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ABSTRACT 

 

BIOREMEDIATION OF SEDIMENTS CONTAMINATED BY PERSISTENT  

ORGANIC POLLUTANTS: AN IN-SILICO APPROACH 
 

Polybrominated diphenyl ethers (PBDEs), one of the most commonly used flame 

retardants, are classified as persistent organic pollutants that pose significant risks to the 

environment and human health. Therefore, they should be removed from the environment 

using degradation processes. However, in complex environmental matrices the progress 

of degradation is challenging to follow. Hence, modelling studies are necessary to 

understand the fate of PBDEs and develop effective remediation strategies. This study 

aims to model the anaerobic dehalogenation of PBDEs in sediments and analyze the 

degradation pathways and rates under various bioremediation scenarios. For this purpose, 

experimental data from a microcosm study simulating natural attenuation, biostimulation, 

and bioaugmentation scenarios were utilized. A previously developed anaerobic 

dehalogenation model (ADM) was enhanced and integrated to create a new model called 

“ADM-IE.” ADM-IE has the capability to list all possible dehalogenation pathways for 

PBDEs, calculate the degradation rate constants for the measured compounds, and 

estimate the rate constants for those not measured, using machine learning algorithms.  

 As a result, the model performed better in predicting higher-concentration 

compounds, whereas its accuracy decreased for lower-concentration compounds. It was 

determined that the position of bromine atoms (ortho, meta, para) played a critical role in 

dehalogenation pathways. Among the bioremediation scenarios, bioaugmentation 

generally achieved the highest degradation rates, while biostimulation showed higher 

rates in some cases. However, certain pathways supported the formation of toxic products, 

emphasizing the need for caution when applying biostimulation. The model provided an 

analysis framework for optimizing bioremediation strategies by achieving less harmful 

degradation products.  
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ÖZET 

 

KALICI ORGANİK KİRLETİCİLERLE KİRLENMİŞ SEDİMANLARIN 

BİYOİYİLEŞTİRİLMESİ: BİR İN-SİLİKO YAKLAŞIM 
 

Bromlu alev geciktiriciler arasında en yaygın kullanılanlardan biri olan 

polibromlu difenil eterler (PBDE), çevre ve insan sağlığı üzerinde ciddi riskler oluşturan 

kalıcı organik kirleticiler olarak bilinmektedir. Bu nedenle, bozunma süreçleri ile çevresel 

ortamlardan giderilmeleri gerekmektedir. Fakat, karmaşık çevresel ortamlarda 

bozunmanın ilerleyişini takip etmek zordur. Bu sebeple, PBDE’lerin bozunma süreçlerini 

anlamak ve etkili iyileştirme yöntemleri geliştirmek için modelleme çalışmaları 

gereklidir. Bu çalışma, PBDE’lerin sedimanlardaki anaerobik dehalojenasyonunu 

modellemek ve iyileştirme senaryoları altında bozunma yollarını ve bozunma hızlarını 

analiz etmeyi amaçlamaktadır. Bu amaçla, doğal giderim, biyostimulasyon ve 

biyoogmentasyon senaryolarını taklit eden bir mikrokozm çalışmasının deneysel verileri 

kullanılmıştır. Daha önce geliştirilmiş olan anaerobik dehalojenasyon modeli (ADM), 

geliştirilip entegre edilerek “ADM-IE” adı verilen yeni bir model oluşturulmuştur. ADM-

IE, PBDE bozunması için tüm olası dehalojenasyon yollarını listeleme, bu yolların 

reaksiyon miktarlarını belirleme, ölçülen bileşikler için bozunma hız sabitlerini 

hesaplama ve ölçülmeyen bileşikler için makine öğrenimi algoritmalarıyla hız sabitlerini 

tahmin etme yeteneklerine sahiptir.  

Sonuç olarak, modelin yüksek konsantrasyonlu bileşikler için daha başarılı 

tahminler yaptığını, ancak düşük konsantrasyonlu bileşikler için tahmin doğruluğunun 

daha düşük olduğunu gösterilmiştir. Brom atomlarının pozisyonlarının dehalojenasyon 

yollarında kritik bir rol oynadığı belirlenmiştir. İyileştirme senaryoları arasında, 

biyoogmentasyon genellikle en yüksek bozunma hızlarını sağlarken, bazı durumlarda 

biyostimulasyon daha yüksek hızlar göstermiştir. Bununla birlikte, belirli reaksiyonlar 

toksik ürünlerin oluşumunu desteklemiştir, bu da biyostimulasyon uygulamasında 

dikkatli olunması gerektiğini vurgulamıştır. Model, iyileştirme stratejilerinin optimize 

edilmesi ve daha az zararlı ürünlerin elde edilmesi için bir analiz çerçevesi sunmaktadır.  



vi 

 

TABLE OF CONTENTS 

 

 

LIST OF FIGURES ....................................................................................................... viii 

 

LIST OF TABLES ............................................................................................................ x 

 

ABBREVIATIONS ......................................................................................................... xii 

 

CHAPTER 1. INTRODUCTION ..................................................................................... 1 

 

CHAPTER 2. LITERATURE REVIEW .......................................................................... 4 

2.1. Persistent Organic Pollutants (POPs) ..................................................... 4 

2.2. Polybrominated Diphenyl Ether (PBDE) ............................................... 5 

2.3. Physical and Chemical Properties of PBDEs ......................................... 7 

2.4. Occurrence of PBDEs in the environment ............................................. 8 

2.5. Degradation of PBDEs in the environment ............................................ 9 

2.6. Remediation ......................................................................................... 13 

2.7. Bioremediation ..................................................................................... 14 

2.8. Modelling efforts on dehalogenation of halogenated POPs ................. 15 

2.9. Description of Terminology ................................................................. 16 

2.9.1. Coeluting congener ........................................................................ 16 

2.9.2. Dehalogenation pathway ............................................................... 16 

2.9.3. Marker and non-marker congeners ................................................ 17 

2.9.4. Mother/daughter ............................................................................ 17 

2.9.5. Linear Regression .......................................................................... 18 

2.9.6. Model Training .............................................................................. 18 

2.9.7. Reaction Amount ........................................................................... 19 

2.10.  Anaerobic Dehalogenation Model ..................................................... 19 

2.10.1. Description of Model ................................................................... 19 

2.10.2. Model Development and History ................................................ 20 

2.11.  Support Vector Machine Model ......................................................... 21 

2.12.  Neural Network Model ...................................................................... 24 

 

CHAPTER 3. METHOD ................................................................................................ 30 

3.1. PBDE data set ....................................................................................... 30 

3.2. Development and Evolution of the ADM ............................................ 40 



vii 

 

3.2.1. Anaerobic dehalogenation model .................................................. 40 

3.2.2. Integrated model ............................................................................ 43 

3.2.3. Integrated and Enhanced Model (ADM-IE) .................................. 45 

3.3. Linear Regression Principles ................................................................ 48 

3.4. Support Vector Machines Principles .................................................... 49 

3.5. Neural network model .......................................................................... 50 

 

CHAPTER 4. RESULT AND DISCUSSION................................................................. 57 

4.1. Validation of ADM-IE using artificial data set ..................................... 57 

4.2. ADM-IE application to PBDE bioremediation scenarios .................... 61 

4.2.1. Evaluation of PBDE dehalogenation after 180 days ..................... 61 

4.2.2. Sequential degradation analysis in defined time intervals ............ 74 

4.3. Analysis of machine learning results .................................................... 75 

4.3.1. Pathways and degradation rates estimated by machine learning ... 76 

 4.3.2. Natural attenuation neural network results………………………79 

 4.3.3. Biostimulation 0-180 day neural network results………………..84 

 4.3.4. Bioaugmentation 0-180 day neural network results……………..89 

4.4. Discussion on the findings of ADM-IE .............................................. 93 

 4.4.1. Evaluation of model results and the experimental results……….93 

 4.4.2. Previous usage of machine learning in degradation of persistent  

……………………..organic pollutants………………………………………………...95 

 4.4.3. Comparison of the degradation rate constants with previous  

……………..model applications……………………………………………….97 

 

CHAPTER 5. CONCLUSION ....................................................................................... 99 

 

REFERENCES ............................................................................................................. 102 

 

APPENDICES 

APPENDIX A. BDE PATHWAYS REVIEW ............................................................... 110 

APPENDIX B. NORMALIZED PROFILE DATA SETS ............................................ 113 

APPENDIX C. ANALYSIS OF ML PERFORMANCE .............................................. 118 

APPENDIX D. MODEL MANUAL ............................................................................ 119 

  



viii 

 

LIST OF FIGURES 

 

 

Figure            Page 

Figure 2.1. General structure of PBDEs………………………………………………...6 

Figure 2.2. The pathway of BDE-47 degradation under anaerobic conditions…..……...9 

Figure 2.3. The chronology of ADM development and modification. ........................... 20 

Figure 2.4. The structure of SVM (Source: Raghavendra N. and Deka 2014). .............. 22 

Figure 2.5. Typical neural network architecture (Source: The MathWorks 2024). ........ 24 

Figure 2.6. Structure of neural network (Source: Hafeez et al. 2024). ........................... 27 

Figure 2.7. Structure of neural network (Source: Isah et al. 2024). ................................ 28 

Figure 3.1. PBDE congener concentrations at sampling times in natural attenuation....31 

Figure 3.2. PBDE congener concentrations at sampling times in biostimulation….......32 

Figure 3.3. PBDE congener concentrations at sampling times in bioaugmentation…...32 

Figure 3.4. General algorithm in the first step of ADM (Source: Demirtepe 2012)…...34 

Figure 3.5. General algorithm in the second step of ADM (Source: Demirtepe 2012)...41 

Figure 3.6. General algorithm in the last step of ADM (Source: Demirtepe 2012). ....... 42 

Figure 3.7. General algorithm of integrated anaerobic dehalogenation model. ............. 44 

Figure 3.8. Integrated and Enhanced Anaerobic Dehalogenation Model Algorithm. ..... 47 

Figure 3.9. Feed-Forward neural network diagram. ....................................................... 51 

Figure 3.10. An example of the FNN command window. .............................................. 52 

Figure 3.11. Error histogram training plots graph. ......................................................... 53 

Figure 3.12. Training state graph. ................................................................................... 54 

Figure 3.13. Regression Graph for Training, validation, and test. .................................. 55 

Figure 3.14. MSE Performance graph. ........................................................................... 56 

Figure 4.1. Manual/ADM-IE k values and measured/predicted profile plots. ...............56 

Figure 4.2. Manual/ADM-IE k values and measured/predicted profile plots. ...............58 

Figure 4.3. Measured vs predicted concentrations of all marker PBDE congeners for  

…………..A) NA, B) BS, C) BA, except octa, nona, and deca-BDEs for D) NA, E)  

…………..BS, F) BA. ....…………………………………………………………...….61 

Figure 4.4. Marker pathways k-values for all microcosm data sets 0-180day. ..……....70 

Figure 4.5. Degradation rate constant under BA 0-180 days. ...…………………..........71 

Figure 4.6. Degradation rate constant under BS 0-180 days. ...........……………..........72 



ix 

 

Figure            Page 

Figure 4.7. Degradation rate constant under NA 0-180 days. ..........……………..........72 

Figure 4.8. BS, NA and BA neural network model results. ..............……………..........76 

Figure 4.9. ADM-IE NA 0-180day ML and calculated degradation rate……….……...76 

Figure 4.10. NA 0-180day MSE performance graph. ......……………………………..79 

Figure 4.11. NA 0-180day training state graph. ..……………………………...............80 

Figure 4.12. NA 0-180day error histogram training plots……………………...............81 

Figure 4.13. Regression graph for training, validation, and test.  .…………………….82 

Figure 4.14. ADM-IE BS 0-180day ML and calculated degradation rate. ....………….83 

Figure 4.15. BS 0-180day MSE performance graph. ..……………………….....……..85 

Figure 4.16. BS 0-180day MSE performance graph…………………………...............85 

Figure 4.17. BS 0-180day error histogram training plots. ......………………...............86 

Figure 4.18. BS 0-180day regression graph for training, validation, and test. ..............86 

Figure 4.19. ADM-IE BA 0-180day ML and calculated degradation rate. …...……….87 

Figure 4.20. BA 0-180day MSE performance graph. ..………………………..............87 

Figure 4.21. BA 0-180day training state graph. ..……………………………...............88 

Figure 4.22. BA 0-180day error histogram training plots. .…………………................88 

Figure 4.23. BA 0-180day regression graph for training, validation, and test. ………..89  



x 

 

LIST OF TABLES 

 

 

Table                              Page 

Table 2.1. Stockholm Convention categorization on POPs. ............................................. 4 

Table 2.2. Properties of PBDEs (Source: EPAWEB 1.0, 2023; USEPA, 2022). .............. 7 

Table 2.3. The concentration of PBDEs. ........................................................................... 9 

Table 2.4. PBDE degradation rate constants (k) following the first-order kinetics 

………….(Source: C. Zhao et al. 2018). ........................................................................ 11 

Table 2.5. Anaerobic degradation pathways of PBDEs. ................................................. 12 

Table 2.6. Examination of models. ................................................................................. 21 

Table 2.7. The application of SVM for the prediction of pollutants removal. ................ 23 

Table 2.8. Previous studies on contaminant degradation using with neural network ..... 29 

Table 3.1. First artificial data set input. .......................................................................... 31 

Table 3.2. First artificial data set input calculations. ...................................................... 31 

Table 3.3. Second artificial data set calculations. ........................................................... 31 

Table 3.4. Details of PBDE sediment microcosm sets (Source: Demirtepe 2017, 81). .. 34 

Table 3.5. Natural attenuation microcosm PBDE concentrations with time (ng/g)........ 35 

Table 3.6. Biostimulation microcosm PBDE concentrations with time (ng/g)............... 36 

Table 3.7. Bioaugmentation microcosm PBDE concentrations with time (ng/g). .......... 36 

Table 3.8. Negative control microcosm PBDE concentrations with time (ng/g)............ 37 

Table 3.9. Sterile control microcosm PBDE concentrations with time (ng/g)................ 38 

Table 4.1. ADM-IE first artificial data set input. ………………..……………………..55 

Table 4.2. First validation comparison of manually calculated and ADM-IE k-values..56 

Table 4.3. ADM-IE second artificial data set input. ….…………………..……………57 

Table 4.4. Second validation comparison of manual and ADM-IE k-values. ……...….58 

Table 4.5. ADM-IE performance for 0-180 day microcosm data set. ............................. 59 

Table 4.6. Results of ADM-IE predicted and measured mole‰ profiles. ...................... 63 

Table 4.7. All possible pathways for 23 marker congeners. ........................................... 65 

Table 4.8. NA, BS, BA, NC, and SC k-value results. ..................................................... 68 

Table 4.9. Novel pathways degradation rate constants under test microcosms. ............. 73 

Table 4.10. Degradation rate constants for dehalogenation pathways in different time 

…………...invervals. ...................................................................................................... 74 



xi 

 

Table                              Page 

Table 4.11. Neural network model performance results under 3 test microcosms. ........ 77 

Table 4.12. k-values of non-marker pathways for bioremediation microcosms  

…………...between 0 and 180 days, predicted by neural network model. .................... 77 

Table 4.13. k-values of non-marker significant pathways for natural attenuation. ........ 81 

Table 4.14. k-values of non-marker significant pathways for biostimulation ................ 85 

Table 4.15. k-values of non-marker significant pathways for bioaugmentation............. 89 

Table 4.16. Selected studies on machine learning applications ...................................... 89 

Table 4.17. Degradation rate constants of eight pathways different studies ................... 89  



xii 

 

ABBREVIATIONS 

 

 

PBDE   Polybrominated diphenyl ether  

POPs   Persistent organic pollutants   

PCBs  Polychlorinated biphenyls  

ADM  Anaerobic Dehalogenation Model 

ADM-IE Anaerobic Dehalogenation Model – Integrated and Enhanced 

SC   Stockholm Convention   

EU   European Union  

DW  Dry Weight 

GC/MS  Gas chromatography/mass spectrometry  

BFR   Brominated flame retardant   

c‐PentaBDE  Commercial pentabromodiphenylether  

c-OctaBDE  Commercial octabromodiphenyl ether  

DecaBDE  Decabromodiphenyl ether  

BA   Bioaugmentation   

RSD  Relative Standard Deviation  

SVM  Support Vector Model 

FNN  Feed Forward Neural Network 

MSE  Mass Square Error 

MEX  MATLAB Executable 

SVR  Support Vector Regression 

PAH  Polycyclic Aromatic Hydrocarbons 

BS  Biostimulation  

NA  Natural Attenuation 

DDT  Dichlorodiphenyltrichloroethane 

Koc   Organic carbon-water partitioning coefficient  

Kow   Octanol-water partitioning coefficient  

US EPA  United States Environmental Protection Agency 

SP  Significant Pathway 

NC  Negative Control 

SC  Sterile Control



1 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

Polybrominated Diphenyl Ethers (PBDEs) have gained attention due to their 

widespread use as flame retardants and their classification as Persistent Organic 

Pollutants (POPs) under the Stockholm Convention (Stockholm Convention, 2024). 

These compounds, which have been added to plastics, textiles, and electronics, are of 

concern due to their persistence, and toxicity (Hu and Hornbuckle 2010). Once released 

into the environment, PBDEs undergo slow degradation processes. The degradation of 

PBDEs, primarily through microbial dehalogenation, results in the formation of lower-

brominated congeners (C. Zhao et al. 2018). While this process can reduce the overall 

bromine content, some daughter products may still be persistent and toxic (Linares, 

Bellés, and Domingo 2015). Hence, the persistence or toxicity of both the parent and 

daughter compounds in soils, sediments, and biota continues to be a significant challenge 

for environmental management (J. Li et al. 2014). 

Given the persistence of POPs like PBDEs, efforts to remediate contaminated sites 

often focus on bioremediation techniques that stimulate microbial degradation. These 

methods, including biostimulation and bioaugmentation, aim to enhance the activity of 

naturally occurring or introduced microorganisms capable of dehalogenation (Demirtepe 

and Imamoglu 2019a). While such approaches show promise, ongoing research is needed 

to better understand the long-term effects of microbial degradation, the environmental 

fate of degradation products, and the effectiveness of different remediation strategies 

(Karakas, Aksoy, and Imamoglu 2020).  

To facilitate the understanding of the fate of PBDEs in complex environments like 

sediments, modeling approaches have proven useful. Previous studies developed and 

improved mathematical models to identify possible dehalogenation pathways for 

halogenated organic compounds (Demirtepe 2012, 31; Karakas 2016, 52-5). Specific 

pathways were determined by the model as the dominant pathways in the environment 

(Demirtepe et al. 2015), and degradation rate constants were estimated for dehalogenation 

pathways resulting in the production of less toxic compounds (Karakas 2016, 55). 
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However, the models had some limitations, which need to be improved to obtain more 

comprehensive predictions on the fate of persistent compounds.  

The aim of the present study was to improve the computational model for 

dehalogenation of POPs in contaminated sediments. The model improved in this study 

was a modified version of the “anaerobic dechlorination model” previously developed by 

Demirtepe (2012). The specific objectives of the study were: 

1. To modify the previously developed anaerobic dehalogenation model, combining the 

prior model runs into a single MATLAB-based model allowing for a user-friendly 

version, and predicting the degradation rate constants of dehalogenation pathways in 

which the congeners measured in the experimental setup appeared 

2. To incorporate machine learning algorithms to predict the degradation rate constant 

of dehalogenation pathways in which the congeners not measured in the experimental 

setup appeared 

3. To apply the model on three test microcosms mimicking bioremediation of PBDEs in 

sediments and two control microcosms; by this way, a comparison of the 

dehalogenation of PBDEs under different environmental conditions was achieved. 

4. To provide information on the fate of toxic or bioaccumulative PBDE congeners, and 

present recommendations for the PBDE congeners to be monitored in the sediments. 

The microcosm dataset utilized in this study has not been previously used in any 

degradation rate prediction model. The application was deemed a novel aspect of this 

study in that a comprehensive list of PBDE dehalogenation pathways could be achieved. 

Furthermore, a comparative evaluation of different bioremediation methods enabled the 

observation of pathways, specific to the method applied. Some pathways identified by the 

model have not been previously reported in the literature, and consequently, the 

degradation rates of these pathways have not been investigated before. Moreover, this 

study addressed a gap in the literature by employing machine learning to define 

degradation rate constants for PBDEs using bioremediation methods such as natural 

attenuation, biostimulation, and bioaugmentation. In this context, modeling studies 

facilitate the understanding of the dehalogenation of POPs since only experimental 

observations may not be enough to calculate the rate constants in the environment where 

not all congeners can be measured, and dehalogenation pathways occur simultaneously. 

Previous studies have not applied machine learning to predict PBDE degradation rates, 

nor has machine learning been integrated into the previously developed ADM model.  
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 In chapter 2, the general characteristics of PBDEs, and their environmental 

degradation were explained. Especially, biodegradation methods and degradation 

mechanism on the PBDEs were presented in detail. Moreover, anaerobic dehalogenation 

model history was summarized. 

 In chapter 3, the microcosm data was presented with PBDEs initial and final 

concentrations. Additionally, the artificial data sets prepared for validation of the 

developed model were presented. The “anaerobic dehalogenation model-integrated and 

enhanced” and machine learning methods were detailed in this chapter. 

 In chapter 4, the results of model validation with artificial data sets, and 

microcosm data set results were presented, evaluated, and discussed. Lastly, the 

degradation rates derived from this study were compared to the available literature values. 

 In chapter 5, the conclusions derived from the execution of the anaerobic 

dehalogenation model-integrated and enhanced to the microcosm data sets were given. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1. Persistent Organic Pollutants (POPs) 

 

 

POPs are a class of highly toxic chemicals that resist environmental degradation 

through chemical and biological processes (Jones and de Voogt 1999). Their persistence 

in the environment allows them to bioaccumulate in the fatty tissues of organisms, 

biomagnify through food chains, and ultimately pose significant risks to human health 

and ecosystems (Wu et al. 2024). POPs include a wide range of substances, such as 

polychlorinated biphenyls (PCBs), dioxins, furans, and PBDEs, which have been used, 

and produced in various industrial and commercial applications (Ochs et al. 2024). Due 

to their persistency, POPs can remain in the environment for extended periods and are 

subject to long-range transport, resulting in their global distribution (Hale et al. 2006). 

The Stockholm Convention has identified and regulated several classes of POPs 

due to their persistence, bioaccumulation, and potential for long-range environmental 

transport (Stockholm Convention 2024). All POPs listed under the Stockholm 

Convention are presented in Table 2.1. 

 

 

Table 2.1. Stockholm convention categorization on POPs. 

 

Pesticide Industrial Chemicals Unintentional Production 

Aldrin  

Chlordane 

Dieldrin  

Endrin  

Dicofol 

Decabromodiphenyl ether 

Dechlorane Plus 

Hexabromobiphenyl 

Hexabromocyclododecane  

 

Hexachlorobenzene 

Hexachlorobutadiene 

Pentachlorobenzene 

Polychlorinated-biphenyls  

 

(cont. on next page) 
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Table 2.1 (cont.) 

 

  

Alpha-

Hexachlorocyclohexane 

Perfluorooctanoic acid 

Perfluorohexane sulfonic 

acid 

 

Beta-

Hexachlorocyclohexane 

Dicofol  

Methoxychlor  

Mirex  

Pentachlorobenzene 

Pentachlorophenol 

Perfluorooctane-sulfonic 

acid 

DDT 

Short-chain chlorinated 

paraffins 

Tetrabromodiphenyl ether 

Pentabromodiphenyl ether   

UV-328 

Perfluorooctane sulfonyl-

fluoride 

 

 

 

The global threat posed by POPs, highlights the need for stringent environmental 

management and regulatory measures (O’Sullivan and Sandau, 2014). International 

agreements such as the Stockholm Convention aim to eliminate or restrict the production 

and use of POPs to minimize their adverse impact on human health and the environment. 

As research on the degradation mechanisms and remediation of POPs continues to evolve, 

understanding the behavior of POPs in the environment remains a critical component of 

efforts to mitigate the risks associated with these persistent pollutants (Eddy Y. Zeng 

2015). 

