate

counting using two sampling strategy variants and the exact counting approach. The

exact algorithm of this study is efficient for counting up to 7-node cliques in relatively

small datasets; approximate counts are provided for larger datasets due to computational

complexity. This algorithm requires 𝑂 (𝑚𝑘/2) computational effort, where 𝑚 represents

the number of edges in the graph, and 𝑘 is the size of the examined cliques.

4.3.2.10 Pivoter (Jain and Seshadhri 2020)

The Pivoter is designed by the (Jain and Seshadhri 2020) to deal with the chal-

lenge of exact counting k-cliques in graphs, especially as the size of 𝑘 increases. Pivoter

utilizes pivoting to construct a Succinct Clique Tree (SCT), which provides a compressed

representation of all cliques in the graph. SCT provides a strategy different from exist-

ing methods that explicitly enumerate every clique. Using SCT, Pivoter counts k-cliques

cliques of any size without complete enumeration and reduces the recursion tree of back-

tracking algorithms. Thus, Pivoter states it overcomes scalability issues and achieves

accurate clique counts in large graphs. Key contributions are the counting cliques for

both globally and locally, for each vertices and edges, and the creation of SCTs through

pivoting. The algorithm constructs the SCT by finding the graph’s degeneracy orientation

and then iteratively partitioning cliques based on pivot vertices. The SCT is constructed

using recursive calls, avoiding redundant computations. Besides, a parallel version is also

presented to enhance the algorithms’ performance and scalability on large datasets. The
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Pivoter has 𝑂 (𝑛𝛼3𝛼/3) time complexity, 𝑛 represents the number of vertices and 𝛼 the

degeneracy of the graph (Ye et al. 2023). However, as stated in the research paper, even

the parallel version of the algorithm has limitations on large graphs. Pivoter needs help to

compute clique counts beyond 𝑘 = 10.

4.3.2.11 GPU-accelerated Clique Counting (Almasri et al. 2022)

In this paper,(Almasri et al. 2022) integrates the graph orientation and pivoting

(Jain and Seshadhri 2020) techniques to GPU accelerate existing algorithms for counting

k-cliques in graphs. These algorithms are based on vertex-centric and edge-centric paral-

lelization strategies, with binary coding and sub-warp partitioning methods that optimize

memory usage and maximize parallel resources. One process that requires the most effort

in clique counting algorithms is intersection operations. If we give an example of inter-

section operations on a triangle, which is the simplest of cliques (3-clique), to find the

triangle formed by an edge, the intersection of the neighbors of the two nodes forming the

edge is needed. This paper uses binary encoding to facilitate the intersection process and

represents each vertex’s induced subgraph with binary encoding. This strategy facilitates

the intersection processes with bit-wise operations. On the parallelization side, sub-warp

partitioning divides thread blocks into smaller groups, allowing tasks to be executed more

efficiently on the GPU and helping to increase the level of parallelism. Additionally, it

facilitates operations like list intersections. A hybrid version of degree and degeneracy

orientation techniques is employed while orienting the graph. A comparison of vertex-

centric and edge-centric parallelization strategies is provided regarding load balancing

and weighing of parallelism granularity trade-offs. This paper also provides solutions for

GPU memory constraints by using memory management techniques like binary encoding,

pre-allocating memory for the largest potential-induced subgraph size, and substituting

recursive tree traversal with an iterative method using a shared stack.

4.3.2.12 SDegree and BitCol (Z. Yuan et al. 2022)

The paper (Z. Yuan et al. 2022) presents two k-clique listing algorithms: SDegree

and BitCol. These algorithms aim to accelerate the k-clique listing algorithms with

merge-based set intersections and parallelism. For this purpose, the paper proposes

two pre-processing techniques: Pre-Core and Pre-List. First, Pre-Core reduces the search
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space by removing redundant vertices not contained in a k-clique. Then, Pre-List checks all

connected components; if a connected component is a clique, it directly lists and removes

cliques. The SDegree algorithm employs degree-based orientation and constructs a DAG.

The novelty of this algorithm is to use the merge-join strategy while merging two vertex

sets rather than the hash join, which is used by the other algorithms in the literature. If the

vertex sets are ordered, the merge-join strategy efficiently merges these sets. The BitCol

algorithm improves the SDegree algorithm by employing degeneracy and color-based

ordering techniques and compressing the vertex sets using bitmaps. First, the input graph

is converted to DAG using degeneracy orientation; then, the algorithm iteratively searches

each vertex neighborhood. An induced subgraph is obtained from the current node’s

neighborhood, and the DAG of this subgraph using color-based orientation is constructed.

This algorithm also uses advanced parallelization strategies for efficient k-clique listing.

The time complexity of both algorithm is 𝑂 (𝑘𝑚
(
Δ
2

) 𝑘−2

). The space complexity of

SDegree is 𝑂 (𝑚 + 𝑘𝑁Δ) and BitCol is 𝑂 (𝑚 + 𝑁 Δ2

𝐿 ), where 𝑘 is the clique size, 𝑁 is the

number of threads, Δ is the maximum out-degree, 𝐿 is the size of nodes that each number

can represent, and 𝑚 is the number of edges.

4.3.2.13 EBBkC (Wang, Yu, and Long 2024)

The k-clique listing algorithms traditionally employ a vertex-based branching strat-

egy, where larger cliques are constructed incrementally by adding a single vertex to an

existing clique. A new algorithm EBBkC (Wang, Yu, and Long 2024) in the literature

proposes an edge-based branching strategy. Instead of adding a single vertex, it tries

to obtain larger cliques more efficiently by adding two nodes with edges between them,

thus narrowing the search space. The algorithm incorporates three distinct edge-ordering

methods to optimize the branching process. The first is truss-based edge ordering, which

leverages truss decomposition to order edges to minimize the size of the resulting sub-

graphs, thus enhancing efficiency. The second is color-based edge ordering, which utilizes

vertex coloring to prune branches, effectively reducing the number of candidate cliques

and further improving performance. The third method is a hybrid approach, combining

the strengths of truss-based and color-based ordering to provide theoretical and practical

improvements. Besides, the paper introduces a method to terminate branches early if the

subgraph is a dense structure like a clique or each vertex is connected to at least 𝑘 − 2
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other vertices within the subgraph, leveraging efficient combinatorial algorithms to list

cliques in these cases to increase efficiency. This algorithm has the𝑂 (𝑚𝑑 + 𝑘 ·𝑚 ·
(
𝜏
2

) 𝑘−2
)

time complexity, where 𝑑 is the degeneracy of the graph, 𝜏 is the maximum truss number

of the graph (Wang, Yu, and Long 2024), 𝑘 is the clique size, 𝑚 is the number of edges.

This algorithm presents better time complexity than the vertex-based branching algorithms

(Chiba and Nishizeki 1985; Makino and Uno 2004; Danisch, Balalau, and Sozio 2018),

which have 𝑂 (𝑘𝑚𝛼𝑘−2). The authors demonstrate that the 𝜏 is smaller than 𝑑, leading

to better performance in edge-based branching. The space complexity is 𝑂 (𝑚 + 𝑛). This

paper also incorporates parallelism techniques to further enhance the efficiency of the

proposed algorithm and provides a comparison with the state-of-the-art k-clique listing

algorithms depending on vertex-based branching strategy.

We review various enumeration-based k-clique algorithms, focusing on their

methodology and complexity. Bron-Kerbosch (Bron and Kerbosch 1973) and Akkoyunlu

(Akkoyunlu 1973) are similar algorithms because they construct similar search trees but

are presented in different terms. They utilize recursive backtracking and stack-based

approaches to identify maximal cliques. A matrix multiplication technique and the in-

formation of maximum degree in the graph are used for efficient clique enumeration in

the MACE algorithm (Makino and Uno 2004). (Tomita, Tanaka, and Takahashi 2006)

proposes an improvement based on a depth-first search approach to Bron-Kerbosch, and

they use pruning techniques for optimal memory usage. (Eppstein, Löffler, and Strash

2010), and pbitMCE (Dasari, Ranjan, and Mohammad 2014) algorithms leverage degen-

eracy ordering and parallel processing for the performance in large-scale graph analysis

based on Bron-Kerbosch algorithm. The kClist algorithm also (Danisch, Balalau, and

Sozio 2018) provides similar contributions based on the ARBO algorithm. A heuristic

method by (R. Li et al. 2020) uses color order to optimize the search process by pruning

unproductive paths. The paper (Z. Yuan et al. 2022) presents two parallel k-clique listing

algorithms, SDegree and BitCol, which use merge-based set intersections and prepro-

cessing techniques to provide a time and space-efficient approach than the algorithms

proposed by (R. Li et al. 2020). The EBBkC (Wang, Yu, and Long 2024) introduces a new

edge-based branching strategy and edge-based ordering techniques to improve ARBO and

presents better time complexity.
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4.3.3. Approximate Clique Counting Algorithms

In this context, we investigate various approximate clique counting algorithms.

This section outlines these algorithms.

4.3.3.1 Turán-shadow (Jain and C. Seshadhri 2017)

The Turán-shadow (Jain and C. Seshadhri 2017) algorithm is a randomized ap-

proach that aims to estimate the number of 𝑘-cliques (where 𝑘 ≤ 10) in a graph based on

Turán’s theorem (Turán 1941). Turán’s theorem provides insights about a graph’s maxi-

mum number of edges without having a (𝑘 +1)-clique according to the number of vertices.

Formally, Turán’s theorem states that in a graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices that do not

contain a clique of size 𝑘 +1 (where 𝑘 is greater than zero), the number of edges is bounded

by
(
1 − 1

𝑘

)
𝑛2

2
. That means if the edge density of a graph exceeds

(
1 − 1

𝑘−1

)
, it must contain

a 𝑘-clique. The algorithm starts by orienting the graph according to degeneracy ordering

to reduce the search space and then continues creating the TuránShadow. It explores the

neighborhoods of vertices iteratively to identify denser subgraphs. If the edge density of

an out neighborhood exceeds the Turán density threshold for (𝑘 − 1)-cliques, the induced

subgraph is added to the TuránShadow. Otherwise, the process is applied recursively to

find denser sets. The resulting TuránShadow comprises sets with densities above the Turán

threshold, forming a collection of potential 𝑘-cliques. A sampling strategy is employed

to randomly select subsets of vertices from these sets, which are then checked for clique

formation. The complexity is 𝑂 (𝑛𝛼𝑘−1), where 𝑛 vertices, 𝛼 is the degeneracy and 𝑘 is

the clique size.

4.3.3.2 YACC (Jain and Tong 2022)

This YACC algorithm (Jain and Tong 2022) is an extension of the Turán-shadow

algorithm (Jain and C. Seshadhri 2017) to improve the counting of large cliques in graphs.

