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ABSTRACT

SUPERSYMMETRIC COHERENT STATES AND SUPERQUBIT
UNITS OF QUANTUM INFORMATION

In this thesis, we study the set of maximally entangled Bell based super-coherent

states, involving both fermionic and bosonic components. By extending the supersymmet-

ric annihilation operator introduced by Aragone and Zypmann, we develop four distinct

types of supersymmetric coherent states, related to the Bell two-qubit quantum states.

These Bell super-qubit states form the basis for the Bell-based supersymmetric coherent

states, which are constructed using a displacement operator. When these states are com-

bined with separable bosonic coherent states, represented as points on the super-Bloch

sphere, the resulting structure is called Bell-based super-coherent states. The entangle-

ment between the bosonic and fermionic components is analyzed through a displacement

bosonic operator, which acts on a super-qubit reference state. For these entangled super-

coherent states, uncertainty relations are expressed by concurrence. The monotonic rela-

tionship between uncertainty and concurrence C indicates the influence of entanglement

on uncertainty relations. Then, we observe quadrature squeezing in the uncertainties of

position and momentum. Furthermore, we describe an infinite sequence of super-coherent

states, whose uncertainty relations are characterized by the ratio of two Fibonacci num-

bers.

For generalization of previous results, we introduce the generic super-qubit quan-

tum state, where the single super-particle state is defined by a complex parameter ζ. This

leads us to description of PK-super-qubit quantum states, which are characterized by two

unit spheres. These states form the basis for what we refer to as PK-supersymmetric co-

herent states, for which we have analyzed the entanglement properties. The pq-deformed

super-coherent states and particular case as q-deformed super-coherent states are studied.
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ÖZET

SÜPERSİMETRİK EŞ UYUMLU DURUMLAR VE KUANTUM
BİLGİSİNİN SÜPERKÜBİT BİRİMLERİ

Bu tezde, hem fermiyonik hem de bozonik bileşenleri içeren, maksimum dolanık

Bell tabanlı süper-eş uyumlu durumlar kümesini inceliyoruz. Aragone ve Zypmann tarafın-

dan tanıtılan süpersimetrik yok edici operatörü genişleterek, Bell iki-kübit kuantum du-

rumlarıyla ilişkili dört farklı süpersimetrik eş uyumlu durum geliştiriyoruz. Bu Bell süper-

kübit durumları, yer değiştirme operatörü kullanılarak inşa edilen Bell tabanlı süper-

simetrik eş uyumlu durumların temelini oluşturur. Bu durumlar, süper-Bloch küresi üz-

erinde noktalar olarak temsil edilen ayrık bozonik eş uyumlu durumlarla birleştirildiğinde,

ortaya çıkan yapıyı Bell tabanlı süper-eş uyumlu durumlar olarak adlandırılır.. Bozonik ve

fermiyonik bileşenler arasındaki dolanıklık, süper-kübit referans durumu üzerinde etkili

olan bir bozonik yer değiştirme operatörü aracılığıyla analiz edilir. Bu dolanık süper-eş

uyumlu durumlar için belirsizlik ilişkileri concurrence C ile ifade edilir. Belirsizlik ile

concurrence arasındaki monoton ilişki, dolanıklığın belirsizlik ilişkileri üzerindeki etk-

isini göstermektedir. Daha sonra, konum ve momentum belirsizliklerinde kuadratür sıkış-

ması gözlemliyoruz. Ayrıca, belirsizlik ilişkileri iki Fibonacci sayısının oranı ile karak-

terize edilen sonsuz bir süper-eş uyumlu durum dizisi tanımlıyoruz.

Önceki sonuçları genelleştirmek amacıyla, tek bir süper-parçacık durumunun kar-

maşık bir parametre ζ ile tanımlandığı genel bir süper-kübit kuantum durumu tanıtıy-

oruz. Bu tanımlama, iki birim küre ile karakterize edilen PK-süper-kübit kuantum du-

rumlarına yol açmaktadır. Bu durumlar, PK-süpersimetrik eş uyumlu durumlar olarak

adlandırdığımız yapıların temelini oluşturur ve bu durumların dolanıklık özelliklerini in-

celiyoruz. Son olarak, pq-deforme süper-eş uyumlu durumları ve özel bir durum olarak

q-deforme süper-eş uyumlu durumları ele alıyoruz.
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CHAPTER 1

INTRODUCTION

The qubit as a unit of quantum information is described by two level quantum

system, basis states of which can be represented by vectors in C2,

|0〉 =

 1

0

 , |1〉 =

 0

1

 . (1.1)

The qubit state is superposition of these states, which after normalization, up to global

phase, takes the standard form

|θ, φ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉, (1.2)

where angles 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π determine points on the unit sphere. This sphere

is called the Bloch sphere, so that there is a one-to-one correspondence between points on

Bloch sphere and qubit quantum states (Benenti et all, 2019, 100-101).

To realise qubits in quantum optics, it is necessary to have two orthogonal states

of photons. photons, which can be constructed from special quantum states of photons

called coherent states. These states were first introduced by Schrödinger (Schrödinger,

1926, 664-665) to establish a link between quantum and classical harmonic oscillators.

He constructed non-stationary states with probability densities in the form of Gaussians,

whose centres oscillate according to the classical equations of motion of harmonic os-

cillators.It has been shown that these states minimize the coordinate-momentum uncer-

tainty relations and therefore they are considered to be the quantum states that are closest

to classical states. Three different approaches to these coherent states, also known as

standard coherent states (Peremolov, 1986, 13-23) or Glauber coherent states (Glauber,

1963, 2769-2775), have been proposed. The first one is minimization of the Heinsenberg

uncertainty relation. In the second approach, they are formulated as eigenstates of the

1



annihilation operator. In the last one, the application of unitary displacement operator to

the vacuum state gives the coherent state. For Glauber states, these three approaches are

equivalent.

The direct use of coherent states to describe a qubit is not possible because the

Glauber coherent states are not orthogonal. As it was proposed in 1974 (Dodonov et all,

1974, 600-603), even and odd combinations of Glauber coherent states are orthogonal and

could be used to describe a qubit. These states are called the Schröndinger cat states. By

using finite superposition of coherent states with mod-n symmetry, it is also possible to

construct an arbitrary number of orthogonal states (Pashaev and Kocak, 2019, 8-9). They

can be used to describe generalizations of the qubit state as the qutrit, the ququad and the

qudit quantum states. However, it should be noted that such type of superposition is not

minimizing uncertainty relation and they represent non-classical quantum states.

Another type of orthogonal states can be produced by application of displacement

operator not only to vacuum state but also to |1〉, |2〉, |3〉, ..., |n〉 photon number states in

the Fock space. This infinite set of states is called the displaced coherent states, but these

states are not coherent states because they are not minimizing uncertainty relation. The

displaced coherent states are closely related with the so called photon-added states(P.A.C)

( (Agarwal and Tara, 1991, 492-493) and (Francis and Tame, 2020, 3-5)), described by

adding finite number of photons to the coherent state. As it is known, in contrast to co-

herent state as maximally classical states, the photon added states are non-classical states

with several specific properties as quadrature squeezing, Poisson distribution, etc. (Fran-

cis and Tame, 2020, 3-8). As non-classical states, they attract interest in applications to

quantum sensing, continuous variable quantum information processing, quantum state en-

gineering and probing fundamental properties of quantum mechanics (Francis and Tame,

2020, 5-11).

To implement transition from classical to non-classical states, the superposition

of coherent states with PAC states where studied theoretically and experimentally (see

(Zavatta et all, 2004, 660-662) and references therein). Denoting the Glauber coherent

state as |0, α〉 = D(α)|0〉, the displaced Fock state |1, α〉 = D(α)|1〉 can be represented

as such type superposition of |1, α〉 = â†|0, α〉 + ᾱ|0, α〉. Then, the generic superposition

of the coherent state and the PAC state appears as displaced state c0|0, α〉 + c1|1, α〉 =

D(α)(c0|0〉+c1|1〉) of the one qubit state c0|0〉+c1|1〉. For c1 , 0, the state is linearly inde-
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pendent of |0, α〉, so that if we combine the states as two component spinor of Fock states,

it becomes descriptive of entangled fermion-boson states of supersymmetric quantum os-

cillator (Pashaev and Kocak, 2025, 5-13). This allows us to study transition from classical

to nonclassical states in framework of supersymmetric quantum mechanics (Cooper et all,

2001, 7-30), and its dependence on entanglement between fermions and bosons.

The purpose of the present thesis is description of coherent states in supersym-

metric quantum mechanics and their relations with units of quantum information, which

we call as the super-qubit quantum states. By using displacement bosonic operator, the

states are generated by acting on a reference state, in addition to traditional vacuum state

|Ψ0〉 = |0〉 f ⊗|0〉b, includes superposition with the one super-particle state. This superposi-

tion is naturally called as the super-qubit state. The usual qubit state is a superposition of

|0〉 and |1〉 computational states, as eigenstates of the number operator N f . Inspired from

this, we define the super-qubit state as a superposition

|θ, φ〉S = cos
θ

2
|0〉S + sin

θ

2
eiφ|1〉S (1.3)

where |0〉S and |1〉S are super-computational basis states, as eigenstates of the super-

number operator N , which counts number of superparticles. The states are parametrized

by coordinates on the unit sphere, which we call as the super-Bloch sphere. Contribution

of superparticles to energy is the same and does not distinguish fermions from bosons, so

that the superqubits are the degenerate states, but with different level of fermion-boson

entanglement. In this thesis, we first work with superqubit state as a superposition of

separable |0〉S state and maximally entangled |1〉S state. For the last one we use the first

pair of Bell states in fermion-boson basis. After applying displacement operator to the

superqubit state we get the first pair of super-coherent states. The second pair of states is

generated from the second pair of fermion-boson Bell states, being not exact eigenstates

of the supernumber operator (but only in averages).

We show that the fermion-boson entanglement in super-coherent state is equal to

the one in the corresponding super-qubit reference state and does not depend on displace-

ment parameter α. The entangled super-coherent states describe non-classical behavior

in non-minimal form of uncertainty relations, quadrature squeezing and sub-Poissonian

distribution. The entanglement of states is independent of time evolution and in con-
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trast to Glauber coherent states, which are never orthogonal, the super-coherent states

can be orthogonal. Depending on value of concurrence, we have the full circle of the

equidistant maximally entangled states (C=1), orthogonal to the given one, and the pair

of orthogonal antipodal states for arbitrary 0 < C < 1. For C = 1, three mutually

orthogonal states, associated with equilateral triangle in complex plane are found. For

separable states with C = 0, no orthogonal states are possible. This shows that entangle-

ment of bosons with fermions is required to have orthogonality of coherent states. The

entanglement affects also uncertainty relations. The coordinate-momentum uncertainty

for supercoherent states, represented in terms of monotonically growing function of the

concurrence, allows us to relate the uncertainty with level of boson-fermion entangle-

ment. For the states along equator of the super- Bloch sphere, with C = 1
2 we find the

representation of uncertainty by ratio of two Fibonacci numbers ~F5/F6. Then, by using

the sequence of concurrences Cn =
√

Fn−2/Fn+1, convergent to C = ϕ−3/2, we obtain the

sequence of uncertainties ~Fn/Fn+1, in the limit n → ∞ convergent to the Golden ratio

uncertainty ~/ϕ.

Similar to superposition of coherent states with PAC states, making the state non-

classical, our supercoherent states show the quadrature squeezing - when uncertainty in X

variable is lower than 1/2, by expense of increasing uncertainty in P variable, bigger than

1/2, and vice versa. This result can improve the measurement limits in SUSY quantum

oscillator and can be applied in several fields as quantum communications and quantum

sensing, quantum optics and information processing. More general super-qubit states and

corresponding super-coherent states appear if we notice that the one super-particle state

is not unique and is parametrized by complex number ζ (Pashaev and Kocak, 2025(3, 5-

10)). The pq-deformed super-coherent states also provide another type of supersymmetric

deformed quantum oscillator states.

Here we briefly describe existing literature in the field (list of which never could

be complete) and the differences with our paper. The supersymmetric coherent states

were studied in several papers from different points of view. In first and seminal paper

(Aragone and Zypman, 1986, 2268-2270), for simplest ( N = 1) supersymmetric gen-

eralization of the standard quantum mechanical harmonic oscillator, the supersymmetric

annihilation operator A1 = Î f ⊗ â + f̂ ⊗ Îb, entangling bosons with fermions was defined.

The super-coherent states as the eigenstates of this operator were determined by using
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Fock space expansion. The difference with (Aragone and Zypman, 1986, 2271-2275)

we have in representation of supersymmetric states, by using fermion number operator

N f = diag(0, 1), which leads to opposite number of fermions in the given state. Though

both definitions are correct and a matter of preference is dictated by the goal, our choice

is motivated by standard notations in quantum computation and quantum information the-

ory (Benenti et all, 2019, 49-110), where computational qubit basis state |0〉 we associate

with zero fermions, while state |1〉 - with one fermion. The same definition is used also

in (Cooper et all, 2001, 8-20). An extension of the Fock state expansion by application

of the displacement operator, acting on different reference states as super-qubit states,

has several advantages. It allowed us to identify the reference state in paper (Aragone

and Zypman, 1986, 2272-2274) as the fermion-boson Bell state and extend the set of

super-coherent states to other Bell states. The approach, together with calculation of con-

currence and von Neumann entropy greatly simplifies much the calculations and clarifies

meaning of uncertainty relations and the entanglement property. In addition, it allows

us to find orthogonality of entangled coherent states, quadrature squeezing, Fibonacci

sequences and Golden uncertainty. One more specific is that we have four different super-

annihilation operators A±, AT
±, which include not only f operator, annihilating |0〉 state, but

also f †, annihilating |1〉 state. The paper Berube-Lauziere (1993) works with A0 = I f ⊗ a,

as another super-annihilation operator, trying to formulate three equivalent definitions

of supercoherent states, similar to the Glauber states. More general forms of nonlinear

super-annihilation operator were studied in (Kornbluth and Zypman, 2013, 2-5) by Fock

space expansion. The group-theoretical approach to supercoherent states with Grassman

variables was subject of paper (Fatyga et all, 1991, 1405-1410), and (Nieto, 1991, 95-99)

proposed interpretation of the Grassman coherent state as the photino, the superpartner of

photon.

The influence of squeezing operator on uncertainty relation for SUSY oscillator

was counted in paper (Orszag and Salamo, 1988, 61-64). It was shown that unitary

displacement operator for super-coherent states could be in the form I⊗D(α) only, and this

is exactly the one we are using in present paper.The idea to use displacement operator for

supersymmetric construction of displaced number states was explored in (Zypman, 2015,

1019-1025), where specific form of displacement operator as the translation operator,

written in terms of A†1 − A1 were considered. In our paper (Pashaev and Kocak, 2025, 15-

5



19) we use similar idea, but with different super-displacement operator, given by direct

product with pure bosonic displacement operator .

The entanglement of bosons with fermions in SUSY, was not much explored. Fi-

nite supersymmetry transformations and highly entangled combinations of bosons and

fermions, invariant under supertranslations were worked out in (Iliyeva et all, 2004,

119-127). In (Laba and Tkachuk, 2020, 2-7), by exploring the Pauli Hamiltonian, en-

tanglement of spin variables of electron in uniform magnetic field, which exhibit SUSY

was examined. They have determined the concurrence by the mean value of spin and cal-

culated it explicitly for SUSY quantum mechanical states. The entanglement entropy in

Gaussian states, related by SUSY is subject of discussion in paper (Jonsson et all, 2021,

7-12). In paper (Motamedinasab et all, 2018, 1167-1175) an entanglement of general-

ized supercoherent states with nonlinearly extended operator A were studied by applying

the concurrence formula, given by single determinant of coefficients for two-qubit states,

where one of them is chosen as coherent state. In paper (Pashaev and Kocak, 2025,

18-22), by using the reduced density matrix approach, the concurrence formula obtained

which includes an infinite number of 2x2 determinants, covering all Fock states. In that

paper the set of Bell based supersymmetric coherent states was studied, as well as the

several applications.

The thesis is organized as follows.

In Chapter 2, we briefly review main definition and properties of Glauber coher-

ent states. The pq−deformation of coherent states and corresponding pq calculus are

described in Chapter 3. Chapter 4 is devoted to fermionic oscillator, fermionic- bosonic

oscillator and the supersymmetric harmonic oscillator.

For description of supercoherent states in Chapter 5, we use supersymmetric an-

nihilation operator, which was proposed in the first time by Aragone and Zypmann. We

called the eigenstates of this operator as the AZ-supersymmetric coherent states. Section

5.2 introduces the Supersymmetric Bloch sphere (Section 5.2.1) and uncertainty relations

for the supersymmetric Bloch sphere (Section 5.2.2). The coordinate and momentum

representation of these states are described in Section 5.3.

It turns out that supersymmetric coherent states can be seperable or entagled

fermion-boson quantum states. For description of entanglement for fermion-boson states

in Chapter 6, we introduce characteristic of fermion-boson entanglement in terms of the
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concurrence, related to the linear entropy, and the Von-Neumann entropy. By using these

characteristics, we calculate entanglement of super number states in Section 6.2. Then,

the fermion-boson Bell states are constructed in Section 6.2.2. Superposition of these

states with the vacuum state in Section 6.2.3 produces the Bell based super-qubit states.

In Section 6.3, by applying displacement operator we construct the Bell-based super-

symmetric coherent states. Entanglement of these states and orthogonality properties are

subject of Section 6.4. In section 6.5., we show that during the time evolution of these

states, the entanglement of fermion-boson states is time independent. In Section 6.6, we

calculate uncertainty relations and entanglement for the Bell based super coherent states.

In Section 6.6.1, we show quadratic squeezing of coordinate and momentum uncertain-

ties. The infinite set of super coherent states, related with Fibonacci numbers and limiting

case n→ ∞, producing uncertainty relation with Golden ratio are subject of Section 6.6.2.

In Chapter 7, we study entanglement of PK-super-qubit quantum states and super-

coherent states. Since in supersymmetric quantum mechanics, one superparticle number

state is not unique and can be parametrized by complex number ζ, (Pashaev and Ko-

cak, 2025(3)) introduced the PK-supersymmetric annihilation operator (Section 7.2) for

description of corresponding super-qubit states. Application of displacement operator

to PK-superqubit states produce PK-super coherent state. Entanglement of such PK-

super coherent state is subject of Section 7.2.1 . In Section 7.3, we describe flipped PK-

superqubit states. Uncertainty relations for these states and related Fibonacci sequence

are derived in Section 7.4.

Chapter 8 is devoted to pq-deformed supersymmetric annilation operator and cor-

responding coherent states. Uncertainty relations for these states are subject of Section

8.2.

As a particular, but more explicit form of pq-deformed oscillator, in Chapter 9

we describe q-deformed supersymmetric coherent states. In Section 9.2, we discuss q-

supersymmetric annihilation operator and corresponding q−super-coherent states. Un-

certainty relations are derived in Section 9.3. The time evolution of q supersymmetric

coherent states is subject of Sections 9.4,9.5 and 9.6.

In Conclusion, we summarize our results. Details of some calculations are given

in Appendices A,B and C.

7



CHAPTER 2

GLAUBER COHERENT STATES

This chapter provides an overview of the definition and fundamental properties of

coherent states. For further details, we refer to (Peremolov, 1986, 7-37) and (Wolfgang,

2001, 295-311).

2.1. The Heisenberg-Weyl Algebra and Bosonic Oscillator

In quantum mechanics, the coordinate operator x̂ and momentum operator p̂ are

Hermitian operators. They act in the Hilbert spaceH and satisfy Heisenberg commutation

relations:

[
x̂, p̂

]
= i~Î ,

[
x̂, Î

]
=

[
p̂, Î

]
= 0 . (2.1)

Here Î is the identity operator and ~ is Planck’s constant, and the bracket means the com-

mutator [Â, B̂] ≡ ÂB̂ − B̂Â. Instead of operators x̂ and p̂, another pair of operators as the

annihilation operator â and creation operator â† is defined (m = 1)

â† =
ωx̂ − ip̂
√

2~ω
, â =

ωx̂ + ip̂
√

2~ω
. (2.2)

Motivation of introducing these operators is to solve harmonic oscillator problem alge-

braically. The commutation relation for these operators follows from (2.1) and (2.2)

[
â, â†

]
= ââ† − â†â = Î , (2.3)

and is called the bosonic commutation relation. For two vectors |φ〉 and |Ψ〉 describing

the quantum states in the Hilbert space, the Hermitian inner product is denoted by 〈Ψ|φ〉.
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There is a vacuum vector |0〉 ∈ H defined as

â|0〉 = 0 , where 〈0|0〉 = 1 . (2.4)

Succesive applications of creation operator to the vacuum state generates n-particle state

|n〉 =
(â†)n

√
n!
|0〉 , n = 0, 1, 2, ... (2.5)

The set of vectors |n〉 form a basis in H , which is called the Fock space. The action of

operators on these states are given by

â|n〉 =
√

n|n − 1〉 & â†|n〉 =
√

n + 1|n + 1〉 . (2.6)

The number operator N̂, defined by product of operators â and â†, is Hermitian and has

eigenvalues n, as natural numbers

N̂ = â†â ⇒ N̂ |n〉 = n|n〉 , n = 0, 1, 2. . . . . (2.7)

The bosonic Hamiltonian Ĥ, written in terms of the annihilation and creation operators,

allows one to determine the energy spectrum of Ĥ. The Hamiltonian for the quantum

harmonic oscillator is

Ĥ = ~ω

(
â†â +

1
2

)
= ~ω

(
N̂ +

1
2

)
,

and corresponding energy levels are quantized as

En = ~ω

(
n +

1
2

)
, n = 0, 1, 2. . . .

Each eigenstate |n〉 has energy En, based on integer values of n, with the ground state

energy E0 = 1
2~ω, representing the zero-point energy.
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2.2. Coherent States and Complex Plane

In this section, we introduce main properties of coherent states (Peremolov, 1986,

7-37). A coherent state is the specific quantum state introduced by Schrödinger (Schrödinger,

1926, 664-665) for the quantum harmonic oscillator, which has dynamics most close to

the behaviour of classical harmonic oscillator.

Definition 2.1 The Glauber coherent state |α〉 is defined as eigenstate of the annihilation

operator â , with eigenvalue α ∈ C,

â|α〉 = α|α〉. (2.8)

By using the displacement operator D(α) = eαâ†−ᾱâ(see Appendix Eqn.(C.1)), these coher-

ent states can be generated from the vacuum state(2.4).

Proposition 2.1 Coherent states are obtained by applying displacement operator D(α)

to the vacuum state:

|α〉 = D(α)|0〉. (2.9)

Proposition 2.2 The state |α〉 = D(α)|0〉 satisfies the eigenvalue problem (2.8) for coher-

ent states.

Proof We start with the assumption that the displacement operator D(α) acting on the

vacuum state |0〉 gives the coherent state |α〉. Then, applying the annihilation operator â

to both sides of this equation gives âD(α)|0〉 = â|α〉, due to the following relation

âD(α) = ÎâD(α) = D(α)D†(α)âD(α)
(C.4)
= D(α) (â + α) = D(α)â + D(α)α , (2.10)

we obtain eigenvalue equation

â|α〉 = α|α〉.

�

10



The coherent state |α〉 can be written in terms of |0〉 in a compact form,

|α〉 =
eαâ†

√
e|α|2
|0〉 (2.11)

by Baker−Campbell−Hausdorff formula(See Appendix (C.9)).

Proposition 2.3 Representation of coherent states in the Fock basis is

|α〉 = e−
1
2 |α|

2
∞∑

n=0

αn

√
n!
|n〉 , (2.12)

where |n〉 is the eigenstate of number operator (2.7).

2.2.1. Inner Product of Coherent States

Proposition 2.4 Inner product of two coherent states is equal to

〈α|β〉 = e−
1
2 |α|

2− 1
2 |β|

2+ᾱβ. (2.13)

This implies the following corollary.

Corollary 2.1 Coherent states are not orthogonal,

|〈α|β〉|2 = 〈α|β〉〈β|α〉 = e−(|α|2+|β|2−αβ−βα) = e−|α−β|
2
, 0.

Since the exponential function is never zero, coherent states are not orthogonal. An addi-

tional characteristic for coherent states is that they form an overcomplete basis, spanning

the entire space that allows reconstruction of any arbitrary state through integration over

coherent state parameters. Mathematically, the completeness relation for a set of coherent

states |α〉 is given by following proposition.
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Proposition 2.5 (Peremolov, 1986, 15) The collection of coherent states |α〉, where α ∈

C, forms an overcomplete set

1
π

∫
C

|α〉〈α| d2α = Î , (2.14)

where d2α = idα1dα2, α = α1 + iα2.

2.2.2. Heisenberg Uncertainty Relation

Another essential property that defines coherent states is their ability to minimize

the uncertainty relation. In quantum mechanics, the Heisenberg uncertainty principle

establishes a lower bound on the product of the uncertainties (or dispersions) in position

x̂ and momentum p̂: (m = 1, ω = 1)

∆x̂∆p̂ ≥
~

2
.

Coherent states are unique in that they achieve this bound exactly, minimizing the uncer-

tainty product. This minimum uncertainty condition is what gives coherent states their

"classical-like" behavior, as they resemble the most localized wave packets allowed by

quantum mechanics. For coherent state |α〉, the uncertainties in position and momentum

satisfy:

∆x̂∆ p̂ =
~

2
. (2.15)

Thus, the condition of satisfying the minimum uncertainty relation provides alternative

definition of coherent states. In the proof of Heinsenberg uncertainty relation for the

coherent state |α〉, one uses definition of x̂ and p̂ operators in terms of â and â†:

x̂ =

√
~

2

(
â + â†

)
, p̂ = −i

√
~

2

(
â − â†

)
.
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The expectation value of x̂ and p̂ operators in the coherent state |α〉 are

〈x̂〉α = 〈α|x̂|α〉 = 〈α|

√
~

2
(â + â†)|α〉 =

√
~

2
(α + ᾱ) ,

〈p̂〉α = 〈α| p̂|α〉 = 〈α| − i

√
~

2
(â − â†)|α〉 = −i

√
~

2
(α − ᾱ) .

Then, the variance for coordinate and momentum operators takes the form,

〈x̂2〉α = 〈α|x̂2|α〉 =
~

2
〈α|

(
â + â†

)2
|α〉 =

~

2

(
(α + α)2 + 1

)
,

〈 p̂2〉α = 〈α| p̂2|α〉 = −
~

2
〈α|

(
â − â†

)2
|α〉 = −

~

2

(
(α − α)2 − 1

)
.

Ultimately, relationships between the expectation values and variances of the position and

momentum operators in the coherent state |α〉 can be expressed as:

〈x̂2〉α = 〈x̂〉2α +
~

2
, 〈p̂2〉α = 〈 p̂〉2α +

~

2
.

Using these results, along with the definition of uncertainty (see Eq.(B.17)), the uncer-

tainties in position and momentum for coherent states are obtained as follows:

√
(∆x̂)2

α ≡ (∆x̂)α =

√
〈x̂2〉α − 〈x̂〉2α =

√
~

2
,√

(∆ p̂)2
α ≡ (∆ p̂)α =

√
〈p̂2〉α − 〈 p̂〉2α =

√
~

2
.

These expressions confirm that coherent states |α〉 satisfy the minimum uncertainty rela-

tion. Calculating the deviations of the coordinate and momentum operators in the coherent

state |α〉 reveals that these deviations are independent of the parameter α. Consequently,

the results for an arbitrary α align with those obtained when α = 0, which corresponds to

the vacuum state:

(∆x̂)2
α = (∆x̂)2

0 =
~

2
, (∆ p̂)2

α = (∆ p̂)2
0 =
~

2
. (2.16)
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2.3. Coordinate Representation of Coherent States

Coherent states in coordinate representation give non-stationary wave function of

Gaussian form, which is the generating function of Hermite Polynomials. It was shown

by Schrödinger (Schrödinger, 1926) that it provides solution of quantum harmonic os-

cillator, where position of Gaussian function oscillates according to equation of classical

harmonic oscillator. To find the coordinate representation of the coherent state, we begin

with evaluating the wave function:

ψα(x) = 〈x|α〉 = e−
1
2 |α|

2
∞∑

n=0

αn

√
n!
〈x|n〉, (2.17)

where the terms 〈x|n〉 represent the position space representation of the number states,

given by

〈x|n〉 =
1
π1/4

e−
x2
2

2n/2
√

n!
Hn(x) . (2.18)

After substituting these expressions, we use the generating function for Hermite polyno-

mials Hn(x):

∞∑
n=0

tn

n!
Hn(x) = e−t2+2tx , (2.19)

to simplify the wave function to the Gaussian form

〈x|α〉 =
1
π1/4 e−

|α|2
2 −

x2
2 e−

α2
2 +
√

2xα. (2.20)

The probability density for this state is

|ψα(x)|2 =
1
π1/2 e−

(
x− α1√

2

)2

e−
3
2α

2
1 , (2.21)

showing a Gaussian distribution centered at α1√
2
, where α = α1 + iα2.
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CHAPTER 3

PQ-DEFORMED COHERENT STATES

This chapter is devoted to pq-calculus, which serves as the basis for generalized

coherent states for pq-deformed quantum oscillator. We start by outlining the fundamen-

tals of pq-calculus, followed by an exploration of pq-coherent states, extending traditional

coherent state concepts.

3.1. pq calculus

The pq−calculus is the two base quantum calculus, (Arik et all, 1992, 90-94),

(Chakrabarti and Jagannathan, 1991, 711) with pq−number, defined in terms of two num-

bers p and q (Nalci and Pashaev, 2014, 75-142).

Definition 3.1 The pq-number is defined as follows

[n]pq ≡
pn − qn

p − q
,

where p , q. This expression is symmetric in p and q, so that [n]pq = [n]qp.

The following addition/substraction and multiplication/division formulas for pq-numbers

are valid

[n + m]pq = pn[m]pq + qm[n]pq, (3.1)

[n − m]pq = pn[−m]pq + q−m[n]pq, (3.2)

[nm]pq = [n]pq[m](pq)n = [m]pq[n](pq)m , (3.3)[ n
m

]
pq

=
[n]pq

[m]p
n
m ,q

n
m

=
[n]

p
1
m ,q

1
m

[m]
p

1
m ,q

1
m

. (3.4)
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The pq factorial for n = 1, 2, 3, ... is defined as

[n]pq! = [1]pq[2]pq...[n]pq

and [0]pq! = 1.

Definition 3.2 In pq-calculus, the pq-derivative of a function f (x) is defined as

Dpq f (x) =
f (px) − f (qx)

(p − q)x
, (3.5)

for p , q and x , 0, where Dpq acts on an arbitrary function f (x).

Proposition 3.1 The pq-analogue of Leibnitz formula is

Dpq( f (x)g(x)) = Dpq f (x)g(px) + f (qx)Dpqg(x), (3.6)

Dqp( f (x)g(x)) = Dpq f (x)g(qx) + f (px)Dpqg(x). (3.7)

Definition 3.3 The (pq) -Exponential functions are defined in the following form (, Nalci

and Pashaev, 2014, 107-110)

ex
pq = epq(x) ≡

∞∑
n=0

1
[n]pq!

xn, (3.8)

Ex
pq = Epq(x) ≡

∞∑
n=0

1
[n]pq!

(pq)
n(n−1)

2 xn. (3.9)

Convergency region for these functions depend on values of p and q. These functions

satisfy following pq−difference equations

Dpqepq(x) = epq(x) , DpqEpq(x) = Epq(pqx).
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The pq−calculus for particular choice of p and q can be reduced to several important

cases of quantum or q−calculus. We transit through non-symmetrical and symmetrical

q-calculus approaches, and eventually arrive with the Fibonacci calculus and the Tamm-

Dankoff calculus. In the first case, by choosing p = 1 we obtain non-symmetric q-

calculus,

[n]q =
1 − qn

1 − q
, (3.10)

Dx
q f (x) =

f (qx) − f (x)
(q − 1)x

.

In the limit q → 1, we get [n]q=1 = n. For the symmetrical q-calculus, by setting p = 1
q ,

we establish a symmetric quantum calculus,

[n]q, 1
q

= [n]q̃ =
qn − q−n

q − q−1 , (3.11)

Dq, 1
q

f (x) = Dx
q̃ f (x) =

f (qx) − f (q−1x)
(q − q−1)x

.

Next, if we set p = 1+
√

5
2 ≡ ϕ and q = 1−

√
5

2 = ϕ
′

≡ − 1
ϕ

, as the Golden and the Silver ratio,

which are the roots of equation

ϕ2 = ϕ + 1,

we have pq numbers as Fibonacci numbers(The Binet formula)

[n]ϕ,− 1
ϕ

=
ϕn − (− 1

ϕ
)n

ϕ + 1
ϕ

= Fn , (3.12)

and pq derivative as Golden derivative

Dx
ϕ f (x) =

f (ϕx) − f (ϕ
′

x)
(ϕ − ϕ′)x

=
f (ϕx) − f (−ϕ−1x)

(ϕ + ϕ−1)x
.
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As a final reduction, when we take limit p→ q, the pq−number becomes

[n]p→q = lim
p→q

pn − qn

p − q
= lim

ε→0

(q + ε)n − qn

ε
= nqn−1, (3.13)

and corresponding derivative is

Dq,q = qx d
dx

d
dx
.

This type of quantum calculus is called the Tamm-Dankoff calculus.

3.2. The pq-Quantum Harmonic Oscillator

For the pq- harmonic oscillator, we have creation operator a+
pq, annihilation op-

erator apq and Hermitian number operator N = a+a, satisfying commutation relations:

[N, a+
pq] = a+

pq, [N, apq] = −apq.. The algebraic relations between these operators are

given by following;

apqa+
pq − pa+

pqapq = qN , (3.14)

apqa+
pq − qa+

pqapq = pN . (3.15)

Then, by using definition of pq-number operator,

[N]pq = a+
pqapq , [N + 1]pq = apqa+

pq,

we have

[N + 1]pq − p[N]pq = qN ,

[N + 1]pq − q[N]pq = pN ,

18



and [N]pq =
pN−qN

p−q . The orthonormal basis in the Fock space is defined by eigenstates of

this pq−number operator

|n〉pq =
(a+

pq)n√
[n]pq!

|0〉pq , (3.16)

with apq|0〉pq = 0, where |0〉pq−vacuum state, so that

[N]pq|n〉pq = [n]pq|n〉pq ,

and

a+
pq|n〉pq =

√
[n + 1]pq|n + 1〉pq ,

apq|n〉pq =

√
[n]pq|n − 1〉pq.

Here the pq−number is [n]pq =
pn−qn

p−q . Now, we can define the pq−deformed position and

momentum operators in terms of the pq-creation and annihilation operators

Xpq =

√
~

2mω
(a+

pq + apq),

Ppq = i

√
m~ω

2
(a+

pq − apq).