 

 

2.2. Polybrominated Diphenyl Ethers (PBDE) 

 

 

PBDEs are a group of POPs. They are synthetic chemicals and do not occur 

naturally in the environment. Structurally, PBDEs consist of two linked phenyl rings, each 

with attached bromine atoms as presented in 

Figure 2.1, and are represented by the general formula C12H(10−x)BrxO, where 'x' 

indicates the number of bromine atoms substituted, which can vary up to 10. This 
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variation allows for the existence of 209 possible congeners. The congeners are numbered 

according to the International Union of Pure and Applied Chemistry (IUPAC), regarding 

the presence and position of bromines in the diphenyl ether structure. Based on the 

number of bromines in the structure, PBDEs constitute ten homolog groups: mono-, di-, 

tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, and deca-BDE. 

The first commercial productions of PBDEs began in the 1970s in Germany 

(Fromme et al. 2009). They were produced as mixtures of various congeners, and 

according to the presence of homolog groups, they were named as penta-BDE mixture, 

octa-BDE mixture, and deca-BDE mixture. The production of PBDE congeners has been 

restricted by the Stockholm Convention. The specific PBDE congeners that are regulated 

under the Stockholm Convention include penta-BDEs used mostly in furniture and 

mattresses, octa-BDE used widely in plastics and electronics, and deca-BDE used in 

textiles and electronics (Law et al. 2014). Until their ban, they have been produced as 

67,125 metric tons (13% penta-, 5.7% octa- and 82% deca-BDEs) (Siddiqi, Laessig, and 

Reed 2003). They were used as an additive flame retardant and had a variety of 

applications including in plastics/polymers/composites, textiles, adhesives, sealants, 

coatings and inks. PBDEs containing plastics are used in paints, plastics, foam furniture 

padding, textiles, rugs, curtains, televisions, building materials, airplanes and automobiles 

(Siddiqi, Laessig, and Reed 2003). PBDEs are released into the environment during their 

manufacturing and processing, throughout the service life of products that contain PBDEs 

and when these products are disposed of. 

 

 

 

 

Figure 2.1. General structure of PBDEs. 
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2.3. Physical and Chemical Properties of PBDEs 

 

 

The terms ortho, meta, and para are prefixes used in organic chemistry to indicate 

the position of non-hydrogen substituents on a hydrocarbon ring as displayed (Figure 

2.1.). The stereochemistry of PBDEs is significant in determining their behavior and 

interaction with biological systems (Schwarzenbach 2003). For example, PBDEs with 

ortho-substituted bromines create steric hindrance, preventing the phenyl rings from 

rotating freely and resulting in a nonplanar configuration. This structural characteristic 

can affect their binding affinity to biological receptors, influencing their toxicological 

profile (Ji et al. 2011). 

 

 

Table 2.2. Properties of PBDEs (Source: EPAWEB 1.0 2023; USEPA 2022).  

 

25 °C BDE-209 BDE-100 BDE-99 BDE-47 

Formula C12Br10O C12H5Br5O C12H5Br5O C12H6Br4O 

Molar mass 959.17g/mol 564.69g/mol 564.69g/mol 485.80g/mol 

Density 3.0 g/𝑐𝑚3 2.3 g/𝑐𝑚3 2.3 g/𝑐𝑚3 2.3 g/𝑐𝑚3 

Solubility 2.84x10−11mg/L 7.86x10−5mg/L 0.0004 mg/L 0.0015 mg/L 

Vapor PA 6.23x10−6 Pa 3.25x10−6Pa 1.44x10−4Pa 3.21x10−5Pa 

Henry’s law 1.1x10−3
 atm.𝑚3/mol 3.54x10−6

 atm.𝑚3/mol 3.54x10−6
 atm.𝑚3/mol 8.48 x 10−6

atm.𝑚3/mol 

Log Kow 12.11 7.66 7.66 6.7 

Boiling P. 589.7 °C 436.21 °C 436.21 °C 405.51 °C 

Melting P. 254.37 °C 182.80 °C 182.80 °C 161.73 °C 

Main property 

Organic Particle Matter Hydrophobic Insoluble 

 

 

The Table 2.2 presents the molecular and physical properties of four PBDE 

congeners, including BDE-209, BDE-100, BDE-99, and BDE-47. These PBDE 

congeners vary in their degree of bromination and other characteristics, influencing their 

environmental behavior, persistence, and toxicity. 



8 

 

As the degree of bromination increases, solubility in water and vapor pressure 

decreases, while the partition coefficient (Kow) increases. For instance, BDE-209, with 

its high bromination, has extremely low water solubility and the lowest vapor pressure, 

making it highly hydrophobic and less volatile as indicated in Table 2.2. In contrast, 

lower-brominated congeners, such as BDE-47, show higher solubility and greater vapor 

pressure. The increasing log Kow values with higher bromination, from 6.77 for BDE-47 

to 12.11 for BDE-209, indicate a greater potential for accumulation of heavily brominated 

compounds in organic-rich systems. 

Chemically, PBDEs are stable compounds, resistant to thermal degradation and 

chemical reactions under normal environmental conditions (Karakas and Imamoglu 

2016). This stability, while beneficial for their role as flame retardants, also makes them 

POPs. Over time, PBDEs can biaccumulate in the food chain, posing risks to human 

health and the environment (Hale et al. 2006). Based on the bioaccumulation factor (BAF) 

values presented in (B. Zhu et al. 2014), BDE-47 and 99 demonstrate the highest potential 

for bioaccumulation. The calculated BAF for BDE-47 is approximately 1.3 × 10⁶ mL/g 

dry weight, and for BDE-99, it is around 1.4 × 10⁶ mL/g dry weight. These high values 

indicate a significant ability to accumulate in organisms, particularly in aquatic 

environments, with BDE-47 showing the strongest bioaccumulation potential among the 

studied congeners (Gustafsson et al. 1999). 

 

 

2.4. Occurrence of PBDEs in the environment 

 

 

PBDEs have become ubiquitous in various environmental matrices including air, 

water, soil, and biota. They have been detected worldwide, with higher concentrations 

often found in areas near industrial activities (Sun et al. 2020). The concentrations of 

PBDEs in sediments, soils, and sludge samples from around the world are presented in 

Table 2.3. 
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Table 2.3. The concentration of PBDEs in solid matrices. 

 

Medium Concentration PBDE Reference 

Digested 

sludge 

537.2 ng/mL Deca-

BDE 

(Gerecke et al. 2005) 

Soil in waste  

dumpsites 

9.47 ng/g dw BDE-28 (Oloruntoba et al. 2021) 

23.4 ng/g dw BDE-153  

17.8 ng/g dw BDE-183  

Soil 138 ng/g dw 

55 ng/g dw 

BDE-209 

BDE-47 

(Song et al. 2015) 

 

Soil 40 ng/g dw 

70 ng/g dw 

BDE-28 

BDE-209 

(Nyholm, Lundberg, and Andersson 

2010) 

Sediment 32.5 ng/g dw BDE-209 (Toms et al. 2006) 

Soil 770 ng/g dw BDE-209 (McGrath et al. 2016) 

 

 

The environmental PBDE concentrations are critical for understanding their 

environmental distribution and identifying their potential sources. Specifically, the levels 

of PBDEs detected in digested sludge samples from wastewater treatment plants provide 

valuable insights into the behavior of these compounds during treatment processes and 

highlight possible points of release. 

 

 

2.5. Degradation of PBDEs in the environment 

 

 

PBDEs are persistent in the environment, but their degradation primarily occurs 

through reductive dehalogenation, especially under anaerobic conditions. Anaerobic 

dehalogenation, particularly for POPs, offers a suggesting solution by using specific 

microorganisms capable of attacking carbon-halogen bonds of these pollutants (J. Li et 

al. 2014). This mechanism is also valid for other halogenated organic pollutants, such as 

PCBs, trichloroethylene, etc. (Bedard 2003). The reductive dehalogenation reaction 

involves the removal of the one bromine atom from the PBDE structure and its 

replacement with hydrogen atom. This process is catalyzed by anaerobic bacteria, such 
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as Dehalococcoides spp., in the presence of specific enzymes under physiological 

conditions. Like similar halogenated organic compounds, PBDEs serve as the terminal 

electron acceptor in anaerobic dehalogenation process, and hence get reduced during this 

reaction. The electron donors of dehalogenation reactions may be simple organic acids or 

complex substrates, including hydrogen, methane, acetate and compost leachate (Fennell 

and Gossett 2003). These can be inherently found in the environment or added when 

applying bioremediation. 

The degradation of halogenated organic compounds was found to be influenced 

by various environmental factors, including the initial contaminant concentration, the 

presence of electron donors and the microbial community. In previous studies, initial 

contaminant and microbial concentrations were observed to affect the degradation, and 

first order kinetics have been commonly used (Cho et al. 2003; Siebielska and Sidełko 

2015; Lombard et al. 2014). Table 2.4 presents the biodegradation of PBDE under 

anaerobic conditions. 

During anaerobic dehalogenation of PBDEs, highly brominated congeners like 

BDE-209 are transformed into less brominated congeners, such as BDE-99 and BDE-47 

via sequential dehalogenation reactions (L. K. Lee and He 2010). In anaerobic sediments, 

this process was observed to be slow extending over several years (Tokarz et al. 2008). 

The reactions can be categorized depending on the position of the removed bromine atoms 

(meta, ortho, or para). For instance, when a bromine atom is removed from the para 

position, the resulting compound is BDE-17, and when the bromine is removed from the 

ortho position, it forms BDE-28 (Figure 2.2). 

 

 

 

 

Figure 2.2. The pathway of BDE-47 degradation under anaerobic conditions. 
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Table 2.4. PBDE degradation rate constants (k) following the first-order kinetics (Source:     

. ………...C. Zhao et al. 2018).  

 

Media 𝒌(𝒅−) Microcosm References 

Lake sediment 0.0025 without substrates  

(Demirtepe 2017, 153) 0.0049 with Na, formate, ethanol 

0.0028 with bacteria 

River sediment 0.0220 without substrates (C. Huang et al. 2014) 

Sewage sludge 0.0011 incubated with-  

culture medium 

(Shih, Chou, and Peng 

2012) 

Li-Ming 

sludge 

0.0012  

Sewage sludge 0.0011 with primers (Gerecke et al. 2005) 

Lake Sediment 0.00013 with phosphate buffer, 

methanol, dextrose 

(Tokarz et al. 2008) 

 

 

The anaerobic dehalogenation reaction can be referred to a pathway. The 

anaerobic dehalogenation pathways depend on factors such as the structure and 

halogenation pattern of the pollutants, the availability of electron donors, and the 

environmental conditions that support microbial activity (Demirtepe 2017, 153-59). The 

anaerobic dehalogenation pathways are expected to produce less toxic forms (S. Zhao et 

al. 2022). By this way, microbial processes can lead to a reduction in their overall toxicity.  

Table 2.5, presents the anaerobic dehalogenation pathways of PBDEs, taken from 

several studies in literature (Tokarz et al. 2008; X. Zhu et al. 2019; Liu et al. 2022). The 

'Pathway' columns represent the PBDE dehalogenation pathways. The 'Structure' columns 

show the structure of PBDEs appear in the pathways, involving the position of the 

bromine atoms on the PBDE congeners. 

 

 

 

 

 

 



12 

 

Table 2.5. Anaerobic degradation pathways of PBDEs. 

 

Reference (Tokarz et al. 2008) (X. Zhu et al. 2019) (Liu et al. 2022) 

Pathway Structure Pathway Structure Pathway Structure 

209 208 
23456-
23456 

23456-
2356 208 202 

23456-
2356 

2356-
2356 

209 208 
23456-
23456 

23456-
2356 

209 207 
23456-

23456 

23456-

2346 
208 199 

23456-

2356 

2356-

2345 
209 207 

23456-

23456 

23456-

2346 

209 206 
23456-

23456 

23456-

2345 206 199 
23456-

2345 

2356-

2345 
208 202 

23456-

2356 

2356-

2356 

207 197 
23456-
2346 

2346-
2346 206 194 

23456-
2345 

2345-
2345 

208 201 
23456-
2356 

2345-
2356 

207 196 
23456-

2346 

2345-

2346 
202 178 

2356-

2356 
2356-235 207 201 

23456-

2346 

2345-

2356 

206 196 
23456-

2345 

2345-

2346 201 188 
2345-

2356 
2356-246 207 197 

23456-

2346 

2346-

2346 

197 184 
2346-

2346 
2346-246 201 175 

2345-

2356 
2346-235 207 196 

23456-

2346 

2345-

2346 

197 184 
2346-

2346 
2346-246 201 177 

2345-

2356 
2356-234 206 196 

23456-

2345 

2345-

2346 

196 184 
2345-

2346 
2346-246 199 193 

2356-

2345 
2356-345 206 203 

23456-

2345 

23456-

245 

196 183 
2345-

2346 
2346-245 199 177 

2356-

2345 
2356-234 203 183 

23456-

245 

2346-

245 

184 154 2346-246 246-245 199 172 
2356-
2345 

2345-235 203 181 
23456-

245 
23456-

24 

184 153 2346-246 245-245 197 171 
2346-

2346 
2346-234 196 182 

2345-

2346 

2345-

246 

183 154 2346-246 246-245 196 182 
2345-

2346 
2345-246 196 183 

2345-

2346 

2346-

245 

154 99 246-245 245-24 196 171 
2345-
2346 

2346-234 183 139 
2346-
245 

2346-24 

154 118 245-246 246-34 194 180 
2345-

2345 
2345-245 181 166 

23456-

24 23456-4 

154 100 246-245 246-24 194 172 
2345-

2345 
2345-235 157 108 234-345 

234-45 

153 99 245-245 245-24 191 161 2346-345 2346-35 157 105 234-345 234-34 

100 47 246-24 24-24 188 150 2356-246 236-246 156 105 
2346-

345 
234-34 

99 66 245-24 24-34 184 150 2346-246 236-246 153 99 245-245 245-24 

99 47 245-24 24-24 183 144 2346-245 2346-25 139 85 2346-24 234-24 

99 49 245-24 24-25 182 154 2345-246 246-245 138 85 234-245 234-24 

49 17 24-25 24-2 180 146 2345-245 235-245 119 71 246-34 26-46 

47 17 24-24 24-2 180 153 2345-245 245-245 118 66 
2346-

245 
24-34 

47 28 24-24 24-4 178 133 2356-235 235-235 99 66 245-24 24-36 

28 15 24-4 4-4 175 161 2346-235 2346-35 85 47 234-24 24-24 

17 4 24-2 2-2 175 144 
2346-

235 
2346-25 

71 33 
26-46 2-34 

15 3 4-4 4 172 146 
2345-

235 
235-245 66 33 24-34 2-34 

4 1 2-2 2 172 133 
2345-

235 
235-235 

49 25 
24-25 24-3 

3 - 4 - 171 128 
2346-

234 
234-234 

47 28 
24-24 24-4 

1 - 2 - 154 102 246-245 245-26 33 8 2-34 2-4 

    154 103 246-245 246-25 33 12 2-34 34 

    153 101 245-245 245-25 30 8 246 2-4 

    146 92 235-245 235-25 30 7 246 24 

    144 103 2346-25 246-25 25 7 2-4 24 

    133 92 235-235 235-25 17 4 24-2 2-2 

    101 52 245-25 25-25 8 3 2-4 4 

    92 52 235-25 25-25 8 3 2-4 4 

  
  

 

    
8 1 2-4 2 
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2.6. Remediation 

 

 

Remediation refers to the broad range of methods employed to reduce, remove, or 

neutralize contaminants from environmental media, such as soil, water, and air. The 

primary objective of remediation is to restore ecosystems to safe and healthy conditions 

by mitigating the adverse effects of pollutants. Remediation techniques can be classified 

into physical, chemical, and biological approaches, depending on the nature of the 

contamination and the environmental context. 

• Physical Remediation: This involves physically remove or isolate contaminants 

including methods such as soil excavation, sediment dredging, and thermal 

desorption. These techniques are often employed in sites where contamination is 

concentrated and pose immediate risks to human health and the environment 

(Suthersan et al. 2016, 32).  

• Chemical Remediation: Chemical processes, such as oxidation, reduction, or 

neutralization, are used to transform hazardous contaminants into less toxic or inert 

forms. For example, chemical oxidants like hydrogen peroxide or potassium 

permanganate may be applied to degrade organic pollutants, including polycyclic 

aromatic hydrocarbons (PAHs) and chlorinated solvents, through chemical reactions 

(Suthersan et al. 2016, 33).  

• Biological Remediation (Bioremediation): This approach utilizes the metabolic 

processes of microorganisms, plants, or enzymes to degrade or transform 

environmental contaminants into less harmful substances. Bioremediation offers a 

more sustainable and environmentally friendly option compared to physical and 

chemical methods, often enabling in situ treatment of pollutants (Suthersan et al. 

2016, 34).  

In many cases, a combination of these approaches, referred to as integrated 

remediation, may be necessary to achieve effective clean-up, especially when dealing 

with complex mixtures of contaminants (Suthersan et al. 2016, 34-5). The selection of the 

most appropriate remediation strategy is contingent on several factors, including the type 

and concentration of contaminants, site characteristics, and the time frame available for 

remediation. 
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2.7. Bioremediation 

 

 

Bioremediation is the use of microorganisms for the removal of contaminants by 

degradation or transformation of pollutants. It offers a more sustainable and 

environmentally friendly approach to dealing with POPs (Omokhagbor et al. 2020). 

Microorganisms or plants are employed to break down these persistent compounds into 

less harmful substances through biological processes. While bioremediation may take 

longer than traditional methods, it is often more cost-effective, minimizes environmental 

disturbance, and can be applied and treating contaminants directly at the pollution site 

without excavation or transport (Omokhagbor et al. 2020). 

There are three types of bioremediation techniques that are generally employed 

for contaminated environmental media, namely natural attenuation, biostimulation, and 

bioaugmentation. 

• Natural attenuation (NA) refers to processes by which contaminants in the 

environment are reduced or degraded without human intervention. This can occur 

through various mechanisms such as microbial degradation, volatilization, sorption, 

or chemical transformation. Essentially, natural attenuation harnesses existing 

biological, chemical, and physical processes in the environment to mitigate 

contaminant levels over time (Schnoor 2006, 356-88). 

• Biostimulation (BS) is the addition of substrates to enhance the activity of indigenous 

microorganisms when they show little or no degradation activity, by creating 

conditions necessary for their activity (Omokhagbor et al. 2020).  

• Bioaugmentation (BA) is the introduction of degrading microorganisms (or fungi, 

genes, enzymes) enriched from the same or another site to degrade target pollutants, 

if the microbial activity is insufficient for intrinsic degradation at the site (Reible 

2014). 
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2.8.  Modelling efforts on dehalogenation of halogenated POPs 

 

 

Computer programs and modeling play a crucial role in environmental science, 

particularly in studying contaminant behavior, degradation pathways, and risk 

assessments. In the context of POPs such as PBDEs and PCBs, computational models 

provide a powerful tool for simulating the fate and transport of these compounds in 

various environmental media, such as air, water, soil, and sediments. By utilizing 

mathematical models and numerical simulations, researchers can predict how pollutants 

move through ecosystems, interact with environmental factors, and how long they persist 

(Sarigiannis, Stratidakis, and Karakitsios 2024). 

Several types of modeling approaches can be employed, including kinetic models 

to describe degradation rates and compartmental models to simulate the distribution of 

pollutants among different environmental compartments (e.g., water, sediment, and biota) 

(Valerio 2014). These models often rely on input data from laboratory experiments, field 

measurements, and physicochemical properties of the pollutants, such as solubility, vapor 

pressure, and partition coefficients (Valerio 2014). In PBDE degradation studies, models 

such as quantitative structure-activity relationship (QSAR) models can help predict the 

biodegradability of different congeners by relating their molecular structure to their 

environmental fate. By combining laboratory data with computer-based models, 

researchers can optimize remediation strategies, assess long-term ecological risks, and 

guide environmental policies more effectively (Peter et al. 2019). 

Similar to PBDEs, PCBs degrade through reductive dehalogenation mechanism. 

Anaerobic dehalogenation models for PCBs and PBDEs, often rely on kinetic data from 

laboratory experiments and numerical simulations to predict the transformation rates of 

PCB congeners under anaerobic conditions. For instance, models developed for PCBs use 

degradation pathways and microbial community dynamics to simulate the dehalogenation 

process of highly chlorinated congeners into less chlorinated and potentially less toxic 

forms (Karakas 2016, 36). 

For dehalogenation of halogenated POPs, a model named “Anaerobic 

Dechlorination Model” (ADM) was developed by Imamoglu (2001) to simulate the 

reductive dehalogenation PCBs. The ADM model focuses on predicting the degradation 

pathways of PCBs and congener distributions in environmental samples. Over time, this 
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model has been modified and improved by various researchers, including (Demirtepe 

2012; Karakas 2016), to enhance its accuracy and adaptability to different environmental 

conditions. 

 

 

2.9. Description of Terminology 

 

 

Before explaining the anaerobic dehalogenation model-integrated and enhanced 

(ADM-IE), it is important to first clarify some key terms related to this subject. 

 

 

2.9.1. Coeluting congener 

 

 

There are 209 different PBDE congeners, and during their analytical detection, 

they appear as peaks on a chromatogram. In these chromatograms, a peak can represent 

either a single congener or a group of congeners. When multiple congeners are detected 

within the same peak during chromatographic analysis, they are referred to as coeluting 

congeners. These coeluting congeners are indicated by slashes between their congener 

numbers. 

 

 

2.9.2. Dehalogenation pathway 

 

 

Under anaerobic conditions, the process of converting one PBDE congener into 

another, known as dehalogenation pathways or reactions, involves the transformation of 

a congener into a product congener. These dehalogenation pathways generally do not 

happen individually but are observed to occur simultaneously in the environment.  
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2.9.3. Marker and non-marker congeners 

 

 

Although there are theoretically 209 possible PBDE congeners, approximately 

100 are actually released into the environment based on the specific commercial PBDE 

mixtures utilized. Not all these 100 congeners are detectable in environmental samples. 

Therefore, researchers often choose specific PBDE congeners for analysis. These selected 

congeners, which are analyzed in a given sample, are referred to as marker congeners. 

The ones which were not analyzed in a sample are named non-marker congeners. 

Accordingly, the dehalogenation pathways involving marker congeners as both mother 

and daughter are called marker pathways. If a non-marker congener appears in a 

dehalogenation pathway, it is called a non-marker pathway. 

 

 

2.9.4. Mother/daughter 

 

 

‘Mother-Daughter’ concept in organic chemistry refers to a parent compound 

(mother) and its transformation products (daughters). This terminology is often used in 

environmental chemistry and bioremediation studies, particularly when analyzing the 

degradation pathways of organic pollutants (Karakas 2016, 57). 

• Mother compound: This is the original or primary chemical compound, typically a 

pollutant or contaminant, before it undergoes chemical, biological, or environmental 

transformation.  

• Daughter compounds: These are the products formed when the mother compound 

degrades or transforms through various processes such as oxidation, reduction, 

hydrolysis, or microbial degradation. Daughter compounds can sometimes be more 

or less toxic or persistent than the mother compound. 

In the context of bioremediation, monitoring both the degradation of mother 

compounds and the formation of daughter compounds is critical. While bioremediation 

efforts aim to reduce the toxicity and environmental persistence of pollutants, the 

incomplete degradation of mother compounds can result in the accumulation of harmful 
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daughter compounds, necessitating careful management of the remediation process 

(Karakas and Imamoglu 2016). 

 

 

2.9.5. Linear Regression 

 

 

Linear regression is a simple model that works well when the relationship between 

the input features and the target variable is approximately linear (Schneider, Hommel, 

and Blettner 2010). Moreover, a statistical method that models the relationship between 

a dependent variable and one or more independent variables is shown by a linear equation: 

 

 

𝑘𝑣𝑎𝑙𝑢𝑒 =  𝛽0 + 𝛽1𝑥𝑀𝑜𝑡ℎ𝑒𝑟 + 𝛽2 𝑥 𝐷𝑎𝑢𝑔ℎ𝑡𝑒𝑟 +  𝛽3 𝑥 𝑅𝑒𝑎𝑐𝑡 +  𝜖  (2.1) 

 

 

"β0" is the intercept, "β1, β2, β3" are the coefficients that measure the contribution 

of each feature to the k-value, "ϵ" represents the error term or residual. The goal of the 

linear regression model is to find the values of "β0, β1, β2, β3"  that minimize the sum of 

squared residuals. 

