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ABSTRACT

Simultaneous	 determination	 of	 binary	 mixtures	 of	 benazepril	 and	 hydrochlorothiazide	 in	 pharmaceutical	 tablets	 using	 uV-visible	
spectrophotometry,	classical	 least	squares	(cLS)	and	three	genetic	algorithms	(GA)	based	multivariate	calibration	methods	was	demon-
strated.		The	three	genetic	multivariate	calibration	methods	are	Genetic	classical	Least	Squares	(GcLS),	Genetic	Inverse	Least	Squares	
(GILS)	 and	 Genetic	 Regression	 (GR).	 	 The	 sample	 data	 set	 contains	 the	 uV-	 spectra	 of	 28	 synthetic	 mixtures	 of	 benazepril	 (12~36	
µg/mL)	and	hydrochlorothiazide	 (10~22	µg/mL)	and	16	 tablets	containing	both	compounds.	 	The	spectra	cover	 the	 range	 from	210	 to	
360	nm	 in	0.1	nm	 intervals.	 	Several	 calibration	models	were	built	with	 the	 four	methods.	 	The	 root	mean	 square	 error	of	 calibration	
(RMSEc)	and	validation	(RMSEV)	for	the	synthetic	data	were	in	the	range	of	0.19	and	0.34	µg/mL	for	all	the	genetic	algorithm	based	
methods.		The	root	mean	square	error	of	Prediction	(RMSEP)	values	for	the	tablets	were	in	the	range	of	0.04~0.20	mg/tablets.		A	com-
parison	of	genetic	algorithm	selected	wavelengths	for	each	component	was	also	included.		
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INTRODUCTION

Benazepril	 hydrochloride	 has	 been	 known	 as	 an	
angiotensin	converting	enzyme	inhibitor	that	is	used	in	the	
treatment	of	essential	hypertension.	 	Hydrochlorothiazide	
has	 been	 a	 widely	 used	 thiazide	 diuretic.	 	The	 binary	
mixture	 of	 the	 two	 drugs	 is	 used	 in	 the	 treatment	 of	
hypertension.	 	The	 resolution	 of	 the	 mixture	 systems	
containing	two	or	more	compounds	without	any	separation	
procedure	 in	 the	 presence	 of	 excipients	 in	 samples	 is	
one	of	 the	main	 issues	of	 the	 simultaneous	quantitative	
determination.		The	simultaneous	quantitative	determination	
of	 both	 drugs	 in	 pharmaceutical	 tablets	 using	 various	
methods	 including	 spectrophotometry(1-5),	 HPLc(6,7),	
potentiometric(8),	and	capillary	electrophoresis(9)	have	been	
described	for	several	mixtures.

Modern	 spectroscopic	 instruments	 are	 so	 fast	 that	
they	can	produce	hundreds	of	 spectra	 in	 a	 few	minutes	
for	 a	given	 sample	 that	 contains	multiple	 components.	
unfortunately,	 univariate	 calibration	 methods	 are	 not	
suitable	for	this	type	of	data,	as	they	require	an	interference-
free	 system.	 	 Multivariate	 calibration	 deals	 with	 data	
containing	 instrument	 responses	measured	on	multiple	
wavelengths	for	a	sample	 that	usually	contains	more	 than	
one	component.		In	recent	years,	advances	in	chemometrics	
and	computers	have	 lead	 to	 the	development	of	 several	

multivariate	calibration	methods(10-13)	 for	 the	analysis	of	
complex	chemical	mixtures.

Genetic	regression	(GR)	is	a	calibration	technique	that	
optimizes	linear	regression	models	using	a	genetic	algorithm	
(GA)	and	has	been	applied	to	a	number	of	multi-instrument	
calibration	and	wavelength	selection	problems(14-17).	 	GAs	
are	non-local	 search	and	optimization	methods	 that	 are	
based	upon	 the	principles	of	natural	 selection(18,19).	 	For	
a	given	full	spectrum	data,	GR	selects	an	optimum	linear	
combination	 of	 wavelengths	 and	 simple	 mathematical	
operators	 to	build	a	 linear	calibration	model	using	simple	
least	squares	method.

classical	Least	Squares	 (cLS)	extends	 the	classical	
Beer’s	 Law	 model	 in	 which	 the	 absorbance	 at	 each	
wavelength	 is	 directly	 proportional	 to	 the	 component	
concentrations.	 	 Inverse	Least	Squares	 (ILS)	 is	based	on	
the	inverse	Beer’s	Law	where	concentrations	of	an	analyte	
are	modelled	as	a	 function	of	absorbance	measurements.		
Genetic	 classical	 Least	 Squares	 (GcLS)	 and	 Genetic	
Inverse	Least	Squares	 (GILS)	are	modified	versions	of	
original	cLS	and	 ILS	methods	 in	which	 a	 small	 set	 of	
wavelengths	are	selected	from	a	full	spectral	data	matrix	and	
evolved	to	an	optimum	solution	using	a	genetic	algorithm.