The Hamiltonian of the pq-Harmonic oscillator is

Hpq =
P2

pq

2m
+

1
2

mω2X2
pq =
~ω

2
(apqa+

pq + a+
pqapq).
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By action on corresponding eigenstates |n〉pq,

Hpq|n〉pq =
~ω

2
(apqa+

pq + a+
pqapq)|n〉pq =

~ω

2
([N]pq + [N + 1]pq)|n〉pq

=
~ω

2
([n]pq + [n + 1]pq)|n〉pq,

we get the energy spectrum

En =
~ω

2
([n]pq + [n + 1]pq) ,

where n = 0, 1, 2, ... Consequently, the energy levels are not equally spaced for general

values of p and q, but the ground state energy remains the same as ~ω2 . We can express

pq- operators a+
pq , apq in terms of bosonic operators a and a+,

a+
pq = a+

√
[N + 1]pq

N + 1
=

√
[N]pq

N
a+, (3.17)

apq =

√
[N + 1]pq

N + 1
a = a

√
[N]pq

N
. (3.18)

The commutation relation between a+
pq and apq is

[apq, a+
pq] = apqa+

pq − a+
pqapq = [N + 1]pq − [N]pq.

It can be demonstrated that the same set of eigenvectors |n〉, spans the Hilbert space for

both, the standard harmonic oscillator and the pq−deformed one. In order to establish the

link between the vacuum state |0〉 and pq−vacuum state |0〉pq, we apply (3.18) as

apq|0〉pq =

√
[N + 1]pq

N + 1
a|0〉pq = 0.

This gives that a|0〉pq = 0. From another side , if a|0〉pq = 0, it implies apq|0〉pq = 0.

Therefore, the vacuum state |0〉 for ordinary oscillator is exactly the same as for pq−
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deformed oscillator vacuum state |0〉 ≡ |0〉pq.

To compare n-particle states for both oscillators, we apply (a+
pq)n to the vacuum

state |0〉pq and use relation

(a+
pq)n =

a+

√
[N + 1]pq

N + 1

n

= (a+)n

√
[N + n]pq!

[N]pq!
N!

(N + n)!
, (3.19)

so that

(a+
pq)n|0〉pq = (a+)n

√
[N + n]pq!

[N]pq!
N!

(N + n)!
|0〉pq =

√
[n]pq!

n!
(a+)n|0〉.

It implies that

|n〉pq = |n〉.

The eigenstates of both, the standard and the pq-deformed harmonic oscillators are iden-

tical, though their energy eigenvalues differ. In the case of the standard oscillator, the

energy eigenvalues are determined by natural number n,

En = ~ω

(
n +

1
2

)
,

but for deformed oscillator, they are provided by the corresponding equations related to

pq-number [n]pq,

En =
~ω

2
([n]pq + [n + 1]pq).

3.2.1. Non-symmetrical q-Oscillator

For non-symmetrical q−calculus, the following algebraic relations are valid

aqa+
q − a+

q aq = qN , (3.20)

aqa+
q − qa+

q aq = 1, (3.21)
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where aq and a+
q are annihilation and creation operators of non-symmetric q−calculus.

The definition of non-symmetrical q− number operator

a+
q aq = [N]q, aqa+

q = [N + 1]q

gives

[N + 1]q − q[N]q = 1,

[N + 1]q − [N]q = qN .

In this case, the Fock space basis |n〉q is defined by

|n〉q =
(a+

q )n|0〉q√
[n]q!

,

and operators act on the basis as following

[N]q|n〉q = [n]q|n〉q ,

a+
q |n〉q =

√
[n + 1]q|n + 1〉q ,

aq|n〉q =

√
[n]q|n − 1〉q.

The energy levels for the corresponding eigenstates |n〉q are

En =
~ω

2
([n]q + [n + 1]q)

where n = 0, 1, 2, ..
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3.2.2. Symmetrical q-Oscillator

In symmetric q−calculus, the algebraic relations take following form

aq̃a+
q̃ − qa+

q̃ aq̃ = q−N ,

aq̃a+
q̃ − q−1a+

q̃ aq̃ = qN .

Using the definition of symmetric q-number operator

a+
q̃ aq̃ = [N]q̃, aq̃a+

q̃ = [N + 1]q̃.

gives

[N + 1]q̃ − q[N]q̃ = q−N ,

[N + 1]q̃ − q−1[N]q̃ = qN .

The basis in the Fock space is defined by

|n〉q̃ =
(a+

q̃ )n|0〉q̃√
[n]q̃!

,

and the action of the operators on the basis gives

[N]q̃|n〉q̃ = [n]q̃|n〉q̃ ,

a+
q̃ |n〉q̃ =

√
[n + 1]q̃|n + 1〉q̃ ,

aq̃|n〉q̃ =

√
[n]q̃|n − 1〉q̃.
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The eigenvalues of the energy are written in symmetrical q-basis as

En =
~ω

2
([n]q̃ + [n + 1]q̃),

where n = 0, 1, 2, ..

3.2.3. Fibonacci Oscillator

For Fibonacci calculus, algebraic relations have the following form

aFa+
F − ϕa+

FaF =

(
−

1
ϕ

)N

, (3.22)

aFa+
F +

1
ϕ

a+
FaF = ϕN . (3.23)

Fibonacci q−number operator satisfies

[N + 1]F − ϕ[N]F =

(
−

1
ϕ

)N

,

[N + 1]F +
1
ϕ

−1

[N]F = ϕN ,

where a+
FaF = [N]F , aFa+

F = [N + 1]F . The basis in the Fock space is written by

|n〉F =
(a+

F)n

√
[n]F!

|0〉F ,

and actions on |n〉F give

[N]F |n〉F = [n]F |n〉F ,

a+
F |n〉F =

√
[n + 1]F |n + 1〉F ,

aF |n〉F =
√

[n]F |n − 1〉F .
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3.3. The pq-Coherent states

Definition 3.4 The pq-coherent states are defined as eigenstates of operator âpq

âpq|α〉pq = α|α〉pq, (3.24)

taking the form |α〉pq =

∞∑
n=0

αn√
[n]pq!

|n〉pq (without normalization).

Proposition 3.2 Inner product of two pq-coherent states |α〉pq and |β〉pq is

pq〈β|α〉pq = eαβpq,

where ex
pq is defined by Eq.(3.8) and

pq〈α|α〉pq = e|α|
2

pq .

Definition 3.5 The normalized pq-coherent states are

(
e|α|

2

pq

)−1/2
|α〉pq = e−

|α|2
2

pq

∞∑
n=0

1
[n]pq!

αn|n〉pq ≡ |0, α〉pq.

Definition 3.6 The action of the pq−derivative operator (3.5) to the state
∣∣∣α
λ

〉
pq
, we de-

note as

Dα
pq

∣∣∣∣∣αλ
〉

pq
=

1
λ

∞∑
n=1

[n]pqα
n−1√

[n]pq!λn−1
|n〉pq ≡

∣∣∣∣∣∣α′λ
〉

pq

. (3.25)

For particular values λ = 1 and λ = pq, we have respectively

Dα
pq |α〉pq = |α

′

〉pq , Dα
pq

∣∣∣∣∣ αpq

〉
pq

=

∣∣∣∣∣∣ α′pq

〉
pq

.

25



Proposition 3.3 Action of the pq creation and annihilation operators, a+
pq and apq, on∣∣∣α

λ

〉
pq

state

a+
pq

∣∣∣∣∣αλ
〉

pq
= λDα

pq

∣∣∣∣∣αλ
〉

pq
= λ

∣∣∣∣∣α′λ
〉

pq
,

apq

∣∣∣∣∣αλ
〉

pq
=

α

λ

∣∣∣∣∣αλ
〉

pq
,

can be represented by following operators

a+
pq → λDα

pq, (3.26)

apq →
α

λ
. (3.27)

Proof Action of a+
pq to the state

a+
pq

∣∣∣∣∣αλ
〉

pq
=

∞∑
n=0

αn

λn
√

[n]pq!
a+

pq|n〉pq =

∞∑
n=0

αn

λn
√

[n]pq!

√
[n + 1]pq|n + 1〉pq

=

∞∑
n=0

αn

λn
√

[n + 1]pq!
[n + 1]pq|n + 1〉pq

after changing summation index gives

a+
pq

∣∣∣∣∣αλ
〉

pq
=

∞∑
n=1

[n]pqα
n−1

λn−1
√

[n]pq!
|n〉pq = λ

∞∑
n=1

[n]pqα
n−1

λn
√

[n]pq!
|n〉pq = λDα

pq

∣∣∣∣∣αλ
〉

pq
.

or by using (3.25),

a+
pq

∣∣∣∣∣αλ
〉

pq
= λDα

pq

∣∣∣∣∣αλ
〉

pq
= λ

∣∣∣∣∣α′λ
〉

pq
. (3.28)

Eqn.(3.27) is evident from definition of the pq−coherent states (3.24) . �

26



Proposition 3.4 Action of a+
pq operator on

∣∣∣∣∣α′λ 〉
pq

state gives

a+
pq

∣∣∣∣∣α′λ
〉

pq
= λDα

pq

∣∣∣∣∣α′λ
〉

pq
= λ(Dα

pq)2
∣∣∣∣∣αλ

〉
pq

= λ

∣∣∣∣∣α′′λ
〉

pq

or

a+
pq

∣∣∣∣∣α′λ
〉

pq
= λ

∣∣∣∣∣α′′λ
〉

pq
, (3.29)

and for the action of apq, we have two equivalent forms

apq

∣∣∣∣∣α′λ
〉

pq
=

qα
λ

∣∣∣∣∣α′λ
〉

pq
+

1
λ

∣∣∣∣∣ pαλ
〉

pq
, (3.30)

=
pα
λ

∣∣∣∣∣α′λ
〉

pq
+

1
λ

∣∣∣∣∣qαλ
〉

pq
. (3.31)

Proof The relation (3.29) follows from expanding the state in terms of the number

states |n〉pq

a+
pq

∣∣∣∣∣α′λ
〉

pq
=

∞∑
n=1

[n]pqα
n−1

λn
√

[n]pq!
a+

pq|n〉pq =

∞∑
n=1

[n]pq[n + 1]pqα
n−1

λn
√

[n + 1]pq!
|n + 1〉pq

=

∞∑
n=2

[n − 1]pq[n]pqα
n−2

λn−1
√

[n]pq!
|n〉pq

= λ(Dα
pq)2

 ∞∑
n=0

αn

λn

|n〉pq√
[n]pq!

 ,

which we can express as

a+
pq

∣∣∣∣∣α′λ
〉

pq
= λ

∣∣∣∣∣α′′λ
〉

pq
.
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To establish the second result, the following approach is used from Eqn.(3.25),

apq

∣∣∣∣∣α′λ
〉

pq
=

∞∑
n=1

[n]pqα
n−1

λn
√

[n]pq!
apq|n〉pq

=

∞∑
n=1

[n]pqα
n−1

λn
√

[n]pq!

√
[n]pq|n − 1〉pq

=

∞∑
n=0

[n + 1]pqα
n

λn+1
√

[n]pq!
|n〉pq

and applying [n + 1]pq = q[n]pq + pn,(see Eqn.(3.1)) gives

apq

∣∣∣∣∣α′λ
〉

pq
=

∞∑
n=0

(q[n]pq + pn)αn

λn+1
√

[n]pq!
|n〉pq

=
qα
λ

 ∞∑
n=0

[n]pqα
n−1

λn
√

[n]pq!
|n〉pq

 +
1
λ

 ∞∑
n=0

( pα
λ

)n 1√
[n]pq!

|n〉pq


=

qα
λ

∣∣∣∣∣α′λ
〉

pq
+

1
λ

∣∣∣∣∣ pαλ
〉

pq
.

As a result of the p↔ q exchange symmetry, the second form (3.31) is obtained as

apq

∣∣∣∣∣α′λ
〉

pq
=

pα
λ

∣∣∣∣∣α′λ
〉

pq
+

1
λ

∣∣∣∣∣qαλ
〉

pq
.

In particular case λ = pq, we have

apq

∣∣∣∣∣ α′pq

〉
pq

=
α

p

∣∣∣∣∣ α′pq

〉
pq

+
1
pq

∣∣∣∣∣αq
〉

pq
,

=
α

q

∣∣∣∣∣ α′pq

〉
pq

+
1
pq

∣∣∣∣∣αp
〉

pq
.

�
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CHAPTER 4

SUPERSYMMETRIC HARMONIC OSCILLATOR

This chapter examines the fermionic oscillator and then addresses the fermion-

boson harmonic oscillator which is characterized by fermionic and bosonic states. Finally,

the supersymmetric harmonic oscillator is introduced, which interplays between fermions

and bosons within the framework of supersymmetry (Cooper et all, 2001, 7-30).

4.1. Fermionic Oscillator

The fermionic oscillator is a fundamental quantum system that describes particles

obeying Fermi-Dirac statistics, such as electrons, protons, and neutrons. Unlike bosonic

oscillator, which allows multiple particles to occupy the same quantum state, fermionic

oscillator is governed by the Pauli exclusion principle, which restricts each quantum state

to be occupied by at most one fermion. The mathematical structure for fermionic oscil-

lator is built upon the algebra of fermionic creation f̂ † and annihilation f̂ operators, that

satisfy anticommutation relations

{
f̂ , f̂ †

}
+

= f̂ f̂ † + f̂ † f̂ = Î,
{
f̂ , f̂

}
+

= 0,
{
f̂ †, f̂ †

}
+

= 0.

These operators can be represented by 2 × 2 matrices, given by

f̂ =

0 1

0 0

 , f̂ † =

0 0

1 0

⇒ N̂ f = f̂ † f̂ =

0 0

0 1

 .
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The operator N̂ f represents the number operator for fermions, and its eigenvalues corre-

spond to the fermionic occupation numbers 0 and 1,

N̂ f

10
 = 0 ·

10
 , N̂ f

01
 = 1 ·

01
 .

The action of the fermionic operators f̂ and f̂ † on these states is defined by

f̂ †|0〉 = |1〉 & f̂ †|1〉 = 0 ,

f̂ |1〉 = |0〉 & f̂ |0〉 = 0 . (4.1)

This structure reflects the essential properties of fermions, where each state can be either

occupied or unoccupied, corresponding to the fermionic occupation numbers 0 and 1.

The Hamiltonian for fermionic oscillator is defined as

Ĥ f =
~ω f

2
( f̂ † f̂ − f̂ f̂ †) =

~ω f

2
(2 f̂ † f̂ − 1)⇒ Ĥ f = ~ω f

(
N̂ f −

1
2

)
,

or in the matrix representation

Ĥ f = ω f

(
N̂ f −

1
2

)
= −

ω f

2

1 0

0 −1

 = −
ω f

2
σ3 ,

where ~ is set to 1. The energy eigenstates are defined by the occupation numbers,

N̂ f |0〉 = 0|0〉 ⇒ Ĥ f |0〉 = −
ω f

2
|0〉 ,

N̂ f |1〉 = 1|1〉 ⇒ Ĥ f |1〉 = +
ω f

2
|1〉.
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providing associated energies, E0 and E1 for two level quantum system,

En = ω f

(
n −

1
2

)
, n = 0, 1.

4.2. Fermion-Boson Harmonic Oscillator

The Hamiltonian Ĥ of the Fermion-Boson Harmonic Oscillator is expressed as

Ĥ = ĤB + ĤF , where ĤB represents the bosonic part (the usual harmonic oscillator Hamil-

tonian) and ĤF represents the fermionic part , which includes the creation and annihilation

operators for fermions. This can be expressed as:

Ĥ = ÎF ⊗ ĤB + ĤF ⊗ ÎB =
ωB

2

{
â, â†

}
+
ωF

2

[
f̂ †, f̂

]
= ωB

(
N̂B +

1
2

)
+ ωF

(
N̂F −

1
2

)
.

In the matrix form, it can be written as

Ĥ = ÎF ⊗ ĤB + ĤF ⊗ ÎB =

ĤB 0

0 ĤB

 +
ωF

2

−1 0

0 1

 =

ωBN̂B + ωB−ωF
2 0

0 ωBN̂B + ωB+ωF
2

 ,

or equivalently,

Ĥ = ĤB −
ωF

2
σ3 =

ωBâ†â + ωB−ωF
2 0

0 ωBââ† − ωB−ωF
2

 . (4.2)

For this composition, the number operator can be formally represented in a matrix-like

form:

N̂ = ÎF ⊗ N̂B + N̂F ⊗ ÎB =

N̂B 0

0 N̂B + 1

 ,
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and its eigenstates are defined as |nF , nB〉 = |nF〉 ⊗ |nB〉, where |nB〉 represents the bosonic

states and |nF〉 represents the fermionic states. These eigenstates satisfy the eigenvalue

problems

N̂B|nB〉 = nB|nB〉 ,

N̂F |nF〉 = nF |nF〉 ,

with nB = 0, 1, 2, . . . for bosons and nF = 0, 1 for fermions. The energy levels of the

system are given by:

Ĥ|nF , nB〉 =

[
ωF

(
nF −

1
2

)
+ ωB

(
nB +

1
2

)]
|nF , nB〉 = EnF ,nB |nF , nB〉,

where the energy eigenvalues are

EnF ,nB = ωF

(
nF −

1
2

)
+ ωB

(
nB +

1
2

)
.

The total number of particles, combining bosonic and fermionic particles in the system,

is given by

N̂ |nF , nB〉 = (nF + nB)|nF , nB〉,

where the eigenstates for the combined system are represented as

|0F , nB〉 =

|nB〉

0

 , |1F , nB〉 =

 0

|nB〉

 .

These expressions define the energy structure and state composition of the Supersymmet-

ric harmonic oscillator.
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4.3. The Supersymmetric Harmonic Oscillator

The supersymmetry implies that the frequencies of the harmonic oscillators are

equal to each other ωB = ωF = ω for both bosonic and fermionic particles. This ensures

that the energy levels of bosonic and fermionic states are degenerate. The Hamiltonian is

then given by(~ = 1)

Ĥ = ω

â†â 0

0 ââ†

 = {Q,Q†},

where the supercharges Q and Q† are defined as

Q =
√
ω â ⊗ f̂ †, Q† =

√
ω â† ⊗ f̂ .

The corresponding eigenstates become

Ĥ

|n〉0
 = nω

|n〉0
 , Ĥ

 0

|n − 1〉

 = nω

 0

|n − 1〉

 .

with energies En = nω for n > 0 and E0 = 0 for n = 0. This degeneracy implies that

any arbitrary superposition of these states will also have the same energy. Therefore, the

solution to the equation Ĥ|Ψn〉 = En|Ψn〉 can be written as

|Ψn〉 = α

|n〉0
 + β

 0

|n − 1〉

 , En>0 = nω,

where α and β are constants. The ground state of the system, with energy E0 = 0, is

|Ψ0〉 =

 |0〉0
 (4.3)

For normalized states, the coefficients α and β must satisfy |α|2 + |β|2 = 1.
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CHAPTER 5

THE SUPERSYMMETRIC ANNIHILATION OPERATOR

In the previous section, we have introduced supersymmetric harmonic oscillator.

Thus, a natural question arises: if a supersymmetric harmonic oscillator exists, does a su-

persymmetric extension of standard coherent states exist as well? This question becomes

important due to role of supersymmetry in classification the spectra of various nucleons.

5.1. Aragone-Zypmann AZ supersymmetric annihilation operator

The first response to the question comes from the work of Aragone and Zypman.

They introduced the supersymmetric annihilation operator, as referenced in (Aragone and

Zypman, 1986, 2271-2272), associated with the vacuum state (4.3)

Â = â ⊗ ÎF + ÎB ⊗ f̂ =

 â 1

0 â

 (5.1)

ensuring that Â|Ψ0〉 = 0. The operator satisfies the commutation relation [Â, Ĥ] = ωÂ,

similar to [â, ĤB] = ωâ for the bosonic harmonic oscillator. This operator provides a basis

for defining supersymmetric coherent states as eigenstates of this operator. Consequently,

we have

Ĥ|Ψn〉 = En|Ψn〉 ⇒ Ĥ(Â|Ψn〉) = En−1(Â|Ψn〉),

demonstrating that the operator Â reduces the number of quanta in the state |Ψn〉 by one.

The AZ−supersymmetric coherent states |α〉AZ are introduced, as the eigenstates of the

supersymmetric annihilation operator Â from (5.1):

Â|α〉AZ = α|α〉AZ , (5.2)
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which can be expressed in terms of standard (bosonic) coherent states. To solve this

equation, we expand |α〉AZ in terms of the basis eigenstates

|0〉 =

|0〉0
 , |bn〉 =

|n〉0
 , | fn〉 =

 0

|n − 1〉


 ,

leading to

|α〉AZ = a0|0〉 +
∞∑

n=1

an|bn〉 +

∞∑
n=1

cn| fn〉. (5.3)

Substituting this expansion into (5.2) yields the following relations

cn+1 = c1
αn

√
n!
, an =

1
√

n!

(
a0α

n − c1nαn−1
)
,

resulting in

|α〉AZ = a0

|α〉0
 + c1

−|α
′

〉

|α〉

 ,
where we define

|α〉b ≡

 |α〉0
 , |α̃〉s ≡

 −|α
′

〉

|α〉

 . (5.4)

Thus, we have

|α〉AZ = a0|α〉b + c1|α̃〉s,

where |α
′

〉 = ∂
∂α
{|α〉} =

∑∞
n=1

nαn−1
√

n!
|n〉 and |α〉 =

∑∞
n=0

αn
√

n!
|n〉 are not normalized bosonic

coherent states. The action of â and â† on |α〉 and |α
′

〉 gives

â|α
′

〉 = |α〉 + α|α
′

〉 ,

â†|α〉 = |α
′

〉 ⇒ â†|α
′

〉 = |α
′′

〉 ≡
∂2

∂α2 |α〉.
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From these relations, we obtain the inner products

〈α|α〉 = e|α|
2
⇒ 〈α|α

′

〉 =
∂

∂α
{〈α|α〉} = ᾱe|α|

2
, (5.5)

〈α|α
′′

〉 =
∂2

∂α2 {〈α|α〉} = ᾱ2e|α|
2
, (5.6)

〈α
′

|α
′

〉 =
∂

∂ᾱ

{
〈α|α

′

〉
}

= (1 + |α|2)e|α|
2
, (5.7)

〈α
′

|α
′′

〉 =
∂

∂ᾱ

∂2

∂α2 {〈α|α〉} = ᾱ(2 + |α|2)e|α|
2
. (5.8)

It is evident from these inner products that b〈α|α̃〉s , 0, so |α〉b and |α̃〉s are not orthogonal.

However, we can define a new state |α〉s as a linear combination of the states in (5.4)

|α〉s ≡
ᾱ
√

2
|α〉b +

1
√

2
|α̃〉s =

1
√

2

ᾱ|α〉 − |α
′

〉

|α〉

 ,

which is orthogonal to |α〉b. The states |α〉b and |α〉s are orthogonal, each with the same

norm

b〈α|α〉b =s 〈α|α〉s = 〈α|α〉 = e|α|
2
. (5.9)

The AZ-supersymmetric coherent state can then be written as a superposition of two

orthogonal states |α〉b and |α〉s,

|α〉AZ = γ|α〉b + β|α〉s , (5.10)

where γ and β are complex coefficients, with

|α〉b ≡

|α〉0
 , |α〉s ≡

1
√

2

ᾱ|α〉 − |α
′

〉

|α〉

 .

The norm of this supersymmetric coherent state is then AZ〈α|α〉AZ = (|γ|2 + |β|2)e|α|
2
.
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5.2. Uncertainty for Supersymmetric AZ-Coherent States

Equation (5.9) allows us to define the normalized orthogonal states in the follow-

ing form

|A〉b = e−
|α|2

2 |α〉b = e−
|α|2

2

 |α〉0
 , (5.11)

|A〉s = e−
|α|2

2 |α〉s =
e−

|α|2
2

√
2

 ᾱ|α〉 − |α
′

〉

|α〉

 , (5.12)

so that b〈A|A〉b = 1 = s〈A|A〉s ,b 〈A|A〉s = 0. Now, we can introduce bosonic and fermionic

eigenstates of coordinate and momentum operators

|x〉b = |0〉F ⊗ |x〉B =

|x〉0
 , |x〉 f = |1〉F ⊗ |x〉B =

 0

|x〉

 (5.13)

and

|p〉b = |0〉F ⊗ |p〉B =

|p〉0
 , |p〉 f = |1〉F ⊗ |p〉B =

 0

|p〉

 . (5.14)

Since the state |A〉b has only bosonic component |α〉, the following relations are equivalent

to the usual bosonic coherent state case,

〈x̂〉b ≡ b〈A|x̂|A〉b =
√

2 Re(α), (5.15)

〈 p̂〉b ≡ b〈A| p̂|A〉b =
√

2 Im(α), (5.16)

〈(∆x̂)2
〉b ≡ 〈x̂2〉b − 〈x̂〉2b =

1
2
, (5.17)

〈(∆ p̂)2
〉b ≡ 〈p̂2〉b − 〈 p̂〉2b =

1
2
, (5.18)

37



and it corresponds to minimal uncertainity relation

(∆x̂)b (∆ p̂)b =
1
2
. (5.19)

Similar calculations for the state |A〉s yield

〈x̂〉s ≡ s〈A|x̂|A〉s =
√

2 Re(α), (5.20)

〈p̂〉s ≡ s〈A| p̂|A〉s =
√

2 Im(α), (5.21)

〈x̂2〉s ≡ s〈A|x̂2|A〉s = 1 + 2(Re(α))2, (5.22)

〈p̂2〉s ≡ s〈A|p̂2|A〉s = 1 + 2(Im(α))2, (5.23)

so that the uncertainty relation for |A〉s is

(∆x̂)s (∆p̂)s = 1. (5.24)

Comparing the uncertainty relations (5.19) and (5.24) reveals that the state |A〉b is a mini-

mal uncertainty state, making it the closest to classical behavior. In contrast, |A〉s does not

minimize the uncertainty, indicating it is less classical than |A〉b.

5.2.1. Supersymmetric Bloch Sphere

We can introduce a generic normalized supersymmetric coherent state |α〉AZ in the

form

|α〉AZ = cb|A〉b + cs|A〉s,

where the normalization condition is |cb|
2 + |cs|

2 = 1. This state can be parametrized, up

to a global phase, as

cb = cos
θ

2
, cs = eiφ sin

θ

2
,
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leading to the expression

|α; θ, φ〉AZ = cos
θ

2
|A〉b + eiφ sin

θ

2
|A〉s, (5.25)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. This parametrization allows |α〉AZ to be represented

by points on a unit sphere, referred to as the supersymmetric Bloch sphere (Pashaev and

Kocak, 2025, 14-18). In this framework, the bosonic state |A〉b maps to the north pole, and

|A〉s to the south pole. The probabilities of collapsing to each component state in (5.25)

are:

Pb = |b〈A|α; θ, φ〉AZ |
2 = cos2 θ

2
, Ps = |s〈A|α; θ, φ〉AZ |

2 = sin2 θ

2

and Pb + Ps = 1.

Figure 5.1. Supersymmetric Bloch Sphere

Figure (5.1) displays the supersymmetric Bloch sphere. Note that the state |α; θ, φ〉AZ

also depends on the complex parameter α, which defines the photon number |α|2 for the

|A〉b state.
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5.2.2. The uncertainty relations for Supersymmetric Bloch Sphere

The Supersymmetric Bloch Sphere provides a geometric framework for repre-

senting and analyzing uncertainty in supersymmetric quantum states. By mapping the

combined bosonic and fermionic components onto the sphere’s coordinates, (θ, φ), we

can easily calculate average values and variations. Before moving to uncertainty calcu-

lations, we need to obtain the mean values of {x̂, p̂, x̂2, p̂2} in the following form for the

state(5.25),

〈x̂〉AZ ≡ AZ〈α; θ, φ|x̂|α; θ, φ〉AZ =
√

2 Re(α) −
1
2

cos φ sin θ,

〈p̂〉AZ ≡ AZ〈α; θ, φ|p̂|α; θ, φ〉AZ =
√

2 Im(α) −
1
2

sin φ sin θ,

〈x̂2〉AZ = 1 + 2(Re(α))2 −
1
2

cos2 θ

2
−
√

2 Re(α) cos φ sin θ,

〈p̂2〉AZ = 1 + 2(Im(α))2 −
1
2

cos2 θ

2
−
√

2 Im(α) sin φ sin θ.

In the limiting case, θ = 0 simplifies equation (5.15) for the |A〉b state, while the case

θ = π yields (5.20) for the |A〉s state. For dispersions, we have

(∆x̂)2
scs ≡ 〈x̂

2〉scs − 〈x̂〉2scs ≡ 1 −
1
2

cos2 θ

2
−

1
4

cos2 φ sin2 θ,

(∆ p̂)2
scs ≡ 〈p̂

2〉scs − 〈 p̂〉2scs ≡ 1 −
1
2

cos2 θ

2
−

1
4

sin2 φ sin2 θ.

The uncertainty relation for the AZ−supersymmetric coherent states can then be expressed

as

(∆x̂)2
AZ (∆ p̂)2

AZ ≡
1
4

(
1 + sin4 θ

2
+ 2 sin6 θ

2
+ sin2 2φ sin4 θ

2
cos4 θ

2

)
, (5.26)

or equivalently,

(∆x̂)AZ (∆ p̂)AZ ≡
1
2

√(
1 + sin4 θ

2
+ 2 sin6 θ

2
+ sin2 2φ sin4 θ

2
cos4 θ

2

)
. (5.27)
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This relation is bounded between 1
2 and 1, corresponding to the values for the states |A〉b

and |A〉s
1
2
6 (∆x̂)scs (∆ p̂)scs 6 1 ,

for θ = 0 and θ = π, respectively. For a given θ, small oscillations in the angle φ can be

observed, as illustrated in Fig. (5.2).

Figure 5.2. Uncertainity relation for supersymmetric coherent states on Bloch sphere

5.3. Coordinate and Momentum Representation for the

Supersymmetric AZ-Coherent States

Now, we can find coordinate and momentum representation of AZ-supersymmetric

coherent states. The coordinate x̂ and momentum p̂ operators for bosons are defined in

usual form as

x̂ =
1
√

2ω
(â + â†) , p̂ = i

√
ω

2
(â† − â) ,

with corresponding eigenstates given by

x̂|x〉 = x|x〉 & p̂|p〉 = p|p〉.
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To proceed, we use the representation for the supersymmetric bosonic state |A〉b, which is

written as

|A〉b = e−
|α|2

2

 |α〉0
 = e−

|z|2
2

∞∑
n=0

αn

√
n!

 1

0

 ⊗ |n〉.

This form allows us to compute the position and momentum wave functions by projecting

|A〉b onto the position and momentum eigenstates and we use the position and momentum

states in the bosonic representation, which is given in (5.13),

|x〉b = |0〉F ⊗ |x〉B =

 |x〉0
 & |p〉b = |0〉F ⊗ |p〉B =

 |p〉0
 .

Using these definitions, we can compute the coordinate wave function Ab(x) as follows

b〈x|A〉b = e−
|α|2

2

∞∑
n=0

αn

√
n!
〈x|n〉.

Expanding this expression and using the form of the harmonic oscillator eigenstates in the

position representation, we get

b〈x|A〉b = e−
|α|2

2

∞∑
n=0

αn

√
n!
〈x|n〉 (5.28)

= e−
|α|2

2

∞∑
n=0

αn

√
n!

1
π1/4

e−
x2
2

2n/2
√

n!
Hn(x) =

1
π1/4 e−

|α|2
2 e

x2
2 e−

(
x− α√

2

)2

.

Thus, we obtain the coordinate wave function

Ab(x) = b〈x|A〉b =
1
π1/4 e−

|α|2
2 e

x2
2 e−

(
x− α√

2

)2

.
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In a Similar way, we calculate the momentum wave function Ab(p) as

b〈p|A〉b = e−
|α|2

2

∞∑
n=0

αn

√
n!
〈p|n〉 (5.29)

= e−
|α|2

2

∞∑
n=0

αn

√
n!

(−i)n

π1/4

e−
p2
2

2n/2
√

n!
Hn(p) =

1
π1/4 e−

|α|2
2 e

p2
2 e−

(
p+i α√

2

)2

and this can be written as

Ab(p) = b〈p|A〉b =
1
π1/4 e−

|α|2
2 e

p2
2 e−

(
p+i α√

2

)2

.

These wave functions allow us to derive the probability distributions for position and

momentum, similar to those found in a standard harmonic oscillator

|b〈x|A〉b|2 =
1
√
π

e−(x−
√

2 Re(α))2

,

|b〈p|A〉b|2 =
1
√
π

e−(p−
√

2 Im(α))2

. (5.30)

This result indicates that the probability distributions for AZ-supersymmetric coherent

states follow Gaussian forms in both position and momentum spaces, with peaks centered

around the real and imaginary parts of α, respectively. The state |A〉s is composed of both

bosonic and fermionic components, which distinguishes it from purely bosonic states.

Then, we can introduce coordinate representations for the bosonic and fermionic parts,

defining them as eigenstates of the coordinate operator x̂ and represent the bosonic and

fermionic coordinate eigenstates as

|x〉b = |0〉F ⊗ |x〉B =

|x〉0
 , |x〉 f = |1〉F ⊗ |x〉B =

 0

|x〉

 . (5.31)

These eigenstates, |x〉b for the bosonic part and |x〉 f for the fermionic part, allow us to

calculate the wave functions of the state |A〉s by taking inner products with these respective

coordinate eigenstates. First, let us calculate the wave function for the bosonic component

43



of the state |A〉s. This is done by projecting |A〉s onto the bosonic coordinate eigenstate

|x〉b as

b〈x|A〉s = e−
|α|2

2
1
√

2

(
〈x| 0

)  ᾱ|α〉 − |α
′

〉

|α〉

 (5.32)

=
e−

|α|2
2

√
2

(
ᾱ〈x|α〉 − 〈x|α

′

〉
)

=
e−

|α|2
2

π1/4 e−
(
x− α√

2

)2

e
x2
2 (
√

2 Re(α) − x).

We can also express this as

b〈x|A〉s =
e−

|α|2
2

π1/4 e−
(
x− α√

2

)2

e
x2
2 (
√

2 Re(α) − x).

Next, we calculate the wave function for the fermionic component of |A〉s by projecting

onto the fermionic coordinate eigenstate |x〉 f ,

f 〈x|A〉s = e−
|α|2

2
1
√

2

(
0 〈x|

)  ᾱ|α〉 − |α
′

〉

|α〉

 (5.33)

=
e−

|α|2
2

√
2
〈x|α〉 =

e−
|α|2

2

√
2π1/4

e−
(
x− α√

2

)2

e
x2
2 .

Thus, we have the fermionic wave function

f 〈x|A〉s =
e−

|α|2
2

√
2π1/4

e−
(
x− α√

2

)2

e
x2
2 . (5.34)

These wave functions allow us to compute the probability distributions for the bosonic

and fermionic components of the |A〉s state. The corresponding probability distributions

are as follows. For the fermionic component of |A〉s , the probability distribution is given

by

| f 〈x|A〉s|2 =
1

2
√
π

e−(x−
√

2 Re(α))2

. (5.35)

44



For the bosonic component of |A〉s , the probability distribution takes the form

|b〈x|A〉s|2 =
1
√
π

e−(x−
√

2 Re(α))2

(x −
√

2 Re(α))2. (5.36)

Lastly, for the bosonic component of |A〉b , the probability distribution is

|b〈x|A〉b|2 =
1
√
π

e−(x−
√

2 Re(α))2

. (5.37)

These distributions characterize the probability densities with peaks centered at
√

2 Re(α),

showing where each component is most likely to be found based on the real part of α.