Algorithms Turán-shadow and Pivoter (Jain and Seshadhri 2020) previously proposed al-

gorithm by the authors excel at counting small cliques, but they face challenges with larger

cliques. YACC improves approximate clique counting by reducing the recursion tree’s

size and exploiting insights from real-world graph structures. YACC relaxes the stopping

condition of Turán-shadow, which relies on a fixed density threshold from Turán’s theorem.
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Thus, YACC efficiently identifies dense subgraphs with a more adaptable stopping condi-

tion by significantly reducing the size of the recursion tree and the computation time. This

improvement makes clique counting possible for challenging graphs like com-lj (Leskovec

and Krevl 2014). The framework enhances control over the construction-sampling balance

by introducing a parameter, μ, which affects the balance between computational complex-

ity and accuracy of results. This parameter redefines what is needed for a graph to be

considered dense. The algorithm divides the graph into two regions: dense and sparse. A

sampling strategy is employed to estimate the clique counts in dense regions. The cliques

in the sparse area counted exactly in a recursive manner. As a result, the efficiency and

adaptability of Turán-shadow are enhanced by the YACC with some heuristics in practical

applications with a computational complexity similar to TuránShadow.

4.3.3.3 ERS (Eden, Ron, and Seshadhri 2018)

(Eden et al. 2017) introduce a sublinear-time algorithm for triangle counting that

defies the conventional linear-time norm for such computations. The paper uses degree,

neighbor, and pair queries within the standard query model for sublinear algorithms on

general graphs. Building on this significant advancement, an algorithm called ERS (Eden,

Ron, and Seshadhri 2018) is introduced to extend its application beyond triangle counting.

It aims to approximate the count of k-cliques within sublinear time, thus covering the

previously established result for 𝑘 = 3. The algorithm selects a sample set of vertices to

estimate the number of k-cliques connected to this subset. A crucial aspect is to sample

each k-clique connected to the sample set with almost equal probability. However, random

sampling can compromise the selection of high-degree vertices likely to form cliques.

The algorithm randomly samples high-degree vertices and tries to strike a careful balance

between predicting cliques formed by high-degree vertices and cliques formed by low-

degree vertices. A uniform edge (u, v) is sampled, and more vertices are added to that edge

iteratively to attempt to form a k-clique. Depending on whether v is a low- or high-order

vertex, the algorithm employs different sampling strategies, including uniform neighbor

selection and rejection sampling. The complexity of algorithm 𝑂̃

(
𝑛

𝐶
1/𝑘
𝑘

+ 𝑚𝑘/2

𝐶𝑘

)
, where 𝑛

is the number of vertices, 𝐶𝑘 is the number of 𝑘-cliques, and 𝑚 is the number of edges.
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4.3.3.4 SR-kCCE (Chang, Gamage, and Yu 2024)

The Turán-shadow, YACC (extended version of Turán-shadow), and DPColorPath

(Ye et al. 2023), which will be explained in the color-based sampling section, are outstand-

ing approximate k-clique counting algorithms based on a sampling strategy. A typical step

of these algorithms is constructing a sampling space consisting of dense subgraphs con-

taining k-cliques. These algorithms then sample a fixed element from the sampling space

to estimate k-clique counts. However, this fixed sampling does not guarantee accuracy.

The SR-kCCE (Chang, Gamage, and Yu 2024) algorithm presents a sampling-stopping

strategy that guarantees accuracy while providing efficiency. Like the Turán-shadow,

YACC, and DPColorPath algorithms, this algorithm consists of two steps: constructing

the sampling space and sampling randomly from that space to estimate k-clique counts.

The algorithms in the literature become inefficient when the sampling space construction

time is high, especially for large datasets. On the other hand, if the sampling space is

not refined from the non-cliques, the relative error worsens. The SR-kCCE algorithm

constructs a balance between these two steps. This algorithm estimates the expected

duration of the sampling phase. When this expected duration is approximately the same

as the construction/refinement sampling space, called a shadow, the algorithm stops the

refinement sampling space. Thus, it ensures that both phases are balanced regarding

computational effort. This algorithm improves k-clique estimation compared to previous

methods, especially for large datasets.

4.3.3.5 DPColorPath Clique Counting (Ye et al. 2023)

The paper DPColorPath proposed by (Ye et al. 2023) combines exact and approx-

imate solutions to enable working with large and dense datasets. The graph is partitioned

into dense and sparse regions. The algorithms that implement exact clique counting use the

efficiency of the Pivoter algorithm for sparse areas and adapted sampling-based techniques

for denser areas. Initially, a linear-time greedy coloring process is employed (Hasenplaugh

et al. 2014; L. Yuan et al. 2017), establishing a non-decreasing node ordering based on

color values and constructing a Directed Acyclic Graph (DAG) accordingly. Following the

computation of a DAG, nodes are partitioned into sparse and dense regions based on the

average degree of the neighborhood subgraph. The Pivoter algorithm accurately computes

(k-1)-clique counts in the sparse areas. At the same time, dense regions are addressed
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using three sampling-based methods: k-color set sampling, k-color path sampling, and k-

triangle path sampling. These three algorithms utilize dynamic programming techniques

and conduct uniform sampling. In the k-color set sampling method, k-color sets are se-

lected, each consisting of 𝑘 nodes with unique colors. The k-color path sampling samples

from connected k-color sets are called k-color paths. It ensures the induced subgraph by

the 𝑘 nodes stays connected. The most effective of the trio, k-triangle path sampling,

selects connected k-color sets where any three consecutive nodes form a triangle, known

as k-triangle paths. The time complexity of k-color set sampling is 𝑂 (𝜒𝑘 ), the time com-

plexity of k-color path sampling is𝑂 (𝜒𝑛𝑘 +𝑚), and the time complexity of k-triangle path

sampling is𝑂 (𝑘Δ) where 𝜒 is the number of colors of the graph G obtained by the greedy

coloring algorithm (Hasenplaugh et al. 2014; L. Yuan et al. 2017), 𝑘 is the clique size,𝑛is

the number of vertices, 𝑚 is the number of edges and Δ is the number of triangles of the

input graph.

The Turán-shadow algorithm (Jain and C. Seshadhri 2017) and its extension,

YACC (Jain and Tong 2022), propose randomized sampling-based solutions based on

Turán’s theorem (Turán 1941) for the k-clique counting problem. While Turán-shadow is

suitable for 𝑘 values less than 10 and relatively small datasets, the YACC algorithm can

handle 𝑘 values up to 40 and has shown results for large datasets that were not previously

reported in the literature. The algorithm ERS presents the sublinear-time solution (Eden,

Ron, and Seshadhri 2018) defying traditional linear-time norms. The algorithms proposed

by DPColorPath (Ye et al. 2023) combine exact and sampling-based techniques to handle

large and dense graphs. The fixed number of samples used by algorithms like Turán-

shadow, YACC, and DPColorPath impacts their accuracy; the SR-kCCE (Wang, Yu, and

Long 2024) algorithm addresses this limitation by balancing the construction sampling

space and sampling phases. The algorithm both provides efficiency for k-clique estimation

and guarantees accuracy. Unlike these approximation algorithms, the BDAC algorithm

provides a boundary instead of an estimation for the k-clique count without relying on any

sampling strategy or recursive process.
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4.3.4. Discussion on Clique Counting Algorithms

This section compares the algorithms according to results reported in related re-

search papers. Algorithms are categorized according to themain features of their approach.

Table 4.1 and Table 4.2 display this categorization, and each column entry provides de-

tailed information. For better readability, the categorization is given in separate tables,

which can be viewed side by side. The column Approximate indicates whether an algo-

rithm uses an approximation technique, typically sampling strategies, and specifies the

type of sampling strategy if available. Otherwise, there is no entry. A similar approach

is employed to Exact column. An algorithm may provide both approximate and exact

algorithms; both exact and approximate columns indicate the corresponding strategies.

The Parallelization column indicates whether the algorithm supports parallel execution; if

the corresponding entry for the algorithm is empty, it does not support parallelization. If

an algorithm is based on one of the two base algorithms mentioned in this publication and

provides suggestions for improving this algorithm, the Base algorithm column specifies

this base algorithm. Most clique counting algorithms use an orientation technique such

as degree, degeneracy, or color-based method as a pre-processing step to eliminate the

duplicate exploration of cliques. The undirected input graph is converted to a directed

acyclic graph (DAG) using one of these orientation techniques. The column Orientation

indicates the orientation methods used by the algorithm; an empty entry indicates that no

orientation techniques are used. The column Objective details the specific goal of each

algorithm, indicating whether the algorithm is designed to enumerate maximal cliques or

count k-cliques. Maximal and k-clique counting tasks overlap since a maximal clique can

contain several smaller k-cliques. While counting maximal cliques, one can indirectly

gather information about k-cliques. Many algorithms designed for k-clique counting have

been inspired by maximal clique counting algorithms, particularly the Bron-Kerbosch

algorithm. Several k-clique counting algorithms built upon innovations introduced by

maximal clique counting techniques and improvements to Bron-Kerbosch (Bron and Ker-

bosch 1973) have been adapted for k-clique counting. For this reason, Table 4.2 also

covers both maximal and k-clique counting algorithms, which are differentiated from the

Objective column. The Time complexity column specifies the computational complexity

of the algorithms, while the Space complexity column outlines the memory requirements if
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such information is available; otherwise, the entry states "not reported." The explanations

of complexity parameters are also included in the section detailing the algorithm.

The Bron-Kerbosch algorithm (Bron and Kerbosch 1973) and ARBO (Chiba and

Nishizeki 1985) represent distinct approaches to the problem of enumerating cliques in a

graph. Bron-Kerbosch uses a backtracking strategy, leveraging pivot vertices to thoroughly

identify all maximal cliques. In contrast, ARBO relies on arboricity, scanning subgraphs

induced by vertices to a decreasing degree to enumerate cliques efficiently. While the

Bron-Kerbosch algorithm guarantees exhaustive coverage of all maximal cliques, the time

complexity of ARBO is linked to the arboricity of the graph, making it particularly efficient

for real-world graphs with low arboricity.

Akkoyunlu’s algorithm (Akkoyunlu 1973), although described differently, essen-

tially mirrors Bron-Kerbosch by generating an identical search tree (Johnston 1976).

The algorithms proposed by (Tomita, Tanaka, and Takahashi 2006), (Eppstein,

Löffler, and Strash 2010), and (Dasari, Ranjan, and Mohammad 2014) (pbitMCE) each

present unique approaches to finding all maximal cliques in an undirected graph, sharing

a common heritage rooted in the Bron-Kerbosch algorithm (Bron and Kerbosch 1973).

(Tomita, Tanaka, and Takahashi 2006)’s algorithm is notable for using depth-first search

combined with effective pruning techniques. While these techniques are reminiscent of

the Bron-Kerbosch method, (Tomita, Tanaka, and Takahashi 2006) algorithm structures

the output in a memory-efficient tree-like format, unlike Bron-Kerbosch, which directly

enumerates cliques without such organization.

If we compare the algorithms in terms of time and space complexity, the classic

algorithms Bron-Kerbosch (Bron and Kerbosch 1973) and (Akkoyunlu 1973) have ex-

ponential time complexity due to the combinatorial nature of the problem and require

linear space mainly to store recursion data. They are suitable for small to moderate-sized

graphs where exact enumeration of maximal cliques is feasible. The algorithm proposed

by (Tomita, Tanaka, and Takahashi 2006) has a similar complexity to Bron-Kerbosch.