In	 this	 work,	 cLS	 and	 three	 different	 genetic	
algorithms	based	calibration	methods	GcLS,	GILS	and	GR	
were	tested	with	the	aim	of	establishing	calibration	models	
that	have	a	high	predictive	capacity	 for	 the	simultaneous	
determination	of	benazepril	and	hydrochlorothiazide	in	their	
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binary	mixtures	and	 in	pharmaceutical	 tablet	preparations	
using	the	uV-visible	spectrophotometry.	

I.	Genetic Regression

Genetic	Algorithms	 (GA)	 are	 global	 search	 and	
optimization	methods	based	upon	the	principles	of	natural	
evolution	 and	 selection	 as	 developed	 by	 Darwin(20).	
computationally,	 the	 implementation	of	a	 typical	GA	 is	
quite	 simple	 and	 consists	 of	 five	basic	 steps	 including	
initialization	 of	 a	 gene	 population,	 evaluation	 of	 the	
population,	selection	of	 the	parent	genes	for	breeding	and	
mating,	crossover	and	mutation,	and	replacing	parents	with	
their	offspring.	 	These	steps	have	 taken	 their	names	from	
the	biological	foundation	of	the	algorithm.

Genetic	Regression	 (GR)	 is	an	 implementation	of	a	
GA	for	selecting	wavelengths	and	mathematical	operators	
to	 build	 linear	 calibration	 models.	 	 GR	 is	 a	 hybrid	
calibration	between	univariate	and	multivariate	calibration	
techniques	 in	which	 it	optimizes	simple	 linear	 regression	
models	 through	an	evolving	selection	of	wavelengths	and	
simple	mathematical	operators	 (+,	–,	×,	 /).	GR	 follows	
the	same	basic	 initialize/breed/mutate/evaluate	algorithm	
as	other	GAs	but	differs	 in	 the	way	 it	encodes	genes.	 	A	
gene	 is	 a	potential	 solution	 to	 a	given	problem	and	 the	
exact	 form	 may	 vary	 from	 application	 to	 application.	
Here,	 the	 term	 gene	 is	 used	 to	 describe	 the	 collection	
of	 instrument	 response	pairs	 combined	with	 the	 above	
mentioned	operators.	 	These	pairs,	 called	 “base	pairs”,	
are	 then	combined	with	an	addition	operator	 to	produce	a	
score,	which	relates	the	instrument	response	to	component	
concentration.	 	The	 term	“population”	 is	used	 to	describe	
the	collection	of	individual	genes	in	the	current	generation.	

In	 the	 initialization	step,	 first	generation	of	genes	 is	
created	randomly	with	a	 fixed	population	size.	 	Although	
random	initialization	helps	to	minimize	bias	and	maximize	
the	number	of	possible	recombinations,	GR	is	designed	to	
select	 initial	genes	 in	a	somewhat	biased	random	fashion	
in	order	 to	 start	with	genes	better	 suited	 to	 the	problem	
than	 those	 that	would	be	 randomly	selected.	 	Biasing	 is	
done	with	a	correlation	coefficient	by	plotting	 the	scores	
of	initial	genes	against	the	component	concentrations.		The	
size	of	 the	gene	pool	 is	 a	user	defined	even	number	 in	
order	to	allow	breeding	of	each	gene	in	the	population.	 	It	
is	 important	 to	note	that	 the	larger	the	population	size,	 the	
longer	 the	computation	 time.	 	The	number	of	base	pairs	
in	 a	gene	 is	determined	 randomly	between	a	 fixed	 low	
limit	and	high	limit.		The	lower	limit	was	set	to	2	to	allow	
single	point	crossover	whereas	 the	higher	 limit	was	set	 to	
eliminate overfitting problems and reduce the computation 
time.	 	 Once	 the	 initial	 gene	 population	 is	 created,	 the	
next step is to evaluate and rank the genes using a fitness 
function,	which	is	the	inverse	of	the	root	mean	square	error	
of	calibration	(RMSEc).	

The	third	step	 is	where	 the	basic	principle	of	natural	
evolution	 is	put	 to	work	 for	GR.	 	This	 step	 involves	 the	
selection	of	 the	parent	genes	from	the	current	population	

for	 breeding	 using	 a	 roulette	 wheel	 selection	 method	
according	 to	 their	 fitness	values.	 	The	goal	 is	 to	give	a	
higher chance to those genes with high fitness so that only 
the	best	performing	members	of	the	population	will	survive	
in	the	long	run	and	will	be	able	to	pass	their	information	to	
the	next	generations.		Because	of	the	random	nature	of	the	
roulette	wheel	selection	method,	however,	genes	with	 low	
fitness	values	will	also	have	some	chance	 to	be	selected.	
Also,	 there	will	be	genes	 that	are	selected	multiple	 times	
and	 some	genes	will	 not	 be	 selected	 at	 all	 and	will	 be	
thrown	out	of	the	gene	pool.		After	the	selection	procedure	
is	completed,	 the	selected	genes	are	allowed	to	mate	 top-
down without ranking whereby the first gene mates with the 
second	gene	and	the	third	one	with	the	fourth	one	and	so	on	
as	illustrated	in	the	following	example:
parents