From these formulas, we observe that the probability distribution in (5.35) is half the value

of that in (5.37). Additionally, for (5.36), the distribution has a zero at x =
√

2 Re(α),

which is the center of the Gaussian distribution. This indicates that at x =
√

2 Re(α), the

probability in (5.36) reaches a local minimum of zero.

For the momentum representation of |A〉s, the momentum eigenstates are defined

as

|p〉b =

|p〉0
 & |p〉 f =

 0

|p〉

 .

Using these eigenstates, we find the following expressions for the components of |A〉s in

the momentum representation

f 〈p|A〉s =
e−

|α|2
2

√
2
〈p|α〉 =

e−
|α|2

2

√
2π1/4

e−
(
p+i α√

2

)2

e
p2
2 , (5.38)

for the fermionic component, and

b〈p|A〉s =
e−

|α|2
2

√
2

(
ᾱ〈p|α〉 − 〈p|α′〉

)
= i

e−
|α|2

2

π1/4 e−
(
p+i α√

2

)2

e
p2
2 (p −

√
2 Im(α)) (5.39)
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for the bosonic component. The corresponding probability distributions in the momentum

representation are given by:

| f 〈p|A〉s|2 =
1

2
√
π

e−(p−
√

2 Im(α))2

, (5.40)

|b〈p|A〉s|2 =
1
√
π

e−(p−
√

2 Im(α))2

(p −
√

2 Im(α))2. (5.41)

These distributions in the momentum representation have the same form as those in (5.35)

and (5.36) for the coordinate representation.

5.3.1. Coordinate and Momentum Representation for SuperBloch

states

The coordinate representation of the AZ−supersymmetric coherent states (5.25) is

defined by combining the bosonic and fermionic components. We start with the fermionic

part of the coordinate representation:

f 〈x|α; θ, φ〉AZ = cos
θ

2 f 〈x|A〉b + eiφ sin
θ

2 f 〈x|A〉s,

which can be simplified to

f 〈x|α; θ, φ〉AZ =
e−

|α|2
2

√
2π1/4

eiφ sin
θ

2
e

x2
2 e−

(
x− α√

2

)2

. (5.42)

Similarly, for the bosonic component in the coordinate representation, we have

b〈x|α; θ, φ〉AZ = cos
θ

2 b〈x|A〉b + eiφ sin
θ

2 b〈x|A〉s,
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which expands to

b〈x|α; θ, φ〉AZ =
e−

|α|2
2

π1/4 e
x2
2

(
cos

θ

2
+ eiφ sin

θ

2
(
√

2 Re(α) − x)
)

e−
(
x− α√

2

)2

. (5.43)

In the momentum space, the fermionic and bosonic components similarly based on the

parameters θ and φ. For the fermionic component, we write

f 〈p|α; θ, φ〉AZ = cos
θ

2 f 〈p|A〉b + eiφ sin
θ

2 f 〈p|A〉s,

leading to

f 〈p|α; θ, φ〉AZ =
e−

|α|2
2

√
2π1/4

eiφ sin
θ

2
e

p2
2 e−

(
p+i α√

2

)2

. (5.44)

For the bosonic component in the momentum representation, we obtain

b〈p|α; θ, φ〉AZ = cos
θ

2 b〈p|A〉b + eiφ sin
θ

2 b〈p|A〉s

which can be expanded as

b〈p|α; θ, φ〉AZ =
e−

|α|2
2

π1/4 e
p2
2

(
cos

θ

2
− ieiφ sin

θ

2
(
√

2 Im(α) − p)
)

e−
(
p+i α√

2

)2

. (5.45)

Setting α =
x0+ip0
√

2
, we derive the probability distributions for the state |α〉scs in the coordi-

nate representation as follows

| f 〈x|α; θ, φ〉AZ |
2 =

e−(x−x0)2

2
√
π

sin2 θ

2
, (5.46)

|b〈x|α; θ, φ〉AZ |
2 =

e−(x−x0)2

√
π

[
cos2 θ

2
+ (x − x0)2 sin2 θ

2

−(x − x0) sin θ cos φ
]
, (5.47)
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and in the momentum representation as

| f 〈p|α; θ, φ〉AZ |
2 =

e−(p−p0)2

2
√
π

sin2 θ

2
, (5.48)

|b〈p|α; θ, φ〉AZ |
2 =

e−(p−p0)2

√
π

[
cos2 θ

2
+ (p − p0)2 sin2 θ

2

−(p − p0) sin θ sin φ
]
. (5.49)

Analyzing these equations, we find that the probability distribution (5.47) reaches zero at

the point

x = x0 +
√

2 cot
(
θ

2

)
cos

(
φ ∓

π

4

)
,

which acts as the center of the Gaussian distribution. This implies that at this central

location, the probability attains a minimum value of zero.

Figure 5.3. Probability for |α; θ, φ = 0〉AZ state when
√

2 Re(α) = 1

Figure 5.4. Probability for |α; θ, φ = π〉AZ state when
√

2 Re(α) = 1
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In Fig.(5.3) and Fig.(5.4), the zeros are moving while θ is changing with corre-

sponding φ = 0 and φ = π, respectively. For probabiliy distribution (5.46), we can see

that there is no zero as in Fig.(5.5).

Figure 5.5. Probability for |α; θ, φ〉AZ state when
√

2 Re(α) = 1
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CHAPTER 6

THE BELL BASED SUPER COHERENT STATES

6.1. Fermion-Boson States

Let f and f † are fermionic annihilation and creation operators, f f †+ f † f = I. The

eigenstates |0〉 f and |1〉 f of N f = f † f , corresponding to fermionic numbers n0 = 0 and

n1 = 1 we denote as the qubit basis states. Normalized linear combination of these states

determines the qubit unit of quantum information

|θ, φ〉 = cos
θ

2
|0〉 f + sin

θ

2
eiφ|1〉 f ,

parametrized by points on the Bloch sphere S 2: 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. To address

fermionic and bosonic states, we first introduce the qubit-qudit state within the Hilbert

space H f ⊗Hn. In order to obtain the Fock space corresponding to bosonic states, we take

the limit as n → ∞. The qudit state is characterized by the computational basis vectors

|0〉, |1〉, . . . , |n − 1〉. The general qubit-qudit state can be formulated as

|Ψ〉 =

n−1∑
k=0

c0k|0〉 f ⊗ |k〉 +
n−1∑
k=0

c1k|1〉 f ⊗ |k〉.

The state can be rewritten in two different forms. The first one

|Ψ〉 = |0〉 f ⊗ |ψ0〉 + |1〉 f ⊗ |ψ1〉 =

 |ψ0〉

|ψ1〉

 ,
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represents it in terms of the pair of one qudit states

|ψ0〉 =

n−1∑
k=0

c0k|k〉, |ψ1〉 =

n−1∑
k=0

c1k|k〉.

In the second one,

|Ψ〉 = |ϕ0〉 f ⊗ |0〉 + |ϕ1〉 f ⊗ |1〉 + ... + |ϕn−1〉 f ⊗ |n − 1〉 =

n−1∑
l=0

|ϕl〉 f ⊗ |l〉

it is given by n, the one qubit states |ϕl〉, l = 0, ..., n − 1, defined as

|ϕl〉 =

 c0l

c1l

 = c0l|0〉 f + c1l|1〉 f .

Now, we send dimension of the qudit state, n → ∞, so that the space of states

Hn becomes the Fock space Hb, and the computational basis of qudit states transforms

to Fock number states |k〉∞ ≡ |k〉, k = 0, 1, 2, .... The fermionic-bosonic basis states are

formed by tensor product of fermionic (qubit) states with Fock states, |0〉⊗|k〉, and |1〉⊗|k〉,

k = 0, 1, 2, ... and for arbitrary state

|Ψ〉 =

∞∑
k=0

c0k|0〉 f ⊗ |k〉b +

∞∑
k=0

c1k|1〉 f ⊗ |k〉b, (6.1)

from H f ⊗ Hb Hilbert space, we have following two representations. The first one is

|Ψ〉 = |0〉 ⊗ |ψ0〉 + |1〉 ⊗ |ψ1〉 =

 |ψ0〉

|ψ1〉

 , (6.2)

where two bosonic states

|ψ0〉 =

∞∑
k=0

c0k|k〉, |ψ1〉 =

∞∑
k=0

c1k|k〉. (6.3)
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are vectors in the Fock space. Here and in some cases, where notations are clear by

meaning, we skip bosonic and fermionic indices. The second representation

|Ψ〉 = |ϕ0〉 ⊗ |0〉 + |ϕ1〉 ⊗ |1〉 + ... + |ϕn〉 ⊗ |n〉 + ... =

∞∑
n=0

|ϕn〉 ⊗ |n〉,

is determined by infinite set of qubits |ϕn〉, n = 0, 1, 2, ..., defined as

|ϕn〉 =

 c0n

c1n

 = c0n|0〉 + c1n|1〉. (6.4)

6.1.1. Entanglement of Fermion-Boson States

The fermionic-bosonic state from H f ⊗Hb is separable if |Ψ〉 = |Φ〉 f ⊗ |Ξ〉b, where

|Φ〉 f is the one qubit or the fermionic state, and |Ξ〉b is bosonic state from the Fock space.

If the state |Ψ〉 is not separable, then it is entangled.

Proposition 6.1 The state (6.1) is separable if and only if in representation (6.2) two Fock

states (6.3) are linearly dependent, |ψ0〉 = λ|ψ1〉.

If these states are linearly independent, the state (6.1) is entangled. To find the

level of entanglement for the generic pure state (6.1), we calculate the reduced density

matrices. For normalized state in (6.2) the density matrix is

ρ = |Ψ〉〈Φ| =


|ψ0〉〈ψ0| |ψ0〉〈ψ1|

|ψ1〉〈ψ0| |ψ1〉〈ψ1|

 ,

and due to normalization condition,
∑∞

n=0(|c0n|
2 + |c1n|

2) = 1,

trρ = 〈ψ0|ψ0〉 + 〈ψ1|ψ1〉 = 1. (6.5)
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For the reduced bosonic density matrix

ρb = tr f ρ = |ψ0〉〈ψ0| + |ψ1〉〈ψ1|

we obtain

trρ2
b = 〈ψ0|ψ0〉

2 + 〈ψ1|ψ1〉
2 + 2|〈ψ0|ψ1〉|

2,

and for the fermionic one

ρ f = trb ρ =

∞∑
n=0

|ϕn〉〈ϕn| (6.6)

the expression is

trρ2
f =

∞∑
n=0

∞∑
m=0

|〈ϕn|ϕm〉|
2.

As easy to check by direct computation, it coincides with the bosonic one, so that trρ2
b =

trρ2
f . The first one we rewrite in the form

trρ2
b = (〈ψ0|ψ0〉 + 〈ψ1|ψ1〉)2 − 2(〈ψ0|ψ0〉〈ψ1|ψ1〉 − 〈ψ0|ψ1〉〈ψ1|ψ0〉)

and by taking into account the squared equation (6.5), we get

1 − trρ2
b = 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
〈ψ0|ψ0〉 〈ψ0|ψ1〉

〈ψ1|ψ0〉 〈ψ1|ψ1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.7)

Deviation of the trace from unity gives a simplest characteristics of the level of entan-

glement. It is known as the linear entropy (Buscemi, 2007, 3-6), appearing in the linear

approximation of the von Neumann entropy. In following, for this difference we introduce

definition of the concurrence C in the determinant form, normalized as for the two qubit

states (Parlakgorur and Pashaev, 2019, 2-3).

Definition 6.1 The concurrence C of a pure fermion-boson state is defined by reduced
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density matrix ρ f (or ρb) as the number

C =
√

2
√

1 − trρ2
f ,

satisfying

trρ2
f +

1
2

C2 = 1. (6.8)

From (6.8) and (6.7), we find the concurrence square as determinant of the Hermitian

inner product metric gi j = 〈ψi|ψ j〉, (the Gram determinant), of two vectors (i, j = 0, 1) in

Fock space,

C2 = 4

∣∣∣∣∣∣∣∣∣∣∣∣∣
〈ψ0|ψ0〉 〈ψ0|ψ1〉

〈ψ1|ψ0〉 〈ψ1|ψ1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and for the generic quantum state (6.1),

C = 2

√√√√√√√√√√√√√det


〈ψ0|ψ0〉 〈ψ0|ψ1〉

〈ψ1|ψ0〉 〈ψ1|ψ1〉

. (6.9)

Due to relation

trρ2
f = 1 −

∞∑
n=0

∞∑
m=0

∣∣∣∣∣∣∣∣∣∣∣∣∣
〈ϕn|ϕn〉 〈ϕn|ϕm〉

〈ϕm|ϕn〉 〈ϕm|ϕm〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

the concurrence can be represented also in another form

C2 = 2
∞∑

n=0

∞∑
m=0

∣∣∣∣∣∣∣∣∣∣∣∣∣
〈ϕn|ϕn〉 〈ϕn|ϕm〉

〈ϕm|ϕn〉 〈ϕm|ϕm〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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By using explicit form of the one qubit states (6.4) it can be rewritten as an infinite

sum of modulus squares of all 2 × 2 minors of the coefficient matrix cnm,

C2 = 4
∞∑

0=n<m

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
c0n c0m

c1n c1m

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.

This provides us two equivalent expressions for the concurrence.

Proposition 6.2 For generic normalized fermion-boson state (6.1) from Hilbert space

H f ⊗ Hb, the concurrence is equal

C = 2

√√√√√√√√√√√√√det


〈ψ0|ψ0〉 〈ψ0|ψ1〉

〈ψ1|ψ0〉 〈ψ1|ψ1〉

 = 2

√√√√√√√√√√√√√√ ∞∑
0=n<m

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
c0n c0m

c1n c1m

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

. (6.10)

Corollary 6.1 The determinant of 2× 2 inner product metric in Fock space can be repre-

sented by an infinite sum of modulus squares of minors of the infinite matrix from coeffi-

cients cnm of the state (6.1),

det


〈ψ0|ψ0〉 〈ψ0|ψ1〉

〈ψ1|ψ0〉 〈ψ1|ψ1〉

 =

∞∑
0=n<m

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
c0n c0m

c1n c1m

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.

By using the definition and above expressions for the concurrence, now we calculate

entanglement in fermion-boson system by the von Neumann entropy.

Proposition 6.3 The entanglement, as the value of the von Neumann entropy

E f = −tr(ρ f log2 ρ f ) (6.11)
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for ρ f in (6.6) is

E f = −
1 +
√

1 −C2

2
log2

1 +
√

1 −C2

2
−

1 −
√

1 −C2

2
log2

1 −
√

1 −C2

2
(6.12)

where the concurrence C is given by (6.10). The value of concurrence is bounded between

0 ≤ C ≤ 1.

Proof 6.1 The characteristic equation for matrix ρ f ,

λ2 − λ + det ρ f = 0

has two real eigenvalues

λ1,2 =
1
2
±

√
1
4
− det ρ f ,

where the determinant of ρ f can be expressed by the concurrence as

det ρ f =

∞∑
0=n<m

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
c0n c0m

c1n c1m

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=
1
4

C2

We note that for the fermion-boson system the entanglement E f is function of C

only, though the last one includes infinite sum of modulus squares of 2 × 2 minors.

6.2. Super-Number States

The supersymmetric(SUSY) harmonic oscillator is a composition of fermionic

and bosonic harmonic oscillators with equal frequencies (Cooper et all, 2001, 7-30),

H = Hb + H f =
ω

2

{
a, a†

}
+
ω

2

[
f †, f

]
= ωN .
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Here, the super-number operator N

N = I f ⊗ N + N f ⊗ Ib =

 N 0

0 N + Ib

 , (6.13)

has eigenstates |nb, n f 〉 = |n f 〉 ⊗ |nb〉, where nb = 0, 1, 2, ... and n f = 0, 1 are eigenvalues

of bosonic and fermionuc number operators correspondingly, N|nb〉 = nb|nb〉, N f |n f 〉 =

n f |n f 〉. It counts the total number of fermions and bosons n = nb + n f in state |nb, n f 〉.

The eigenstates |0〉 ⊗ |n〉, and |1〉 ⊗ |n − 1〉 have the energy En = nω, n > 0 and E0 = 0,

for n = 0. This shows that fermionic and bosonic quanta have the same energy ω, and the

states have the same number n of supersymmetric boson-fermion quanta (super-particles

or super-quanta). The difference between states is the number of fermions, which is zero

in the first case (pure bosonic state) and is one in the second case. Moreover, as was

noticed first time in (Aragone and Zypman, 1986, 2271-2272), an arbitrary superposition

of these two states is also state with n super-quanta, which after normalization can be

written as the super-number state

|n, θ, φ〉 = cos
θ

2

 |n〉0
 + sin

θ

2
eiφ

 0

|n − 1〉

 . (6.14)

This shows that the energy levels with n super-quanta En>0 = nω are double de-

generate with arbitrary 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. For n = 0 the state |Ψ0〉 = |0〉 f ⊗ |0〉b

is the ground state with E0 = 0. The super-number state (6.14) contains n super-quanta,

N|n, θ, φ〉 = n|n, θ, φ〉, in superposition of the zero fermionic state |0〉 f ⊗ |n〉 and the one

fermionic state |1〉 f ⊗ |n − 1〉. For this superposition, the probabilities do not depend on n

and are equal

〈n, θ, φ|P0|n, θ, φ〉 = cos2 θ

2
≡ p0, 〈n, θ, φ|P1|n, θ, φ〉 = sin2 θ

2
≡ p1, (6.15)

where projection operators are P0 = (|0〉〈0|) ⊗ Ib, and P1 = (|1〉〈1|) ⊗ Ib. This allows us

to represent the super-number state (6.14) as a state on the Bloch type sphere, which is
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natural to call as the super-Bloch sphere, where the north pole of the sphere θ = 0, corre-

sponds to the zero fermion state and the south pole θ = π to the one fermion state. The

states along the equator θ = π
2 are in maximally random superposition of these states. The

randomness of the state in given basis is determined by Shannon entropy, as advocated in

paper (Deutsch, 1983, 631-633) and explored for geometric probabilities and quantum

coins.

In this manner, we obtain a geometrical representation of the degeneracy of the n

super-quanta state using the super-Bloch sphere.

6.2.1. Entanglement of Super-Number States

To evaluate level of entanglement between bosons and fermions in the super-

number states (6.14), we use the reduced density matrix method. The density matrix

for the pure state (6.14) is equal

ρn = |n, θ, φ〉〈n, θ, φ| =


cos2 θ

2 |n〉〈n| cos θ
2 sin θ

2e−iφ|n〉〈n − 1|

cos θ
2 sin θ

2eiφ|n − 1〉〈n| sin2 θ
2 |n − 1〉〈n − 1|


It satisfies trρn = 1, trρ2

n = 1. By taking partial trace of ρn according to fermionic states

we get the reduced bosonic density matrix (See Appendix C.4)

ρb = tr f ρn = sin2 θ

2
|n − 1〉〈n − 1| + cos2 θ

2
|n〉〈n|,

as an infinite dimensional matrix with only two nonzero diagonal terms, sin2 θ
2 and cos2 θ

2

at positions n and n + 1, correspondingly. The partial trace according to bosonic states

gives fermionic density matrix as 2 × 2 diagonal matrix

ρ f = trb ρ = cos2 θ

2
|0〉〈0| + sin2 θ

2
|1〉〈1|.
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For trace of the square of both reduced density matrices (See Appendix C.5), we get

trρ2
f = trρ2

b = 1 −
1
2

sin2 θ.

Then, by using formula (6.8) we obtain that the reduced bosonic, as well as fermionic

state is mixed and the generic state |n, θ, φ〉 is entangled with concurrence

C = sin θ. (6.16)

It is bounded 0 ≤ C ≤ 1 and does not dependent on n. The north pole state |n, θ = 0, φ〉

(n-bosons state), and the south pole state |n, θ = π, φ〉 (n-1 bosons and one fermion state)

are separable for any n, and correspond to C = 0. Contrary, the states along the equator

on super-Bloch sphere, |n, θ = π
2 , φ〉 with the concurrence C = 1 are maximally entangled

states. The general form of these states is

|n,
π

2
, φ〉 =

1
√

2
(|0〉 ⊗ |n〉 + eiφ|1〉 ⊗ |n − 1〉). (6.17)

6.2.2. Fermion-Boson Bell States

For the case of n = 1, the maximally entangled states are

|Lφ〉 ≡ |1,
π

2
, φ〉 =

1
√

2
(|0〉 f |1〉b + eiφ|1〉 f |0〉b),

giving the fermion-boson analog of the Bell states (φ = 0, π),

|L±〉 ≡ |1,
π

2
,±〉 =

1
√

2
(|0〉 f |1〉b ± |1〉 f |0〉b). (6.18)
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Definition 6.2 The states with n-superparticles are defined as

|n,±〉 ≡ |n,
π

2
,±〉 =

1
√

2
(|0〉 f |n〉b ± |1〉 f |n − 1〉b), (6.19)

where n = 1, 2, .... For n = 1 the states become just the fermionic-bosonic Bell states |L±〉

as in (6.18).

The infinite set of these states is maximally entangled, C = 1, for any positive integer n

and satisfies orthonormality conditions

〈m,±|n,±〉 = δn,m, 〈m,∓|n,±〉 = 0. n,m = 1, 2, ... (6.20)

In addition to the pair of Bell states (6.18) we introduce another pair of fermionic-

bosonic Bell states

|B±〉 =
1
√

2
(|0〉 f |0〉b ± |1〉 f |1〉b). (6.21)

The four Bell states (6.18),(6.21) are orthonormal

〈L+|L+〉 = 〈L−|L−〉 = 1, 〈L+|L−〉 = 0, (6.22)

〈B+|B+〉 = 〈B−|B−〉 = 1, 〈B+|B−〉 = 0, (6.23)

〈B±|L±〉 = 〈B±|L∓〉 = 0, (6.24)

and represent maximally entangled complete set of basis states

|L+〉〈L+| + |L−〉〈L−| + |B+〉〈B+| + |B−〉〈B−| = I f ⊗ Ib.

It is noticed that in contrast with |L±〉, the states (6.21) are not eigenstates of the

supernumber operator. In fact, states |L±〉 are exact eigenstates of N with one superpar-

ticle n = 1, N|L±〉 = |L±〉, while states |B±〉 are not the eigenstates and only the average
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number of superparticles in these states is one, 〈B±|N|B±〉 = 1(See Appendix C.1).

6.2.3. The Bell based Super-qubit States

To generate coherent states, we use the displacement operator D(α), as defined

in (6.40). If this operator is acting on the vacuum (n = 0) state, |Ψ0〉 = |0〉 f ⊗ |0〉b,

annihilated by operator A0 = I f ⊗ a, so that, A0|Ψ0〉 = 0, the corresponding coherent

state as the eigenstate of this operator, would be separable. Another state, annihilated

by this operator |Ψ1〉 = |1〉 f ⊗ |0〉b, is the one particle state with n = 1, and it is also

separable. Moreover, any superposition of these two, the vacuum and one particle states,

α(|0〉 f ⊗ |0〉b) + β(|1〉 f ⊗ |0〉b) = (α|0〉 f + β|1〉 f ) ⊗ |0〉b is separable. To create an entangled

fermionic-bosonic coherent state, instead of this, we have to choose the reference state as

the entangled state. To proceed in this direction, we first describe the maximally entangled

states (C = 1) and then take superposition of these states with the separable ones (C =

0). This way we get entangled states, depending on the concurrence parameter C and

implementing transition from separable to maximally entangled state. The natural choice

for maximally entangled states is the set of four fermionic-bosonic Bell states (6.18),

(6.21). Due to entanglement of bosons with fermions, these states are not annihilated

by pure bosonic annihilation operator A0 and require a mixture of bosonic and fermionic

operators. In fact, for every Bell state we have its own annihilation operator, which in

addition to bosonic annihilation operator a includes the fermionic annihilation or creation

operators, f and f †. We define four operators

A±1 =

 a ±1

0 a

 = I f ⊗ a ± f ⊗ Ib, (6.25)

AT
±1 =

 a 0

±1 a

 = I f ⊗ a ± f † ⊗ Ib, (6.26)
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annihilating the following Bell states (See Appendix C.2)

A1|L−〉 = 0, A−1|L+〉 = 0, (6.27)

AT
1 |B−〉 = 0, AT

−1|B+〉 = 0, (6.28)

and acting as quantum gates, transforming the states to each other,

A1|B±〉 = ±|L+〉, A−1|B±〉 = ∓|L−〉, (6.29)

AT
1 |L±〉 = |B+〉, AT

−1|L±〉 = |B−〉. (6.30)

The annihilation operator A+1, entangling bosons with fermions was first intro-

duced in (Aragone and Zypman, 1986, 2268-2270). After recognition of their super-

coherent state as one of the super-Bell states, and generalization of construction to four

super-Bell states, we found four specific annihilation operators A±1, AT
±1, corresponding

to every state.

The above supersymmetric annihilation operators include also creation operator

f †. It should be not surprising, since action of this operator on one fermion state gives

zero f †|1〉 f = 0. This is why, the set of the annihilation operators become richer and it is

valid for any two level system or any qubit state.

The first pair of states |L±〉 can be generated from the vacuum state |Ψ0〉 and vice

versa (See Appendix C.3)

|L±〉 =
1
√

2
A†
±1|Ψ0〉, |Ψ0〉 =

1
√

2
A±1|L±〉,

and the second pair of states |B±〉 from the one fermion state |Ψ1〉 by

|B±〉 = ±
1
√

2
(AT
±1)†|Ψ1〉, |Ψ1〉 = ±

1
√

2
AT
±1|B±〉.
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The vacuum state is annihilated by two operators

A±1|Ψ0〉 = 0,

and it is orthogonal to the pair of Bell states |L+〉 and L−〉. By taking superposition of the

state with these Bell states we get two normalized reference states,

|0,C, φ〉L± =
√

1 −C|Ψ0〉 +
√

Ceiφ|L±〉, (6.31)

which are annihilated by operators

A∓1|0,C, φ〉L± = 0. (6.32)

The states are parametrized by real number C, bounded between 0 ≤ C ≤ 1. It represents

the concurrence, calculated from formula (6.10) and showing the level of fermion-boson

entanglement in the reference state.

The parametrization allows us to give two physical interpretations of concurrence

C. In the first one, it shows probability to measure the one superparticle state |L+〉 or |L−〉

C = 〈0,C, φ|P1|0,C, φ〉 = p1

in the superposition (6.31) of vacuum (zero superparticle state) and |L±〉 (one superparticle

state). The second meaning of C is the average value of supernumber operator in the

superposition state

C =L± 〈0,C, φ|N|0,C, φ〉L± .

To calculate the second pair of reference states we notice that application of f †
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operator on the vacuum state |Ψ0〉 generates one fermion state

f †|Ψ0〉 = |Ψ1〉 =

 0

|0〉

 , (6.33)

annihilated by operators

AT
∓1|Ψ1〉 = 0

and orthogonal to the second pair of Bell states |B+〉 and |B−〉. Superposition of the state

with these Bell states gives another pair of reference states,

|0,C, φ〉B± =
√

1 −C|Ψ1〉 +
√

Ceiφ|B±〉, (6.34)

which are annihilated by operators

AT
∓1|0,C, φ〉B± = 0. (6.35)

As a result, we have constructed four, the Bell type reference states

|0,C, φ〉L± =
√

1 −C|Ψ0〉 +
√

Ceiφ|L±〉, (6.36)

|0,C, φ〉B± =
√

1 −C|Ψ1〉 +
√

Ceiφ|B±〉, (6.37)

with the inner products

L+
〈0,C, φ|0,C, φ〉L− = 1 −C, B+

〈0,C, φ|0,C, φ〉B− = 1 −C

and corresponding fidelity F = (1 − C)2, expressed in terms of the concurrence C. The

reference states are characterized by real number C, bounded as 0 ≤ C ≤ 1, and the

angle 0 ≤ φ ≤ 2π . This is why geometrically, every state represents the point on surface

of circular cylinder with radius one and height C. Another geometrical image of these
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states is associated with the unit disk |z| ≤ 1 in complex plane z =
√

Ceiφ. One more

representation is given by points on unit sphere, parametrized by two angles 0 ≤ θ ≤ π

and 0 ≤ φ ≤ 2π, related to concurrence by sin θ
2 =
√

C, cos θ
2 =
√

1 −C.

Definition 6.3 The reference states

|0, θ, φ〉L± = cos
θ

2
|Ψ0〉 + sin

θ

2
eiφ|L±〉, (6.38)

as superposition of zero super-particle state and one super-particle state are called the

super-qubit states. Every state is represented by point on the unit sphere, which we call

the super-Bloch sphere.

The north pole of the sphere corresponds to separable vacuum state, while the south pole

to maximally entangled Bell state. Similarly to the usual qubit state, the north pole state

|Ψ0〉 ≡ |0〉S is n = 0 superparticle state, N|0〉S = 0 |0〉S , and the south pole state |L±〉 ≡

|1〉S is n = 1 superparticle state, N|1〉S = 1 |1〉S . However, the state is fermion-boson

entangled and the computational basis for this super-qubit state is made from |0〉S and

|1〉S eigenstates of super-number operator N .

The second pair of reference states is defined as

|0, θ, φ〉B± = cos
θ

2
|Ψ1〉 + sin

θ

2
eiφ|B±〉, (6.39)

but basis states are not eigenstates of N operator. In next section, by applying the dis-

placement operator to these states, we generate four orthogonal super-coherent states.

6.3. The Bell based Supersymmetric Coherent States

To construct supersymmetric coherent state we follow the displacement opera-

tor approach. Specific form of displacement operator in A†1 − A1 was explored in paper

(Zypman, 2015, 1019-1025).
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6.3.1. Displacement Operator

We introduce the bosonic displacement operator as the direct product

D(α) =

 D(α) 0

0 D(α)

 = I f ⊗ D(α) = I f ⊗ eαa†−ᾱa, (6.40)

satisfying unitarity conditionD(α)D†(α) = I.Applying this operator to vacuum state |Ψ0〉

and the one fermion state (6.33) we get corresponding supersymmetric coherent states

D(α)|Ψ0〉 =

 D(α)|0〉

0

 =

 |0, α〉0

 , (6.41)

D(α)|Ψ1〉 =

 0

D(α)|0〉

 =

 0

|0, α〉

 . (6.42)

The commutator

D†(α)A0D(α) = A0 + αI → [A0,D(α)] = αD(α)

applied to state |Ψ〉

A0(D(α)|Ψ〉) = α(D(α)|Ψ〉) +D(α)A0|Ψ〉,

gives the eigenvalue problem

A0(D(α)|Ψ〉) = α(D(α)|Ψ〉),

if the reference state |Ψ〉 is annihilated by operator A0: A0|Ψ〉 = 0. Therefore, the coherent

states, created from reference states |Ψ0〉 and |Ψ1〉 and their superposition |Ψ〉 = c0|Ψ0〉 +
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c1|Ψ1〉 , satisfy eigenvalue problem

A0(c0|0〉 f + c1|1〉 f ) ⊗ |0, α〉 = α (c0|0〉 f + c1|1〉 f ) ⊗ |0, α〉, (6.43)

and are separable. To create entangled super-coherent state we have to choose different

reference state with entangled bosons and fermions. In present work we consider the set

of maximally entangled four Bell reference states (6.18), (6.21), as super-qubit states.

Definition 6.4 The Bell super-coherent states are defined as

|α, L±〉 ≡ D(α)|L±〉, |α, B±〉 ≡ D(α)|B±〉. (6.44)

Proposition 6.4 The Bell super-coherent states are eigenstates of corresponding super-

symmetric annihilation operators

A1|α, L−〉 = α|α, L−〉, A−1|α, L+〉 = α|α, L+〉, (6.45)

AT
1 |α, B−〉 = α|α, B−〉, AT

−1|α, B+〉 = α|α, B+〉. (6.46)

The states are orthonormal and maximally entangled. In explicit form the states are

expressed as

|α, L±〉 =
1
√

2
(|0〉 f |1, α〉 ± |1〉 f |0, α〉), (6.47)

|α, B±〉 =
1
√

2
(|0〉 f |0, α〉 ± |1〉 f |1, α〉), (6.48)

in terms of the displaced Fock states(See Appendix C.3)

|0, α〉 = D(α)|0〉 = e−
1
2 |α|

2
|α〉,

|1, α〉 = D(α)|1〉 = e−
1
2 |α|

2
(

d
dα
|α〉 − ᾱ|α〉).
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Here |α〉 is the Glauber coherent state (not normalized).

The proof is given in Appendix C.11. The linear combination of these, maximally entan-

gled states with orthogonal separable states produces the set of four supercoherent states.

These states are created by displacement operator, acting on super-qubit reference states.

Proposition 6.5 The states (6.31) annihilated by A1 and A−1 operators correspondingly,

as in (6.32), determine the pair of super-coherent states

|α,C, φ〉L± ≡ D(α)|0,C, φ〉L± ,

which are eigenstates of super annihilation operators

A1|α,C, φ〉L− = α|α,C, φ〉L− , A−1|α,C, φ〉L+
= α|α,C, φ〉L+

Proposition 6.6 The pair of reference states (6.34), annihilated by Eq. (6.35), gives the

pair of super-coherent states

|α,C, φ〉B± ≡ D(α)|0,C, φ〉B± ,

which are eigenstates of operators

AT
1 |α,C, φ〉B− = α|α,C, φ〉B− , AT

−1|α,C, φ〉B+
= α|α,C, φ〉B+

Then we have following definition.
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Definition 6.5 The super-coherent states as displaced super-qubit states

|α,C, φ〉L− =
√

1 −C|0〉 f ⊗ |0, α〉 +
√

Ceiφ|α, L−〉, (6.49)

|α,C, φ〉L+
=
√

1 −C|0〉 f ⊗ |0, α〉 +
√

Ceiφ|α, L+〉, (6.50)

|α,C, φ〉B− =
√

1 −C|1〉 f ⊗ |0, α〉 +
√

Ceiφ|α, B−〉, (6.51)

|α,C, φ〉B+
=
√

1 −C|1〉 f ⊗ |0, α〉 +
√

Ceiφ|α, B+〉. (6.52)

We call as the super-Bell based states.

On the super-Bloch sphere these states take form

|α, θ, φ〉L∓ = cos
θ

2

 |0, α〉0

 + sin
θ

2
eiφ 1
√

2

 |1, α〉∓|0, α〉

 , (6.53)

|α, θ, φ〉B∓ = cos
θ

2

 0

|0, α〉

 + sin
θ

2
eiφ 1
√

2

 |0, α〉∓|1, α〉

 , (6.54)

or explicitly

|α, θ, φ〉L∓ = cos
θ

2
e−

|α|2
2

 |α〉0
 + sin

θ

2
eiφ e−

|α|2
2

√
2

 |α〉′ − ᾱ|α〉∓|α〉

 ,
|α, θ, φ〉B∓ = cos

θ

2
e−

|α|2
2

 0

|α〉

 + sin
θ

2
eiφ e−

|α|2
2

√
2

 |α〉

∓|α〉′ ± ᾱ|α〉

 .

