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ABSTRACT

MODELLING OF MOIRÉ SUPERLATTICES OF HETEROBILAYER
STRUCTURES USING CONTINUUM QUANTUM MONTE CARLO

METHODS

Moiré heterostructures of transition metal dichalcogenides (TMD) show exotic

physical phenomena such as insulating phase at half-filling, Wigner crystallization and

itinerant (Stoner) ferromagnetism. Itinerant (Stoner) ferromagnetism can be explained

through favored ferromagnetic configurations due to exchange interactions between the

electrons occupying similar energy levels. The charge carrier dynamics in such materials

is determined by a potential called moiré potential that forms a triangular lattice. Moiré po-

tential can be defined as a sum of Gaussians for finite structures. Tight-Binding (TB) model

is the simplest approximation used to understand electronic systems with non-interacting

particles by using localized orbitals in real space. Hubbard model is a many-body exten-

sion of TB model by incorporation of Coulomb repulsion between electrons. Mean-field

approximation of Hubbard model (Mean-Field Hubbard, MFH) can be used to solve for

ground state self-consistently. Variational Monte Carlo (VMC) and Diffusion Monte Carlo

(DMC) are continuum Monte Carlo methods that are used for calculating ground state

energies and spin-dependent densities of correlated electrons accurately in both real and

artificial lattices. Trial wave functions are initial wave functions for VMC and DMC calcu-

lations given in Slater-Jastrow form. In this study, in order to investigate magnetic phases

of finite-size moiré heterostructures, a finite moiré potential for MoSe2/WS2 heterobilay-

ers is defined, and DMC calculations were performed by using VMC-optimized TB and

ground-state MFH orbitals. Our findings show the presence of ferromagnetic ground state

at 3/2 filling where van Hove singularity occurs. For larger potential amplitude, Wigner

crystal states around 1/3 filling were observed as excited states.
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ÖZET

HETEROBİLAYER YAPILARIN MOIRÉ SÜPER KAFESLERİNİN
SÜREKLİ KUANTUM MONTE CARLO TEKNİKLERİ

KULLANILARAK MODELLENMESİ

Geçiş metali dikalkojenitlerinin Moiré heteroyapıları, yarı dolumda yalıtkan hal,

Wigner kristalizasyonu ve gezgin (Stoner) ferromanyetizması gibi egzotik fiziksel olgular

göstermektedir. Gezgin (Stoner) ferromanyetizması, benzer enerji seviyelerindeki elek-

tronlar arasındaki değişim etkileşimlerine bağlı olarak tercih edilen ferromanyetik kon-

figürasyonlar ile açıklanabilmektedir. Bu tür malzemelerde yük taşıma dinamikleri üç-

gen örgü oluşturan ve moiré potansiyeli adı verilen bir potansiyel tarafından belirlen-

mektedir. Moiré potansiyel, sonlu yapılar için Gausyenlerin bir toplamı olarak tanım-

lanabilmektedir. Sıkı Bağlam (TB) modeli, gerçek uzayda lokalize orbitaller kullanılarak

etkileşmeyen parçacıklara sahip elektronik sistemleri anlamak için kullanılan en basit yak-

laşımdır. Hubbard modeli, elektronlar arasındaki Coulomb itme kuvvetinin dahil edilme-

siyle sıkı bağlam modelinin çok cisimli bir uzantısıdır. Hubbard modelinin ortalama alan

yaklaşımı (ortalama alan Hubbard, MFH) temel hali öz-uyumlu bir şekilde çözmek için

kullanılabilmektedir. Varyasyonel Monte Carlo (VMC) ve Difüzyon Monte Carlo (DMC);

korele elektronların temel hal enerjilerini ve spine bağlı yoğunluklarını hem gerçek hem

de yapay örgülerde doğru bir şekilde elde etmek için kullanılmaktadır. Deneme dalga

fonksiyonları, VMC ve DMC hesapları için Slater-Jastrow formunda verilen başlangıç

dalga fonksiyonlarıdır. Bu çalışmada, sonlu büyüklükteki moiré heteroyapıların manyetik

fazlarını araştırmak üzere MoSe2/WS2 hetero-çift katmanları için sonlu moiré potansiyeli

tanımlanarak VMC ile optimize edilmiş TB ve temel hal MFH orbitalleri kullanılarak

DMC hesapları gerçekleştirilmiştir. Bulgularımız, van Hove tekilliğinin bulunduğu 3/2

dolumda ferromanyetik temel halin varlığını göstermektedir. Daha büyük potansiyel için

1/3 dolum civarında uyarılmış hal olarak Wigner kristali gözlenmektedir.
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CHAPTER 1

INTRODUCTION

Low dimensional materials has been study of interest in physics and materials sci-

ence for nearly over two decades since the first graphene flake is produced by Novoselov

and Geim.1 Graphene is a conductor with linear dispersion relation causing electrons to

travel with higher speeds than the electrons in ordinary conductors such as copper that we

use in our daily lives. Despite these interesting properties, graphene does not have a band

gap. Thus, semiconductor industry has been focusing on finding alternative low dimen-

sional materials with a reasonable band gap to build switching mechanisms for electric cur-

rent. Accordingly, two dimensional Transition Metal - Dichalcogenide (TMD) materials

are found to be viable alternatives to graphene as they are semiconductors.2 Alternatively,

nanostructured low dimensional materials such as graphene nanoribbons,3 graphene anti-

dot lattices,4 bilayer graphene5 and TMD bilayers6 are shown to have considerable band

gap for electronic applications.

Apart from band semiconductors, strong electronic correlations in materials can

lead to tunable insulating phases controlled by bandwidth, filling and dimensionality of

materials.7,8 Strong correlation effects in these materials can lead to Wigner crystalliza-

tion.9–12

The materials with strong electron correlations are considered for novel device ap-

plications such as field effect transistors,13–15 tunable superconductors,15,16 neuromorphic

memristor devices.17

In this study, we focus on magnetic phases and magnetic phase transitions due to

strong correlation in moiré heterostructures based on TMD heterobilayers by using con-

tinuum Monte Carlo methods.

1.1. Moiré Superlattices

Monolayer flakes of two dimensional materials can be stacked on top of each other

to create bilayer structures. These bilayer structures can be twisted, i.e. one of the layers
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is rotated with respect to other by an angle called twist angle. The local variations in the

interlayer bond lengths create moiré patterns. These patterns may occur in homobilayers

such as twisted bilayer graphene, or heterobilayers composed of two different materials.

These structures are called moiré superlattices.

Recent studies on twisted bilayer graphene show that the electronic bands of moiré

superlattices (moiré bands) can be flattened by tuning the twist angle,18 allowing strongly

correlated charge carriers19 lead to interesting phases such as Mott insulator states and

unconventional superconductivity.16,20

Other than graphene, bilayer structures of two dimensional Transition Metal -

Dichalcogenide (TMD) materials can be used to form Moiré superlattices. Two dimen-

sional TMD materials are compounds with two chalcogenide atoms for every transition

metal atom with chemical formula MX2 (M: transition metal, X: chalcogenide). Moiré

superlattices can be formed in homobilayers or heterobilayers of TMD materials.

Unlike graphene, broken inversion symmetry and spin-orbit coupling in TMD

structures causes coupling between spin and valley degrees of freedom (so-called spin-

valley locking).21 Additionally, in heterobilayer TMDs, the band alignment between layers

determine the preferred layer for carrier motion. In heterobilayer TMDs with type-I band

alignment, the lowest conduction band and the highest valence band are located in the

same material. For instance, MoSe2/WS2 has type-I band alignment with both the highest

valence band and the lowest conduction band in MoSe2. On the other hand, in heterobi-

layer TMDs with type-II band alignment, conduction band and valence band are located in

different materials. As an example, in WSe2/WS2 heterobilayers, the holes in the highest

valence band exist on WSe2 layer wheres the electrons in the lowest conduction band ex-

ist in WS2 layer.6,10,22–26 Similarly, MoS2/WSe2 heterobilayer has type-II band alignment

with conduction band in MoS2.6,27 Figure 1.1 shows type-I and type-II band alignments.

Although these are the intrinsic band alignments for these materials, a recent study showed

that the band alignment of MoSe2/WS2 can be changed by strong electric fields.28

The reduced degrees of freedom due to broken symmetries in heterobilayer TMDs

provide a framework for modeling by single-band Hubbard models.22,24,25,29–33 Although

these models capture the essential physics underlying these structures, most of them ignore

higher order perturbative terms such as long-range electron-electron interactions. Alter-

natively, continuum Monte Carlo methods such as Variational Monte Carlo and Diffusion
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Monte Carlo methods can be used to determine ground state of Moiré superlattices without

ignoring higher-order terms.

Figure 1.1. (a) Type-I and (b) type-II band alignments are shown. The highest valence

band and the lowest conduction band are depicted by green and red lines re-

spectively. The highest valence and the lowest conduction band are located in

the same layer in type-I band alignment, however, they are located in different

layers in type-II band alignment.

1.2. Moiré Potential

The periodic potential that the the charge carriers (i.e. electrons and holes) in a

moiré heterobilayer feel due to interlayer bonds can be modeled by,22,34

𝑉 (®𝑟) ≈
∑

𝑖=1,3,5
𝑉𝑚 cos( ®𝑏𝑖 · ®𝑟 + 𝜓) (1.1)

where the modulation potential 𝑉𝑚 and phase 𝜓 are the system dependent parameters and

b𝑖 are the reciprocal lattice vectors. Figure 1.2c-d shows a Moire potential the extrema of

which form a triangular lattice. The parameters of the potential are 𝑉𝑚 = 6.6 meV and

𝜓 = −94◦. Due to the moiré potential, the charge dynamics are different from natural

solids in which crystal potentials determine the carrier motion. Accordingly, the interac-

tion energy and length scales differ significantly. In natural solids, the typical length scale

is at the order of atomic distance is ∼ Å and the energy scale is ∼ eV, while in moiré su-

perlattices the typical length scale is at the order of 10 nm with interaction energies at the
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order of 10-100 meV.24 For instance, For for WSe2/WS2 heterobilayers the bandwidth is

around 11 meV22 that determines the energy scales of the moiré potential and the kinetic

energies of electrons (see Fig. 1.2a,c-d). In twisted bilayer TMDs, the periodic length 𝑎𝑀

is approximated by 𝑎0/
√
𝜃2 + 𝛿2 where 𝑎0 is the lattice constant of the layer with larger

lattice constant, 𝜃 is the twist angle and 𝛿 is the lattice mismatch which is typically about

4%.24 For instance, untwisted WSe2/WS2 heterobilayers, 𝑎𝑀 is given as 8.2 nm24 which

corresponds to 𝑎0 ≈ 0.328 nm for WSe2.35

Figure 1.2. (a) Isolated valence band (so-called moiré band), (b) type-II band alignment,

(c) moiré potential in a unit cell of triangular lattice, and (d) periodic moiré

potential in WSe2/WS2 heterobilayers. (Source: ref 22)

Moiré potential is highly tunable due to its dependence on the interlayer coupling

and the moiré period. The modulation potential 𝑉𝑚 can be modified by gate controlled

electric fields or external pressure,22,30,36 while the periodic length can be modified by

the twist angle 𝜃. Although both lattice hopping and Coulomb interaction depends on the

Moiré potential, the latter also depends on the dielectric permittivity 𝜖 which can be tuned

by varying the carrier density and the separation of the gates.30 Hence, modifying 𝑉𝑚, 𝜃
4



and 𝜖 allows one to probe correlated phases in twisted heterobilayer TMD structures.

Figure 1.3. Visualization of Wigner crystals on WSe2/WS2 heterobilayers are shown.

(Source: ref 11)

Figure 1.4. (a) Moiré conduction bands and (b) interlayer distance of MoSe2/WS2 hetero-

bilayers. Letters M and X correspond to the trasition metal elements (Mo, W)

and the chalcogenide elements (Se, S) respectively. Threfore, sites denoted

by MM, XM and MX show interlayer stacking of Mo-W, Se-S, S-Se pairs re-

spectively. (Source: ref 32)

Recently, it has been shown that for the half-filled moiré valance band in WSe2/WS2

heterobilayers, the strong Coulomb interaction gives rise to an insulating phase.22 For twist

angles larger than 3◦, the long range spin exhcange coupling becomes large enough to make

spin-liquid state possible in half-filling.22 Van Hove singularity at filling 𝜈 = 3/2 (𝜈 = 1:

half filling) can give rise to four-sublattice antiferromagnetic phases which are related to

interesting phenomena such as quantum anomalous Hall effect.22 The insulating phase
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at half-filling has been verified experimentally in a later studies.11,25 It has also been ar-

gued that the insulating state at half-filling is a charge-transfer insulator instead of a Mott

insulator.24,30 Additionally, Wigner crystal states are observed at 1/3 and 2/3 fillings,11

which provides correlated phenomena such as frustrated magnetism37 and quantum melt-

ing.31 The visualization of Wigner crystals at 𝜈 = 1/3, 𝜈 = 2/3 and 𝜈 = 1 are shown in

figure 1.3.