S1	=	(A347	×	A251)#+	(A379	+	A218)	 (1)
S2	=		(A225	×	A478)#+	(A343	/	A250)	+		

(A451	–	A358)	+	(A231	–	A458)	 (2)
The	points	where	 the	genes	 are	 cut	 for	mating	are	

indicated	by	#.
offspring

S3	=		(A347	×	A251)	+	(A343	/	A250)	+		
(A451	–	A358)	+	(A231	–	A458)	 (3)

S4	=	(A225	×	A478)	+	(A379	+	A218)	 (4)
Here	A347	 corresponds	 to	 the	 raw	 absorbance	 at	

347	nm	wavelength.	 	The	first	part	of	 the	S1	 is	combined	
with	 the	 second	part	 of	 the	S2	 to	give	 the	S3,	 likewise	
the	second	part	of	 the	S1	combined	with	 the	 first	part	of	
the	S2	 to	give	S4.	 	This	process	 is	called	 the	single	point	
crossover	 and	 is	 the	one	used	 in	GR.	 	The	 single	point	
crossover	will	not	provide	different	offspring	if	both	parent	
genes	 are	 identical,	 which	 may	 happen	 in	 the	 roulette	
wheel	selection,	and	broken	at	 the	same	point.	 	Also	note	
that	mating	can	 increase	or	decrease	 the	number	of	base	
pairs	 in	 the	offspring	genes.	 	After	crossover,	 the	parent	
genes	are	replaced	by	their	offspring	and	the	offspring	are	
evaluated.	 	The	 ranking	process	 is	based	on	 their	 fitness	
values	following	the	evaluation	step.		Then	the	selection	for	
breeding/mating	starts	all	over	again.		This	is	repeated	until	
a predefined number of iterations are reached. 

Mutation	which	 introduces	 random	deviations	 into	
the	population	was	also	introduced	into	the	GR	during	the	
mating	step	at	a	 rate	of	1%	as	 is	 typical	 in	GAs.	 	This	 is	
usually	done	by	replacing	one	of	the	base	pairs	in	an	existing	
gene	with	a	 randomly	generated	new	base	pair.	Mutation	
allows	the	GR	to	explore	the	search	space	and	incorporate	
new	material	 into	the	genetic	population.	 	It	helps	to	keep	
the	search	moving	and	can	eject	GR	from	a	local	minimum	
on	the	response	surface.		However,	it	is	important	not	to	set	
the	mutation	rate	 too	high	since	it	may	keep	the	GA	from	
being	able	to	exploit	the	existing	population.

Because	 the	GR	method	 is	ended	with	a	number	of	
iteration,	 it	 is	 likely	 that	a	highly	over	 fitted	model	may	
result.	To	avoid	 this	problem	cross	validation	approach	 is	
used	during	the	 initial	gene	selection	and	iteration	cycles.	
cross	validation	 is	done	 in	way	 that	each	sample	 in	 the	
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calibration	set	 is	 left	outside	once	and	 the	model	 is	built	
with	m-1	 number	of	 samples	 and	 this	model	 is	used	 to	
predict	the	left	over	sample.		The	predicted	error	of	sum	of	
squares	 (PRESS)	 is	calculated.	 	Then,	 the	RMSEc	value	
is	determined	after	calculating	all	PRESS	values	 for	 the	
samples	in	the	calibration	set.		In	the	end,	the	gene	with	the	
lowest	RMSEc	(highest	 fitness)	 is	selected	for	 the	model	
building	which	is	done	by	simple	least	squares.		This	model	
is	used	 to	predict	 the	concentrations	of	component	being	
analyzed	in	 the	validation	sets.	 	The	success	of	 the	model	
in	the	prediction	of	 the	validation	sets	are	evaluated	using	
root	mean	square	error	of	validation	(RMSEV).	 	Because	
the	random	processes	are	heavily	involved	in	the	GR	as	in	
all	 the	GAs,	the	program	has	been	set	to	run	several	times	
for	each	component	 in	a	given	multi-component	mixture	
during	the	course	of	this	study.	 	The	best	run,	(i.e.	 the	one	
generating	the	lowest	RMSEc	for	the	calibration	set	and	at	
the	same	time	producing	RMSEV’s	for	validation	sets	that	
are	in	the	same	range	with	the	RMSEc)	was	subsequently	
selected	 for	 evaluation	 and	 further	 analysis. 	 	 The	
termination	of	 the	algorithm	can	be	done	 in	many	ways.		
The easiest way is to set a predefined iteration number for 
the	number	of	breeding/mating	cycles.	

GR	 has	 some	 major	 advantages	 over	 classical	
univariate	 and	 multivariate	 calibration	 methods.	 	 It	 is	
a	 hybrid	 calibration	 method	 that	 uses	 the	 full	 spectral	
information	and	 reduces	 it	 to	a	 single	 score	upon	which	
simple	calibration	models	are	built.	 	First	of	all,	 it	 is	as	
simple	as	univariate	calibration	in	terms	of	the	mathematics	
involved	 in	 the	model	building	and	prediction	steps,	but	
at	 the	same	time	it	has	 the	advantages	of	 the	multivariate	
calibration	 methods	 since	 it	 uses	 the	 full	 spectrum	 to	
extract	genetic	scores.	 	 It	automatically	corrects	baseline	
fluctuations	using	 simple	mathematical	operators	while	
forming	the	base	pairs.	Also	note	that	no	data	pretreatment	
is	necessary	before	calibration,	which	saves	the	extra	time	
in	the	data	processing.	