However, it has the advantage of slightly improved performance due to incorporating piv-

oting techniques. These algorithms are not suitable for large datasets due to exponential

time complexity.

(Eppstein, Löffler, and Strash 2010) introduced a significant variation by incorpo-

rating degeneracy ordering, which optimizes vertex processing. This strategic ordering
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ensures that each vertex is processed more locally and efficiently, considering its neigh-

bors. Building on this, (Dasari, Ranjan, and Mohammad 2014) developed the pbitMCE

algorithm, which also leverages degeneracy ordering but diverges in its approach by using

a partial bit adjacency matrix (pbam) to handle subgraphs. This data structure enhances

vertex processing efficiency in a distributed computing environment like Hadoop, high-

lighting pbitMCE’s suitability for large-scale graph data. The time complexity of the

algorithm (Eppstein, Löffler, and Strash 2010) is affected by degeneracy, so it is suitable

for sparse graphs with low degeneracy. The pbitMCE algorithm employs pivoting and

uses parallelism to enhance the efficacy of Bron-Kerbosch-style algorithms; however, the

resulting complexity remains exponential in 𝑘 .

The paper MACE (Makino and Uno 2004) proposes two strategies to list all

maximal cliques but different than theBron-Kerbosch, leveraging thematrixmultiplication

and maximum degree of the graph. This algorithm does not apply an ordering strategy and

uses a depth-first backtracking procedure. The MACE algorithm has a similar complexity

to ARBO (Chiba and Nishizeki 1985). However, its efficiency decreases when the graphs

get larger due to an additional factor, 𝑛. With a new strategy, the EBBkC (Wang, Yu,

and Long 2024) presents better time complexity for k-clique listing than the ARBO,

MACE, and kClist algorithms. It presents an edge-based branching strategy that explores

larger cliques by adding connected vertex pairs. Besides, it also introduces three-edge

sorting methods and early branch termination and incorporates parallelization techniques

for improved performance over traditional vertex-based approaches.

To summarize, all the algorithms discussed so far are algorithms that count max-

imal cliques efficiently, using their own strategies and data structures for this purpose.

These differences reflect trade-offs between memory usage, computational efficiency, and

suitability for various computational environments. Bron-Kerbosch (Bron and Kerbosch

1973) and Akkoyunlu (Akkoyunlu 1973) emphasize direct enumeration, (Tomita, Tanaka,

and Takahashi 2006) focus on memory-efficient structuring of the output, (Eppstein, Löf-

fler, and Strash 2010) optimize through degeneracy ordering, and (Dasari, Ranjan, and

Mohammad 2014) extend the strategy further with specialized data structures and dis-

tributed processing. While these algorithms use a similar approach to those proposed

in Bron-Kerbosch, except the ones proposed in the paper MACE, they offer different

strategies.
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(Finocchi, Finocchi, and Fusco 2015) presents a MapReduce-based version of the

ARBO algorithm and provides an approximate solution to relax the limitation of the exact

approach. This algorithm complexity grows exponentially with 𝑘 but efficiently handles

smaller cliques (lower 𝑘) in dense graphs.

Chiba and Nishizeki’s ARBO (Chiba and Nishizeki 1985) framework is improved

by the kClist (Danisch, Balalau, and Sozio 2018) algorithm incorporating degeneracy

ordering and parallelization techniques to enhance performance, particularly in handling

large-scale graphs.

(R. Li et al. 2020) presents a k-clique listing and counting approach based on

the color orientation technique, which differs from the typical degree and degeneracy

orientation methods. Similar to ordering-based k-clique algorithms such as kClist, this

method deviates from the traditional degeneracy ordering approach. Instead, it employs

color ordering to list k-cliques within graphs effectively. And (R. Li et al. 2020) presents a

decision tree to help select the most suitable k-clique listing algorithm based on different

scenarios. This algorithm has similar time complexity with kClist but scales with maxi-

mum degree Δ instead of arboricity, making it suitable for sparse graphs. The SDegree

and BitCol algorithms (Z. Yuan et al. 2022) claim to have comparable time complexity

and slightly better space efficiency than the algorithms proposed by (R. Li et al. 2020).

Exact k-clique counting algorithms depend on k-clique enumeration, which be-

comes infeasible for large graphs with high 𝑘 values (e.g., 𝑘 ≥ 8) due to combinatorial

explosion. The Pivoter algorithm (Jain and Seshadhri 2020), inspired by the Bron-

Kerbosch algorithm (Bron and Kerbosch 1973), tackles this issue. The critical innovation

of Pivoter is its ability to implicitly construct a succinct clique tree (SCT) using a pivoting

technique during the search process. This SCT structure provides a unique and compact

representation of all k-cliques, significantly reducing the space required compared to the

total number of k-cliques. However, the authors of Pivoter note that there are certain

datasets, such as 𝑐𝑜𝑚 − 𝑙 𝑗 (Leskovec and Krevl 2014); even the parallel version of Pivoter

struggled to count beyond 𝑘 = 10. The Pivoter algorithm is also suitable for large and

sparse graphs due to its time complexity, which depends on arboricity.

In response to the challenges of combinatorial explosion, there has been a shift

towards approximation solutions using sampling methods. The Turán-shadow algorithm

(Jain and C. Seshadhri 2017) is the state-of-the-art sampling-based approximate k-clique
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algorithm for 𝑘 values up to 10. This algorithm constructs a recursion tree, the Turán-

shadow, to create dense subgraphs covering the entire graph, followed by an unbiased

estimator to count the cliques. However, this process is time-intensive due to the con-

struction of the shadow. Building on this approach, the YACC algorithm (Jain and Tong

2022) reduces the recursion tree size to handle larger 𝑘 values (up to 40) by relaxing the

stopping condition during tree creation, improving efficiency but at the cost of accuracy.

This reduction requires a significant increase in the number of samples to maintain reliable

estimates. Both algorithms represent substantial advancements in approximate k-clique

counting, balancing efficiency and accuracy through innovative techniques. The Turán-

shadow algorithm is highly efficient for counting cliques in large, sparse graphs with low

arboricity. Since the time and space complexity depends on the arboricity of the graph,

it is suitable for sparse graphs. The YACC algorithm provides the same time and space

complexity as Turán-shadow.

The algorithm ERS developed by (Eden, Ron, and Seshadhri 2018) is a randomized

method for approximating the number of k-cliques in a given graph. ERS uses a query

model, unlike the Turán-shadow algorithm (Jain and C. Seshadhri 2017), which relies on

constructing the Turán-shadow. ERS is more space-efficient compared to the memory-

intensive Turán-shadow. However, while ERS theoretically achieves a 1+𝜀 approximation,

its practical accuracy tends to be lower than that of Turán-shadow, as demonstrated in

experiments reported by (R. Li et al. 2020). Additionally, (R. Li et al. 2020) illustrates

that for approximation algorithms, the worst-case time complexity of Turán-shadow is

typically higher than that of ERS. Nonetheless, Turán-shadow’s time overhead remains

substantially lower than most exact algorithms.

The ARB-Count (Shi, Dhulipala, and Shun 2021) demonstrates it significantly

outperforms the state-of-the-art parallel kClist algorithm and the parallel version of Pivoter.

While Pivoter can handle all cliques in some large graphs, it could be more efficient for

fixed 𝑘 values and faces substantial slowdowns, particularly for smaller 𝑘 . Moreover,

Pivoter requires considerable memory and help with large graphs, often running out of

space and failing to compute k-clique counts for higher 𝑘 values. In contrast, ARB-Count

shows superior performance and efficiency, making it more suitable for practical use.

The paper (Almasri et al. 2022) compares GPU implementations with two CPU

baselines: ARB-Count (Shi, Dhulipala, and Shun 2021), the top parallel graph orientation
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method, and Pivoter (Jain and Seshadhri 2020), the leading parallel pivoting method.

Two key observations are presented. First, for small values of 𝑘 , the graph orientation

approach outperforms pivoting, which excels for larger 𝑘 values; this pattern holds for

both CPU and GPU. Typically, the pivoting approach becomes superior around 𝑘 = 7.

Second, the best GPU implementation consistently outperforms the best parallel CPU

implementation across all 𝑘 values. The ARB-Count and kClist (Danisch, Balalau, and

Sozio 2018) algorithms are based on the ARBO (Chiba and Nishizeki 1985) algorithm,

and ARB-Count has better space complexity than kClist. The exact version is suitable for

large and sparse graphs with low arboricity. The approximate version is suitable for large,

sparse datasets where exact counting is infeasible.

(Ye et al. 2023) proposes a framework for estimating the number of k-cliques

by integrating Pivoter with three novel dynamic programming and color-based sampling

techniques. The k-color set sampling algorithm’s time and space complexities are affected

by the number of colors used and 𝑘 values. It can be suitable for small 𝑘 values and graphs

with low chromatic numbers (𝜒). The k-color path sampling algorithm is suitable for small

and moderate-size graphs and smaller 𝑘 values, as the complexity increases exponentially

regarding 𝑛 and 𝑘 values. The complexity of the k-triangle algorithm depends on the

number of triangles in the input graph and the desired clique size. This algorithm can

suffer from scalability problems, especially for large, dense datasets with many triangles.

This paper states that these sampling techniques outperform kClist and Pivoter across

various datasets and 𝑘 values. Additionally, they note that the space overheads of their

algorithms and Pivoter are comparable, while kClist consumes slightly more space than

their methods. The SR-kCCE (Chang, Gamage, and Yu 2024) algorithm provides an

efficient approximate k-clique counting algorithm with guaranteeing accuracy. It does not

specify explicit time and space complexity but claims to generally outperformDPColorPath

in execution time while being compatible with both Pivoter and DPColorPath regarding

memory usage.

The algorithms whose time complexity depends on degeneracy or arboricity often

perform well on large real-world graphs because the degeneracy and arboricity of a graph

are much smaller than the maximum degree of the graph.
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Table 4.1. A comparison of algorithms based on different characteristics.

Algorithm Approximate Exact Parallelization Base algorithm

Bron-Kerbosch

(Bron and Kerbosch 1973)
enumeration *

(Akkoyunlu 1973) enumeration

ARBO

(Chiba and Nishizeki 1985)
enumeration *

MACE (Makino and Uno 2004) enumeration

(Tomita, Tanaka, and Takahashi 2006) enumeration Bron-Kerbosch

(Eppstein, Löffler, and Strash 2010) enumeration Bron-Kerbosch

pbitMCE

(Dasari, Ranjan, and Mohammad 2014)
enumeration MapReduce Bron-Kerbosch

(Finocchi, Finocchi, and Fusco 2015) color-based enumeration MapReduce ARBO

Turán-shadow

(Jain and C. Seshadhri 2017)
random

kClist

(Danisch, Balalau, and Sozio 2018)
enumeration shared memory ARBO

(Eden, Ron, and Seshadhri 2018) rejection

(R. Li et al. 2020) enumeration shared memory ARBO

Pivoter (Jain and Seshadhri 2020) counting shared memory Bron-Kerbosch

ARB-Count

(Shi, Dhulipala, and Shun 2021)
color-based enumeration shared memory ARBO

YACC (Jain and Tong 2022) random Turán-shadow

(Z. Yuan et al. 2022) enumeration shared memory ARBO

(Almasri et al. 2022) counting GPU Bron-Kerbosch

DPColorPath (Ye et al. 2023) color-based shared memory

EBBkC

(Wang, Yu, and Long 2024)
enumeration shared memory

SR-kCCE

(Chang, Gamage, and Yu 2024)
random

BDAC

(Çalmaz and Bostanoğlu 2024a)
without sampling

* These algorithms themselves are base algorithms.
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Table 4.2. A comparison of algorithms based on additional characteristics.