The states are eigenstates of super-annihilation operators

A±1|α, θ, φ〉L∓ = α|α, θ, φ〉L∓ ,

AT
±1|α, θ, φ〉B∓ = α|α, θ, φ〉B∓ ,
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with inner products

L+
〈α, θ, φ|α, θ, φ〉L− = cos2 θ

2
= B+
〈α, θ, φ|α, θ, φ〉B− .

It is noted that supercoherent state |α, θ, φ〉L− , for angle φ′ = φ + π coincides with the one,

derived early in (Aragone and Zypman, 1986, 2272-2274)).

6.4. Entanglement of Supercoherent States

In this section, we will calculate the entanglement of the supercoherent states. The

first step is to determine the concurrence for the reference states (6.36) and (6.37). Then

we show that concurrence is independent of action of the displacement operator on the

states, and as follows it is independent of α. Consequently, we find that the concurrence

of the super-qubit reference state is identical to that of the corresponding super-coherent

state.

6.4.1. Entanglement of Super-qubit States

First,we start by computing the entanglement of the superqubit states (6.38). For

these states

|0, θ, φ〉L± = |0〉 f ⊗

(
cos

θ

2
|0〉b +

1
√

2
sin

θ

2
eiφ|1〉b

)
± |1〉 f ⊗

1
√

2
sin

θ

2
eiφ|0〉b

the reduced density matrices are expressed by the same form, but in fermionic |0〉 f , |1〉 f

(two-component) and bosonic |0〉b, |1〉b (infinite component) states,

ρb = ρ f = (cos2 θ

2
+

1
2

sin2 θ

2
)|0〉〈0| +

1
2

sin2 θ

2
|1〉〈1| +

1

2
√

2
sin θ(e−iφ|0〉〈1| + eiφ|1〉〈0|)
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so that

trρ2
b = trρ2

f = 1 −
1
2

sin4 θ

2
.

Comparing with (6.8), we obtain the concurrence for the reference states (6.38)

C = sin2 θ

2
. (6.55)

The result can be obtained also from general formula (6.9) by identification with reference

states (6.36), written in terms of C,

|ψ0〉 =
√

1 −C|0〉 +
1
√

2

√
Ceiφ|1〉, |ψ1〉 = ±

1
√

2

√
Ceiφ|0〉

so that

〈ψ0|ψ0〉 = 1 −
1
2

C, 〈ψ1|ψ1〉 =
1
2

C,

〈ψ0|ψ1〉 = 〈ψ1|ψ0〉 = ±
1
√

2

√
C(1 −C)eiφ.

By calculating determinant (6.9), we obtain formula (6.55). The formula implies that on

the super-Bloch sphere the concurrence is monotonically increasing function of θ, so that

the minimal value C = 0 at the north pole (θ = 0) corresponds to separable state |Ψ0〉,

while the maximally entangled state with C = 1 relates to the south pole (θ = π). On

the equator (θ = π
2 ) concurrence of the states is equal C = 1

2 . Equation (6.55) justifies

representation (6.36) of reference states by concurrence C and shows that entanglement

is independent of angle φ.

The same results for concurrence we obtain in case of the second couple of refer-

ence states (6.37) or (6.39). Thus, we have following proposition.

Proposition 6.7 The concurrence C, 0 ≤ C ≤ 1, for four reference states (6.38) and

(6.39) is equal

C = sin2 θ

2
.

The states can be parametrized by this concurrence as in (6.36) and (6.37).
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The proof is given in Appendix C.12. In the following section, we demonstrate

that the same formula for concurrence applies to the supersymmetric coherent states

(6.53).

6.4.2. Entanglement for Displaced States

An arbitrary normalized state |Φ〉 from H f ⊗ Hb

|Φ〉 =

1∑
i=0

∞∑
n=0

cin|i〉 f ⊗ |n〉,

where
1∑

i=0

∞∑
n=0

|cin|
2 = 1,

after application of the displacement operatorD(α) becomes

|Φ, α〉 = D(α)|Φ〉 =

1∑
i=0

∞∑
n=0

cin|i〉 f ⊗ D(α)|n〉 =

1∑
i=0

∞∑
n=0

cin|i〉 f ⊗ |n, α〉,

where |n, α〉 = D(α)|n〉 are displaced Fock states. This can be rewritten in two forms

according to following propositions.

Proposition 6.8 For an arbitrary state from H f ⊗ Hb, represented as

|Φ〉 = |0〉 f ⊗ |ψ0〉 + |1〉 f ⊗ |ψ1〉

by two states in Fock space

|ψ0〉 =

∞∑
n=0

c0n|n〉, |ψ1〉 =

∞∑
n=0

c1n|n〉,
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the displaced state is

|Φ, α〉 = D(α)|Φ〉 = |0〉 f ⊗ |ψ0, α〉 + |1〉 f ⊗ |ψ1, α〉

where

|ψ0, α〉 =

∞∑
n=0

c0n|n, α〉, |ψ1, α〉 =

∞∑
n=0

c1n|n, α〉,

and the displaced Fock states are |n, α〉 = D(α)|n〉. The last states satisfy orthonormality

conditions

〈m, α|n, α〉 = 〈m|D†(α)D(α)|n〉 = 〈m|n〉 = δmn

and completeness relation

∞∑
n=0

|n, α〉〈n, α| = D(α)
∞∑

n=0

|n〉〈n|D†(α) = D(α)D†(α) = I.

Proposition 6.9 For arbitrary state from H f ⊗ Hb, represented by sum of infinite number

of qubits

|Φ〉 =

∞∑
n=0

|ϕn〉 ⊗ |n〉 =

∞∑
n=0

 c0n

c1n

 ⊗ |n〉
the displaced state is

|Φ〉 =

∞∑
n=0

|ϕn〉 ⊗ |n, α〉 =

∞∑
n=0

 c0n

c1n

 ⊗ |n, α〉.

As we have seen in (6.9) the concurrence of a state depends on inner products of two

bosonic states. By calculating the inner product for the displaced states

|ψi, α〉 = D(α)|ψi〉, i = 0, 1,

we find that it is invariant under displacement operation and independent of α,

〈ψi, α|ψ j, α〉 = 〈ψi|D†(α)D(α)|ψ j〉 = 〈ψi|ψ j, 〉.
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This suggests that entanglement for generic state |Φ〉 and the displaced one |Φ, α〉 =

D(α)|Φ〉 is the same. Indeed, from density matrix for displaced state

ρ(α) = |Φ, α〉〈Φ, α| = D(α)|Φ〉〈Φ|D†(α) = D(α)ρD†(α)

we get reduced density matrix

ρb(α) = |ψ0, α〉〈ψ0, α| + |ψ1, α〉〈ψ1, α| = D(α)(|ψ0〉〈ψ0| + |ψ1〉〈ψ1|)D†(α),

so that ρb(α) = D(α)ρbD†(α) and ρ2
b(α) = D(α)ρ2

bD†(α). By taking trace from both sides

we find trρ2
b(α) = trρ2

b. This shows that the concurrence C2 = 2(1−trρ2
b) and entanglement

for both states is the same and don’t depends on complex parameter α. Therefore, we

present following proposition.

Proposition 6.10 The concurrences (entanglement) for state |Φ〉 and the displaced state

|Φ, α〉 = D(α)|Φ〉 are equal.

Corollary 6.2 For supersymmetric coherent states |α,C, φ〉L∓ , |α,C, φ〉B∓ , defined in (6.49)-

(6.52), the concurrence is independent of α and is equal

C = sin2 θ

2
.

For these states, the concurrence C = p1 coincides with the probability of transition to

maximally entangled states and represents the geometric probability, as relative area of

spherical cup on super-Bloch sphere C = Aθ/A.

In Fig.(6.1), the concurrence C and the von Neumann entropy E are shown as functions

of the angle θ on the super-Bloch sphere.

As an example, by using determinant formula (6.9) for Hermitian metric, with two

states

|ψ0, α〉 =
√

1 −C|0, α〉 +
1
√

2

√
Ceiφ|1, α〉, |ψ1, α〉 = ±

1
√

2

√
Ceiφ|0, α〉
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Figure 6.1. Concurrence and Entanglement versus angle θ on super-Bloch sphere

we find the same concurrence for states (6.49), (6.50). The second state is the Glauber

coherent state, while the first one is superposition of Glauber state with the one photon

added coherent state. The last one is adding non-classical property to the coherent state,

and as we can see it is responsible for entanglement between fermions and bosons in

supercoherent state.

6.4.3. Orthogonality of Super Coherent States

Here, we evaluate the inner product of two super-coherent states at the same posi-

tion on the super-Bloch sphere (θ, φ) and show that, in contrast to Glauber coherent states,

they can exhibit orthogonality. The product formulas for our displacement operators

D(α)D(β) = e2i Im(αβ̄)D(β)D(α) = ei Im(αβ̄)D(α + β)

give

〈β, θ, φ|α, θ, φ〉 = 〈0, θ, φ|D†(β)D(α)|0, θ, φ〉

= e−i Im(βᾱ)〈0, θ, φ|D(α − β)|0, θ, φ〉

= e−i Im(βᾱ)〈0, θ, φ|α − β, θ, φ〉.
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By using matrix elements (See Appendix C.9)

〈0|D(α)|0〉 = e−
1
2 |α|

2
, 〈1|D(α)|0〉 = αe−

1
2 |α|

2
,

〈0|D(α)|1〉 = −ᾱe−
1
2 |α|

2
, 〈1|D(α)|1〉 = (1 − |α|2)αe−

1
2 |α|

2
,

we find

L±〈β, θ, φ|α, θ, φ〉L± = e−i Im(βᾱ)e−
1
2 |α−β|

2

(
1 −

sin θ

2
√

2
((ᾱ − β̄)eiφ − (α − β)e−iφ) −

|α − β|2

2
sin2 θ

2

)

(See Appendix Defn.C.4). In the limiting case θ = 0, (separable state at the north pole)

we have the usual inner product formula for bosonic coherent states

〈β, 0, φ|α, 0, φ〉 = e−
1
2 |α|

2
e−

1
2 |β|

2
eβ̄α,

which is never zero. For another limit θ = π, (maximally entangled state at the south pole)

it becomes

L±〈β, π, φ|α, π, φ〉L± =

(
1 −

1
2
|α − β|2

)
e−

1
2 |α|

2
e−

1
2 |β|

2
eβ̄α.

In contrast with pure bosonic coherent states, in this case the states can be orthogonal.

The set of orthogonal maximally entangled states satisfies condition

|α − β|2 = 2,

and belongs to the circle in complex plane with radius r =
√

2 around point α. Then,

every state on the circle, parametrized by β = α +
√

2 eit, 0 ≤ t ≤ 2π is orthogonal

to state α. From this set it is always possible to choose the pair of states β1 and β2 at

distance |β1 − β2| =
√

2 and as a result, orthogonal to each other. So, we have three

mutually orthogonal states α, β1 = α +
√

2eit1 and β2 = α +
√

2ei(t1+ π
3 ), located at vertices

of equilateral triangle.

In general case of arbitrary states α and β, the orthogonality condition takes the
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complex form
1
2
|w|2 sin2 θ

2
+

1

2
√

2
(w − w̄) sin θ − 1 = 0,

where w ≡ (α − β)e−iφ, equivalent to the pair of real equations

(w − w̄) sin θ = 0,
1
2
|w|2 sin2 θ

2
= 1.

It has solutions for θ = π, considered above. In addition, for arbitrary 0 < θ < π, such that

sin θ , 0, and w = w̄ is real, we have two solutions

w1,2 = ±

√
2

sin θ
2

,

giving in terms of concurrence C,

α − β = ±

√
2
C

eiφ.

This implies that for any state α exists two (antipodal) states β+ and β−, orthogonal to the

state α,

β+ = α +

√
2
C

eiφ, β− = α −

√
2
C

eiφ.

These states exist for any level of entanglement 0 < C < 1 and for separable states with

C = 0 they move to infinity. For maximally entangled states with C = 1, in addition to

this pair, appears the circle of states, orthogonal to state α. Similar calculations for second

pair of states |α, θ, φ〉B± give the same conditions of orthogonality.

The above result relates entanglement of super-coherent states with orthogonality,

so that to be orthogonal, the states should be necessarily entangled and non-classical.It

should be noticed that orthogonality of super coherent states is related with orthogonality

of the displaced Fock states |n, α〉. The displaced Fock states were studied in many pa-

pers, and orthogonality property was emphasised in the paper (Baranov, 1991), (see also

references in that paper). The super-coherent states in (97), (98) are spinors in displaced

vacuum state |0, α〉 and one particle state |1, α〉, this is why these states are involved in
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orthogonality condition for super-coherent states. The level of involvement depends on

concurrence, this is why the set of orthogonal super-coherent states depends on boson-

fermion entanglement.

6.5. Time Evolution and Time Independence of Entanglement

The time evolution of coherent states is governed by the evolution operator, which

describes how the states evolve over time in a given quantum system. By applying the

evolution operator, we can explore how these states maintain certain properties, such as

minimal uncertainty, or how they transform under different conditions. Time dependence

of coherent states is determined by following evolution operator

U(t) = e−iωHt =


e−iωtN 0

0 e−iωt(N+1)

 =


1 0

0 e−iωt

 ⊗ e−iωtN .

Proposition 6.11 The concurrence for arbitrary time dependent state |Φ(t)〉 = U(t)|Φ〉 is

independent of time C(t) = C.

Proof 6.2 For an arbitrary state (6.1), decomposed as

|Φ〉 = |0〉 f ⊗ |ψ0〉 + |1〉 f ⊗ |ψ1〉,

where

|ψ0〉 =

∞∑
n=0

c0n|n〉, |ψ1〉 =

∞∑
n=0

c1n|n〉,

the time dependent state is

|Φ(t)〉 = U(t)|Φ〉 = |0〉 f ⊗ |ψ0(t)〉 + e−iωt|1〉 f ⊗ |ψ1(t)〉,
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where (a = 0, 1),

|ψa(t)〉 = e−iωtN |ψa〉 =

∞∑
n=0

can(t)|n〉 =

∞∑
n=0

cane−iωtn|n〉.

By calculating the inner products of these time dependent states and using (6.9), we have

time independence of the concurrence

C(t) = 2

√√√√√√√√√√√√√
∣∣∣∣∣∣∣∣∣∣∣∣∣
det


〈ψ0(t)|ψ0(t)〉 〈ψ0(t)|ψ1(t)〉e−iωt

〈ψ1(t)|ψ0(t)〉eiωt 〈ψ1(t)|ψ1(t)〉


∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2

√√√√√√√√√√√√√
∣∣∣∣∣∣∣∣∣∣∣∣∣
det


〈ψ0|ψ0〉 〈ψ0|ψ1〉e−iωt

〈ψ1|ψ0〉eiωt 〈ψ1|ψ1〉


∣∣∣∣∣∣∣∣∣∣∣∣∣
= C.

6.6. Uncertainty Relations and Entanglement on Super-Bloch Sphere

At this point, we determine the uncertainty relations for a quartet of supercoherent

states |α, θ and φ〉L± |α, θ, φ〉B± . Calculations of averages for states |α, θ, φ〉L± and |α, θ, φ〉B+

give the same results, this is the reason we omit the index of the states. The sign difference

appearing for state |α, θ, φ〉B− would be noticed in proper place. The coordinate and mo-

mentum operators, given in fermionic-bosonic base X = I f⊗
1
√

2
(a+a†), P = I f⊗

i
√

2
(a†−a),

transformed by displacement operator (6.40) to

D†(α)XD(α) = X + I f ⊗
α + ᾱ
√

2
= X + I f ⊗

√
2 Reα,

D†(α)PD(α) = X + I f ⊗ i
ᾱ − α
√

2
= P + I f ⊗

√
2 Imα.
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The mean values of the operators in supercoherent state

|α,C, φ〉 =
√

1 −C|α,Ψ0〉 +
√

Ceiφ|α, L±〉

reduce to the forms

〈α,C, φ|X|α,C, φ〉 = 〈0,C, φ|D†(α)XD(α)|0,C, φ〉 =
√

2 Reα + 〈0,C, φ|X|0,C, φ〉,

〈α,C, φ|P|α,C, φ〉 = 〈0,C, φ|D†(α)PD(α)|0,C, φ〉 =
√

2 Imα + 〈0,C, φ|P|0,C, φ〉,

which include the mean values in the reference super-qubit state,

|0,C, φ〉 =
√

1 −C

 |0〉0
 +
√

Ceiφ 1
√

2

 |1〉±|0〉
 .

For the final ones, we obtain

〈0,C, φ|X|0,C, φ〉 =
√

C(1 −C) cos φ, (6.56)

〈0,C, φ|P|0,C, φ〉 =
√

C(1 −C) sin φ, (6.57)

which are valid for the first three states and including sign minus in the r.h.s. for the state

|α, θ, φ〉B− . The proof is given in Appendix C.13. Then, we have

〈α,C, φ|X|α,C, φ〉 =
√

2 Reα +
√

C(1 −C) cos φ, (6.58)

〈α,C, φ|P|α,C, φ〉 =
√

2 Imα +
√

C(1 −C) sin φ. (6.59)

In Fig.(6.2),we display average X̄ = 〈α,C, φ|X|α,C, φ〉 and in Fig.(6.3), P̄ = 〈α,C, φ|P|α,C, φ〉

as functions of the concurrence C and angle φ, where α = (1 + i)/
√

2.
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Figure 6.2. The average value X̄ as function of C and φ, for α = (1 + i)/
√

2 : a) 3D
plot b) Contour Plot

The averages of a and a† operators are

〈0,C, φ|I f ⊗ a|0,C, φ〉 =

√
C(1 −C)

2
eiφ,

〈0,C, φ|I f ⊗ a†|0,C, φ〉 =

√
C(1 −C)

2
e−iφ.

and

〈α,C, φ|I f ⊗ a|α,C, φ〉 = α +

√
C(1 −C)

2
eiφ,

〈α,C, φ|I f ⊗ a†|α,C, φ〉 = ᾱ +

√
C(1 −C)

2
e−iφ.

For the states with vanishing average values

〈α,C, φ|X|α,C, φ〉 = 0, 〈α,C, φ|P|α,C, φ〉 = 0

this gives

α = −

√
C(1 −C)

2
eiφ
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Figure 6.3. The average value P̄ as function of C and φ for α = (1 + i)/
√

2: a) 3D plot
b) Contour Plot

so that |α|2 = C(1 − C)/2. Equations (6.58), (6.59) show that for states with C = 0 and

C = 1, the average position and momentum are the same as for the bosonic coherent

states. It deviates from classical averages, when 0 < C < 1 and the difference reaches

maximal value for C = 1
2 , corresponding to states on the equator of the super-Bloch sphere

|α,
1
2
, φ〉 =

1
√

2
(|α,Ψ0〉 + eiφ|α, L±〉). (6.60)

To calculate the average of X2 and P2, we use

〈α,C, φ|I f ⊗ a2|α,C, φ〉 = 〈0,C, φ|D†(α)I f ⊗ a2D(α)|0,C, φ〉

= 〈0,C, φ|I f ⊗ (a + α)2|0,C, φ〉,

〈α,C, φ|I f ⊗ a†
2
|α,C, φ〉 = 〈0,C, φ|D†(α)I f ⊗ a†

2
D(α)|0,C, φ〉 (6.61)

= 〈0,C, φ|I f ⊗ (a† + ᾱ)2|0,C, φ〉,
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and

〈0,C, φ|I f ⊗ a†a|0,C, φ〉 =
1
2

C,

〈0,C, φ|I f ⊗ aa†|0,C, φ〉 =
1
2

C + 1,

so that

〈α,C, φ|X2|α,C, φ〉 =
1
2

[(α + ᾱ)2 + 2
√

2(α + ᾱ)
√

C(1 −C) cos φ + 1 + C], (6.62)

〈α,C, φ|P2|α,C, φ〉 =
1
2

[−(α − ᾱ)2 − 2
√

2i(α − ᾱ)
√

C(1 −C) sin φ + 1 + C].(6.63)

(See Appendix C.15). By calculating the dispersions, we derive the following theorem.

Theorem 6.1 Dispersions of coordinate X and momentum P in all super-coherent states

|α,C, φ〉L± and |α,C, φ〉B± are the same and equal

(∆X)2
α ≡ 〈X

2〉α − 〈X〉2α =
1
2

(1 + C) −C(1 −C) cos2 φ, (6.64)

(∆P)2
α ≡ 〈P

2〉α − 〈P〉2α =
1
2

(1 + C) −C(1 −C) sin2 φ. (6.65)

They do not depend of α, (∆X)2
α = (∆X)2

0, and (∆P)2
α = (∆P)2

0.

The proof is given in Appendix C.15. The dispersions satisfy "the Pythagoras theorem"

in the phase plane

(∆X)2 + (∆P)2 = 1 + C2

for the right triangle with sides, ∆X, ∆P and hypotenuse
√

1 + C2. Then, the uncertainty

relation ∆X∆P = A is given by the area of rectangle with diagonal
√

1 + C2. The sides of

the triangle are bounded between

1
2

(1 −C + 2C2) ≤ (∆X)2 ≤
1
2

(1 + C),

1
2

(1 −C + 2C2) ≤ (∆P)2 ≤
1
2

(1 + C).
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The uncertainty relation for the supersymmetric coherent states are found as mono-

tonically growing function of C,

∆X∆P =
1
2

√
1 + C2 + 2C3 + C2(1 −C)2 sin2 2φ, (6.66)

with small periodic dependence on angle φ. It is shown in Fig.(6.4)
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Figure 6.4. Uncertainty relation versus concurrence C and angle φ : a) 3D plot b)
Contour Plot

This implies inequality

1
2

√
1 + C2 + 2C3 ≤ ∆X∆P ≤

1
2

(1 + C2),

with minimum value at φ = 0 and the maximal one at φ = π
4 ,

3π
4 ,

5π
4 ,

7π
4 . In the last case,

the triangle becomes isosceles triangle, so that dispersions are equal,

(∆X)2 = (∆P)2 =
1 + C2

2

or

∆X = ∆P =

√
1 + C2

2
.

The area of the square as the double area of the triangle is maximal for fixed C and gives
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uncertainty relation

∆X∆P =
1 + C2

2
. (6.67)

It is noted from (6.64) and (6.65), that similarly to the bosonic coherent states (Klauder,

1985), the dispersions are not dependent on α, but on the reference super-qubit state,

corresponding to α = 0, (which is not the vacuum state), so that (∆X)2
α = (∆X)2

0, and

(∆P)2
α = (∆P)2

0.

The right hand side of equation (6.66) is monotonically growing function of C,

bounded between 1
2 and 1 ,

1
2
≤ (∆X) (∆P) ≤ 1.

The lower limit

(∆X) (∆P) =
1
2

corresponds to C = 0 and the state |α,Ψ0〉, while the upper limit for C = 1,

(∆X) (∆P) = 1,

to the state |α, L±〉. Obtained relations show that for zero fermionic state the uncertainty

reaches the minimal value, corresponding to pure bosonic coherent state as most classical

quantum state and it is separable state with C = 0. Then, mixing bosonic and fermionic

degrees, due to nonclassical nature of fermions, increases non-classicality of the states

and corresponding uncertainty. It reaches maximal value for C = 1, which corresponds to

maximally entangled bosonic and fermionic states as maximally non-classical states.

6.6.1. Quadratic Squeezing of Coordinate and Momentum

Uncertainties

As we have seen from uncertainty relation (6.66), the product (∆X∆P)2 reaches

minimal value 1
4 for C = 0. This suggests that minimal uncertainty as in pure bosonic

case of Glauber coherent states, should corresponds to (∆X)2 = (∆P)2 = 1
2 . But, it is not

85



the case. In fact, depending on value of φ, and C, (∆X)2 reaches local minima, smaller

than 1
2 . The uncertainty in X as functions of two variables

(∆X)2 (C, φ) ≡ f (C, φ) =
1
2

(1 + C) −C(1 −C) cos2 φ,

describes two dimensional surface. It is shown in Figure 5. For this surface, we have

conditions for first derivatives

fC(C, φ) =
1
2

+ (2C − 1) cos2 φ = 0,

fφ(C, φ) = C(1 −C) sin 2φ = 0,

giving two critical points

φ = 0, π, C =
1
4
. (6.68)

By using second derivatives

fCC = 2 cos2 φ, fφφ = 2C(1 −C) cos 2φ, fCφ = fφC = (1 − 2C) sin 2φ,

we calculate the Gaussian curvature as determinant of the Hessian

H = fCC fφφ − f 2
Cφ = 4C(1 −C) cos 2φ cos2 φ − (1 − 2C)2 sin2 2φ.

For the critical points (6.68) we get positive Gaussian curvature H = 3
4 and due to fCC =

2 > 0, the local minimum. The value of dispersions at these critical points is

(∆X)2 = f
(
1
4
, 0

)
= f

(
1
4
, π

)
=

7
16

<
8

16
=

1
2
, (∆P)2 =

5
8
>

4
8

=
1
2
. (6.69)
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The boundary values of f (C, φ) at φ = 0, 2π and C = 0, 1 do not affect the minimum

value. The inequalities show that in the super-coherent states

|α,
1
4
, 0〉L± =

√
3

2
|α,Ψ0〉 +

1
2
|α, L±〉, |α,

1
4
, π〉L± =

√
3

2
|α,Ψ0〉 −

1
2
|α, L±〉

the X dispersion is maximally squeezed to value (∆X)2 = 7
16 <

1
2 , while (∆P)2 = 5

8 >
1
2 .

Positions of these states on the super-Bloch sphere are (θ = π
3 , φ = 0) and (θ = π

3 , φ = π)

correspondingly, and in complex plane representation at z = ± 1
√

3
.
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Figure 6.5. Quadrature squeezing for dispersion ∆X2 versus concurrence C and angle
φ : a) 3D plot b) Contour Plot

In Fig.(6.5), we plot dispersions versus the concurrence C at angles φ = 0 and φ = π.

Similar calculations for states

|α,
1
4
,
π

2
〉L± =

√
3

2
|α,Ψ0〉 +

i
2
|α, L±〉, |α,

1
4
,

3π
2
〉L± =

√
3

2
|α,Ψ0〉 −

i
2
|α, L±〉,

at critical points on super-Bloch sphere (θ = π
3 , φ = π

2 ), (θ = π
3 , φ = 3π

2 ) or in complex

plane z = ± i
√

3
, give maximal squeezing for the momentum dispersion, (∆P)2 = 7

16 <
1
2 ,

(∆X)2 = 5
8 >

1
2 . This quadrature squeezing is known for photon added coherent states, as

non-classical property, and now we have established it also for boson-fermion entangled

super-coherent states.
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Figure 6.6. Plot of Quadrature squeezing for dispersion ∆X2 and ∆P2 versus concur-
rence for angle φ = 0, π

6.6.2. Golden Uncertainty Relation and Fibonacci Numbers

In above calculations (6.69) we have seen that dispersion (∆P)2 = 5
8 =

F5
F6

is equal

to the ratio of two Fibonacci numbers. Depending on angle φ, for C = 1
4 we distinguish

two cases: a) φ = 0, π, then from (6.64), (6.65) we have (∆X)2 = 7
16 , (∆P)2 = 5

8 , and b) for

φ = π
2 , it is (∆X)2 = 5

8 , (∆P)2 = 7
16 . In fact, we are going to show that the whole sequence

of Fibonacci numbers and the Golden Ratio can be involved to uncertainty relations for

super-coherent states. For maximally random states (6.60) with C = 1
2 , located on the

equator of the super Bloch sphere, the uncertainty relation is

∆X∆P =
1
8

√
24 + sin2 2φ. (6.70)

For angle φ = π
4 it gives ratio of two Fibonacci numbers

∆X∆P =
5
8

=
F5

F6
. (6.71)

In addition, we notice that the minimal uncertainty 1
2 = F2

F3
(corresponding to bosonic

coherent states) and the maximum uncertainty 1 = F1
F2

(for maximally entangled boson-

fermion states) also represent the ratio of two Fibonacci numbers. In all these cases the
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uncertainty is equal to the ratio Fn
Fn+1

, where n = 1, 2, 5. Now, we define the inverse ratio

ϕn =
Fn+1

Fn
,

for arbitrary positive integer n, representing the Golden sequence, satisfying equation

ϕn = 1 +
1
ϕn−1

,

and having the Golden ratio as the limit ϕn → ϕ, when n → ∞. This suggests that for

supersymmetric coherent states exist the sequence of uncertainties, equal 1/ϕn for any

positive n, giving in the limit n→ ∞ the Golden Ratio uncertainty

∆X∆P =
1
ϕ

=
2

1 +
√

5
=

√
5 − 1
2

. (6.72)

To determine the Golden sequence for any n, we fix the angle φ = π
4 , then dispersions are

equal ∆Xn = ∆Pn, and due to (6.67) they can be chosen as

(∆Xn)2 = (∆Pn)2 = ∆Xn∆Pn =
1
ϕn

=
Fn

Fn+1
=

1 + C2
n

2
. (6.73)

This implies the infinite sequence of concurrences, determined by equation

C2
n + 1 = 2

Fn

Fn+1
.

Using properties of Fibonacci numbers, Fn+1 = Fn + Fn−1, it can be simplified as

C2
n =

Fn−2

Fn+1
,
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so that

Cn =

√
Fn−2

Fn+1
.

In particular case n = 5 it gives value C5 = 1
2 considered above (6.71), and for n = 1 and

n = 2, the maximal and minimum uncertainties, 1 and 1
2 , correspondingly. For successive

n and n + 1 terms, dispersions in X

(∆Xn)2 =
Fn

Fn+1
, (∆Xn+1)2 =

Fn+1

Fn+2
,

relate uncertainties for different n by fractional transformation

(∆Xn+1)2 =
1

1 + (∆Xn)2 .

The product

(∆Xn+1)2(∆Xn)2 =
Fn

Fn+2
,

in the limit n→ ∞ takes the form of the Silver Ratio

(∆X∞)2 = (∆P∞)2 =
1
ϕ

=

√
5 − 1
2

.

This formula shows how the Golden (Silver) Ratio naturally appears in supersymmetric

quantum oscillator.

The set of super-coherent states corresponding to the Golden sequence of uncer-

tainties (6.73) is

|α,

√
Fn−2

Fn+1
,
π

4
〉L± =

√
1 −

√
Fn−2

Fn+1
|α,Ψ0〉 +

1 + i
√

2

(
Fn−2

Fn+1

)1/4

|α, L±〉.

In the limit n → ∞, the concurrence Cn is represented by the Golden Ratio C∞ = ϕ−3/2
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and the sequence of corresponding states converges to the Golden super-coherent state,

|α,
1
ϕ3/2 ,

π

4
〉L± =

√
1 −

1
ϕ3/2 |α,Ψ0〉 +

1 + i
√

2ϕ3/4
|α, L±〉.

For this state we have the Golden Uncertainty relation (6.72) in the form

∆X∆P =
~

ϕ

(here we recovered the Planck constant). The relation determines the Golden proportion

ϕ =
~

∆x∆p

in the phase plane cells, as ratio of Plank constant with area of the cell. Moreover, the

uncertainty value h/2πϕ corresponds to the length of the circle 2πϕ with radius r = ϕ.

Inversion of this circle in the unit one gives the circle with radius 1/ϕ and the length

2π/ϕ, which determines the Golden Angle. This angle appears in the theory of sunflowers

(Newell and Pennybacker, 2013, 90-105) as efficiency model of sunflowers packing, and it

would be interesting to see how it can be combined with phase space structure in quantum

mechanics.

Another, non-symmetric in X and P sequence appears from (6.64), (6.65), when

φ = π
2 , so that

(∆Xn)2 =
1
2

(1 + Cn), (∆Pn)2 =
1
2

(1 −Cn + 2C2
n).

For concurrence C5 = 1
4 it gives (∆X5)2 = 5

8 =
F5
F6

. This suggests the sequence of concur-

rences,

Cn =
Fn−2

Fn+1

satisfying equation (1 + Cn)/2 = Fn/Fn+1, and giving uncertainties

(∆Xn)2 =
Fn

Fn+1
, (∆Pn)2 =

Fn+1Fn−1 + F2
n−2

F2
n+1

=
F2

n + F2
n−2 + (−1)n

F2
n+1

,
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where in the last equation we used Cassini’s identity. In the limit n → ∞ we get uncer-

tainties, which includes Golden Ratio and Fibonacci numbers

(∆X∞)2 =
1
ϕ
, (∆P∞)2 = 3(5 − 3ϕ),

(∆X∞)2(∆P∞)2 = 3(5ϕ − 8).

Identification of uncertainty relations for supersymmetric coherent states and the

squared quadratures, with first few Fibonacci numbers was unexpected and it motivated

us to find the sequence of uncertainty relations with Fibonacci oscillations. By introduc-

ing an infinite, countable set of super-coherent states, we got the limit state, the Golden

super-coherent state, with Golden ratio in uncertainty relations. The uncertainty rela-

tions in general, result from operator commutation relations for observables, suggesting

to find deformed commutators with Golden ratio as a parameter. Such type of the Golden

quantum oscillator, where Fibonacci operator plays the role of pq-number operator with

Golden and Silver ratios as deformation parameters, has been studied in (Pashaev and

Nalci, 2012, 5-18). The spectrum of this oscillator is given by Fibonacci sequence and

coherent states are determined by Fibonomials (Pashaev, 2015, 3-11) . It would be inter-

esting to combine such Golden deformed quantum oscillator with supersymmetric quan-

tum states. A more general spectrum in form of Fibonacci divisors and the quantum

algebra deformed by powers of the Golden ratio naturally appeared in the infinite hier-

archy of Golden deformation for bosons and fermions (Pashaev, 2021, 3-8). Fibonacci

numbers and Golden ratio were involved also in entangled qubit quantum states, where

the concurrence and transition amplitudes of entangled N-qubit spin coherent states in

computational basis are determined by Fibonacci and Lucas numbers (Pashaev, 2012, 4-

12) . The Golden ratio and Fibonacci numbers in quantum computation and information

theory were encountered also in quantum coin flipping problem with constraints.
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CHAPTER 7

ENTANGLEMENT OF PK-SUPER-QUBIT QUANTUM

STATES AND SUPER−COHERENT STATES

The super-qubit quantum state introduced in (Pashaev and Kocak, 2024(2, 3-5))

and (Pashaev and Kocak, 2025(3)), is characterized by a superposition of the zero and

one super-particle states, which are represented as points on the super-Bloch sphere. As a

preliminary step in the creation of the super-qubit, we use states which have same number

of particles. The normalized generic n super-number state

|n, ζ〉 =
1√

1 + |ζ |2

(
|0〉 f ⊗ |n〉b + ζ |1〉 f ⊗ |n − 1〉b

)
=

1√
1 + |ζ |2

 |n〉

ζ |n − 1〉

 , (7.1)

where ζ is an arbitrary complex number, is the eigenstate of the super-number operator

N|n, ζ〉 = n|n, ζ〉. The origin of the complex plane, ζ = 0, corresponds to n pure bosons,

while infinity in the extended complex plane, z = ∞, corresponds to one fermion and n−1

bosons. By stereographic projection, the extended complex plane can be projected to the

unit sphere by the formula

ζ = tan
(
θ1

2

)
eiφ1 , (7.2)

so that the state becomes

|n, θ1, φ1〉 = cos
(
θ1

2

) |n〉0
 + sin

(
θ1

2

)
eiφ1

 0

|n − 1〉

 , (7.3)

where 0 ≤ θ1 ≤ π, 0 ≤ φ1 ≤ 2π are angles on the sphere.
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7.1. Entanglement of ζ-super-number states

Corollary 7.1 The concurrence of the n-super-particle state (7.1) is independent of n and

is given by

C =
2|ζ |

1 + |ζ |2
. (7.4)

For ζ = 0 and ζ = ∞, the states are separable and C = 0. On the unit circle |ζ |2 = 1, the

state is maximally entangled with C = 1.