II.	Genetic Classical Least Squares

The	classical	 least	squares	(cLS)	method	extends	the	
classical	Beer’s	Law	model	 in	which	 the	absorbance	at	
each	wavelength	is	directly	proportional	 to	the	component	
concentrations.	 	Model	 errors	 are	 assumed	 to	be	 in	 the	
measurement	of	 the	 instrument	responses	as	 it	was	 in	 the	
classical	univariate	method.	 	 In	matrix	notation,	 the	cLS	
model	 for	m	 calibration	 samples	 containing	 l	 chemical	
components	 whose	 spectra	 contain	 n	 wavelengths	 is	
described	as:

A = CK –EA	 (5)	

where	A	 is	 the	m × n	matrix	of	 the	calibration	spectra,	C	
is	 the	m × l	matrix	of	 the	component	concentrations,	K	 is	
the	 l × n	matrix	of	absorptivity-pathlength	constants	and	
EA	 is	 the	m × n	matrix	of	 the	spectral	errors	or	 residuals	
not	 fit	by	 the	model.	 	Here	 the	K	matrix	 represents	 the	

first	order	estimates	of	 the	pure	component	spectra	at	unit	
concentration	and	unit	pathlength.	 	The	method	of	 least-
squares	can	be	used	 to	estimate	 the	K	matrix.	 	The	 least-
squares	estimate	of	the	K is defined as:

^K  = (C'C)-1 C'A (6)	

O n c e 	 t h e 	 e s t i m a t e d 	 ^K m a t r i x 	 o b t a i n e d , 	 t h e	
concentrations	of	an	unknown	sample	can	be	predicted	from	
its	spectrum	by:

ĉ = ( ^K ^K ')-1 ^K a	 (7)	

where	a	is	the	spectrum	of	the	unknown	sample	and	ĉ is	the	
vector	of	the	predicted	component	concentrations.	 	Genetic	
Classical Least Squares (GCLS) is a modified version of the 
original	cLS	method	in	which	a	small	set	of	wavelengths	
are	 selected	 from	 a	 full	 spectral	 data	 using	 a	 genetic	
algorithm.	 	The	 algorithm	 used	 to	 select	 the	 optimum	
number	of	wavelengths	in	GcLS	is	quite	similar	to	the	GR	
algorithm,	but	differs	 in	 the	way	 it	encodes	 the	gene.	 	 In	
GcLS,	the	term	“gene”	describes	a	vector	whose	elements	
are	randomly	selected	wavelengths.	 	The	size	of	the	vector	
is	also	determined	in	a	random	fashion	with	an	upper	limit	
to	reduce	computation	time.	

In	 the	 initialization	 step,	 an	even	number	of	genes	
are	formed	from	full	a	spectral	data	matrix	and	each	gene	
is	 used	 to	 form	 a	 cLS	 model.	 	These	 models	 are	 then	
evaluated and ranked using the fitness function described in 
GR.	 	The	roulette	wheel	method	is	 then	used	to	select	 the	
gene	population	for	breeding.		After	the	selection	procedure	
is	completed,	 the	selected	genes	are	allowed	to	mate	 top-
down without ranking whereby the first gene mates with the 
second	gene	and	the	 third	one	with	 the	fourth	one	and	so	
on	as	described	above	with	one	difference.		Since	the	genes	
used	in	GcLS	are	only	vector	of	wavelengths	and	contain	
no	base	pairs	as	described	in	GR,	for	each	gene	a	random	
number	is	generated	between	1	and	the	length	of	 the	gene	
and	the	single	point	crossover	process	 is	performed	using	
this	number.		After	crossover,	the	parent	genes	are	replaced	
by	 their	offspring	and	 the	offspring	are	evaluated.	 	The	
ranking process is based on their fitness values and follows 
the	evaluation	step.		Then	the	selection	for	breeding/mating	
starts	all	over	again.	 	This	 is	 repeated	until	a	predefined	
number	of	 iterations	are	 reached.	 	 In	each	 iteration,	 the	
best	gene	with	 the	 lowest	RMSEc	 is	 stored	 in	order	 to	
compare	it	with	the	best	gene	of	the	next	generation.		If	the	
next	generation	produces	a	better	gene	 then	 it	 is	 replaces	
the	older	one;	otherwise	 the	older	one	 is	kept	 for	 further	
iterations.		At	the	end,	the	gene	with	the	lowest	RMSEc	is	
selected	for	model	building.		This	model	is	used	to	predict	
the	 concentrations	of	 component	being	analyzed	 in	 the	
validation	sets	as	described	in	GR.	

