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Abstract. Pure cyclotron spectra of polars produced during their low accretion states are deduced. We used the working
hypothesis that the cyclotron emission is produced by electrons spiraling down the dipole magnetic field lines and forming an
accretion plasma column on top of the magnetic pole of a white dwarf. The velocity distribution function of electrons emitting
cyclotron radiation is assumed to be a bi-Maxwellian. Since the radiating electrons in a million–Gauss magnetic field seek their
respective magnetic mirrors, the perpendicular components of their velocity vectors are assumed to be greater than the parallel
ones in the radiation region. This assumption implies that the cyclotron radiation is emitted more or less in the perpendicular
direction (to the local magnetic field). Then we investigated the contribution of the ordinary and the extraordinary wave modes
to the luminosity. The model predictions seem to be consistent with observations. We present the model cyclotron spectra of a
randomly chosen polar, UZ For, as a case study.
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1. Introduction

“Polars” (AM Her systems) as magnetic Cataclysmic Variables (mCVs) form a subclass of CVs. They are close binary systems in
which a secondary star, which is usually – but not always – a red dwarf, donates mass to the primary, which is a white dwarf (WD).
The magnetic field intensity of WDs is in the range of 10−230 MG. Accreting matter is captured by the magnetosphere of WD
at a distance of about 10 WD radii and guided by it to the magnetic poles of the primary (Schwope 1995). If the accreting matter
is threaded at about 10 WD radii and the field is dipolar, the accretion spots at the footpoints of the field lines have offsets from
the poles on the order of 10◦–15◦. An accretion column forms close to the magnetic poles of WDs.

A number of polars exhibit cyclotron line emission in their spectra (e.g. Reimers et al. 1999). During their low states, accretion
streams do not form shocks above the magnetic pole regions. However, it is claimed “that the optical/IR observations alone cannot
verify whether or not the shock is present, in spite of the claims of many papers. The strongest evidence for the absence of a hot
unobscurred post-shock region in mCVs comes from thermal soft X-ray observations. A “Bi-Maxwellian” electron distribution
can be produced in a shock heated plasma, provided the rate of cyclotron cooling is faster than the rate of collisional energy-
exchange”. Nevertheless, we assume that the interactions both between the charged particles (electrons and protons) themselves
and with the magnetic field are not disturbed by shocks. In this case, a great deal of cyclotron emission is assumed to originate
near the top of the magnetic poles of a dipole field of WD (see, e.g., Rousseau et al. 1996; Schwope et al. 1990). Although this
is a widely accepted scenario, Wu & Wickramasinghe (1992) consider a multipole field consisting of a dipole and a quadrupole
component. In our study, however, we assume that the magnetic field of the WD in the cyclotron emission region is dipolar.

We do, however, take the magnitude of the dipole magnetic field as constant along the emission region, the linear extent of
which is on the order of 107 cm (Chanmugam & Langer 1991). The magnetic field intensity of polars was inferred from the
cyclotron lines which were identified first in the spectra of VV Pup (Visvanathan & Wickramasinghe 1979; Wickramasinghe &
Meggitt 1982). Broadened humps in the optical and/or infrared part of the spectra of polars are identified as the harmonics of the
cyclotron radiation. While the fundamental frequency or the first harmonic usually falls into the infrared, the higher harmonics
modulate the spectra in the visible region. If more than one harmonic is identified in the spectra, then one can infer the intensity
of the magnetic field in the accretion column near the magnetic pole using Eq. (1) below:

ωce =
eB
mec
= 2 π c

(
1
λn+1

− 1
λn

)
n = 1, 2, 3, ... (1)
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where e is the electronic charge, B the magnetic field intensity, me the mass of an electron, c the speed of light, λ the wavelength
of the harmonic, and n an integer giving the harmonic number (Burwitz et al. 1997). The greater the number of harmonics in
the spectra, the more precisely the magnetic field intensity is measured. After having inferred the magnetic field intensity we can
move on to identify the nth harmonic for a magnetic field B, at low temperature and viewing angle, θ = 90◦, with the help of the
formula (Ferrario et al. 1996),

λn =
10710

n

(
108 G

B

)
· (2)

The cyclotron radiation is emitted by the accreting electrons, whose energies are assumed to be in the 0.5−10 keV range in low
accretion rate polars (Schwope et al. 2002). In this region the electron number density is on the order of 1016 cm−3 (Chanmugam
& Langer 1991).

In Sect. 2 we propose a new model which has the potential of accounting for the observed spectra of some 27 AM Her systems.
We are also well aware of the fact that previous models, i.e., “bombardment solution” (Woelk & Beuermann 1992, 1993), “shock
solution” (Lamb & Masters 1979), and “blobby accretion solution” (Kuijpers & Pringle 1982), all have enjoyed success. Schwope
(1995) goes on to argue that all three may be in operation simultaneously in different parts of accretion region of any individual
system.