For n = 1, we have the state

|1, ζ〉 =
1√

1 + |ζ |2

(
|0〉 f ⊗ |1〉b + ζ |1〉 f ⊗ |0〉b

)
=

1√
1 + |ζ |2

 |1〉ζ |0〉
 , (7.5)

which is a fermion-boson entangled one super-particle state. The level of entanglement

is determined by formula (7.4). In terms of stereographic projection (7.2) and (7.3), the

concurrence becomes,

C = sin θ1. (7.6)

This formula provides a simple geometrical meaning of concurrence on the sphere. The

concurrence is equal to the distance from the point (θ1, φ1) on the sphere, corresponding

to the state |1, θ1, φ1〉, from the vertical axis. Alternatively, it is equal to the radius of the

circle in the horizontal plane, intersecting the vertical axis at: z =
√

1 −C2 = cos θ1. The

von Neumann entropy as a function of z is given by,

E = −
1
2

log2

(
1 − z2

4

)
−

z
2

log2

(
1 + z
1 − z

)
. (7.7)

Probabilities of collapse to the states at the poles |0〉 f ⊗ |1〉b and |1〉 f ⊗ |0〉b are:

p0 = cos2 θ

2
=

1 + z
2

, p1 = sin2 θ

2
=

1 − z
2

. (7.8)
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Geometrically, these probabilities correspond to half-distances from the vertical projec-

tion of the state to the north and south poles. For the one super-number state, N|1, ζ〉 =

1|1, ζ〉. In addition, for n = 0, we have the separable state:

|0, ζ〉 = |0〉 f ⊗ |0〉b =

|0〉0
 , (7.9)

which satisfies N|0, ζ〉 = 0|0, ζ〉 and is orthogonal to the first state 〈0, ζ |1, ζ〉 = 0. The

states are related by the creation supersymmetric operator:

|1, ζ〉 =
1√

1 + |ζ |2

 |1〉ζ |0〉
 =

1√
1 + |ζ |2

a† 0

ζ a†


|0〉0

 . (7.10)

By taking the superposition of n = 0 and n = 1 states, we obtain the PK−super-qubit

state( (Pashaev and Kocak, 2024(2, 5-10), (Pashaev and Kocak, 2025(3)).

Definition 7.1 The super-qubit quantum state is defined by ( (Pashaev and Kocak, 2024(2,

6-11), (Pashaev and Kocak, 2025(3))

|θ, φ, ζ〉 = cos
θ

2
|0, ζ〉 + sin

θ

2
eiφ|1, ζ〉, (7.11)

or in explicit form:

|θ, φ, ζ〉 = cos
θ

2

|0〉0
 + sin

θ

2
eiφ 1√

1 + |ζ |2

 |1〉ζ |0〉
 , (7.12)

which is characterized by two real parameters θ, φ and one complex parameter ζ.

For this state, the first two parameters θ and φ are angles on the unit sphere, which we

call the super-Bloch sphere. The north pole of the sphere at θ = 0 corresponds to the zero

number of super-particles in the state |0, 0, ζ〉, while the south pole at θ = π corresponds

to the one super-particle in the state |π, 0, ζ〉. Any point on the sphere represents a su-
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perposition of these two states with varying levels of entanglement. The probabilities of

measuring the basis states are:

p0 = |〈0, ζ |θ, φ, ζ〉|2 = cos2 θ

2
, p1 = |〈1, ζ |θ, φ, ζ〉|2 = sin2 θ

2
. (7.13)

The super-qubit state is a natural generalization of the fermionic or bosonic one-qubit

states.

Proposition 7.1 In the limiting cases, the PK−super-qubit state (7.12) reduces to sepa-

rable qubit states: 1. For ζ = 0, the state is a separable one-qubit bosonic state:

|θ, φ, 0〉 = cos
θ

2

|0〉0
 + sin

θ

2
eiφ

|1〉0
 = |0〉 f ⊗ |θ, φ〉b, (7.14)

2. For ζ = ∞, the state is a separable one-qubit fermionic state:

|θ, φ,∞〉 = cos
θ

2

|0〉0
 + sin

θ

2
eiφ

 0

|0〉

 = |θ, φ〉 f ⊗ |0〉b. (7.15)

In general, the state is entangled.

Proposition 7.2 For ζ = eiγ, so that |ζ |2 = 1, the PK−super-qubit state reduces to the

form:

|θ, φ, eiγ〉 = cos
θ

2

|0〉0
 + sin

θ

2
eiφ 1
√

2

 |1〉eiγ|0〉

 , (7.16)

for γ = 0, π, giving the pair of states:

|θ, φ,±〉 = cos
θ

2

|0〉0
 + sin

θ

2
eiφ 1
√

2

 |1〉±|0〉
 , (7.17)

which are considered as the reference states in (Pashaev and Kocak, 2025). The corre-
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sponding one super-particle states

|π, φ, eiγ〉 = |1, eiφ〉 =
1
√

2

 |1〉eiγ|0〉

 , (7.18)

are maximally entangled states with C = 1.

Proposition 7.3 The super-qubit state (7.11) is a fermion-boson entangled state with con-

currence in the product form:

C = sin2 θ

2
·

2|ζ |
1 + |ζ |2

. (7.19)

For ζ = 0 and ζ = 1, the super-qubit state is separable, and C = 0. For |ζ | = 1, the

concurrence is:

C = sin2 θ

2
, (7.20)

as in the special super-qubit case (Pashaev and Kocak, 2025, 5-11).

7.2. PK-supersymmetric annihilation operator

Proposition 7.4 The super-qubit state (7.11) is the reference state annihilated by the

super-annihilation operator:

A−1/ζ =

a −1
ζ

0 a

 , A−1/ζ |θ, φ, ζ〉 = 0. (7.21)

This follows from the observation that for the basis states A−1/ζ |0, ζ〉 = 0 and A−1/ζ |1, ζ〉 =

0. The operators satisfy the following commutation relations with the super-number op-

erator:

[N, A−1/ζ] = −A−1/ζ , [N, A†
−1/ζ] = A†

−1/ζ , (7.22)

[A−1/ζ , A
†

−1/ζ] = I +
1
|ζ |2

σ3 ⊗ Ib. (7.23)
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In the limit ζ → ∞, the operator becomes the direct product I f ⊗ a, and the algebra

becomes identical to that of the bosonic operators. In a similar manner to previous chapter,

we can introduce supersymmetric coherent state.

Definition 7.2 The PK−supersymmetric coherent state, associated with the PK−super-

qubit reference state (7.11), is defined as

|α, θ, φ, ζ〉 = D(α)|θ, φ, ζ〉 (7.24)

whereD(α) given in (6.40).

Proposition 7.5 The PK−super-coherent state can be represented as:

|α, θ, φ, ζ〉 = cos
θ

2

|0, α〉0

 + sin
θ

2
eiφ 1√

1 + |ζ |2

 |1, α〉ζ |0, α〉

 , (7.25)

where |0, α〉 = D(α)|0〉 and |1, α〉 = D(α)|1〉 are defined in (C.17) and (C.18).

Proposition 7.6 The super-coherent states (7.25) are eigenstates of the super-annihilation

operator A−1/ζ:

A−1/ζ |α, θ, φ, ζ〉 = α|α, θ, φ, ζ〉. (7.26)

Proof We begin by noting the commutation relation:

[A−1/ζ ,D(α)] = A−1/ζD(α) −D(α)A−1/ζ = αD(α),

which will be useful when applying this operator to the state. Now, we apply A−1/ζ to the

state |α, θ, φ, ζ〉 as follows

A−1/ζ |α, θ, φ, ζ〉 = A−1/ζD(α)|θ, φ, ζ〉,
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by the commutation relation, this can be rewritten as

A−1/ζ |α, θ, φ, ζ〉 = D(α)A−1/ζ |θ, φ, ζ〉 + αD(α)|θ, φ, ζ〉.

The first term on the right-hand side vanishes due to the property A−1/ζ |θ, φ, ζ〉 = 0, leaving

us with

A−1/ζ |α, θ, φ, ζ〉 = α|α, θ, φ, ζ〉.

�

7.2.1. Entanglement of PK-supersymmetric Coherent states

In order to calculate the entanglement of the state (7.25), we note that

|α, θ, φ, ζ〉 = D(α)|θ, φ, ζ〉 = |0〉 f ⊗ D(α)|ψ0〉 + |1〉 f ⊗ D(α)|ψ1〉, (7.27)

where for the reference state, we have

|θ, φ, ζ〉 = |0〉 f ⊗ |ψ0〉 + |1〉 f ⊗ |ψ1〉, (7.28)

and

|α, θ, φ, ζ〉 = |0〉 f ⊗ |ψ0, α〉 + |1〉 f ⊗ |ψ1, α〉. (7.29)

Since the Fock states are connected by a unitary transformation

|ψ0, α〉 = D(α)|ψ0〉, |ψ1, α〉 = D(α)|ψ1〉, (7.30)

the inner products do not depend on α:

〈ψi, α|ψ j, α〉 = 〈ψi|D†(α)D(α)|ψ j〉 = 〈ψi|ψ j〉, (7.31)
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as well as the Gram determinant (6.9) of the inner products. Consequently, the concur-

rence C is also independent of α.

Corollary 7.2 The concurrence for the super-coherent state (7.25) coincides with that of

the super-qubit state (7.11) and is given by:

C = sin2 θ

2
·

2|ζ |
1 + |ζ |2

. (7.32)

7.3. Flipped PK-Super-Qubits and Super-Coherent States

The flipping operator is defined as

X = X ⊗ Ib = σ1 ⊗ Ib.

It acts on the fermion number of states as

X(N f ⊗ Ib)X = N̄ f ⊗ Ib, (7.33)

where N̄ f = diag(1, 0) corresponds to interchanging the number of fermions. Applying

operator X to the n- super-number state (7.1), we get the flipped state

X|n, ζ〉 =
|1〉 f ⊗ |n〉b + ζ |0〉 f ⊗ |n − 1〉b√

1 + |ζ |2
=

1√
1 + |ζ |2

 ζ |n − 1〉

|n〉

 . (7.34)

Proposition 7.7 The flipped one super-particle state is given by:

X|1, ζ〉 =
1√

1 + |ζ |2

 ζ |0〉|1〉
 =

ζ |0〉 f ⊗ |0〉b + |1〉 f ⊗ |1〉b√
1 + |ζ |2

, (7.35)
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The flipped PK−super-qubit state is:

X|θ, φ, ζ〉 = cos
θ

2

 0

|0〉

 + sin
θ

2
eiφ 1√

1 + |ζ |2

 ζ |0〉|1〉
 . (7.36)

Proposition 7.8 The concurrence for the state |Ψ〉 and the flipped state X|Ψ〉 is the same.

Proof If the state |Ψ〉 is represented as |Ψ〉 = |0〉 f ⊗ |ψ0〉 + |1〉 f ⊗ |ψ1〉, then the flipped

state is

X|Ψ〉 = X|0〉 f ⊗ |ψ0〉 + X|1〉 f ⊗ |ψ1〉 = |1〉 f ⊗ |ψ0〉 + |0〉 f ⊗ |ψ1〉. (7.37)

This implies that the result of flipping is an interchange of the Fock states |ψ0〉 and |ψ1〉.

From the representation of concurrence by the Gram determinant (6.9), it is clear that

the determinant is invariant under such interchange, and thus the concurrence remains

unchanged. �

Corollary 7.3 The concurrence for the flipped state (7.35) is equal to that of the state

|1, ζ〉:

C =
2|ζ |

1 + |ζ |2
. (7.38)

The concurrence for the flipped super-qubit state (7.36) is equal to that of the super-qubit

state:

C = sin2 θ

2
·

2|ζ |
1 + |ζ |2

. (7.39)

Proposition 7.9 Applying the flipping gate to the super-annihilation operator gives the

transposed operator

XA−1/ζX = AT
−1/ζ =


a 0

−1
ζ

a

 . (7.40)

The flipped super-qubit state is annihilated by this operator

AT
−1/ζX|θ, φ, ζ〉 = 0. (7.41)

Definition 7.3 The flipped PK−super-coherent state is defined by the action of the dis-

101



placement operator on the flipped super-qubit state:

|α, θ, φ, ζ〉χ = D(α)X|θ, φ, ζ〉. (7.42)

Since the operators D(α) and X commute, [D(α),X] = 0 , we have the following propo-

sition.

Proposition 7.10 The flipped PK−super-coherent state can be represented as:

X|α, θ, φ, ζ〉 = cos
θ

2

 0

|0, α〉

 + sin
θ

2
eiφ 1√

1 + |ζ |2

 ζ |0, α〉|1, α〉

 . (7.43)

It is the eigenvalue of the operator AT
−1/ζ:

AT
−1/ζX|α, θ, φ, ζ〉 = αX|α, θ, φ, ζ〉, (7.44)

and has the same concurrence (7.39) as the PK-super-qubit state.

7.4. Uncertainty Relations and Fibonacci Sequence for

PK-supersymmetric Coherent states

Proposition 7.11 The average values of the X and P operators in super-coherent states

are:

〈α, θ, φ, ζ |X|α, θ, φ, ζ〉 =
√

2 Re(α) +
sin θ cos φ
√

2
√

1 + |ζ |2
, (7.45)

〈α, θ, φ, ζ |P|α, θ, φ, ζ〉 =
√

2 Im(α) +
sin θ sin φ
√

2
√

1 + |ζ |2
. (7.46)

Definition 7.4 The classical values of coordinate and momentum are denoted as xc =
√

2 Re(α) and yc =
√

2 Im(α) in the complex plane α. The spherical coordinates on the
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super-Bloch sphere are:

x = sin θ cos φ, y = sin θ sin φ, z = cos θ, (7.47)

so that 2 sin2 θ
2 = 1 − z, and x2 + y2 + z2 = 1.

Corollary 7.4 The average values of the coordinate and momentum are projections:

〈α, θ, φ, ζ |X|α, θ, φ, ζ〉 = xc +
x

√
2
√

1 + |ζ |2
,

〈α, θ, φ, ζ |P|α, θ, φ, ζ〉 = yc +
y

√
2
√

1 + |ζ |2
.

Proposition 7.12 The dispersions of the X and P operators in super-coherent states are

independent of α and are given by:

(∆X)2 =
1
2

1 +
2 sin2 θ

2 − sin2 θ cos2 φ

1 + |ζ |2

 , (7.48)

(∆P)2 =
1
2

1 +
2 sin2 θ

2 − sin2 θ sin2 φ

1 + |ζ |2

 , (7.49)

or in terms of the Cartesian coordinates on the super-Bloch sphere:

(∆X)2 =
1
2

(
1 +

1 − z − x2

1 + |ζ |2

)
, (7.50)

(∆P)2 =
1
2

(
1 +

1 − z − y2

1 + |ζ |2

)
. (7.51)

For φ = π
4 , the coordinates x = y and the dispersions are equal. For the corresponding

state in the equatorial plane θ = π
2 , we have:

(∆X)2 = (∆P)2 =
1
2

(
1 +

1
2(1 + |ζ |2)

)
. (7.52)
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From this formula, for states with |ζ | = 1, we have:

(∆X)2 = (∆P)2 =
5
8

=
F5

F6
. (7.53)

This suggests constructing the sequence of states with the ratio of Fibonacci numbers for

any n.

Proposition 7.13 The sequence of circles in the complex plane ζ is given by:

|ζn|
2 =

Fn−1

Fn−2
−

1
2
, (7.54)

where Fn denotes the Fibonacci numbers. The dispersions are determined as:

(∆Xn)2 = (∆Pn)2 =
Fn

Fn+1
, (7.55)

and the uncertainty relations are:

∆Xn∆Pn =
Fn

Fn+1
. (7.56)

Corollary 7.5 The square of the radius of the circles |ζn|
2 oscillates around the value

corresponding to the limit n→ ∞, where:

|ζ∞|
2 = ϕ −

1
2
, (7.57)

with ϕ being the Golden Ratio. In this limit, we obtain the Golden dispersions:

(∆X∞)2 = (∆P∞)2 =
1
ϕ
, (7.58)

and the Golden uncertainty relation: ∆X∞∆P∞ =
1
ϕ

.
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CHAPTER 8

PQ-DEFORMED SUPERSYMMETRIC ANNIHILATION

OPERATOR

This Chapter introduces the pq-deformed supersymmetric annihilation operator

and supersymmetric quantum states under pq-deformation. First, we define the super-

symmetric pq-annihilation operator as

Âpq =

 pâpq 1

0 qâpq

 (8.1)

and corresponding supersymmetric pq-coherent state as eigenstate of this operator

Âpq|A〉pq = α|A〉pq. (8.2)

We notice that pq numbers are symmetric under p ↔ q exchange. However, definition

(8.1) is not symmetric to p ↔ q exchange and bosonic, fermionic state definition. The

different choice of p and q parameters gives following particular reductions.

1)Supersymmetric non-symmetric q-annihilation operator: When we choose p =

1, the supersymmetric pq-annihilation operator becomes in q−deformed form

Âq =

 âq 1

0 qâq

 ,

where âq is annihilation operator of non-symmetric q-calculus (9.1). If in addition q→ 1,

then we get AZ−supersymmetric annihilation operator (5.1).

2)Supersymmetric, symmetric q-annihilation operator : By choosing p = 1
q , we
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get supersymmetric annihilation operator in the following form,

Âq̃ =

 1
q âq̃ 1

0 qâq̃

 ,

where âq̃ = â 1
q ,q
, is annihilation operator of q-symmetric oscillator.

3)Supersymmetric Golden-Fibonacci annihilation operator: If we choose p = ϕ

and q = ϕ
′

, so that [n]ϕϕ′ = Fn, the corresponding Supersymmetric annihilation operator

is

ÂF =

 ϕâF 1

0 ϕ
′

âF

 ,
where âF is annihilation operator of Golden-Fibonacci calculus (3.22).

4)Supersymmetric Tamm-Dankoff annihilation operator: When p → q, we get

Supersymmetric Tamm-Dankoff annihilation operator

ÂT D =

 qâT D 1

0 qâT D

 = q

 âT D
1
q

0 âT D

 ,

By denoting ε = 1
q , this operator can be represented in form similar to (A.1).

ÂT D = q

 âT D
1
q

0 âT D

 =
1
ε

 âT D ε

0 âT D

 .

Here âT D is TD annihilation operator.
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8.1. pq-Supersymmetric Coherent States

The coherent state |A〉pq can be splitted to the two parts,

|Ab〉pq = Cb

 |αp〉pq

0

 ,

|As〉pq = Cs


e
|α|2

p2q
pq

α
p2 |

α
p〉pq − e

|α|2

p2

pq q| α
′

pq〉pq

e
|α|2

p2

pq |
α
q 〉pq


,

where normalization constants(See Appendix B.2.2) are

C−2
s =

[ e |α|2p2

pq

2 e |α|2q2

pq +
1
p2 e

|α|2

p2q
pq

 +
|α|2

p4q2 e
|α|2

p2

pq

p
e |α|2p2

pq

 e |α|2

p2q2

pq

 − q2

e |α|2p2q
pq

2 ]
=

[ e |α|2p2

pq

2 e |α|2q2

pq +
1
p2 e

|α|2

pq2

pq

 +
|α|2

p4q2 e
|α|2

p2

pq

q e |α|2p2

pq

 e |α|2

p2q2

pq

 − q2

e |α|2p2q
pq

2 ] ,
C−2

b = e
|α|2

p2

pq .

These states are orthonormal states (See Appendix B.2.1)

pq〈Ab|Ab〉pq = pq〈As|As〉pq = 1 , pq〈Ab|As〉pq = 0,

so that an arbitrary pq−supersymmetric coherent state is

|A〉pq = c0|Ab〉pq + c1|As〉pq,

where pq〈A|A〉pq = 1, and as follows |c0|
2 + |c1|

2 = 1. By choosing

c0 = cos
θ

2
, c1 = eiφ sin

θ

2
,
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we obtain the superbloch sphere representation of supersymmetric pq−coherent states

|α; θ, φ〉pq = cos
θ

2
|Ab〉pq + eiφ sin

θ

2
|As〉pq . (8.3)

8.2. Uncertainty relations for pq-Supersymmetric Coherent States

The pq−deformed coordinate and momentum operators are defined as

x̂pq =

 â†pq + âpq
√

2

 ⊗ ÎF , p̂pq = i

 â†pq − âpq
√

2

 ⊗ ÎF . (8.4)

Proposition 8.1 The mean values of x̂pq, p̂pq, x̂2
pq, p̂2

pq, in |Ab〉pq state are

pq〈Ab|x̂pq|Ab〉pq ≡
1
p

√
2 Re(α),

pq〈Ab| p̂pq|Ab〉pq ≡
1
p

√
2 Im(α),

pq〈Ab|x̂2
pq|Ab〉pq ≡

1
2p2

ᾱ2 + α2 + (1 + q)|α|2 + p2
(
e
|α|2

p
pq

) e |α|2p2

pq

−1 ,
pq〈Ab| p̂2

pq|Ab〉pq ≡
1

2p2

−ᾱ2 − α2 + (1 + q)|α|2 + p2
(
e
|α|2

p
pq

) e |α|2p2

pq

−1 .
The proof is given in Appendix B.5.

Proposition 8.2 Dispersions of x̂ and p̂ in |Ab〉pq state are equal,

pq〈Ab|
(
∆x̂pq

)2
|Ab〉pq ≡ pq〈Ab|

(
∆ p̂pq

)2
|Ab〉pq

=
1

2p2

(q − 1)|α|2 + p2
(
e
|α|2

p
pq

) e |α|2p2

pq

−1 ,
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and uncertainty relation is

∆x̂pq∆ p̂pq =
1

2p2

(q − 1)|α|2 + p2
(
e
|α|2

p
pq

) e |α|2p2

pq

−1 . (8.5)

Proposition 8.3

pq〈As|x̂2
pq|As〉pq = |Cs|

2
[ (
−1

2p4q2 (α2
|α|2 + α2|α|2) +

(
q + 1
2p6 −

p + 1
p5q

)
|α|4

) e |α|2p2q
pq

2

e
|α|2

p2

pq

+

(
1

2p2q2 (α2 + α2) +

(
1

2p3q2 (p + 2q + (p + q)2) −
p + q + 1

p4

)
|α|2

) e |α|2p2

pq

2

e
|α|2

p2q
pq

+
|α|2

2p4

e |α|2p2q
pq

2

e
|α|2

p
pq +

(
|α|2

2p3q4 (α2 + α2) +
p + 1
2p3q4 |α|

4
) e |α|2p2

pq

2

e
|α|2

p2q2

pq

+
p + q + 1

2p2

e |α|2p2

pq

3

+

(
1

2q2 (α2
+ α2 + (q + 1)|α|2)

) e |α|2p2

pq

2

e
|α|2

q2

pq +
1
2

e |α|2p2

pq

2

e
p |α|

2

q2

pq ,

pq〈As|p̂2
pq|As〉pq = |Cs|

2
[ ( 1

2p4q2 (α2
|α|2 + α2|α|2) +

(
q + 1
2p6 −

p + 1
p5q

)
|α|4

) e |α|2p2q
pq

2

e
|α|2

p2

pq

+

(
−1

2p2q2 (α2 + α2) +

(
1

2p3q2 (p + 2q + (p + q)2) −
p + q + 1

p4

)
|α|2

) e |α|2p2

pq

2

e
|α|2

p2q
pq

+
|α|2

2p4

e |α|2p2q
pq

2

e
|α|2

p
pq +

(
−|α|2

2p3q4 (α2 + α2) +
p + 1
2p3q4 |α|

4
) e |α|2p2

pq

2

e
|α|2

p2q2

pq

+
p + q + 1

2p2

e |α|2p2

pq

3

+

(
−1
2q2 (α2

+ α2 − (q + 1)|α|2)
) e |α|2p2

pq

2

e
|α|2

q2

pq +
1
2

e |α|2p2

pq

2

e
p |α|

2

q2

pq .

Then,

pq〈As|
(
∆x̂pq

)2
|As〉pq = pq〈As|x̂2

pq|As〉pq −

(
1
q

√
2 Re(α)

)2

,

pq〈As|
(
∆p̂pq

)2
|As〉pq = pq〈As| p̂2

pq|As〉pq −

(
1
q

√
2 Im(α)

)2

.

The uncertainity relation for |A〉s takes the form (∆x̂)s (∆ p̂)s = 1 as p, q → 1,. The proof

is given in Appendix B.4.2.
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CHAPTER 9

Q-DEFORMED SUPERSYMMETRIC COHERENT STATES

This chapter explores q-deformed supersymmetric coherent states and their dy-

namics. We begin with the q-deformed quantum oscillator and the associated q-coherent

states, followed by an examination of their time evolution. Then, this chapter introduces

the q-supersymmetric annihilation operator, which is essential for defining these states

within a supersymmetric framework. We also look at the uncertainty relations, specific to

q-supersymmetric coherent states and explore how these states change over time.

9.1. The q-deformed quantum Oscillator and q-Coherent states

For non-symmetrical case, the q-number is defined as

[n]q ≡
qn − 1
q − 1

and the following algebraic relations are valid

aqa+
q − a+

q aq = qN , (9.1)

aqa+
q − qa+

q aq = 1, (9.2)

where aq and a+
q are annihilation and creation operators of non-symmetric q−calculus.

The definition of non-symmetrical q− number operator

a+
q aq = [N]q, aqa+

q = [N + 1]q
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gives

[N + 1]q − q[N]q = 1, (9.3)

[N + 1]q − [N]q = qN . (9.4)

In this case, the Fock space basis |n〉q is defined by

|n〉q =
(a+

q )n|0〉q√
[n]q!

,

where aq|0〉q = 0 and operators act on the basis as following

[N]q|n〉q = [n]q|n〉q ,

a+
q |n〉q =

√
[n + 1]q|n + 1〉q ,

aq|n〉q =

√
[n]q|n − 1〉q.

The Hamiltonian is

Hq =
~ω

2
([N]q + [N + 1]q) ,

with energy levels for the corresponding eigenstates |n〉q ;

En =
~ω

2
([n]q + [n + 1]q) ,

where n = 0, 1, 2, .. The limit n→ ∞ for [n]q gives

lim
n→∞

[n]q =

 ∞, q>1;
1

1−q , q<1.
(9.5)
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so that when |q| < 1

lim
n→∞

En =
~ω

1 − q
.

Theorem 9.1 The sequence of eigenstates En, n = 0, 1, 2, ..., is the Cauchy sequence for

|q| < 1.

Corollary 9.1 The maximum value of the energy spectrum for |q| < 1 is

E∞ = lim
n→∞

En =
~ω

1 − q
.

For the q-deformed quantum oscillator, we can define the q-coherent states as states that

generalize the concept of classical coherent states to this deformed case.

Definition 9.1 The q-coherent states are defined as eigenstates of âq operator

âq|α〉q = α|α〉q, (9.6)

where |α〉q =

∞∑
n=0

αn√
[n]q!

|n〉q.(not normalized state)

Proposition 9.1 The inner product of two q-coherent states |α〉q and |β〉q is

q〈β|α〉q = eαβq ,

where ex
q is defined by Eq.(3.8) and

q〈α|α〉q = e|α|
2

q .
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9.1.1. Time evolution of q-Coherent states

We define Hamiltonian in terms of q−Number operator

Hq =
i~ω
2

(
[N]q + [N + 1]q

)
,

then, the time evolution operator becomes

U(t) = e−i ~ω2 ([N]q+[N+1]q)t.

It provides the time evolution of q-coherent states, calculated as

U(t)|α〉q = |α, t〉q = Nq(t)
∞∑

n=0

αn e−i ~ω2 ([n]q+[n+1]q)t√
[n]q!

|n〉q ,

with normalization (Nq(t))−2 =

∞∑
n=0

|α|2n√
[n]q!

.

For normalized coherent states with q = 1, the average gives α(t) = α(0)e−iωt, as

solution of the classical harmonic oscillator equation, α̈(t) + ω2α(t) = 0. For arbitrary

q-coherent states, the average is the superposition

q〈α, t|aq|α, t〉q = αq(t) = α

∑∞
n=0

|α|2n
√

[n]q!
e−i ~ω2 (qn(q+1))t

∑∞
n=0

|α|2n
√

[n]q!

=

∞∑
n=0

αn(t) ,

where we have defined frequency ωn(q) = ω
q + 1

2
qn, and functions

αn(t) =
α√
e|α|

2

q

|α|2n√
[n]q!

e−i~ωn(q)t,
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satisfying

α̈n(t) + ω2
n(q)αn(t) = 0.

They represent the set of harmonic oscillators with frequencies in geometric progression.

The normalized time evolved q-coherent states also can be rewritten in following form

αq(t) =
α√
e|α|

2

q

∞∑
n=0

|α|2n

[n]q!
e−iω2 (qn(q+1))t

=
α√
e|α|

2

q

∞∑
k=0

1
k!

(
−i
ω

2
(q + 1)t

)k ∞∑
n=0

|α|2n

[n]q!
(qk)n

=
α√
e|α|

2

q

∞∑
k=0

1
k!

(
−i
ω

2
(q + 1)t

)k
eqk |α|2

q

= α

∞∑
k=0

1
k!

(
−i
ω

2
(q + 1)t

)k eqk |α|2

q√
e|α|

2

q

.

Definition 9.2 Function of two variables Fq(x, τ), is defined as

Fq(x, τ) =

∞∑
k=0

1
k!
τkeqk x

q =

∞∑
n=0

1
[n]q!

xneqnτ. (9.7)

Proposition 9.2 Function Fq(x, τ) satisfies the initial value problem for differential-difference

equation,

Dα
q Fq(x, τ) = Fq(x, qτ), (9.8)
∂

∂τ
Fq(x, τ) = Fq(qx, τ), (9.9)

Fq(x, 0) = ex
q , Fq(0, τ) = eτ. (9.10)
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Proof We aim to demonstrate the existence and uniqueness of function Fq(x, τ) that

satisfies the initial conditions. To achieve this, we expand the function in two variables

Fq(x, τ) =

∞∑
n=0

∞∑
m=0

bn,mxnτm.

and substitute to equations (9.8) and (9.9),respectively,

Dα
q Fq(x, τ) =

∞∑
n=1

∞∑
m=0

bn,m[n]qxn−1τm =

∞∑
n=0

∞∑
m=0

bn,mxn(qτ)m,

∂

∂τ
Fq(x, τ) =

∞∑
n=0

∞∑
m=0

bn,mxnmτm−1 =

∞∑
n=0

∞∑
m=0

bn,m(qx)nτm.

These give the recurrence relations for bn,m;

bn+1,m =
qm

[n + 1]q
bn,m,

bn,m+1 =
qn

m + 1
bn,m,

and by (9.10),

bn,m =
qnm

[n]q!m!
b0,0 .

Therefore, the solution has following form

Fq(x, τ) = b0,0

∞∑
n=0

∞∑
m=0

qnm

[n]q!m!
xnτm.
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Since Fq(0, 0) = 1, then b0,0 = 1.Thus, we have it in the form

Fq(x, τ) =

∞∑
n=0

∞∑
m=0

qnm

[n]q!m!
xnτm

=

∞∑
m=0

τm

m!

∞∑
n=0

(qm)nxn

[n]q!
=

∞∑
m=0

1
m!
τmeqk x

q ,

or

Fq(x, τ) =

∞∑
n=0

1
[n]q!

xneqnτ.

�

Proposition 9.3 The solution αq(t) can be expressed by the function (9.7) as follows:

αq(t) = α
Fq(|α|2,−iω2 (q + 1)t)√

Fq(|α|2, 0)
. (9.11)

9.2. q-Supersymmetric annihilation operator

In Chapter 5 and Chapter 7, we considered supersymmetric annihilation operator

Â in terms of bosonic operator â and deformation of it by parameter ζ. Here, by using âq

operators we propose a new supersymmetric annihilation operator in the form

Âq =

 qâq 1

0 âq

 . (9.12)

When q = 1 it reduces to the one in Eq.(5.1). This operator determines the q−supersymmetric

coherent state |A〉q as eigenstate of this operator,

Âq|A〉q = α|A〉q. (9.13)
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This supersymmetric q-coherent state |A〉q can be in two forms

|Ab〉q = Cb

 |αq 〉q0

 , (9.14)

|As〉q = Cs


α
q2 |

α
q 〉q − |

α
′

q 〉q

|α〉q

 . (9.15)

These states are orthonormal with normalization constants

C−2
s =

(
(q − 1)|α|2 + q2

q4

)
e
|α|2

q2

q + e|α|
2

q

C−2
b = e|α|

2

q .

9.3. Uncertainty relations for q−supersymmetric coherent state

The q-coordinate and the q-momentum operators are defined as

x̂q =

 â†q + âq
√

2

 ⊗ ÎF , p̂q = i

 â†q − âq
√

2

 ⊗ ÎF . (9.16)

For average values of these operators in supersymmetric q-coherent states |As〉q and |Ab〉q,

we have

q〈Ab|x̂q|Ab〉q ≡
1
q

√
2 Re(α),

q〈Ab| p̂q|Ab〉q ≡
1
q

√
2 Im(α).
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To calculate uncertainty relations, one needs to find the averages of operators X̂2
q and P̂2

p,

X̂2
q ⊗ ÎF =

(â†q)2 + (aq)2 + (q + 1)[N]q + 1
2

⊗ ÎF ,

P̂2
q ⊗ ÎF =

−(â†q)2 − (aq)2 + (q + 1)[N]q + 1
2

⊗ ÎF .

By using addition formulas in (9.3) and (9.4) for average in state |Ab〉q, we get

q〈Ab|X̂2
q |Ab〉q ≡

1
2

[
1 +

ᾱ2

q2 +
α2

q2 + (1 + q)
|α|2

q2

]
,

q〈Ab|P̂2
q|Ab〉q ≡

1
2

[
1 −

ᾱ2

q2 −
α2

q2 + (1 + q)
|α|2

q2

]
.

Proposition 9.4 The dispersions of x̂ and p̂ operators in |Ab〉q state are equal,

q〈Ab|
(
∆x̂q

)2
|Ab〉q ≡ q〈Ab|

(
∆ p̂q

)2
|Ab〉q =

1
2

+

(
(q − 1)

q2 |α|2
)
.

Corollary 9.2 The uncertainty relation in state |Ab〉q is

∆x̂q∆ p̂q =
1
2

+

(
(q − 1)

q2 |α|2
)
.