 

 

2.9.6. Model Training 

 

 

            Using data, a linear regression model was trained with the following input matrix 

shown in Equation 2-2 and the corresponding vector is shown in Equation 2.3. 

 

𝑋 =  

𝑚𝑜𝑡ℎ𝑒𝑟1 𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟1 𝑟𝑒𝑎𝑐𝑡1

𝑚𝑜𝑡ℎ𝑒𝑟2..
𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟2..

𝑟𝑒𝑎𝑐𝑡2..

𝑚𝑜𝑡ℎ𝑒𝑟𝑛 𝑑𝑎𝑢𝑔𝑡ℎ𝑒𝑟𝑛 𝑟𝑒𝑎𝑐𝑡
𝑛

 (2.2) 
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𝑌 =  

𝑘𝑣𝑎𝑙𝑢𝑒1

𝑘𝑣𝑎𝑙𝑢𝑒2..

𝑘𝑣𝑎𝑙𝑢𝑒𝑛

   (2.3) 

 

 

The model uses MATLAB’s function, which fits a linear regression model to the 

data. During the training phase, the model estimates the coefficients "β0, β1, β2, β3" that 

best describe the relationship between the features and the k-values.  

 

 

2.9.7.  Reaction Amount 

 

 

In the context of the model, reaction amounts refer to the quantities of a substance 

that participate in or are transformed during a chemical reaction. Specifically, in processes 

such as anaerobic dehalogenation, reaction amounts represent the difference between the 

initial concentration of a congener (either a mother or daughter compound) and its 

concentration after the reaction has occurred. These values are crucial for understanding 

the extent of the reaction and are used in the model to calculate reaction rate constants 

(Demirtepe 2017, 52). 

 

 

2.10. Anaerobic Dehalogenation Model 

 

 

2.10.1. Description of Model 

 

 

ADM model was developed by Imamoglu (2001). The original model was based 

on the minimization of the objective function of the sum of squares of differences between 

predicted and sample congener profiles. The model is based on two fundamental 

principles. First, it assumes that a mass balance exists between dehalogenated (mother) 

congeners and the accumulated (daughter) congeners. Second, only dehalogenation 
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pathways that have been confirmed by studies in the literature are considered (Karakas 

and Imamoglu 2016). 

 

 

2.10.2. Model Development and History 

 

 

The first version of the program was written in Fortran language by Imamoglu in 

2001. It was later converted to MATLAB, with modifications by Bzdusek, who also 

updated the model in 2005 to calculate pathways simultaneously (Bzdusek 2005). In 

2012, Demirtepe introduced further modifications, which considered all possible 

reactions and allowed for the evaluation of the results produced by the model. The most 

recent modification, carried out by Karakas in 2016, involved separately investigating the 

degradation rate constants. This improvement enabled a better evaluation of model 

results, especially when the overall congener profile changes were not significant. 

Moreover, the last version of the model calculated the first-order reaction rate constants 

for the dehalogenation reactions. The chronology of ADM development is shown in 

Figure 2.3. 

 

 

 

 

 

                            

                  

 

 

Figure 2.3. The chronology of ADM development and modification. 

 

 

 

 

 

 

2001          2005                    2012                   2016 

Developed by Imamoglu Modified by Demirtepe 

Modified by Bzdusek Modified by Karakas 
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Table 2.6. Examination of models. 

 

 

 

The modifications to ADM were made primarily due to certain limitations 

identified in earlier versions (Table 2.6). For instance, the Imamoglu model initially had 

four limitations, but Bzdusek's approach effectively addressed two of them. Similarly, 

Bzdusek's model was constrained by two limitations, one of which was later eliminated 

by Demirtepe's model, which also streamlined the process of evaluating results. Finally, 

Demirtepe's model had a remaining limitation that was successfully addressed in 

Karakas's model, leading to further refinement. The last version of the model also lacked 

the prediction of reaction rate constants for pathways involving non-marker congeners, 

which can actually occur in the environment. 

 

 

2.11. Support Vector Machine Model 

 

 

Support Vector Machines (SVMs) are a set of supervised machine learning 

algorithms used for classification and regression tasks. Originally designed for 

classification problems, SVMs can also be adapted for regression through a variant called 

Support Vector Regression (SVR), which is implemented in MATLAB with a function. 

Status Author Year Program Enhancement Limitations 

Developed Imamoglu 2001 Fortran - 

1.Old Computer 

Program 

2.Degradation Rates 

3.Pathway 

Quantification 

4.Evaluating 

Modification Bzdusek 2005 MATLAB 
Pathways  

Quantification 
1.Degradation Rates 

2.Evaluating 

Modification Demirtepe 2012 MATLAB Evaluation of Results 1.Degradation Rates 

Modification Karakas 2016 MATLAB 

First Order 

Degradation Rates 

Developed 

Evaluating 

1.Degradation rates 

only for marker 

congeners 
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The model works by finding a hyperplane (or a decision boundary) that best separates 

data points into different categories, or in the case of regression, fits the data as closely as 

possible while remaining within a defined margin of error.  

SVMs were first introduced by Vladimir Vapnik and Alexey Chervonenkis in the 

1960s, but gained popularity in the 1990s as they were found to be effective for various 

practical problems in pattern and data perception. The core idea is to find an optimal 

hyperplane that separates data points in such a way that the margin between different 

classes (or the margin from the predicted line in regression) is maximized. The points that 

lie closest to the hyperplane and influence its position are known as support vectors 

(Smola and Schölkopf 2004). 

 

 

 

Figure 2.4. The structure of SVM (Source: Raghavendra N. and Deka 2014).  

 

 

SVMs work with two main methods, classification, and regression. In 

classification, SVMs aim to find the hyperplane that separates two classes of data with 

the maximum margin. In cases where the data is not linearly separable, SVMs use a 

technique known as the kernel trick to transform the data into a higher-dimensional space 

where a linear separator can be found. For regression, SVMs are adapted into Support 

Vector Regression (SVR), where the goal is not to find a hyperplane that separates classes, 

but rather to find a function that approximates the output variable within a certain 

tolerance (ε-margin). The model tries to fit the data points within a tube around the 

predicted function, and the support vectors are the data points that lie outside this tube 
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(Cortes and Vapnik 1995). Previous SVM studies for environmental applications are 

listed in Table 2.7. 

 

 

Table 2.7. The application of SVM for the prediction of pollutants removal. 

 

Aim of 

study 

Evaluation Input Output Reference 

P, N pol. 𝑅2 =0.97-

0.74 

pH, TN, TP TN, TP Re. (Xu et al. 2024) 

Methylene -

blue 

pollutant 

R =0.99- 

𝑅2 = 0.97  

C16H18ClN3S, 

Conc. pH 

C16H18ClN3S 

Removal 

(Kooh, Dahri, and 

Lim 2018) 

Biowastes 𝑅2 = 0.87 food waste Biogas (De Clercq et al. 2019) 

Food waste 𝑅2 = 0.74 FS, COD, TN Biogas (C. Li et al. 2022) 

Vegetable 

W. 

𝑅2 = 0.92 pH, C°, VW Biogas (Yildirim and Ozkaya 2023) 

𝑅2: Coefficient of determination, R: Correlation coefficient, COD: Chemical Oxygen demand 

TN: Total Nitrogen, TP: Total Phosphorus, VW: Vegetable waste, FS: Feedstock 

 

 

SVMs offer several advantages. They are highly effective in dimensional spaces, 

making them particularly suitable for problems involving a large number of features. 

Additionally, SVMs are memory-efficient because they only utilize support vectors 

during the training process. Another key advantage is that SVMs perform well when the 

relationship between data is non-linear, allowing them to capture complex patterns in the 

dataset (Cortes and Vapnik 1995). SVMs have a wide range of applications across 

different fields. For instance, they are commonly used in text categorization and sentiment 

analysis, as well as image classification and face recognition tasks. In finance and 

bioinformatics, SVMs are employed for predictive modeling. Furthermore, SVMs are 

used for regression tasks, especially in cases where the data exhibits complex, non-linear 

relationships (Cortes and Vapnik 1995). 
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2.12. Neural Network Model 

 

 

Neural networks are computational models inspired by the structure and 

functioning of the human brain. They consist of layers of interconnected nodes that 

process information through a series of mathematical transformations (Figure 2.5). 

Originally developed in the early 1940s, neural networks gained prominence in the 1980s 

and have since become a powerful tool in machine learning for a variety of tasks, such as 

classification, regression, image recognition, and natural language processing 

(Goodfellow, Bengio, and Courville 2016). 

 

 

 

Figure 2.5. Typical neural network architecture (Source: The MathWorks 2024). 

 

 

A neural network typically consists of three types of layers as a structure:  

• Input Layer: Receives the input data 

• Hidden Layer(s): Performs computations and feature extraction. These layers are fully 

connected, meaning each neuron in one layer is connected to every neuron in the next 

layer.  

• Output Layer: Produces the final prediction or classification.  

Each neuron in these layers processes data in the following way:  

• Weights: Each input is multiplied by a weight.  

• Bias: A bias term is added to the weighted input.  
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• Activation Function: The sum of the weighted inputs and bias is passed through an 

activation function that introduces non-linearity to the system. 

Neural networks learn from data through a process called training. The workflow 

generally follows these procedures: 

• Forward Propagation: The input data is passed through the layers of the network, 

where each neuron processes the data and passes it to the next layer. At the output 

layer, a prediction is made. 

• Loss Function: After the network makes a prediction, the difference between the 

prediction and the true value (the error) is calculated using a loss function. In 

regression problems, this is the mean squared error (MSE).  

• Backpropagation: The error is propagated backward through the network, and the 

weights and biases are adjusted using optimization techniques like gradient descent. 

This allows the network to "learn" by minimizing the error over time.  

• Updating Weights and Biases: The weights and biases are adjusted iteratively during 

training to minimize the error between predicted and actual values. The goal is to 

reduce the error as much as possible, so the network can make accurate predictions. 

Key Components of a Neural Network Model: 

• Neurons (Nodes): Neurons are the building blocks of a neural network. Each neuron 

receives input from one or more neurons in the previous layer, applies a 

transformation (weight, bias, activation function), and passes the result to neurons in 

the next layer.  

• Weights: Weights determine the strength of the connections between neurons. In a 

fully connected neural network, every neuron in one layer is connected to every 

neuron in the next layer, and each connection has an associated weight. These weights 

are learned during the training process and play a critical role in how the network 

processes input data.  

• Bias: A bias term is added to the weighted sum of inputs before applying the activation 

function. This allows the model to better fit the data by adjusting the output 

independently of the input.  

• Activation Function: The activation function introduces non-linearity into the model, 

which allows it to learn complex patterns. Common activation functions include:  

a.  ReLU (Rectified Linear Unit), which outputs 0 for negative inputs and passes 

positive inputs as they are. This is a popular activation function for hidden layers. 
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b.  Sigmoid maps the output to a value between 0 and 1. This is often used in the 

output layer for binary classification. 

c.  Tanh is similar to sigmoid but outputs values between -1 and 1.  

• Loss Function: The loss function is used to evaluate the effectiveness of neural 

networks. For regression tasks, equation 2.4 commonly used as the MSE (The 

MathWorks 2024e). 

 

 

𝑀𝑆𝐸 =  ∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1   (2.4) 

 

 

Where 𝑦𝑖 is the actual value and �̂�𝑖 is the predicted value. 

Backpropagation and gradient descent: 

• Backpropagation is the process of computing the gradient of the loss function with 

respect to the weights and biases of the network. 

• Gradient descent is then used to update these weights and biases in the direction that 

reduces the error. This is done iteratively until the error converges to a minimum. 

There are many types of neural networks, but a few common ones are:  

• Deep Neural Network (DNN): A neural network with many layers (often more than 

two hidden layers). These are sometimes referred to as deep learning models because 

of the depth of the network. 

• Feedforward Neural Network (FNN): This is the simplest type of neural network, 

where the information flows in one direction—from input to output. There are no 

loops or any feedback. This is the type of network used in the present study. 

Aim of using the neural networks model: 

• Complexity: Neural networks are capable of modeling very complex relationships in 

data. In the present study, the relationship between mother, daughter, reaction amount, 

and reaction rate constant might be non-linear and difficult to capture using simple 

models like linear regression.  

• Scalability: Neural networks can scale well with more data and features. If more input 

features are to be added in the future (such as temperature, pH, etc.), the neural 

network can accommodate them.  

• Automatic Feature Learning: Instead of manual engineering features, neural networks 

can learn the important relationships between inputs and outputs during training. 
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Challenges of Neural Networks: 

• Overfitting: Neural networks can sometimes overfit the training data, especially if the 

network is very complex or the dataset is small. Regularization techniques such as 

dropout can help prevent overfitting.  

• Computation: Neural networks, especially deep ones, require significant 

computational power. However, for smaller problems, like regression tasks, 

MATLAB should handle the computations efficiently. 

The example structures of studies using the neural network method can be seen in 

Figure 2.6 and Figure 2.7 below.  

 

 

 

 

Figure 2.6. Structure of Neural Network (Source: Hafeez et al. 2024). 
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Figure 2.7. Structure of neural network (Source: Isah et al. 2024). 

 

 

A Neural Network Model is a powerful tool for learning complex relationships in 

data. For specific cases of predicting degradation rate constants, it is well-suited because 

it can obtain non-linear relationships between the input variables, and the output (The 

MathWorks 2024e). It automatically adjusts its internal parameters to make accurate 

predictions and can be trained to improve its performance over time. 

Applications of neural networks are widely used in various fields due to their 

flexibility and ability to model complex relationships. Some common applications 

include image and speech recognition, predictive modelling in finance and healthcare, 

language processing for text analysis and scientific research for regression tasks, such as 

predicting physical or chemical properties, which aligns with predicting degradation 

(Yadav et al. 2024). Previous studies on the degradation of contaminants in the 

environment using the neural network method are listed in Table 2.8. 
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Table 2.8. Previous studies on contaminant degradation using the neural network. 

 

Study Location Type Pollutant Input Parameters 

(Gardner 1999) London Air 𝑁𝑂𝑥 𝑎𝑛𝑑 𝑁𝑂2 C°, visibility, PA 

(Kukkonen 

2003) 

Helsinki Air 𝑃𝑀10 𝑎𝑛𝑑 𝑃𝑀2.5 Air pollutant 

(Mishra, 

Goyal, and 

Upadhyay 

2015) 

Delhi Air 𝑃𝑀2.5 𝑂3 , 𝑁𝑂2 𝑆𝑂2, 𝐶𝑂, 𝑃𝑀2.5 

(Ragosta, 

D’Emilio, and 

Giorgio 2015) 

Italy Air CO and SO2 Atm pressure 

(Dunea, 

Pohoata, and 

Iordache 2015) 

Romania Air O3 , NO2 PM10, PM2.5 Air pollutant 

(Azid et al. 

2014) 

Malaysia Air O3 , CH4 PM10, THC Air pollutant 

(Hafeez et al. 

2024) 

Pakistan Water C₆H₆O C°, pH, C₆H₆O conc. 

(Isah et al. 

2024) 

India Water C₆H₆O C°, pH, C₆H₆O conc. 

PM: Particulate matter, THC: Total Hydrocarbon 
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CHAPTER 3 

 

 

METHOD 

 

 

3.1. PBDE data set 

 

 

3.1.1. Artificial data sets 

 

 

Two small artificial datasets were generated to test the ADM-IE model. For the 

first artificial data set, the selection of congeners was based on their abundance in original 

mixtures, and relevant dehalogenation pathways. Congener concentrations were created 

randomly for the first dataset. Nine congeners were chosen as the measured inputs for the 

model (Table 3.1). These congeners are defined as markers. Input pathways were 

generated to represent different dehalogenation positions, and to assure appearance of 

some of the congeners more than once, and as a mother and daughter. For example, 

marker BDE-196 used as a daughter in the first pathway, was then used as a mother in the 

second pathway. Also, some markers are used twice as mothers and daughters. The dataset 

was selected in a computable quantity and hypothetically generated to evaluate the 

accuracy of the model. Hence, the concentration data and compounds did not represent 

real environmental data; however, the pathways were selected in accordance with the 

literature. The obtained reaction amounts were calculated by subtracting the difference 

between the initial and final concentrations after each degradation, corresponding to the 

amount directed to the subsequent compound. At certain points, multiple pathways 

necessitated estimation-based calculations for determining reaction amounts. 
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Table 3.1. First artificial data set input. 

 

Marker 

Congener 

Initial Marker 

Conc. Mole ‰ 

Final Marker Conc. 

Mole ‰ 

207 850 250 

196 75 200 

183 45 195 

154 30 220 

153 0 75 

99 0 55 

66 0 15 

47 0 10 

28 0 5 

 T:1000 T:1000 

T: Total amount. 

 

 

Table 3.2 shows the pathways generated for the first artificial data set. The 

pathways among these congeners were generated to represent different dehalogenation 

positions. According to the input concentrations and dehalogenation pathways, the 

reaction amounts were calculated manually. Table 3.2 involves the reaction amounts, the 

initial and final PBDE congener concentrations, and the calculation method of first-order 

degradation rate constants (k-values). A specific lettering system has been used to make 

the calculations on the table easier to understand. The time (Δt) used for the k-value 

calculation was assumed as 100 days. Table 3.2 also involves the degradation rate 

constants calculated manually. 
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Table 3.2. The first artificial data set calculations. 

 

 

Marker 

congeners 

  Pathway  

Initial 

concentration 

(mole‰) 

Final 

concentration 

(mole‰) 

Mother →Daughter 
Reaction 

amount 

207 850 250 207→196 625 

196 75 200 196→183 500 

183 45 195 183→154 200 

154 30 220 
183→153 150 

153 0 75 154→99 10 

99 0 55 153→99 75 

66 0 15 99→66 20 

47 0 10 
99→47 10 

28 0 5 66→28 3 

   47→28 2 

 

 

A second artificial data set was generated using the same congeners and pathways 

as in the first data set, but with assumed congener concentrations based on the 

experimental microcosm data set. Hence, this dataset can be considered a more 

representative one to the experimental system conditions. Similar manual calculations 

were performed for this dataset, which can be seen in Table 3.3. 

 

 

Table 3.3. The second artificial data set calculations. 

 

 

Marker 

congeners 

  Pathway  

Initial 

concentration 

(mole‰) 

Final 

concentration 

(mole‰) 

Mother →Daughter 
Reaction 

amount 

207 1000 958 207→196 42 

196 0 6.14 196→183 36 

183 0 0.26 183→154 18.4 

154 0 0.56 183→153 17.3 

153 0 0.55 154→99 18 

99 0 18.64 153→99 17 

66 0 0.90 99→66 16 

47 0 14.6 
99→47 15 

28 0 0.35 66→28 0.15 

   47→28 0.20 
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3.1.2. Microcosm data set 

 

 

Microcosm setups are experimental systems that simulate natural sediment 

conditions and often include treatments such as biostimulation or bioaugmentation to 

monitor the degradation of specific contaminants. This study used the data set of a 

microcosm setup aimed at investigating the biodegradation of PBDEs (Demirtepe and 

Imamoglu 2019b).  

The sediments collected from Camkoru, National Park near Ankara, Turkey were 

artificially contaminated by BDE-209 in the laboratory. Then, they were used in the 

microcosms, designed to investigate three bioremediation scenarios, namely 

biostimulation (BS), bioaugmentation (BA), natural attenuation (NA) along with their 

control sets, i.e. negative, and sterile controls (Demirtepe and Imamoglu 2019b). 

In the natural attenuation set, the sediments were supplied with only distilled 

water, while the biostimulation set used an organic medium to enhance the microbial 

activity in the sediments. In the bioaugmentation setup, a microorganism culture, grown 

in a liquid medium, was introduced into the sediments (Demirtepe 2017, 56). The 

negative control set was established to serve as a control for bioaugmentation set so that 

the effects of adding a culture medium without the cells can be observed. Hence, a spent 

growth medium was formed by passing the microorganism culture through 0.22 μm filter 

so that no cells will remain in the medium. For the sterile control set, the microcosms 

were autoclaved at 120˚C at 1.1 atm pressure for 20 min on three consecutive days to 

hinder any microbial activity in sediments. The details of the setup can be found in Table 

3.4, which outlines the conditions for each reactor type and the corresponding treatment 

methods. 
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Table 3.4. Details of PBDE sediment microcosm sets (Source: Demirtepe 2017, 61). 

 

Reactor 

Type 

Reactor Name Liquid Ingredients 

Test 

Microcosm 

Natural Attenuation DI 𝑤𝑎𝑡𝑒𝑟𝑎 (3.5mL.) 

Biostimulation e-donor & C source, organic medium 

(3.5𝑚𝐿)𝑏 

Bioaugmentation DF-1 culture𝑐 (0.5mL) + DI 𝑤𝑎𝑡𝑒𝑟𝑎 (3.0mL) 

Control 

Microcosm 

Negative Control Spent growth medium (0.5mL)d 

+DI𝑤𝑎𝑡𝑒𝑟𝑎 (3.0mL) 

Sterile DI water (3.5mL) 

a: Distilled water. 

b: Prepared as given in Berkaw et al. (1996) and supplied with sodium formate and ethanol. 

c: Dehalobium chlorocoercia strain DF-1 culture.  

d: DF-1 medium with no DF-1 cells, obtained by passing the culture medium through 0.22 μm filter. 

 

 

Microcosms were prepared and operated under anaerobic conditions in dark. After 

the addition of sediments and the corresponding liquid ingredients to the 20 mL serum 

bottles, they were capped with crimped caps. Then, the bottles were flushed with high-

purity nitrogen gas while allowing the headspace oxygen to be released into the 

atmosphere. This operation led to the establishment and maintenance of anaerobic 

conditions in microcosm bottles. During six months of incubation, periodic sampling was 

done on days 0, 20, 40, 60, 90, 120, 152, and 180 (Demirtepe 2017, 61-4). At each time 

point, only sediments were analyzed for PBDE congeners using gas chromatography-

mass spectrometry. Nineteen PBDE congeners/congener groups (23 congeners with 

coelution) were analyzed. 

Tables 3.5 to 3.9 presents the PBDE concentration changes during the operation 

of natural attenuation, biostimulation, bioaugmentation, negative control, and sterile set, 

respectively. They represent the average of parallel reactors for each time point. The 

concentrations were obtained in ng/g during the experiment; however, the model was 

based on mole per thousand (mole‰) concentration values. Therefore, the datasets were 

converted to mole‰, using as example calculation in Equation 3.1. The mole‰ 

concentrations are presented in Appendix B. The PBDE profiles of bioremediation 

microcosms are also illustrated in Figures 3.1., 3.2, and 3.3. Additionally, BDE congeners 
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198,199,200, and 203 coeluted in the microcosm dataset. For normalization and model 

calculations, the total concentration of these congeners were distributed equally among 

the coeluting ones. This method assumed that coeluting congeners were treated fairly 

within the model, distributing the detected concentration in a way that reflected the equal 

contribution of each congener to the peak. 

 

BDE 209mole‰ = (
BDE209(

ng

g
)/MW𝐵𝐷𝐸209   

   ∑(𝑃𝐵𝐷𝐸𝑠 𝑖𝑛 𝑚𝑜𝑙𝑒𝑠)
) ∗  103  (3.1) 

 

 

Table 3.5. Natural attenuation microcosm PBDE concentrations with time (ng/g). 

 

Time(day) 0 20 40 60 90 120 152 180 

BDE-209 628.30 636.25 625.20 632.66 409.31 426.04 418.43 434.06 

206 5.01 8.81 15.92 20.77 11.34 17.29 16.43 28.90 

207 2.79 3.31 6.49 8.05 4.82 21.23 16.37 14.65 

208 0.00 1.76 3.02 6.76 2.57 10.12 6.70 8.75 

195 0.00 0.00 0.63 0.42 0.46 0.00 0.35 0.00 

194 0.00 0.00 0.98 0.27 1.34 0.00 0.70 0.00 

205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

196 0.00 0.00 0.56 0.75 0.66 2.19 1.53 0.74 

𝟏𝟗𝟖𝒂 0.00 0.00 0.58 0.36 0.72 0.39 0.49 0.83 

𝟏𝟗𝟕𝒃 0.00 0.00 0.37 0.14 0.50 1.44 0.58 0.72 

201 0.00 0.00 0.25 0.33 0.44 0.21 0.34 0.56 

202 0.00 0.00 0.23 0.64 0.92 0.04 0.27 0.52 

183 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

153 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.16 

154 0.00 0.00 0.00 0.00 0.16 0.00 0.24 2.26 

99 0.00 0.00 0.00 0.00 0.14 0.51 0.00 0.57 

100 0.00 0.00 0.00 0.00 0.20 0.48 0.00 0.31 

47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

a: BDE-198 coeluted with BDE-199, BDE-200, BDE-203. 

b: BDE-197 coeluted with BDE-204. 
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Table 3.6. Biostimulation microcosm PBDE concentrations with time (ng/g). 