III.	Genetic Inverse Least Squares

The	 major	 drawback	 of	 the	 cLS	 is	 that	 all	 of	 the	
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interfering	species	must	be	known	and	their	concentrations	
are	 included	 in	 the	model.	 	This	need	can	be	eliminated	
by	using	 the	 inverse	 least	 squares	 (ILS)	method	which	
uses	 the	 inverse	 of	 Beer’s	 Law.	 	 In	 the	 ILS	 method,	
concentrations	of	an	analyte	are	modelled	as	a	function	of	
absorbance	measurements.	 	Because	modern	spectroscopic	
instruments	are	very	stable	and	provide	excellent	signal-to-
noise	(S/N)	ratios,	it	 is	believed	that	the	majority	of	errors	
lie	 in	 the	reference	values	of	 the	calibration	samples,	not	
in	the	measurement	of	their	spectra.		The	ILS	model	for	m	
calibration	samples	with	n	wavelengths	for	each	spectrum	
is	described	by:

C = AP – EC	 (8)	

where	C	and	A	are	the	same	as	in	cLS,	P	is	the	n × l	matrix	
of the unknown calibration coefficients relating l	component	
concentrations	to	the	spectral	intensities	and	EC	 is	 the	m × 
l matrix of errors in the concentrations not fit by the model. 
In	 the	calibration	step,	ILS	minimizes	 the	squared	sum	of	
the	residuals	in	the	concentrations.	 	The	biggest	advantage	
of	ILS	is	that	equation	8	can	be	reduced	for	the	analysis	of	
single	component	at	a	time	since	analysis	is	based	on	an	ILS	
model	 is	 invariant	with	respect	 to	 the	number	of	chemical	
components	included	in	the	analysis.	The	reduced	model	is	
given	as:

c = Ap – ec	 (9)	

where	c	is	the	m × 1	vector	of	concentrations	for	the	analyte	
that	 is	being	analyzed,	p	 is	n × 1	 vector	of	 calibration	
coefficients	and	ec	 is	 the	m × 1	vector	of	concentration	
residuals not fit by the model. During the calibration step, 
the	least-squares	estimate	of	p	is:

p̂  = (A'A)-1 A' � c	 (10)	

where	p̂ is the estimated calibration coefficients.  Once p̂ is	
calculated,	the	concentration	of	the	analyte	of	interest	can	be	
predicted	with	the	equation	below.

ĉ = a ' � p̂ (11)	

where	ĉ is	 the	scalar	estimated	concentration	and	a	 is	 the	
spectrum	of	the	unknown	sample.		The	ability	to	predict	one	
component	at	a	time	without	knowing	the	concentrations	of	
interfering	species	has	made	ILS	one	of	the	most	frequently	
used	 calibration	 methods.	 	 However,	 the	 identity	 of	
interfering	species	still	needs	to	be	known	to	prepare	a	good	
calibration	sample	set.	

The	 major	 disadvantage	 of	 ILS	 can	 be	 seen	 in	
equation	 (10)	where	 the	matrix,	which	must	be	 inverted,	
has	dimensions	equal	 to	the	number	of	wavelengths	in	the	
spectrum	and	 this	number	should	not	exceed	 the	number	
of	 calibration	 samples.	 	This	 is	 a	 big	 restriction	 since	
the	number	of	wavelengths	 in	a	 spectrum	will	generally	
be	more	 than	 the	number	of	calibration	samples	and	 the	

selection	of	wavelengths	 that	provide	 the	best	 fit	 for	 the	
model	is	not	a	trivial	process.		Several	wavelength	selection	
strategies,	 such	as	stepwise	wavelength	selection	and	all	
possible	combination	searches,	are	available	 to	build	an	
ILS model that fits the data best.  Here we used the same 
genetic	 algorithm	 described	 in	 GcLS	 to	 build	 genetic	
inverse	 least	squares	 (GILS)	models	with	one	difference.	
This	difference	 is	 in	 the	way	 the	mating	and	single	point	
crossover	operations	are	carried	out.	 	Because	the	number	
of	wavelengths	is	restricted	in	response	matrix	A	in	the	ILS,	
the	size	of	the	largest	gene	is	restricted	to	one	less	than	the	
number	of	calibration	samples	in	the	concentration	vector.	
However,	 if	 the	single	point	crossover	 is	set	 to	 take	place	
in	any	point	of	a	gene,	then	the	mating	step	could	produce	
new	genes	 that	have	a	 larger	number	of	wavelengths	 than	
the	number	of	calibration	samples	even	though	all	the	genes	
in	the	initial	gene	pool	were	set	to	have	smaller	number	of	
wavelengths	 than	 the	size	of	 the	concentration	vector.	 	 In	
order	to	avoid	this	problem,	the	crossover	operation	is	only	
performed	somewhere	around	 the	middle	of	each	gene	 in	
GILS	so	that	the	new	generations	will	not	have	larger	sizes	
than	 the	number	of	calibration	samples.	 	The	 rest	of	 the	
algorithm	is	the	same	as	the	one	used	in	GcLS.	