The “bombardment solution” relies on the free fall of protons. In this model, material from a red dwarf is deposited in the
magnetic polar region of a WD after having been captured by its magnetosphere. The word “capture” implies that the dynamics of
the accreting plasma is determined by both the Lorentz force and the gravitational force of the WD. Closer to the magnetic polar
region the former strongly opposes the latter. This ratio gets larger in favor of gravitational force only when the perpendicular
velocity of the accreting plasma becomes smaller. Only when the velocity has a purely parallel component does the mirror force
vanish and particles acquire free-fall velocity. At the point of capture in the magnetosphere, about ten white dwarf radii particles
assume a wide range of pitch angles. It is hard to justify an assumption that all particles enter the magnetosphere with a zero
pitch angle, but in such a case no cyclotron radiation could be emitted. However, one can argue that, similar to the “curvature
radiation” received from radio pulsars due to the curved nature of the “open” field lines near the magnetic polar region, particles
radiate cyclotron radiation. The angular distribution of cyclotron radiation emitted by the particles in their low Landau orbitals is
confined mostly in a rather narrow cone along the instantaneous velocity. Even in this situation, the cyclotron radiation emitted
by these “free-falling” particles will point towards the surface of WD and could hardly be detected by an outside observer.

Therefore, the bombardment solution, relying on the free-falling particles in a magnetic field of tens or hundreds of a mil-
lion Gauss without feeling the magnetic mirror force seems to us a rather strong simplification. Besides, this model assumes
a Maxwellian velocity distribution function that is also questionable in the presence of a million Gauss magnetic field. That is
why, we believe, Schwope et al. (1990) has raised the need for a non-Maxwellian nature to the electron velocity distribution
function.

Recently, Schwope et al. (2002) raise a question as to how the matter “manage to reach the extreme locations – that is, B =
64/80 MG – in particular if accretion is still driven by normal Roche-lobe overflow or e.g. by a stellar wind or by chromospheric
mass ejection”. As this suspicion arisen because the magnetic mirror force is not taken into account in these models where matter
“free-falls”?

Our model can reconcile this “bombardment solution” if we are allowed to refer to solar flares. In a solar flare, the single pop-
ulation of accelerated electrons produce both hard X-ray patches in chromosphere via bremsstrahlung and microwaves through
gyrosynchrotron radiation; the former comes from electrons with smaller pitch angle and the latter from trapped, high pitch angle
electrons within flaring loop(s). Especially decimetric type III radio bursts display so-called J, U, and N morphology in their dy-
namic spectra, which means that a magnetic flux tube can harbour both mirroring and precipitating particles. Cyclotron emission
reduces the component of electron velocity perpendicular to the magnetic field and may cause a very rapid pitch angle diffusion
which enhances particle precipitation. Again, in the solar case, soft X-rays are produced by “chromospheric evaporation” follow-
ing the hard X-ray patches formation. The soft X-ray problem of AM Her systems may be solved by a similar scenario. Kuijper
& Pringle (1982) have proposed that the fluctuating soft X-rays might be produced by instationary accretion of dense blobs or
filaments of matter which penetrate the sub-photospheric layers and then heat the photosphere from below. They also suggest
that soft X-rays might be produced by a stream of free-falling particles, which we read as “particles with smaller pitch angles”.
These particles heat the atmosphere and cause the formation of a hot corona which is cooled by cyclotron radiation.

2. Cyclotron emission model

The method used in calculating the absorption or emission of radiation from a source is outlined in Barrett & Chanmugam (1985).
In the case of mCVs where the large Faraday rotation applies (Meggitt & Wickramasinghe 1982), a system of four coupled
equations in Stokes parameters I, Q, U, and V is formed (Pacholczyk 1970). If one reasons a priori that the large Faraday rotation
is present, then the four coupled equations are reduced to two uncoupled equations in the intensity of the ordinary (O) and
the extraordinary (X) wave modes (Ramaty 1969). Using this method, Barrett & Chanmugam (1985) derived the equation of
radiative transfer (see also, Chanmugam & Dulk 1981; Barrett & Chanmugam 1984). These authors assumed that the velocity
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distribution function of radiating particles is Maxwellian. Then using the Kirchhoff’s law they obtained the absorption coefficients
for both the wave modes in terms of the blackbody intensity and the emissivity (Barrett & Chanmugam 1985). The absorption
coefficient for cyclotron radiation obtained with these methods depends on four independent variables:ω, the radiation frequency;
kT the plasma temperature; θ the angle between the magnetic field and the wave vector; and Λ = ω2

p L/Ωcec the dimensionless
constant, where, ωp is the plasma frequency, L the thickness of the source, and Ωce the cyclotron frequency of the radiating
particles (Rousseau et al. 1996). Λ is the measure of self-absorption in optically thick plasmas. Self-absorption in the optically
thin plasmas, as we assume in the present investigation, may be neglected (Bekefi 1966). Following the method outlined in the
work of Chanmugam & Dulk (1981), Schwope et al. (1990) calculated the absorption coefficients of ordinary and extraordinary
modes and the intensity escaping to infinity. Then they found the total flux emitted to the half sphere by UZ For. Rousseau et al.
(1996) then applied the same method to model the cyclotron spectra of UZ For.