 

Time(day) 0 20 40 60 90 120 152 180 

BDE-209 725.46 657.88 612.68 535.20 422.45 368.98 359.68 324.50 

206 8.86 17.98 15.87 15.99 10.90 17.98 10.34 24.45 

207 3.07 21.60 5.63 5.49 3.89 21.60 8.82 11.06 

208 0.00 11.76 2.78 2.55 2.21 11.76 3.90 6.03 

195 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 

194 0.00 0.00 0.70 0.17 0.27 0.00 0.00 0.08 

205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

196 0.00 2.66 0.39 0.15 0.20 2.66 0.40 0.44 

𝟏𝟗𝟖𝒂 0.00 0.28 0.38 0.19 0.25 0.28 0.27 0.57 

𝟏𝟗𝟕𝒃 0.00 0.11 0.18 0.30 0.00 0.11 0.12 0.16 

201 0.00 0.05 0.18 0.46 0.24 0.05 0.00 0.05 

202 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 

183 0.00 0.00 0.25 0.00 0.11 0.00 0.00 0.00 

153 0.00 0.00 0.08 0.00 0.08 0.00 0.55 0.09 

154 0.00 0.00 0.22 0.00 0.08 0.00 0.22 0.02 

99 0.00 0.51 0.00 0.00 0.11 0.51 0.39 0.30 

100 0.00 0.40 0.13 0.14 0.23 0.40 7.80 0.27 

47 0.00 0.00 0.20 0.00 0.11 0.00 6.25 0.00 

28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

Table 3.7. Bioaugmentation microcosm PBDE concentrations with time (ng/g). 

 

Time(day) 0 20 40 60 90 120 152 180 

BDE-209 675.83 628.14 605.06 575.75 490.07 474.69 467.55 404.25 

206 8.84 8.90 18.93 16.83 11.77 24.96 8.65 25.55 

207 5.27 3.34 7.71 5.78 4.38 23.43 7.77 11.91 

208 0.00 0.00 3.65 2.80 2.30 12.45 3.53 6.23 

195 0.00 0.00 0.00 0.00 0.00 0.00 1.31 0.00 

194 0.00 0.00 0.15 1.36 0.77 0.00 0.47 0.67 

205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

196 0.00 0.00 0.19 0.93 0.38 1.39 0.58 0.74 

𝟏𝟗𝟖𝒂 0.00 0.00 0.24 0.58 0.50 0.80 0.35 0.82 

𝟏𝟗𝟕𝒃 0.00 0.00 0.05 0.35 0.36 1.05 0.34 0.90 

201 0.00 0.00 0.12 1.13 0.28 0.36 0.11 0.46 

202 0.00 0.00 0.12 0.37 0.33 0.47 0.05 0.08 

     (cont. on next page) 
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Table 3.7 (cont.) 
 

183 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

153 0.00 0.00 0.12 0.00 0.00 0.00 0.78 0.00 

154 0.00 0.00 0.00 0.00 0.00 0.00 1.42 0.04 

99 0.00 0.00 0.00 0.00 0.13 0.58 2.20 0.00 

100 0.00 0.00 0.22 0.24 0.18 0.40 4.58 0.13 

47 0.00 0.00 0.17 0.10 0.00 0.00 2.02 0.00 

28 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.15 

 

 

Table 3.8. Negative control microcosm PBDE concentrations with time (ng/g). 

 

Time(day) 0 20 40 60 90 120 152 180 

BDE-209 680.06 556.02 552.75 548.85 533.46 525.25 516.34 468.31 

206 7.35 8.51 15.68 11.64 10.31 26.16 9.75 21.78 

207 1.33 4.50 5.79 4.29 4.09 30.16 11.39 11.14 

208 0.00 1.12 2.68 2.25 2.07 16.36 4.91 6.02 

195 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

194 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

196 0.00 0.00 0.22 0.31 0.22 1.41 0.41 0.36 

𝟏𝟗𝟖𝒂 0.00 0.00 0.00 0.32 0.26 1.06 0.48 0.67 

𝟏𝟗𝟕𝒃 0.00 0.00 0.21 0.00 0.26 1.79 0.45 0.74 

201 0.00 0.00 0.00 0.29 0.25 0.61 0.00 0.50 

202 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

183 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.18 

153 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 

154 0.00 0.00 0.00 0.00 0.00 0.28 0.33 0.28 

99 0.00 0.00 0.00 0.00 0.11 0.54 0.36 0.14 

100 0.00 0.00 0.00 0.27 0.15 0.46 2.92 0.00 

47 0.00 0.00 0.00 0.00 0.00 0.00 1.61 0.00 

28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 3.9. Microcosm data set, sterile profile microcosm (ng/g). 

 

Time(day) 0 20 40 60 90 120 152 180 

BDE-209 640.86 582.38 571.52 601.34 564.95 593.62 626.15 613.06 

206 7.48 7.11 9.33 9.68 9.38 0.85 9.61 7.00 

207 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

208 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

195 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

194 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

196 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝟏𝟗𝟖𝒂 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝟏𝟗𝟕𝒃 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

201 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

202 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

183 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

153 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

154 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Figure 3.1. PBDE congener concentrations at sampling times in natural attenuation 

……………microcosm (mole‰). 

 

 

 

 

Figure 3.2. PBDE congener concentrations at sampling times in biostimulation  

……………...microcosm (mole‰). 
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Figure 3.3. PBDE congener concentrations at sampling times in bioaugmentation 

………….. ...microcosm (mole‰). 

 

 

3.2.  Development and Evolution of the ADM 

 

 

3.2.1. Anaerobic dehalogenation model 

 

 

The anaerobic dehalogenation model aimed at altering a given sample 

contaminant profile with respect to dehalogenation pathways so that the resulting 

contaminant profile resembles the profile of known sample. In the previous version of the 

model, the given sample profile to be altered was PCB concentrations of a microcosm 

setup at the initial time point, or an Aroclor PCB profile, and the known profile was 

microcosm concentration at the final time point, or a measured environmental sample 

(Demirtepe 2012, 46-9). 
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The previous model included the execution of three distinct models, 

corresponding to three stages in the overall process. Each of these stages represented a 

step in the modeling framework, ultimately leading to the results. In the first stage, the 

process began by executing a MATLAB file initiating the modeling sequence to list the 

dehalogenation pathways. The algorithm is given in Figure 3.4. The inputs of this file 

were marker congeners, and the possible dehalogenation positions. As a result, the 

possible dehalogenation pathways among the given marker congeners were listed. 

 

 

 

Figure 3.4. General algorithm in the first step of ADM (Source: Demirtepe 2012). 

 

 

 

 

Figure 3.5. General algorithm in the second step of ADM (Source: Demirtepe 2012). 
 

 

In the second stage, the process continued by executing another MATLAB file 

where the initial and final marker congener concentrations, and dehalogenation pathways 

(the output of the first stage) were the inputs. As the outputs, altered (predicted) marker 

congener profile and the reaction amount of the pathways were obtained. The related 

algorithm is given in Figure 3.5.  

Marker Congeners 

Pathway 

reaction amounts 
Measured Contaminant 

profile Andechlor.m 

Achieved pathways 

Altered 

Contaminant 

Profile 

Possible degradation positions 

(Ortho-Meta-Para) 

Possible marker 

pathways 

Marker Congeners 

AndechlorP.m 
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The altered contaminant profile represented the result of an iterative approach to 

obtain a predicted concentration profile by considering the initial and final measured 

concentration values. Iterations were done among the dehalogenation pathway sequences, 

obtained from the first step. During a dehalogenation pathway, a mass balance existed 

between the mother congener and the daughter congener. Hence, the reaction amount was 

subtracted from the concentration of the mother and that amount was added to that of the 

daughter. This whole process involved the core working principle of the model, where the 

altered contamination profile was determined by applying the dehalogenation pathway to 

the initial concentration data to minimize the sum of square of differences between 

predicted and measured profiles, as demonstrated in Equation 3.2 (Karakas 2016, 174). 

 

 

𝑆 =  ∑ (𝑦𝑗 − 𝑥𝑗)2𝑚
𝑗=1    (3.2) 

 

 

where 𝑦𝑗 is predicted congener profile according to the dehalogenation pathway 

(mole‰), 𝑥𝑗 is the measured congener profile of at final day (mole‰), and m is number 

of the congeners (Demirtepe 2012, 39). 

In the last stage, the process ended by executing another MATLAB file, which 

completed the modeling sequence. The algorithm is given in Figure 3.6. Here predicted 

(altered) profile and the reaction amounts of the pathways were used to assess the 

accuracy of the model. 

 

 

Figure 3.6. General algorithm in the last step of ADM (Source: Demirtepe 2012). 

 

 

The reaction amounts 

Altered Contaminant profile 

Evaluate.m 

Ordering of 

pathways, 𝑅2, cos 𝜃 

values for predicted 

profiles. 
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Model validation was assessed by using statistical goodness of fit criteria between 

measured and predicted contaminant concentrations. Under the scope of this algorithm, 

the coefficient of determination, R2, was used for the evaluation of the ADM 

performance. The better the fit, the closer 𝑅2 approaches to “1”. In this model, when 𝑅2 

was higher than 0.5, the fit was considered to be acceptable and satisfactory (Karakas and 

Imamoglu 2016). The 𝑅2 is an indicator of how well the predicted values approximated 

the measured data. It is defined in Equation 3.3, where xi represented each congeners’ 

measured data, yi represented each congeners’ predicted value from ADM, y̅İ was the 

mean of the measured data (Davis 2002, 150-54). 

 

𝑅2 = 1 −
∑  (𝑥𝑖−𝑦𝑖)2

∑(𝑥𝑖−�̂�)
2   (3.3) 

 

Another indicator used in the model was cosine θ, coefficient of proportional 

similarity, given by Equation 3.4 (Davis 2002, 154-57).  

 

𝑐𝑜𝑠(𝜃) =
∑ (𝑥𝑖.𝑦𝑖)𝑛

𝑖=1

√∑ 𝑥𝑖
2𝑛

𝑖=𝑖 .∑ 𝑦𝑖
2𝑛

𝑖=1

      (3.4) 

 
   

For the cos(𝜃) coefficient, n is essentially the total number of data points, the 

cosine of the angle (𝜃) between predicted and measured concentrations vector. Each 𝑥𝑖 

and 𝑦𝑖 corresponds to a single data point in the predicted and measured data sets.    

  

 

3.2.2. Integrated model 

 

 

The integrated model was developed by sequentially functionalizing three 

separate models and combining them into a single integrated model. The functions were 

executed in sequence, resulting in an integrated output. The algorithm of the integrated 

model is presented in Figure 3.7. 
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Figure 3.7. General algorithm of integrated anaerobic dehalogenation model. 

 

 

The process began with the MATLAB script main4.m, which used an input file 

(Input.xlsx). This input file included the following data: 

i.  Possible Degradation Positions: These might refer to the chemical position of 

degradation (e.g., ortho, meta, para positions in chemical structures). 

ii.  Marker Congeners: The congeners measured during the GC-MS the analysis. 

iii.  Measured Contaminant Profiles: The actual profile of contaminants measured 

from an experiment or sample. 

Using these inputs, the first function ‘f (1)’ generated: 

• The “Achieved Pathways”, which were the possible degradation pathways based on 

the given degradation positions. 

The second function ‘f (2)’ processed the Marker Congeners and: 

• Produced the Altered Contaminant Profile, which was the predicted contaminant 

profile based on the contaminant concentrations measured at the initial and final days, 

after considering the degradation pathways. 

• Calculated the reaction amounts. The amount (in mole‰) that was reacted in a 

dehalogenation pathway was calculated for each iteration. The iterations were 



45 

 

performed by shuffling the sequence of pathways since the dehalogenation pathways 

do not occur in the environment in a specific order. The model provided an average 

of the reaction amount found in the iterations, together with their standard deviation, 

and calculated the relative standard deviation (RSD). 

The third function ‘f (3)’ processed the Measured Contaminant Profile and Altered 

Contaminant Profile. This step evaluated the results, calculating key performance criteria 

such as; 

• R² (coefficient of determination): Measured how well the altered profile fitted the 

measured profile. 

• Cosine theta coefficient of proportional similarity (cosθ): Indicated the similarity 

between two profiles based on the angle between vectors. 

All the results from these stages were compiled into an output file 

“resultsfmp.xlsx”, which included: 

• Achieved Pathways: The final list of potential pathways the contaminant might follow 

during degradation. 

• Altered Contaminant Profile: The predicted profile after degradation. 

• R² and cosine theta similarity values: Key metrics for evaluating the model’s 

performance. 

The process systematically ran these three functions in sequence, taking various 

inputs at each stage and producing consolidated outputs that evaluated the goodness of fit 

between measured and predicted profiles and the accuracy of the modeled pathways. 

 

 

3.2.3. Integrated and Enhanced Model (ADM-IE) 

 

 

In the present study, the enhanced model, named as “Anaerobic dehalogenation 

model- integrated and enhanced (ADM-IE)”, was built upon the previous structure by 

integrating additional functions and data points, leading to more comprehensive results.  

The ADM-IE used the framework explained in Section 3.2.2 and integrated 

machine learning to further enhance model prediction capabilities and data visualization. 

This enhanced model aimed to deliver more precise and strong predictions for the 
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degradation rate constant and pathways, utilizing dynamic data sets. Figure 3.8 illustrates 

the ADM-IE. 

ADM-IE was developed based on the previous model steps, and integrated the 

following principles: 

• A new component in the enhanced model was kcalibration.m function, which 

estimated the degradation rate constants (k values) for each dehalogenation pathway 

which involved the marker congener as both mother and daughter. The 

dehalogenation reactions were assumed to follow the first-order reaction kinetics 

(Equation 3.5). In the equation, C is the concentration of the mother congener 

(mole‰), t is the time (d) and k is the degradation rate constant (𝑑−1). 

 

dC

dt
= −kC (3.5) 

 

 

Integrating the equation from time zero to time t, and from initial mother congener 

concentration to final, the rate constant is obtained as given in Equation 3.6: 

 

 

k =
ln(

Cinitial
Cfinal

)

t
  (3.6) 
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• A key innovation in ADM-IE was the integration of a machine learning component, 

encapsulated within the kcalculation.m and machinelearning.m functions. The 

purpose of using machine learning was to predict k values for the pathways, which 

included non-marker congener either as a mother or daughter. This step proceeded as 

follows: 

I. Data Preparation: The calculated k values, along with their corresponding mother, 

daughter, and reaction amounts, were extracted from the resultsfmp.xlsx file to 

form the training dataset (x train and y train). 

II. Model Training: Machine learning model was employed to learn the relationships 

between the input variables (mother, daughter, and reaction amount) and the 

calculated k values. This training process enabled the model to generalize these 

relationships to predict k values for non-marker pathways. 

III. Prediction of k values: The trained model was subsequently applied to predict k 

values for the dehalogenation pathways where the reaction amount was known. 

For data entries where the reaction amount was zero, the corresponding k value 

was set to zero, as no reaction was expected in such cases. 

The results from all functions were consolidated into the resultsfmp.xlsx file, 

which contained the following plus the list presented in Section 3.2.2: 

• The degradation rate constants for marker pathways 

• The estimated degradation rate constants by machine learning analysis. 

Through the integration of machine learning technique method, the ADM-IE 

offered a more comprehensive representation of anaerobic dehalogenation pathways. 

 

 

3.3. Linear Regression Principles 

 

 

The linear regression to predict k-values was based on the features of the 

dehalogenation pathways: mother, daughter, reaction amount, and k-values. It assumed 

that the relationship between the input features (mother, daughter, reaction amount) and 

the target variable (k-values) was linear. Hence, it developed a straight line (or hyperplane 

in higher dimensions) that best fitted the training data. The equation for linear regression 

can be written as seen below. 
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kvalue =  β0 + β1𝑥𝑀𝑜𝑡ℎ𝑒𝑟 + β2 𝑥 𝐷𝑎𝑢𝑔ℎ𝑡𝑒𝑟 + β3 𝑥 𝑅𝑒𝑎𝑐𝑡  (3.7) 

 

 

Where β0 , β1 , β2 , β3  are the parameters (coefficients) learned by the model 

during training. Once the model learned these coefficients, it was able to make predictions 

for new data in the test set (i.e., the k values of non-marker dehalogenation pathway). 

 

 

3.4. Support Vector Machines Principles 

 

 

SVMs were applied to predict the degradation rate constants using “fitrsvm” 

function in MATLAB. This methodology aimed to predict a continuous output (the 

degradation rate constant) based on several input features (mother, daughter, and reaction 

amount). In this regression task, SVR model found a function that best approximated the 

relationship between the input variables and the output (Cortes and Vapnik 1995). 

“fitrsvm” MATLAB function works with Kernel, Loss, and Regularization Parameter 

functions as mentioned in the literature section. In this study, the Kernel method has been 

selected to predict the k-values. 

Training the SVR Model followed the steps of data preprocessing, model 

selection, fitting the model (fitrsvm in MATLAB), and making predictions. Data 

processing normalized or standardized the input features (mother, daughter, reaction 

amount) to ensure that all features contributed equally to the prediction. The “fitrsvm” 

function attempted to find the support vectors that defined the hyperplane (or regression 

function) that best fitted the data within the ε-margin. Once trained, the predict function 

was used to estimate the degradation rate constants for the new data. 

Mathematical Formulation of SVR tries to find a function 𝑓(𝑥) that has at most 

an ε deviation from the actual output y for all training data, while being as flat as possible 

(Smola and Schölkopf 2004), as given in the Equation 3.9. 

 

𝑓(𝑥) =  𝜔𝑇𝜑(𝑥) + 𝑏   (3.9) 
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𝜔. is the weight vector, 𝜑(𝑥) represents the transformation applied by the kernel 

function, b is the bias term. The objective of optimization in SVR was to minimize 

equation shown in Equation 3.10. 

 

 

1

2
||𝜔||2 + 𝐶 ∑ 𝐿∈(𝑦𝑖, 𝑓(𝑥𝑖))𝑛

𝑖=1  (3.10) 

𝐿∈: The epsilon-insensitive loss function. 

C: The regularization parameter that controls the trade-off between minimizing training error and maximizing      

     margin. 

yi: The target value for each observation in the dataset. 

 

 

Then, the performance of the model was evaluated using metrics such as mean 

square error (MSE) or 𝑅2 to see how well the model predicts the degradation rate 

constants. Also, the hyperparameters, including the kernel type, C, and ε, were tuned to 

improve the model's performance. 

In summary, Support Vector Machines (using fitrsvm) provided a robust method 

for regression tasks by fitting a function that approximated the data within a certain 

margin of error (Smola and Schölkopf 2004). Through the use of kernel functions, SVMs 

can handle both linear and non-linear relationships. In this study, SVM can be particularly 

useful because it allowed for the flexibility in fitting the data while controlling the 

smoothness of the prediction function. 

 

 

3.5. Neural network model 

 

 

3.5.1. Neural network model principles 

 

 

By neural network using “feedforwardnet” function of MATLAB, a feedforward 

neural network with 10 hidden neurons was created. The data was normalized before 

training because neural networks often perform better when the inputs are scaled. 
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MATLAB’s “normalize” function was used for this purpose. Additionally, the network 

was trained using trains and predictions and these were made using the net. 

Consistently, the same strategy was used to predict the k-values, and zero values 

for reaction amounts were handled as in the previous model. The FNN diagram illustrated 

in Figure 3.9 can be examined in four main steps. 

 

 

 

 

Figure 3.9. Feed-Forward neural network diagram. 

 

 

In the first step input layer (green box labeled "Input"), the input layer had 3 nodes, 

representing the three input features used, mother, daughter, and reaction amounts. In the 

second step (labeled "Hidden"), the hidden layer contained 10 neurons. This was the 

intermediate layer where the network processes the input data. “w” represented the weight 

matrix for this hidden layer, and “b” represented the bias vector. The inputs were 

transformed by weights and biases, and then passed through an activation function 

(shown as a curve, likely a non-linear function).  

In the third step (labeled "Output"), the output layer had 1 neuron, which 

corresponded to the single output of the network: the predicted k-value. Again, weight 

and biases were applied, and the output was passed through an activation function to 

produce the final prediction. 

The last step involved the connections, i.e. the input layer connected to the hidden 

layer, which processed the information. The output from the hidden layer was passed to 

the output layer to make the final prediction. The two layers (hidden and output) used 

weights and biases to adjust how the input data was transformed. 
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3.5.2. FNN model graphics explanation 

 

 

Upon running the FNN model, four main graphs were generated automatically to 

visualize the training process and evaluate the performance. Each graph offered insights 

into different aspects of the model’s accuracy. After the model completed the model run, 

a command window appeared, displaying an overview of the FNN training results and 

providing access to the related graphs. 

The example given in Figure 3.10 represents the results from running the ADM-

IE on the natural attenuation microcosm dataset between days zero and 90. In this case, 

training was completed at 10 epochs out of a maximum of 1000, with displayed metrics 

for performance, gradient, and Learning Rate Parameter (Mu) showing their initial, 

stopped, and target values. 

 

 

 

 

Figure 3.10. An example of the FNN command window. 

 

 

As indicated in Figure 3.10 the training algorithm employed was the "Levenberg-

Marquardt" algorithm, with MSE. MATLAB Executable (MEX) files in MATLAB was 

used to execute intensive computations more efficiently (The MathWorks 2024e). 
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Additionally, Figure 3.10 shows buttons for accessing the four previously mentioned 

graphs, which allow further examination of training outcomes. 

 

 

 

 

Figure 3.11. Error histogram training plots graph. 

 

 

Figure 3.11 shows the distribution of errors between the target values and the 

model’s predictions across the training, validation, and testing datasets. The error values 

on the x-axis represented the difference between predicted and target outputs, while the 

y-axis showed the frequency of these error occurrences (The MathWorks 2024a). The 

graph also included a line for zero error, serving as a reference for how close the 

predictions were to the actual values. That error value was the lowest and can be evaluated 

as the point where optimal performance was expected. 

Figure 3.12 demonstrates three parameters over the training epochs: the gradient, 

Mu, and the number of validation checks. The gradient plot showed the change in error 

gradient over time, indicating the model’s convergence during training (The MathWorks 

2024c). The Mu plot represented the learning rate, which adjusted based on the gradient 

values to optimize learning (The MathWorks 2024c). The validation checks plot 

monitored the validation loss and indicated when early stopping occurs if the validation 

error did not improve after a set number of checks The MathWorks 2024c). 
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Figure 3.12. Training state graph. 

 

 

To summarize, the term 'Epochs 6' indicated that the model was trained over a 

total of six epochs. This meant that the model passed through the entire dataset six times. 

Four regression plots were provided for the training, validation, test, and overall 

datasets. These plots show the relationship between the target values and the predicted 

outputs, with each plot displaying a line fit and a reference line (Y=T) where the 

prediction perfectly matches the target. The correlation coefficient (R) in each plot serves 

as an indicator of the model's fit for each dataset, helping to visualize how closely 

predictions align with the true values across different phases of the dataset (The 

MathWorks 2024d). 

The R measures the strength and direction of the linear relationship between the 

model predictions (ŷ) and the actual values (y). The value range is between -1 and 1. 