A recent experimental study investigated various correlated insulating phases such

as Wigner crystals and charge density waves at fractional fillings for both holes and elec-

trons in WSe2/WS2 heterobilayers by optical sensing via excitons.10 In addition to the

verification of Wigner crystals at 1/3 and 2/3 hole filling, it has further been shown that

Wigner crystal states are also present at 1/4 hole filling and their conjugate electron filling

factors 1-𝜈.10 Another experimental study on WSe2/WS2 by using microwave impedance

microscopy agrees with the previous results on Wigner crystals at 1/3 and 1/4 fillings

and their conjugate fillings for both electrons and holes.12 Additional theoretical studies

on WSe2/WS2 heterobilayers have showed tunable antiferromagnetic-ferromagnetic phase

transitions29,38 and itinerant ferromagnetism at 3/2 filling due to van Hove singularity are

possible.33 This behavior is observed in an experimental study on MoSe2/WS2 in which

paramagnetic-ferromagnetic transition at 3/2 filling can occur in.32 In MoSe2/WS2 het-

erobilayers, the band alignment is of type-I, thus the valence and conduction bands are

symmetric due to the localization in the same material. The conduction bands obtained

by DFT calculation are shown in Fig. 1.4a. The interlayer distance which determines the

moiré potential is shown in Fig. 1.4b. Because the MM sites are more localized than that of

WS2/WSe2 heterobilayers, the potential phase 𝜓 is different, as well as the potential ampli-

tude 𝑉𝑚 which determines the band structure. Moiré potential parameters for WS2/WSe2

conduction bands are given by 𝑉𝑚 = 6.3 meV and 𝜓 = 0◦.

1.3. Itinerant (Stoner) Ferromagnetism

Van Hove singularities are the divergences that occur in the Density of States

(DOS) of electronic systems. They are related to the narrow bandwidths, since DOS is

simply the derivative of the band energies with respect to the energy.
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Figure 1.5. (a) Total spin with respect to the filling factor in WS2/WSe2 heterobilayers

(half-filling is defined as 𝜈 = 0.5 for this figure). (Source: ref 33) (b) Tem-

perature multiplied by susceptibility 𝑇 𝜒 with respect to the filling factor 𝜈 for

three different temperature values. Paramagnetic for 𝜈 < 1, ferromagnetic for

1 < 𝜈 < 3/2 and antiferromagnetic for 𝜈 > 3/2. (Source: ref 32)

Electron correlations in a material are enhanced when there is a van Hove sin-

gularity in density of states at the Fermi energy which is the highest occupied energy

level. Around a van Hove singularity, there are many electrons which have similar en-

ergies. These electrons interact with each other more than the electrons with different

energies. This behavior can be explained by using Fermi golden rule, which approximates

the single-particle transition probability between two different energy levels under weak

perturbation,39

𝑊𝑖→𝑛 =
2𝜋
ℏ
|𝑉𝑛𝑖 |2D(𝐸𝑛) (1.2)

where 𝑊𝑖→𝑛 is the transition probability per unit time (transition rate) between states |𝑖〉
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and |𝑛〉 state, 𝑉𝑛𝑖 = 〈𝑛|�̂� |𝑖〉 is the expectation value of interaction potential between states

|𝑖〉 and |𝑛〉,D(𝐸) is DOS at energy 𝐸 . Because the scattering rate (therefore the scattering

probability) is proportional to DOS and a van Hove singularity at Fermi energy in DOS

causes the most electrons to occupy similar energies, the interactions between these elec-

trons become highly probable. Many-body electronic wavefunctions obey Pauli exclusion

principle according to which multiple electrons having the same spin cannot occupy the

same location. This causes the electrons with parallel spins stay apart, thereby reducing

the Coulomb repulsion between them.33 This type ferromagnetism is called itinerant or

Stoner ferromagnetism, that is defined by Stoner’s criterion,40

𝐼D(𝐸𝐹) > 1 (1.3)

where 𝐼 is the exchange coupling that corresponds to the energy gain per unit cell due to

the parallel alignment of spins33 and D(𝐸𝐹) is the density of states at Fermi energy 𝐸𝐹 .

Theoretically, itinerant ferromagnetism is expected at 𝜈 = 3/2 filling for triangular lattices

where van Hove singularity occurs.32,41 Such ferromgnetism is shown for 𝜈 = 3/2 (𝜈 = 3/4

in the figure, since half-filling is defined as 𝜈 = 0.5 instead of 𝜈 = 1) in Figure 1.5a.

Recent experimental study on MoSe2/WS2 heterobilayers by Ciorciaro et. al.32 shows

that ferromagnetism is observed between 𝜈 = 1 and 𝜈 = 3/2. Surprisingly, their results

show that ferromagnetism dimnishes at van Hove singularity (𝜈 = 3/2). To interpret the

aforementioned results, one can define magnetic susceptibilities for antiferromagnetic and

ferromagnetic ordering that are given by,42

𝜒AFM =
𝜒Curie

1 + 𝑇𝑐/𝑇
(1.4)

𝜒FM =
𝜒Curie

1 − 𝑇𝑐/𝑇
(1.5)

where 𝜒Curie ∝ 1/𝑇 . Thus, as 𝑇 increases, 𝑇 𝜒Curie is constant, 𝑇 𝜒AFM increases, 𝑇 𝜒FM

decreases. Figure 1.5b shows the susceptibility multiplied by temperature𝑇 𝜒 as a function

of filling factor in MoSe2/WS2 heterobilayers for three different temperature values.32 For

𝜈 < 1.0, the system is paramagnetic because it is temperature dependent. For higher

filling between 1.0 and 1.5, the system becomes ferromagnetic where 𝑇 𝜒 decreases as

temperature 𝑇 increases. For filling values higher than 3/2, antiferromagnetic behavior is

observed as 𝑇 𝜒 increases with temperature 𝑇 . In this study, we investigate this behavior
8



in finite lattices.

1.4. Wigner crystallization

Wigner crystals are periodic arrangement of localized electrons due to long range

correlations.43 At low densities, the average electron separation increases, thereby reduc-

ing both kinetic energy and Coulomb repulsion between electrons. As density decreases,

the long range Coulomb potential dominates over kinetic energy which eventually becomes

negligible. As a result, electrons behave similar to classical point charges separated uni-

formly, thereby forming a crystal structure.

To show the relation between electron density and energy scales, we consider the

effective band Hamiltonian for electrons with effective mass 𝑚eff and dielectric permittiv-

ity 𝜖 is given by,44

𝐻 = − ℏ2

2𝑚eff

∑
𝑖

∇2
𝑖 +

1
2

∑
𝑖 𝑗

1
4𝜋𝜖

∑
𝑖 𝑗

𝑒2

|®𝑟𝑖 − ®𝑟 𝑗 |
(1.6)

The effective Rydberg energy in terms of 𝜖 , and in terms of 𝜅 is given by,

𝑅∗𝑦 =
1
2

𝑒2

4𝜋𝜖𝑎∗𝐵
=

ℏ2

2𝑚eff (𝑎∗𝐵)2
(1.7)

Thus the Hamiltonian becomes,

𝐻 = −𝑅∗𝑦
(
𝑎∗𝐵

)2
∑
𝑖

∇2
𝑖 + 𝑅∗𝑦

(
𝑎∗𝐵

) ∑
𝑖 𝑗

1
|®𝑟𝑖 − ®𝑟 𝑗 |

(1.8)

By scaling the length by using the transformation ®𝑟 → ®𝑟/𝑎WS, Hamiltonian can be

expressed as,

𝐻 =
𝑅∗𝑦

𝑟2
𝑠

(
−

∑
𝑖

∇2
𝑖 + 𝑟𝑠

∑
𝑖 𝑗

1
|®𝑟𝑖 − ®𝑟 |

)
(1.9)

where 𝑟𝑠 is a dimensionless Wigner-Seitz parameter defined by 𝑟𝑠 = 𝑎WS
𝑎∗𝐵

where 𝑎WS is

Wigner-Seitz radius that corresponds to the average electron separation and 𝑎∗𝐵 is effective
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Bohr radius given by,

𝑎∗𝐵 =
4𝜋𝜖ℏ2

𝑚eff𝑒2 (1.10)

To express the relation between 𝑟𝑠 and electron density 𝑛, the latter can be described

in terms of 𝑑-dimensional Wigner-Seitz sphere 𝑉 (𝑑)WS ,

𝑛 =
𝑁

𝑉
=

1
𝑉 (𝑑)WS

(1.11)

where 𝑁 and 𝑉 are the total number of charges and total volume respectively. For two

dimensional systems, 𝑉 (𝑑)WS = 𝜋𝑎2
WS, thus 𝑟𝑠 becomes,

𝑟𝑠 =
1
𝑎∗𝐵

1
√
𝜋𝑛

(1.12)

As shown in equation 1.9, both kinetic energy and Coulomb potential decreses by

𝑟𝑠. However, 1/𝑟𝑠 dependence of Coulomb potential compared to 1/𝑟2
𝑠 dependence of

kinetic energy causes this term to dominate for large 𝑟𝑠. For Two Dimensional Electron

Gas (2DEG), the crystallization transition occurs around 𝑟𝑠 ≈ 30− 35.45 As equation 1.12

shows, 𝑟𝑠 is inversely proportional to the square root of the electron density. Additionally,

considering the definition of effective Bohr radius given by equation 1.10, 𝑟𝑠 is propor-

tional to the ratio 𝑚eff/𝜖 . Therefore, 𝑟𝑠 can also be tuned by dielectric permittivity 𝜖 in

addition to electron density.
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CHAPTER 2

METHODS

In this study, Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC)

methods will be used to determine ground state of correlated electron systems in Moiré

superlattices. Although VMC is computationally more feeble than DMC, the latter is more

reliable in terms of the accuracy. They can be used consecutively, i.e. the output of VMC

calculation is used as the input for DMC calculation. This way the balance between accu-

racy and computation cost will be expected.

In VMC calculations, one needs to define the potential that determines carrier dy-

namics and the trial wave-function which will be briefly described in section 2.4. As for

the trial wave-functions, the ground-state wave-functions determined from Mean-Field

Hubbard calculations can be used. Because Mean-Field Hubbard (MFH) calculations are

based on the Tight-Binding (TB) models, an introduction to the TB model and energy

bands is also given as a subsection.

In addition, by implementing moiré potential for finite systems, the edge effects

can be probed to reveal interesting physics. Therefore, we implemented a more realistic

model which we call Gaussian sum potential.

For numerical modelling of Quantum Monte Carlo Methods, Cornell - Holland

Ab-initio Materials Package (CHAMP)46 were used for both VMC and DMC simulations.

SciPy47 and NumPy48 packages were used for fitting and diagonalization tasks. The figures

are produced via our Python codes by using matplotlib49 library.

2.1. Moiré Potential for Finite Lattices

The parameters 𝑉𝑚 and 𝜓 of the moiré potential given by eq. 1.1 can be calculated

by using the ab initio methods such as Density Functional Theory on bulk heterobilayer

TMD materials.22,24 Although both the modulation potential 𝑉𝑚 and the phase 𝜓 are de-

pendent on the twist angle, the dependence becomes much weaker for small twist angles

for which the moiré period is large,24 making them material-dependent properties. Nev-
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ertheless, the modulation potential can be modified by applying vertical electric field50

and/or applying pressure.36

Because moiré potential given by eq. 1.1 is periodic, the calculations for finite

systems will heavily depend on the boundaries of the simulation area. Hence, as an ap-

proximation, Gaussian potentials in the form

𝑉𝑔 (®𝑟) =
∑
𝑖

𝑉𝑖 (®𝑟) =
∑
𝑖

(
−𝑉0 exp

(
−

(
|®𝑟 − ®𝑅𝑖 |2

𝜌2

) 𝑠))
(2.1)

can be fitted to the moiré potentials by constraining the shapes of the potentials to the

system. ®𝑅𝑖 in Eq. 2.1 denotes the site coordinates. Moiré potentials are different from

Gaussian potentials in a manner that the former has three sublattices corresponding to

hills, wells and zero-valued midpoints. Therefore, in general, using gaussian wells on a

single triangular sublattice can not describe the moiré potential in a finite structure. In

addition, the potential must reach the highest value outside of the system to prevent elec-

trons from escaping to eliminate fictitious edge effects on the system. To that end, three

different Gaussian-like functions are employed for each sublattice; one corresponding to

hills, another to wells and a third to midpoints to define finite moiré potential in terms of

the sum over these Gaussians by,

𝑉 (®𝑟) = 𝛼
©«𝑉b +

𝑁pot∑
𝑛

𝑁𝑛
cent∑
𝑖

𝑉0,𝑛 exp
©«−

©«
���®𝑟 − ®𝑅𝑛,𝑖

���2
𝜌2
𝑛

ª®®¬
𝑠𝑛ª®®¬

ª®®¬ (2.2)

where 𝛼 is the scale parameter for tuning the potential, 𝑉𝑏 is bias to shift, ®𝑅𝑛,𝑖 is 𝑖th site at

𝑛th sublattice. The Gaussians at each sublattice 𝑛 has an amplitude 𝑉0,𝑛, a radius 𝜌𝑛, and

a stiffness 𝑠𝑛. Fig. 2.2b shows such three sublattices in a 7x7 triangular lattice by black,

red and green squares as well as the fitted sum of Gaussians. Fig. 2.2c shows that the

maximum error is less than 0.5% which occurs at the site centers.