In the present investigation, we follow a different method to model the observed pure cyclotron spectra of polars. We extended
the Green function construction (Jackson 1975) to a dispersive medium. The appropriate dispersion relation of the ordinary and
extraordinary modes contains all the information about the propagation characteristics. Once the Green function is known one
can find the radiation field and the Poynting vector, and then determine the instantaneous flux of energy. The main objective
of this paper is to derive the Green function in a dispersive medium for ordinary and extraordinary wave modes, which would
produce the pure cyclotron spectra of polars. We deduced our formulae in low mass accretion state, when cyclotron cooling
becomes dominant and no shock can form (Woelk & Beuermann 1996).

2.1. The green function for a dispersive medium

In a single particle approximation, G represents a wave created by a point source at r′ which is pulsed at time t′, and this wave
propagates onwards from the source with a velocity c. The signal then is observed at some field point r at time t. For a single
particle case, the Fourier transform of the Green function reads (Boyd & Sanderson 1969):

G (k, ω) =
1
π

1
k2 − (

ω2/c2
) · (3)

The Green function satisfies the wave equation for each value of ω. In Eq. (3) k = ω/c is the wave number associated with
the wave frequency ω. We are motivated by the comment that “In this form, the restriction of no dispersion is unnecessary” by
Jackson (1975). If we transfer the single particle approximation to the one for a dispersive medium with ne radiating particles,
the retarded Green function becomes,

G
(
r, t; r′, t′

)
=

ne

4 π

∫
d3 k

∫
dω

exp [i k · (r − r′) − iω (t − t′)]
k2 − (

ω2/c2
) · (4)

Electron cyclotron emission implies a strong wave – particle interaction. Therefore, the “k2− (ω2/c2)” term should be determined
by the dispersion relation for a specific wave mode. For this purpose, we adopt the assumption, i.e., |ω |2 ≈ Ω2

ce ≈ c2k2 � ω2
pe,

which is readily shown to be justifiable (see also, Rousseau 1996), while the wave vector is nearly perpendicular to the local
magnetic field and uses the dispersion relations for the extraordinary mode (Wu 1985),

1 − c2k2⊥
ω2
+
ω2

pe

ω2

∫
d3v

(
Ωce
∂ Fe

∂ v⊥
+ k‖v⊥

∂ Fe

∂ v‖

) v⊥
(
J
′
1

)2
(b)(

ω −Ωce/γ − k‖v‖
) = 0 (5)

and for the ordinary mode (ibid),

1 − c2k2

ω2
+
ω2

pe

ω2

∫
d3v

(
Ωce
∂ Fe

∂ v⊥
+ k‖v⊥

∂ Fe

∂ v‖

)
v2‖ J

2
1 (b)

v⊥
(
ω − Ωce/γ − k‖v‖

) = 0, (6)

where J′1 (b) = dJ1 (b) /db is the derivative of Bessel function; b = k⊥v⊥/Ωce; γ =
(
1 − v2/c2

)−1/2
; v‖ and v⊥ are parallel

and perpendicular (to the local magnetic field) velocity components, respectively; Ωce = | e | B0/mec is the electron cyclotron
frequency; B0 is the magnetic field intensity; and Fe is the unperturbed electron velocity distribution function. In Eq. (4) we
replace the “k2 −

(
ω2/c2

)
” term with its equivalent which will be derived from Eqs. (5) and (6).

Another motivation for our present investigation comes from the Schwope et al. (1990) paper wherein they pointed out the
possible non-Maxwellian nature of the electron velocity distribution function. We follow this suggestion and assume that the
unperturbed electron distribution function Fe is a bi-Maxwellian (Schmidt 1979):

Fe = neα
2
⊥α‖π

−3/2 exp
[
−

(
α2
⊥v

2
⊥ + α

2
‖v

2
‖
)]

(7)

where, α‖ =
(
2kBTe‖/me

)−1/2 and α⊥ = (2kBTe⊥/me)−1/2 are the inverse of most probable speeds in parallel and perpendicular
directions, respectively; kB is the Boltzmann constant; Te‖ and Te⊥ are the parallel and perpendicular temperatures of electrons,
respectively.
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The derivatives of Fe with respect to the parallel and perpendicular velocity components that appear in Eqs. (5) and (6) will
be obtained from Eq. (7). In what follows, we drop the arguments of the Green function for the sake of brevity, but wherever it
appears the arguments are implied. Now, let us write the Green function for the extraordinary mode:

G =
ne

4 π3

∫
d3k

∫
dω

c2

ω2
pe

exp [i k · (r − r′) − iω (t − t′)]∫
d3v

[
−2α2⊥Ωceneα‖π−3/2v⊥ exp

(
−α2⊥v2⊥ − α‖2v2‖

)] (
v⊥J

′ 2
1 (b)/

(
ω − Ωce/γ − k‖v‖

)) · (8)

From the recurrence formulae of Bessel functions, we write

J
′ 2
1

(
k⊥v⊥
Ωce

)
=

1
4

(
1 − 3

4
k2⊥v2⊥
Ω2

ce

)
· (9)

Since we consider a reduced velocity function (Vocks & Marsch 2002), we can make the relevant replacement, i.e.,
∫

d3v =∫
dv‖

∫
v⊥dv⊥. Then, using the recurrence formulae of commonly occurring integral, h (n) =

∞∫
0

xn exp (−axn) dx, the first term of

the v⊥ integral,

∞∫
0

v3⊥ exp
(
−α2
⊥v

2
⊥
)

dv⊥ =
(
2α4
⊥
)−1

(10)

and similarly, the second one,

−
∞∫

0

3
4

k2⊥
Ω2

ce
v5⊥ exp

(
−α2
⊥v

2
⊥
)

dv⊥ = −3
4

k2⊥
Ω2

ceα
6⊥

(11)

are obtained. The v‖ integral is calculated as,

+∞∫
−∞

exp
(
−α2
‖v

2
‖
)

ω −Ωce/γ − k‖v‖
dv‖ = −

√
π

k‖

( −k‖γ
γ α‖ω −Ωceα‖

)
· (12)

If we make these substitutions in Eq. (8), we get the Green function for extraordinary mode as:

G =
c2

π2ω2
peΩce

∫
d3k

∫
dωexp

[
i k · (r − r′

) − iω
(
t − t′

)] (γω −Ωce)

−1 + (3/2) (k⊥/Ωceα⊥)2
· (13)

Let us put δt = t − t′ and evaluate the ω integral as:
∫

exp (−iωδt) (ωδt −Ωce) dω = γ
exp (−iωδt)

i δt

(
−ω − 1

i δt
+
Ω

γ

)
· (14)

Now, let us evaluate the k integral,

∫
d3k

−1 + (3/2) (k⊥/Ωceα⊥)2
· (15)

Since the orientation of transform space with respect to the coordinate space is arbitrary, we are allowed to let R = r− r′ be coin-
cident with k‖. In this case in (k, θ, φ ) coordinates, k⊥x = k sin θ cosφ; k⊥y = k sin θ sin φ; k‖ = k cos θ and dk = k2 sin θ dk dθ dφ.
These relations allow us to write the k integral as:

∫
d3k

−1 + 3
2 (k⊥/Ωceα⊥)2

=

∞∫
0

dk

80◦∫

60◦
dθ

2π∫
0

k2 sin θ exp (i k · R)
1

−1 + 3
2 (k⊥/Ωceα⊥)2

dφ. (16)

As it is stated above that cyclotron radiation is emitted more or less perpendicularly to the local magnetic field lines, θ is the
angle between k and B. If we perform the θ and φ integrals, Eq. (16) becomes,

∫
d3k

−1 + 3
2 (k⊥/Ωceα⊥)2

=

(
2π
iR

) ∞∫
0

(
e− 0.5i kR − e0.175i kR

)
k[

3/
(
2Ω2

ceα
2⊥
)] (

k2⊥ − 2Ω2
ceα

2⊥/3
) dk. (17)
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For ∓√2/3Ωceα⊥ values of k⊥, the denominator on the right hand side of Eq. (17) becomes zero. Therefore we should evaluate
the residual contributions to the integral. With these contributions, the value of the k integral becomes
∫

d3k

−1 + 3
2 (k⊥/Ωceα⊥)2

=
8π2Ω2

ceα
2⊥

3R
[cos (0.5R x) − cos (0.175R x)], (18)

where x = ∓√2/3Ωceα⊥ is substituted for brevity. Here, we assume that the observer only receives the emission coming in a
narrow angle range, i.e. 60◦−80◦. For instance, in UZ For’s spectrum the luminosity for θ = 20◦ and for θ = 90◦ differs by a
factor of 7–8 for the 5th harmonic. We discuss the angular dependence of the cyclotron radiation luminosity in Sect. 2.3 in detail.
If we now substitute the values of Eqs. (14) and (18) into Eq. (13) we finally get the Green function for the extraordinary mode:

G = −8Ωceα
2⊥ c2

3Rω2
peδt

[(
−ω + Ωce

γ

)
i cos (ωδt) − sin (ωδt)

i δt

]
[cos (0.5R x) − cos (0.175R x)] . (19)

Equation (19) is the general solution for the Green function. Once it is known, the electric component of the radiation field can
be evaluated from the formula (Boyd & Sanderson 1969):