Perfect positive linear relationship in the R=1. The R is calculated using the Equation 

3.10, where y𝑖 is the actual values, ŷ𝑖 is the predicted values from the model, ŷ is the 

mean of the actual values, ỹ is the mean of the predicted values, n is the number of data 

points (A. Lee, Geem, and Suh 2016). 
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𝑅 =
∑ (y𝑖−ŷ)(ŷ𝑖−ŷ)𝑛

𝑖=1

√∑ (y𝑖−ŷ)2𝑛
𝑖=1 √∑ (ŷ𝑖−ỹ)2𝑛

𝑖=1  

  (3.10) 

 

 

The performance plot illustrates the model’s MSE over each epoch for the 

training, validation, and test datasets as can be seen in Figure 3.13. The MSE calculation 

has been explained previously in the literature section. It provides a graphical view of the 

model’s error reduction over time, showing how the error decreases and stabilizes as the 

model learns. A "best" line is typically indicated, highlighting the epoch with the lowest 

validation error, which helps determine the optimal stopping point for training (The 

MathWorks 2024b). 

 

 

 

Figure 3.13. Regression graph for training, validation, and test. 
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Figure 3.14. MSE performance graph. 
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CHAPTER 4 

 

 

RESULT AND DISCUSSION 

 

 

4.1. Validation of ADM-IE using artificial data set 

 

 

The purpose of model validation was to test the “enhanced and integrated” version 

of ADM whether it successfully proposed possible dehalogenation pathways and 

estimated the reaction rate constants. For this purpose, two artificial data sets were 

generated manually. Since ADM-IE provided a more comprehensive list of pathways, the 

model input was manipulated to obtain a limited number of pathways for the validation 

study so that the manual calculation of the reaction rates would be less challenging. The 

first artificial data set input and manual calculation of the reaction amounts to obtain the 

final congener concentrations are presented in Table 4.1. 

 

 

Table 4.1. ADM-IE first artificial data set input. 

 

Marker 

Congeners 

Initial Conc. 

Mole‰  

Final Conc. 

Mole‰ 

Pathway 

M →D 

Reaction 

Amount 

207 850 225 207→196 625 

196 75 200 196→183 500 

183 45 195 183→154 200 

154 30 220 183→153 150 

153 0 75 154→99 10 

99 0 55 153→99 75 

 

(cont. on next page) 
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Table 4.1 (cont.) 

 

66 0 15 99→66 20 

47 0 10 99→47 10 

28 0 5 66→28 3 

   47→28 2 

 

 

The results of the first validation run are provided in Table 4.2. The model 

successfully processed the input data to produce the rate constants at the same order of 

magnitude with the manual calculations in six out of ten pathways. The rate constants 

obtained by manual vs model calculations and measured vs predicted congener profiles 

were compared in the scatter plots of Figure 4.1. As can be observed, the coefficient of 

determination (R2) of both plots were greater than 0.92. An important observation was 

that ADM-IE predicted the congeners with higher concentrations and their relevant 

pathways better than the ones with lower concentrations. For instance, the pathways 

producing BDE-28 were quantified as zero and their rate constants were zero, while BDE-

207, 196, 183 were predicted better by the model. Overall, the validation study 

demonstrated the capability of ADM-IE to predict effectively the congener profile after 

dehalogenation and estimate the rate constants of dehalogenation pathways in complex 

environmental data scenarios. 

 

 

Table 4.2. First validation comparison of manually calculated and ADM-IE k-values. 

 

M→D 𝒌 𝒗𝒂𝒍𝒖𝒆𝒔 𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 (𝒅) 𝒌 𝒗𝒂𝒍𝒖𝒆𝒔 𝑨𝑫𝑴−𝑰𝑬 (𝒅−) 

207→196 0.01329 0.01188 

196→183 0.01253 0.01092 

183→154 0.00457 0.00525 

183→153 0.00571 0.00395 

154→99 0.00044 0.00085 

153→99 0.00693 0.00334 

99→66 0.00310 0.00074 

99→47 0.00201 0.00013 

66→28 0.00163 0 

47→28 0.00223 0 
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Figure 4.1. Manual/ADM-IE k values and measured/predicted profile plots. 

 

 

The second artificial data set input and manual calculation of the reaction amounts 

to obtain the final congener concentrations are presented in Table 4.3. 

 

 

Table 4.3. ADM-IE second artificial data set input. 

 

Marker 

Congeners 

Initial Conc. 

Mole‰  

Final Conc. 

Mole‰ 

Pathway 

M →D 

Reaction 

Amount 

207 1000 958 207→196 42 

196 0 6.14 196→183 36 

183 0 0.26 183→154 18.4 

154 0 0.56 183→153 17.3 

153 0 0.55 154→99 18 

99 0 18.64 153→99 17 

66 0 0.9 99→66 16 

47 0 14.6 99→47 15 

28 0 0.35 66→28 0.15 

   47→28 0.2 

 

R² = 0.9224
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The results of the second validation run are summarized in Table 4.4. The model 

demonstrated an ability to predict rate constants within the same order of magnitude as 

manual calculations for eight out of ten pathways. However, deviations were observed 

for pathways associated with lower concentrations, where the model's predicted rate 

constants were zero. In contrast, pathways involving higher concentrations, such as BDE-

207, 196, and 183, were better simulated by the model. The regression analysis of manual 

versus model-calculated rate constants yielded a R² of 0.7168, as shown in Figure 4.2.  

Overall, the validation of the ADM-IE proved that a more user-friendly version of 

the model was developed, allowing for a single run to obtain all the outputs. It was also 

shown that enhancement of the model was achieved by the calculation of rate constants 

for each dehalogenation pathway. This validation study further supports the model's 

capability to estimate dehalogenation rate constants and predict congener profiles, 

particularly for dominant pathways in complex environmental scenarios. 

 

 

Table 4.4. Second validation comparison of manual and ADM-IE k-values. 

 

M→D 

Pathway 

𝒌 𝒗𝒂𝒍𝒖𝒆𝒔 𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅  

(𝒅−) 

𝒌 𝒗𝒂𝒍𝒖𝒆𝒔 𝑨𝑫𝑴−𝑰𝑬 

(𝒅−) 

207→196 0.00043 0.00030 

196→183 0.01923 0.01242 

183→154 0.00720 0.00616 

183→153 0.04692 0.02190 

154→99 0.03829 0.02509 

153→99 0.04055 0.02547 

99→66 0.02833 0.0 

99→47 0.01558 0.01123 

66→28 0.00009 0.0 

47→28 0.00013 0.0 
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Figure 4.2. Manual/ADM-IE k values and measured/predicted profile plots. 

 

 

4.2. ADM-IE application to PBDE bioremediation scenarios 

 

 

4.2.1. Evaluation of PBDE dehalogenation after 180 days 

 

 

The dehalogenation was observed in microcosms over 180 days with periodic 

sampling. Initially, the model was applied to the concentration data of day 0 and day 180 

for three bioremediation scenarios and their control sets. Hence, the input data involved 

the PBDE concentrations at day 0 and 180, the marker congeners, and the bromine 

positions available for dehalogenation. 

The aim of the model was to accurately predict the congener profile at 180 days, 

using the possible dehalogenation pathways in microcosm sediments. Then, the predicted 

profiles were compared with the measured (180 days) profiles to evaluate the success of 

the model, using the cos θ, and 𝑅2. After the execution of ADM-IE, these model 

performance criteria were obtained for microcosms, as shown in Table 4.5. The measured 

and predicted PBDE congener profiles for each bioremediation scenario are presented in 

Table 4.6 and shown as scatter plots in Figure 4.3. The model performance criteria were 

found very close to 1, revealing a very good fit of the model results with the measured 

profiles for every microcosm set. When the predicted and measured concentrations were 
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compared (Table 4.6), it was observed that the model predicted the congeners with higher 

concentrations better than the ones with comparably lower concentrations. The results 

revealed that the model successfully predicted the congeners with high concentrations in 

the data set. The microcosm experiment was conducted by spiking BDE-209 to the 

sediments. Hence, BDE-209 and its first products were continuously observed at high 

concentrations in the bioremediation microcosms. The good fit for the profiles of these 

congeners was due to experimental conditions maintained during the microcosm 

operation. The microcosms were prepared by flushing the serum bottles with high-purity 

nitrogen to allow for the deoxygenation of sediments and the overlying liquid content, 

creating an anaerobic environment (Demirtepe and Imamoglu 2019b). Hence, the only 

mechanism of PBDE degradation was anaerobic dehalogenation in the microcosms. 

The observation of better prediction of higher-concentration-congeners was 

similarly found in the validation study. This situation generated a bias in R2 calculation 

in microcosm data set, resulting in very high R2 values. Hence, the congeners BDE-209, 

208, 207, and 206 were excluded from the scatter plots of measured vs predicted profiles, 

and R2 was calculated based only on the remaining congeners (Figure 4.3 D, E, F). As a 

result, R2 values ranged between 0.35 and 0.78 for the lower concentration congeners. 

The congeners that were not predicted very well varied among the bioremediation 

microcosms. For natural attenuation, BDE-154, for biostimulation BDE-201, 198, 199, 

and 200, and for bioaugmentation, BDE-196, 194, and 202 were predicted below or above 

the measured concentrations, and several congeners were quantified although they were 

measured as zero in the data set. This discrepancy might result from the reaction amounts 

of dehalogenation pathways. When the dehalogenation pathways were examined, it was 

observed that almost all pathways were predicted to occur with very high relative standard 

deviation (RSD) values, i.e. greater than 100% in each microcosm. The reaction amounts 

for each dehalogenation pathway are presented in Table 4.7, as the average, the standard 

deviation, and RSD. The model provided a total of 124 different pathways for 23 marker 

compounds. The reaction amounts of the dehalogenation pathways were obtained from 

100 shuffles of the reaction sequences; hence their standard deviations and RSDs were 

also calculated.  
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Table 4.5. ADM-IE performance for 0-180 day microcosm data set. 

 

Method 𝐜𝐨𝐬 𝜽 𝑹𝟐 

Natural attenuation 0.99999 0.99998 

Biostimulation 0.99998 0.99997 

Bioaugmentation 0.99999 0.99997 

Negative Control 0.99999 0.99999 

Sterile Control 0.99999 0.99999 

 

 

Table 4.6. Results of ADM-IE predicted and measured mole‰ profiles. 

 

m NA 0-180 BS 0-180 BA 0-180 NC 0-180 SC 0-180 

BDE M P M P M P M P M P 

28 0.00 0.16 0.00 0.20 0.14 0.40 0.00 0.18 0.00 0.00 

47 0.00 0.13 0.00 0.22 0.00 0.33 0.00 0.19 0.00 0.00 

99 0.69 0.68 0.48 0.64 0.00 0.40 0.16 0.34 0.00 0.00 

100 0.37 0.18 0.43 0.46 0.17 0.44 0.00 0.15 0.00 0.00 

153 0.22 0.32 0.17 0.33 0.00 0.39 0.00 0.21 0.00 0.00 

154 3.11 1.66 0.04 0.20 0.06 0.37 0.37 0.40 0.00 0.00 

183 0.00 0.09 0.00 0.16 0.00 0.29 0.27 0.25 0.00 0.00 

194 0.00 0.16 0.19 0.21 1.25 0.52 0.00 0.13 0.00 0.00 

195 0.00 0.42 0.00 0.28 0.00 0.36 0.00 0.08 0.00 0.00 

196 1.27 1.01 1.01 0.78 1.39 0.86 0.59 0.30 0.00 0.00 

197 0.62 0.41 0.18 0.19 0.84 0.49 0.61 0.29 0.00 0.00 

198 0.36 0.77 0.33 0.64 0.38 0.67 0.28 0.33 0.00 0.00 

199 0.36 0.67 0.33 0.63 0.38 0.68 0.28 0.35 0.00 0.00 

200 0.36 0.55 0.33 0.70 0.38 0.77 0.28 0.37 0.00 0.00 

201 0.96 1.04 0.12 0.53 0.86 1.01 0.83 0.70 0.00 0.00 

202 0.89 1.13 0.00 0.59 0.15 0.79 0.00 0.39 0.00 0.00 

203 0.36 0.31 0.33 0.30 0.38 0.38 0.28 0.16 0.00 0.00 

204 0.62 0.59 0.18 0.25 0.84 0.52 0.61 0.29 0.00 0.00 

205 0.00 0.19 0.00 0.18 0.00 0.19 0.00 0.10 0.00 0.00 

206 54.46 54.02 61.63 59.57 52.38 50.05 39.48 38.90 10.37 10.38 

207 27.61 26.53 27.87 26.38 24.41 23.19 20.19 19.65 0.00 0.00 

208 16.49 16.01 15.19 13.65 12.77 11.40 10.91 10.02 0.00 0.00 

209 891.2 892.9 891.1 892.9 903.2 905.5 924.8 926.2 989.6 989.6 

m: marker, M: measured, P: predicted 
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Figure 4.3. Measured vs predicted concentrations of all marker PBDE congeners for A) 

…………...NA, B) BS, C) BA, except octa, nona, and deca-BDEs for D) NA, E) BS, F) 

…………...BA. 

 

 

 

 

R² = 1

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0.00 20.00 40.00 60.00

M
ea

su
re

d 
C

on
t. 

Pr
of

ile
 ‰

Predicted Cont. Profile ‰

A

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00 2.00

M
ea

su
re

d 
C

on
t. 

Pr
of

ile
 ‰

Predicted Cont. Profile ‰

D

R² = 1

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0.00 20.00 40.00 60.00

M
ea

su
re

d 
C

on
t. 

Pr
of

ile
 ‰

Predicted Cont. Profile ‰

B

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00 1.25

M
ea

su
re

d 
C

on
t. 

Pr
of

ile
 ‰

Predicted Cont. Profile ‰

E

R² = 1

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0.00 20.00 40.00 60.00

M
ea

su
re

d 
C

on
t. 

Pr
of

ile
 ‰

Predicted Cont. Profile ‰

C

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

M
ea

su
re

d 
C

on
t. 

Pr
of

ile
 ‰

Predicted Cont. Profile ‰

F

R²=0.35 

R²=0.48 

R²=0.78 



65 

 

Table 4.7. All possible pathways for 23 marker congeners. 

 

0-180day Natural Attenuation Biostimulation Bioaugmentation 

Pathway 

Avg 

react 
STD RSD 

Avg 

react 
STD RSD 

Avg 

react 
STD RSD 

28 → 15 0.004 0.023 630.7 0.016 0.126 803.1 0.000 0.000 0 

28 → 7 0.002 0.012 556.1 0.003 0.016 602.9 0.002 0.018 1000 

28 → 8 0.010 0.055 538.0 0.008 0.049 576.0 0.001 0.009 838 

47 → 28 0.111 0.151 136.5 0.142 0.190 133.6 0.337 0.296 88 

47 → 17 0.009 0.042 451.8 0.008 0.074 936.7 0.020 0.149 733 

60 → 28 0 0 0 0 0 0 0 0 0 

66 → 28 0 0 0 0 0 0 0 0 0 

74 → 28 0.033 0.112 334.7 0.061 0.200 328.5 0.048 0.207 435 

75 → 28 0.010 0.103 1000 0.015 0.139 922.7 0.006 0.036 637 

85 → 47 0 0 0 0 0 0 0 0 0 

99 → 47 0.231 0.311 134.9 0.286 0.388 135.6 0.481 0.486 101 

99 → 74 0.085 0.311 365.3 0.116 0.397 341.8 0.055 0.263 474 

99 → 48 0.058 0.258 444.6 0.081 0.324 399.0 0.023 0.158 693 

99 → 49 0.023 0.103 448.5 0.070 0.329 472.1 0.049 0.188 385 

100 → 47 0.029 0.119 410.4 0.075 0.153 205.4 0.203 0.336 166 

100 → 75 0.023 0.166 707.7 0.019 0.174 936.7 0.007 0.041 601 

100 → 50 0.031 0.311 997.4 0.019 0.134 706.8 0.009 0.083 904 

100 → 51 0.028 0.131 476.0 0.050 0.181 362.5 0.025 0.132 534 

137 → 99 0 0 0 0 0 0 0 0 0 

138 → 99 0.130 0.412 316.7 0.189 0.605 319.5 0.105 0.436 416 

139 → 100 0.052 0.356 686.7 0.065 0.226 345.5 0.130 0.438 336 

139 → 99 0.075 0.332 443.7 0.141 0.515 365.7 0.086 0.357 413 

140 → 100 0 0 0 0 0 0 0 0 0 

153 → 99 0.643 0.667 103.7 0.509 0.664 130.5 0.508 0.633 125 

153 → 101 0.107 0.362 337.5 0.195 0.706 361.0 0.095 0.328 346 

154 → 100 0.256 0.496 193.9 0.546 0.537 98.3 0.540 0.609 113 

154 → 99 0.214 0.543 253.5 0.329 0.455 138.3 0.301 0.472 157 

154 → 102 0.144 0.749 521.4 0.031 0.136 442.7 0.051 0.441 861 

154 → 103 0.168 0.836 496.6 0.126 0.525 415.4 0.086 0.475 554 

155 → 100 0 0 0 0 0 0 0 0 0 

180 → 153 0.502 0.897 178.6 0.331 0.723 218.4 0.473 0.905 191 

182 → 154 0.757 1.858 245.4 0.328 0.748 228.3 0.354 0.845 239 

183 → 139 0.170 1.023 602.0 0.282 0.978 347.1 0.240 0.797 333 

183 → 154 1.392 1.556 111.8 0.636 0.863 135.8 0.766 1.081 141 

183 → 138 0.166 0.528 318.3 0.317 1.020 321.6 0.163 0.841 517 

183 → 153 0.560 0.706 126.2 0.690 1.093 158.4 0.511 0.736 144 

183 → 144 0.226 0.920 407.1 0.197 0.735 372.4 0.095 0.650 681 

183 → 149 0.206 0.714 346.7 0.266 0.872 328.3 0.165 0.963 583 

184 → 154 0.317 0.941 296.4 0.260 0.690 265.6 0.223 0.715 321 

194 → 170 0.266 1.132 425.7 0.171 0.820 479.6 0.178 0.828 465 

194 → 180 0.235 1.197 509.2 0.065 0.355 544.9 0.156 0.685 440 

194 → 189 0.202 1.183 586.2 0.075 0.510 683.7 0.017 0.166 954 

194 → 172 0.205 1.152 563.0 0.040 0.253 637.5 0.212 0.913 431 

195 → 171 0.356 1.149 322.5 0.220 0.819 372.3 0.324 1.265 391 

195 → 181 0.310 1.241 400.7 0.773 2.756 356.4 0.412 1.715 417 

195 → 170 0.601 2.028 337.7 0.321 1.433 446.2 0.226 1.072 474 

195 → 190 0.471 1.258 267.2 0.440 2.011 457.5 0.240 1.180 493 

195 → 173 0.422 1.562 370.4 0.250 0.859 343.6 0.244 0.815 334 

195 → 177 0.505 1.939 384.2 0.691 2.640 381.9 0.371 1.403 378 

196 → 171 0.306 1.248 408.0 0.478 2.001 418.9 0.319 1.194 375 

196 → 182 0.648 1.974 304.8 0.522 1.750 335.3 0.277 1.010 364 
196 → 183 0.893 1.747 195.6 0.905 1.942 214.5 0.488 1.128 231 

196 → 170 0.390 1.724 441.7 0.461 1.719 373.3 0.323 1.112 345 

(cont. on next page) 
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Table 4.7 (cont.) 

 
 

196 → 180 0.208 0.754 362.6 0.150 0.716 478.2 0.224 0.850 379 

196 → 191 0.363 1.220 335.7 0.548 1.797 327.6 0.318 1.351 425 

196 → 174 0.205 0.722 352.3 0.584 1.739 297.8 0.279 1.649 590 

196 → 175 0.362 1.242 342.9 0.286 0.783 274.3 0.423 1.758 416 

197 → 184 0.236 1.258 534.3 0.234 1.078 461.6 0.151 0.631 418 

197 → 171 0.365 0.919 251.8 0.400 1.767 441.9 0.081 0.352 433 

197 → 183 0.711 1.476 207.8 0.652 1.531 234.7 0.755 1.767 234 

197 → 176 0.199 0.677 340.6 0.269 1.077 400.5 0.707 2.348 332 

198 → 173 0.477 2.266 475.1 0.495 1.558 314.9 0.598 2.231 373 

198 → 175 0.322 1.735 539.0 0.750 2.919 389.0 0.525 2.124 405 

198 → 185 0.884 2.614 295.6 0.996 3.312 332.7 0.459 1.550 338 

198 → 172 0.448 1.564 348.9 0.985 2.758 280.1 0.751 2.292 305 

198 → 192 0.734 1.991 271.5 0.622 2.618 420.9 0.421 1.586 376 

198 → 178 0.312 1.073 344.1 0.576 2.407 417.7 0.241 1.112 462 

199 → 174 0.646 2.645 409.6 0.943 3.169 335.9 0.307 1.370 446 

199 → 177 1.243 3.716 298.9 0.336 1.122 333.8 0.838 2.754 329 

199 → 187 0.802 2.895 360.9 0.874 2.596 297.1 0.219 0.781 357 

199 → 172 0.339 1.077 317.5 0.373 1.304 349.8 0.357 1.265 354 

199 → 193 0.738 2.913 394.9 0.503 1.580 314.2 0.567 1.748 309 

199 → 178 0.483 2.197 454.6 0.619 2.677 432.6 0.472 1.581 335 

200 → 176 0.676 2.211 327.3 0.809 2.678 331.1 0.584 2.191 375 

200 → 186 0.969 3.375 348.5 0.543 1.637 301.5 0.709 2.365 334 

200 → 173 0.518 1.837 354.4 1.008 3.256 323.1 0.472 1.599 339 

200 → 174 0.975 2.950 302.4 1.189 3.758 316.2 0.400 1.336 334 

200 → 185 1.199 3.658 305.2 0.665 2.468 370.9 0.575 1.954 340 

200 → 179 0.377 1.355 359.1 0.558 1.987 355.8 0.586 2.222 379 

201 → 176 0.339 1.674 493.4 0.824 2.908 352.7 0.800 2.987 373 

201 → 188 0.763 2.390 313.2 0.898 2.851 317.6 0.490 2.050 418 

201 → 175 1.033 3.393 328.5 0.746 2.822 378.4 0.561 1.925 343 

201 → 177 0.521 2.028 388.9 0.880 2.816 320.0 0.504 1.695 336 

201 → 187 1.519 4.156 273.6 0.872 2.784 319.4 1.144 3.485 305 

202 → 179 0.901 3.509 389.6 1.356 3.397 250.6 1.266 3.898 308 

202 → 178 1.909 5.007 262.2 2.021 4.676 231.3 0.970 2.859 295 

203 → 181 0.407 1.399 343.7 0.723 2.407 332.9 0.391 1.405 359 

203 → 183 1.201 2.000 166.5 0.988 1.791 181.4 0.984 1.969 200 

203 → 180 0.485 1.764 363.8 0.446 1.575 353.1 0.461 1.351 293 

203 → 185 0.187 0.610 326.5 0.455 1.753 385.6 0.246 0.855 347 

203 → 187 0.621 2.048 329.8 0.626 2.254 359.9 0.213 1.165 548 

204 → 184 0.200 0.905 453.1 0.269 1.117 414.6 0.294 1.499 509 

204 → 181 0.604 2.223 368.2 0.103 0.382 371.6 0.189 1.020 541 

204 → 182 0.646 2.603 403.2 0.084 0.412 491.2 0.447 1.780 398 

204 → 186 0.221 0.922 417.0 0.577 2.431 421.1 0.326 1.383 424 

204 → 188 0.439 1.957 446.1 0.213 1.039 487.6 0.443 1.537 347 

205 → 190 0.121 0.589 488.6 0.090 0.643 714.8 0.222 1.115 502 

205 → 191 0.118 0.878 742.5 0.122 0.746 610.6 0.026 0.204 792 

205 → 189 0.424 1.487 350.4 0.069 0.374 545.5 0.180 0.815 454 

205 → 192 0.101 0.364 359.2 0.200 1.059 529.2 0.058 0.464 806 

205 → 193 0.171 1.013 591.6 0.334 1.402 419.8 0.083 0.434 523 

206 → 195 1.395 3.101 222.3 0.802 1.918 239.2 0.805 2.008 249 

206 → 196 1.574 2.545 161.7 1.274 2.595 203.7 1.222 2.446 200 

206 → 203 1.090 2.507 229.9 0.848 2.232 263.3 0.773 1.993 258 

206 → 194 1.186 2.699 227.6 0.560 1.557 277.8 1.078 1.992 185 
206 → 205 1.089 2.695 247.5 0.988 2.281 231.0 0.753 2.199 292 

206 → 198 0.906 2.327 256.8 0.771 2.069 268.3 0.727 1.947 268 

206 → 199 1.144 2.495 218.0 1.121 2.513 224.1 0.801 2.119 264 

207 → 197 1.860 3.070 165.1 1.736 3.350 192.9 2.172 3.987 184 

207 → 204 2.572 5.010 194.8 1.484 3.039 204.8 2.209 4.147 188 

(cont. on next page) 
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Table 4.7 (cont.) 
 