Algorithm Orientation Objective Time complexity Space complexity

Bron-Kerbosch

(Bron and Kerbosch 1973)
maximal 𝑂 (3𝑛/3) 𝑂 (𝑚 + 𝑛)

(Akkoyunlu 1973) maximal 𝑂 (3𝑛/3) 𝑂 (𝑚 + 𝑛)

ARBO

(Chiba and Nishizeki 1985)
k-clique 𝑂 (𝑘𝑚𝛼𝑘−2) 𝑂 (𝑚 + 𝑛)

MACE

(Makino and Uno 2004)
maximal 𝑂 (𝑘𝑛𝑚𝛼𝑘−2) 𝑂 (𝑚 + 𝑛)

(Tomita, Tanaka, and Takahashi 2006) maximal 𝑂 (3𝑛/3) 𝑂 (𝑚 + 𝑛)

(Eppstein, Löffler, and Strash 2010) degeneracy maximal 𝑂 (𝑑𝑛3𝑑/3) 𝑂 (𝑚 + 𝑛)

pbitMCE

(Dasari, Ranjan, and Mohammad 2014)
degree/degeneracy maximal 𝑂 (𝑘𝑛3𝑘/3) not reported

(Finocchi, Finocchi, and Fusco 2015) degree k-clique 𝑂 (𝑚𝑘/2) 𝑂 (𝑚 + 𝑛)

Turán-shadow

(Jain and C. Seshadhri 2017)
degeneracy k-clique 𝑂 (𝑛𝛼𝑘−1) 𝑂 (𝑛𝛼𝑘−2 + 𝑚)

kClist

(Danisch, Balalau, and Sozio 2018)
degeneracy k-clique 𝑂 (𝑚𝛼𝑘−2) 𝑂 (𝑚 + 𝑃𝛼2)

(Eden, Ron, and Seshadhri 2018) degree k-clique 𝑂̃

(
𝑛

𝐶
1/𝑘
𝑘

+ 𝑚𝑘/2

𝐶𝑘

)
𝑂 (𝑚 + 𝑛)

(R. Li et al. 2020) color k-clique 𝑂 (𝑘𝑚 Δ
2

𝑘−2
) 𝑂 (𝑚 + 𝑛)

Pivoter

(Jain and Seshadhri 2020)
degeneracy k-clique 𝑂 (𝑛𝛼3𝛼/3) 𝑂 (𝑚 + 𝑛)

ARB-Count

(Shi, Dhulipala, and Shun 2021)
degeneracy k-clique

exact: 𝑂 (𝑚𝛼𝑘−2)

approx.:𝑂 (𝑝𝑚𝛼𝑘−2 + 𝑚)
𝑂 (𝑚 + 𝑃𝛼)

YACC

(Jain and Tong 2022)
degeneracy k-clique 𝑂 (𝑛𝛼𝑘−1) 𝑂 (𝑛𝛼𝑘−2 + 𝑚)

(Z. Yuan et al. 2022) degree/color k-clique 𝑂 (𝑘𝑚
(
Δ
2

) 𝑘−2

)
SDegree: 𝑂 (𝑚 + 𝑘𝑁Δ)

BitCol: 𝑂 (𝑚 + 𝑁 Δ2

𝐿 )

(Almasri et al. 2022) degeneracy/degree k-clique not reported 𝑂 (𝑑2𝑚𝑎𝑥)

DPColorPath

(Ye et al. 2023)
degeneracy k-clique

k-color set: 𝑂 (𝜒𝑘 )

k-color path: 𝑂 (𝜒𝑛𝑘 + 𝑚)

k-triangle path: 𝑂 (𝑘Δ)

k-color set: 𝑂 (𝑚 + 𝑛 + 𝜒𝑘 )

k-color path: 𝑂 (𝑘𝑛 + 𝑚)

k-triangle path: 𝑂 (𝑘𝑚)

EBBkC

(Wang, Yu, and Long 2024)
color k-clique 𝑂 (𝑚𝑑 + 𝑘 · 𝑚 ·

(
𝜏
2

) 𝑘−2
) 𝑂 (𝑚 + 𝑛)

SR-kCCE

(Chang, Gamage, and Yu 2024)
degeneracy k-clique not reported not reported

BDAC

(Çalmaz and Bostanoğlu 2024a)
degeneracy k-clique 𝑂 (𝛼2) 𝑂 (𝑚 + 𝑛 + 𝛼2)
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4.4. Motivation

Developing and analyzing graphlet counting algorithms that gracefully scale poses

a significant challenge, mainly when dealing with graphs of substantial dimensions.

Graphlet counting, in particular, demands intensive computational resources, and the

running times of algorithms can quickly become impractical, even when assuming the

input graphs are manageable by standard hardware. In the literature, even the ESCAPE

algorithm (Pinar, Seshadhri, and Vishal 2017), recognized as the state-of-the-art for exact

graphlet counting, handles graphlets up to five nodes. Although exact counting is viable

for smaller graphs, such as those found in bioinformatics, it becomes increasingly unfea-

sible for the larger, more complex graphs prevalent in social and information networks or

larger graphlet sizes due to combinatorial explosion.

Various algorithms have been developed to tackle the scalability challenge, with

approximation emerging as a prevalent strategy. Often leveraging sampling and statistical

methods, approximation involves selecting a subset of nodes and edges from a graph to

encapsulate its essential structural characteristics, thereby ensuring computational fea-

sibility. Another standard method is to speed up computation by taking advantage of

parallelism.

Graphlets are crucial for understanding local network structure variations and

comparing and characterizing real-world networks. Due to their importance, certain

graphlets, such as cycles and cliques, have garnered significant attention in the literature.

The cycle pattern (Figure 2.8d) is used for fraud detection (Qiu et al. 2018). Among these

patterns, cliques stand out due to their numerous applications across different application

areas. Clique analysis is vital in network analysis, with even the simplest form, the triangle,

being a central focus of recent research. Section 4.2 provides a usage of clique counts in

diverse application areas.

The literature contains numerous algorithms designed to list or count k-cliques

(Chiba and Nishizeki 1985; Finocchi, Finocchi, and Fusco 2015; Danisch, Balalau, and

Sozio 2018; R. Li et al. 2020; Jain and Seshadhri 2020). However, for large datasets or

high values of 𝑘 , the combinatorial growth of the problem makes exact and listing-based

methods computationally infeasible. The exact solutions can be applied to relatively small-

scale datasets where 𝑘 is less than 10. Even parallel versions of these algorithms struggle
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when 𝑘 exceeds 10. Approximation methods have gained attention to address this, as they

are practical when exact counts are infeasible (Jain and C. Seshadhri 2017; Eden, Ron, and

Seshadhri 2018; Shi, Dhulipala, and Shun 2021; Jain andTong 2022; Ye et al. 2023; Chang,

Gamage, and Yu 2024). Most approximation algorithms use sampling strategies to select

a representative sample set and draw samples from it to estimate k-cliques. These methods

often rely on recursive search trees due to the structure of the problem. Constructing a

recursive search tree becomes impractical for large datasets and higher k-values due to

the exponential growth of the search space. In large and dense datasets, the branches of a

recursive search tree grow exponentially, leading to combinatorial explosion and memory

overhead. However, achieving good sampling results relies on obtaining high-quality

samples from recursive search tree. Some algorithms enhance the performance of existing

approaches through parallel strategies or offer parallel solutions to improve scalability

and handle larger datasets more efficiently (Finocchi, Finocchi, and Fusco 2015; Danisch,

Balalau, and Sozio 2018; R. Li et al. 2020; Jain and Seshadhri 2020; Shi, Dhulipala,

and Shun 2021; Almasri et al. 2022; Ye et al. 2023; Wang, Yu, and Long 2024). An

extensive survey (Çalmaz and Bostanoğlu 2024b) presents a comprehensive analysis of

k-clique counting algorithms, examining their methodologies, applicability across various

scenarios, and limitations.

After discussing the limitations and challenges outlined earlier, this study notes that

extremal graph theorems (Turán 1941; Erdős 1969) in the literature have previously been

applied to address this problem (Jain and C. Seshadhri 2017). These theorems typically

focus on determiningwhether a graph can contain cliques, given certain density conditions.

In our work, we explore and apply other theorems (Zykov 1949; Kruskal 1963; Katona

1987; Reiher 2016) that provide insight into the number of cliques a graph with a specific

density can hold. Some of these extremal theorems give minimum and maximum clique

counts a graph, which satisfies a specific density, can contain. Consequently, we plan to

eliminate the recursive search tree and sampling phase, instead providing a boundary for

clique counts.

As a summary, this chapter has outlined the clique counting problem, its challenges,

application across various domains. It also presents the development of the clique counting

problem by discussing the two main algorithms and reviewing other methods that build on

them. Wehave given a thorough overviewof clique counting strategies, covering both exact
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and approximate methods. We also discussed the pros and cons of different techniques and

highlighted the importance of clique counting in understanding the structure of complex

networks. The knowledge gained here is essential for understanding our proposed method.

Finally, the motivation of this study is explained.
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CHAPTER 5

PROPOSED K-CLIQUE APPROXIMATIONS

ALGORITHMS

This section introduces the proposed approximate k-clique counting algorithm,

BDAC (Boundary-driven approximation of k-cliques), with a numerical example. Then,

it presents the algorithms’ time and space complexity compared with BDAC. In the last

section, the parallel version of BDAC is introduced.

The main challenge of counting k-cliques arises from the overwhelming number of

possibilities, known as a combinatorial explosion. Hence, methods have been developed to

sample large, dense subgraphs, mainly to count larger k-cliques. However, these sampling

methods require assumptions about the distribution or sufficiency of the sample count.

This algorithm aims to approximate the number of k-cliques (where 𝑘 � 3) in

the graph 𝐺. The methodology estimates lower and upper bounds for k-cliques through

extremal combinatorics, based on each node’s edge and triangle density. We use these

measures to estimate the total number of k-cliques in the entire dataset.

The proposed method avoids relying on sampling by leveraging insights from

established research in extremal combinatorics. By setting boundaries, we aim to eliminate

the need to make any assumptions about distributional properties. We also enhance the

algorithms performance and scalability by employing CPU-based parallelization.