E (r, t) = −e n
∂

∂R

∫
G dt′ − e

c2

∂

∂ t

∫
u
(

t′
)

G dt′ (20)

where n = R/R is the unit vector directed from the position of the particle to the observer. Since the observation point is far away
from the radiating electrons so that during a small acceleration interval, the changes in n and R may be assumed to be negligible.
After some rather tedious but straightforward calculations we find the electric component of the radiation field as:

E =
8Ωce α

2⊥ e c

3Rω2
pe δt

[(
−ω + Ωce

γ

)
i cos (ωδt) − sin (ωδt)

i δt

]
[cos (0.5R x) − cos (0.175R x)] β̇ (21)

where β̇ is found from the Lorentz force as β̇ = qvB/mc. Since we assume a constant magnetic field and mono-energetic particles,
it is explicit that β̇ is constant. The right hand side of Eq. (21) has the dimension of M1/2/L1/2T in Gaussian units, which is the
dimension of electric field. As is well known, the electric field of a radiating particle is directly proportional to β̇ and inversely
proportional to R. The energy flux is given by the Poynting vector, S = (c/4π) |E|2 n. The energy emitted to the unit solid angle
is dP(t)/dΩ = (c/4π) |R E(t)|2 = |A(t)|2 where Ω is the solid angle, which should not be confused with the electron cyclotron
frequency,Ωce.

It is also our concern to determine how the radiated energy is distributed in frequency. For this, one introduces the Fourier
transform of |A (t)|2 and then using Parseval’s theorem, the energy radiated per unit solid angle per unit frequency interval is
obtained:

d2W (ω)
dω dΩ

=
c

4π2

∣∣∣∣∣∣∣∣∣∣

+∞∫
−∞

exp [iω (t′ − n̂ · r0/c)] 8Ωceα
2⊥ e c

3ω2
pe δt

×
[(
−ω + Ωce

γ

)
cos (ωδt) − sin (ωδt)

δt

]
[cos (0.5R x) − cos (0.175R x)] β̇ dt′

∣∣∣∣∣∣∣∣∣∣

2

. (22)

Now we suppose that the axes are so oriented that the observer is in the Oxz plane. Then the unit vector of the direction from
the source to the observer is n = sin θ i + cos θ k where θ is the angle between the line of sight (los) and the magnetic field. The
exponential term under the integral sign in Eq. (22) is given by Bekefi (1966) as

exp (i x sin y) =
∞∑

l=−∞
Jl (x) exp (i l y) (23)

where J is the Bessel function. If we rearrange the exponential function under the integral sign in accordance with the Eq. (23),
we get (Boyd & Sanderson 1969),

exp

{
iω

[
t − n̂ · r0 (t′)

c

]}
=

∞∑
l=−∞

Jl

(
ω

Ωce
β⊥ sin θ

)
exp

[
i
(
ω − lΩce − ωβ‖ cos θ

)
t
]
. (24)

Substitution of Eqs. (24) into (22) gives the energy radiated per unit solid angle per unit frequency interval in its final form:

d2W (ω)
dω dΩ

=
4B0em2c3Tr

9πk2
BneΛT 2⊥L

∣∣∣∣∣∣∣∣∣∣∣∣

10∑
l=1

Jl

(
ω
Ωce
β⊥ sin θ

)

×
[(
−ω + Ωce

γ

)
cos (ωδt) − sin (ωδt)

δt

]
[cos (0.5R x) − cos (0.175R x)] β̇

∣∣∣∣∣∣∣∣∣∣∣∣

2

δ
(
lΩce − ω [

1 − β// cos θ
])
, (25)
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where Tr is the radiation time in the observer’s device (see, e.g. Boyd & Sanderson 1969); and for ordinary mode we find;

d2W (ω)
dω dΩ

=
16B0em2c3Tr

πk2
BneΛT 2

‖ L

∣∣∣∣∣∣∣∣∣∣∣∣

10∑
l=1

Jl

(
ω
Ωce
β⊥ sin θ

)

×
[(
−ω + Ωce

γ

)
cos (ωδt) − sin (ωδt)

δt

]
[cos (0.5R x) − cos (0.175R x)] β̇

∣∣∣∣∣∣∣∣∣∣∣∣

2

δ
(
lΩce − ω [

1 − β// cos θ
])
. (26)

The first striking result of our analysis is that, while the luminosity of the extraordinary mode is inversely proportional to T 2⊥,
luminosity of the ordinary mode is inversely proportional to T 2

‖ . Anisotropy manifests itself in the relevant mode’s exclusive
dependence on the perpendicular or parallel temperature. We further discuss this point in Sect. 2.3. Finally, by a suitable change
of free parameters Ne, Λ, T‖, T⊥, L, one can fit the model spectra to the observed one. We consider the summation of the first
10 terms in Eqs. (25) and (26), because inclusion of extra terms does not change the result too much. Equations (25) and (26)
give the frequency spectrum of cyclotron emission in O and X modes. The spectrum consists of emission lines at frequencies,
Ωce, 2Ωce, 3Ωce, and so on. Observations of the composite spectra of various polars show broad humps, which are identified as
cyclotron emission lines. These lines are not discrete but instead broadened. Line widths sometimes are as broad as 1000 Å (see
e.g., Schwope et al. 1990).