MATERIALS AND METHODS

I.	Materials

In	 this	 work,	 two	 commercial 	 pharmaceutical	
formulations,	cibadrex	and	Divitab	–	5/6.25	(I)	and	10/12.5	
(II)	 tablets	 (produced	by	Novartis	Pharm.,	Turkey,	Batch	
No.	 	 13	 and	18,	 respectively)	 containing	5	 and	10	mg	
of	benazepril	hydrochloride	 (BE)	and	6.25	and	12.5	mg	
of	hydrochlorothiazide	 (HcT)	were	 investigated.	 	Stock	
solutions	of	100	mg/100	mL	HcT	and	BE	were	prepared	in	
0.1	M	NaOH.		The	standard	solutions	in	25-mL	volumetric	
flasks containing 0~22 mg/mL HCT and 0~36 mg/mL BE 
were	obtained	 from	 their	 stock	solutions	by	appropriate	
dilution.	 	The	concentration	profiles	of	 calibration	and	
validation	samples	were	designed	in	a	way	that	minimizes	
colinearity	problem	since	a	binary	system	has	been	studied.	
For	 the	commercial	vitamin,	16	 tablets	were	accurately	
weighed	and	powdered	in	a	mortar.		An	amount	equivalent	
to	one	 tablet	was	dissolved	 in	0.1	M	NaOH	in	a	100-mL	
calibrated	 flask	by	sonication.	 	The	solution	was	 filtered	
into	a	100-mL	calibrated	 flask	 through	Whatman	No.	42	
filter paper and diluted to appropriate volume with the same 
solvent.

II.	Methods

Sample	 spectra	 were	 measured	 in	 a	 Shimadzu	
uV-1600	 double	 beam	 uV-visible	 spectrophotometer	
from	210	 to	360	nm	with	0.1	nm	intervals.	 	Quartz	cells	
with	1	cm	pathlengths	were	used.	 	The	cLS	and	the	three	
new	 genetic	 algorithms	 based	 multivariate	 calibration	
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methods	(GcLS,	GILS	and	GR)	were	written	in	MATLAB	
programming	 language	 using	 Matlab	 5.3	 (MathWorks	
Inc,	Natick,	MA,	uSA).	 	The	 text	 files	 for	 calibration,	
validation	and	prediction	sets	were	generated	with	the	use	
of Microsoft Excel (MS office 97, Microsoft Corporation, 
cA,	uSA).

RESULTS AND DISCUSSION

To	 generate	 the	 calibration	 models,	 a	 total	 of	 20	
samples	were	selected	to	be	included	in	the	calibration	set	
and	8	samples	were	used	to	construct	 the	validation	set	as	
shown	in	Table	1.	 	 In	addition,	 two	different	commercial	
tablets	 (each	consists	of	8	 samples)	were	used	 to	build	
prediction	 set.	 	The	 first	 contains	5	mg	benazepril	 per	
tablet	 and	6.25	mg	hydrochlorothiazide	per	 tablet.	 	The	
second	contains	10	mg	benazepril	per	 tablet	and	12.5	mg	
hydrochlorothiazide	per	tablet.	 	After	dissolving,	the	tablet	
samples	were	diluted	to	have	16	µg/mL	of	benazepril	and	
20	µg/mL	of	hydrochlorothiazide.

uV	 spectra	 of	 pure	 benazepril	 (36	 µg/mL)	 and	
hydrochlorothiazide	 (22	µg/mL)	 along	with	 the	binary	
mixture	of	 the	 two	components	between	210	and	360	nm	
wavelength	range	are	shown	in	Figure	1.		As	seen	from	the	
figure,	benazepril	gives	a	broad	peak	with	 the	maximum	
around	242	nm	and	hydrochlorothiazide	has	a	maximum	

absorbance	 around	 271	 nm.	 	Their	 mixture	 spectrum,	
however,	 indicates	 some	overlap	over	 the	 entire	 region	
which	indicates	that	the	use	of	multivariate	methods	would	
be	needed	 to	 resolve	 these	components.	 	Throughout	 the	
genetic	multivariate	calibration	process,	 it	 is	expected	that	
these	overlaps	will	be	resolved	and	reveal	 the	information	
necessary	to	build	successful	calibration	models	otherwise	
almost	impossible	with	univariate	calibration	methods.	

Several	calibration	models	were	generated	with	 the	
four	 methods	 and	Table	 2	 shows	 the	 results	 of	 binary	
mixtures	for	calibration	and	validation	sets.		Here,	the	cLS	
method	was	applied	to	the	whole	spectrum	data	set	and	in	
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Figure 1. 	 uV	 spectra	 of	 benazepril	 (36	 µg/mL)	 and	
hydrochlorothiazide	 (22	 µg/mL)	 along	 with	 a	 binary	 mixture	 of	 the	
two	components	between	220	and	360	nm	wavelength	range.