207 → 195 1.617 3.510 217.1 2.163 4.563 211.0 1.362 3.138 230 

207 → 196 2.743 4.228 154.2 3.412 5.272 154.5 2.270 3.456 152 

207 → 203 2.107 3.966 188.2 2.680 4.708 175.7 1.897 3.820 201 

207 → 200 2.621 5.245 200.1 1.954 4.169 213.4 1.646 3.277 199 

207 → 201 2.455 4.734 192.8 1.506 3.829 254.2 1.922 3.443 179 

208 → 200 2.763 4.803 173.8 3.492 6.084 174.2 2.428 4.283 176 

208 → 201 3.795 5.867 154.6 3.807 6.062 159.2 3.169 5.400 170 

208 → 198 2.920 4.652 159.3 4.269 6.621 155.1 2.925 5.031 172 

208 → 199 3.793 6.571 173.3 3.138 4.831 154.0 2.619 4.359 166 

208 → 202 4.005 6.338 158.3 3.944 6.153 156.0 3.000 5.202 173 

209 → 207 37.46 17.03 45.5 36.61 17.16 46.9 32.27 13.89 43 

209 → 206 53.47 11.39 21.3 52.96 11.17 21.0 43.97 10.23 23 

209 → 208 32.83 19.04 58.0 31.83 20.85 65.5 25.25 17.02 67 
*Bold are marker congeners. 

 

 

Among the 124 pathways, 33 contained marker compounds as both mother and 

daughter, and their k-values were calculated based on the reaction amounts. For the 

remaining 91 pathways, no concentration data was available to determine k-values. 

Therefore, machine learning was employed to predict k-values by considering reaction 

amounts, pathway information, and calculated k-values, as discussed in section 4.2.3.  

 The calculated k-values for bioremediation scenarios are presented in Table 4.8, 

with the position of bromine atom removed in the relevant pathway. The position of 

bromine atoms on the PBDE structure—whether ortho, meta, or para—played a 

significant role in evaluating the possible dehalogenation pathways and the degradation 

rate. For instance, the least number of possible pathways were observed for the removal 

from para positions (only 5 pathways), whereas the removal from ortho and meta 

positions occurred much more frequently (Table 4.8). Furthermore, the average of the rate 

constants estimated for dehalogenation from meta position was higher than that of ortho 

position for every bioremediation scenario. Hence, it can be speculated that for the 

dehalogenation of PBDEs, meta and ortho bromine removal was favored in the sediments, 

regardless of the bioremediation method applied. 

 The degradation process was found to be significantly influenced by the number 

of bromine atoms in the PDBE molecule. As the number of bromine in the structure 

decreased, the degradation rates tended to increase. For example, in the transformation 

from deca-BDE 209 to nona-BDE 208 (ortho position), the degradation rates were 

0.00032 d⁻¹, 0.00032 d⁻¹, and 0.00026 d⁻¹ for NA, BS, and BA, respectively. Ortho 

bromine removal in dehalogenation of penta-BDE 100 to tetra-BDE 47, the k-values were 



68 

 

notably higher at 0.00067 d⁻¹ for NA, 0.00082 d⁻¹ for BS, and 0.00262 d⁻¹ for BA. This 

trend suggested that lower-brominated congeners might be more prone to degradation, 

potentially due to their less stable molecular structures. 

 

 

Table 4.8. Dehalogenation rate constants estimated by ADM-IE for microcosm data set 

…………..between days zero and 180. 

 

P
o

si
ti

o
n

 

M
o

th
er

 

D
a

u
g

h
te

r
 k-values 

H
o

m
o

lo
g

s 

NA BS BA NC SC 

Para 209 208 0.00019 0.00018 0.00014 1.18E-04 0 deca-nona 

Ortho 209 206 0.00032 0.00032 0.00026 2.01E-04 0 deca-nona 

Meta 209 207 0.00021 0.00020 0.00018 1.49E-04 0 deca-nona 

Para 208 202 0.00072 0.00073 0.00070 6.33E-04 0 nona-octa 

Ortho 208 199 0.00078 0.00066 0.00070 6.77E-04 0 nona-octa 

Ortho 208 198 0.00059 0.00089 0.00077 7.47E-04 0 nona-octa 

Meta 208 201 0.00075 0.00083 0.00085 7.80E-04 0 nona-octa 

Meta 208 200 0.00056 0.00074 0.00065 5.76E-04 0 nona-octa 

Para 207 201 0.00034 0.00021 0.00030 2.98E-04 0 nona-octa 

Para 207 200 0.00039 0.00029 0.00027 2.43E-04 0 nona-octa 

Ortho 207 203 0.00031 0.00040 0.00031 2.60E-04 0 nona-octa 

Ortho 207 196 0.00040 0.00053 0.00038 2.76E-04 0 nona-octa 

Ortho 207 195 0.00024 0.00033 0.00023 1.89E-04 0 nona-octa 

Meta 207 204 0.00037 0.00022 0.00037 3.18E-04 0 nona-octa 

Meta 207 197 0.00027 0.00025 0.00037 3.26E-04 0 nona-octa 

Meta 206 199 0.00011 0.00010 0.00008 1.10E-04 2.22E-05 nona-octa 

Para 206 198 0.00009 0.00007 0.00008 1.04E-04 1.50E-05 nona-octa 

Ortho 206 205 0.00010 0.00009 0.00008 1.03E-04 1.61E-05 nona-octa 

Ortho 206 194 0.00011 0.00005 0.00011 1.17E-04 1.67E-05 nona-octa 

Meta 206 203 0.00010 0.00007 0.00008 1.11E-04 1.39E-05 nona-octa 

Meta 206 196 0.00015 0.00011 0.00013 1.37E-04 1.05E-05 nona-octa 

Meta 206 195 0.00013 0.00007 0.00008 1.14E-04 1.67E-05 nona-octa 

Meta 203 183 0.01269 0.01003 0.00721 1.39E-02 9.73E-04 octa-hepta 

Ortho 197 183 0.00267 0.00262 0.00237 2.28E-03 0 octa-hepta 

Meta 196 183 0.00465 0.00689 0.00284 3.18E-03 1.48E-04 octa-hepta 

Ortho 183 153 0.00548 0.00798 0.01717 5.54E-03 2.81E-05 hepta-hexa 

Meta 183 154 0 0 0 0 0 hepta-hexa 

Ortho 154 99 0.00093 0.00405 0.00277 2.13E-03 0 hexa-penta 

Meta 154 100 0.00136 0.00138 0.01013 4.29E-03 0 hexa-penta 

Meta 153 99 0.01059 0.00743 0.02935 6.96E-03 3.85E-03 hexa-penta 

Ortho 100 47 0.00067 0.00082 0.00262 3.97E-03 0 penta-tetra 

Meta 99 47 0.00247 0.00458 0.01624 6.00E-03 3.85E-03 penta-tetra 

Ortho 47 28 0.00363 0.00383 0.00672 4.69E-03 0 tetra-tri 

Average± 

std.dev.meta 

0.0023± 

0.0039 

0.0022± 

0.0032 

0.0046± 

0.0081 

0.0025± 

0.0038 

0.0006± 

0.0013  

Average± 

std.dev.ortho 

0.0012± 

0.0016 

0.0017± 

0.0022 

0.0027± 

0.0046 

0.0016± 

0.0019 

4.68E-06± 

8.95E-06  

Average± 

std.dev.para 

0.0003± 

0.0002 

0.0003± 

0.0002 

0.0003± 

0.0002 

0.0003± 

0.0002 

3.00E-06± 

6.00E-06  

 



69 

 

Across the three bioremediation scenarios, the degradation rates varied, with 

bioaugmentation generally showing the highest k-values for several pathways (Table 4.8). 

For example, the pathway, having the highest degradation rate, BDE-153 → BDE-99 

showed a significant increase in the degradation rate, with BA reaching 0.02935 d⁻¹, 

compared to 0.01059 d⁻¹ under NA conditions. This indicated that bioaugmentation 

enhanced the degradation process, likely due to the enhanced microbial activity 

introduced into the system. Hence, it can be suggested that bioaugmentation was the most 

effective method for improvement of the PBDE degradation process, followed by 

biostimulation and natural attenuation. 

On the other hand, certain pathways, such as the BDE-196 → BDE-183, exhibited 

higher degradation rates under BS conditions, with a k value of 0.00689 d⁻¹ compared to 

0.00465 d⁻¹ under NA conditions (Table 4.8). This variation demonstrated the 

effectiveness of different microcosm strategies in influencing the degradation of PBDEs 

depending on the pathways and the environmental conditions. Another observation was 

for the dehalogenation from hexa- to penta-BDEs. The results showed that meta bromine 

removal had higher rate constants under BS conditions. This suggested that the progress 

of degradation was highly dependent on both the bromine atom positions and the type of 

bioremediation method applied. 

Additionally, when sorted from high to lower k values, the order of pathways 

differed among the bioremediation scenarios, although the first ten were almost the same 

for all scenarios. These findings indicated that preferential pathways occurred regardless 

of the addition of nutrients and microorganisms to the sediments. 

 The negative control and sterile microcosm data were also analyzed in the model 

based on the 0-180 day dataset (Table 4.8) To facilitate the comparison with the test 

microcosm data, the results are displayed in graphical form in Figure 4.4. As can be seen 

from Figure 4.4, sterile control microcosms exhibited zero or very low degradation rates 

for most of the pathways. For some of the pathways, especially the ones with high 

degradation rates in bioremediation microcosms, both negative control and sterile sets 

revealed high k values, for some cases even higher than bioremediation microcosms. In 

the sterile set, no congeners other than BDE-209 and 206 were detected at any time 

period. However, ADM-IE predicted some of the pathways to occur in the sterile set. 

When the reaction amounts in the sterile set were examined, it can be seen that they were 

very low compared to other microcosm sets and RSDs were very high. The negative 

control set resembled the natural attenuation set in terms of its liquid content, with a minor 
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addition of nutrients. Therefore, the k-values obtained for the dehalogenation pathways 

were expected to be similar to the natural attenuation set, and smaller than the 

bioaugmentation set. The k-values presented in Figure 4.4 supported this hypothesis for 

most of the pathways. Only in the pathways BDE-203 → BDE-183 and BDE-100 → 

BDE-47, negative control set revealed k-values greater than all microcosm sets. The 

reason for this observation was not understood clearly. 

 

 

 

Figure 4.4. Marker pathways’ k-values for all microcosm data between 0 and 180 days. 

 

 

To evaluate possibly occurring dehalogenation pathways observed in each 

bioremediation scenario and better visualize them, Figure 4.5, 4.6, and 4.7 was prepared. 

When the figures were examined, several findings can be highlighted: 

a. A variation of preferential pathways for mother congeners having more than one 

daughter was observed in three bioremediation scenarios. For example, for 

bioaugmentation, BDE-206 → BDE-196 and BDE-206→ BDE-194 were favored 

when compared to other daughters of BDE-206. However, for BDE-207 and 208, no 

preference was observed for their pathways. On the other hand, in biostimulation 
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BDE-206 → BDE-196 and BDE-206 → BDE-199, BDE-207 → BDE-196 and BDE-

207 → BDE-203, BDE-208 → BDE-198 and BDE-208 → BDE-201 were preferred.  

Lastly, for natural attenuation, BDE-206 had no preferential pathways, while BDE-

207 → BDE-196 and BDE-207 → BDE-200, BDE-208 → BDE-199 and BDE-208 

→ BDE-201 were favored. For dehalogenation of BDE-154, BDE-100 was the 

dominant product in bioaugmentation and natural attenuation, while it was BDE-99 

in biostimulation. Both BDE-99 and -100 were classified as bioaccumulative 

compounds, but no-observed effect level for aquatic species (NOEC) of BDE-99 is 

lower than that of BDE-100, which indicates that BDE-99 is more toxic than BDE-

100 (“Comptox” 2024). To conclude, degradation of PBDEs can be tailored by 

applying different bioremediation methods to enhance the removal of specific 

congeners and to ensure that less harmful products were obtained. 

 

 

 

 

Figure 4.5. Degradation rate constants under bioaugmentation between 0 and 180 days. 
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Figure 4.6. Degradation rate constant under biostimulation between 0 and 180 days. 

 

 

 

 

Figure 4.7. Degradation rate constant under natural attenuation between 0 and 180 days. 
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b. The pathways for ortho bromine removal in all bioremediation scenarios displayed 

relatively consistent degradation rates but were often enhanced in bioaugmentation, 

indicating that bioaugmentation favored ortho degradation. The meta bromine 

removal pathways tended to show higher k-values in biostimulation and 

bioaugmentation, suggesting that both methods facilitated meta position degradation 

more effectively than natural attenuation. For the para removal pathways, the 

degradation rates remained moderate across all methods. This analysis highlighted 

that bioaugmentation generally yielded the highest degradation rates across multiple 

pathways, followed by biostimulation, with natural attenuation exhibiting the slowest 

degradation in most cases. 

c. Green-labeled k-values represented pathways not reported in previous studies. Hence, 

novel degradation routes under specific conditions could be proposed, highlighting 

the ADM-IE capability to detect pathways in PBDE anaerobic degradation. The newly 

identified degradation pathways, shown in Table 4.9, demonstrated moderate 

degradation rates and emphasized the diversity in dehalogenation potential depending 

on the position of bromine atoms in the molecule. The pathways also displayed clear 

differentiation in degradation rates based on bioremediation scenario. For instance, 

three out of six pathways showed the highest k-values under biostimulation, 

suggesting that biostimulation may enhance degradation rates for certain congeners. 

To sum up, the novel pathways identified here suggested potential additional 

degradation routes that had not been previously reported, adding new dimensions to 

understanding PBDE degradation in sediment environments. 

 

 

Table 4.9. Novel pathways degradation rate constants under test microcosms. 

 

New Pathway NA k-value (𝒅−) BS k-value (𝒅−) BA k-value (𝒅−) Pos. 

208-200 0.00056 0.00074 0.00065 Meta 

208-198 0.00059 0.00090 0.00077 Ortho 

207-200 0.00039 0.00029 0.00027 Para 

207-204 0.00037 0.00022 0.00038 Meta 

207-195 0.00024 0.00033 0.00023 Ortho 

206-195 0.00013 0.00007 0.00008 Meta 
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4.2.2. Sequential degradation analysis in defined time intervals for  

microcosms 

 

 

The microcosms were operated for 180 days with periodic sampling on days 20, 

40, 60, 90, 120, 152, and 180. Examining the data revealed distinct changes in PBDE 

concentrations after 90 days. Hence, the ADM-IE was applied to the data structured in 

time intervals: 0-90, 90-120, 120-152, and 152-180 days, allowing for a detailed analysis 

of the degradation progress within each time period. Table 4.10 presents the degradation 

rate constants for the dehalogenation pathways in bioremediation microcosms. The 

results revealed that pathways occurred at their highest rates at various time intervals for 

different bioremediation scenarios. For example, BDE-153 → BDE-99 pathway occurred 

at its highest rate between 0 and 90 days for bioaugmentation, between 90 and 120 days 

for biostimulation, and between 120 and 152 for natural attenuation. Similar cases were 

observed for BDE-196 → BDE-183 and BDE-197 → BDE-183. This finding indicated 

the delayed dehalogenation of some pathways under natural sediment conditions when 

no treatment was applied. For a couple of pathways, e.g. BDE-183 → BDE-153, the 

opposite situation was observed. This specific pathway had high degradation rates almost 

at all time periods. This comprehensive analysis provided a valuable comparison of the 

degradation rates, highlighting the effectiveness of different microcosm conditions and 

specific time periods for enhanced degradation. 

 

 

Table 4.10. Degradation rate constants for dehalogenation pathways in different time 

…………….intervals. 

 

    Natural Attenuation Biostimulation Bioaugmentation 

Pos. Hom. M D 0(day) 

90 

90 

120 

120 

152 

152 

180 

0(day) 

90 

90 

120 

120 

152 

152 

180 

0(day) 

90 

90 

120 

120 

152 

152 

180 

Para 
deca-

nona 
209 208 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 

Ortho 
deca-

nona 
209 206 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 

Meta 
deca-

nona 
209 207 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.001 0.000 0.001 

Para 
nona-

octa 
208 202 0.002 0.001 0.003 0.001 0.001 0.002 0.005 0.002 0.002 0.003 0.005 0.003 

Ortho 
nona-

octa 
208 199 0.001 0.001 0.002 0.001 0.001 0.003 0.006 0.002 0.002 0.003 0.006 0.003 

Ortho 
nona-

octa 
208 198 0.002 0.002 0.002 0.001 0.001 0.002 0.005 0.003 0.002 0.003 0.006 0.004 

Meta 
nona-

octa 
208 201 0.002 0.002 0.002 0.001 0.002 0.003 0.005 0.003 0.002 0.003 0.005 0.005 

 

(cont. on next page) 
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Table 4.10 (cont.) 

 
 

Meta 
nona-

octa 
208 200 0.002 0.003 0.002 0.001 0.001 0.002 0.005 0.003 0.002 0.002 0.005 0.004 

Para 
nona-

octa 
207 201 0.001 0.000 0.001 0.002 0.001 0.001 0.003 0.001 0.001 0.001 0.003 0.002 

Para 
nona-

octa 
207 200 0.001 0.000 0.001 0.002 0.000 0.001 0.003 0.001 0.001 0.001 0.003 0.001 

Ortho 
nona-

octa 
207 203 0.001 0.000 0.001 0.002 0.001 0.001 0.003 0.001 0.001 0.000 0.003 0.001 

Ortho 
nona-

octa 
207 196 0.001 0.001 0.002 0.001 0.001 0.002 0.003 0.001 0.001 0.001 0.004 0.002 

Ortho 
nona-

octa 
207 195 0.001 0.000 0.001 0.001 0.001 0.000 0.003 0.001 0.001 0.001 0.005 0.001 

Meta 
nona-

octa 
207 204 0.001 0.000 0.001 0.002 0.001 0.001 0.003 0.001 0.001 0.001 0.003 0.002 

Meta 
nona-

octa 
207 197 0.001 0.000 0.001 0.002 0.000 0.001 0.003 0.001 0.001 0.001 0.004 0.001 

Meta 
nona-

octa 
206 199 0.000 0.001 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.002 0.000 

Para 
nona-

octa 
206 198 0.000 0.001 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.003 0.000 

Ortho 
nona-

octa 
206 205 0.000 0.001 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.003 0.000 

Ortho 
nona-

octa 
206 194 0.001 0.001 0.001 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.004 0.001 

Meta 
nona-

octa 
206 203 0.000 0.001 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.003 0.000 

Meta 
nona-

octa 
206 196 0.000 0.002 0.001 0.000 0.000 0.003 0.002 0.000 0.000 0.002 0.003 0.000 

Meta 
nona-

octa 
206 195 0.000 0.001 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.004 0.000 

Meta 
octa-

hepta 
203 183 0.027 0.021 0.195 0.000 0.015 0.021 0.044 0.031 0.000 0.019 0.013 0.068 

Ortho 
octa-

hepta 
197 183 0.007 0.004 0.006 0.016 0.009 0.020 0.011 0.011 0.004 0.010 0.009 0.011 

Meta 
octa-

hepta 
196 183 0.007 0.002 0.001 0.027 0.021 0.003 0.005 0.004 0.038 0.007 0.007 0.004 

Ortho 
hepta-

hexa 
183 153 0.019 0.069 0.035 0.024 0.021 0.038 0.119 0.073 0.009 0.043 0.116 0.056 

Ortho 
hexa-

penta 
154 99 0.004 0.025 0.097 0.002 0.003 0.040 0.020 0.058 0.009 0.035 0.023 0.006 

Meta 
hexa-

penta 
154 100 0.016 0.005 0.000 0.004 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.016 

Meta 
hexa-

penta 
153 99 0.007 0.027 0.101 0.060 0.010 0.062 0.007 0.034 0.037 0.032 0.007 0.017 

Ortho 
penta-

tetra 
100 47 0.002 0.004 0.009 0.005 0.002 0.003 0.002 0.007 0.002 0.006 0.001 0.013 

Meta 
penta-

tetra 
99 47 0.014 0.011 0.014 0.010 0.018 0.013 0.093 0.001 0.013 0.015 0.019 0.008 

Ortho 
tetra-

tri 
47 28 0.009 0.023 0.025 0.025 0.005 0.024 0.000 0.044 0.010 0.026 0.000 0.076 

 

 

4.3. Analysis of machine learning results 

 

 

In this study, the ML methods were applied to estimate k-values for the 

dehalogenation pathways proposed with a non-marker congener as either mother or 

daughter. These ML methods were applied to natural attenuation, biostimulation and 

bioaugmentation data sets, only for the time interval 0-180 days. Three ML algorithms 

were tested and the results were compared in Appendix-C. The method with the highest 

performance, as indicated by the R value, was selected for further analysis. Hence, 

machine learning results with R-values averaging below 0.5 for linear regression and 

SVM were excluded from further evaluation. Since the neural network model 

demonstrated higher performance, machine learning analysis continued based on this 

method’s results.  
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The neural network validation outcomes for NA, BS, BA are presented in Figure 

4.8. These validation plots represented the performance of the Feedforward Neural 

Network under different conditions. The R-values greater than 0.76 indicated a strong 

correlation between the model's outputs and the targets, showing accurate prediction 

performance. The R values were converted to R² for a more comprehensive analysis and 

are presented in Table 4.11. 

 

 

   
 

Figure 4.8. BS, NA and BA neural network model results. 

 

 

Table 4.11. Neural network model performance results under 3 test microcosms. 

 

Bioremediation 

Methods 

Natural Attenuation Biostimulation Bioaugmentation 

R² 0.5716 0.9667 0.9078 

 

 

4.3.1. Pathways and degradation rates estimated by machine learning 

 

 

ADM-IE identified a total of 124 pathways, but using neural network model, the 

k-values for the 91 pathways were estimated and are provided in Table 4.12. As the 

number of possible pathways was high and the k-values ranged between 0 and 0.025 d-1 

(BDE-183 → BDE-138), the evaluation would be challenging. To help in evaluating and 

understanding the pathways, significant pathways were defined to distinguish them from 

others and were highlighted in the visual representation of pathway mechanisms created 

for this purpose. 

NA BS BA 
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Table 4.12. k-values of non-marker pathways for bioremediation microcosms between 0 

…………...and 180 days, predicted by neural network model. 