5.1. BDAC (Boundary-Driven Approximations of K-cliques)

The BDAC (Boundary-driven approximations of k-cliques) algorithm draws inspi-

ration from the Turán-shadow algorithm (Jain and C. Seshadhri 2017), which leverages

classic extremal combinatorics principles concerning clique densities. Turán’s (Turán

1941) and Erdős (Erdős 1969) established lower bounds on the number of cliques within

sufficiently dense graphs. The novelty of our algorithm lies in integrating additional the-

orems such as Zykov (Zykov 1949), Kruskal-Katona (Katona 1987), (Kruskal 1963), and

Reiher (Reiher 2016) to provide both lower and upper bounds for dense graphs.
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Turán-shadow (Jain and C. Seshadhri 2017) method involves constructing a set

of dense subgraphs, known as a Turán-shadow, to cover graph 𝐺 comprehensively and

include all cliques. Then, it uses standard techniques to design an unbiased estimator for

the clique count. The Turán-shadow algorithm dedicates a significant portion of its overall

runtime to constructing the shadow. In contrast, sampling constitutes a small fraction of

the total execution time.

The BDAC algorithm innovatively bypasses the requirement for a Turán-shadow

and sampling techniques, offering a direct and efficient method for estimating k-clique

counts in complex networks. By traversing each node in the graph, we establish lower

and upper bounds for potential k-cliques formed by each vertex (local bound per vertex),

aggregating these bounds to determine the approximation of k-cliques without needing

a Turán-shadow (global bound). This streamlined approach ensures high-speed perfor-

mance, significantly reducing computational overhead and facilitating efficient approxi-

mation of k-clique counts. Besides, this algorithm also provides insights into local k-clique

counts formed by each vertex.

We compare the BDAC algorithm and Turán-shadow regarding their execution

time and results, mainly focusing on relatively small datasets. When dealing with large

datasets, the applicability of Turán-shadow diminishes significantly. As a result, we

compared the BDAC algorithm with YACC (Jain and Tong 2022), a modified version of

Turán-shadow designed for such scenarios. Unfortunately, we cannot access the source

code of YACC, which prevents a direct comparison of their execution times. As a result,

we can only compare algorithm estimation results across identical datasets. The outcomes

of the Pivoter (Jain and Seshadhri 2020) algorithm provide exact values for comparing

the algorithm in terms of relative error. However, Pivoter is not scalable to handle larger

datasets (like com-lj (Leskovec and Krevl 2014)). We also compare BDAC with the

DPColorPath (Ye et al. 2023) regarding the estimation results and execution time. A

comprehensive comparison of these state-of-the-art algorithms is provided, focusing on 𝑘

values ranging from 8 to 50, to analyze the effect of 𝑘 values on the datasets. As a result,

the requirement for exact values for large datasets prevents a comparative assessment.

Besides, we enhance the performance of the BDAC algorithm through CPU-

based parallelization techniques. By utilizing parallelization, this study aims to improve

the computational efficiency of BDAC, offering a more effective solution for large-scale
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graph analysis. We compare BDAC’s execution time with the most recent parallel k-clique

counting algorithm, DPColorPath. The evaluations demonstrate that the parallel version of

BDAC is highly compatible with DPColorPath, particularly when handling larger datasets

and larger 𝑘 values (𝑘 < 50). Notably, the BDAC provides a unique advantage by offering

a boundary at the vertex level, a feature not found in other algorithms in the literature,

except for Pivoter (Jain and Seshadhri 2020), which provides an exact solution but is only

suitable for 𝑘 < 10 on large datasets.

The primary innovation of BDAC occurs with its extraction of edge density in-

formation from the neighborhood of a node, facilitating the determination of the triangle

density (𝑑 (𝐾3)𝑣) associated with that node. Because the count of edges connecting the

neighbors of a given node corresponds to the number of triangles formed by that node, at

this point, we use Zykov’s theorem instead of Turán’s theorem. Zykov’s theorem extends

Turán’s theorem. Formally, for any positive integers r and s such that 2 ≤ 𝑟 ≤ 𝑘 , if

the density of r-clique satisfies the Zykov threshold, then the graph contains at least one

k-clique.

The pseudocode illustrating BDAC is shown in the Algorithm 5. Line 5 in

the pseudocode, 𝐻, represents the subgraph of the current node’s neighbors with edges

between them. Line 8 calculates the edge density of subgraph H (𝑑 (𝐾2;𝐻)), which is also

equal to the triangle density of the current node.

Now that we have triangle density information 𝑑 (𝐾3) for each node, we can

determine the presence of k-clique (𝐾𝑘 ). By using triangle density information 𝑑 (𝐾3)

instead of edge density 𝑑 (𝐾2), we obtain a relatively lower threshold. Suppose a node’s

triangle density 𝑑 (𝐾3) satisfies the Zykov threshold. In that case, the next step involves

deriving the upper bound of k-cliques obtained from that node and its neighborhood using

the Kruskal-Katona theorem explained above in Theorem 2.4.4.

In line 12, 𝑐𝑎𝑙𝑀𝑎𝑥𝐶𝑙𝑖𝑞 is a procedure that computes the maximum cliques in

subgraph H utilizing Kruskal-Katona’s theorem. The algorithm requires the density of

subgraph H, the number of nodes in subgraph H, and the size of the clique we search in H

as input parameters.

If the density satisfies the threshold, we establish a lower k-cliques bound. We

initially employed Reiher’s theorem to verify the lower bound for 𝐾𝑘 , as outlined in

Theorem 2.4.5.
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In line 15, 𝑐𝑎𝑙𝑀𝑖𝑛𝐶𝑙𝑖𝑞𝑅𝑒𝑖ℎ𝑒𝑟 is a procedure that calculates the minimum clique

counts in subgraph H utilizing Reiher’s theorem. The inputs of this procedure are the

𝑔𝑎𝑚𝑚𝑎 explained in Theorem 2.4.5, the number of nodes in subgraph H, and the size of

the clique that we search in H. However, in instances where 𝑠 ≤ 𝑘 - 2, the diminished

value of the binomial coefficient
(𝑠+1
𝑘

)
renders Reiher’s theorem inadequate for determining

the presence of 𝐾𝑠. In this scenario, the procedure returns -1, and then we verify if

𝑑 (𝐾2;𝐻) > 𝑘−2
𝑘−1

holds. If it does, we apply Erdős’s theorem (line 19). Otherwise, we

accept the lower bound as 0.

An additional differentiation from the Turán-shadow algorithm occurs when the

edge density of a node and its neighborhood fails to meet the Turán threshold. In such

cases, the algorithm recurses on the set of vertices within that neighborhood, constructing

a recursion tree named Turán-shadow within the Turán-shadow algorithm. Significantly,

the algorithm dedicates a notable portion of its overall computational time to establishing

this recursion tree.

Conversely, if a node and its triangle density do not satisfy the Zykov threshold, we

omit that particular node from consideration. Consequently, in this scenario, we abstain

from constructing any recursion tree.

As a final step, once we have obtained both the lower and upper bounds from each

node that meets the Zykov threshold, we combine these bounds to calculate the overall

lower and upper bounds. These aggregated bounds enable us to estimate the final count

of k-cliques (lines 13 and 24).

5.2. Example

This section presents an illustrative example aimed at elucidating the theorems

discussed. Figure 5.1 illustrates a sample graph 𝐺 and the out-degrees of each node

after degeneracy ordering. In this example, we aim to estimate 5-cliques. Following the

ordering, the algorithm traverses each node individually. If the neighbor count satisfies the

desired clique count minus one, which is 4 (excluding the current node itself), we check

whether the density satisfies the threshold. In this example, only node 0 has sufficient

neighbors to form the desired clique.
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Algorithm 5 BDAC

1: procedure approximate_k_clique(Graph 𝐺, DAG 𝐷, Integer 𝑘)
2: 𝑡𝑜𝑡𝑎𝑙𝑀𝑎𝑥 ← 0

3: 𝑡𝑜𝑡𝑎𝑙𝑀𝑖𝑛 ← 0

4: for all 𝑛𝑜𝑑𝑒 in 𝐺 do
5: 𝐻 ← neighbors of current node in 𝐷
6: 𝑛 ← the no. of vertices of subgraph H

7: 𝑚 ← the no. of edges of subgraph H

8: 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ← 𝑚/
(𝑛
2

)
9: 𝑘 ← 𝑘-1

10: 𝑧𝑦𝑘𝑜𝑣𝑇ℎ𝑟𝑒𝑠 ← (𝑘-1) (𝑘-2) (𝑘-3)/(𝑘-1)3

11: 𝛾 ← 𝑚/𝑛2

12: 𝑚𝑎𝑥𝐶𝑙𝑖𝑞 ← 𝑐𝑎𝑙𝑀𝑎𝑥𝐶𝑙𝑖𝑞(𝑛, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑘)
13: 𝑡𝑜𝑡𝑎𝑙𝑀𝑎𝑥+ ← 𝑚𝑎𝑥𝐶𝑙𝑖𝑞
14: if 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝑧𝑦𝑘𝑜𝑣𝑇ℎ𝑟𝑒𝑠 then
15: 𝑚𝑖𝑛𝐶𝑙𝑖𝑞 ← 𝑐𝑎𝑙𝑀𝑖𝑛𝐶𝑙𝑖𝑞𝑅𝑒𝑖ℎ𝑒𝑟 (𝑛, 𝛾, 𝑘)
16: if 𝑚𝑖𝑛𝐶𝑙𝑖𝑞 == −1 then
17: 𝑡𝑢𝑟𝑎𝑛𝑇ℎ𝑟𝑒𝑠 ← (𝑘-2)/(𝑘-1)
18: if 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝑡𝑢𝑟𝑎𝑛𝑇ℎ𝑟𝑒𝑠 then
19: 𝑚𝑖𝑛𝐶𝑙𝑖𝑞 ← ( 𝑛

𝑘−1
)𝑘−2

20: else
21: 𝑚𝑖𝑛𝐶𝑙𝑖𝑞 = 0

22: end if
23: end if
24: 𝑡𝑜𝑡𝑎𝑙𝑀𝑖𝑛+ ← 𝑚𝑖𝑛𝐶𝑙𝑖𝑞
25: end if
26: end for
27: Print totalMin

28: Print totalMax

29: end procedure
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(a) A sample graph 𝐺.

0 → 3,4,7

1 → 2,5

2 → 0,3,4,7

3 → 4,7

4 → 7

5 → 0,3,4,7

6 → 3,7

7 →

(b) Out-degree neighbors of each

node after degeneracy orientation.

Figure 5.1. Visualization of a graph (a) and its node relationships after applying degener-

acy ordering (b).

The following Figure 5.2 illustrates the neighbors of node 2 and node 5, along with

the edges between these neighbors (induced graph) represented as a subgraph H. Both

nodes yield the same induced subgraph. Then, the density of this subgraph H is calculated

(density= 6/
(4
2

)
= 2) and checked to see if it satisfies the Zykov threshold for 𝑘 = 4, 𝑟 = 3

(threshold= 0.22). As previously mentioned, the edge density of subgraph H provides the

triangle density of nodes 2 and 5, 𝑑 (𝐾2;𝐻) = 𝑑 (𝐾3)2 and 𝑑 (𝐾2;𝐻) = 𝑑 (𝐾3)5. Therefore,

the r-value is 3. Later, the algorithm utilizes Reiher’s theorem to establish the lower bound,

yielding 𝑠 = 3 and 𝛽 = 0, with a minimum clique count of 1. Kruskal-Katona’s theorem

provides the maximum clique count as 1. The same results are generated by node 2 and

5, the totalMin is 2 and totalMax is 2, with the exact value also being 2. The 5-cliques

in the 𝐺 are 0 − 2 − 3 − 4 − 7 and 0 − 3 − 4 − 5 − 7.