Table 1.	concentration	profiles	of	benazepril	(BE)	and	hydrochlorothiazide	(HcT)	binary	mixtures	in	the	calibration,	the	validation	and	the	pre-
diction	(actual	tablets)	sets

Sample	number
calibration	(µg/mL) Validation	(µg/mL) Prediction	(µg/mL)

BE HcT BE HcT BE HcT

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

12
20
24
28
36
12
16
28
32
36
0
0
0
0
0

16
16
16
16
16

0
0
0
0
0

20
20
20
20
20
10
14
16
20
22
10
12
18
20
22

16
32
20
24
0
0

16
16

0
0

20
20
12
18
14
16

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20



Journal of Food and Drug Analysis, Vol. 13, No. 4, 2005

306

Table 2. Results	of	the	mixtures	in	the	calibration	and	the	validation	sets	containing	benazepril	and	hydrochlorothiazide	obtained	from	the	four	
multivariate	calibration	methods	(cLS,	GcLS,	GILS	and	GR)

Parameters
Methods

cLS GcLS GILS GR

Benazepril
   Calibration
						RMSEca	(µg/mL)
						Average	recovery	(%)
						RSDb

   Validation
						RMSEVc	(µg/mL)
						Average	recovery	(%)
						RSD	
Hyrochlorothiazide
   Calibration
						RMSEc	(µg/mL)
						Average	recovery	(%)
						RSD	
   Validation
						RMSEV	(µg/mL)
						Average	recovery	(%)
						RSD	

		0.48
99.91
		3.49

		0.38
99.60
		2.60

		0.63
99.04
		5.38

		0.65
98.49
		5.30

			0.33
100.22
			2.63

			0.34
		99.43
			1.96

			0.29
		99.62
			2.11

			0.26
		98.70
			1.21

			0.19
		99.89
			1.33

			0.35
100.44
			1.91

			0.24
		99.89
			1.36

			0.18
		99.18
			0.99

		0.34
99.98
		2.48

		0.43
99.19
		3.03

		0.31
99.74
		1.91

		0.23
98.84
		1.15

aRoot	mean	square	error	of	calibration.
bRelative	standard	deviation.
cRoot	mean	square	error	of	validation.

Table 3. Results	of	commercial	tablets	(I)	containing	benazepril	Hcl	(5	mg/tablet)	and	hydrochlorothiazide	(6.25	mg/tablet)	obtained	from	the	
four	multivariate	calibration	methods	(cLS,	GcLS,	GILS	and	GR)	

Predicted	(mg/tablet)

component Benazepril	Hcl Hydrochlorothiazide

Method
Mean
SDa

RSDb

RMSEPc

cLS
5.47
0.04
0.81
0.48

GcLS
4.90
0.07
1.37
0.12

GILS
5.00
0.09
1.82
0.09

GR
4.89
0.07
1.50
0.13

cLS
6.87
0.05
0.76
0.62

GcLS
6.26
0.06
0.89
0.05

GILS
6.21
0.05
0.74
0.06

GR
6.31
0.06
0.92
0.08

aStandard	deviation.
bRelative	standard	deviation.
cRoot	mean	square	error	of	prediction.

Table 4.	Results	of	commercial	tablets	(II)	containing	benazepril	Hcl	(10	mg/tablet)	and	hydrochlorothiazide	(12.5	mg/tablet)	obtained	from	the	
four	multivariate	calibration	methods	(cLS,	GcLS,	GILS	and	GR)

Predicted	(mg/tablet)

component Benazepril	Hcl Hydrochlorothiazide

Method
Mean
SDa

RSDb

RMSEPc

cLS
10.50
		0.01
		0.08
		0.50

GcLS
10.05
		0.02
		0.24
		0.05

GILS
9.80
0.04
0.43
0.20

GR
9.93
0.04
0.38
0.08

cLS
14.02
		0.03
		0.20
		1.52

GcLS
12.54
			0.02
		0.18
		0.05

GILS
12.52
		0.03
		0.27
		0.04

GR
12.64
		0.02
		0.15
		0.14

aStandard	deviation.
bRelative	standard	deviation.
cRoot	mean	square	error	of	prediction.
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the	case	of	genetic	algorithm	based	methods	(GcLS,	GILS	
and	GR)	 the	algorithms	were	set	 to	run	30	 times	with	20	
genes	and	100	 iterations	 in	each	 run.	 	The	 results	given	
in	 table	 for	GcLS,	GILS	and	GR	are	 from	 the	 runs	 that	
generate	 the	 lowest	RMSEc	and	RMSEV	combination.	
Then	 these	models	were	used	 later	 to	predict	 the	actual	
tablet	samples	and	compared	with	each	other	based	on	their	
success	of	predicting	actual	samples	as	shown	in	Tables	3	
and	4.

A	close	examination	of	 the	 results	given	 in	Table	2	

indicates	 that	 all	 four	methods	generate	 approximately	
the	same	results	for	benazepril	whereas	genetic	algorithm	
based	 methods	 produces	 somewhat	 better	 results	 than	
cLS	 for	hydrochlorothiazide	 in	 the	 synthetic	mixtures.	
However,	 this	could	be	very	misleading	conclusion	if	one	
considers	 the	 results	given	 in	Tables	3	and	4	where	 the	
results of actual tablets are shown for the first and second 
type	 tablets,	 respectively.	 	The	RMSEP	values	generated	
with	conventional	cLS	methods	are	much	larger	 than	 the	
ones	generated	by	genetic	algorithm	based	methods.	 	On	