 

 Pathway k-values (𝒅−) 

Homolog M D Natural attenuation Biostimulation Bioaugmentation 
octa-hepta 205 193 0.00415 0.00165 0.00134 

octa-hepta 205 192 0.00397 0.00068 0.00129 

octa-hepta 205 189 0.00512 0.00000 0.00096 

octa-hepta 205 191 0.00400 0.00000 0.00123 

octa-hepta 205 190 0.00400 0.00000 0.00104 

octa-hepta 204 188 0.00510 0.00045 0.00116 

octa-hepta 204 186 0.00416 0.00165 0.00078 

octa-hepta 204 182 0.00630 0.00000 0.00062 

octa-hepta 204 181 0.00593 0.00000 0.00023 

octa-hepta 204 184 0.00409 0.00074 0.00056 

octa-hepta 203 187 0.00629 0.00154 0.00092 

octa-hepta 203 185 0.00402 0.00168 0.00073 

octa-hepta 203 180 0.00505 0.00155 0.00057 

octa-hepta 203 181 0.00469 0.00128 0.00046 

octa-hepta 202 178 0.01869 0.00036 0.00294 

octa-hepta 202 179 0.00828 0.00020 0.00303 

octa-hepta 201 179 0.00981 0.00156 0.00145 

octa-hepta 201 187 0.01396 0.00076 0.00444 

octa-hepta 201 177 0.00504 0.00079 0.00066 

octa-hepta 201 175 0.00917 0.00121 0.00077 

octa-hepta 201 188 0.00748 0.00068 0.00154 

octa-hepta 201 176 0.00427 0.00096 0.00232 

octa-hepta 200 179 0.00437 0.00156 0.00142 

octa-hepta 200 185 0.01109 0.00139 0.00182 

octa-hepta 200 174 0.00848 0.00027 0.00002 

octa-hepta 200 173 0.00487 0.00049 0.00018 

octa-hepta 200 186 0.00924 0.00164 0.00277 

octa-hepta 200 176 0.00594 0.00099 0.00113 

octa-hepta 199 178 0.00474 0.00147 0.00082 

octa-hepta 199 193 0.00742 0.00173 0.00228 

octa-hepta 199 172 0.00415 0.00101 0.00000 

octa-hepta 199 187 0.00763 0.00073 0.00121 

octa-hepta 199 177 0.01099 0.00083 0.00287 

octa-hepta 199 174 0.00557 0.00061 0.00000 

octa-hepta 198 178 0.00405 0.00149 0.00045 

octa-hepta 198 192 0.00723 0.00147 0.00180 

octa-hepta 198 172 0.00444 0.00052 0.00200 

octa-hepta 198 185 0.00821 0.00046 0.00145 

octa-hepta 198 175 0.00406 0.00113 0.00090 

octa-hepta 198 173 0.00456 0.00140 0.00115 

octa-hepta 197 176 0.00376 0.00011 0.00229 

octa-hepta 197 171 0.00411 0.00106 0.00000 

octa-hepta 197 184 0.00386 0.00016 0.00111 

octa-hepta 196 175 0.00406 0.00021 0.00064 

octa-hepta 196 174 0.00373 0.00139 0.00023 

octa-hepta 196 191 0.00437 0.00159 0.00171 

octa-hepta 196 180 0.00373 0.00000 0.00082 

octa-hepta 196 170 0.00412 0.00123 0.00000 

 

(cont. on next page) 
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Table 4.12 (cont.) 
 

octa-hepta 196 182 0.00571 0.00151 0.00103 

octa-hepta 196 171 0.00392 0.00127 0.00000 

octa-hepta 195 177 0.00458 0.00121 0.00079 

octa-hepta 195 173 0.00418 0.00000 0.00020 

octa-hepta 195 181 0.00392 0.00099 0.00124 

octa-hepta 195 171 0.00398 0.00010 0.00005 

octa-hepta 194 172 0.00364 0.00199 0.00017 

octa-hepta 194 189 0.00370 0.00000 0.00170 

octa-hepta 194 180 0.00369 0.00000 0.00099 

octa-hepta 194 170 0.00374 0.00062 0.00000 

hepta-hexa 184 154 0.00334 0.01413 0.00000 

hepta-hexa 183 149 0.00320 0.02002 0.00000 

hepta-hexa 183 144 0.00330 0.02173 0.00000 

hepta-hexa 183 138 0.00333 0.02538 0.00000 

hepta-hexa 183 139 0.00332 0.02424 0.00000 

hepta-hexa 182 154 0.00445 0.00950 0.00000 

hepta-hexa 180 153 0.00341 0.00998 0.00066 

hexa-penta 155 100 0.00000 0.00000 0.00000 

hexa-penta 154 103 0.00113 0.00215 0.00036 

hexa-penta 154 102 0.00111 0.00281 0.00019 

hexa-penta 153 101 0.00102 0.00184 0.00085 

hexa-penta 140 100 0.00000 0.00000 0.00000 

hexa-penta 139 99 0.00026 0.00403 0.00552 

hexa-penta 139 100 0.00024 0.00468 0.00576 

hexa-penta 138 99 0.00022 0.00384 0.00600 

hexa-penta 137 99 0.00000 0.00000 0.00000 

penta-tetra 100 51 0.00000 0.00751 0.02089 

penta-tetra 100 50 0.00000 0.00756 0.02056 

penta-tetra 100 75 0.00000 0.00801 0.01915 

penta-tetra 99 49 0.00000 0.00742 0.02159 

penta-tetra 99 48 0.00000 0.00735 0.02098 

penta-tetra 99 74 0.00000 0.00783 0.02014 

penta-tetra 85 47 0.00000 0.00000 0.00000 

tetra-tri 75 28 0.00000 0.00638 0.01494 

tetra-tri 74 28 0.00000 0.00631 0.01585 

tetra-tri 66 28 0.00000 0.00000 0.00000 

tetra-tri 60 28 0.00000 0.00000 0.00000 

tetra-tri 47 17 0.00000 0.00509 0.01104 

tri-di 28 8 0.00000 0.00437 0.01077 

tri-di 28 7 0.00000 0.00430 0.01072 

tri-di 28 15 0.00000 0.00487 0.00000 

 

 

The estimation of k-values for these 91 non-marker pathways relies on the reaction 

amounts determined by the ADM-IE and their inferred relationships with previously 

calculated marker congener pathways. To make a classification and evaluate the 

important pathways, the distribution of k-values obtained for each bioremediation 

microcosm was investigated and their mean and standard deviations were calculated. 

Among the non-marker congener pathways, those with k-values exceeding the sum of the 

mean and one standard deviation were defined as significant pathways.  
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The term ‘Machine Learning Highest k-values’ marker pathways identified 

through machine learning that exhibit the highest degradation rates but do not belong to 

significant pathways. 

 

 

4.3.2. Natural attenuation neural network results 

 

 

The k-values estimated by ML for natural attenuation microcosms indicated a 

range of degradation rates, with some pathways exhibiting slower rates (e.g., around 

0.0007 d-1) and others demonstrating relatively higher degradation rates (e.g., around 

0.01869 d-1). Figure 4.9 highlights 10 significant pathways as non-marker congener 

significant pathways (NCSP), for the natural attenuation microcosm. In Table 4-13, the 

significant pathways and their corresponding k-values are presented.  

 

 

Table 4.13. k-values of non-marker significant pathways for natural attenuation. 

 

Pathway k-value (𝒅−) Pathway k-value (𝒅−) 

202→178 0.01869 201→188 0.00748 

202→179 0.00828 200→185 0.01101 

201→179 0.00981 200→174 0.00848 

201→187 0.01396 200→186 0.00924 

201→175 0.00917 198→185 0.00821 

  Stdev+mean = 0.0074 

 

 

The non-marker congener significant pathways acted as indirect routes within the 

degradation network, providing supplementary pathways that contributed to the overall 

degradation process. These machine learning-predicted k-values extended the 

degradation network by estimating the rates of pathways that did not have a concentration 

data. Importantly, these pathways suggested a potential transfer of concentration within 

the network that would not been observed through traditional calculations alone. 

According to the natural attenuation results, BDE-202 → BDE-178 pathway 

demonstrated the highest k-value and neural network predicted higher k values for higher 

brominated BDEs such as octa and hepta-BDE homologs. 
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Figure 4.10. NA 0-180day MSE performance graph. 

 

 

The performance plot for ML application to natural attenuation is given in Figure 

4.10, demonstrating the MSE trend over 12 epochs for training, validation, and test sets 

as mentioned as in the methods section. The model achieved its lowest validation error at 

epoch 6, with an MSE of approximately 2.93𝑥10−7, indicating the optimal stopping 

point. Beyond this point, the validation error began to rise slightly, suggesting potential 

overfitting if training were to continue. The test and training errors stabilized at low values 

after epoch 6, further supporting that the model had effectively minimized errors by this 

epoch. 
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The training state graph shown in Figure 4.11 presents the gradient, Mu, and 

validation checks throughout the model’s training, as detailed previously in the 

methodology section. According to this graph, the model completed its training at epoch 

12 after six validation checks. 

Figure 4.12 shows the distribution of errors between the target values and the 

model's predictions across the training. Based on this graph, the prediction errors for the 

training, validation, and test datasets were largely concentrated around zero. The error 

distribution indicated that most errors fell between -0.0001 and 0.0001, suggesting that 

the model's predictions were quite close to the target values. These values near the zero-

error line represented points where the model achieved optimal performance. 

 

 

 

 

Figure 4.11. NA 0-180day training state graph. 
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Figure 4.12. NA 0-180day error histogram training plots. 

 

 

Lastly, the regression plots (Figure 4.13) showed the model's performance across 

training, validation, and test sets. The R-values varied, with the test set achieving the 

highest correlation at R = 0.94, indicating strong alignment with target values. However, 

the training and validation sets had lower R-values (0.57 and 0.76, respectively), 

suggesting some variability in model accuracy. The overall R-value of 0.35 reflected a 

moderate fit across all data. 
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Figure 4.13. Regression graph for training, validation, and test. 

 

 

4.3.3. Biostimulation 0-180day neural network results 

 

 

Figure 4.14 highlights 7 non-marker congener significant pathways, each 

identified through machine learning to estimate degradation rates. In Table 4.14, the non-

marker congener significant pathways and their corresponding k-values are presented. 

 

 

 

 

 



85 

 

Table 4.14. k-values of non-marker significant pathways for biostimulation. 

 

Pathway k-value (𝒅−𝟏) Pathway k-value 

(𝒅−𝟏) 

184→154 0.01413 183→139 0.02424 

183→149 0.02002 182→154 0.00949 

183→144 0.02173 180→153 0.00998 

183→138 0.02538 Stdev+mean=0.008 

 

 

These k-values indicated a range of degradation rates within the non-marker 

congener significant pathways, with a few pathways exhibiting slower rates such as BDE-

182→BDE-154 (0.00949 d−1), and others demonstrating relatively higher degradation 

rates such as 0.02538 d−1 in BDE-183→BDE-139 pathway. The significant pathways 

were observed only for dehalogenation of hepta-BDEs in biostimulation microcosm. 

According to the results, BDE-182→BDE-154 and BDE-184→BDE-154 

pathways were observed. These can be considered important pathways since the 

calculated k-value for the BDE-183→BDE-154 pathway is 0, which indicated that the 

mothers of BDE-154 were the congeners not measured commonly in environmental 

matrices. Additionally, significant degradation values were observed for the BDE-

183→BDE-139 and BDE-183→BDE-138 pathways, whose daughters were the mothers 

of more toxic compounds such as BDE-100 and BDE-99 (“Comptox” 2024). Therefore, 

it can be concluded that while investigating PBDE contamination in sediments or their 

dehalogenation, BDE-182, BDE-184, BDE-138 and BDE-139 should be monitored to 

track their transformation into more toxic products. The bioremediation strategies would 

then be developed to direct the dehalogenation towards production of less harmful 

products. 
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Figure 4.15. BS 0-180day MSE performance graph. 

 

 

ML performance plots were examined for the results of the model run of 

biostimulation microcosm. Figure 4.15 demonstrates the MSE trend over 36 epochs for 

training. The model achieved its lowest validation error at epoch 30, with an MSE of 

approximately 5.01𝑥10−9, indicating the optimal stopping point.  

 

 

 

 

Figure 4.16. BS 0-180day training state graph. 
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Figure 4.17. BS 0-180day Error histogram training plots. 

 

 

Figure 4.16 indicates that the model completed its training at epoch 36 after six 

validation checks. Based on Figure 4.17, the error distribution indicated that most errors 

fell approximately 5.87𝑥10−6, suggesting that the model's predictions were quite close 

to the target values. 

The R-values, with the validation set, achieved the highest correlation at R = 0.98, 

indicating strong alignment with target values. However, the testing set had lower R-

values (0.51), suggesting some variability in model accuracy. The overall R-value of 0.77 

reflected a high fit across all data. 
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Figure 4.18. BS 0-180day regression graph for training, validation, and test. 

 

 

4.3.4. Bioaugmentation 0-180day neural network results 

 

 

Figure 4.19 highlights 11 non-marker congener significant pathways, each 

identified through machine learning to estimate degradation rates. Table 4.15 shows the 

non-marker congener significant pathways and their corresponding k-values. 

 

 

Table 4.15. k-values of non-marker significant pathways for bioaugmentation. 

 

Pathway k-value (𝒅−) Pathway k-value (𝒅−) 

100→51 0.02089 75→28 0.01494 

100→50 0.02056 74→28 0.01585 

100→75 0.01915 47→17 0.01105 

99→49 0.02159 28→8 0.01077 

99→48 0.02098 28→7 0.01072 

99→74 0.02014 Stdev + aver = 0.0085 
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The k-values indicated a range of degradation rates within the non-marker 

congener significant pathways, with 5 pathways exhibiting higher rates BDE-100→BDE-

51, BDE-100→BDE-50, BDE-99→BDE-49, BDE-99→BDE-48, and BDE-99→BDE-

74. As seen in Table 4.14, significant pathways were observed for penta-, tetra-, and tri-

BDE homolog groups. When compared, natural attenuation, biostimulation and 

bioaugmentation demonstrated significant pathways for homolog groups in descending 

order. Hence, bioaugmentation can be said to achieve dehalogenation towards less 

brominated congeners more effectively than other bioremediation scenarios. Particularly 

for dehalogenation of more toxic congeners (e.g. BDE-100 and BDE-99) or the ones with 

a defined NOEC value (e.g. BDE-28), ADM-IE estimated degradation rate constants for 

biostimulation and bioaugmentation microcosms, with bioaugmentation having higher 

rates. Therefore, it can be said that the end products of dehalogenation in these 

bioremediation scenarios were less harmful PBDE congeners, achieving the ultimate goal 

of remediation application.  

 

 

 
 

Figure 4.20. BA 0-180day MSE performance graph. 

 

 

Model performance plots obtained for ML application to bioaugmentation yielded 

satisfactory results. Figure 4.20 demonstrates the MSE trend over 8 epochs for training. 

The model achieved its lowest validation error at epoch 2, with an MSE of approximately 

4.27𝑥10−5, indicating the optimal stopping point. According to Figure 4.21, the model 

completed its training at epoch 8 after 6 validation checks. Based on Figure 4.22, the error 

distribution indicated that most errors fell -0,00014, suggesting that the model's 

predictions were quite close to the target values. 
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Figure 4.21. BA 0-180day training state graph. 

 

 

 

 

Figure 4.22. BA 0-180day Error histogram training plots. 
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Figure 4.23. BA 0-180day regression graph for training, validation, and test. 

 

 

The R-values, with the training set achieving the highest correlation at R = 0.78, 

indicated strong alignment. However, the testing set had lower R-values (0.19), 

suggesting some variability in model accuracy. The overall R-value of 0.57 reflected a 

moderate fit across all data. 

 

 

4.4. Discussion on the findings of ADM-IE  

 

 

4.4.1. Evaluation of model results and the experimental results 

 

 

Previous research by Demirtepe (2017) investigated the degradation of PBDEs in 

sediment microcosms, focusing on the bromine per diphenyl ether (Br/dp) ratio changes 

over time across the experimental conditions. In that study, bioaugmentation 
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demonstrated the highest removal rates across bromine positions (para, meta, and ortho), 

with reported removal values of 1.02%, 1.27%, and 1.55%, respectively. Both natural 

attenuation and biostimulation followed similar patterns but at relatively lower removal 

percentages. Specifically, in the biostimulation set, para-Br removal was considerably 

lower at 0.82%, whereas meta and ortho removals were 2.11% and 2.08%, respectively, 

illustrating the influence of treatment type and bromine position on degradation 

efficiency. This finding was consistent with the ADM-IE model results. 

Degradation rate was also evaluated using bromine per diphenyl ether (Br/dp) 

content of sediments (Equation 4.1) and calculated as shown in Equation 4.2. Ci is the 

concentration of each congener i. The number of bromines (𝑛𝑖) can be total number of 

bromines for each homolog group or number of ortho-/meta-/para-bromines for each 

congener. Furthermore, percent reduction in Br/dp was computed as ratio of the difference 

in Br/dp between days 0 and 180 to Br/dp at time zero (Demirtepe 2017, 85). 

 

 

𝐵𝑟/𝑑𝑝 =
∑ 𝐶𝑖𝑥𝑛𝑖

10
𝑖=1

∑ 𝐶𝑖
10
𝑖=1

  (4.1) 

 

 

 

𝐵𝑟

𝑑𝑝.𝑑𝑎𝑦
=  

(𝐵𝑟/𝑑𝑝)𝑡1−(𝐵𝑟/𝑑𝑝)𝑡2

|𝑡1−𝑡2|
  (4.2) 

 

 

In the current study, using the ADM-IE model, similar trends were observed, with 

degradation rates generally increasing as the bromine count decreased. This observation 

aligns with Demirtepe (2017)’s findings, suggesting that lower-brominated congeners are 

more susceptible to degradation due to their less stable molecular structures.  

Additionally, both studies showed that biostimulation was particularly effective in 

removing bromine from meta and ortho positions. In the degradation pathway from hexa 

to penta-BDEs, meta positions exhibited higher k-values under BA, while ortho positions 

showed increased rates under BS. This finding was consistent with Demirtepe’s results, 

reinforcing the role of biostimulation in targeting specific bromine positions effectively.  

In summary, while Demirtepe (2017)’s study provided foundational insights into 

PBDE degradation by tracking Br/dp ratios across bromine positions, the ADM-IE 
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employed in the current study offered different perspective by estimating the degradation 

rates for each pathway. Both studies concluded that bioaugmentation was the most 

effective treatment method, yet the ADM-IE enabled a more detailed comparison of 

treatment efficacy across specific pathways and bromine positions. 

 

 

4.4.2. Previous usage of Machine learning in degradation of persistent 

organic pollutants 

 

 

In many biodegradation studies, machine learning applications have been utilized. 

Examples of these studies are presented in Table 4.16. Overall, it has been suggested that 

machine learning could play a significant role in predicting biodegradation. 

 

 

Table 4.16. Selected studies on machine learning applications. 

 

Reference Title Key focus Outcome 

(Baker et al. 2004) 

 

 

 

Evaluation of 

Artificial 

Intelligence-Based 

Models for 

Chemical 

Biodegradability 

Prediction 

Explores the 

effectiveness of 

artificial intelligence 

methods, including 

neural networks, in 

predicting 

biodegradation. 

Neural networks 

demonstrated 

reliable predictions, 

showcasing their 

potential in 

environmental 

studies. 

(Goh et al. 2018) Multimodal Deep 

Neural Networks 

Using Both 

Engineered and 

Learned 

Representations for 

Biodegradability 

Prediction 

Combines 

engineered features 

and deep learning to 

predict the 

biodegradability of 

chemicals. 

Deep neural 

networks 

successfully 

improved 

prediction 

accuracy, providing 

a robust modeling 

framework. 

 

(cont. on next page) 
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Table 4.16 (cont.) 

 

(Motamedi et al. 

2023) 

Comparison of 

Photocatalysis and 

Photolysis of BDE-

47: Operational 

Parameters, Kinetic 

Studies, and Data 

Validation Using 

Three Modern 

Machine Learning 

Models 

Applies machine 

learning models 

(artificial neural 

network, Gradient 

Boosted Decision Tree, 

Symbolic Regression) 

to validate degradation 

kinetics and predict 

pollutant 

concentration. 

Differences among 

machine learning 

models were 

analyzed to assess 

their application in 

environmental 

remediation. 

 

 

Baker et al. (2004) highlighted the capacity of artificial intelligence, particularly 

neural networks, to predict the biodegradability of chemicals. Their analysis 

demonstrated that neural networks provide accurate predictions, making them a valuable 

tool for environmental modeling. This suggests that neural networks can bridge the gap 

between chemical complexity and predictive modeling, facilitating better decision-

making in remediation efforts. Goh et al. (2018) extended the application of machine 

learning by integrating deep neural networks with both engineered and learned chemical 

features. This multimodal approach enhanced prediction performance, indicating that 

deep learning techniques can offer robust and scalable solutions for biodegradability 

assessment. Their findings underline the significance of combining feature engineering 

with advanced neural architecture to achieve higher accuracy. Motamedi et al. (2023) 

findings suggested that integrating machine learning models, particularly gradient 

boosted decision tree, can effectively validate and predict outcomes in the degradation 

processes of persistent organic pollutants like BDE-47. The study underscored the 

potential of combining experimental techniques with advanced computational tools to 

enhance the efficiency and understanding of environmental remediation strategies. As a 

result, the use of machine learning in biodegradation provided significant results and 

enabled more accurate predictions depending on the abundance of available data. 

 

 

 

 



97 

 

4.4.3. Comparison of the degradation rate constants with previous  

model applications 

 

 

Table 4.17 presented k-values for certain pathways, calculated using the anaerobic 

dehalogenation model developed by Karakas (2016), which used previously conducted 

degradation studies’ data. In Table 4.17, the k-values were shown as median values for 

the 0, 24, 40, 60, and 90-day intervals (Karakas 2016, 192-95). To enable a comparison 

with the ADM-IE k-values, the k-values for similar pathways were calculated and added 

to the table for all bioremediation scenarios. 

 

 

Table 4.17. Degradation rate constants of eight pathways different studies. 

 

Ortho Meta Ortho Meta Ortho Meta Ortho Meta 
Microcosm 

data 
Model 

47-28 99-47 
100-

47 
153-99 

154-

99 
154-100 183-153 183-154 

0.002 0.002 - 0 0 - - - 
(Tokarz et al. 

2008) 

𝐴𝐷𝑀𝑎 

0.002 - 0 - 0 0 - 0.002 

(H.-W. Huang, 

Chang, and Lee 

2014) 

0.002 0.001 - 0 - - 0 0.001 
(Robrock et al., 

2008) 
 

0.002 0.001 0 0 0 0.003 0 0.002 
(Song et al. 

2015) 
 

0.024/ 

0.014/ 

0.018 

0.013/ 

0.015/ 

0.014 

0.004/ 

0.003/ 

0.004 

0.043/ 

0.022/ 

0.025 

0.004/ 

0/ 

0 

0.015/ 

0.030/ 

0.016 

0.029/ 

0.056/ 

0.050 

0/0/0 

(Demirtepe and 

Imamoglu 

2019b) 

𝐴𝐷𝑀

− 𝐼𝐸𝑏  

a: Karakas’s anaerobic dehalogenation model k results. 

b: The median of k-values under natural attenuation/biostimulation/bioaugmentation. 

 

 

According to these results, the degradation rate of the BDE-183→153 pathway 

was higher than the results obtained in this study, highlighting its significance in other 

sediment conditions. Additionally, higher k-values were observed in the BDE-47→28, 

153→99, and 154→100 pathways, in this study. This may be attributed to the effect of 

bioremediation techniques, particularly the BA and BS methods applied by Demirtepe & 

Imamoglu (2019), which were especially impactful on lower-brominated and medium-
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brominated compounds. This outcome highlighted the effectiveness of these methods in 

affecting degradation rates, although the experimental conditions for previous studies 

were not examined in this comparison. Nevertheless, this comparison suggested that more 

experimental data is needed to be tested by ADM-IE to have a better understanding of 

dehalogenation efficiency. 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

In this study, anaerobic dehalogenation of PBDEs in sediments was modeled using 

the experimental data of a microcosm study mimicking three bioremediation scenarios, 

namely natural attenuation, biostimulation and bioaugmentation. To do that, a previously 

developed anaerobic dehalogenation model was integrated and enhanced, resulting in a 

new model called “ADM-IE”. Different from the previous versions, ADM-IE was able to 

list all possible dehalogenation pathways for PBDE degradation, quantify the reaction 

amounts for these pathways, calculate the degradation rate constants for congeners 

measured in the data set, and estimate the rate constants for congeners not measured 

experimentally, by using machine learning algorithms.  

The ADM-IE was first validated using artificial data sets, generated manually with 

a limited number of congeners and manipulated pathways. The model was successful in 

predicting the PBDE profile given as the input and calculated the degradation rate 

constants. When compared to manual calculations, the model was found more successful 

in predicting rate constants and concentrations for PBDEs with higher concentrations. 

After validation, the ADM-IE was applied to the microcosm data set using the 

time zero and time 180 days’ concentrations of three bioremediation and two control 

microcosms. The resulting goodness of fit criteria comparing the measured and predicted 

PBDE concentrations showed very good fits overall, for all microcosms. However, when 

the results were further examined, it was observed that the model predicted the congeners 

with higher concentrations better than the ones with comparably lower concentrations, 

similar to the validation results. To understand the effect, the high concentration 

congeners were excluded from 𝑅2 calculation. As a result, R2 values ranged between 0.35 

and 0.78 for the lower concentration congeners. The congeners that were not predicted 

very well varied among the bioremediation microcosms. The discrepancy was considered 

due to the very high relative standard deviations obtained for quantified pathway reaction 

amounts. As per the researchers’ knowledge, the model was applied to such a data set 

where there were large variations in concentrations of the measured congeners. Therefore, 
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the model may need further development on this issue. Overall, the model’s ability to 

generate reaction amounts and pathways based on the input concentrations and markers 

provided a robust framework for understanding the degradation mechanisms occurring in 

the sediments.  