0

7

3

4

Figure 5.2. An induced subgraph 𝐻 formed by nodes 2 and 5 separately.
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5.3. Time and Space Complexity Comparisons

Both the Turán-shadow and YACC algorithms share the same time and space

complexity. Each algorithm involves iterating over all vertices, which takes 𝑂 (𝑛) time,

where 𝑛 is the number of vertices. During each iteration, the algorithm recursively

searches for (𝑘 − 1)-cliques within the neighborhoods of vertices. This recursive search

operation takes 𝑂 (𝛼𝑘−1) time, where 𝛼 represents the degeneracy of the graph, indicating

that each subgraph has at most 𝛼 neighbors. Also, in each recursive search, the algorithm

calculates the edge density. That means it checks the neighborhood of a current node,

whether any of two neighbors form an edge 𝑂 (𝛼2). Therefore, constructing the recursion

tree for these operations has a time complexity of 𝑂 (𝑛(𝛼2 + 𝛼𝑘−1)). So, total complexity

is 𝑂 (𝑛𝛼𝑘−1 + 𝑚), 𝑂 (𝑚) for degeneracy orientation, m indicates the number of edges.

This complexity suggests that the algorithm’s performance scales linearly with the

number of vertices ( n ) but exponentially with the size of the structure (𝑘), adjusted by

the degeneracy ( 𝛼 ). The ( 𝛼𝑘−1 ) term indicates that for each vertex, the algorithm

explores combinations of neighbors, but the degeneracy ( 𝛼 ) limits the growth of these

combinations, making the algorithm more efficient than a naive approach for dense graphs.

In summary, this complexity indicates an algorithm that is efficient for sparse

graphs (where 𝛼 is low) and for finding relatively small structures (where 𝑘 is not too

large), as the cost grows significantly with larger 𝑘 values, especially in denser graphs

where ( 𝛼 ) is higher. The space complexity is 𝑂 (𝑛𝛼𝑘−2 + 𝑛 + 𝑚), 𝑂 (𝑛𝛼𝑘−2) for the

recursion tree and storing subsets of neighbors at each level, 𝑂 (𝑛 + 𝑚) for storing the

original graph.

The time complexity of algorithms proposed by Ye et al. (Ye et al. 2023) are

k-color sampling is 𝑂 (𝜒𝑘 ), k-color path sampling 𝑂 (𝜒𝑛𝑘 + 𝑚), and k-triangle sampling

algorithms 𝑂 (𝑘Δ), where where 𝜒 is the number of colors of the graph G obtained by

the greedy coloring algorithm (Hasenplaugh et al. 2014; L. Yuan et al. 2017), 𝑘 is the

clique size, 𝑛 is the number of vertices, 𝑚 is the number of edges and Δ is the number of

triangles of the input graph. The k-color sampling algorithm considers all possible sets

of 𝑘 different colors, and in the worst case, there are 𝜒𝑘 such sets. For each set, it checks

whether it forms a k-clique, which leads to 𝑂 (𝜒𝑘 ) complexity. The space complexity is

𝑂 (𝑛+𝑚+ 𝜒𝑘 ),𝑂 (𝑛+𝑚) to store graphs and colors,𝑂 (𝜒𝑘 ) to store dynamic programming
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table (DP). In the k-color path algorithm, 𝜒𝑛𝑘 denotes the possible coloring of paths of

length 𝑘 over 𝑛 vertices, and 𝑚 denotes the traversal of each edge. The space complexity

of its 𝑂 (𝑛𝑘 +𝑚) DP and DAG. The k-triangle algorithm samples a triangle and extends it

to the k-clique. So, the time complexity is 𝑂 (𝑘Δ), and the space complexity is 𝑂 (𝑘𝑚) to

store the DP table.

The BDAC algorithm also iterates through each vertex in the graph. For every

vertex, it examines pairs of its neighbors to determine if they form an edge. This checking

operation, for each vertex, has a time complexity of𝑂 (𝛼2). Consequently, the overall time

complexity of BDAC is 𝑂 (𝑛𝛼2), where 𝑛 represents the number of vertices in the graph.

This complexity indicates that the time it takes for the algorithm to run scales

linearly with the number of vertices ( n ). However, the time taken for each vertex scales

quadratically with the degeneracy ( 𝛼 ). This is because the algorithm checks pairs of

neighbors for each vertex to determine whether they form an edge. The space complexity

is𝑂 (𝑛+𝑚 +𝛼),𝑂 (𝛼) for storing the nodes in induced subgraphs of each vertex,𝑂 (𝑛+𝑚)

for storing the original graph.

The BDAC gives better time and space complexity than Turán-shadow as it elimi-

nates the recursion tree construction. If we compare the k-color set sampling with BDAC,

(𝑂 (𝜒𝑘 ) vs. 𝑂 (𝑛𝛼2)), in the worst-case scenario where 𝜒 close to 𝑛 and causes 𝑂 (𝑛𝑘 )

which is the higher time complexity of compared𝑂 (𝑛𝛼2) complexity of the BDAC. Com-

pared with the k-color path, the term 𝜒𝑛𝑘 can grow extremely large, making it impractical

for large datasets (n) and larger 𝑘 . So, compared to BDAC, it is less efficient than BDAC

for larger 𝑘 and 𝑛. The time complexity of the k-triangle algorithm depends on the number

of triangles of input and the clique size. Compared with BDAC, this algorithm can be

more efficient for datasets with fewer triangles. Still, this algorithm can be comparable to

or worse than BDAC for dense datasets with larger triangles.

As a result, The BDAC algorithm is generally more efficient than the sampling-

based methods for large graphs because 𝛼 is typically much smaller than 𝑛. Sampling

approaches are effective in certain settings, such as when the number of colors is small.

However, they become more complex for larger graphs, especially as 𝑘 increases.
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5.4. Parallel BDAC

Algorithm 6 provides the pseudocode for the parallel implementation of BDAC. In

this study, the parallel implementation was developed using OpenMP (Dagum and Menon

1998), an API specifically designed for shared-memory architectures. This algorithm aims

to process a graph 𝐺 and its associated directed acyclic graph (DAG) 𝐷. The algorithm

exploits the density information obtained from the subgraphs induced by the neighborhood

of each vertex. It computes the minimum and maximum k-clique that these subgraphs can

contain using the principles of extremal graph theories.

In this work, the computations for each node are independent. Each node’s density

and k-clique boundaries are calculated separately at each iteration. The OpenMP API

simplifies parallelization by handling thread management, synchronization, and workload

distribution, making it well-suited for tasks with no inter-dependencies. Algorithm 6

distributes the tasks performed by each node across the threads, with each task executed

by an individual thread. It divides the workload (calculating the clique boundaries for each

node) between existing threads that can run concurrently. This parallel approach speeds

up the process, especially with large graphs. Each thread calculates local maximum and

minimum clique counts of subgraphs induced by a neighborhood of the current node, and

the results are then combined to give global bounds. In line 2, num_threads indicates the

number of threads. In line 4, the array of localMax and localMin keeps each thread’s

execution results. Each thread has a unique id (thread_id), and this id is obtained by

calling GetThreadId() function. The steps of this algorithm are similar to those of the

BDAC algorithm, so there is no need to explain each step between line 10-36 again. The

primary difference is that this algorithm parallelizes the task for each node, distributing

the work across multiple threads. Finally, the local counts for each thread are summed to

obtain the final results (line 37 and 38).
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Algorithm 6 parallel BDAC

1: procedure parallel_bdac(Graph 𝐺, DAG 𝐷, Integer 𝑘)
2: 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ← Set to max available
3: 𝑡𝑜𝑡𝑎𝑙𝑀𝑎𝑥 ← 0, 𝑡𝑜𝑡𝑎𝑙𝑀𝑖𝑛 ← 0,

4: 𝑙𝑜𝑐𝑎𝑙𝑀𝑎𝑥 = [0.0] ∗ 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠, 𝑙𝑜𝑐𝑎𝑙𝑀𝑖𝑛 = [0.0] ∗ 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠
5: Parallel Section:
6: Divide the work across multiple threads
7: for each thread in parallel do
8: 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑 ← GetThreadId()
9: for all 𝑛𝑜𝑑𝑒 in 𝐺 do

10: 𝐻 ← Construct induced subgraph of current node’s out-nbrs in 𝐷
11: 𝑘 ← 𝑘-1
12: 𝑛 ← the no. of vertices of subgraph H

13: if n < k then
14: continue

15: end if
16: 𝑚 ← the no. of edges of subgraph H

17: 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ← 𝑚/
(𝑛
2

)
18: 𝑧𝑦𝑘𝑜𝑣𝑇ℎ𝑟𝑒𝑠 ← (𝑘-1) (𝑘-2) (𝑘-3)/(𝑘-1)3

19: 𝛾 ← 𝑚/𝑛2

20: 𝛾 ← 𝑚/𝑛2

21: 𝑚𝑎𝑥𝐶𝑙𝑖𝑞 ← 𝑀𝑎𝑥𝐶𝑙𝑖𝑞(𝑛, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑘)
22: 𝑙𝑜𝑐𝑎𝑙𝑀𝑎𝑥 [𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑]+ ← 𝑚𝑎𝑥𝐶𝑙𝑖𝑞
23: if 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝑧𝑦𝑘𝑜𝑣𝑇ℎ𝑟𝑒𝑠 then
24: 𝑚𝑖𝑛𝐶𝑙𝑖𝑞 ← 𝑐𝑎𝑙𝑀𝑖𝑛𝐶𝑙𝑖𝑞𝑅𝑒𝑖ℎ𝑒𝑟 (𝑛, 𝛾, 𝑘)
25: if 𝑚𝑖𝑛𝐶𝑙𝑖𝑞 == −1 then
26: 𝑡𝑢𝑟𝑎𝑛𝑇ℎ𝑟𝑒𝑠 ← (𝑘-2)/(𝑘-1)
27: if 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝑡𝑢𝑟𝑎𝑛𝑇ℎ𝑟𝑒𝑠 then
28: 𝑚𝑖𝑛𝐶𝑙𝑖𝑞 ← ( 𝑛

𝑘−1
)𝑘−2

29: else
30: 𝑚𝑖𝑛𝐶𝑙𝑖𝑞 = 0

31: end if
32: end if
33: 𝑙𝑜𝑐𝑎𝑙𝑀𝑖𝑛[𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑]+ ← 𝑚𝑖𝑛𝐶𝑙𝑖𝑞
34: end if
35: end for
36: end for
37: 𝑡𝑜𝑡𝑎𝑙𝑀𝑎𝑥 ←

Í𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠
𝑡=1

𝑙𝑜𝑐𝑎𝑙𝑀𝑎𝑥 [𝑡]

38: 𝑡𝑜𝑡𝑎𝑙𝑀𝑖𝑛 ←
Í𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠
𝑡=1

𝑙𝑜𝑐𝑎𝑙𝑀𝑖𝑛[𝑡]
39: Print 𝑡𝑜𝑡𝑎𝑙𝑀𝑖𝑛
40: Print 𝑡𝑜𝑡𝑎𝑙𝑀𝑎𝑥
41: end procedure
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CHAPTER 6

EXPERIMENTS

This chapter presents the properties of the environment and datasets used for

experiments. It subsequently compares the sequential and parallel versions of the proposed

algorithm, BDAC, with other clique counting algorithms.