In addition to successful fitting in the bulk, the potential has to be large enough to

restrict electronic motion to the system. Our attempts to fit three different Gaussians with

positive 𝑠𝑛 failed because the resulting potential has minima outside the system. By using

a Gaussian-like function with 𝑠𝑛 < 0 as shown in Fig. 2.1c, the resulting potential has

maxima outside the system, i.e. the electronic motion is restricted to the system as shown

in Fig. 2.3a.
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Figure 2.1. (a), (b) and (c) show Gaussian-like functions that are used in the sum potential

(Fig. 2.2) at minima, maxima and midpoints respectively. (a) and (b) are

ordinary Gaussians that are slightly curved, i.e. 𝑠 ≈ 1, whereas (c) becomes

more flat around its center with negative stiffness, differing from Gaussians.

Figure 2.2. (a) Bulk Moiré Potential in a 7x7 triangular lattice given by eq. 1.1 with

𝑉𝑚 = 6.3 meV and 𝜓 = 0◦ for MoSe2/WS2.32 (b) Finite moiré potential given

by eq. 2.2 the fitted to the bulk Moiré potential inside. Black, green and red

squares correspond to wells, hills and midpoint sublattices. (c) Absolute dif-

ference between fitted potential and moiré potential is shown.

The Gaussian-like function shown in Fig. 2.1c has a singularity at |®𝑟 |2 = 0 because

of the negative 𝑠𝑛 value. Therefore, a small number 10−15 is added to |®𝑟 |2 in our imple-

mentation. The potential can further be confined by directional and radial Heaviside step
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functions based on logistic function given by,

Θ1D(𝑥) =
1

1 + exp(−𝑐(𝑥)) (2.3)

where 𝑐 is the curvature parameter, and 𝑥0 is the center.

Figure 2.3. Top-view (a) and side-view (b) of the resulting finite moiré potential is shown

in eV. Bias 𝑉𝑏 is shifted such that the maxima goes to zero outside the system.

In two dimensions, the crossing is defined by a line, beyond which the function is

one (or zero on the other side). A line is defined by 𝑦 = 𝑚𝑥, and 𝑚 = tan(𝜙) is the tangent.

Thus,

cos(𝜙)𝑦 = sin(𝜙)𝑥 (2.4)

and

Θ2D(𝑥, 𝑦) =
1

1 + exp(𝑐(sin(𝜙)𝑥 − 𝑐𝑜𝑠(𝜙)𝑦)) (2.5)

Similarly, by using 𝑚1 = 𝑦/𝑥 = tan(𝜙1) and 𝑚2 = 𝑦/𝑧 = tan(𝜙2), we can define

Θ3D as,

Θ3D(𝑥, 𝑦, 𝑧) =
1

1 + exp(𝑐(cos(𝜙2)(sin(𝜙1)𝑥 − cos(𝜙1)𝑦) + sin(𝜙2)𝑧))
(2.6)
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Additionally, 𝑑-dimensional radial Heaviside step function can be defined by,

Θrad(®𝑟, 𝑅) =
1

1 + exp
(
𝑐
( [∑𝑑

𝑖=1 (𝑒𝑖 · ®𝑟)
2
]
− 𝑅2

)) (2.7)

where 𝑒𝑖 · ®𝑟 is the projection of ®𝑟 on the unit vector 𝑒𝑖. The total potential in terms of

Gaussian sum 𝑉gs(®𝑟) and an arbitrary number of Heaviside step functions is given by

𝑉total(®𝑟) = 𝑉gs(®𝑟)
𝑁hsf∏
𝑛=1

Θ𝑛 (®𝑟 − ®𝑟0,𝑛) (2.8)

where 𝑁hsf is the number of predefined Heaviside step functions and ®𝑟0,𝑛 is the center of

𝑛th HSF. These functions were implemented in CHAMP software package46 to be used

along with finite moiré potential.

2.2. Tight-Binding Model

In real crystals, the electronic motion is determined by the crystal potential which

has pockets with minima at the position of each ion, caused by the Coulomb interaction

between the electrons and positively charged ions. As an approximation, Tight-Binding

(TB) model assumes that the valence electrons are bound to the atoms which can hop

to the neighbor atoms.51 Therefore, the electronic wave-functions can be described by a

superposition of these localized orbitals. Although atomic orbitals are the simplest choice

of the basis set, they do not necessarily form an orthonormal basis. Alternatively, one

can use Wannier functions which form an orthonormal basis that are composed of linear

combinations of atomic orbitals. As simple example, consider two atoms bound to each

other in vacuum (see Fig. 2.4a), having different potentials at each atom. The tight binding

Hamiltonian of such system is given by,

𝐻1 = E1𝑎1
†𝑎1 + E2𝑎2

†𝑎2 + 𝑡 (𝑎1
†𝑎2 + 𝑎2

†𝑎1) (2.9)

where E1 and E2 are the on-site energies (i.e. the site potentials), 𝑡 is the hopping strength

between the nearest neighbors and 𝑎 𝑗 (𝑎 𝑗
†) are the annihilation (creation) operators for the

first and the second atomic states |1〉 and |2〉, † denotes the Hermitian conjugation. See
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Sakurai & Napolitano39 for further information about operator formulation of quantum

mechanics.

  

a) Finite two-level system b) Infinite diatomic chain

t t t eikat e-ika

Figure 2.4. (a) Finite two-level system in which two atoms are coupled to each other with

a hopping amplitude 𝑡. (b) Infinite diatomic chain with consists of two atoms

per unit cell with nearest-neighbor coupling.

To focus on introducing the elementary concepts, we ignore spin and represent the

equations in matrix form. The matrix form the Hamiltonian and the state vectors can be

represented by,

𝐻 =


E1 −𝑡

−𝑡 E2

 , |1〉 =

1

0

 , |2〉 =

0

1

 (2.10)

By diagonalizing the Hamiltonian matrix given by Eq. 2.9 we obtain the eigenval-

ues of the Hamiltonian which provides the energy levels of the system,

𝐸± =
E1 + E2

2
± 1

2
√
(𝛿E)2 + 4𝑡2 (2.11)

where 𝛿E = E2 − E1. We can also form an infinite chain by using the two-level system as

the unit cell by introducing Bloch periodicity,51

𝐻 (𝑘) =


E1 𝑡 (1 + exp(−𝑖𝑘𝑎))

𝑡 (1 + exp(𝑖𝑘𝑎)) E2

 (2.12)

where 𝑘 is the wave-number along one dimension (called wave-vector in higher dimen-

sions) and 𝑎 is the lattice constant. Such system is shown in Fig. 2.4b.

The Bloch terms (i.e. exp(±𝑖𝑘𝑎)) represent the coupling between the atoms to the

neighbor unit cells. The detailed description of Bloch’s theorem is given by.51 The idea is
16



based on the periodic nature of the crystal potential which causes wave-functions to have

the same periodicity as the potential. The Hamiltonian for this diatomic chain becomes

𝑘-dependent as well as its energy levels,

𝐸±(𝑘) =
E1 + E2

2
± 1

2
√
(𝛿E)2 + 8𝑡2(1 + cos(𝑘𝑎)) (2.13)

where 𝐸±(𝑘) are called band energies. A sample calculation for 𝑡 = 1, E1 = 0 and E2 = 1

is shown in Fig. 2.5a.

Figure 2.5. (a) Energy band diagram and (b) density of states of diatomic chain shown in

Fig. 2.4.

For a triangular lattice shown in Fig. 2.6a, the lattice vectors are given by,

®𝑎1 = 𝑎�̂�, ®𝑎2 =

√
3

2
𝑎𝑥 − 1

2
𝑎�̂� (2.14)

where 𝑎 is the lattice constant. The corresponding reciprocal lattice vectors are given by,

®𝑏1 =
4𝜋
√

3𝑎

(
1
2
𝑥 +
√

3
2
�̂�

)
, ®𝑏2 =

4𝜋
√

3𝑎
𝑥 (2.15)

The reciprocal lattice is shown in Fig. 2.6b with high-symmetry points. The cor-

responding energy bands can be calculated by using the nearest neighbor displacement

17



vectors 𝛿 and the corresponding hopping parameters 𝑡𝛿,

E(®𝑘) =
∑
®𝛿

−𝑡 ®𝛿𝑒
𝑖®𝑘 · ®𝛿 = −𝑡

1∑
𝑠=0

{
𝑒(−1)𝑠𝑖®𝑘 · ®𝑎1 + 𝑒(−1)𝑠𝑖®𝑘 · ®𝑎2 + 𝑒(−1)𝑠𝑖®𝑘 ·( ®𝑎1+®𝑎2)

}
(2.16)

Figure 2.6. (a) Triangular lattice site in the center and its neighbors tranlated by 𝑛®𝑎1+𝑚 ®𝑎2

with 𝑛, 𝑚 ∈ 0,±1, and (b) the recipcoral lattice site in the center and its neigh-

bors tranlated by 𝑛®𝑏1 + 𝑚®𝑏2 with 𝑛, 𝑚 ∈ 0,±1 are shown. The first Brillouin

zone is shown by black hexagon, and high-symmetry points are annotated by

black symbols. (c) Energy band diagram and (d) density of states are also

shown.
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The resulting energy band dispersion becomes,

E(®𝑘) = −2𝑡 cos
(
𝑘𝑦𝑎

)
− 4𝑡 cos

(√
3

2
𝑘𝑥𝑎

)
cos

(
𝑘𝑦𝑎

2

)
(2.17)

The band energies with respect to the wave-vectors along high-symmetry points

(see Fig. 2.6b) is shown in Fig. 2.6.

Apart from band diagrams, there is another quantity called Density of States (DOS)

that reveals essential information such as localization and band gap. The density of states

is defined as a function of energy is given by,51

D(𝐸) =
∑
𝑛

𝛿(𝐸 − E𝑛) (2.18)

D(𝐸) =
∑
𝑛

∫
𝑑3®𝑘
(2𝜋)3

𝛿(𝐸 − E
𝑛,®𝑘 ) (2.19)

where Eq. 2.18 is for finite systems while Eq. 2.19 is for periodic systems that involves an

integral over ®𝑘 . DOS can also be expressed by using Green’s functions,51

D(𝐸) = −1
𝜋

Im

[∑
𝑛

〈𝑛|𝐺𝜂 (𝐸) |𝑛〉
]

(2.20)

D(𝐸) = −1
𝜋

Im

[∑
𝑛

∫
𝑑3®𝑘
(2𝜋)3

〈𝑛|𝐺𝜂 ( ®𝑘, 𝐸) |𝑛〉
]

(2.21)

with the operator forms of Green’s functions,

𝐺𝜂 (𝐸) = (𝐻 − (𝐸 + 𝑖𝜂) Î)−1 (2.22)

𝐺𝜂 ( ®𝑘, 𝐸) = (𝐻 ( ®𝑘) − (𝐸 + 𝑖𝜂) Î)−1 (2.23)

where I =
∑

𝑛 |𝑛〉 〈𝑛| is the identity operator and 𝜂 is a small positive number to prevent

singularities in extremely localized systems such as two-level system shown in 2.4a. The

formula given by Eq. 2.22 and Eq. 2.23 are based on the definition of 𝛿(𝑥),51

𝛿(𝑥) = 1
𝜋

𝜂

𝑥2 + 𝜂2 (2.24)

In matrix notation, the Green’s function can be computed by using Eq. 2.22 and

Eq. 2.23 to evaluate DOS by computing its trace, and it is integrated over ®𝑘 if the system
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is periodic.

Additionally, the eigenvalues of the Hamiltonian can be used to evaluate Eq. 2.18

and Eq. 2.19. However, the states are extremely localized for finite systems and exact

numerical treatment of delta functions is not well-defined, so we can introduce broadening

by using the definition of delta function given by Eq. 2.24,

D(𝐸) = 1
𝜋

∑
𝑛

𝜂

(𝐸 − E𝑛)2 + 𝜂2 (2.25)

D(𝐸) = 1
𝜋

∑
𝑛

∫
𝑑3®𝑘
(2𝜋)3

𝜂

(𝐸 − E
𝑛,®𝑘 )2 + 𝜂2 (2.26)

where equations 2.25 and 2.26 are for finite and periodic systems respectively. DOS of

diatomic chain and triangular lattice are shown in Fig. 2.5b and Fig. 2.6d respectively.

The singularities appearing in density of states at the extrema of corresponding band ener-

gies are called Van-Hove singularities.51 Van Hove singularities are important in terms of

electron correlation especially in narrow-band systems such as twisted bilayer graphene52

and heterobilayer TMDs.10,11,22,24,53

In general, one can fit tight-binding parameters to the bands that are obtained em-

pirically or via ab Initio calculations such as Density Functional Theory (DFT) calcula-

tions. Accuracy of the fitted TB model can be improved by adding second, third and further

nearest neighbor interactions to the Hamiltonian.