When plotted in the frequency domain, the energy distribution shows broadened lines, the central frequencies of which are,
as expected, equidistant. In the case study to be given in Sect. 2.3, however, we shall give the energy distribution in wavelength
domain to make it easier to compare the results with observations.

We should say a few words about the time difference, δt = t−t′. We interpret it as the ratio, L/c, where L is the thickness of the
slab containing the radiating electrons. Since after having been generated in the slab by electrons, energy is neither regenerated
nor destroyed on its way to the observer then it is justifiable to place the observer just outside the slab.

If we first measure, by Zeeman effect, say, the magnetic field intensity of the WD companion of a polar (e.g., Bailey et al.
1985; Schmidt et al. 1983), then use the parameter ranges in AM Her binaries (i.e., 1014 ≤ ne ≤ 1016 cm−3, 5 keV ≤ kT ≤ 10 keV,
and 60◦ ≤ θ ≤ 80◦ and α‖/α⊥ = 2.236), and finally substitute these values into Eqs. (25) and (26), we get a spectrum consisting
of broadened cyclotron lines. Then using Eqs. (1) and (2), we find the magnetic field intensity in the accretion column close to
the surface of the WD. The inferred value of the field intensity can be compared with the value measured during a low state of
accretion by Zeeman features (Wickramasinghe & Ferrario 1995). In this study, we consider neither the variation of cyclotron
spectra with respect to orbital phases nor the mass accretion rate yet, but will do so in a future study. As already been pointed out
by Schwope et al. (1990), none of these parameters can be determined independently from the others: “a change in the spectra
by variation of one parameter can, to some extent, be compensated by a suitable variation of the remaining ones”.

2.2. Case study – UZ For

UZ For (EXO 033319-2554.2) is an eclipsing AM Herculis binary. It was discovered as an X-ray source during systematic analy-
sis of EXOSAT soft X-ray data and subsequently identified as an AM Her binary by its X-ray and optical properties (Giommi et al.
1987; Beuermann et al. 1987; Bailey et al. 1987; Osborne et al. 1988). In low accretion state during the bright phase (0.70–0.11)
when the main accretion region is in view, the optical continuum is modulated by intense cyclotron line emission (Schwope et al.
1990). A set of low-dispersion spectrophotometric observations covering a wavelength range of 3800–10 000 Å was obtained on
October 21, 1987 with the ESO/MPI 2.2 m telescope at La Silla. Clearly resolvable cyclotron harmonics were detected at phase
interval 0.70–0.11. In Fig. 2 of Schwope et al. (1990) 3rd, 4th, and 5th harmonics are clearly seen.

Earlier, Wickramasinghe & Megitt (1982) pointed out that in general the lower harmonics have higher opacity and become
optically thick first. Later, Schwope et al. (1990) observed in UZ For spectra that the flux emitted in the 5th harmonic is greater
than that of the 4th. They interpreted this feature as suggesting that harmonics with harmonic number m ≤ 4 become optically
thick, while those with m ≥ 5 are optically thin. Our model spectra (see Fig. 1) confirm the existence of this general tendency
quite clearly.

The authors describe the flux distribution by assuming a homogeneous plasma with kTcyc � 5−10 keV in a field of 53 MG.
Location of this region is reported as below the orbital plane at stellar colatitude δ1 � 155◦. The possibility of the second
emission region on the opposite hemisphere is not ruled out by Schwope et al. (1990). A faint phase emission line at ∼4740 Å is
identified as a cyclotron harmonic emitted by a plasma with kTcyc � 1 keV from a field region with the magnetic field intensity
of 75 MG and a stellar colatitude δ2 � 10◦. The offset in longitude between these two emission spots is reported as ∼80◦. This
means that at a certain phase interval both the magnetic poles are in view. In order to produce the observed spectra, we take the
intensity of the pole as 53 MG. In that case, the thicknesses of slabs should be 1.3 × 106 cm. The calculated central wavelengths
of the harmonics are λ3 = 6780 Å, λ4 = 5090 Å, λ5 = 4070 Å, where the subscripts denote harmonic number. The observed
locations of the central wavelengths are given by Schwope et al. (1990) and Rousseau et al. (1996) as λ3 = 6700 Å λ4 = 5085 Å,
λ5 = 4100 Å. Our model successfully predicts the harmonics as observations show. Change of free parameters alter the flux values
of the harmonics but do not change their positions. One common property of the cyclotron spectra of the all the polars is that the
emission source is optically thick in the lower harmonics (e.g., Wickramasinghe & Meggitt 1982; Woelk & Beuermann 1995).
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Fig. 1. The solution of Eq. (25) (dotted line) and the data (circles with dots) acquired by graphical reading from Schwope et al. (1990).