6.1. Experimental setup

We perform a comparative analysis of BDAC, including its parallel version, results

against the Turán-shadow (Jain and C. Seshadhri 2017) algorithm, Pivoter (Jain and

Seshadhri 2020), and DPColorPath (Ye et al. 2023) utilizing publicly available C++

implementations. The codes of neither the DPColorTriangle (Ye et al. 2023) nor YACC

(Jain and Tong 2022) codes are not publicly available. So, we can not compare our

algorithm with the DPColorTriangle. We also compare BDAC, YACC, and DPColorPath

algorithms regarding the estimation results. The results for YACC are used as detailed

in the paper (Jain and Tong 2022). Throughout our experiments, we leverage and refine

the existing C++ implementations of the Turán-shadow algorithm. We thank the authors

of Turán-shadow, Pivoter, and DPColorPath for generously sharing their codes. The

assessment of all algorithms occurs on a PC equipped with two 2.2 GHz Intel(R) Xeon(R)

Silver 4114 CPUs (10 cores), 640KB L1 cache, 10MB L2 cache, 13MB L3 cache, and

32GB of memory.

We utilize a diverse selection of datasets obtained from both SNAP (Leskovec

and Krevl 2014) and Network Repository (Rossi and Ahmed 2015). Table 6.1 illustrates

the datasets and their respective properties. The value labeled as 𝛼 in 6.1 indicates the

degeneracy of the dataset, which is further explained in Section 2. The provided datasets

display a wide range of characteristics in terms of their size and density. "Web-Stanford"

and "soc-pokec" are notable for their relatively low degeneracy values, indicating sparser

graphs with nodes of lower degrees, suggesting minimal interconnectivity. On the other

hand, "com-lj" and "soc-LJ" demonstrate high degeneracy values, signifying denser graphs

with significantly higher connectivity, even within their subgraphs. "Web-BerkStan"
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shows moderate to high degeneracy, suggesting graphs with varying levels of density and

connectivity. "as-skitter" and "com-orkut" exhibit moderate degeneracy values, indicating

graphs with relatively high connectivity but not as dense as the "com-lj" or "soc-LJ"

datasets. "Uk-2002" is the most degenerate of the datasets we are working on. This may

indicate that it contains dense structures and large cliques, which are computationally

challenging. This comparison highlights the diverse nature of the datasets, showcasing

variations in graph density and connectivity across different network structures.

Table 6.1. Dataset properties.

graph n m 𝛼

web-Stanford 2.82E+05 1.99E+06 71

web-BerkStan 6.85E+05 6,65E+06 201

as-skitter 1.7E+06 4.3E+06 111

soc-pokec 1.6E+06 1.1E+07 47

com-lj 4.0E+06 2.2E+07 360

soc-LJ 4.8E+06 4.2E+07 372

com-orkut 3.0E+06 1.1E+08 253

uk-2002 1.8E+07 2.9E+08 1885

6.2. Experimental results of BDAC

We compare the performance of the BDAC algorithm with Turán-shadow, Pivoter,

and DPColorPath in terms of results, including estimations, exact values, and boundaries,

as shown in Table 6.2.The BDAC algorithm does not provide an estimation. Instead, it

determines the boundaries, specifying the minimum and maximum number of k-cliques a

graph can contain. The Pivoter algorithm provides exact values for comparing algorithm

results. If exact values are unavailable, Table 6.2 indicates the corresponding entry as

"unknown". The BDAC is also compared with another sampling-based DPColorPath

algorithm. The results of the DPColorPath algorithm are obtained from 500K samples.
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Table 6.2. Comparison of the boundaries provided byBDAC, the exact values (if available)

from Pivoter, and the estimated values from TuránShadow and DPColorPath.

Approx. Exact Approx. Estimation

dataset k BDAC-min Pivoter BDAC-max Turán DPColorPath

tech

8 7,67E+10 4,82E+11 5,59E+12 4,80E+11 4,81E+11

15 2,70E+15 1,11E+16 8,80E+18 1,10E+16 1,14E+16

20 3,48E+17 1,28E+18 2,38E+22 1,28E+18 1,13E+18

25 7,60E+18 3,04E+19 1,43E+25 3,01E+19 2,36E+19

40 8,91E+18 5,09E+19 2,41E+30 5,12E+19 5,09E+19

50 4,23E+15 3,05E+16 4,96E+31 2,94E+16 3,05E+16

web-Stanford

8 1,39E+11 2,18E+11 3,53E+11 2,18E+11 2,18E+11

15 9,98E+14 2,95E+15 1,28E+16 2,95E+15 2,95E+15

20 6,04E+16 1,53E+17 1,52E+18 1,53E+17 1,53E+17

25 6,46E+17 1,30E+18 2,83E+19 1,29E+18 1,30E+18

40 7,68E+16 1,09E+17 1,08E+19 1,07E+17 1,09E+17

50 2,43E+12 3,95E+12 1,25E+15 3,77E+12 3,95E+12

web-BerkStan

8 1,83E+14 1,84E+14 1,84E+14 1,83E+14 1,84E+14

15 3,48E+22 3,48E+22 3,49E+22 3,48E+22 3,48E+22

20 3,95E+27 3,96E+27 3,97E+27 3,95E+27 3,96E+27

25 1,16E+32 1,16E+32 1,70E+32 1,16E+32 1,16E+32

40 6,12E+42 6,14E+42 6,25E+42 6,13E+42 6,14E+42

50 1,50E+48 1,51E+48 1,55E+58 1,50E+48 1,51E+48

soc-pokec

8 2,06E+07 1,11E+08 3,06E+10 1,11E+08 1,13E+08

15 2,80E+08 3,54E+08 5,57E+12 3,54E+08 3,55E+08

20 3,14E+07 4,49E+07 9,41E+12 4,49E+07 4,49E+07

25 5,05E+04 1,22E+05 3,62E+12 1,22E+05 1,22E+05

com-lj

8 1,54E+16 1,69E+16 2,09E+16 unknown 1,69E+16

15 2,20E+26 unknown 2,64E+26 unknown 2,27E+26

20 5,28E+32 unknown 6,77E+32 unknown 5,48E+32

25 3,32E+38 unknown 4,94E+38 unknown 3,55E+38

40 1,96E+53 unknown 6,13E+53 unknown 2,51E+53

(cont. on next page)
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Table 6.2 (cont.).

50 2,92E+61 unknown 1,76E+62 unknown 4,34E+61

soc-LJ

8 3,00E+16 unknown 4,24E+16 unknown 3,28E+16

15 4,50E+26 unknown 8,19E+26 unknown 5,23E+26

20 1,05E+33 unknown 2,67E+33 unknown 1,31E+33

25 6,47E+38 unknown 2,39E+39 unknown 8,58E+38

40 3,50E+53 unknown 5,10E+54 unknown 5,86E+53

50 4,56E+61 unknown 2,10E+63 unknown 9,69E+61

com-orkut

8 1,52E+11 unknown 3,89E+15 unknown 1,56E+12

15 1,98E+14 unknown 2,24E+23 unknown 8,58E+15

20 2,24E+15 unknown 1,04E+28 unknown 1,99E+17

25 2,93E+15 unknown 1,39E+32 unknown 2,43E+14

40 2,30E+09 unknown 1,10E+42 unknown 1,16E+13

50 0 unknown 1,07E+47 unknown 1355

uk-2002

8 1,86E+19 unknown 1,87E+19 unknown 1,86E+19

15 2,95E+32 unknown 2,95E+32 unknown 2,95E+32

20 1,07E+41 unknown 1,07E+41 unknown 1,07E+41

25 1,11E+49 unknown 1,11E+49 unknown 1,11E+49

40 5,29E+70 unknown 5,29E+70 unknown 5,29E+70

50 4,92E+83 unknown 4,92E+83 unknown 4,92E+83

The BDAC, Turán-shadow, Pivoter, and DPColorPath algorithms are also com-

pared based on their execution time, as shown in Table 6.3. For large datasets, Turán-

shadow and Pivoter algorithms are terminated after a specified duration, as indicated by

"terminated" in Table 6.3.
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Table 6.3. Execution time comparison of BDAC, Pivoter, TuránShadow, and DPColorPath

algorithms.

Time (sec)

dataset k BDAC Pivoter Turán DPColorPath

tech

8 130 88 188 6

15 125 88 257 6

20 126 88 318 7

25 116 88 387 8

40 127 88 424 22

50 129 88 235 41

web-Stanford

8 13 3 53 1

15 12 3 53 1

20 11 3 48 1

25 13 3 41 1

40 13 3 31 1

50 12 3 5 1

web-BerkStan

8 105 13 5 3

15 106 13 257 4

20 106 13 208 4

25 105 13 162 4

40 106 13 338 4

50 106 13 328 4

soc-pokec

8 25 47 46 15

15 26 47 44 13

20 24 47 40 12

25 26 47 38 10

com-lj

8 68 terminated terminated 27

15 66 terminated terminated 29

20 68 terminated terminated 31

25 68 terminated terminated 34

40 68 terminated terminated 35

(cont. on next page)
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Table 6.3 (cont.).

50 69 terminated terminated 39

soc-LJ

8 128 terminated terminated 36

15 128 terminated terminated 46

20 126 terminated terminated 51

25 128 terminated terminated 57

40 128 terminated terminated 96

50 128 terminated terminated 166

com-orkut

8 1715 terminated terminated 212

15 1715 terminated terminated 292

20 1715 terminated terminated 411

25 1715 terminated terminated 580

40 1715 terminated terminated 1233

50 1713 terminated terminated 1742

uk-2002

8 2073 terminated terminated 137

15 2074 terminated terminated 201

20 2073 terminated terminated 260

25 2074 terminated terminated 311

40 2074 terminated terminated 670

50 2074 terminated terminated 944

Besides, we compare the results of the BDAC algorithm and DPColorPath with

YACC, an adapted version of Turán-shadow designed for such scenarios (see Table 6.4).