Figure 2.	Plots	of	the	actual	vs.	the	predicted	benazepril	concentrations	for	the	calibration	and	the	validation	sets	obtained	from	the	four	multi-
variate	calibration	methods:	(A)	cLS,	(B)	GcLS,	(c)	GILS	and	(D)	GR	method.
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the	other	 hand,	 the	 three	genetic	multivariate	methods	
were	generated	very	similar	results	where	GILS	seems	to	
have	slightly	better	 than	 the	other	 two	but	 the	differences	
does not indicate a significant difference.  It is evident that 
the	hard	modelling	method	cLS	 is	unable	 to	predict	 the	
composition	of	actual	 tablets	as	good	as	 the	genetically	
modified	multivariate	methods.	 	 In	 addition,	 the	mean	
tablet results obtained with CLS were significantly different 
from actual values which might be the indication of overfit 
for	 the	model.	 	 In	 terms	of	 the	overall	performance	of	 the	
four	methods	 it	can	be	said	 that	 the	genetically	modified	

methods	 improves	 the	prediction	 ability	of	models	 for	
actual	tablet	samples.

Figures	2	and	3	show	the	plot	of	actual	vs.	predicted	
benazepril	 and	 hydrochlorothiazide	 concentrations,	
respectively	for	the	calibration	and	validation	sets	obtained	
with	 the	 four	methods	 in	 the	second	experiment.	 	The	R	
square	 (R2)	 values	 of	 regression	were	 ranged	between	
0.9950 and 09998 indicating very good fit between actual 
and	predicted	concentrations	for	the	synthetic	samples.			

In	order	 to	determine	whether	 the	genetic	algorithm	
selected	 wavelengths	 correspond	 to	 the	 particular	
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Figure 3.	Plots	of	the	actual	vs.	the	predicted	hydrochlorothiazide	(HcT)	concentrations	for	the	calibration	and	the	validation	sets	obtained	from	
the	four	multivariate	calibration	methods:	(A)	cLS,	(B)	GcLS,	(c)	GILS	and	(D)	GR	method.	
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component	absorbance	 region,	 frequency	of	 the	selected	
wavelengths	 in	 the	30	 runs	 for	 each	genetic	 algorithm	
based	 method	 were	 plotted	 against	 wavelength	 range	
along	with	a	mixture	 spectrum	 in	Figures	4~6	 for	 each	
component.	 	As	 seen	 from	 the	 figures,	 the	 frequency	of	
the	 selected	wavelengths	 is	 significantly	higher	 around	
the	 peak	 maximum	 of	 each	 component.	 	 This	 shows	
that	 the	genetic	multivariate	 calibration	methods	 select	
the	wavelengths	 that	 correspond	 to	 the	each	component	
absorption	range	even	though	the	algorithm	starts	with	the	
whole	spectrum	information	at	 the	beginning	of	each	run	
and	each	wavelength	has	equal	chance	of	being	selected.		
The	explanation	 is	 in	 the	evolutionary	nature	of	genetic	
algorithm	where	 the	wavelengths	suited	for	 the	particular	
component	survives	in	the	long	run	of	 iterations	and	other	
do	not.	 	This	gives	an	advantage	 to	 the	genetic	algorithm	
based	methods	where	only	 the	 information	related	 to	 the	
particular	 component	 are	 used	 to	 construct	 the	 model	
thereby	reducing	the	noise	in	the	overall	information.

For	example,	 there	are	three	regions	of	high	selection	
frequency	for	benazepril	in	Figure	4A.		One	of	the	regions	
corresponds	 to	 the	main	absorbance	peak	of	benazepril	

as	 shown	 in	Figure	1	 and	 the	other	 two	 correspond	 to	
the	 baseline	 area.	 	This	 trend	 is	 also	 observed	 in	 the	
corresponding	Figures	5A	and	6A.	 	On	 the	other	hand,	
frequency	 distribution	 of	 hydrochlorothiazide	 seems	
to	 spread	more	over	 the	entire	wavelength	 region.	 	The	
possible	 explanation	could	be	 the	 strong	dominance	of	
hydrochlorothiazide	spectrum	over	benazepril.	

CONCLUSIONS

This	 study	 illustrates	 the	 application	 of	 the	 hard	
modelling	 technique	 cLS	 and	 three	 genetic	 algorithm	
based	multivariate	 calibration	methods	 to	 simultaneous	
determination	of	pharmaceuticals	 in	synthetic	and	actual	
tablet	formulations.		It	can	be	said	that	all	genetic	algorithm	
based	methods	generate	 acceptable	 results	 in	 the	given	
concentration	 range	of	 the	components.	 	These	methods	
coupled	with	 spectrophotometry	could	be	an	alternative	
to	other	methods	such	as	chromatography,	which	 is	more	
expensive	and	time-consuming.
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Figure 4.	Distribution	of	the	selected	wavelengths	by	genetic	algorithm	in	GcLS	method	for	a	total	of	50	runs	with	20	genes	and	100	iterations	
along	with	a	spectrum	of	binary	mixture:	(A)	benazepril	and	(B)	hydrochlorothiazide.
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Figure 6.	Distribution	of	the	selected	wavelengths	by	genetic	algorithm	in	GR	method	for	a	total	of	50	runs	with	20	genes	and	100	iterations	
along	with	a	spectrum	of	binary	mixture:	(A)	benazepril	and	(B)	hydrochlorothiazide.