Thirty three out of 124 dehalogenation pathways included the marker congeners 

both as a mother and daughter, hence the degradation rate constants for these pathways 

were calculated assuming first order reaction kinetics. The position of bromine atoms on 

the PBDE structure—whether ortho, meta, or para—played a significant role in 

evaluating the possible dehalogenation pathways and the degradation rate. It was 

observed that for the dehalogenation of PBDEs, meta and ortho bromine removal was 

favored in the sediments and para bromine removal was the least favored, regardless of 

the bioremediation method applied. The degradation process was found to be significantly 

influenced by the number of bromine atoms in the PDBE molecule. As the number of 

bromine in the structure decreased, the degradation rates tended to increase. Hence, 

lower-brominated congeners might be more prone to degradation, potentially due to their 

less stable molecular structures.  

Among the three bioremediation scenarios, the degradation rates varied, with 

bioaugmentation generally showing the highest k-values for several pathways. However, 

for some specific pathways, biostimulation exhibited higher degradation rates. 

Furthermore, the dominant daughters of the same mother varied among the 

bioremediation scenarios. Hence, it can be speculated that bioremediation method applied 

had an influence on the PBDE dehalogenation, and that the dehalogenation could be 

tailored to obtain or prevent the formation of certain congeners. For example, the 

formation of BDE-99, a more toxic congener compared to others, was favored in 

biostimulation. Therefore, cautions must be taken when applying biostimulation for 

PBDE contaminated sites. 

The application of ADM-IE revealed novel degradation routes under specific 

conditions. A total of six pathways among 33 were identified as the novel pathways, 

mostly favored by biostimulation. 

The ADM-IE was also applied to the data set obtained from sequential time 

periods of microcosms, allowing for a detailed analysis of the degradation progress within 

each period. The results revealed that pathways occurred at their highest rates at various 

time intervals for different bioremediation scenarios. For some pathways, a delay in 

dehalogenation was observed under natural attenuation microcosms, although for a 
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couple of them the reverse case was observed. This comprehensive analysis provided a 

valuable comparison of the degradation rates, highlighting the effectiveness of different 

microcosm conditions and specific time periods for enhanced degradation. 

ADM-IE employed machine learning algorithms to estimate the degradation rate 

constants for 91 pathways involving one non-marker congener either as a mother or a 

daughter. A significant pathway definition was introduced to evaluate the ones with the 

highest degradation rate in three microcosms. As a result, the significant pathways varied 

among bioremediation scenarios. The dehalogenation of octa-, hepta-, and less than 

penta-BDEs was significant for natural attenuation, biostimulation and bioaugmentation, 

respectively. Hence, bioaugmentation can be said to achieve dehalogenation towards less 

brominated congeners more effectively than other bioremediation scenarios. 

Furthermore, the preferential pathways could be observed when the rate constants were 

estimated by machine learning. For example, the dominant daughters of BDE-183 were 

found as BDE-138 and BDE-139, which were not monitored in the experimental 

microcosm study. These congeners were the mothers of BDE-100 and BDE-99, which 

are more toxic than their mothers. Hence, to monitor the toxicity change during 

bioremediation, these congeners should be measured in the environment. An important 

observation was that dehalogenation of toxic (e.g. BDE-99, -100) and bioaccumulative 

(e.g. BDE-47) congeners were observed and quantified in biostimulation and 

bioaugmentation microcosms, with bioaugmentation having higher rates.  

To conclude, the results of ADM-IE helped to gather important and 

comprehensive information on the bioremediation of PBDEs in the sediments. The 

anaerobic dehalogenation model was applied for the first time to a data set where different 

bioremediation methods were applied. Using the results of this study, the bioremediation 

strategies would be developed to obtain degradation of halogenated compounds with 

higher degradation rates, and to direct the dehalogenation towards the production of less 

harmful products. Further improvements on the model are possible, such as the 

application of a non-linear relationship in machine learning algorithms. It can also be 

possible to combine the model with fate and transport models, so that a comprehensive 

analysis of the fate of halogenated compounds in various environmental compartments 

could be predicted. Furthermore, the model could be upgraded to a version where the 

dehalogenated contaminant profile could be estimated so that the outcome of 

bioremediation would be predicted before its application on-site. 
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APPENDIX A 

 

 

PBDE PATHWAYS REVIEW 

 

 

PBDE congeners have degradation pathways such as ortho, para, and meta 

positions. These positions determine the specific bromine degradation. For example, 

BDE-93 has five bromines which are at 2-3-5-6 positions in the first phenyl, and one of 

bromines at 2 position in the second phenyl structure. That structure looks in the 

mathematical BDE-93 (2356 – 2). That numerical systems used by IUPAC was used to 

demonstrate the pathways on degradation positions. BDE-65 (2356) has 4 bromine in the 

first phenyl structure. For the BDE 93 to BDE-65 degradation, a bromine was removed 

from BDE-93 second phenyl structure. Due to that breaking, BDE-65 observed because 

of IUPAC numbering and their structure. In this table, some examples from ortho, meta, 

and para positions’ removal is shown. This data has been generated by ADM as an output. 

 

 

Table A.1. The list of possible dehalogenation pathways in microcosm data set. 

 

Dehalogenation Pathway 

209 (23456 - 23456) → 208 (23456 - 2356) 

209 (23456 - 23456) → 206 (23456 - 2345) 

209 (23456 - 23456) → 207 (23456 - 2346) 

208 (23456 - 2356) → 202 (2356 - 2356) 

208 (23456 - 2356) → 199 (2345 - 2356) 

208 (23456 - 2356) → 198 (23456 - 235) 

208 (23456 - 2356) → 201 (2346 - 2356) 

208 (23456 - 2356) → 200 (23456 - 236) 

207 (23456 - 2346) → 201 (2346 - 2356) 

207 (23456 - 2346) → 200 (23456 - 236) 

207 (23456 - 2346) → 203 (23456 - 245) 

207 (23456 - 2346) → 196 (2345 - 2346) 

207 (23456 - 2346) → 195 (23456 - 234) 

207 (23456 - 2346) → 204 (23456 - 246) 

207 (23456 - 2346) → 197 (2346 - 2346) 

206 (23456 - 2345) → 199 (2345 - 2356) 

206 (23456 - 2345) → 198 (23456 - 235) 

206 (23456 - 2345) → 205 (23456 - 345) 

206 (23456 - 2345) → 194 (2345 - 2345) 

 

(cont. on next page) 
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Table A (cont.) 

 

206 (23456 - 2345) → 203 (23456 - 245) 

206 (23456 - 2345) → 196 (2345 - 2346) 

206 (23456 - 2345) → 195 (23456 - 234) 

205 (23456 - 345) → 193 (2356 - 345) 

205 (23456 - 345) → 192 (23456 - 35) 

205 (23456 - 345) → 189 (2345 - 345) 

205 (23456 - 345) → 191 (2346 - 345) 

205 (23456 - 345) → 190 (23456 - 34) 

204 (23456 - 246) → 188 (2356 - 246) 

204 (23456 - 246) → 186 (23456 - 26) 

204 (23456 - 246) → 182 (2345 - 246) 

204 (23456 - 246) → 181 (23456 - 24) 

204 (23456 - 246) → 184 (2346 - 246) 

203 (23456 - 245) → 187 (2356 - 245) 

203 (23456 - 245) → 185 (23456 - 25) 

203 (23456 - 245) → 180 (2345 - 245) 

203 (23456 - 245) → 183 (2346 - 245) 

203 (23456 - 245) → 181 (23456 - 24) 

202 (2356 - 2356) → 178 (2356 - 235) 

202 (2356 - 2356) → 179 (2356 - 236) 

201 (2346 - 2356) → 179 (2356 - 236) 

201 (2346 - 2356) → 187 (2356 - 245) 

201 (2346 - 2356) → 177 (2356 - 234) 

201 (2346 - 2356) → 175 (2346 - 235) 

201 (2346 - 2356) → 188 (2356 - 246) 

201 (2346 - 2356) → 176 (2346 - 236) 

200 (23456 - 236) → 179 (2356 - 236) 

200 (23456 - 236) → 185 (23456 - 25) 

200 (23456 - 236) → 174 (2345 - 236) 

200 (23456 - 236) → 173 (23456 - 23) 

200 (23456 - 236) → 186 (23456 - 26) 

200 (23456 - 236) → 176 (2346 - 236) 

199 (2345 - 2356) → 178 (2356 - 235) 

199 (2345 - 2356) → 193 (2356 - 345) 

199 (2345 - 2356) → 172 (2345 - 235) 

199 (2345 - 2356) → 187 (2356 - 245) 

199 (2345 - 2356) → 177 (2356 - 234) 

199 (2345 - 2356) → 174 (2345 - 236) 

198 (23456 - 235) → 178 (2356 - 235) 

198 (23456 - 235) → 192 (23456 - 35) 

198 (23456 - 235) → 172 (2345 - 235) 

198 (23456 - 235) → 185 (23456 - 25) 

198 (23456 - 235) → 175 (2346 - 235) 

198 (23456 - 235) → 173 (23456 - 23) 

197 (2346 - 2346) → 176 (2346 - 236) 

197 (2346 - 2346) → 183 (2346 - 245) 
197 (2346 - 2346) → 171 (2346 - 234) 

197 (2346 - 2346) → 184 (2346 - 246) 

196 (2345 - 2346) → 175 (2346 - 235) 

196 (2345 - 2346) → 174 (2345 - 236) 

196 (2345 - 2346) → 191 (2346 - 345) 

196 (2345 - 2346) → 180 (2345 - 245) 

196 (2345 - 2346) → 170 (2345 - 234) 

196 (2345 - 2346) → 183 (2346 - 245) 

(cont. on next page) 
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Table A (cont.) 
 

196 (2345 - 2346) → 171 (2346 - 234) 

195 (23456 - 234) → 177 (2356 - 234) 

195 (23456 - 234) → 173 (23456 - 23) 

195 (23456 - 234) → 190 (23456 - 34) 

195 (23456 - 234) → 170 (2345 - 234) 

195 (23456 - 234) → 181 (23456 - 24) 

195 (23456 - 234) → 171 (2346 - 234) 

194 (2345 - 2345) → 172 (2345 - 235) 

194 (2345 - 2345) → 189 (2345 - 345) 

194 (2345 - 2345) → 180 (2345 - 245) 

194 (2345 - 2345) → 170 (2345 - 234) 

184 (2346 - 246) → 154 (245 - 246) 

183 (2346 - 245) → 149 (236 - 245) 

183 (2346 - 245) → 144 (2346 - 25) 

183 (2346 - 245) → 153 (245 - 245) 

183 (2346 - 245) → 138 (234 - 245) 

183 (2346 - 245) → 154 (245 - 246) 

183 (2346 - 245) → 139 (2346 - 24) 

182 (2345 - 246) → 154 (245 - 246) 

180 (2345 - 245) → 153 (245 - 245) 

155 (246 - 246) → 100 (246 - 24) 

154 (245 - 246) → 103 (246 - 25) 

154 (245 - 246) → 102 (245 - 26) 

154 (245 - 246) → 99 (245 - 24) 

154 (245 - 246) → 100 (246 - 24) 

153 (245 - 245) → 101 (245 - 25) 

153 (245 - 245) → 99 (245 - 24) 

140 (234 - 246) → 100 (246 - 24) 

139 (2346 - 24) → 99 (245 - 24) 

139 (2346 - 24) → 100 (246 - 24) 

138 (234 - 245) → 99 (245 - 24) 

137 (2345 - 24) → 99 (245 - 24) 

100 (246 - 24) → 51 (24 - 26) 

100 (246 - 24) → 50 (246 - 2) 

100 (246 - 24) → 75 (246 - 4) 

100 (246 - 24) → 47 (24 - 24) 

99 (245 - 24) → 49 (24 - 25) 

99 (245 - 24) → 48 (245 - 2) 

99 (245 - 24) → 74 (245 - 4) 

99 (245 - 24) → 47 (24 - 24) 

85 (234 - 24) → 47 (24 - 24) 

75 (246 - 4) → 28 (24 - 4) 

74 (245 - 4) → 28 (24 - 4) 

66 (24 - 34) → 28 (24 - 4) 

60 (234 - 4) → 28 (24 - 4) 

47 (24 - 24) → 17 (24 - 2) 

47 (24 - 24) → 28 (24 - 4) 

28 (24 - 4) → 8 (2 - 4) 

28 (24 - 4) → 7 (24 - 0) 

28 (24 - 4) → 15 (4 - 4) 
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APPENDIX B 

 

 

NORMALIZED PROFILE DATA SETS 

 

 

The following tables present the microcosm datasets (mole‰). 

 

 

Table B.1. Natural attenuation normalized to mole‰ profile. 

 

t (day) BDE    209 208 207 206 205 204 203 202 

0 988.73508 0.00000 4.02937 7.23554 0.00000 0.00000 0.00000 0.00000 

20 980.37192 2.48886 4.68076 12.45846 0.00000 0.00000 0.00000 0.00000 

40 959.56353 4.25390 9.14166 22.42453 0.00000 0.23723 0.18594 0.29494 

60 947.45812 9.29089 11.06385 28.54612 0.00000 0.08758 0.11261 0.80077 

90 949.25143 5.47000 10.25892 24.13613 0.00000 0.48441 0.34878 1.78263 

120 897.24725 19.56003 41.03355 33.41828 0.00000 1.26690 0.17156 0.07038 

152 912.80233 13.41390 32.77396 32.89408 0.00000 0.52856 0.22327 0.49211 

180 891.26512 16.48875 27.60688 54.45998 0.00000 0.61759 0.35597 0.89208 

t BDE    201 200 199 198 197 196 195 194 

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

40 0.32058 0.18594 0.18594 0.18594 0.23723 0.71810 0.80787 1.25668 

60 0.41290 0.11261 0.11261 0.11261 0.08758 0.93841 0.52551 0.33783 

90 0.85256 0.34878 0.34878 0.34878 0.48441 1.27885 0.89132 2.59644 

120 0.36951 0.17156 0.17156 0.17156 1.26690 3.85348 0.00000 0.00000 

152 0.61970 0.22327 0.22327 0.22327 0.52856 2.78863 0.63792 1.27584 

180 0.96070 0.35597 0.35597 0.35597 0.61759 1.26949 0.00000 0.00000 

t BDE    183 154 153 100 99 47 28   

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

40 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

60 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

90 0.00000 0.24898 0.40459 0.27307 0.19115 0.00000 0.00000   

120 0.00000 0.00000 0.00000 0.59514 0.63234 0.00000 0.00000   

152 0.00000 0.35130 0.00000 0.00000 0.00000 0.00000 0.00000   

180 0.00000 3.11370 0.22044 0.37474 0.68904 0.00000 0.00000   
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Table B.2. Biostimulation normalized to mole‰ profile. 

t (day) BDE    209 208 207 206 205 204 203 202 

0 985.12712 0.00000 3.83126 11.04162 0.00000 0.00000 0.00000 0.00000 

20 929.04731 15.24519 27.98795 23.29988 0.00000 0.06671 0.08139 0.00000 

40 961.36093 4.00923 8.11391 22.85352 0.00000 0.11587 0.12539 0.37702 

60 958.29929 4.18782 9.01676 26.26985 0.00000 0.22259 0.07291 0.00000 

90 961.66094 4.62665 8.12297 22.76467 0.00000 0.00000 0.11914 0.00000 

120 880.15208 25.75103 47.27514 39.35639 0.00000 0.11268 0.13748 0.00000 

152 922.23218 9.18250 20.74372 24.33864 0.00000 0.13157 0.14716 0.00000 

180 891.17559 15.18742 27.87357 61.62517 0.00000 0.18344 0.32940 0.00000 

t BDE    201 200 199 198 197 196 195 194 

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

20 0.05803 0.08139 0.08139 0.08139 0.06671 3.14315 0.00000 0.00000 

40 0.23248 0.12539 0.12539 0.12539 0.11587 0.50592 0.00000 0.91485 

60 0.68405 0.07291 0.07291 0.07291 0.22259 0.22924 0.18013 0.25081 

90 0.46261 0.11914 0.11914 0.11914 0.00000 0.37193 0.00000 0.50756 

120 0.09802 0.13748 0.13748 0.13748 0.11268 5.30918 0.00000 0.00000 

152 0.00000 0.14716 0.14716 0.14716 0.13157 0.85987 0.00000 0.00000 

180 0.12427 0.32940 0.32940 0.32940 0.18344 1.01143 0.00000 0.19041 

t BDE    183 154 153 100 99 47 28   

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

20 0.00000 0.00000 0.00000 0.33548 0.42401 0.00000 0.00000   

40 0.29627 0.23530 0.08135 0.12345 0.00000 0.16246 0.00000   

60 0.00000 0.00000 0.00000 0.14524 0.00000 0.00000 0.00000   

90 0.18173 0.12695 0.11474 0.30539 0.14720 0.13009 0.00000   

120 0.00000 0.00000 0.00000 0.56666 0.71621 0.00000 0.00000   

152 0.00000 0.38095 0.94307 11.76834 0.58517 8.11379 0.00000   

180 0.00000 0.04150 0.17301 0.42873 0.48444 0.00000 0.00000   
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Table B.3. Bioaugmentation normalized to mole‰ profile. 

 

 

 

  

t (day) BDE    209 208 207 206 205 204 203 202 

0 981.18942 0.00000 7.02577 11.78481 0.00000 0.00000 0.00000 0.00000 

20 982.43512 0.00000 4.79134 12.77354 0.00000 0.00000 0.00000 0.00000 

40 954.54108 5.29039 11.15833 27.40608 0.00000 0.03225 0.07884 0.15329 

60 954.34635 4.25521 8.79235 25.60651 0.00000 0.24003 0.20191 0.50770 

90 962.11716 4.14419 7.89752 21.20104 0.00000 0.29281 0.20358 0.53530 

120 888.08488 21.37605 40.23220 42.84990 0.00000 0.82180 0.31369 0.74058 

152 944.47300 6.53720 14.40506 16.02969 0.00000 0.28906 0.14977 0.08107 

180 903.20903 12.76809 24.41136 52.38089 0.00000 0.84025 0.38074 0.15245 

t BDE    201 200 199 198 197 196 195 194 

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

40 0.16281 0.07884 0.07884 0.07884 0.03225 0.24772 0.00000 0.20278 

60 1.57077 0.20191 0.20191 0.20191 0.24003 1.28520 0.00000 1.88671 

90 0.45567 0.20358 0.20358 0.20358 0.29281 0.62625 0.00000 1.26284 

120 0.56815 0.31369 0.31369 0.31369 0.82180 2.17501 0.00000 0.00000 

152 0.18993 0.14977 0.14977 0.14977 0.28906 0.97231 2.21443 0.80050 

180 0.85942 0.38074 0.38074 0.38074 0.84025 1.38969 0.00000 1.24735 

t BDE    183 154 153 100 99 47 28   

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

40 0.00000 0.00000 0.12552 0.19975 0.00000 0.13238 0.00000   

60 0.00000 0.00000 0.00000 0.23403 0.00000 0.08458 0.14290   

90 0.00000 0.00000 0.00000 0.20445 0.15566 0.00000 0.00000   

120 0.00000 0.00000 0.00000 0.44075 0.63413 0.00000 0.00000   

152 0.00000 1.93110 1.05872 5.44967 2.61266 2.06742 0.00000   

180 0.00000 0.06127 0.00000 0.17346 0.00000 0.00000 0.14349   
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Table B.4. Negative control normalized to mole‰ profile. 

 

t (days) BDE   209 208 207 206 205 204 203 202 

0 988.42190 0.00000 1.77406 9.80404 0.00000 0.00000 0.00000 0.00000 

20 977.20928 1.80648 7.25819 13.72605 0.00000 0.00000 0.00000 0.00000 

40 960.84866 4.27544 9.23687 25.01452 0.00000 0.15249 0.00000 0.00000 

60 968.90845 3.64530 6.95037 18.85834 0.00000 0.00000 0.11799 0.00000 

90 970.31664 3.45546 6.82745 17.21053 0.00000 0.19756 0.09878 0.00000 

120 880.11420 25.15827 46.37979 40.22863 0.00000 1.25297 0.37099 0.00000 

152 948.57080 8.27823 19.20348 16.43845 0.00000 0.34535 0.18419 0.00000 

180 
 

924.87522  10.91108 20.19093 39.47563 0.00000 0.61051 0.27638 0.00000 

t BDE    201 200 199 198 197 196 195 194 

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

40 0.00000 0.00000 0.00000 0.00000 0.15249 0.31951 0.00000 0.00000 

60 0.42773 0.11799 0.11799 0.11799 0.00000 0.45723 0.00000 0.00000 

90 0.37992 0.09878 0.09878 0.09878 0.19756 0.33433 0.00000 0.00000 

120 0.85398 0.37099 0.37099 0.37099 1.25297 1.97395 0.00000 0.00000 

152 0.00000 0.18419 0.18419 0.18419 0.34535 0.62930 0.00000 0.00000 

180 0.82501 0.27638 0.27638 0.27638 0.61051 0.59401 0.00000 0.00000 

t BDE    183 154 153 100 99 47 28   

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

40 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

60 0.00000 0.00000 0.00000 0.28061 0.00000 0.00000 0.00000   

90 0.15071 0.00000 0.25630 0.16063 0.11779 0.00000 0.00000   

120 0.00000 0.31481 0.00000 0.45378 0.53270 0.00000 0.00000   

152 0.00000 0.40678 0.00000 3.15814 0.38936 1.49801 0.00000   

180 0.26776 0.37104 0.00000 0.00000 0.16278 0.00000 0.00000   
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Table B.5. Sterile control normalized to mole‰ profile. 

 

t (day) BDE  209 208 207 206 205 204 203 202 

0 989.4071 0.0000 0.0000 10.5929 0.0000 0.0000 0.0000 0.0000 

20 988.9207 0.0000 0.0000 11.0793 0.0000 0.0000 0.0000 0.0000 

40 985.2366 0.0000 0.0000 14.7634 0.0000 0.0000 0.0000 0.0000 

60 985.4456 0.0000 0.0000 14.5544 0.0000 0.0000 0.0000 0.0000 

90 984.9959 0.0000 0.0000 15.0041 0.0000 0.0000 0.0000 0.0000 

120 998.6952 0.0000 0.0000 1.3048 0.0000 0.0000 0.0000 0.0000 

152 986.1121 0.0000 0.0000 13.8879 0.0000 0.0000 0.0000 0.0000 

180 989.6332 0.0000 0.0000 10.3668 0.0000 0.0000 0.0000 0.0000 

t BDE   201 200 199 198 197 196 195 194 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 

40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 

60 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 

90 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 

120 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 

152 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 

180 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 

t BDE  183 154 153 100 99 47 28   

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

20 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

40 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

60 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

90 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

120 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

152 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

180 0.00 0.00 0.00 0.00 0.00 0.00 0.00   
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APPENDIX C 

 

 

ANALYSIS OF ML PERFORMANCE 

 

 

The coefficient of regression values obtained from machine learning results have 

been evaluated, and it has been decided to proceed with the FNN model. The coefficient 

of regression values obtained are listed in the table. 

 

 

Table C.1. Coefficient of regression test microcosms. 

 

Microcosm Day 0-180 Coefficient of Regression R² 

Natural attenuation 
 FNN: 0.571 
SVM: 0.096 
LR: 0.062 

Biostimulation 
 FNN:  0.966 
SVM: 0.060 
LR: 0.032 

Bioaugmentation 
FNN: 0.906 
SVM: 0.105 
LR: 0.045 

LR: linear regression 
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APPENDIX D 

 

 

MODEL MANUAL 

 

 

 
 

Figure D.1. Model manual. 

 

 

A user manual was created to assist users in properly configuring the ADM-IE 

model before execution. This manual provides a structured checklist, with key sections 

numbered from modelmanual1 to modelmanual10. Users are advised to review each 

section thoroughly to ensure that all necessary parameters are set correctly. The Ctrl+F 

command can be used to quickly locate these sections within the code, facilitating an 

efficient setup process. Following this manual is essential to achieve accurate and reliable 

results from the model. 

 