Proposition 9.5 The averages for the state |As〉q are

q〈As|x̂q|As〉q ≡
√

2 Re(α),

q〈Ab| p̂q|Ab〉q ≡
√

2 Im(α),
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then

q〈As|X̂2
q |As〉q = |Cs|

2
[(
|α|2

2q4 + ((q + 1)(q + 2) + 1)
|α|2

2q3 − (q + 2)
|α|2

q4

+(q + 1)
|α|4

2q6 + (q + 1)
|α|4

2q3 − (q + 1)
|α|4

q5

+
ᾱ2 + α2

2q3 |α|2 −
ᾱ2 + α2

2q4 |α|2 +
ᾱ2 + α2

2q2 +
(q + 2)

2q2

)
e
|α|2

q2

q

+

(
ᾱ2 + α2

2
+

q + 1
2
|α|2 +

1
2

)
e|α|

2

q

]
,

and

q〈As|P̂2
q|As〉q = |Cs|

2
[(
|α|2

2q4 + ((q + 1)(q + 2) + 1)
|α|2

2q3 − (q + 2)
|α|2

q4

+(q + 1)
|α|4

2q6 + (q + 1)
|α|4

2q3 − (q + 1)
|α|4

q5

−
ᾱ2 + α2

2q3 |α|2 +
ᾱ2 + α2

2q4 |α|2 −
ᾱ2 + α2

2q2 +
(q + 2)

2q2

)
e
|α|2

q2

q

+

(
−
ᾱ2 + α2

2
+

q + 1
2
|α|2 +

1
2

)
e|α|

2

q

]
.

These give dispersions in the form

q〈As|
(
∆x̂q

)2
|As〉q ≡ q〈As|

(
∆ p̂q

)2
|As〉q

= |Cs|
2
[(
|α|2

2q4 + ((q + 1)(q + 2) + 1)
|α|2

2q3 − (q + 2)
|α|2

q4 −
|α|2

q2

+

(
1

2q6 +
1

2q3 −
1
q5

)
(q + 1)|α|4 −

q − 1
q4 |α|

4 +
q + 2
2q2

)
e
|α|2

q2

q

+

(
q − 1

2
|α|2 +

1
2

)
e|α|

2

q

]
,

or

(
∆x̂q

)2

s
≡

(
∆ p̂q

)2

s
=

1
2

+
q − 1

2
|α|2 +

q+1
2q2

(
q−1
q2 |α|

2 + 1
)2

e
|α|2

q2

q

1
q2

(
q−1
q2 |α|2 + 1

)
e
|α|2

q2

q + e|α|
2

q

.
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Then, the uncertainty relation for state |As〉q is

(
∆x̂q

)
s

(
∆ p̂q

)
s

=
1
2

+
q − 1

2
|α|2 +

q+1
2q2

(
q−1
q2 |α|

2 + 1
)2

e
|α|2

q2

q

1
q2

(
q−1
q2 |α|2 + 1

)
e
|α|2

q2

q + e|α|
2

q

.

9.4. Time evolution of q−supersymmetric coherent state

To describe time evolution of q−supercoherent states we first show time evolution

of AZ-supercoherent states.

9.4.1. Time evolution of AZ−supersymmetric coherent states

The time evolution operator U(t) for supersymmetric oscillator is defined as

U(t) = e−i ~ω2 Ĥt = e−iωN̂t =

 e−iωNt 0

0 e−iω(N+1)t

 .

Application of operator U(t) to state |Ab〉 gives

|A, t〉b = U(t)|A〉b = e−
|α|2

2

 e−iωNt|α〉

0

 = e−
|α(t)|2

2

 |α(t)〉

0

 (9.17)

where α(t) = αe−iωt and for state |As〉,

|A, t〉s = U(t)|A〉s =
e−

|α|2
2

√
2

 ᾱe−iωNt|α〉 − e−iωNt|α
′

〉

e−iω(N+1)t|α〉

 (9.18)

= e−iωte−
|α|2

2

 ᾱ(t)|α〉 − |α(t)〉
′

|α(t)〉

 (9.19)
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This shows that time evolution of supersymmetric coherent state |A, t〉b is described by ro-

tation in complex plane α : α(t) = αe−iωt, with frequency ω. For supersymmetric coherent

state |A, t〉s ,we have an additional phase factor e−iωt.

9.4.2. Time evolution of q−deformed supersymmetric coherent states

For supersymmetric q-oscillator, the Hamiltonian is

Ĥqss = ω

 a+
q aq 0

0 aqa+
q

 = ω

 [N̂]q 0

0 [N̂ + 1]q

 = [N̂ss]q ,

and time evolution operator U(t) is (ω = 1),

U(t) =

 e−i[N̂]qt 0

0 e−i[N̂+1]qt

 .

Lemma 9.1 For complex number α, the following relation holds

qαDα
qαN = eln qαDα

qαN =

∞∑
n=0

(ln q)n

n!

(
αDα

q

)n
αN

=

∞∑
n=0

(ln q)n

n!

(
[N̂]q

)n
αN = eln q[N̂]qαN = q[N̂]qαN ,

where N is an arbitrary natural number. Then, for arbitrary analytic function f (α) =

∞∑
N=0

CNα
N ,

the relation is valid

qαDα
q f (α) = qαDα

q

∞∑
N=0

CNα
N =

∞∑
n=0

CNq[N̂]qαN =

∞∑
N=0

CN

N−1∏
s=0

qqs
αN ,

Proposition 9.6 The time evolution of q-supersymmetric coherent states, as given by
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equation (9.14), can be expressed formally as follows

|Ab(t)〉q = U(t)|Ab(t)〉q =
1√

e|α|
2/q2

q

 e−i[N̂]q t 0

0 e−i[N̂+1]q t


 |αq 〉q0

 (9.20)

=
1√

e|α|
2/q2

q

 e−i[N̂]q t|αq 〉q

0

 . (9.21)

Proof To begin , we start with formula

e−i[N̂]q t|α〉q =

∞∑
n=0

(−it)n

n!

(
[N̂]q

)n
|α〉q (9.22)

=

∞∑
n=0

(−it)n

n!

(
αDα

q

)n
|α〉q = e−iαDα

q t|α〉q (9.23)

where [N̂]q|α〉q =
qN − 1
q − 1

|α〉q =
|qα〉q − |α〉q

q − 1
|α〉q = αDα

q |α〉q. Then, by using the above lemma,

we have

q[N̂]q = eln q(1+q+q2+...+qN−1) = eln qe(ln q) q...e(ln q) qN−1
= q.qq.qq2

...qq(N−1) =

N−1∏
s=0

qqs
. (9.24)

Since q-number can be expressed by Bernoulli polynomials,

[N̂]q = N̂ +

∞∑
m=1

(Bm+1(N) − Bm+1(0))
(ln q)m

(m + 1)!
(9.25)

we can write

e−i[N̂]q t|α〉q = e−iαDα
q t
∞∑

N=0

αN√
[N]q!

|N〉q (9.26)

=
(
αe−it

)N
∞∑

N=0

|N〉q√
[N]q!

∞∏
k=1

e−it(ln q)k Bk+1(N)
(k+1)!

e−it(ln q)k Bk+1
(k+1)!

. (9.27)
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Then,

|Ab(t)〉q = U(t)|Ab(t)〉q =
1√

e|α|
2/q2

q

 e−i[N̂]q t|αq 〉q

0

 (9.28)

=
1√

e|α|
2/q2

q

(
αe−it

)N
∞∑

N=0

|N〉q
qN

√
[N]q!

∞∏
k=1

e−it(ln q)k Bk+1(N)
(k+1)!

e−it(ln q)k Bk+1
(k+1)!

(9.29)

�
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CHAPTER 10

CONCLUSION

In the present thesis, we have studied new class of coherent states for supersym-

metric quantum oscillator and its relations with superqubit unit of quantum information.

By generalizing supersymmetric annihilation operator of Aragone and Zypmann, we con-

structed four different type of supersymmetric coherent states related with the Bell two-

qubit quantum states. These Bell super-qubit states determine the Bell-Based supersym-

metric coherent states, which we created by using displacement operator. These states are

entangled and we quantified the level of entanglement between bosons and fermions by

the concurrence characteristics and the Von-Neumann entropy. We studied several prop-

erties of these Bell based super coherent states, as orthogonality and time evolution of en-

tanglement. Uncertainty relation for these entangled super coherent states are expressed

in terms of the concurrence. Monotonical dependence of uncertainty in concurrence C

shows that the uncertainty relations can be also considered as a measure of entanglement.

In fact, minimum uncertainty corresponds to seperable coherent stateas and maximal un-

certainty corresponds to maximally entagled states. This allowed us to see the influence

of entanglement on uncertainty relations. Particularly, we found quadrature squeezing

of coordinate and momentum uncertainties. Moreover, we describe infinite sequence of

super coherent states with uncertainty relations, determined by ratio of two Fibonacci

numbers. The limiting state n → ∞ is the Golden-supercoherent state and corresponding

uncertainty relation is determined by the Golden ratio.

As a generalization of previous results, we introduced the generic super-qubit

quantum state, where the one super-particle state is determined by complex parameter

ζ as stereographic projection of corresponding unit sphere. This allowed us to intro-

duce the concept of PK-super-qubit quantum states, which are parametrized by two unit

spheres. These states determine the so called PK-supersymmetric coherent states and we

found entanglement of these states. The information content of PK-super-qubit quan-

tum states is twice bigger than the standard qubit state. For PK-supersymmetric coher-

ent states, we constructed corresponding flipped states. Then, Fibonacci sequence of
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PK-supersymmetric coherent states with correponding uncertainty relations was derived.

Finally, we described pq−deformed supersymmetric annihilation operator, correspond-

ing pq−supersymmetric coherent states and uncertainty relations. More explicit form of

these calculations, including time evoluiton, we did for particular case of q−deformed

supersymmetric coherent states.
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APPENDIX A

GENERALIZATION OF SUPERSYMMETRIC

ANNIHILATION OPERATOR

In Section 7.2, we have introduced the supersymmetric annihilation operator and

corresponding PK−supercoherent states. By using conformal mapping ε = −1
ζ
, we get

annihilation operator in the form

Âε =

 â ε

0 â

 , (A.1)

where ε ∈ C is a complex parameter. When ε = 1, this operator reduces to the super-

symmetric annihilation operator defined in equation (5.1). For ε = 0, it simplifies to

Âε=0 = Î ⊗ â. The operator Âε satisfies the commutation relation [Âε, Ĥ] = ωÂε and has

an internal commutation structure

[Âε, Â†ε] =

 1 + |ε|2 0

0 1 − |ε|2

 = Î + |ε|2σ3.

In particular, for ε = 0, this reduces to [Âε=0, Â
†

ε=0] = Î, while for ε = 1, it yields

[Âε=1, Â
†

ε=1] = Î − N̂ f .The supercoherent states |α〉scs are defined as the eigenstates of

the supersymmetric annihilation operator Âε(A.1),

Âε|α〉scs = α|α〉scs. (A.2)

These states can be expressed as a linear combination of two basis eigenstates

|α〉scs = a0|α〉b + c1|α̃〉s,
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where the basis states are given by

|α〉b ≡

 |α〉0
 , |α̃〉s ≡

1
√

2

 −ε|α
′

〉

|α〉

 . (A.3)

However, these basis states are not orthogonal, a new state can be defined as

|α〉s ≡ λ|α〉b + µ|α̃〉s,

which is orthogonal to |α〉b when λ = εµα. Thus, the orthogonal set of states consists of

|α〉b and |α〉s = µ (εα|α〉b + |α̃〉s) . After normalization, the orthogonal states are obtained

as

|Aε〉b = e−
|α|2

2

 |α〉0
 , |Aε〉s =

e−
|α|2

2√
1 + |ε|2

 εα|α〉 − ε|α
′

〉

|α〉

 .
It is observed that the state |Aε〉b does not depend on ε and is determined solely by the

Glauber coherent state |α〉. Therefore, the index ε is omitted for this state.

A.1. Coordinate and Momentum Representation of

ε-Supersymmetric coherent States

Since |Aε〉b ≡ |A〉b, their representations are identical, it is sufficient to perform

calculations for |Aε〉s.The coordinate representations for the ε-supersymmetric state |Aε〉s

provide the following wave functions. For the bosonic component, the coordinate wave

function is given by

b〈x|Aε〉s =

√
2ε√

1 + |ε|2

e−
|α|2

2

π1/4 e−
(
x− α√

2

)2

e
x2
2 (
√

2 Re(α) − x), (A.4)
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while the fermionic component has the form

f 〈x|Aε〉s =
1√

1 + |ε|2

e−
|α|2

2

π1/4 e−
(
x− α√

2

)2

e
x2
2 . (A.5)

From these wave functions, the corresponding probability distributions in the coordinate

representation can be derived. For the fermionic component, the probability distribution

is

| f 〈x|Aε〉s|
2 =

1
1 + |ε|2

1
√
π

e−(x−
√

2 Re(α))2

, (A.6)

and for the bosonic component,

|b〈x|Aε〉s|
2 =

2|ε|2

1 + |ε|2
1
√
π

e−(x−
√

2 Re(α))2 (
x −
√

2 Re(α)
)2
. (A.7)

Similarly, the momentum representations of the ε-supersymmetric states |Aε〉s can be cal-

culated based on the momentum eigenstates. The bosonic momentum representation for

|Aε〉s is

b〈p|Aε〉s = i

√
2ε√

1 + |ε|2

e−
|α|2

2

π1/4 e−
(
p+i α√

2

)2

e
p2
2
(
p −
√

2 Im(α)
)
, (A.8)

and the fermionic component in the momentum representation is

f 〈p|Aε〉s =
1√

1 + |ε|2

e−
|α|2

2

π1/4 e−
(
p+i α√

2

)2

e
p2
2 . (A.9)

The probability distributions in the momentum representation for these components are
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| f 〈p|A〉s|2 =
1

1 + |ε|2
1
√
π

e−(p−
√

2 Im(α))2

, (A.10)

|b〈p|A〉s|2 =
2|ε|2

1 + |ε|2
1
√
π

e−(p−
√

2 Im(α))2

(p −
√

2 Im(α))2. (A.11)

A.2. Uncertainity in Superqubit state

To calculate the uncertainty, it is necessary to determine both the mean 〈x̂〉 and the

mean of its square, 〈x̂2〉. Since the operators x̂ and p̂ are given by

x̂ =
1
√

2ω
(â + â†) , p̂ = i

√
ω

2
(â† − â),

we find that the expectation values in the states |Aε〉s and |A〉b are

s〈Aε|x̂|Aε〉s = b〈A|x̂|A〉b =
ᾱ + α
√

2ω
,

s〈Aε|p̂|Aε〉s = b〈A|p̂|A〉b = i
√
ω

2
(ᾱ − α),

where these results are independent of ε. Additionally, we have the following off-diagonal

elements:

s〈Aε|x̂|A〉b = −
ε̄√

2ω(1 + |ε|2)
,

s〈Aε| p̂|A〉b = −i
ε̄√

2ω(1 + |ε|2)
,

b〈A|x̂|Aε〉s = −
ε√

2ω(1 + |ε|2)
,

b〈A| p̂|Aε〉s = i
ε√

2ω(1 + |ε|2)
.
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Definition A.1 The state |α; ε, θ, φ〉scs represents a superqubit state given by:

|α; ε, θ, φ〉scs = cos
θ

2
|A〉b + eiφ sin

θ

2
|Aε〉s, (A.12)

and is parameterized by points on the super-Bloch sphere (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π). For

ε = 0, this state is a direct product of a single-qubit state |θ, φ〉 = cos θ
2 |0〉 + eiφ sin θ

2 |1〉

and the Glauber coherent state:

|α; ε = 0, θ, φ〉scs = |θ, φ〉 ⊗ |α〉e−
|α|2

2 .

If we calculate for the state in (A.12), then the expectation values of x̂ and p̂ for the state

|α; ε, θ, φ〉scs are

scs〈α; ε, θ, φ|x̂|α; ε, θ, φ〉scs =
ᾱ + α
√

2ω
−

sin θ√
2ω(1 + |ε|2)

(
εeiϕ + ε̄e−iϕ

2

)
,

scs〈α; ε, θ, φ| p̂|α; ε, θ, φ〉scs = i
√
ω

2
(ᾱ − α) + i

√
ω

2
sin θ√
1 + |ε|2

(
εeiϕ − ε̄e−iϕ

2

)
.

To calculate the mean values of the operator x̂2 in the states |A〉b and |Aε〉s, we start by

representing x̂2 in terms of the creation and annihilation operators â and â† as follows:

x̂2 =

(
1
√

2ω
(â + â†)

)2

=
1

2ω

(
(â†)2 + â2 + 2â†â + 1

)
,

p̂2 =

(
i
√
ω

2
(â† − â)

)2

=
−ω

2

(
(â†)2 + â2 − 2â†â − 1

)
.

Next, we evaluate the mean values for the terms in these expressions. First, for the state

|A〉b, we get

b〈A|â2|A〉b = α2 , b〈A|(â†)2|A〉b = ᾱ2 , b〈A|â†â|A〉b = |α|2.
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Similarly, for the state |Aε〉s , we obtain

s〈Aε|â2|Aε〉s = α2 , s〈Aε|(â†)2|Aε〉s = ᾱ2 , s〈Aε|â†â|Aε〉s = |α|2 +
|ε|2

1 + |ε|2
.

We also calculate additional cross terms

s〈Aε|â2|A〉b = 0 , b〈A|(â†)2|Aε〉s = 0

s〈Aε|(â†)2|A〉b =
−2ᾱε̄√
1 + |ε|2

, b〈A|â2|Aε〉s =
−2αε√
1 + |ε|2

s〈Aε|â†â|A〉b =
−αε̄√
1 + |ε|2

, b〈A|â†â|Aε〉s =
−ᾱε√
1 + |ε|2

.

By using above relations, we can expand the mean of x̂2 in |A〉b as

b〈A|x̂2|A〉b =
1

2ω

[
b〈A|â2 + (â†)2 + 2â†â + 1|A〉b

]
,

=
1

2ω

[
b〈A|â2|A〉b + b〈A|(â†)2|A〉b + 2 b〈A|â†â|A〉b +b 〈A|A〉b

]
,

=
1

2ω

[
(ᾱ + α)2 + 1

]
.

For the cross terms in |A〉b and |Aε〉s when calculating the mean value of the x̂2 operator,

we find

b〈A|x̂2|A〉b =
1

2ω

[
(ᾱ + α)2 + 1

]
s〈Aε|x̂2|Aε〉s =

1
2ω

[
(ᾱ + α)2 + 1 +

2|ε|2

1 + |ε|2

]
b〈A|x̂2|Aε〉s =

−ε

ω

 ᾱ + α√
1 + |ε|2


s〈Aε|x̂2|A〉b =

−ε̄

ω

 ᾱ + α√
1 + |ε|2

 ,
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and for the mean value of the p̂2 operator, the cross terms are given by

b〈A| p̂2|A〉b =
−ω

2

[
(α − ᾱ)2 − 1

]
s〈Aε| p̂2|Aε〉s =

−ω

2

[
(α − ᾱ)2 − 1 −

2|ε|2

1 + |ε|2

]
b〈A| p̂2|Aε〉s =

−ω

2

2ε(ᾱ − α)√
1 + |ε|2


s〈Aε| p̂2|A〉b =

−ω

2

2ε̄(α − ᾱ)√
1 + |ε|2

 .
Then, the mean values of the operator x̂2 for the super qubit state |α; ε, θ, φ〉scs is expanded

by

scs〈α; ε, θ, φ|x̂2|α; ε, θ, φ〉scs = cos2 θ

2 b〈A|x̂2|A〉b + cos
θ

2
sin

θ

2
eiφ

b〈A|x̂2|Aε〉s

+ cos
θ

2
sin

θ

2
e−iφ

s〈Aε|x̂2|A〉b + sin2 θ

2 s〈Aε|x̂2|Aε〉s

=
1

2ω

[
(ᾱ + α)2 + 1

]
+

1
ω

sin2 θ

2

[
|ε|2

1 + |ε|2

]
−

sin θ
2ω

ᾱ + α√
1 + |ε|2

(εeiφ + ε̄e−iφ).

Corollary A.1 The mean values of the operators x̂2 and p̂2 in the super qubit state

|α; ε, θ, φ〉scs are given by

scs〈α; ε, θ, φ|x̂2|α; ε, θ, φ〉scs =
1

2ω

[
(ᾱ + α)2 + 1

]
+

1
ω

sin2 θ

2

[
|ε|2

1 + |ε|2

]
−

1
2ω

sin θ
ᾱ + α√
1 + |ε|2

(
εeiφ + ε̄e−iφ

)
,

and

scs〈α; ε, θ, φ| p̂2|α; ε, θ, φ〉scs =
−ω

2

[
(α − ᾱ)2 − 1

]
+
ω

2
sin2 θ

2

[
2|ε|2

1 + |ε|2

]
−
ω

2
sin θ

ᾱ − α√
1 + |ε|2

(
εeiφ − ε̄e−iφ

)
.

136



Using the previous calculations, we determine the dispersions for the superqubit state

|α; ε, θ, φ〉scs

(∆x̂)2
scs =

1
2ω

+
1
ω

sin2 θ

2

[
|ε|2

1 + |ε|2

]
−

1
2ω

sin2 θ

1 + |ε|2

[
εeiφ + ε̄e−iφ

2

]2

(∆ p̂)2
scs =

ω

2
+
ω

2
sin2 θ

2

[
2|ε|2

1 + |ε|2

]
+
ω

2
sin2 θ

1 + |ε|2

[
εeiφ − ε̄e−iφ

2

]2

.

Corollary A.2 For the superqubit state |α; ε, θ, φ〉scs, the uncertainty relation is expressed

as

(∆x̂)2
scs (∆ p̂)2

scs =

[
1
2

+ sin2 θ

2

(
|ε|2

1 + |ε|2

)]2

−

[
1
2

+ sin2 θ

2

(
|ε|2

1 + |ε|2

)]
sin2 θ|ε|2

2(1 + |ε|2)

−
sin4 θ

4(1 + |ε|2)2

[
ε2e2iφ − (ε̄)2e−2iφ

4

]2

where ω = 1.

This expression is consistent with the uncertainty formula in Equation (5.27) when ε = 1.

For θ = 0 and θ = π, representing the states |A〉b and |Aε〉s respectively, we obtain

(∆x̂)2
b (∆p̂)2

b =
1
4
,

(∆x̂)2
s (∆ŝ)2

s =

(
1
2

+
|ε|2

1 + |ε|2

)2

.

The first result is independent of ε, while the second is bounded by

1
2
≤ (∆x̂)s (∆ p̂)s =

1
2

+
|ε|2

1 + |ε|2
≤

3
2
,

depending on |ε| → 0 or |ε| → ∞. In the limit |ε| = 0, the arbitrary superqubit state

achieves the minimum uncertainty

(∆x̂)scs (∆ p̂)scs =
1
2
.
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A.2.1. Coordinate and Momentum Representation for ε−superqubit

state

The coordinate representation of supersymmetric coherent states |α; ε, θ, φ〉scs can

be expressed in terms of fermionic and bosonic components. The coordinate representa-

tion of the fermionic part of the supersymmetric coherent state is given by

f 〈x|α; ε, θ, φ〉scs = cos
θ

2 f 〈x|A〉b + eiφ sin
θ

2 f 〈x|Aε〉s,

and expanding this expression, we get

f 〈x|α; ε, θ, φ〉scs =
1√

1 + |ε|2

e−
|α|2

2

π1/4 eiφ sin
θ

2
e

x2
2 e−

(
x− α√

2

)2
 .

The bosonic component of the supersymmetric coherent state in coordinate representation

can be expressed as

b〈x|α; ε, θ, φ〉scs = cos
θ

2 b〈x|A〉b + eiφ sin
θ

2 b〈x|Aε〉s,

which can be simplified to

b〈x|α; ε, θ, φ〉scs =
e−

|α|2
2

π1/4 e
x2
2

cos
θ

2
+

 √
2ε√

1 + |ε|2

 eiφ sin
θ

2
(
√

2 Re(α) − x)

 e−
(
x− α√

2

)2

.

The momentum representation of the supersymmetric coherent states |α; ε, θ, φ〉scs for the

fermionic part is given by

f 〈p|α; ε, θ, φ〉scs = cos
θ

2 f 〈p|A〉b + eiφ sin
θ

2 f 〈p|Aε〉s,
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which can be written as

f 〈p|α; ε, θ, φ〉scs =
1√

1 + |ε|2

 e−
|α|2

2

√
2π1/4

eiφ sin
θ

2
e

p2
2 e−

(
p+i α√

2

)2
 .

For the bosonic part, it is expressed by

b〈p|α; ε, θ, φ〉scs = cos
θ

2 b〈p|A〉b + eiφ sin
θ

2 b〈p|Aε〉s,

which expands further as

b〈p|α; ε, θ, φ〉scs =
e−

|α|2
2

π1/4 e
p2
2

cos
θ

2
−

 √
2ε√

1 + |ε|2

 ieiφ sin
θ

2
(
√

2 Im(α) − p)

 e−
(
p+i α√

2

)2

.
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APPENDIX B

PQ-COHERENT STATES

B.1. Inner products of pq-coherent states

In this section, we explore the inner products of pq-coherent states, which are

crucial for understanding the overlap between different coherent states in a given basis.

These inner products form the foundation for calculating various physical observables and

expectation values in the pq-coherent state. The analysis of these overlaps also provides

insight into the behavior of pq-deformed systems, revealing how quantum properties such

as uncertainty and coherence are affected by the deformation parameters p and q.

Proposition B.1 The inner product of the states
∣∣∣ β
λ

〉
pq

and
∣∣∣α′
µ

〉
pq

is given by the following

expression

〈
β

λ

∣∣∣∣∣α′µ
〉

pq

=
β

λµ
e
αβ
λµ

pq . (B.1)

Furthermore, for the case β = α, the inner product becomes:

〈
α

λ

∣∣∣∣∣α′µ
〉

pq

=
α

λµ
e
|α|2
λµ

pq ,

where λ and µ are real numbers.

Proof The inner product between the states is computed using the differentiation oper-

ator Dα
pq, which acts on the coherent state overlap. Then, we continue with substituting

the known result for the inner product and it results as following

〈
β

λ

∣∣∣∣∣α′µ
〉

pq

= Dα
pq

〈
β

λ

∣∣∣∣∣αµ
〉

pq

= Dα
pqe

αβ
λµ

pq =
β

λµ
e
αβ
λµ

pq .
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Lemma B.1 The inner product between the states
∣∣∣β′
λ

〉
pq

and
∣∣∣α′
µ

〉
pq

can be computed as

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq

=
1
λµ

e
p αβ
λµ

pq + q
αβ

(λµ)2 e
αβ
λµ

pq (B.2)

=
1
λµ

e
q αβ
λµ

pq + p
αβ

(λµ)2 e
αβ
λµ

pq . (B.3)

Proof The inner product is computed by applying the derivative operators Dα
pq and Dβ

pq.

First, by applying the derivative operator Dβ
pq to the exponential function, we obtain

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq

= Dα
pq

(
Dβ

pqe
αβ
λµ

pq

)
= Dα

pq

(
α

λµ
e
αβ
λµ

pq

)
.

By using equations (3.6) and (3.7) for the action of the differentiation operators, the ex-

pression becomes 〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq

=
1
λµ

e
p αβ
λµ

pq + q
αβ

(λµ)2 e
αβ
λµ

pq ,

or equivalently 〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq

=
1
λµ

e
q αβ
λµ

pq + p
αβ

(λµ)2 e
αβ
λµ

pq .

This completes the proof. �

Corollary B.1 When β = α, the inner product between the states simplifies to the follow-

ing forms

〈
α
′

λ

∣∣∣∣∣α′µ
〉

pq
=

1
λµ

(
q
λµ
|α|2e

|α|2
λµ

pq + e
p |α|

2
λµ

pq

)
, (B.4)

=
1
λµ

(
p
λµ
|α|2e

|α|2
λµ

pq + e
q |α|

2
λµ

pq

)
. (B.5)
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B.2. Orthogonality and Normalization of |Ab〉pq and |As〉pq states

To solve the eigenvalue problem in Eq. (8.2), we expand the state |A〉pq in terms

of the basis eigenstates

|0〉pq =

 |0〉pq

0

 , |bn〉pq =

 |n〉pq

0

 , | fn〉pq =

 0

|n − 1〉pq


 ,

then, the state |A〉pq can be written as

|A〉pq = a0|0〉pq +

∞∑
n=1

an|bn〉pq +

∞∑
n=1

cn| fn〉pq. (B.6)

Substituting this expression into Eq. (8.2) gives the following relations among the coeffi-

cients

an = an
αn

pn
√

[n]pq!
− c1

αn−1

pnqn−1
√

[n]pq!
[n]pq!, cn = c1

αn−1

qn−1
√

[n]pq!
,

and this leads to the following expression for |A〉pq

|A〉pq = a0

 |αp〉pq

0

 + c1

 −q| α
′

pq〉pq

|αq 〉pq

 = a0|Ãb〉pq + c1|Ãs〉pq.

Here, we define the states |Ãb〉pq and |Ãs〉pq as

|Ãb〉pq ≡

 |αp〉pq

0

 , |Ãs〉pq ≡

 −q| α
′

pq〉pq

|αq 〉pq

 .

This representation allows |A〉pq to be expressed in terms of the modified basis states |Ãb〉pq

and |Ãs〉pq, which are defined by the parameters α, p, and q. To examine the properties of
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the states |Ãb〉pq and |Ãs〉pq, we calculate their inner products as follows

pq〈Ãb|Ãb〉pq = e
|α|2

p2

pq ,

pq〈Ãs|Ãs〉pq =
1
p2

 1
p2q
|α|2e

|α|2

p2q2

pq + e
|α|2

pq2

pq

 + e
|α|2

q2

pq ,

which can also be expressed as

pq〈Ãs|Ãs〉pq =
1
p2

 1
pq2 |α|

2e
|α|2

p2q2

pq + e
|α|2

p2q
pq

 + e
|α|2

q2

pq .

From these calculations, it is clear that the states |Ãb〉pq and |Ãs〉pq are neither normalized

nor orthogonal, as shown by the non-zero inner product: pq〈Ãb|Ãs〉pq , 0.

B.2.1. Orthogonal |Ab〉pq and |As〉pq states

To construct a state orthogonal to |Ãb〉pq, we introduce a new state defined as

|As〉pq ≡ γ|Ãb〉pq + β|Ãs〉pq, where the coefficients γ and β are chosen to satisfy the or-

thogonality condition pq〈As|Ãb〉pq = 0. Specifically, let

γ = c
ᾱ

p2 e
|α|2

p2q
pq , β = c e

|α|2

p2

pq ,

with c being a normalization constant. This yields two orthogonal states:

|Ab〉pq ≡ cb

 |αp〉pq

0

 ,

and

|As〉pq ≡ cs


ᾱ
p2 e

|α|2

p2q
pq |

α
′

pq〉 − qe
|α|2

p2

pq |
α
′

pq〉

e
|α|2

p2

pq |
α
q 〉

 .
Thus, these states |Ab〉pq and |As〉pq are orthogonal, with pq〈Ab|As〉pq = 0.
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B.2.2. Normalization of |Ab〉pq and |As〉pq states

For normalization, the first step is to compute the following inner product

pq〈As|As〉pq = |Cs|
2
[ e |α|2p2q

pq

2
|α|2

p4

〈
α

p

∣∣∣∣∣αp
〉

pq
− e

|α|2

p2q
pq e

|α|2

p2

pq
qα
p2

〈
α

p

∣∣∣∣∣ α′pq

〉
pq

− e
|α|2

p2q
pq e

|α|2

p2

pq
qα
p2

〈
α
′

pq

∣∣∣∣∣αp
〉

pq
+

e |α|2p2

pq

2

q2
〈
α
′

pq

∣∣∣∣∣ α′pq

〉
pq

+

e |α|2p2

pq

2 〈
α

q

∣∣∣∣∣αq
〉

pq

]
.

This expression represents the full inner product in terms of the states involved, using the

results of previous calculations for the inner products between states which is derived in

(B.1) and (B.2) . An alternative form of the inner product can be written as:

pq〈As|As〉pq = |Cs|
2
[ e |α|2p2q

pq

2
|α|2

p4

e |α|2p2

pq

 +

e |α|2p2

pq

2 e |α|2q2

pq


+

e |α|2p2

pq

2
1
p2

 |α|2pq2 e
|α|2

p2q2

pq + e
|α|2

p2q
pq

 − e
|α|2

p2q
pq e

|α|2

p2

pq
q
p2

2|α|2

p4 e
|α|2

p2q
pq

 ].
Then, the expression must satisfy the following equation:

pq〈As|As〉pq = |Cs|
2
[ e |α|2p2

pq

2 e |α|2q2

pq

 +
1
p2

e |α|2p2

pq

2

e
|α|2

p2q
pq

+
|α|2

p4q2 e
|α|2

p2

pq

p
e |α|2p2

pq

 e |α|2

p2q2

pq

 − q2

e |α|2p2q
pq

2 ] = 1

From this equation, the normalization constant Cs can be computed. Solving for C−2
s is

achieved by using different form of inner product given in (B.4) and (B.5),

C−2
s =

[ e |α|2p2

pq

2 e |α|2q2

pq +
1
p2 e

|α|2

p2q
pq

 +
|α|2

p4q2 e
|α|2

p2

pq

p
e |α|2p2

pq

 e |α|2

p2q2

pq

 − q2

e |α|2p2q
pq

2 ]
=

[ e |α|2p2

pq

2 e |α|2q2

pq +
1
p2 e

|α|2

pq2

pq

 +
|α|2

p4q2 e
|α|2

p2

pq

q e |α|2p2

pq

 e |α|2

p2q2

pq

 − q2

e |α|2p2q
pq

2 ]
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Definition B.1 The normalized states |Ab〉pq and |As〉pq,

|Ab〉pq = Cb

 |αp〉pq

0

 ,

|As〉pq = Cs


e
|α|2

p2q
pq

α
p2 |

α
p〉pq − e

|α|2

p2

pq q| α
′

pq〉pq

e
|α|2

p2

pq |
α
q 〉pq


where

C−2
s =

[ e |α|2p2

pq

2 e |α|2q2

pq +
1
p2 e

|α|2

p2q
pq

 +
|α|2

p4q2 e
|α|2

p2

pq

p
e |α|2p2

pq

 e |α|2

p2q2

pq

 − q2

e |α|2p2q
pq

2 ] (B.7)

=

[ e |α|2p2

pq

2 e |α|2q2

pq +
1
p2 e

|α|2

pq2

pq

 +
|α|2

p4q2 e
|α|2

p2

pq

q e |α|2p2

pq

 e |α|2

p2q2

pq

 − q2

e |α|2p2q
pq

2 ] (B.8)

C−2
b = e

|α|2

p2

pq , (B.9)

form orthonormal basis for |A〉pq.

B.3. Expectation Value

In quantum mechanics , the expectation value is the probabilistic expected value

of the result of an measurement.