One of the most successful examples of TB models is graphene54 which forms

a honeycomb crystal that can be modeled with a triangular lattice with two atoms per

unit cell. The 2s, 2px and 2py orbitals of each carbon atom in graphene are hybridized,

forming an sp2-type hybridization. The hybridized orbitals have lower energies than the

remaining 2pz orbital and the electrons in former orbitals are bound more tightly than the

latter. As a result, 2pz electrons contribute to the conduction, and the tight-binding model

using orthogonalized 2pz orbitals as orthonormal basis succesfully capture band linearity

at charge neutrality. In a similar way, one band Hubbard models of moiré heterostructures

are based on single orbital tight-binding models.22
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2.3. Mean-Field Hubbard Model

Tight-binding model is an approximation for studying single electrons in non-

interacting systems. The exact ground state energies of non-interacting systems can be

studied by using Density Functional Theory (DFT) which minimizes energy functional of

the electron density.55 In both DFT and tight-binding models, the electron correlation is

not taken into account intrinsically. Although electron correlations can be approximated

by exchange-correlation functionals in DFT, the exact estimation of ground state is possi-

ble with quantum Monte Carlo methods.55

An approximate estimation of the ground-state of a correlating system can be calcu-

lated by solving the self-consistent mean-field Hubbard model starting with a tight-binding

Hamiltonian. The general form of the many-body Hamiltonian is given by,44

𝐻MB = − ℏ2

2𝑚

∑
𝑗

∇2
𝑗 +

∑
𝑖, 𝑗

𝑉
𝑗

eff (®𝑟𝑖 − ®𝑅 𝑗 ) +
1
2

1
4𝜋𝜖0

∑
𝑖, 𝑗

1
|®𝑟𝑖 − ®𝑟 𝑗 |

(2.27)

where the first term is the kinetic energy of electrons, the second term is the screened

Coulomb interaction between electrons and ions and the last term corresponds to Coulomb

interaction between electrons. The 1/2 factor in the last term is to prevent double counting

in the summation.

To incorporate Coulomb interaction, one first needs to define many-body wave-

function by using second quantization. In second-quantized formulation, the field opera-

tors (or many-body wave-functions) are defined by using the orhogonal eigenstates 𝜙(®𝑟)

of the Hamiltonian,44,56

Φ(®𝑟) =
∑
𝑗𝜎

𝑐 𝑗𝜎 𝜙 𝑗 (®𝑟) (2.28)

Φ†(®𝑟) =
∑
𝑗𝜎

𝑐†𝑗𝜎 𝜙 𝑗 (®𝑟) (2.29)

where 𝑐 𝑗𝜎 (𝑐†𝑗𝜎) are the annihilation (creation) operators which destroys (creates) an elec-

tron with spin 𝜎 at orbital 𝑗 . The second-quantized forms of the spin dependent annihila-

tion and creation operators are given by 𝑐 𝑗𝜎 and 𝑐†𝑗𝜎 which destroys or creates an electron

at 𝑗 th orbital with spin 𝜎. The order of the operators is important when applying the

creation or annihilation operators consecutively. The first two terms of the Hamiltonians
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correspond to tight-binding which can be represented in second-quantized formalism by,

𝐻0 =
∫

𝑑3®𝑟 Φ†(®𝑟) 𝐻0 Φ(®𝑟))

=
∑

𝑖, 𝑗 ,𝜎,𝜎′
𝑐†𝑖𝜎𝑐 𝑗𝜎′

∫
𝑑3®𝑟 𝜙∗𝑖 (®𝑟) 𝐻0 𝜙 𝑗 (®𝑟)

=
∑
𝑖𝜎

E𝑖𝑐†𝑖𝜎𝑐𝑖𝜎 +
∑

<𝑖, 𝑗>,𝜎

(
𝑡𝑖 𝑗𝑐
†
𝑖𝜎𝑐 𝑗𝜎 + 𝑡

∗
𝑖 𝑗𝑐
†
𝑗𝜎𝑐𝑖𝜎

)
(2.30)

where we used the fact that the integral does not vanish only if 𝑖 and 𝑗 are equal or nearest-

neighbors, however,derivations of higher range hopping terms are straightforward. The

annihilation and creation operators in the first term have the same indices which means

that an electron in an orbital is destroyed before an electron is created in the same orbital

and E𝑖 corresponds to the energy cost of this operation. Similarly, the second term involves

consecutive destructuion and creation of neighbor atoms and 𝑡𝑖 𝑗 corresponds to the energy

cost of the scattering between neighbor atoms. These two terms correspond to the lattice

hopping which is independent of spin. The second-quantized representation of Coulomb

interaction in Eq. 2.27 is two-body scattering is given by,44,56

𝑉𝐶 =
1
2

∑
𝑖, 𝑗

1
4𝜋𝜖0

1
|®𝑟𝑖 − ®𝑟 𝑗 |

(2.31)

=
1
2

∑
𝑖 𝑗 𝑘𝑙
𝜎𝜎′

𝑉𝑖 𝑗 𝑘𝑙𝑐
†
𝑖𝜎𝑐
†
𝑗𝜎′𝑐𝑘𝜎′𝑐𝑙𝜎 (2.32)

with,

𝑉𝑖 𝑗 𝑘𝑙 =
∫

𝑑3®𝑟1

∫
𝑑3®𝑟2 𝜙†𝑖 (®𝑟1) 𝜙†𝑗 (®𝑟2)

1
4𝜋𝜖0

1
|®𝑟𝑖 − ®𝑟 𝑗 |

𝜙𝑘 (®𝑟2) 𝜙𝑙 (®𝑟1) (2.33)

where ®𝑟1 and ®𝑟2 are the coordinates of two electrons that are involved in scattering. The

summation involves multiple types of scatterings between orbitals 𝑖, 𝑗 , 𝑘 and 𝑙. They sat-

isfy anti-commutation relations given by,

{𝑐𝑖𝜎, 𝑐 𝑗𝜎′} = 0, {𝑐†𝑖𝜎, 𝑐
†
𝑗𝜎′} = 0, {𝑐𝑖𝜎, 𝑐†𝑗𝜎′} = 𝛿𝑖 𝑗𝛿𝜎𝜎′ (2.34)

where the anti-commutators are defined by {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴 and 𝛿𝑖 𝑗 is Kronecker delta
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function given by

𝛿𝑖 𝑗 =


0 𝑖 ≠ 𝑗

1 𝑖 = 𝑗

(2.35)

Additionally, we can introduce the number operator given by �̂�𝑖𝜎 = 𝑐†𝑖𝜎𝑐𝑖𝜎 which

returns the number of electrons of spin 𝜎 at orbital 𝑖. To derive Hubbard Hamiltonian

we first need to rearrange Coulomb term given by Eq. 2.33 by using the anti-commutator

relations,

𝑐𝑘𝜎′𝑐𝑙𝜎 = −𝑐𝑙𝜎𝑐𝑘𝜎′ (2.36)

𝑐†𝑗𝜎′𝑐𝑙𝜎 = 𝛿 𝑗 𝑙𝛿𝜎𝜎′ − 𝑐𝑙𝜎𝑐†𝑗𝜎′ (2.37)

𝑉𝐶 =
1
2

∑
𝑖 𝑗 𝑘𝑙
𝜎𝜎′

𝑉𝑖 𝑗 𝑘𝑙

(
𝑐†𝑖𝜎

(
𝑐𝑙𝜎𝑐

†
𝑗𝜎′ − 𝛿 𝑗 𝑙𝛿𝜎𝜎′

)
𝑐𝑘𝜎′

)
(2.38)

=
1
2

∑
𝑖 𝑗 𝑘𝑙
𝜎𝜎′

𝑉𝑖 𝑗 𝑘𝑙

(
𝑐†𝑖𝜎𝑐𝑙𝜎𝑐

†
𝑗𝜎′𝑐𝑘𝜎′ − 𝛿 𝑗 𝑙𝛿𝜎𝜎′𝑐

†
𝑖𝜎𝑐𝑘𝜎

)
(2.39)

=
1
2

∑
𝑖 𝑗 𝑘𝑙
𝜎𝜎′

𝑉𝑖 𝑗 𝑘𝑙𝑐
†
𝑖𝜎𝑐𝑙𝜎𝑐

†
𝑗𝜎′𝑐𝑘𝜎′ −

1
2

∑
𝑖 𝑗 𝑘𝜎

𝑉𝑖 𝑗 𝑘 𝑗𝑐
†
𝑖𝜎𝑐𝑘𝜎 (2.40)

In the lowest order approximation, only the interactions at the same orbital are

taken into account, i.e. 𝑖 = 𝑗 = 𝑘 = 𝑙 and the potential of this interaction is defined by

𝑈 = 𝑉𝑖𝑖𝑖𝑖,

𝑉𝐶 =
𝑈

2

∑
𝑖𝜎𝜎′

𝑐†𝑖𝜎𝑐𝑖𝜎𝑐
†
𝑖𝜎′𝑐𝑖𝜎′ −

𝑈

2

∑
𝑖𝜎

𝑐†𝑖𝜎𝑐𝑖𝜎 (2.41)

We can expand this summation by substituting spins 𝜎 ∈ {↑, ↓} and number oper-

ators �̂�𝑖𝜎 = 𝑐†𝑖𝜎𝑐𝑖𝜎 into 𝑉𝐶 ,

𝑉𝐶 =
1
2

∑
𝑖

𝑈
(
�̂�𝑖↑�̂�𝑖↑ + �̂�𝑖↑�̂�𝑖↓ + �̂�𝑖↓�̂�𝑖↑ + �̂�𝑖↓�̂�𝑖↓ − �̂�𝑖↑ − �̂�𝑖↓

)
(2.42)

=
𝑈

2

∑
𝑖

(
�̂�𝑖↑

(
�̂�𝑖↑ − 1

)
+ �̂�𝑖↓

(
�̂�𝑖↓ − 1

)
+ �̂�𝑖↑�̂�𝑖↓ + �̂�𝑖↓�̂�𝑖↑

)
(2.43)

since the occupations 𝑛𝑖𝜎 ∈ {0, 1} the first two terms in the summation becomes zero,
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therefore the Hubbard Hamiltonian 𝐻 = 𝐻0 +𝑉𝐶 (see Eq. 2.30) becomes,

𝐻 =
∑
𝑖𝜎

E𝑖𝜎�̂�𝑖𝜎 +
∑

<𝑖, 𝑗>,𝜎

𝑡𝑖 𝑗

(
𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝑐

†
𝑗𝜎𝑐𝑖𝜎

)
+ 𝑈

2

∑
𝑖

(
�̂�𝑖↑�̂�𝑖↓ + �̂�𝑖↓�̂�𝑖↑

)
(2.44)

where the hopping amplitude 𝑡𝑖 𝑗 is a real number. In mean-field approximation, the number

operators are expressed in terms of their mean values,

�̂�𝑖↑ = 〈�̂�𝑖↑〉 + (�̂�𝑖↑ − 〈�̂�𝑖↑〉) (2.45)

�̂�𝑖↓ = 〈�̂�𝑖↓〉 + (�̂�𝑖↓ − 〈�̂�𝑖↓〉) (2.46)

by ignoring the smallest terms (�̂�𝑖↑ − 〈�̂�𝑖↑〉)(�̂�𝑖↓ − 〈�̂�𝑖↓〉) the Hamiltonian becomes,

𝐻MF =
∑
𝑖𝜎

E𝑖𝜎𝑐†𝑖𝜎𝑐𝑖𝜎 +
∑

<𝑖, 𝑗>,𝜎

𝑡𝑖 𝑗

(
𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝑐

†
𝑗𝜎𝑐𝑖𝜎

)
(2.47)

+𝑈
∑
𝑖

(
〈�̂�𝑖↑〉 �̂�𝑖↓ + 〈�̂�𝑖↓〉 �̂�𝑖↑ − 〈�̂�𝑖↑〉 〈�̂�𝑖↓〉

)
(2.48)

For a spin-unpolarized system, i.e. 〈𝑛𝑖↑〉 = 〈𝑛𝑖↓〉 = 1/2, we can define 𝐻0
MF by,57

𝐻0
MF =

∑
𝑖𝜎

E𝑖𝜎𝑐†𝑖𝜎𝑐𝑖𝜎 +
∑

<𝑖, 𝑗>,𝜎

𝑡𝑖 𝑗

(
𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝑐

†
𝑗𝜎𝑐𝑖𝜎

)
+ 𝑈

2

∑
𝑖

(
�̂�𝑖↓ + �̂�𝑖↑ −

1
2

)
(2.49)

=
∑
𝑖𝜎

E′𝑖𝜎𝑐
†
𝑖𝜎𝑐𝑖𝜎 +

∑
<𝑖, 𝑗>,𝜎

𝑡𝑖 𝑗

(
𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝑐

†
𝑗𝜎𝑐𝑖𝜎

)
(2.50)

where E′𝑖𝜎 = E𝑖𝜎 + 𝑈
4 and rewrite 𝐻MF as,

𝐻MF = 𝐻MF − 𝐻0
MF + 𝐻

0
MF (2.51)

=
∑
𝑖𝜎

E𝑖𝜎𝑐†𝑖𝜎𝑐𝑖𝜎 +
∑

<𝑖, 𝑗>,𝜎

𝑡𝑖 𝑗

(
𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝑐

†
𝑗𝜎𝑐𝑖𝜎

)
+𝑈

∑
𝑖

(
〈�̂�𝑖↑〉 �̂�𝑖↓ + 〈�̂�𝑖↓〉 �̂�𝑖↑ − 〈�̂�𝑖↑〉 〈�̂�𝑖↓〉

)
(2.52)