We adopted α‖/α⊥ = 2.236, which implies that in the emission region v⊥/v‖ =
√

5. Physically, this assumption implies that in
the region of capture by magnetic field (i.e., where free fall of streaming particles ends and the guidance of the magnetic field
begins), the majority of particles lie outside the local loss-cone in such a way as to find their respective mirror points within the
radiation slab. As is well-known the closer a charged particle approaches its mirror point, the greater the v⊥ component grows at
the expense of the v‖ one. By changing the value of this ratio to v⊥/v‖ =

√
2 we observe that the luminosity decreases to 5.31th

of the initially adopted value (i.e., v⊥/v‖ =
√

5) for the 5th harmonic of UZ For. It is also implicit in Eqs. (25) and (26) that
the greater the α‖/α⊥ ratio, the more luminous the ordinary mode. If reliable polarization measurements can be made of the
pure emission then a tight constraint may be put on the α‖/α⊥ ratio. Because the ordinary mode is always linearly polarized, the
extraordinary mode is circular polarization.

2.3. Some general properties

In this subsection we intend to show how the cyclotron radiation luminosity depends on the viewing angle (Fig. 2), electron num-
ber density, electron temperature, andα‖/α⊥ ratio, and finally on the polarization properties of the cyclotron radiation (Figs. 3a–c).

Schwope et al. (1993) and Schwope (1995) argue that, due to the advantageous geometry shown by MR Ser, our los forms
a right angle with the cyclotron emission region at one face, and a half period later we seem to look down along the accretion
column. In the latter case, the optical brightness is reported to reach its minimum. This is attributed to the anisotropy of the
cyclotron radiation, which is confined in a narrow solid angle around the instantaneous velocity vector, which itself is more or
less perpendicular to the local magnetic field.

Our Fig. 2 also shows this well-known property of radiation quite clearly; i.e., the larger the angle between the los and the
magnetic field, the more luminous the source. Since the composite spectrum we observe is produced by contribution from WD,
RD, accretion streams, and the accretion column, the lesser luminosity from the cyclotron radiation may make it hard to identify
the harmonics in the spectrum. Indeed Fig. 3 in Schwope’s (1995) study shows this fact clearly. The upper two spectra of MR Ser
shown there were taken 50 min apart; hence, they belong to the same low state of accretion. But the viewing angle to the cyclotron
emission region changed considerably. When we look down along the field lines the optical brightness reaches its minimum, due
to the anisotropy of the cyclotron radiation. It is well-known from polar diagrams of cyclotron radiation (see, e.g., Bekefi 1966)
that the emission is progressively confined to a narrower cone (whose axis is perpendicular to the magnetic field) as one observes
the higher harmonics. For instance, for the 5th harmonic the apex angle of the radiation cone is about 60◦, while the same angle
for the second harmonic is about 120◦. A similar argument comes from Ferrario et al. (2003), who attributed the change in the
flux level of 1730 Å feature to the viewing angle. Again, when outlining the theoretical and empirical framework among many
other properties, Szkody et al. (2003) touch upon the strong dependence of cyclotron opacity on viewing angle. This property is
also successfully demonstrated by our model.
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Fig. 2. Angular dependence of cyclotron radiation flux. Luminosity of the 5th harmonic is more sensitive than those of the 4th and 3rd.

Figures 3a,b show the variation of luminosity with respect to Ne, and Te, respectively. It is apparent from Fig. 3a that the
luminosity decreases with the decrease in number density, while the reverse change occurs in the case of electron temperature;
i.e. we get more luminosity from lower energy particles. As to the effect of v⊥/v‖ ratio Fig. 3c shows an interesting result: the
higher the ratio, the more luminous the source becomes. The bottom spectra, but one, is for a Maxwellian velocity distribution
function. The bottom spectra is for v⊥/v‖ < 1, which shows that the observer whose los is more or less perpendicular to the
accretion column receives more cyclotron luminosity than otherwise. Figure 3c also shows the effect of a smooth passage from a
bi-Maxwellian to a Maxwellian distribution. This passage shows that the spectra is recovered for a Maxwellian only with lower
luminosity.

A distinguishing characteristic of AM Herculis systems is strong circular polarization (∼10%) observed in the optical and
infrared bands. Such polarized radiation is believed to be produced by cyclotron emission arising from the accretion column.