Definition B.2 Let Â be an operator on a Hilbert space and |ϕ〉 is a normalized state,

then the expectation value of Â in the state |ϕ〉 is defined as

〈Â〉 = 〈Â〉ϕ = 〈ϕ|Â|ϕ〉 (B.10)

Proposition B.2 For all α, β ∈ C, the transition elements involving the annihilation op-
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erator âpq between the states are given by the following relations:

pq

〈
β

λ

∣∣∣∣∣âpq

∣∣∣∣∣αµ
〉

pq
=

α

µ
e
β̄α
λµ

pq (B.11)〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq
=

α

λµ2 (p + q)e
p αβ
λµ

pq + q2 α
2β

λ2µ3 e
αβ
λµ

pq (B.12)

=
α

λµ2 (p + q)e
q αβ
λµ

pq + p2 α
2β

λ2µ3 e
αβ
λµ

pq (B.13)〈
β

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq
=

1
µ

e
p β̄α
λµ

pq + β̄α
q
λµ2 e

β̄α
λµ

pq (B.14)

=
1
µ

e
q β̄α
λµ

pq + β̄α
p
λµ2 e

β̄α
λµ

pq (B.15)〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣αµ
〉

pq
=

α2

λµ2 e
β̄α
λµ

pq . (B.16)

For the special case where β = α, λ = pq, and µ = p, the relations become:

〈
α
′

pq

∣∣∣∣∣âpq

∣∣∣∣∣ α′pq

〉
pq

=
α

p5q3

p2(q + p)e
|α|2

pq2

pq + |α|2e
|α|2

p2q2

pq


=

α

p3q5

q2(q + p)e
|α|2

p2q
pq + |α|2e

|α|2

p2q2

pq

〈
α

p

∣∣∣∣∣âpq

∣∣∣∣∣ α′pq

〉
pq

=
1
pq

e
|α|2
pq

pq +
|α|2

p3q
e
|α|2

p2q
pq

=
1
pq

e
|α|2

p2

pq +
|α|2

p2q2 e
|α|2

p2q
pq〈

α
′

pq

∣∣∣∣∣âpq

∣∣∣∣∣αp
〉

pq
=

α2

p3q2 e
|α|2

p2q
pq .

Proof The first relation follows directly from the definition of the pq−annihilation op-

erator. We now compute matrix element denoted as equation in (B.12). Using the action

of the annihilation operator from relation (3.30) gives following

〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq
=

〈
β
′

λ

∣∣∣∣∣ (qα
µ

∣∣∣∣∣α′µ
〉

pq
+

1
µ

∣∣∣∣∣ pαµ
〉

pq

)
=

qα
µ

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq
+

1
µ

〈
β
′

λ

∣∣∣∣∣ pαµ
〉

pq
.
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and after putting the inner product relation from equation (B.2), the matrix element be-

comes

〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq
=

qα
µ

 1
λµ

ep αβ
λµ

pq + q
αβ

λµ
e
αβ
λµ

pq

 +
1
λµ

(
αp
λµ

e
p αβ
λµ

pq

)
=

α

λµ2 (p + q)e
p αβ
λµ

pq + q2 α
2β

λ2µ3 e
αβ
λµ

pq .

Next, by symmetry, the matrix element in equation (B.13) can be derived similarly. Ap-

plying the action of the annihilation operator from equation (3.31) and alternative form of

inner product, we obtain

〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq
=

〈
β
′

λ

∣∣∣∣∣ ( pα
µ

∣∣∣∣∣α′µ
〉

pq
+

1
µ

∣∣∣∣∣qαµ
〉

pq

)
=

pα
µ

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq
+

1
µ

〈
β
′

λ

∣∣∣∣∣ pαµ
〉

pq

(B.3)
=

pα
µ

 1
λµ

eq αβ
λµ

pq + p
αβ

λµ
e
αβ
λµ

pq

 +
1
λµ

(
αq
λµ

e
p αβ
λµ

pq

)
=

α

λµ2 (p + q)e
q αβ
λµ

pq + p2 α
2β

λ2µ3 e
αβ
λµ

pq

Then, the third expression can be written as following sum by using expansion of

the states,

〈
β

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq
=

 ∞∑
n=0

β
n

λn
√

[n]pq!

 1
µ

∞∑
m=0

αm[m + 1]pq

µm
√

[m]pq!

 pq〈n|m〉pq,

=
1
µ

∞∑
n=0

(β̄α)n

(λµ)n[n]pq!
[n + 1]pq.

and by applying the relation [n + 1]pq = pn + q[n]pq, this becomes

〈
β

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq
=

1
µ

 ∞∑
n=0

(
p
β̄α

λµ

)n 1
[n]pq!

 + β̄α
q
λµ2

 ∞∑
n=1

(
β̄α

λµ

)n−1 1
[n − 1]pq!


=

1
µ

e
p β̄α
λµ

pq + β̄α
q
λµ2 e

β̄α
λµ

pq .
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If the alternative relation [n + 1]pq = qn + p[n]pq is used instead, the expression becomes

〈
β

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq
=

1
µ

e
q β̄α
λµ

pq + β̄α
p
λµ2 e

β̄α
λµ

pq ,

providing a symmetric alternative form for the matrix element. For the last equation,

while using the action of the pq−annihilation operator, the expression is written as

〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣αµ
〉

pq
=
α

µ

〈
β
′

λ

∣∣∣∣∣αµ
〉

pq
=
α

µ

(
α

λµ
e
β̄α
λµ

pq

)

by applying the inner product result from equation (B.1). This concludes the proof. �

Proposition B.3 The expectation value of the annihilation operator âpq in the state |As〉pq

is given by the following expression:

pq〈As|âpq|As〉pq =
α

q
.

Proof First, while using the expansion for the state |As〉pq, the expectation value can be

expressed as

pq〈As|âpq|As〉pq = |Cs|
2
[ e |α|2p2q

pq

2
|α|2

p4

〈
α

p

∣∣∣∣∣âpq

∣∣∣∣∣αp
〉

pq
− e

|α|2

p2q
pq e

|α|2

p2

pq
qα
p2

〈
α

p

∣∣∣∣∣âpq

∣∣∣∣∣ α′pq

〉
pq

− e
|α|2

p2q
pq e

|α|2

p2

pq
qα
p2

〈
α
′

pq

∣∣∣∣∣âpq

∣∣∣∣∣αp
〉

pq
+

e |α|2p2

pq

2

q2
〈
α
′

pq

∣∣∣∣∣âpq

∣∣∣∣∣ α′pq

〉
pq

+

e |α|2p2

pq

2 〈
α

q

∣∣∣∣∣âpq

∣∣∣∣∣αq
〉

pq

]
.

The matrix elements of the annihilation operator âpq used in this expression are derived

from the proposition (B.2), where each term of the expectation value corresponds to spe-

cific transitions between states. Alternatively, simplifying the terms, the expression can
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be written as

pq〈As|âpq|As〉pq = |Cs|
2
[ e |α|2p2q

pq

2
|α|2

p4

αpe
|α|2

p2

pq

 +

e |α|2p2

pq

2 αq e
|α|2

q2

pq


+

e |α|2p2

pq

2

q2

 α

p3q5

q2(p + q)e
|α|2

p2q
pq + |α|2e

|α|2

p2q2

pq


− e

|α|2

p2q
pq e

|α|2

p2

pq
q
p2

α α2

p3q
e
|α|2

p2q
pq + α

 1
pq

e
|α|2

p2

pq +
|α|2

p3q
e
|α|2

p2q
pq

 ].
= |Cs|

2α
[ e |α|2p2

pq

2 ( p + q
p3q

)
e
|α|2

p2q
pq +

1
q

e
|α|2

q2

pq −
1
p3 e

|α|2

p2q
pq


+|α|2

( 1
p5

e |α|2p2q
pq

2

e
|α|2

p2

pq +
1

p3q3

e |α|2p2

pq

2

e
|α|2

p2q2

pq

−
1

p4q

e |α|2p2q
pq

2

e
|α|2

p2

pq −
1
p5

e |α|2p2q
pq

2

e
|α|2

p2

pq

)]
.

To simplify the expectation value of the annihilation operator âpq in the state |As〉pq, we

begin by combining terms as follows:

pq〈As|âpq|As〉pq = |Cs|
2α

(
g1(|α|2) + |α|2g2(|α|2)

)
,

where the functions g1(|α|2) and g2(|α|2) are defined as:

g1(|α|2) =
1

p2q

e |α|2p2

pq

2 e |α|2p2q
pq + p2e

|α|2

q2

pq

 ,
g2(|α|2) =

1
p4q3 e

|α|2

p2

pq

pe
|α|2

p2

pq e
|α|2

p2q2

pq − q2

e |α|2p2q
pq

2 .
By using the normalization condition from equation (B.7), the resulting expression for

the expectation value simplifies significantly. Applying this normalization condition to

the calculation leads to:

pq〈As|âpq|As〉pq =
α

q
.

Thus, the expectation value is simplified to the final form. �

Corollary B.2 The expectation values of the operators x̂pq and p̂pq, defined in equation

149



(8.4), in the state |As〉pq are given by the following expressions:

pq〈As|x̂pq|As〉pq =
1
q

√
2 Re(α),

pq〈As| p̂pq|As〉pq =
1
q

√
2 Im(α).

These results show that the expectation values of the position operator x̂pq and the mo-

mentum operator p̂pq are proportional to the real and imaginary parts of the parameter

α, respectively, scaled by 1
q

√
2.

B.4. Uncertainty(Deviation)

Definition B.3 The uncertainty of the observable A is a measure of the spread of results

around the mean 〈Â〉. It is defined in the usual way, that is the difference between each

measured result and the mean is calculated.

(∆A)2
ϕ = 〈Â2〉ϕ − 〈Â〉2ϕ (B.17)

B.4.1. Uncertainty for |Ab〉pq state

In order to find uncertainty for state |Ab〉pq, we need to have following proposition

Proposition B.4 Let âpq and â†pq represent the pq−annihilation and pq−creation oper-

ators, respectively, and λ, µ, α, and β be complex parameters. The following identity
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holds:

pq

〈
β

λ

∣∣∣∣∣â2
pq

∣∣∣∣∣αµ
〉

pq
=

α2

µ2 e
β̄α
λµ

pq , (B.18)

pq

〈
β

λ

∣∣∣∣∣â†2
pq

∣∣∣∣∣αµ
〉

pq
=

β
2

λ2 e
β̄α
λµ

pq , (B.19)

pq

〈
β

λ

∣∣∣∣∣â†pqâpq

∣∣∣∣∣αµ
〉

pq
=

β̄α

λµ
e
β̄α
λµ

pq (B.20)

pq

〈
β

λ

∣∣∣∣∣âpqâ†pq

∣∣∣∣∣αµ
〉

pq
= e

p β̄α
λµ

pq + p
β̄α

λµ
e
β̄α
λµ

pq , (B.21)

= e
q β̄α
λµ

pq + q
β̄α

λµ
e
β̄α
λµ

pq . (B.22)

Proof The first two cases follow directly from the definition. For the third case, we

may proceed to prove the final case, as it can be derived by taking the Hermitian conju-

gate.Then, we start by evaluating the matrix element by applying the inner product from

equation (B.2),

pq

〈
β

λ

∣∣∣∣∣âpqâ†pq

∣∣∣∣∣αµ
〉

pq
= λµ

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq

(B.2)
= λµ

 1
λµ

e
p αβ
λµ

pq + q
αβ

(λµ)2 e
αβ
λµ

pq


= e

p β̄α
λµ

pq + p
β̄α

λµ
e
β̄α
λµ

pq .

and we can derive an alternative form of the same expression by using (B.3),

pq

〈
β

λ

∣∣∣∣∣âpqâ†pq

∣∣∣∣∣αµ
〉

pq
= e

q β̄α
λµ

pq + q
β̄α

λµ
e
β̄α
λµ

pq

�

Proposition B.5 Let x̂2
pq and p̂2

pq represent the pq−position and pq−momentum squared

operators. For the state |Ab〉pq, the expectation values of x̂2
pq and p̂2

pq are given by:

pq〈Ab|x̂2
pq|Ab〉pq =

1
2

α2

p2 +
α2

p2 + (q + 1)
|α|2

p2 + e
|α|2

p
pq

e |α|2p2

pq

−1 ,

151



and

pq〈Ab| p̂2
pq|Ab〉pq =

1
2

−α2

p2 −
α2

p2 + (q + 1)
|α|2

p2 + e
|α|2

p
pq

e |α|2p2

pq

−1 .
Proof To compute the expectation value of x̂2

pq for the state |Ab〉pq, we first express it in

terms of the creation and annihilation operators. The matrix element can be written as:

pq〈Ab|x̂2
pq|Ab〉pq =

e |α|2p2

pq

−1 (
pq〈

α
p | 0

) 
(

â† pq+âpq
√

2

)2
0

0
(

â† pq+âpq
√

2

)2


 |αp〉pq

0


=

〈
α

p

∣∣∣∣∣
 â†pq + âpq

√
2

2 ∣∣∣∣∣αp
〉

pq

=
1
2

e |α|2p2

pq

−1 (〈
α

p

∣∣∣∣∣â2
pq

∣∣∣∣∣αp
〉

pq
+

〈
α

p

∣∣∣∣∣â†2
pq

∣∣∣∣∣αp
〉

pq

+

〈
α

p

∣∣∣∣∣â†pqâpq

∣∣∣∣∣αp
〉

pq
+

〈
α

p

∣∣∣∣∣âpqâ†pq

∣∣∣∣∣αp
〉

pq

)
=

1
2

α2

p2 +
α2

p2 + (q + 1)
|α|2

p2 + e
|α|2

p
pq

e |α|2p2

pq

−1 ,
and substituting the given relations from Prop.(B.4) to the expression yields

pq〈Ab|x̂2
pq|Ab〉pq =

1
2

α2

p2 +
α2

p2 + (q + 1)
|α|2

p2 + e
|α|2

p
pq

e |α|2p2

pq

−1 .
By following similar steps for the momentum operator p̂2

pq, we find:

pq〈Ab| p̂2
pq|Ab〉pq =

1
2

−α2

p2 −
α2

p2 + (q + 1)
|α|2

p2 + e
|α|2

p
pq

e |α|2p2

pq

−1
�

Proposition B.6 The uncertainty relation for the state |Ab〉pq is given by

pq〈Ab|
(
∆x̂pq

)2
|Ab〉pq ≡ pq〈Ab|

(
∆p̂pq

)2
|Ab〉pq

=
1

2p2

(q − 1)|α|2 + p2
(
e
|α|2

p
pq

) e |α|2p2

pq

−1
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B.4.2. Uncertainty for |As〉pq state

Before proceeding with the calculation of the uncertainty for the state |As〉pq, it is

necessary to first determine the transition of the operator x̂2
pq. This requires deriving the

following relations

Proposition B.7 For all α, β ∈ C, the following transition relations hold for the operators

â†pq and âpq in terms of the parameters p, q, λ, and µ

〈
β
′

λ

∣∣∣∣∣â†2
pq

∣∣∣∣∣αµ
〉

pq
=

β̄

λ2

(
(p + q)e

p αβ̄
λµ

pq

)
+ q2 β̄

2α

λ3µ
e
αβ̄
λµ

pq (B.23)

=
β̄

λ2

(
(p + q)e

q αβ̄
λµ

pq

)
+ p2 β̄

2α

λ3µ
e
αβ̄
λµ

pq (B.24)〈
β
′

λ

∣∣∣∣∣â2
pq

∣∣∣∣∣αµ
〉

pq
=

βα2

λµ3 e
αβ̄
λµ

pq (B.25)〈
β
′

λ

∣∣∣∣∣â†pqâpq

∣∣∣∣∣αµ
〉

pq
= q

α2β

(λµ)2 e
αβ̄
λµ

pq +
α

λµ
e

p αβ̄
λµ

pq (B.26)

= p
α2β

(λµ)2 e
αβ̄
λµ

pq +
α

λµ
e

q αβ̄
λµ

pq (B.27)〈
β
′

λ

∣∣∣∣∣âpqâ†pq

∣∣∣∣∣αµ
〉

pq
=

α

λµ
(q + p)e

p αβ̄
λµ

pq + q2 α
2β̄

(λµ)2 e
αβ̄
λµ

pq (B.28)

=
α

λµ
(q + p)e

q αβ̄
λµ

pq + p2 α
2β̄

(λµ)2 e
αβ̄
λµ

pq . (B.29)

Moreover, for the special case where β = α, λ = pq, and µ = p, the relations become:

〈
α
′

pq

∣∣∣∣∣â†2
pq

∣∣∣∣∣αp
〉

pq
=
α|α|2

p4q
e
|α|2

p2q
pq +

α

p2q2 (p + q)e
|α|2
pq

pq (B.30)〈
α
′

pq

∣∣∣∣∣â2
pq

∣∣∣∣∣αp
〉

pq
=

α3

p4q
e
|α|2

p2q
pq (B.31)〈

α
′

pq

∣∣∣∣∣â†pqâpq

∣∣∣∣∣αp
〉

pq
=
α|α|2

p4q
e
|α|2

p2q
pq +

α

p2q
e
|α|2
pq

pq (B.32)〈
α
′

pq

∣∣∣∣∣âpqâ†pq

∣∣∣∣∣αp
〉

pq
=
α|α|2

p4 e
|α|2

p2q
pq +

α

p2q
(q + p)e

|α|2
pq

pq . (B.33)
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Proof We begin by considering the first expression, which can be expanded as follows

by using relation (3.30)

〈
β
′

λ

∣∣∣∣∣â†2
pq

∣∣∣∣∣αµ
〉

pq
=

〈
β
′

λ

∣∣∣∣∣â†pqâ†pq

∣∣∣∣∣αµ
〉

pq

= q
β̄µ

λ

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq
+
µ

λ

〈 pβ
λ

∣∣∣∣∣α′µ
〉

pq
,

if we substitute the inner product from equation (B.2) into the above expression , then this

substitution results

〈
β
′

λ

∣∣∣∣∣â†2
pq

∣∣∣∣∣αµ
〉

pq
= q

β̄µ

λ

(
1
λµ

e
p αβ̄
λµ

pq + q
αβ̄

(λµ)2 e
αβ̄
λµ

pq

)
+
µ

λ

(
p
β̄

λµ
e

p αβ̄
λµ

pq

)
=

β̄

λ2

(
(p + q)e

p αβ̄
λµ

pq

)
+ q2αβ̄

2

λ3µ
e
αβ̄
λµ

pq .

Applying a different formulation, we obtain

〈
β
′

λ

∣∣∣∣∣â†2
pq

∣∣∣∣∣αµ
〉

pq
=

〈
β
′

λ

∣∣∣∣∣â†pqâ†pq

∣∣∣∣∣αµ
〉

pq

(3.31)
= p

β̄µ

λ

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq
+
µ

λ

〈qβ
λ

∣∣∣∣∣α′µ
〉

pq

(B.3)
= p

β̄µ

λ

(
1
λµ

e
q αβ̄
λµ

pq + p
αβ̄

(λµ)2 e
αβ̄
λµ

pq

)
+
µ

λ

(
q
β̄

λµ
e

p αβ̄
λµ

pq

)
=

β̄

λ2

(
(p + q)e

q αβ̄
λµ

pq

)
+ p2αβ̄

2

λ3µ
e
αβ̄
λµ

pq

For the second expression, we start by using the properties of the operator â2
pq, which

allows us to rewrite this expression as

〈
β
′

λ

∣∣∣∣∣â2
pq

∣∣∣∣∣αµ
〉

pq
=
α2

µ2

〈
β
′

λ

∣∣∣∣∣αλ
〉

pq
=
βα2

λµ3 e
αβ̄
λµ

pq

In the case of the third formula, we begin by evaluating the matrix element. First, we

rewrite the expression using the definition of the annihilation operator and action of the
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creation operator which is defined in equation (3.30) as

〈
β
′

λ

∣∣∣∣∣â†pqâpq

∣∣∣∣∣αµ
〉

pq
=

α

µ

〈
β
′

λ

∣∣∣∣∣â†pq

∣∣∣∣∣αλ
〉

pq

= q
αβ̄

λµ

〈
β
′

λ

∣∣∣∣∣αµ
〉

pq
+
α

λµ

〈
p
β

λ

∣∣∣∣∣αµ
〉

pq

(B.1)
= q

α2β

(λµ)2 e
αβ̄
λµ

pq +
α

λµ
e

p αβ̄
λµ

pq .

Alternatively, applying relation from equation (3.31) follows

〈
β
′

λ

∣∣∣∣∣â†pqâpq

∣∣∣∣∣αµ
〉

pq
=

α

µ

〈
β
′

λ

∣∣∣∣∣â†pq

∣∣∣∣∣αλ
〉

pq

= p
αβ̄

λµ

〈
β
′

λ

∣∣∣∣∣αµ
〉

pq
+
α

λµ

〈
q
β

λ

∣∣∣∣∣αµ
〉

pq

(B.1)
= p

α2β

(λµ)2 e
αβ̄
λµ

pq +
α

λµ
e

q αβ̄
λµ

pq .

Next, we turn to the last expression as applying the relation from equation (B.2) and this

yields

〈
β
′

λ

∣∣∣∣∣âpqâ†pq

∣∣∣∣∣αµ
〉

pq
= µ

〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq

(3.30)
= qα

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq
+

〈
β
′

λ

∣∣∣∣∣pαµ
〉

pq

= qα
(

1
λµ

(
e

p αβ̄
λµ

pq + q
αβ̄

λµ
e
αβ̄
λµ

pq

))
+ p

α

λµ
e

p αβ̄
λµ

pq

=
α

λµ
(q + p)e

p αβ̄
λµ

pq + q2 α
2β̄

(λµ)2 e
αβ̄
λµ

pq .
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As another option, by using the inner product result from equation (B.3) after applying

(3.31), we get

(B.29) :
〈
β
′

λ

∣∣∣∣∣âpqâ†pq

∣∣∣∣∣αµ
〉

pq
= µ

〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq

= pα
〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq
+

〈
β
′

λ

∣∣∣∣∣qαµ
〉

pq

(B.3)
= pα

(
1
λµ

(
e

q αβ̄
λµ

pq + p
αβ̄

λµ
e
αβ̄
λµ

pq

))
+ q

α

λµ
e

q αβ̄
λµ

pq

=
α

λµ
(q + p)e

q αβ̄
λµ

pq + p2 α
2β̄

(λµ)2 e
αβ̄
λµ

pq

�

Proposition B.8 The expectation values of x̂2
pq for the states are given as follows

〈
α

q

∣∣∣∣∣x̂2
pq

∣∣∣∣∣αq
〉

pq
=

1
2

e
|α|2

q2

pq

α2

q2 +
α2

q2 +
|α|2

q2 +
|α|2

q
+

e |α|2q2

pq

−1

e
p|α|2

q2

pq

 , (B.34)

〈
α

p

∣∣∣∣∣x̂2
pq

∣∣∣∣∣αp
〉

pq
=

1
2

(α2

p2 +
α2

p2 + (q + 1)
|α|2

p2

)
e
|α|2

p2

pq + e
|α|2

p
pq

 , (B.35)〈
α
′

pq

∣∣∣∣∣x̂2
pq

∣∣∣∣∣αp
〉

pq
=

1
2

(
1

p4q
(α|α|2 + α3 + α|α|2 + qα|α|2

)
e
|α|2

p2q
pq (B.36)

+
1

p2q2

(
(p + q)α + qα + (q2 + pq)α)e

|α|2
pq

pq

)
. (B.37)

Proof The first two results follow easily from Eqs.(B.18)− (B.22). For the third expres-

sion, we proceed as using the decomposition of x̂2
pq in terms of the creation and annihila-

tion operators

〈
α
′

pq

∣∣∣∣∣x̂2
pq

∣∣∣∣∣αp
〉

pq
=

1
2

(〈
α
′

pq

∣∣∣∣∣â†2
pq

∣∣∣∣∣αp
〉

pq
+

〈
α
′

pq

∣∣∣∣∣â2
pq

∣∣∣∣∣αp
〉

pq

+

〈
α
′

pq

∣∣∣∣∣â†pqâpq

∣∣∣∣∣αp
〉

pq
+

〈
α
′

pq

∣∣∣∣∣âpqâ†pq

∣∣∣∣∣αp
〉

pq

)
=

1
2

( 1
p4q

(α|α|2 + α3 + α|α|2 + qα|α|2)e
|α|2

p2q
pq

+
1

p2q2 ((p + q)α + qα + (q2 + pq)α)e
|α|2
pq

pq

)
.
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Next, taking the Hermitian conjugate of this expression, we get

〈
α

p

∣∣∣∣∣x̂2
pq

∣∣∣∣∣ α′pq

〉
pq

=
1
2

( 1
p4q

(α|α|2 + α3
+ α|α|2 + qα|α|2)e

|α|2

p2q
pq (B.38)

+
1

p2q2 ((p + q)α + qα + (q2 + pq)α)e
|α|2
pq

pq

)
.

�

Proposition B.9 Let âpq and â†pq represent the pq−annihilation and pq−creation opera-

tors, respectively. The matrix elements involving these operators for the states
∣∣∣α′
λ
〉pq and∣∣∣α′

µ
〉pq are given as follows:

〈
β
′

λ

∣∣∣∣∣â2
pq

∣∣∣∣∣α′µ
〉

pq
=

α2

λµ3 (p2 + pq + q2)e
q αβ̄
λµ

pq +
p3α3β̄

λ2µ4 e
αβ̄
λµ

pq (B.39)

=
α2

λµ3 (p2 + pq + q2)e
p αβ̄
λµ

pq +
q3α3β̄

λ2µ4 e
αβ̄
λµ

pq (B.40)〈
β
′

λ

∣∣∣∣∣â†pqâpq

∣∣∣∣∣α′µ
〉

pq
= p3 β̄

2α2

(λµ)3 e
αβ̄
λµ

pq +
αβ̄

(λµ)2 (p2 + 2pq)e
q αβ̄
λµ

pq +
1
λµ

e
q2 αβ̄

λµ

pq (B.41)

= q3 β̄
2α2

(λµ)3 e
αβ̄
λµ

pq +
αβ̄

(λµ)2 (q2 + 2pq)e
p αβ̄
λµ

pq +
1
λµ

e
p2 αβ̄

λµ

pq . (B.42)

When α = β and λ = µ = pq, the following holds:

〈
α
′

pq

∣∣∣∣∣â2
pq

∣∣∣∣∣ α′pq

〉
pq

=
α2

(pq)4 (q2 + pq + p2)e
|α|2

p2q
pq + p3α

2|α|2

(pq)6 e
|α|2

p2q2

pq

=
α2

(pq)4 (q2 + pq + p2)e
|α|2

pq2

pq + q3α
2|α|2

(pq)6 e
|α|2

p2q2

pq〈
α
′

pq

∣∣∣∣∣â†pqâpq

∣∣∣∣∣ α′pq

〉
pq

=
|α|4

p3q6 e
|α|2

p2q2

pq +
|α|2

p3q4 (p + 2q)e
|α|2

p2q
pq +

1
p2q2 e

|α|2

p2

pq

=
|α|4

p6q3 e
|α|2

p2q2

pq +
|α|2

p4q3 (q + 2p)e
|α|2

pq2

pq +
1

p2q2 e
|α|2

q2

pq .
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Proof For the first expression, we can rewrite the matrix element by using action of âpq

as in Eqn.(3.31),

〈
β
′

λ

∣∣∣∣∣â2
pq

∣∣∣∣∣α′µ
〉

pq
=

pα
µ

〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq
+

1
µ

〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣qαµ
〉

pq

(3.31)
=

p2α2

µ2

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq
+

pα
µ2

〈
β
′

λ

∣∣∣∣∣qαµ
〉

pq
+

qα
µ2

〈
β
′

λ

∣∣∣∣∣qαµ
〉

pq
.

Now, using the inner product results from (B.1) and (B.3), we substitute the known forms

of the inner products:

〈
β
′

λ

∣∣∣∣∣â2
pq

∣∣∣∣∣α′µ
〉

pq
=

p2α2

µ2

(
1
λµ

e
q αβ̄
λµ

pq + p
αβ̄

(λµ)2 e
αβ̄
λµ

pq

)
+
α2

λµ3 (pq + q2)e
q αβ̄
λµ

pq

=
α2

λµ3 (p2 + pq + q2)e
q αβ̄
λµ

pq +
p3α3β̄

λ2µ4 e
αβ̄
λµ

pq .

For the second expression, we follow a similar approach, but now using the alternative

form of the action of the annihilation operator (3.30):

〈
β
′

λ

∣∣∣∣∣â2
pq

∣∣∣∣∣α′µ
〉

pq
=

qα
µ

〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣α′µ
〉

pq
+

1
µ

〈
β
′

λ

∣∣∣∣∣âpq

∣∣∣∣∣ pαµ
〉

pq

(3.30)
=

q2α2

µ2

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq
+

qα
µ2

〈
β
′

λ

∣∣∣∣∣ pαµ
〉

pq
+

pα
µ2

〈
β
′

λ

∣∣∣∣∣ pαµ
〉

pq

(B.1)(B.2)
=

q2α2

µ2

(
1
λµ

e
p αβ̄
λµ

pq + q
αβ̄

(λµ)2 e
αβ̄
λµ

pq

)
+
α2

λµ3 (pq + p2)e
p αβ̄
λµ

pq

=
α2

λµ3 (p2 + pq + q2)e
p αβ̄
λµ

pq +
q3α3β̄

λ2µ4 e
αβ̄
λµ

pq .

Also, the hermition conjugate above equation gives following

〈
α
′

µ

∣∣∣∣∣â†2
pq

∣∣∣∣∣β′λ
〉

pq
=

α2

λµ3 (p2 + pq + q2)e
q αβ
λµ

pq +
p3α3β̄

λ2µ4 e
αβ̄
λµ

pq

=
α2

λµ3 (p2 + pq + q2)e
p αβ
λµ

pq +
q3α3β̄

λ2µ4 e
αβ̄
λµ

pq .
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For the last expression, we begin by evaluating the matrix element
〈
β
′

λ

∣∣∣∣∣â†pqâpq

∣∣∣∣∣α′µ 〉
pq

,

which involves the product of the creation and annihilation operators. By applying the

action of the annihilation operator from equation (3.31), we express the matrix element as

〈
β
′

λ

∣∣∣∣∣â†pqâpq

∣∣∣∣∣α′µ
〉

pq
=

pq

〈
β
′

λ

∣∣∣∣∣ pβλ + pq

〈qβ
λ

∣∣∣∣∣1λ
 ( pα

µ

∣∣∣∣∣α′µ
〉

pq
+

1
µ

∣∣∣∣∣qαµ
〉

pq

)
= p2 β̄α

λµ

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq
+

pβ
λµ

〈
β
′

λ

∣∣∣∣∣qαµ
〉

pq

+
pα
λµ

〈qβ
λ

∣∣∣∣∣α′µ
〉

pq
+

1
λµ

〈qβ
λ

∣∣∣∣∣qαµ
〉

pq
.

Then, we apply the corresponding inner product results from equations (B.1) and (B.3),

which simplifies to the following result

〈
β
′

λ

∣∣∣∣∣â†pqâpq

∣∣∣∣∣α′µ
〉

pq
= p2 β̄α

(λµ)2

(
p
λµ
β̄αe

αβ̄
λµ

pq + e
q αβ̄
λµ

pq

)
+ pq

αβ̄

(λµ)2 e
q ᾱβ
λµ

pq

+ pq
αβ̄

(λµ)2 e
q αβ̄
λµ

pq +
1
λµ

e
q2 αβ̄

λµ

pq

= p3 β̄
2α2

(λµ)3 e
αβ̄
λµ

pq +
αβ̄

(λµ)2 (p2 + 2pq)e
q αβ̄
λµ

pq +
1
λµ

e
q2 αβ̄

λµ

pq .

For an alternative formulation, by applying the action of the annihilation operator from

equation (3.30), we can express the matrix element in a similar form

〈
β
′

λ

∣∣∣∣∣â†pqâpq

∣∣∣∣∣α′µ
〉

pq
=

pq

〈
β
′

λ

∣∣∣∣∣qβλ + pq

〈 pβ
λ

∣∣∣∣∣1λ
 (qα

µ

∣∣∣∣∣α′µ
〉

pq
+

1
µ

∣∣∣∣∣ pαµ
〉

pq

)
= q2 β̄α

λµ

〈
β
′

λ

∣∣∣∣∣α′µ
〉

pq
+

qβ
λµ

〈
β
′

λ

∣∣∣∣∣ pαµ
〉

pq

+
qα
λµ

〈 pβ
λ

∣∣∣∣∣α′µ
〉

pq
+

1
λµ

〈 pβ
λ

∣∣∣∣∣ pαµ
〉

pq

(B.1)(B.2)
= q2 β̄α

(λµ)2

(
q
λµ
β̄αe

αβ̄
λµ

pq + e
p αβ̄
λµ

pq

)
+ pq

αβ̄

(λµ)2 e
p ᾱβ
λµ

pq

+ pq
αβ̄

(λµ)2 e
p αβ̄
λµ

pq +
1
λµ

e
p2 αβ̄

λµ

pq

= q3 β̄
2α2

(λµ)3 e
αβ̄
λµ

pq +
αβ̄

(λµ)2 (q2 + 2pq)e
p αβ̄
λµ

pq +
1
λµ

e
p2 αβ̄

λµ

pq .
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Thus, all transitions are derived, completing the proof. �

Proposition B.10 The expectation value of the squared position operator x̂2
pq for the state

can be expressed as

〈
α
′

pq

∣∣∣∣∣x̂2
pq

∣∣∣∣∣ α′pq

〉
pq

=
1
2

( (
|α|2

p3q6 (α2 + α2) +
|α|4

p3q6 +
|α|4

p2q6

)
e
|α|2

p2q2

pq (B.43)

+

(
p2 + pq + q2

p4q4 (α2 + α2) +
|α|2

p3q4 (p + 2q + (p + q)2)
)

e
|α|2

p2q
pq

+

(
1 + p + q

p2q2

)
e
|α|2

p2

pq

)
.