−
∑
𝑖𝜎

E𝑖𝜎𝑐†𝑖𝜎𝑐𝑖𝜎 −
∑

<𝑖, 𝑗>,𝜎

𝑡𝑖 𝑗

(
𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝑐

†
𝑗𝜎𝑐𝑖𝜎

)
− 𝑈

2

∑
𝑖

(
�̂�𝑖↓ + �̂�𝑖↑ −

1
2

)
(2.53)

+
∑
𝑖𝜎

E′𝑖𝜎𝑐
†
𝑖𝜎𝑐𝑖𝜎 +

∑
<𝑖, 𝑗>,𝜎

𝑡𝑖 𝑗

(
𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝑐

†
𝑗𝜎𝑐𝑖𝜎

)
(2.54)

=
∑
𝑖𝜎

E′𝑖𝜎𝑐
†
𝑖𝜎𝑐𝑖𝜎 +

∑
<𝑖, 𝑗>,𝜎

𝑡𝑖 𝑗

(
𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝑐

†
𝑗𝜎𝑐𝑖𝜎

)
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+𝑈
∑
𝑖

((
〈�̂�𝑖↑〉 −

1
2

)
�̂�𝑖↓ +

(
〈�̂�𝑖↓〉 −

1
2

)
�̂�𝑖↑

)
+𝑈

∑
𝑖

〈�̂�𝑖↑〉 〈�̂�𝑖↓〉 (2.55)

where the last term is a constant which can be incorporated into E′𝑖𝜎. By denoting E′𝑖𝜎 as

E𝑖𝜎, we can finally write the final form of mean-field Hubbard Hamiltonian

𝐻MFH =
∑
𝑖𝜎

E𝑖𝜎𝑐†𝑖𝜎𝑐𝑖𝜎 +
∑

<𝑖, 𝑗>,𝜎

𝑡𝑖 𝑗

(
𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝑐

†
𝑗𝜎𝑐𝑖𝜎

)
+𝑈

∑
𝑖

((
〈�̂�𝑖↑〉 −

1
2

)
�̂�𝑖↓ +

(
〈�̂�𝑖↓〉 −

1
2

)
�̂�𝑖↑

)
(2.56)

By using Equation 2.56, the mean-field Hamiltonians for individual spins can be

written, and solve self-consistently since the spin-up (spin-down) Hamiltonians depend on

the spin-down (spin-up) densities 〈�̂�𝑖↓〉 (〈�̂�𝑖↑〉).

In this study, a python code for Hubbard calculations was developed for the calcu-

lations. The code utilizes several parts to achieve the correct ground state efficiently. The

main algorithm in a simplified form is given by algorithm 2.1.

Algorithm 2.1. Self-Consistent Mean-Field Hubbard algorithm
1: Set 𝐻↑ and 𝐻↓ equal to the tight-binding Hamiltonian 𝐻TB
2: Calculate eigenvectors 𝜓↑ and 𝜓↓ from 𝐻↑ and 𝐻↓
3: Calculate initial density matrices by using 𝐷𝜎 = 𝜓𝜎𝜓

†
𝜎, where 〈�̂�𝑖𝜎〉 = 〈𝑖 |𝐷𝜎 |𝑖〉

4: Update 𝐻𝜎 by using 𝐷𝜎

5: Calculate the initial total energy
6: for each self-consistent iteration do
7: Calculate electron densities 𝐷′𝜎 from 𝐻𝜎

8: Mix old and new density matrices 𝐷𝜎 ← (1 − 𝑝)𝐷′𝜎 + 𝑝𝐷𝜎

9: update 𝐻𝜎 and calculate the total energy and check for convergence
10: if convergence is achieved or maximum number of iterations is exceeded then
11: End program and return 𝐻𝜎 and 𝐷𝜎

12: end if
13: end for

The success of the algorithm depends on several factors such as the quality of

the initial guess, mixing factor 𝑝 and the number of iterations and convergence criteria.

Depending on these factors the calculation may converge to a local minima rather than the

global minimum or convergence may not be achieved at all.

To solve the problem with the initial guess, a random sampling on the on-site en-
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ergies are introduced,

E𝑖↑ = E0
𝑖 + 𝑅𝑖 (2.57)

E𝑖↓ = E0
𝑖 − 𝑅𝑖 (2.58)

where 𝑅𝑖 are the random numbers such that 𝑅𝑖 ∈ [0,W/2]. The random configurations are

only used to obtain initial density matrices for the main calculation. The main calculation

is performed by using tight-binding Hamiltonian with onsite energies E0
𝑖 . By scanning

multiple random initial guesses the convergence is improved significantly in exchange for

computation time.

The mixing values are important for the determination of correct ground state, so

performing calculations over several mixing values is often necessary. To reduce the com-

putation cost, an adaptive mixing was introduced, i.e. the mixing factor changes depending

on the convergence behavior. The algorithm is given by Algorithm 2.2.

Algorithm 2.2. Adaptive mixing algorithm for self-consistent MFH calculations
1: …
2: 𝑘 ← 1
3: for each self-consistent iteration do
4: …
5: if more than half of the last 𝑁adapt iterations are convergent then
6: 𝑘 ← (1 − 𝛾)𝑘)
7: else
8: 𝑘 ← (1 + 𝛾)𝑘)
9: end if

10: 𝑝 ← max(𝑝min,min(𝑘 𝑝, 𝑝max))
11: if 𝑝 == 𝑝min or 𝑝 == 𝑝max then
12: 𝑘 ← 1
13: end if
14: …
15: end for
16: …

In Algorithm 2.2, 𝑘 is the coefficient which determines how mixing factor 𝑝 changes,

and 𝛾 is a small number to specify how fast 𝑘 changes. The statement at Line 10 of Alg.

2.2 ensures that 𝑝 stays in [𝑝min, 𝑝max]. Line 12 of Alg. 2.2 performs a reinitialization of

𝑘 if 𝑝 reaches 𝑝min or 𝑝max. The need for 𝑝min > 0 and 𝑝max < 1 is to prevent the updated

densities becoming the same as those of previous iteration. Because the only advantage of
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this method is to find nearest minima efficiently, the density matrices (and Hamiltonians)

should be evolved enough before the adaptive mixing calculation.

By performing self-consistent calculation for relatively small number of iterations

(not necessarily convergent) for multiple mixing values, we can choose the density ma-

trices and Hamiltonians which correspond to minimum total energy as our initial guess

which is called relaxation step. At this point, we can choose continuing with whether

adaptive mixing or constant mixing, by starting from the mixing value determined from

the relaxation step.

With these improvements, the code developed in this study determines initial guess

from both tight-binding wave-functions and a given number of random configurations with

a given width W which is chosen to be ≈ 𝑈 in our calculations. It performs a relaxation

with various mixing values by scanning over initial guess configurations and performs the

self-consistent calculation by whether using constant or adaptive mixing on the relaxed

Hamiltonians.

2.4. Variational Monte Carlo Method

In Variational Monte Carlo (VMC) method, the variational energy 𝐸𝑣 for a non-

normalized wave-function Ψ is defined by,58,59

𝐸𝑣 =
〈Ψ|𝐻 |Ψ〉
〈Ψ|Ψ〉 =

∫
𝑑 ®𝑅Ψ( ®𝑅)2𝐸𝐿 ( ®𝑅)∫

𝑑 ®𝑅Ψ( ®𝑅)2
, 𝐸𝐿 =

𝐻Ψ( ®𝑅)
Ψ( ®𝑅)

(2.59)

where 𝜓 is the many-electron wave-function and 𝐸𝐿 is the local energy. The derivation is

easy for the definitions below,

𝐼 =
∫

𝑑 ®𝑅 |𝑅〉 〈𝑅 |, Ψ( ®𝑅) = 〈 ®𝑅 |Ψ〉 = Ψ∗( ®𝑅) (2.60)

Variational energy 𝐸𝑣 can be calculated by Monte Carlo sampling technique from

a probability distribution 𝜌( ®𝑅),

𝐸𝑣 =
∫

𝑑 ®𝑅 𝜌( ®𝑅)𝐸𝐿 ( ®𝑅) ≈
1
𝑀

𝑀∑
𝑘=1

𝐸𝐿 ( ®𝑅𝑘 ) (2.61)

𝜌( ®𝑅) = Ψ2( ®𝑅)/
∫

𝑑 ®𝑅Ψ2( ®𝑅) (2.62)
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where probability density 𝜌( ®𝑅) is sampled by Metropolis-Hastings algorithm. The wave

function in general has the form,

Ψ( ®𝑅) = 𝐽 ( ®𝑅)Φ( ®𝑅) (2.63)

where 𝐽 ( ®𝑅) is the Jastrow factor which has the information about electron correlation

while Φ( ®𝑅) is the Slater determinant. Jastrow factor in equation 2.63 has the form 𝐽 ( ®𝑅) ∝

𝑒 𝑓 ( ®𝑅) .58,59

In most simulations, 𝑓 ( ®𝑅) can be chosen as,58

𝑓 ( ®𝑅) =
𝑁∑
𝑖=1

𝜒(®𝑟𝑖) −
1
2

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑢(®𝑥𝑖, ®𝑥 𝑗 ) (2.64)

where the first and the second terms correspond to electron-nucleus and electron-electron

correlations respectively. In this study, we use the Jastrow factor that is defined for graphene

quantum dots by,60

𝐽 ( ®𝑅) = 𝐽𝑒𝑒 ( ®𝑅)𝐽𝑒𝑑 ( ®𝑅)𝐽𝑒𝑒𝑑 ( ®𝑅) (2.65)

where 𝑒𝑒, 𝑒𝑑 and 𝑒𝑒𝑑 subscripts correspond to electron-electron, electron-dot, electron-

electron-dot respectively.

For a trial wavefunction (i.e. predefined Jastrow factor and Slater determinant),

VMC algorithm samples the many-body wave function by using Metropolis-Hastings al-

gorithm. At each step, an electron configuration is proposed, then sampled or discarded

depending on the detailed balance condition given by,

𝑃acc( ®𝑅 𝑓 | ®𝑅𝑖)
𝑃acc( ®𝑅𝑖 | ®𝑅 𝑓 )

=
𝑃prop( ®𝑅𝑖 | ®𝑅 𝑓 )𝜌( ®𝑅 𝑓 )
𝑃prop( ®𝑅 𝑓 | ®𝑅𝑖)𝜌( ®𝑅𝑖)

(2.66)

where 𝑃acc( ®𝑅′| ®𝑅) is the acceptance probability of a transition from 𝑅 to 𝑅′. The rejection

and acceptance probabilities are given by,

𝑃rej( ®𝑅′| ®𝑅) = 1 − 𝑃acc( ®𝑅′| ®𝑅) (2.67)

𝑃acc( ®𝑅 𝑓 | ®𝑅𝑖) = min

(
1,

𝑃prop( ®𝑅𝑖 | ®𝑅 𝑓 )𝜌( ®𝑅 𝑓 )
𝑃prop( ®𝑅 𝑓 | ®𝑅𝑖)𝜌( ®𝑅𝑖)

)
(2.68)
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where the 𝑃prop( ®𝑅) is proposal probability, that can be chosen for efficient sampling of

configuration space.

Following the choice of an appropriate trial wave-function, the many body elec-

tronic wave function is optimized by a VMC calculation by minimizing the variational en-

ergy 𝐸𝐿 and the statistical uncertainity resulting from finite sampling in the Monte Carlo

integration.

Large number of Monte Carlo steps are necessary to sample the probability distri-

bution. Because a new point is proposed from the last point at each Monte Carlo step, the

steps become correlated. This correlation is taken into account by blocking technique.59

Each independent block consists of 𝑀𝑠 steps that are correlated. The correlation time needs

to be considerably smaller than the number of steps for accurate estimation of statistical

errors. Additionally, at each step, a tunable step size determines the magnitude of each

proposed step from the previous wave function. If step size is too small, the most of the

proposed wave functions are accepted, but the walkers are relatively localized due to finite

number of steps. Contrarily, if the step size is too large, the most of the steps are rejected,

thus the points in the configuration space cannot effectively sample the correct probability

distribution.

Another error source due to the approximate wave-function is called systematic

errors. Although the method is guaranteed to find a state with a variational energy less than

the initial 𝐸𝑣, the success of the method depends on how close the initial wave-function

is to the exact ground state. In this study, we perform calculations for Slater determinants

built from tight-binding orbitals and mean-field Hubbard orbitals.