However, our inability to access the source code of YACC prevents a direct comparison

of their execution times. Therefore, the assessment is limited to comparing the sampling

results reported in the YACC paper (Jain and Tong 2022) across identical datasets. The

results are consistent for relatively smaller datasets, so we compare these three algorithms

on large datasets with k=20, 40. The results are obtained for 500K samples, as the YACC

states its results under 500K samples.
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Table 6.4. Comparison of BDAC, YACC, and DPColorPath regarding estimation results

for k=20,40.

k BDAC-min BDAC-max YACC DPColorPath

com-lj
20 5,28E+32 6,77E+32 5,49E+32 5,48E+32

40 1,96E+53 6,13E+53 2,51E+53 2,51E+53

soc-LJ
20 1,05E+33 2,67E+33 1,31E+33 1,31E+33

40 3,50E+53 5,10E+54 2,51E+53 5,86E+53

com-orkut
20 2,24E+15 1,04E+28 3,38E+17 1,99E+17

40 2,30E+09 1,10E+42 2,61E+13 1,16E+13

uk-2002
20 1,07E+41 1,07E+41 1,07E+41 1,07E+41

40 5,29E+70 5,29E+70 5,29E+70 5,29E+70

6.3. Experimental results of parallel BDAC

We compare the execution times of parallel version of BDAC with the latest parallel

k-clique counting algorithm, DPColorPath. Table 6.5 shows the execution times of both

the sequential and parallel versions of the BDAC and DPColorPath algorithms. It is also

observed whether the parallel version improves on the sequential algorithm, especially as

the dataset increases. The results of both algorithms were obtained using 20 threads.
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Table 6.5. Execution time comparison of both sequential and parallel versions of BDAC

and DPColorPath.

k
BDAC

time (sec)

Parallel

BDAC

time (sec)

DPColorPath

time (sec)

Parallel

DPColorPath

time (sec)

com-lj

20 68 38 31 3

40 68 38 35 8

50 68 38 39 8

soc-LJ

20 128 45 51 4

40 128 45 96 30

50 128 45 166 80

com-orkut

20 1715 218 411 30

40 1715 218 1233 98

50 1715 218 1742 324

uk-2002

20 2073 297 656 17

40 2073 297 694 29984

50 2073 297 665 29710

6.4. Discussion of results

This section discusses the results of our algorithm compared to state-of-the-art

algorithms, the performance of BDAC, and its limitations.

Comparison BDAC with the other algorithms: Turán-shadow is suitable for

relatively small datasets since its effectiveness significantly diminishes when dealing with

larger datasets. The BDAC algorithm’s capacity to address dense subgraphs provides

a distinct advantage in specific contexts The BDAC consistently demonstrates a notably

wider gap between the minimum and maximum values in certain cases when compared to

the Tur’an-shadow algorithm (refer to Table 6.2). Its robust capability to handle large dense

subgraphs exceeds that of both the Pivoter and Tur’an-shadow algorithms. It is capable of
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handling large dense subgraphs, which goes beyond what the Pivoter and Tur’an-shadow

algorithms can do. The scalability of Pivoter hinders its applicability to larger datasets.

As a result, the need for exact values in larger datasets poses challenges in conducting a

comparative evaluation.

Mostly, the execution time of the DPColorPath algorithm outperforms the BDAC,

especially for larger datasets and larger 𝑘; it requires a larger sampling size. Also, it is

observed that the execution time of the DPColorPath algorithm grows with the 𝑘 on large

datasets and gets closer to the BDAC execution time. However, the BDAC algorithm has

approximately the same running time on a dataset for all 𝑘 values because it does not build

a recursion tree or apply sampling strategies.

Table 6.4 shows that the YACC and DPColorPath results on "soc-LJ" for k=40

and "com-orkut" for k=20 and 40 are inconsistent. Without knowing the exact values, we

cannot determinewhich algorithm’s sampling results aremore accurate orwhich algorithm

requires more samples. Our algorithm provides minimum and maximum k-clique counts

in such cases, offering guarantees based on theoretical foundations.

Based on the dataset results, the exact values obtained do not surpass our estimated

maximumvalue on any dataset. However, for some datasets, there is a significant difference

between the BDAC’s minimum and maximum k-clique counts. The limitation part below

explains this variance.

Comparison of parallel BDAC with parallel DPColorPath: We compare the

parallel version of BDAC with the DPColorPath algorithm, the state-of-the-art parallel k-

clique counting algorithm, and their sequential versions. The results show that the parallel

version of BDAC performs notable enhancements compared to the sequential version. The

parallel BDAC shows significant speed up and outperforms its sequential versions for all

𝑘 values. The parallel version is also similar to the sequential version independent of 𝑘

values, showing constant execution time across different values of 𝑘 . The DPColorPath

algorithm improves its sequential versions but struggles with large, dense datasets "uk-

2002" and larger 𝑘 > 40 values. This situation shows that the parallelization might

be inefficient or poorly scaled. If we compare the parallel versions of both BDAC and

DPColorPath, the DPColorPath outperforms most cases of BDAC, but both versions of

DPColorPath struggle with large datasets and larger 𝑘 values. The parallel BDAC exhibits

better scalability and overall performance for large, dense datasets and larger 𝑘 values.
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Performance of BDAC: Applying theorems in the algorithmic process lets us

determine the dataset’s minimum and maximum 𝑘-clique counts per vertex and global.

This approach ensures rigorous analysis and guarantees that the generated 𝑘-cliques adhere

to established mathematical principles. Additionally, understanding the range between the

minimum and maximum values offers insights into the diversity and distribution of 𝑘-

cliques, facilitating informed decision-making in data analysis and interpretation.

The execution time of the sampling-based algorithm mostly outperforms the

BDAC. However, their accuracy depends on the sample sizes, and the complexity of

these algorithms grows with 𝑘 . The BDAC algorithm complexity is not dependent on 𝑘;

it depends on the degeneracy 𝛼 of the graph. The BDAC algorithm is well-suited for large

and densely connected datasets such as com-lj, soc-pokec, soc-LJ, and uk-2002. In these

datasets, the node densities typically meet the given threshold, allowing us to obtain both

the minimum and maximum k-clique counts per node. This leads to a smaller difference

between the lowest and highest values overall. This work represents the first attempt to

provide lower and upper bounds and results for 𝑘 = 50. Our algorithm is not restriced

with 𝑘 < 50; it can work for any 𝑘 > 3.

Limitation of BDAC: For some datasets, there is a significant disparity between the

estimated minimum and maximum k-clique compared to other datasets. This discrepancy

highlights a limitation of our algorithm. Specifically, accurate estimation of the minimum

k-cliques size becomes problematic when the edge density of node neighbors can be at

most the threshold. This factor also affects the final estimation of k-cliques. Additionally,

if a node has a high degree but its density is lower than the given threshold, it indicates

that the node yields a sparse induced subgraph. This can lead to a significantly higher

potential maximum k-clique count, particularly for large 𝑛 but lower 𝑘 , because of the

binomial coefficients of
(𝑛
𝑘

)
used in calculating the maximum value. This observation

emphasizes a crucial aspect of our algorithm’s performance and offers valuable insights

into its limitations. In cases where there is a substantial variance in estimates.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this work, we analyze graphlet counting algorithms, highlighting the problems’

associated challenges and discussing the advantages and disadvantages of both exact and

approximate approaches for handling large datasets. As part of the thesis, we conduct an in-

depth analysis of graphlet counting techniques and algorithms. The goal is understanding

how handling large datasets becomes impractical for larger graphlet sizes. Consequently,

the focus shifts from exact methods to approximate solutions, given that exact algorithms

are not feasible for large datasets, and there is a lack of research on counting graphlets of

size 𝑘 > 5.

We try to find potential research direction and concentrate on cliques, the most

widely studied graphlet type across various disciplines. Within the scope of this thesis,

we thoroughly survey clique counting methods, analyzing their strengths and weaknesses

to offer insights into existing approaches and guide future research directions. This work

is published as part of our contribution to the field (Çalmaz and Bostanoğlu 2024b).

Then, after the comprehensive literature analysis, we introduce BDAC using ex-

tremal graph theorems and propose a boundary-based method for k-clique approximation

(Çalmaz and Bostanoğlu 2024a). The goal is to improve graph analysis capabilities

and provide an efficient tool applicable to various fields such as social network analysis,

recommender systems, and bioinformatics.

The BDAC algorithm efficiently approximates k-cliques for 𝑘 � 50, providing

minimum and maximum bounds locally (per vertex) and globally across various values of

𝑘 , mainly focusing on 𝑘 = 8, 15, 25, 40, and 50. The aim of providing results on different

𝑘 values is to measure the capability of the algorithms from lower to large 𝑘 values. Using

extremal graph theorems, which provide insights about clique existence, in the algorithmic

process, we can determine the boundaries of k-cliques for per-vertex and within the entire

datasets. Our work is the first attempt to provide both lower and upper bounds and results

for k=50, contributing to the advancement of k-clique counting algorithms. BDAC is

unique in handling large dense subgraphs and offers reliable bounds for larger 𝑘 value

compared to other algorithms like Turán-shadow, YACC, and DPColorPath despite some
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limitations in datasets like "com-orkut." This method advances k-clique counting without

relying on sampling or recursion, also the complexity remains unaffected by values of 𝑘

unlike other algorithms, enhancing the analysis of complex networks.

Comparison with state-of-the-art algorithms, including Turán-shadow, Pivoter,

YACC, and DPColorPath, reveals distinctive characteristics of BDAC. When compared

to Turán-shadow, its ability to handle large dense subgraphs offers a unique advantage,

addressing a crucial limitation of existing algorithms and underscoring the potential utility

of BDAC in specific contexts. Similarly, compared to YACC, our BDAC algorithm

demonstrates competitive performance, delivering dependable estimations across datasets

by offering lower and upper bounds. The DPColorPath algorithm mostly outperforms

the BDAC regarding execution time, but it requires a much larger sample size for large

datasets and larger 𝑘 . In such a situation, the execution time of the BDAC and DPColorPath

algorithm becomes competitive, as is shown in the experimental results.

We also improve the performance and scalability of BDAC through parallelization

techniques. The results demonstrate that the parallel version outperforms the sequential

BDAC for all values of 𝑘 , making BDAC scalable for large datasets. The parallel BDAC

also outperforms the state-of-the-art algorithm in literature on large and dense datasets

and larger 𝑘 values.

However, the BDAC exhibits limitations, particularly in datasets like "com-orkut."

The significant disparity between estimated minimum and maximum k-cliques highlights

challenges in accurately estimating minimum k-clique sizes, especially when the edge

density of node neighbors falls below a Turán threshold.

In future work, we plan to prepare a conference paper focusing on the parallel

version of BDAC. Furthermore, we intend to leverage datasets that estimate minimum and

maximum counts of 𝑘-cliques to train a supervised machine learning model. This model

will enable us to predict minimum values in cases where they are currently unknown,

thereby enhancing the accuracy and comprehensiveness of our estimation methodology.

We will try to integrate clique counting algorithms with Graph Neural Networks (GNNs).

GNNs may predict or enhance clique counting in large-scale graphs by incorporating node

embeddings and graph features learned during training.

In summary, we present a direct method for estimating k-cliques (where 𝑘 ≤ 50)

without reliance on sampling techniques or the construction of recursion trees. Using
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established theorems, the BDAC provides upper and lower bounds for k-cliques per vertex

and globally, providing a reliable and efficient alternative to traditional methods. This ad-

vancement significantly enhances the accuracy and speed of analyzing complex networks

and graph structures. We also improve the algorithm performance and scalability for large

datasets using parallelization techniques.
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