Proof Now, we compute the expectation value of the squared position operator x̂2
pq for

the state
∣∣∣ α′

pq

〉
. The transitions for each of these terms are derived from Proposition(B.9),

and substituting the relevant expressions gives

〈
α
′

pq

∣∣∣∣∣x̂2
pq

∣∣∣∣∣ α′pq

〉
pq

=
1
2

(〈
α
′

pq

∣∣∣∣∣â†2
pq

∣∣∣∣∣ α′pq

〉
pq

+

〈
α
′

pq

∣∣∣∣∣â2
pq

∣∣∣∣∣ α′pq

〉
pq

+

〈
α
′

pq

∣∣∣∣∣â†pqâpq

∣∣∣∣∣ α′pq

〉
pq

+

〈
α
′

pq

∣∣∣∣∣âpqâ†pq

∣∣∣∣∣ α′pq

〉
pq

)
=

1
2

( (
|α|2

p3q6 (α2 + α2) +
|α|4

p3q6 +
|α|4

p2q6

)
e
|α|2

p2q2

pq

+

(
p2 + pq + q2

p4q4 (α2 + α2) +
|α|2

p3q4 (p + 2q + (p + q)2)
)

e
|α|2

p2q
pq

+

(
1 + p + q

p2q2

)
e
|α|2

p2

pq

)

�

After all, the expectation value of the squared position operator x̂2
pq for the state

|As〉pq is given by:

pq〈As|x̂2
pq|As〉pq = |Cs|

2
( e |α|2p2q

pq

2
|α|2

p4

〈
α

p

∣∣∣∣∣x̂2
pq

∣∣∣∣∣αp
〉

pq
− e

|α|2

p2q
pq e

|α|2

p2

pq
qα
p2

〈
α

p

∣∣∣∣∣x̂2
pq

∣∣∣∣∣ α′pq

〉
pq

− e
|α|2

p2q
pq e

|α|2

p2

pq
qα
p2

〈
α
′

pq

∣∣∣∣∣x̂2
pq

∣∣∣∣∣ α′pq

〉
pq

+

e |α|2p2

pq

2

q2
〈
α
′

pq

∣∣∣∣∣x̂2
pq

∣∣∣∣∣ α′pq

〉
pq

+

e |α|2p2

pq

2 〈
α

q

∣∣∣∣∣x̂2
pq

∣∣∣∣∣αq
〉

pq

)
.
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This result follows from the previous calculations of the expectation values for the terms

involving âpq, â†pq, and their corresponding matrix elements, as derived earlier. The final

expression incorporates those results to evaluate the expectation value of x̂2
pq for the state

|As〉pq, where the exponential factors and inner products have been computed from earlier

transitions. This calculation is important as it will help to determine the uncertainty in

the position operator x̂pq. By combining this with the expectation value of the momen-

tum operator, the uncertainty can be calculated using the standard quantum mechanical

uncertainty relations.
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APPENDIX C

FERMION-BOSON BELL STATES

Bell states are a specific set of maximally entangled quantum states of two qubits.

Bell states are maximally entangled. This means that if you measure one qubit in a Bell

state, the state of the other qubit becomes instantly determined, regardless of the distance

between them. The four Bell states form an orthonormal basis for the two-qubit Hilbert

space.

To express the Bell states in terms of fermion-boson states, we use the tensor

product notation, where the fermionic states are denoted by |0〉 f = |0〉 and |1〉 f = |1〉, and

the bosonic states are denoted by |0〉b and |1〉b.

|B+〉 =
1
√

2
(|00〉 + |11〉) =

1
√

2

(
|0〉 f ⊗ |0〉b + |1〉 f ⊗ |1〉b

)
|B−〉 =

1
√

2
(|00〉 − |11〉) =

1
√

2

(
|0〉 f ⊗ |0〉b − |1〉 f ⊗ |1〉b

)
|L+〉 =

1
√

2
(|01〉 + |10〉) =

1
√

2

(
|0〉 f ⊗ |1〉b + |1〉 f ⊗ |0〉b

)
|L−〉 =

1
√

2
(|01〉 − |10〉) =

1
√

2

(
|0〉 f ⊗ |1〉b − |1〉 f ⊗ |0〉b

)

If we take n = 1 and choose θ = π
2 as in (6.17), we have the maximally entangled

state

|1,
π

2
, φ〉 =

1
√

2
(|0〉 f |1〉b + eiφ|1〉 f |0〉b),

providing the fermion-boson analog of the Bell states for φ = 0 and φ = π,

|L±〉 ≡ |1,
π

2
,±〉 =

1
√

2
(|0〉 f |1〉b ± |1〉 f |0〉b).

Proposition C.1 The states |L±〉 are exact eigenstates of the operator N with one super-

particle (n = 1), such that N|L±〉 = |L±〉. In contrast, the states |B±〉 are not eigenstates

of N; however, the average number of superparticles in these states is one, given by
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〈B±|N|B±〉 = 1.

Proof To prove this, let us consider that the operator N is defined in such a way that

it counts the number of superparticles in a given state. Since |L±〉 represents a state with

exactly one superparticle (n = 1), applying N to |L±〉 yields:

N|L±〉 = n|L±〉 = 1 · |L±〉 = |L±〉.

The expectation value of N in the state |B+〉 is given by

〈B+|N|B+〉 =
1
√

2

(
b〈0| b〈1|

)  N 0

0 N + 1

 1
√

2

 |0〉b|1〉b


=
1
2

(
b〈0| b〈1|

)  0

2|1〉b

 =
1
2

(0 +b 〈1|1〉b) = 1

Parallel calculations can similarly be performed for B−.This shows that, while |B±〉 are not

eigenstates of N , the expected average number of superparticles in the states(the mean

value) is one. �

Proposition C.2 For each Bell state, there is an associated annihilation operator that

combines the bosonic annihilation operator a with the fermionic annihilation or creation

operators, f and f †. We define four such operators as follows:

A±1 =

 a ±1

0 a

 = I f ⊗ a ± f ⊗ Ib,

AT
±1 =

 a 0

±1 a

 = I f ⊗ a ± f † ⊗ Ib,

These operators annihilate the corresponding Bell states as follows:

A1|L−〉 = 0, A−1|L+〉 = 0,

AT
1 |B−〉 = 0, AT

−1|B+〉 = 0.
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Proof Let’s start by proving each statement one by one. In following expressions,

the action of the bosonic annihilation operator a on the states |0〉 and |1〉 yields, a|0〉b =

0, a|1〉b = |0〉b. Also, the fermionic annihilation operator f and creation operator f † act

as f |0〉 f = 0, f |1〉 f = |0〉 f , f †|0〉 f = |1〉 f f †|1〉 f = 0. Applying operator A1 to the

state L−〉 with the following actions of a and f gives

A1|L−〉 =
(
I f ⊗ a + f ⊗ Ib

)
|L−〉

=
1
√

2

(
I f ⊗ a + f ⊗ Ib

) (
|0〉 f ⊗ |1〉b − |1〉 f ⊗ |0〉b

)
=

1
√

2

(
(|0〉 f ⊗ a|1〉b) − (|1〉 f ⊗ a|0〉b) + ( f |0〉 f ⊗ |1〉b) − ( f |1〉 f ⊗ |0〉b)

)
=

1
√

2

(
|0〉 f ⊗ |0〉b − 0 + 0 − |0〉 f ⊗ |0〉b

)
= 0

The same type of calculations can be applied to |L+〉 for the operator A−1. Now consider

the action of the transposed operator AT
1 to the state |B−〉,

AT
1 |B−〉 =

(
I f ⊗ a + f † ⊗ Ib

)
|B−〉

=
1
√

2

(
I f ⊗ a + f † ⊗ Ib

) (
|0〉 f ⊗ |0〉b − |1〉 f ⊗ |1〉b

)
=

1
√

2

(
(|0〉 f ⊗ a|0〉b) − (|1〉 f ⊗ a|1〉b) + f †|0〉 f ⊗ |0〉b − f †|1〉 f ⊗ |1〉b

)
=

1
√

2

(
0 − |1〉 f ⊗ |0〉b + |1〉 f ⊗ |0〉b − 0

)
= 0.

After these steps, it is easy to find AT
−1|B+〉 = 0. We have shown that the operators annihi-

late their respective Bell states. �

Proposition C.3 The states |L±〉 can be obtained from the vacuum state |Ψ0〉 = |0〉 f ⊗ |0〉b

by applying the creation operators A†
±1, and conversely. Explicitly, these relations are

given by:

|L±〉 =
1
√

2
A†
±1|Ψ0〉, |Ψ0〉 =

1
√

2
A±1|L±〉.
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Proof Recall the definitions of the operators A±1 and their Hermitian conjugates A†
±1,

A±1 =

 a ±1

0 a

 , A†
±1 =

 a† 0

±1 a†

 .

Applying the operator A†
±1 to the state |Ψ0〉 provides

1
√

2
A†
±1|Ψ0〉 =

1
√

2

 a† 0

±1 a†


 |0〉b0


=

1
√

2

 a†|0〉b

±|0〉b

 =
1
√

2

(
|0〉 f ⊗ |1〉b ± |1〉 f ⊗ |0〉b

)
= |L±〉.

Comparable computations can be carried out for other formula. �

Since vacuum state is annihilated by two operators A±1|Ψ0〉 = 0, and orthogonal to the

pair of Bell states |L±〉, then we can use them to express the following state.

Definition C.1 The normalized reference states can be written as

|0,C, φ〉L± =
√

1 −C|Ψ0〉 +
√

Ceiφ|L±〉,

combination of the vacuum state and Bell states L±, which are annihilated by operators

A∓1|0,C, φ〉L± = 0.The states are parametrized by real number C, bounded between 0 ≤

C ≤ 1.

C.1. Entanglement of Super-Number States

Proposition C.4 For super number state

|n, θ, φ〉 = cos
θ

2

 |n〉0
 + sin

θ

2
eiφ

 0

|n − 1〉

 ,
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the density matrix for pure state is

ρn = |n, θ, φ〉〈n, θ, φ| =


cos2 θ

2 |n〉〈n| cos θ
2 sin θ

2e−iφ|n〉〈n − 1|

cos θ
2 sin θ

2eiφ|n − 1〉〈n| sin2 θ
2 |n − 1〉〈n − 1|

 .

Then, reduced bosonic and fermionic density matrices are following

ρb = tr f ρn = sin2 θ

2
|n − 1〉〈n − 1| + cos2 θ

2
|n〉〈n|,

ρ f = trb ρn = cos2 θ

2
|0〉〈0| + sin2 θ

2
|1〉〈1|.

Proof To prove the expressions for the reduced density matrices , we can rewrite ρn by

explicitly showing the fermionic state contributions |0〉 and |1〉

ρn = |n, θ, φ〉〈n, θ, φ| =


cos2 θ

2 |n〉〈n| cos θ
2 sin θ

2e−iφ|n〉〈n − 1|

cos θ
2 sin θ

2eiφ|n − 1〉〈n| sin2 θ
2 |n − 1〉〈n − 1|


=

(
cos2 θ

2
|0〉〈0|

)
|n〉〈n| +

(
cos

θ

2
sin

θ

2
e−iφ|0〉〈1|

)
|n〉〈n − 1|

+

(
cos

θ

2
sin

θ

2
eiφ|1〉〈0|

)
|n − 1〉〈n| +

(
sin2 θ

2
|1〉〈1|

)
|n − 1〉〈n − 1|

In order to compute the reduced bosonic density matrix, we need to trace out the fermionic

basis states and evaluating each term separately, which gives

ρb = tr f ρn = 〈0|ρn|0〉 + 〈1|ρn|1〉

= 〈0|
(
cos2 θ

2
|0〉〈0 |n〉〈n|

)
|0〉 + 〈1|

(
sin2 θ

2
|1〉〈1||n − 1〉〈n − 1|

)
|1〉

= sin2 θ

2
|n − 1〉〈n − 1| + cos2 θ

2
|n〉〈n|,

infinite dimensional matrix with only two nonzero diagonal terms, sin2 θ
2 and cos2 θ

2 at

positions n and n + 1. The same strategy is valid for reduced fermionic density matrix, we
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compute the partial trace over the bosonic states so that it becomes 2× 2 diagonal matrix,

ρ f = trb ρn = cos2 θ

2
|0〉〈0| + sin2 θ

2
|1〉〈1|.

�

Proposition C.5 The squares of both reduced density matrices have equal traces, given

by

trρ2
f = trρ2

b = 1 −
1
2

sin2 θ.

Proof First, we start with computing the square of ρ f

ρ2
f =

(
cos2 θ

2
|0〉〈0| + sin2 θ

2
|1〉〈1|

)2

= cos4 θ

2
|0〉〈0| + sin4 θ

2
|1〉〈1|.

where |0〉〈0| and |1〉〈1| are orthogonal projectors, their cross terms vanish. Then, taking

the trace of ρ2
f gives

trρ2
f = tr

(
cos4 θ

2
|0〉〈0| + sin4 θ

2
|1〉〈1|

)
= cos4 θ

2
+ sin4 θ

2
.

We can express the result as

trρ2
f = 1 −

1
2

sin2 θ.

Similarly calculations can be done for trρ2
b. �

By using formula (6.8) we obtain that the reduced bosonic, as well as fermionic state is

mixed and the generic state |n, θ, φ〉 is entangled with concurrence

C = sin θ.
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C.2. Displacement Operator

Now, we want to define displacement operator which generates the coherent states

from vacuum state. The displacement operator D(α), where α ∈ C, is defined by

D(α) = eαâ†−ᾱâ. (C.1)

Proposition C.6 Properties of displacement operator is given by the following relations

• D†(α) = D−1(α) = D(−α) (C.2)

• D†(α)âD(α) = â + α (C.3)

• D†(α)â†D(α) = â† + ᾱ (C.4)

• D(α + β) = D(α)D(β)e−i Im(αβ̄) (C.5)

Proof In order to prove the second relation, we will use the Eq.(C.8) by choosing

Â = αâ† − ᾱâ and B̂ = â so that

D†(α)âD(α) = e−(αâ†−ᾱâ)âeαâ†−ᾱâ = â + α. (C.6)

with commutator [ᾱâ − αâ†, â] = α. To compute D†(α)â†D(α), we will use the Baker-

Campbell-Hausdorff formula by letting A = ᾱâ−αâ† and B = â†. Then, we start comput-

ing the commutator [A, B] which can be separated into two commutators

[A, B] = [ᾱâ − αâ†, â†] = ᾱ[â, â†] − α[â†, â†] = ᾱ (C.7)

where [â, â†] = 1.After applying the formula and since higher commutators vanish, the

series terminates after the first term. Therefore, the desired relation is

D†(α)â†D(α) = â† − ᾱ.
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Lemma C.1 For operators Â and B̂ with commutator [Â, B̂], The Baker-Campbell-Hausdorff

formula which is in its exponential form, states

eÂB̂e−Â = B̂ + [Â, B̂] +
1
2!

[Â, [Â, B̂]] +
1
3!

[Â, [Â, [Â, B̂]]] + · · · , (C.8)

with involving nested commutators [Â, B̂].

Definition C.2 The Baker−Campbell−Hausdorff formula for the product of the exponen-

tials of two operators Â and B̂ is

eÂeB̂ = eÂ+B̂+[Â,B̂]/2+... (C.9)

which involves nested commutators of Â and B̂.

Corollary C.1 An important special case where an exact formula exists is

eÂeB̂ = eÂ+B̂e[Â,B̂]/2 , [Â, B̂] = c (C.10)

where c is a constant (or [c, Â] = [c, B̂] = 0).

Proposition C.7 The displacement operator D(α), where α ∈ C, can be written in the

form

D(α) = eαâ†−ᾱâ = e−
1
2 |α|

2
eαâ†e−ᾱâ (C.11)
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Proof We will prove this equation by using (C.10). The commutator of Â = αâ† and

B̂ = −ᾱâ can be calculated as

[Â, B̂] = [αâ†,−ᾱâ] = [α,−ᾱâ]â† + α[â†,−ᾱâ] (C.12)

= α
(
−â†ᾱâ + ᾱââ†)

)
(C.13)

= −αᾱ
(
â†â − ââ†

)
= −|α|2[â†, â] = |α|2 . (C.14)

�

By substituting this result into (C.10) , we get

eαâ†−ᾱâ = e−
1
2 |α|

2
eαâ†e−ᾱâ . (C.15)

Proposition C.8 The displacement operator for fermion-boson states can be written as

the direct product form

D(α) =

 D(α) 0

0 D(α)

 = I f ⊗ D(α) = I f ⊗ eαa†−ᾱa. (C.16)

Definition C.3 The displaced Fock states is defined by using (C.1).

|0, α〉 = D(α)|0〉 = e−
1
2 |α|

2
|α〉, (C.17)

|1, α〉 = D(α)|1〉 = e−
1
2 |α|

2
(

d
dα
|α〉 − ᾱ|α〉). (C.18)

Proof We can prove first relation by following steps

|0, α〉 = D(α)|0〉 = eαâ†−ᾱâ|0〉 = e−
1
2 |α|

2
eαâ†e−ᾱâ|0〉

= e−
1
2 |α|

2
eαâ†

∞∑
n=0

(−α)n

n!
(â)n
|0〉

= e−
1
2 |α|

2
∞∑

n=0

αn

√
n!
|n〉 = e−

1
2 |α|

2
|α〉.
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For the second case, the application of D(α) gives

D(α)|1〉 = e−
1
2 |α|

2
eαâ†e−ᾱââ†|0〉

(C.8)
= e−

1
2 |α|

2
eαâ†(−ᾱ + â†)e−ᾱâ|0〉 = (â† − ᾱ)D(α)|0〉.

Since application of â† to the state |α〉 provides derivative relation,

â†|α〉 = â†
∞∑

n=0

αn

√
n!
|n〉 =

∞∑
n=0

αn

√
n!

√
n + 1|n + 1〉

=

∞∑
n=1

αn−1

√
(n − 1)!

√
n|n〉 =

∞∑
n=1

n
αn−1

√
n!
|n〉 =

d
dα
|α〉

we can get

|1, α〉 = D(α)|1〉 = e−
1
2 |α|

2
(

d
dα
|α〉 − ᾱ|α〉).

�

Proposition C.9 The matrix elements of the displacement operator are defined as

〈0|D(α)|0〉 = e−
1
2 |α|

2
, 〈1|D(α)|0〉 = αe−

1
2 |α|

2
, (C.19)

〈0|D(α)|1〉 = −ᾱe−
1
2 |α|

2
, 〈1|D(α)|1〉 = (1 − |α|2)e−

1
2 |α|

2
,

Proof The relations can be proven step-by-step process. For the first one, we will use

expansion of not normalized Glauber coherent state,

〈0|D(α)|0〉
(C.17)
= e−

1
2 |α|

2
〈0|α〉 = e−

1
2 |α|

2
∞∑

n=0

αn

√
n!
〈0|n〉 = e−

1
2 |α|

2
.
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Then, the second relation requires to use derivative relation

〈0|D(α)|1〉
(C.18)
= e−

1
2 |α|

2
〈0|

(
d

dα
|α〉 − ᾱ|α〉

)
= e−

1
2 |α|

2

 ∞∑
n=1

n
αn−1

√
n!
〈0|n〉 − ᾱ〈0|α〉

 = −ᾱe−
1
2 |α|

2
.

After that, we can easily have

〈1|D(α)|0〉
(C.17)
= e−

1
2 |α|

2
〈1|α〉 = e−

1
2 |α|

2
∞∑

n=0

αn

√
n!
〈1|n〉 = αe−

1
2 |α|

2

As a final step, we obtain

〈1|D(α)|1〉
(C.18)
= e−

1
2 |α|

2

 ∞∑
n=1

n
αn−1

√
n!
〈1|n〉 − ᾱ〈1|α〉

 = e−
1
2 |α|

2
(1 − ᾱ〈1|α〉) = e−

1
2 |α|

2
(1 − |α|2)

�

Proposition C.10 The homogeneous and non-homogeneous problem for annihilation op-

erator â gives

â|0, α〉 = α|0, α〉,

â|1, α〉 = α|1, α〉 + |0, α〉
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Proof The first relation comes from definition by |0, α〉 = D(α)|0〉. For the next, we

have following

â|1, α〉 = âD(α)|1〉 = âD(α)â†|0〉

= D(α)D†(α)âD(α)â†|0〉
(C.3)
= D(α) (â + α) â†|0〉

=
(
D(α)ââ† + αD(α)â†

)
|0〉

= D(α)(1 + â†â)|0〉 + αD(α)â†|0〉

= D(α)|0〉 + αD(α)|1〉

so that

â|1, α〉 = α|1, α〉 + |0, α〉

�

Proposition C.11 The Bell super-coherent states are eigenstates of corresponding super-

symmetric annihilation operators

A1|α, L−〉 = α|α, L−〉, A−1|α, L+〉 = α|α, L+〉,

AT
1 |α, B−〉 = α|α, B−〉, AT

−1|α, B+〉 = α|α, B+〉.

The states are orthonormal and maximally entangled. In explicit form the states are

expressed as

|α, L±〉 =
1
√

2
(|0〉 f |1, α〉 ± |1〉 f |0, α〉),

|α, B±〉 =
1
√

2
(|0〉 f |0, α〉 ± |1〉 f |1, α〉).
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Proof First,let’s consider how the displacement operator D(α) acts in the tensor product

form and substituting the expression for A±1,

D†(α)A±1D(α) = D†(α)(I f ⊗ a ± f ⊗ Ib)D(α)

= (I f ⊗ D†(α))(I f ⊗ a ± f ⊗ Ib)(I f ⊗ D(α))

= I f ⊗ (D†(α)aD(α)) ± (I f f I f ) ⊗ (D†(α)IbD(α))

= I f ⊗ (D†(α)aD(α)) ± f ⊗ (D†(α)IbD(α))
(C.3)
= I f ⊗ (D†(α)aD(α)) ± f ⊗ Ib

= I f ⊗ (a + αIb) ± f ⊗ Ib

= (I f ⊗ a) + α(I f ⊗ Ib) ± ( f ⊗ Ib)

= A±1 + α(I f ⊗ Ib)

�

This shows how the displacement operator modifies the operator A±1 by adding a

scalar multiple of the identity matrix to it. In this proposition, the proof of the eigenvalue

problems (6.45) and (6.46) follows from unitary displacement transformation of operators

D†(α)A±1D(α) = A±1 + αI, D†(α)AT
±1D(α) = AT

±1 + αI,

or

A±1D(α) = D(α)A±1 + αD(α), AT
±1D(α) = D(α)AT

±1 + αD(α).

By applying these transformations to the Bell states, we get the result

A±1|α, L∓〉 = A±1D(α)|L∓〉 = D(α) (A±1|L∓〉) + αD(α)|L∓〉 = α|α, L∓〉,

AT
±1|α, B∓〉 = AT

±1D(α)|B∓〉 = D(α)
(
AT
±1|B∓〉

)
+ αD(α)|B∓〉 = α|α, B∓〉,
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where annihilation of Bell states by (6.27) and (6.28) were used. Orthogonality of the

states follows from definition of states (6.44) and the displacement of orthogonality con-

ditions (6.22), (6.23), (6.24). The maximal entanglement of Bell super-coherent states is

shown, by observation that the concurrence for these states is independent of α, this is

why it is equal C = 1, as for the Bell states itself. Explicit form of the states (6.47), (6.48)

in terms of displaced Fock states results from calculation

|α, L±〉 = D(α)|L±〉 = (I ⊗ D(α))
1
√

2
(|0〉 f |1〉b ± |1〉 f |0〉b)

=
1
√

2
(|0〉 f D(α)|1〉b ± |1〉 f D(α)|0〉b)

=
1
√

2
(|0〉 f |1, α〉b ± |1〉 f |0, α〉b),

and the similar on for |α, B±〉. This concludes the proof of Proposition (C.11).

C.3. Entanglement of Supercoherent States

Proposition C.12 The concurrence C, 0 ≤ C ≤ 1, for four reference states (6.38) and

(6.39) is equal

C = sin2 θ

2
.

The states can be parametrized by this concurrence as in (6.36) and (6.37).

Proof As a first step, we find concurrence for the reference state in (6.38). In order to

calculate the entanglement level of the reference state, we can write it as fermion boson

form;

|0, θ, φ〉L± = cos
θ

2
|Ψ0〉 + sin

θ

2
eiφ|L±〉

= cos
θ

2

 |0〉b0

 + sin
θ

2
eiφ

 |1〉b±|0〉b


= |0〉 f ⊗

(
cos

θ

2
|0〉b +

1
√

2
sin

θ

2
eiφ|1〉b

)
± |1〉 f ⊗

1
√

2
sin

θ

2
eiφ|0〉b
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Now, we can express the density matrix in terms of the tensor product:

ρ =

(
|0〉 f ⊗

(
cos

θ

2
|0〉b +

1
√

2
sin

θ

2
eiφ|1〉b

)
± |1〉 f ⊗

1
√

2
sin

θ

2
eiφ|0〉b

)
⊗

(
〈0| f ⊗

(
cos

θ

2
〈0|b +

1
√

2
sin

θ

2
e−iφ〈1|b

)
± 〈1| f ⊗

1
√

2
sin

θ

2
e−iφ〈0|b

)
.

Expanding the terms gives

ρ =
(
|0〉 f 〈0| f

)
⊗

(
cos2 θ

2
|0〉b〈0|b +

1
√

2
cos

θ

2
sin

θ

2
e−iφ|0〉b〈1|b

+
1
√

2
cos

θ

2
sin

θ

2
eiφ|1〉b〈0|b +

1
2

sin2 θ

2
|1〉b〈1|b

)
±

(
|0〉 f 〈1| f

)
⊗

1
√

2
sin

θ

2
e−iφ

(
cos

θ

2
|0〉b〈0|b +

1
√

2
sin

θ

2
eiφ|0〉b〈1|b

)
±

(
|1〉 f 〈0| f

)
⊗

1
√

2
sin

θ

2
eiφ

(
cos

θ

2
|0〉b〈0|b +

1
√

2
sin

θ

2
e−iφ|1〉b〈0|b

)
+

(
|1〉 f 〈1| f

)
⊗

1
2

sin2 θ

2
|0〉b〈0|b.

Thus, the density matrix ρ is expressed as a tensor product of the states in fermionic-space

and bosonic-space. To find the reduced density matrix ρb for the subsystem b, we take

the partial trace over the subsystem f , ρb = Tr f (ρ). This involves summing over the basis

states of the subsystem f :

ρb = f 〈0|ρ|0〉 f + f 〈1|ρ|1〉 f .

Substitute the expanded form of ρ and compute

ρb = cos2 θ

2
|0〉b b〈0| +

1
√

2
cos

θ

2
sin

θ

2
e−iφ|0〉b〈1|b

+
1
√

2
cos

θ

2
sin

θ

2
eiφ|1〉b〈0|b +

1
2

sin2 θ

2
|1〉b〈1|b +

1
2

sin2 θ

2
|0〉b〈0|b.
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Combine like terms

ρb =

(
cos2 θ

2
+

1
2

sin2 θ

2

)
|0〉b〈0|b +

1

2
√

2
sin θ

(
e−iφ|0〉b〈1|b + eiφ|1〉b〈0|b

)
+

1
2

sin2 θ

2
|1〉b〈1|b.

When we calculate the reduced density matrix ρ f , it is clear that it can be expanded in the

same form but in different dimension. Then, computing square of these gives

ρ2
b = ρ2

f =

(
cos2 θ

2
+

1
2

sin2 θ

2

)2

|0〉〈0| +
(

1

2
√

2
sin θ

)2

|0〉〈0|

+

(
e−iφ 1

2
√

2
sin θ

)
|0〉〈1| +

(
eiφ 1

2
√

2
sin θ

)
|1〉〈0|

+

(
1

2
√

2
sin θ

)2

|1〉〈1| +
(
1
2

sin2 θ

2

)2

|1〉〈1|

so that

trρ2
b = trρ2

f =

(
cos2 θ

2
+

1
2

sin2 θ

2

)2

+
1
4

sin4 θ

2
+

1
4

sin2 θ

=

(
cos2 θ

2
+

1
2

sin2 θ

2

)2

+
1
4

sin4 θ

2
+ sin2 θ

2
cos2 θ

2

= cos4 θ

2
+

1
2

sin4 θ

2
+ 2 sin2 θ

2
cos2 θ

2
∓

1
2

sin4 θ

2

= 1 −
1
2

sin4 θ

2

Comparing with (6.8), we find the concurrence for the reference states (6.38)

C = sin2 θ

2
.

�
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C.4. Inner product of Super Coherent States

Definition C.4 The inner product between two supercoherent states is provided by the

following expression

L±〈β, θ, φ|α, θ, φ〉L± = e−i Im(βᾱ)e−
1
2 |α−β|

2

(
1 −

sin θ

2
√

2

(
(ᾱ − β̄)eiφ − (α − β)e−iφ

)
−
|α − β|2

2
sin2 θ

2

)
.

Proof By using definition of 6.53, the inner product can be calculated as following for

L+ and the result will be same for L−

L+
〈β, θ, φ|α, θ, φ〉L+

= 〈0, θ, φ|D†(β)D(α)|0, θ, φ〉
(C.5)
= e−i Im(βᾱ)〈0, θ, φ|D(α − β)|0, θ, φ〉

= e−i Im(βᾱ)〈0, θ, φ|

 D(α − β) 0

0 D(α − β)

 |0, θ, φ〉
= e−i Im(βᾱ)

(
cos2 θ

2
〈0|D(α − β)|0〉 +

eiφ

√
2

cos
θ

2
sin

θ

2
〈0|D(α − β)|1〉

+
e−iφ

√
2

cos
θ

2
sin

θ

2
〈1|D(α − β)|0〉

+
1
2

sin2 θ

2
(〈0|D(α − β)|0〉 + 〈1|D(α − β)|1〉)

)

with expressions for matrix elements in (C.9),

L±〈β, θ, φ|α, θ, φ〉L± = e−i Im(βᾱ)
(
cos2 θ

2
e−

1
2 |α−β|

2
−

eiφ

√
2

cos
θ

2
sin

θ

2
(α − β)e−

1
2 |α−β|

2

+
e−iφ

√
2

(α − β)e−
1
2 |α−β|

2
+ +

1
2

sin2 θ

2

(
2 − |α − β|2

)
e−

1
2 |α−β|

2

)

we obtain the inner product

L±〈β, θ, φ|α, θ, φ〉L± = e−i Im(βᾱ)e−
1
2 |α−β|

2

(
1 −

sin θ

2
√

2

(
(ᾱ − β̄)eiφ − (α − β)e−iφ

)
−
|α − β|2

2
sin2 θ

2

)
.

�
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C.5. Average values for supercoherent state

Proposition C.13 The average values for the reference state is

〈0,C, φ|X|0,C, φ〉 =
√

C(1 −C) cos φ, (C.20)

〈0,C, φ|P|0,C, φ〉 =
√

C(1 −C) sin φ. (C.21)

Proof First, we start with calculating action of operator X to the reference state for L−

in (6.31),

X|0,C, φ〉 = I f ⊗
1
√

2
(a + a†)

√1 −C|0〉 f |0〉b +

√
C
2

eiφ
(
|0〉 f |1〉b − |1〉 f |0〉b

)
=

√
1 −C

2
|0〉 f (a + a†)|0〉b +

√
C

2
eiφ

(
|0〉 f (a + a†)|1〉b − |1〉 f (a + a†)|0〉b

)
=

√
1 −C

2
|0〉 f |1〉b +

√
C

2
eiφ

(
|0〉 f (|0〉b +

√
2|2〉b) − |1〉 f |1〉b

)

then average value of X become

〈0,C, φ|X|0,C, φ〉 =
√

1 −C f 〈0|b〈0| +

√
C
2

e−iφ
(

f 〈0|b〈1| − f 〈1|b〈0|
)

√
1 −C

2
|0〉 f |1〉b +

√
C

2
eiφ

(
|0〉 f (|0〉b +

√
2|2〉b) − |1〉 f |1〉b

)
=

√
C(1 −C)

2
eiφ +

√
C(1 −C)

2
e−iφ =

√
C(1 −C) cos φ. (C.22)

Similar steps gives the average for momentum operator. The results will be same for three

reference state, just B− includes minus. �

The following proposition allows us to find average of X2 in L−.
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Proposition C.14 The average for a2, a, a†a and aa† is given by

〈0,C, φ|I f ⊗ a2|0,C, φ〉 = 0

〈0,C, φ|I f ⊗ a|0,C, φ〉 =

√
C(1 −C)

2
eiφ

〈0,C, φ|I f ⊗ a†|0,C, φ〉 =

√
C(1 −C)

2
e−iφ

〈0,C, φ|I f ⊗ a†a|0,C, φ〉 =
1
2

C

〈0,C, φ|I f ⊗ aa†|0,C, φ〉 =
1
2

C + 1

(C.23)

Proof Let’s start with acting a2 to the reference state and it gives

I f ⊗ a2|0,C, φ〉 =
√

1 −C|0〉 f a2|0〉b +

√
C
2

eiφ
(
|0〉 f a2|1〉b − |1〉 f a2|0〉b

)
= 0.

Then,it is easy to show the others comes from the proof of previous proposition. The next

expression gives

I f ⊗ a†a|0,C, φ〉 = I f ⊗ a†a
√

1 −C|0〉 f |0〉b +

√
C
2

eiφ
(
|0〉 f |1〉b − |1〉 f |0〉b

)
=
√

1 −C|0〉 f a†a|0〉b +

√
C
2

eiφ
(
|0〉 f a†a|1〉b − |1〉 f a†a|0〉b

)
=

√
C
2

eiφ
(
|0〉 f a†a|1〉b

)
=

√
C
2

eiφ
(
|0〉 f |1〉b

)

so that

〈0,C, φ|I f ⊗ a†a|0,C, φ〉 =
1
2

C

and by using commutation relation [a, a†] = 1, the last one results

〈0,C, φ|I f ⊗ aa†|0,C, φ〉 =
1
2

C + 1.

�
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Proposition C.15 The average value of X2 and P2 for Bell-Super coherent states

〈α,C, φ|X2|α,C, φ〉 =
1
2

[(α + ᾱ)2 + 2
√

2(α + ᾱ)
√

C(1 −C) cos φ + 1 + C],

〈α,C, φ|P2|α,C, φ〉 =
1
2

[−(α − ᾱ)2 − 2
√

2i(α − ᾱ)
√

C(1 −C) sin φ + 1 + C].

Proof Due to the definition of operator X2, the average can be provided by the following

expression

〈α,C, φ|X2|α,C, φ〉 = 〈0,C, φ|D†(α)X2D(α)|0,C, φ〉

= 〈0,C, φ|I f ⊗ D†(α)X2D(α)|0,C, φ〉

=
1
2
〈0,C, φ|I f ⊗ D†

(
a2 + a†

2
+ aa† + a†a

)
D(α)|0,C, φ〉

(C.3)
=

1
2
〈0,C, φ|I f ⊗

(
(a + α)2 + (a† + ᾱ)2

+ (a + α)(a† + ᾱ) + (a† + ᾱ)(a + α)
)
|0,C, φ〉

=
1
2
〈0,C, φ|I f ⊗

[
(α + ᾱ)2 + a2 + a†

2
+ 2a(α + ᾱ)

+ 2a†(α + ᾱ) + aa† + a†a
]
|0,C, φ〉

so that

〈α,C, φ|X2|α,C, φ〉 =
1
2

[(α + ᾱ)2 + 2
√

2(α + ᾱ)
√

C(1 −C) cos φ + 1 + C]

for the reference states L± and B+. A corresponding calculation may similarly be per-

formed for the momentum operator. �
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In order to find the dispersion (or variance) of the operators X, we substitute the

values for (6.58) and (6.62)

(∆X)2 = 〈α,C, φ|X2|α,C, φ〉 − (〈α,C, φ|X|α,C, φ〉)2

=
1
2

[
(α + ᾱ)2 + 2

√
2(α + ᾱ)

√
C(1 −C) cos φ + 1 + C

]
−

(
α + ᾱ
√

2
+

√
C(1 −C) cos φ

)2

=
1
2

[
(α + ᾱ)2 + 2

√
2(α + ᾱ)

√
C(1 −C) cos φ + 1 + C

]
−

[
(α + ᾱ)2

2
+
√

2(α + ᾱ)
√

C(1 −C) cos φ + C(1 −C) cos2 φ

]
=

1
2

(1 + C) −C(1 −C) cos2 φ,

and it helps to represent the uncertainty in position operator in the super-coherent states.
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