2.5. Diffusion Monte Carlo Method

In Diffusion Monte Carlo (DMC) method, the exact ground-state wave-function is

used instead of a trial function,59

𝐸0 =
〈Ψ0 |𝐻 |Ψ〉
〈Ψ0 |Ψ〉

=

∫
𝑑 ®𝑅Ψ0( ®𝑅)Ψ( ®𝑅)𝐸𝐿 ( ®𝑅)∫

𝑑 ®𝑅Ψ0( ®𝑅)Ψ( ®𝑅)
, 𝐸𝐿 =

𝐻Ψ( ®𝑅)
Ψ( ®𝑅)

(2.69)

Evaluation of the exact ground state wave-function is straightforward if we consider
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the time evolution of the wave-function in imaginary time formulation (𝑡 → − 𝑖
ℏ 𝑡),

Ψ( ®𝑅, 𝑡) =
∑
𝑛

exp(−(𝐸𝑛 − 𝐸𝑇 )𝑡)Ψ𝑛 ( ®𝑅)Ψ∗𝑛 ( ®𝑅)Ψ( ®𝑅) (2.70)

where 𝐸𝑇 is the trial energy that is tuned at each step along with the evolution of the wave

function. As 𝑡 → ∞, the exponential factor decays faster for the states other than the

ground-state and the trial energy,

lim
𝑡→∞

Ψ( ®𝑅, 𝑡) = exp(−(𝐸0 − 𝐸𝑇 )𝑡)Ψ0( ®𝑅)Ψ∗𝑛 ( ®𝑅)Ψ( ®𝑅) (2.71)

Time-evolution is evaluated by using an imaginary time propogator so-called Green

function 𝐺 ( ®𝑅 𝑓 | ®𝑅𝑖; 𝑡),

Ψ( ®𝑅 𝑓 , 𝑡 + 𝜏) =
∫

𝑑 ®𝑅 𝐺 ( ®𝑅 𝑓 | ®𝑅𝑖; 𝜏)Ψ( ®𝑅𝑖, 𝑡) (2.72)

𝐺 ( ®𝑅 𝑓 | ®𝑅𝑖; 𝜏) = 〈 ®𝑅 𝑓 | exp(−(𝐻 − 𝐸𝑇 )𝜏) | ®𝑅𝑖〉

= 〈 ®𝑅 𝑓 |
(∑

𝑛

|Ψ𝑛〉 〈Ψ𝑛 | exp(−(𝐻 − 𝐸𝑇 )𝜏) |Ψ𝑛〉 〈Ψ𝑛 |
)
| ®𝑅𝑖〉

=
∑
𝑛

exp(−(𝐸𝑛 − 𝐸𝑇 )𝜏)Ψ∗𝑛 ( ®𝑅 𝑓 )Ψ𝑛 ( ®𝑅𝑖) (2.73)

Importance sampling Green function 𝐺 ( ®𝑅 𝑓 | ®𝑅𝑖; 𝜏) and mixed distribution 𝑓 ( ®𝑅, 𝑡) is de-

fined as,

𝐺 ( ®𝑅 𝑓 | ®𝑅𝑖; 𝜏) = Ψ( ®𝑅 𝑓 )𝐺 ( ®𝑅 𝑓 | ®𝑅𝑖; 𝜏)
1

Ψ( ®𝑅𝑖)
(2.74)

𝑓 ( ®𝑅, 𝑡) =
∫

𝑑 ®𝑅𝑖𝐺 ( ®𝑅 𝑓 | ®𝑅𝑖; 𝜏)Ψ2( ®𝑅𝑖) (2.75)

In the long time limit, the mixed distribution 𝑓 ( ®𝑅, 𝑡) becomes proportional to the

target distribution, i.e. 𝑓 ( ®𝑅, 𝑡) ∝ Ψ0( ®𝑅)Ψ( ®𝑅). Because 𝐺 ( ®𝑅 𝑓 | ®𝑅𝑖; 𝜏) is not a normalized

probability distribution, it can be sampled from a weighted distribution,

𝑓 ( ®𝑅, 𝑡) = 1
𝑀

𝑀∑
𝑘=1

𝑀𝑘∑
𝛼=1

𝑤𝑘,𝛼𝛿( ®𝑅 − ®𝑅𝑘,𝛼) (2.76)

where 𝑀 is the number of Monte Carlo steps and 𝑀𝑘 is the population of walkers that
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change during branching birth and death process. This process improves sampling effi-

ciency by adjusting the walker population and weights in favor of energy minimization

and similar-weighted population. The local energy is given by,

𝐸𝐿 =

∑𝑀
𝑘=1

∑𝑀𝑘

𝛼=1 𝑤𝑘,𝛼𝐸𝐿 ( ®𝑅𝑘𝛼)∑𝑀
𝑘=1

∑𝑀𝑘

𝛼=1 𝑤𝑘,𝛼

(2.77)

In anti-symmetric wave functions, the sign of the wave function changes if two

particles are exchanged. An anti-symmetric trial wave function may cause vanishing final

distribution if the final wave function is bosonic, i.e. it does not change sign when two

particles are exchanged. This is caused by both positive and negative contributions to the

weights. To fix this so-called fermionic sign problem, fixed-node approximation is used.

In this method, the walkers are not allowed to cross nodes of the wave function. This

ensures the fixed sign, however the resulting wave function has the same nodal structure

as that of the trial wave function. Since the resulting fixed-node wave function does not

necessarily be the correct ground state, the error due to fixed-node wave function is called

fixed-node error.

Additionally there are two other types of errors: finite time step error due to finite

time propagation and population control error. Finite time step error is the type of the

error similar to the step size in VMC calculations, in a way that it is used to tune sample

efficiency. The population control error is related to the estimated ground state energy

which is used to tune trial energy at each step. This error decreases by increasing the

number of walkers.59

The spin and charge density operators in DMC method do not commute with the

Hamiltonian.58 However, there are first order approximations called extrapolated estima-

tors given by,

〈𝑂〉 = 2 〈𝑂〉DMC − 〈𝑂〉VMC +O
(
(Ψ𝑑 − Ψ𝑣)2

)
(2.78)

〈𝑂〉 = 〈𝑂〉2DMC 〈𝑂〉
−1
VMC +O

(
(Ψ𝑑 − Ψ𝑣)2

)
(2.79)

where Ψ𝑑 and Ψ𝑣 are DMC and VMC wave functions respectively.
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CHAPTER 3

RESULTS

3.1. 16-site Rhombohedral Lattice

In this part, we performed VMC and DMC calculations for 4x4 rhombohedral cell

of triangular lattice based on MFH and TB determinants. In MFH calculations, we start

with single orbital tight-binding Hamiltonian given by,

𝐻TB =
∑

<𝑖, 𝑗>,𝜎

𝑡𝑖 𝑗

(
𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝑐

†
𝑗𝜎𝑐𝑖𝜎

)
(3.1)

where 𝑡𝑖 𝑗 are the hopping amplitudes between sites 𝑖 and 𝑗 given by 𝑡𝑖 𝑗 = 𝛿 |𝑟𝑖−𝑟 𝑗 |,𝑎 with

lattice constant 𝑎, i.e. only the nearest neighbor interactions are considered. Figure 3.1

shows the lattice and couplings for this model. In our calculations, the value of 𝑡𝑖 𝑗 is set to

one, since the orbital coefficients do not depend on the scale of the hopping parameters.

Figure 3.1. 4x4 triangular lattice used used in TB and MFH calculations are shown. Lat-

tice points are shown by red circles while the couplings between the nearest

neighbor sites are shown by black lines.
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MFH calculations are performed by using eq. 2.56 by utilizing algorithms 2.1 and

2.2 for varied filling factors. The filling factor is defined by,

𝜈 = 𝑁elec/𝑁orb (3.2)

where 𝑁elec and 𝑁𝑜𝑟𝑏 are the number of electrons and orbitals respectively. In our case,

each site correspond to one localized orbital, therefore 𝑁orb = 𝑁𝑐 where 𝑁𝑐 is the number

of centers. Since each orbital can occupy at most 2 electrons, 𝜈 can take values between

0 and 2. To find the ground state for any 𝜈, we perform a scan over possible values of the

z-component of spin, i.e. 𝑆𝑧 values. 𝑆𝑧 is defined by,

𝑆𝑧 =
𝑁↑ − 𝑁↓

2
(3.3)

where 𝑁↑(𝑁↓) is the number of spin-↑ and spin-↓ electrons, which add up to the total

number of electrons 𝑁elec = 𝑁↑ + 𝑁↓.

Figure 3.2. Spin densities, charge densities, energy spectrum and DOS of MFH ground

state (𝑆𝑧 = 0) of 4x4 rhombohedral lattice is shown. Red and blue colors cor-

respond to down and up orbitals in energy and DOS figures. The interaction

strength is 𝜅𝑈/𝑡 = 2, where 𝜅 is relative dielectric constant.
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The minimum and maximum number of 𝑆𝑧 are determined by the total number of

electrons,

𝑆max
𝑧 = 𝑀/2 (3.4)

𝑆min
𝑧 = mod(𝑀, 2)/2 (3.5)

𝑀 = min(𝑁elec, 2𝑁orb − 𝑁elec) (3.6)

where 𝑀 ensures that each orbital is occupied by one spin-↑ electrons at most. If the total

number of electrons is odd (even), the minimum possible 𝑆𝑧 value is 1/2 (0). For half-

filled (𝜈 = 1/2) orbitals of 4x4 rhombohedral lattice, the MFH ground state spin is found

to be 𝑆𝑧 = 0. The ground state spin and charge densities for this system are shown in

figure 3.2. Densities are visualized by multiplying the probability densities |𝜓𝑛 |2 of each

site 𝑛 by gaussians of uniform width.

By using the Slater determinant built from TB orbitals and MFH ground state spin-

↑ and spin-↓ orbitals for filling factors 𝜈 ∈ [0, 8], VMC calculations were performed.

In VMC calculations, the finite Moiré potential shown in Figure 2.3 is fitted to moiré

potential parameters from literature.32 The lattice constant is 𝑎 = 7.5 nm, twist angle

𝜃 = 0◦, moiré potential amplitude is 𝑉𝑚 = 6.3 meV, moiré potential phase is 𝜓 = 0◦.

Effective mass of electrons is given by 𝑚𝑟 = 0.7 with 𝑚𝑟 = 𝑚eff/𝑚𝑒, where 𝑚𝑒 is the

electron mass.32 Relative dielectic coefficient 𝜅 is chosen to be 20. Effective atomic units

are used in our calculations. The conversion formula from nanometers and electron-volts

to effective Hartree atomic units are given by,

𝐿a.u. =

(
𝑎0

𝜅

𝑚𝑟

)−1
𝐿nm (3.7)

= 0.6614041436227691 𝐿nm

𝐸a.u. =
(
𝐸H

𝑚𝑟

𝜅2

)−1
𝐸eV (3.8)

= 20.99961267180285 𝐸eV

where Bohr radius 𝑎0 = 0.05291772109 nm and Hartree energy 𝐸H = 27.21138624598

eV. The resulting acceptance ratios, energy values and Root Mean Square (RMS) errors

are given by table 3.1. In these calculations, a scan over step sizes was performed to

maintain an acceptance rate around 0.5. Table 3.1 shows that the minimum energy for
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both trial wave functions occurs at 𝑆𝑧 = 2. However, for TB trial wave function, the

energy difference between 𝑆𝑧 = 2 and 𝑆𝑧 = 4 is about RMS errors of their energies, the

possibility of the ground state at 𝑆𝑧 = 4 cannot be ignored. Additionally, to determine the

ground state 𝑆𝑧 more accurately, a DMC calculation by using the optimized VMC wave

function is required.

Table 3.1. Acceptance rates, total energies, and RMS errors in total energies of VMC

calculations performed by by using TB and MFH trial wave functions.

TB Trial WF MFH Trial WF
Sz Acceptance Energy (meV) RMS Error (meV) Acceptance Energy (meV) RMS Error (meV)
0 0.4511 -1144.165 0.0239 0.4507 -1144.7771 0.026
1 0.4549 -1144.9694 0.0247 0.4544 -1145.072 0.0245
2 0.4513 -1145.0975 0.0239 0.4534 -1145.4317 0.0239
3 0.55 -1144.5201 0.0234 0.5501 -1143.1239 0.0226
4 0.5403 -1145.0783 0.0231 0.5407 -1141.8551 0.0237
5 0.5299 -1141.9651 0.023 0.5295 -1142.3413 0.022
6 0.5216 -1144.8749 0.0217 0.5217 -1144.8021 0.0216
7 0.5037 -1141.9228 0.0223 0.5058 -1143.3276 0.021
8 0.4861 -1145.0915 0.0196 0.4862 -1145.0878 0.0204

Table 3.2. Acceptance rates, ratios of correlation times to number of steps, total energies,

RMS errors in total energies and populaton control errors of DMC calculations

performed by using VMC-optimized TB trial wave functions for 𝜈 = 1 in 4x4

rhombohedral lattice.

TB Trial WF
Sz Acceptance Tcor/Nstep Energy (meV) RMS Error (meV) Pop. Cont. Error (meV)
0 0.9977 0.2061 -1185.8588 0.0873 0.1778
1 0.9977 0.1833 -1186.2149 0.0809 0.1573
2 0.9977 0.1922 -1185.3229 0.0818 0.1564
3 0.9977 0.1646 -1184.5765 0.0739 0.1493
4 0.9977 0.185 -1183.7343 0.0765 0.1425
5 0.9976 0.2421 -1181.3833 0.0907 0.1871
6 0.9976 0.243 -1180.8045 0.0857 0.1618
7 0.9975 0.2 -1175.3443 0.0739 0.1347
8 0.9975 0.2358 -1171.4014 0.0799 0.1485

Tables 3.2 and 3.3 show the results of DMC calculations by using VMC-optimized

TB and MFH trial wavefunctions respectively. The ground state 𝑆𝑧 is 1 for both TB and

MFH trial wave functions with similar energies. Because the population control error is

considerably larger than the RMS error, the former is taken to be the main error in our
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calculations. The population control error is reduced by increased number of walkers or

reduced time step. Lowering time step causes high correlation time, therefore one needs to

increase the number of steps which leads to higher computation time. Because reducing

correlation time increases computation time, the ratio of correlation time to number of

steps is kept around 20%.