The Stokes parameters I, Q, U, and V are given by following:

I = I+ + I−,

Q = I+

1 − a2
θ+

1 + a2
θ+

 − I−

1 − a2
θ−

1 + a2
θ−

 ,
U = 0,

V = 2

 I+aθ+
1 + a2

θ+

+
I−aθ−

1 + a2
θ−


where aθ− and aθ+ are the polarization coefficients for two modes (ordinary (+) and extraordinary (−)) and θ is the angle between
the direction of propagation of the electromagnetic wave and the magnetic field B. The circular polarization and linear polarization
are given by V/I and Q/I, respectively (see, e.g. Wu & Chanmugam 1989).

To test our model polarization predictions, we used BL Hyi data. Figure 4 shows the result. The polarization data was adopted
from Piirola et al. (1987), and circular polarization data from Wu & Chanmugam (1989). Since our model predicts a higher linear
polarization degree than observed we reduced the model values by a factor of 3.4. A similar reduction is pursued by Piirola et al.
(1987) for BL Hyi. Our model circular polarization values are not reduced at all. We believe there is a good fit between our
model results and observed values. We, unfortunately, cannot test our prediction with observational data for UZ For, since the
recent polarization measurements on AM Her systems tend to be done with respect to the orbital phases. As we already pointed
out above, we are not looking into the temporal evolution of the radiation, since we are not in a position to use those data. Last
but not least, our model does not take the mode coupling and possible boundary effects at the edge of the accretion column into
consideration; under some certain conditions these might affect the emergent polarization (Melrose 1978).
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Fig. 3. a) The variation of luminosity with respect to particle number density; b) the variation of luminosity with respect to electron temperature;
c) the variation of the flux level with respect to the α‖/α⊥ ratio. If the perpendicular (per) component of the velocity vector is higher than the
parallel (par) one, the observer whose los is perpendicular to the magnetic field in the accretion column receives more luminosity; similar
conditions, with a Maxwellian distribution give out less luminosity; but even lesser luminosity is received when the parallel component of the
velocity vector is greater than the perpendicular one.

3. Summary and conclusions

We were motivated in the present study by the Schwope et al. (1990) proposal that in the UZ For case the electron velocity
distribution non-Maxwellian. This is physically quite a sound suggestion when one considers this highly magnetized medium as
the magnetic polar region of a magnetic CV. If accretion is controlled by the magnetic field, then the dynamical properties of
accreting material are determined predominantly by the Lorentz forces. During low mass accretion times shocks cannot form and
particles spiral down and go through Coulomb collisions. Near the magnetic polar regions of WD, particles seek their respective
mirror points. But this is not to say that accretion will not take place. Cyclotron cooling, collisions, and streaming particles
from behind will cause precursors to go through pitch angle diffusion rapidly and precipitate onto WD surface. Observations
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Fig. 4. Polarization comparison of model predictions with observations of BL Hyi. Diamonds are observational data and continuous lines are
model predictions: a) for linear and b) for circular polarizations. We reduced the model values for linear polarization by a factor of 3.4.

indicate that cyclotron radiation is emitted by electrons that are close to their mirror points. Angular distribution of their radiation
field is such that waves propagate nearly perpendicularly to the external magnetic field. Therefore we assumed that the escaping
radiation is in either extraordinary (X) or ordinary (O) (or both) modes. These electrons radiate in X and/or O modes in a
highly dispersive medium. Dispersion relations of these modes contain the velocity distribution function and its derivatives.
We thought, after having been motivated by the Schwope et al. suggestion, that the velocity distribution function of radiating
electrons assume a bi-Maxwellian form with a perpendicular component of velocity much greater than the parallel one. We set
α⊥ and α‖, the inverses of most probable speeds in the perpendicular and parallel directions, respectively, as free parameters.
Dispersion relations then were substituted into the Green function. Once the Green function is known, one can find the radiation
field and the Poynting vector, and then determine the instantaneous energy flux. The results of the solution are given in Fig. 1,
and contains a series of free parameter ranges, 1014 ≤ ne ≤ 1016 cm−3 and 1 keV ≤ kT ≤ 10 keV. The distribution of flux with
respect to wavelength changes with the change of one parameter. But this change can easily be compensated for by the change
of another parameter. Therefore we did not show all these changes in the figures. Instead we aimed at reproducing the observed
spectra by suitable choices of free parameters. We tested our model on UZ For, whose observed spectrum is quite successfully
reproduced.

The strong points of the model are: (i) all the harmonics that are observed are reproduced at their central wavelengths with
high precision; (ii) line widths (∆λ ∼ 1000 Å) are also successfully reproduced; (iii) cyclotron harmonics of UZ For display a
steep rise on the blue wing and a rather mild decrease on the red. This property is successfully reproduced for UZ For case (see
especially for the 4th harmonic); (iv) our result on the dominance of the O-mode for the the cyclotron emission is completely
the same as the one in Chanmugam & Dulk (1981). As for the weak point of the model, the plasma column is assumed to
be isothermal, homogeneous, and permeated by a uniform magnetic field with no spatial variation. These assumptions may be
regarded as physically unrealistic. Nevertheless, as a first approximation, the model seems to be consistent with observations.
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