VMC and extrapolated DMC spin and charge densities determined from TB trial

wave function of ground state spin (𝑆𝑧 = 1) is shown in figures 3.3a and 3.3c. The figure

shows that DMC densities show triangularly symmetric distribution around lattice sites

where potential wells exist, unlike VMC densities that have spherically symmetric charge

distributions around lattice sites. Because kinetic energies of the electrons are relatively

high, they gather around the edge sites, and uniformly distributed around inner sites, indi-

cating metallic behavior. Extrapolated DMC densities for VMC-optimized TB and MFH

trial wave functions are similar, in agreement with the energies given by tables 3.2 and 3.3.

Table 3.3. Acceptance rates, ratios of correlation times to number of steps, total energies,

RMS errors in total energies and populaton control errors of DMC calculations

performed by using VMC-optimized MFH trial wave functions for 𝜈 = 1 in 4x4

rhombohedral lattice.

MFH Trial WF
Sz Acceptance Tcor/Nstep Energy (meV) RMS Error (meV) Pop. Cont. Error (meV)
0 0.9977 0.1971 -1185.4647 0.0824 0.1597
1 0.9978 0.1689 -1186.2252 0.0775 0.1657
2 0.9978 0.1972 -1185.2975 0.0831 0.1631
3 0.9977 0.199 -1184.063 0.081 0.1574
4 0.9977 0.224 -1182.2563 0.0895 0.1753
5 0.9976 0.2297 -1181.5547 0.0866 0.1693
6 0.9976 0.2637 -1181.0201 0.0918 0.1759
7 0.9976 0.2175 -1176.8035 0.0773 0.1432
8 0.9975 0.2017 -1171.5068 0.0741 0.1443

Table 3.4. For 4x4 rhombohedral lattice, 8 e− (𝜈 = 1/2) VMC acceptance, energies and

RMS errors for each 𝑆𝑧. The lowest energy trial wavefunctions are shown.

Sz Trial WF Acceptance Energy (meV) RMS Error (meV)
0 MFH 0.516 -792.7676 0.0166
1 MFH 0.5138 -792.7513 0.0157
2 TB 0.5133 -791.2036 0.016
3 MFH 0.4919 -791.4444 0.0159
4 TB 0.4895 -790.31 0.0162
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Figure 3.3. For 4x4 rhombohedral lattice, ground state (𝑆𝑧 = 1) spin-↑ - spin-↓ densities

(column 1-2), spin densities (column 3) and charge densities (column 4) for

(a) VMC with TB trial w.f., (b) VMC with MFH trial w.f., (c) DMC with

VMC-optimized TB trial w.f., (d) DMC with VMC-optimized MFH trial w.f.

are shown. Density plots for DMC calculations in (c) and (d) are extrapolated

by using equation 2.78.

Similarly, for 𝜈 = 1/2 and 𝜈 = 3/2, VMC results are shown in table 3.4 and

table 3.5, DMC results are shown in table 3.6 and table 3.7. For 𝜈 = 1/2 both VMC

and DMC results show that the ground state 𝑆𝑧 is zero, i.e. the system is not magnetic.

However, for 𝜈 = 3/2 both VMC and DMC results indicate the ground state is at 𝑆𝑧 = 2,

i.e. the system is ferromagnetic. Figure 3.4 shows extrapolated ground state spin and

charge densities for 𝜈 = 1/2, 1, 3/2. As the number of electrons increase, the number of

spin-↑ electrons increase. Due to exchange interaction between spin-↑ electrons, they try to

avoid each other, leading to a more uniform distribution throughout the system. However,

because the number of spin-↓ electrons are relatively low, they prefer edge sites. Based

on the ground state 𝑆𝑧 values obtained from DMC calculations by using VMC-optimized
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wave functions for three filling factors, we conclude that a paramagnetic-ferromagnetic

phase transition occur between 𝜈 = 1 and 𝜈 = 3/2, in agreement with recent experimental

study by Ciorciaro et. al.32 Because the ferromagnetic phase is expected to be stronger for

𝜈 = 3/2 than that for 𝜈 = 1 theoretically,33 DMC calculations were performed for filling

factors between 𝜈 = 1 and 𝜈 = 3/2 to verify this behavior. Since the difference in ground

state energies of different trial wave functions are not significant, TB trial wave functions

are used for these calculations.

Figure 3.4. For 4x4 rhombohedral lattice, ground state extrapolated spin-↑ - spin-↓ den-

sities (column 1-2), extrapolated spin densities (column 3) and extrapolated

charge densities (column 4) for (a) 𝜈 = 1/2, (b) 𝜈 = 1 and (c) 𝜈 = 3/2.

Table 3.5. For 4x4 rhombohedral lattice, 24 e− (𝜈 = 3/2) VMC acceptance, energies and

RMS errors for each 𝑆𝑧. The lowest energy trial wavefunctions are shown.

Sz Trial WF Acceptance Energy (meV) RMS Error (meV)
0 TB 0.5552 -1049.9745 0.0278
1 TB 0.5522 -1049.6498 0.0294
2 TB 0.5496 -1052.1763 0.0288
3 TB 0.5425 -1050.1342 0.0297
4 TB 0.544 -1045.3491 0.0303
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Figure 3.5. For (a) 4x4 rhombohedral unit cell sites are shown by black dots, unit cells

translated by ®𝑎1 and ®𝑎2 vectors are shown by blue and red dots. (b) Band

structure obtained by using first nearest-neighbor TB model with hopping pa-

rameter 𝑡 = 1 for aforementioned unit cell. (c) DOS obtained by equation 2.26

is shown. Blue lines and red lines correspond to DOS of periodic and finite

lattices respectively. Discrete energy levels of finite system are depicted by

horizontal dashed lines. Left and right y-axes correspond to energy 𝐸 and fill-

ing factor 𝜈 respectively. Van Hove singularity occurs at 𝐸 = 2𝑡 or 𝜈 = 3/2.

Table 3.6. For 4x4 rhombohedral lattice, 8 e− (𝜈 = 1/2) DMC acceptance, correlation

time-number of steps ratio, energies, RMS errors and population control errors

for each 𝑆𝑧. The lowest energy trial wavefunctions are shown.

Sz Trial WF Acceptance Tcor/Nstep Energy (meV) RMS Error (meV) Pop. Cont. Error (meV)
0 TB 0.9982 0.1335 -811.1124 0.0835 0.1547
1 TB 0.9981 0.1301 -810.8835 0.083 0.1641
2 TB 0.9982 0.1413 -809.8932 0.0862 0.1638
3 TB 0.9981 0.1373 -809.0669 0.0835 0.1627
4 MFH 0.998 0.1478 -807.0954 0.0869 0.181

Van Hove singularity around 𝜈 ≈ 3/2 (see Figure 1.5a) show degenearate orbitals

that can trigger itinerant ferromagnetism. The singularity in DOS can easily be seen in Fig-

ure 3.5c obtained by the nearest neighbor TB model of periodic triangular lattice shown

in Figure 3.5a. Note that DOS of finite 4x4 has multiple peaks due to finite number of

discrete energy levels instead of continuous bands. We performed an analysis to explore

itinerant ferromagnetism based on TB spectrum based on the fact that the electrons occu-
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pying different states in a narrow energy window will most likely occupy the same spin

due to exchange interactions. Because odd (even) number electrons lead to 𝑆min
𝑧 = 1/2

(𝑆min
𝑧 = 0), the expected 𝑆𝑧 values for non-degenerate orbitals alternate with respect to the

number of electrons. We compared the expected ground state 𝑆𝑧 based on TB spectrum

and DMC results for varied number of electrons between 0 and 3/2. For 4x4 rhombohe-

dral lattice TB spectrum, expected 𝑆𝑧 and 𝑆𝑧 determined by DMC calculations for various

number of electrons are shown in Figure 3.6a. Ground state 𝑆𝑧 values are taken to be the

maximum 𝑆𝑧 within the error bar of minimum energy values. For 25 electrons, 𝑆𝑧 = 1/2

and 𝑆𝑧 = 3/2 lie within an error bar, thus 𝑆𝑧 = 3/2 is taken as reference value. Similarly,

for 28 electrons, 𝑆𝑧 = 0 and 𝑆𝑧 = 2 lie within an error bar, therefore 𝑆𝑧 = 2 is taken as

the reference value. Around 3/2-filling, determined 𝑆𝑧 values are generally higher than

the expected values, indicating strong itinerant ferromagnetism. As an example, the or-

bital occupation for 24 electrons is visualized in Figure 3.6b, where the ground state 𝑆𝑧

value is 2, the number of spin-↑ electrons is 𝑁↑ = 14 and the number of spin-↓ electrons is

𝑁↓ = 10. The first ten orbitals are occupied by both spin-up and spin-down electrons and

the remaining four spin-↑ electrons occupy the next four orbitals.

Table 3.7. For 4x4 rhombohedral lattice, 24 e− (𝜈 = 3/2) DMC acceptance, correlation

time-number of steps ratio, energies, RMS errors and population control errors

for each 𝑆𝑧. The lowest energy trial wavefunctions are shown.

Sz Trial WF Acceptance Tcor/Nstep Energy (meV) RMS Error (meV) Pop. Cont. Error (meV)
0 TB 0.9934 0.2588 -1124.5261 0.0998 0.2136
1 TB 0.9933 0.2219 -1124.7641 0.0909 0.1992
2 TB 0.9934 0.2346 -1125.6276 0.0904 0.1955
3 TB 0.9933 0.2326 -1123.7667 0.0888 0.1935
4 TB 0.9933 0.2676 -1121.2114 0.106 0.2627

3.2. 19-site Radial Lattice With Guiding Potential

The electrons in our system have large kinetic energy and strong correlation which

causes electrons gather at the edges, unlike those in periodic systems. To that end, we

introduced a Gaussian-type guiding potential which reduces kinetic energies of the elec-

trons, therefore improving uniformity of the charge density. Because Gaussian potential

has radial symmetry, we use a radially symmetric 19-site lattice shown in Figure 3.7. Af-
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ter trial and error, we determined a suitable guiding Gaussian with amplitude 𝑉𝑔 is large

enough to be at the order of moiré potential (−28𝑉𝑚). The width 𝜌𝑔 is at the order of

the size of the lattice, and stiffness 𝑠𝑔 is 0.8. The potential and guiding Gaussian for this

system are shown in Figures 3.8b and 3.8c respectively.

Figure 3.6. (a) TB spectrum for 4x4 rhombohedral lattice (red circles). Blue dotted lines

correspond to the expected 𝑆𝑧 values for expected spin values due to degen-

eracies in TB spectrum. Magenta squares correspond to the ground state 𝑆𝑧

values obtained from DMC calculations. Some of the calculations resulted

in multiple 𝑆𝑧 values within an error bar around minimum energy. Lower 𝑆𝑧
values are shown by gray squares. (b) Orbital occupation of singly occupied

orbitals for 24 electrons.

Spin and charge densities for 𝜈 ≈ 0.5, 𝜈 = 1 and 𝜈 ≈ 1.5 are shown in Figure 3.9.

The guiding potential is chosen to provide nearly uniform charge density at half filling (see

Figure 3.9b). Because of a deep gaussian well centered at the origin, the electrons occupy

a narrow circular area at the center at low filling values as shown for 𝜈 ≈ 0.5 in Figure 3.9a.

As the number of electrons increase, spin ordering of electrons become apparent where
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abundant spin-↑ electrons occupy the wells and spin-↓ electrons are distributed in between

(see Figure 3.9c). This behavior agrees with the findings of the study by Ciorciaro et.

al.32 where antiferromagnetic spin susceptibility is observed for for 𝜈 > 3/2, as shown in

Figure 1.5b.

Figure 3.7. 19-site radial lattice used used in tight-binding and mean-field Hubbard calcu-

lations are shown. Lattice points are shown by red circles while the couplings

between the nearest neighbor sites are shown by black lines.

Figure 3.8. (a) Moiré potential, (b) Moiré potential with guiding potential and (c) guiding

potential for radial 19-site lattice in eV. Black, red and green squares corre-

spond to potential wells, hills and midpoints respectively. Guiding gaussian

amplitude 𝑉𝑔 = −28𝑉𝑚 = −176.4 meV, stiffness 𝑠𝑔 = 0.8 and width 𝜌𝑔 is at

the order of the size of the lattice.

For 19-site radial lattice, we performed an analysis similar to that for 16-site rhom-

bohedral lattice shown in Figure 3.6a. We performed DMC calculations by using both TB

trial wave functions and MFH trial wave functions with 𝜅𝑈/𝑡 = 2.5. The expected and

determined 𝑆𝑧 values are shown in Figure 3.10a. In general, DMC results agree with the

42



expected spin values determined from the analysis on TB spectrum. For 23, 24 and 28

electrons, we determined multiple 𝑆𝑧 values within an error bar around minimum energy,

therefore the maximum 𝑆𝑧 values were chosen as reference. Although calculations for

some spin values failed to converge for more than 28 electrons, by comparing energies of

TB and MFH trial wave functions we deduced that the ground state 𝑆𝑧 values are likely

those shown in Figure 3.10a.

Figure 3.9. Ground state spin and charge densities obtained by DMC calculations by using

VMC-optimized TB trial wave functions for (a) 10 electrons (𝜈 = 10/19 =

0.5263, 𝑆𝑧 = 1), (b) 19 electrons (𝜈 = 1, 𝑆𝑧 = 1/2), (c) 30 electrons (𝜈 =

30/19 = 1.579, 𝑆𝑧 = 3).

3.3. Wigner Crystals

DMC calculations in previous sections indicate large kinetic energy from charge

density plots in which the electrons tend to build up at the edge sites. To explore Wigner

crystal states, we reduced kinetic energy by increasing Moiré potential amplitude𝑉𝑚 from

6.3 meV to 25 meV. Guiding potential at low densities dominates over Coulomb repulsion,

gluing electrons together around the central site. Therefore, guiding potential is not used

in this part. Other simulation parameters are the same as the previous sections. Because

TB trial wave functions give lower energies with respect to MFH trial wave functions, TB
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trial wave functions are used for the calculations in this part. For 7 electrons (𝜈 = 7/19 =

0.3684 ≈ 1/3), spin energies are given by Table 3.8. The lowest energy 𝑆𝑧 values are 1/2

and 3/2 but the energies cannot be distinguishable due to large population control error.

Figure 3.10. (a) TB spectrum for 19-site radial lattice (red circles). Blue dotted lines cor-

respond to the expected 𝑆𝑧 values for expected spin values due to degenera-

cies in TB spectrum. Magenta squares correspond to the ground state 𝑆𝑧

values obtained from DMC calculations. Some of the calculations resulted

in multiple 𝑆𝑧 values within an error bar around minimum energy. Lower 𝑆𝑧
values are shown by gray squares. (b) Orbital occupation of singly occupied

orbitals for 30 electrons.

Table 3.8. 𝑆𝑧, energy, RMS error in energy and population control error for 7 electrons in

19-site radial lattice with 𝑉𝑚 = 25 meV.

𝑆𝑧 Energy (meV) RMS Error (meV) Pop. Cont. Error (meV)
1/2 -3471.4012 0.7475 2.1021
3/2 -3470.6498 0.6097 0.8538
5/2 -3462.62874 0.8302 1.9981
7/2 -3466.70186 0.8843 2.4142
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Extrapolated charge densities for 𝑆𝑧 ∈ [7/2, 1/2] are shown in Figures 3.11a-

d in descending order. The crystalline behavior is observed for maximum polarization

(𝑆𝑧 = 7/2). For 𝑆𝑧 = 7/2, the distance between sites are the largest and equal to each

other, indicating that the Coulomb repulsion between electrons tries to maximize the dis-

tance between them to minimize the energy. As 𝑆𝑧 decreases, i.e. number of spin-↓ elec-

trons increases, the distance between electrons decreases, and the configuration becomes

less crystalline, more uniform at the edges. This behavior can be explained by exchange

interaction between the electrons of the same spin. The first two columns of Figures 3.13a-

d show the densities for spin-↑ and spin-↓ electrons respectively. As the number of spin-↑

(spin-↓) electrons decreases (increases), the distance between the electrons in the same

shell decreases due to reduced exchange interaction. Because correlation strength does

not change, the electrons are distributed over edge sites. The reason that the lowest energy

state is for 𝑆𝑧 = 1/2 is most likely due to the reduced exchange energy.

Figure 3.11. Extrapolated charge densities for (a) 𝑆𝑧 = 7/2, (b) 𝑆𝑧 = 5/2, (c) 𝑆𝑧 = 3/2

and (d) 𝑆𝑧 = 1/2.

For minimal polarization (𝑆𝑧 = 1/2), spin-↑ and spin-↓ electrons are localized in

different sites as seen in Figure 3.13a. For better understanding of spin ordering, pair

densities were determined by fixing a spin-↑ electron to a site with high spin-↑ electron

density. We denote the pair densities with two subscripts 𝐷𝑖 𝑗 where 𝑖 is the spin of the

fixed electron and 𝑗 is the other spin of the pair. The difference 𝐷↑↑ − 𝐷↑↓ has positive

(negative) values around the sites that are occupied by spin-↑ (spin-↓) electrons with re-

spect to the fixed spin-↑ electron. Figure 3.12a shows 𝐷↑↑ − 𝐷↑↓ for 𝑆𝑧 = 1/2 which

shows antiferromagnetic ordering. However, the antiferromagnetic ordering vanishes for

𝑆𝑧 = 3/2 (see Figure 3.12b), due to spin-↑ and spin-↓ electrons occupying the same sites
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as seen in Figure 3.13b.

Figure 3.12. Extrapolated pair polarization 𝐷↑↑ − 𝐷↑↓(a) 𝑆𝑧 = 1/2 and (b) 𝑆𝑧 = 3/2. The

fixed site is shown inside the red circle.

Figure 3.13. Extrapolated spin and charge densities for (a) 𝑆𝑧 = 1/2, (b) 𝑆𝑧 = 3/2, (c)

𝑆𝑧 = 5/2 and (d) 𝑆𝑧 = 7/2.
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CHAPTER 4

CONCLUSION

In this study, we investigate the magnetic phases of finite Moiré heterostructures by

using Diffusion and Variational Monte Carlo methods with tight-binding and mean-field

Hubbard trial wave functions. The methodology is applicable to other moiré heterobilayers

with the change of moiré potential parameters (𝑉𝑚, 𝜙), lattice constant 𝑎, relative effective

carrier mass 𝑚𝑟 and relative dielectric constant 𝜅. Tunability of 𝑉𝑚 by pressure and 𝜅 by

electric field strength introduce additional degrees of freedom to be investigated. However,

they are not considered in the current scope of this study, leaving room for future work.

So far, there is only one available DMC study known to us on moiré heterostruc-

tures by Yang et. al.61 This study on periodic moiré heterostructures investigates phase

transitions at half-filling between paramagnetic, ferromagnetic, stripe and 120◦ Neel or-

dered magnetic phases with respect to moiré potential and interaction strength by using

DFT combined with DMC calculations, in a similar way to the exact diagonalization study

by Hu and MacDonald.29 In this work, we focus on itinerant ferromagnetism via electron

doping and Wigner crystal at low density in finite systems via DMC calculations. To that

end a finite potential is designed to approximate periodic moiré potential inside the lattice

and grows to its maximum value outside, confining the charge carriers inside the system.

Finite moiré potentials given by equation 2.2 used in this study are simply sums of

Gaussian-like functions that can be used to approximate periodic moiré potentials given by

equation 1.1. Any 𝑑-dimensional function can be approximated as a sum of 𝑑-dimensional

Gaussians centered at various points in 𝑑-dimensional space. Because we restrict Gaus-

sians to the sublattices with fixed parameters, stiffness (𝑠) parameter introduces another

degree of freedom for better approximation. In our case, while the first two Gaussian-like

functions used to approximate periodic moiré potential are typical Gaussians, the third one

has a negative stiffness as shown in Figure 2.1. This methodology can easily be generalized

to approximate any periodic potential for finite systems.

Due to enhanced DOS at 𝜈 = 3/2-filling in both 16-site rhombohedral and 19-site

radial geometries, the ground state 𝑆𝑧 is enhanced. This behavior agrees with the theoret-
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ical study by Potasz et. al.,33 although the system parameters they use for WSe2/WS2 are

different than those we use for MoSe2/WS2. An experimental study by Ciorciaro et. al.32

shows that temperature dependent magnetic susceptibilities of MoSe2/WS2 heterobilayers

indicate ferromagnetism for fillings between 𝜈 = 1 and 𝜈 = 3/2, as shown in Figure 1.5b.

Additionally, in the same study the authors state that for fillings 𝜈 = 1 and below the sys-

tem is paramagnetic, and surprisingly ferromagnetic to antiferromagnetic phase transition

occurs at 𝜈 = 3/2 (see Figure 1.5b).32 In our results, ferromagnetic ground state is ob-

tained around 𝜈 = 3/2 as shown by Figure 3.6 for rhombohedral lattice and by Figure 3.10

for radial lattice. The spin densities of 19-site radial geometry for 𝜈 = 30/19 ≈ 3/2 show

magnetic ordering similar to ferrimagnetism with dominant spin-↑ contribution (see the

third column of Figure 3.9c). This behavior might be related to the unexpected antiferro-

magnetic behavior in spin susceptibilities around 𝜈 = 3/2 obtained by Ciorciaro et. al.32

A larger geometry could reveal the nature of this behavior due to the increased number of

orbitals, i.e. an increased number possible filling values.

The spurious spin polarization for 𝜈 = 0.5 seen in Figure 1.5a33 was not observed

in our results for 19-site radial geometry except for 𝜈 = 10/19 and 𝜈 = 14/19 (see Fig-

ure 3.10a). In this regime, the charges are pulled towards center due to large guiding

Gaussian. For 16-site rhombohedral geometry, the ground state is for 𝑆𝑧 = 0 at 𝜈 = 0.5.

Spin ordering was not seen in both geometries at 𝜈 = 0.5, therefore consistent with the

paramagnetic behavior at lower fillings shown in Figure 1.5b.32

Wigner crystal at 1/3 and 2/3 fillings are expected in WS2/WSe2 moiré heterostruc-

tures.11,31,37 DMC calculations for 7 electrons in 19-site radial geometry (𝜈 ≈ 1/3) of

MoSe2/WS2 heterobilayers were performed by increasing moiré potential amplitude 𝑉𝑚

from 6.3 meV to 25 meV. Although Wigner crystal was observed for maximum 𝑆𝑧 = 7/2

shown in Figure 3.11a, it has higher energy than 𝑆𝑧 = 1/2 and 𝑆𝑧 = 3/2 as shown in Ta-

ble 3.8. The electron configuration for 𝑆𝑧 = 7/2 is as the expected configuration obtained

from classical Monte Carlo simulations of electron gas in parabolic potential, with one

electron in the inner shell and six electrons in the outer shell.62 Spin densities of 𝑆𝑧 = 1/2

indicate antiferromagnetic order shown in the third column of Figure 3.13a. Extrapolated

pair polarizations verify the aforementioned antiferromagnetism (see Figure 3.12a. De-

spite that 𝑆𝑧 = 1/2 and 𝑆𝑧 = 3/2 states are not distinguishable due to large population

control error, it is possible to obtain antiferromagnetic ground state by tuning the potential
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and lattice constant (via twist angle). An isolated antiferromagnetic ground state com-

bined with spin-polarized Wigner crystal allows one to switch between two phases via an

out-of-plane magnetic field.

Wigner crystallization can be discussed in terms of Wigner-Seitz parameter 𝑟𝑠

given by Equation 1.12. Using the simulation parameters given by Ciorciaro et. al.,32

𝑟𝑠 values for radial lattice are calculated as 3.42, 2.07 and 1.65 at fillings 7/19 ≈ 1/3, 1

and 30/19 ≈ 3/2 respectively. For rhombohedral lattice, 𝑟𝑠 is slightly lower due to larger

total area, with values 2.6 at half-filling and 2.13 at 3/2 filling. Although 𝑟𝑠 value for 1/3

filling is smaller by an order of magnitude that is needed for 2DEG Wigner crystalliza-

tion (𝑟𝑠 ≈ 30 − 3545), the crystallization occurs as excited state, indicating a transition to

Wigner crystal phase. This effect is due to the moiré potential with large 𝑉𝑚 (25 meV)

which is not taken into account in terms of band effective mass in the calculation of 𝑟𝑠
given by equation 1.12. For 𝑉𝑚 = 6.3 meV, the electrons have considerably larger kinetic

energies, therefore crystallization does not happen even though 𝑟𝑠 values are of similar

order of magnitude to that for 1/3-filling.

To summarize, finite moiré potential is designed and implemented into CHAMP46

to perform VMC and DMC simulations of finite MoSe2/WS2 heterostructures. A python

code to determine MFH ground state orbitals is developed to be used along with TB or-

bitals as Slater determinants in VMC and DMC calculations. Itinerant ferromagnetism

is observed for finite lattices near 𝜈 = 3/2 where van Hove singularity occurs. Wigner

crystal phase emerges as excited state for 𝜈 ≈ 1/3 larger moiré potential amplitude. For

future work, we consider increasing the lattice size to explore itinerant ferromagnetism

further between 𝜈 = 1 and 𝜈 = 3/2, specifically for 𝜈 ⪆ 1, as shown in Figure 1.5b by the

experimental study of Ciorciaro et. al.32 Increasing system size also could also allow us

to probe ferrimagnetic behavior for 𝜈 > 3/2 in more detail.
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