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Abstract

A three layer feed forward artificial neural network (ANN) model having three input neurons, one output neuron

and two hidden neurons was developed to predict the ply-lay up compressive strength of VARTM processed E-glass/

polyester composites. The composites were manufactured using fabric preforms consolidated with 0, 3 and 6 wt.% of

thermoplastic binder. The learning of ANN was accomplished by a backpropagation algorithm. A good agreement

between the measured and the predicted values was obtained. Testing of the model was done within low average error

levels of 3.28%. Furthermore, the predictions of ANN model were compared with those obtained from a multi-linear

regression (MLR) model. It was found that ANN model has better predictions than MLR model for the experimental

data. Also, the ANN model was subjected to a sensitivity analysis to obtain its response. As a result, the ANN model

was found to have an ability to yield a desired level of ply-lay up compressive strength values for the composites pro-

cessed with the addition of the thermoplastic binder.
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1. Introduction

Vacuum-assisted resin transfer molding

(VARTM), a derivative of the liquid molding

(LM) process, has been widely employed to manu-

facture advanced composite structures especially
ed.
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for defense and civil engineering applications [1,2].

VARTM is typically a three-step process including

lay-up of a fiber performs on a tool, infusion of the

preform with a liquid resin, and the cure of infused

resin within the preform. Fiber volume fraction
(Vf) is one of the critical property for the polymer

composites and it may have some significant effects

on the composite mechanical properties. The

degree of the compaction of the fiber preform is

known to have some significant effects on the fiber

volume fraction, porosity formation and resin flow

characteristic within the reinforcement [3]. There-

fore, understanding the effects of preform compac-
tion and mutually fiber volume fraction on the

composite mechanical behavior is essential. The

recent technique to consolidate the fiber performs

is to use powdered thermoplastic binders between

the adjacent plies to compact them briefly [1,4].

Binder-coated plies with various binder concentra-

tion can be stacked together under application of

heat and pressure. As the thickness of the fabric
preform reduces, in general, the fiber volume frac-

tion increases. In the previous work [5], it was con-

cluded that compressive stress–strain behavior of

the E-glass/polyester composites loaded along

the ply-lay up and in-plane direction were consid-

erably affected by the preforming binder. Preform

compaction experiments revealed that the highest

compaction can be obtained with 3 wt.% of the
binder and the further increase of binder concen-

tration resulted in increasing of the preform thick-

ness. It was also revealed that the composites

composed of fabric preforms with 3 wt.% of binder

exhibited the highest ply-lay up and in-plane com-

pressive strength and modulus than those with 0

and 6 wt.% of binder.

In addition, fiber preform compaction during
VARTM process may not be uniform across the

length of the part, as the resin fills the preform

from one side by the means of vacuum pressure

[5,4]. Thus, the fiber volume fraction and resin per-

meability may not be constant and varies through

the part. This may result in considerable thickness

variations and non-uniform mechanical properties

through the composite part [5,2]. The understand-
ing of the influence of several factors in VARTM

that affect the overall mechanical properties such

as strength of the composites may be important.
These factors may include the thermoplastic bin-

der content (%wt.), fiber preform thickness prior

to VARTM processing and the composite fiber

volume fraction. Each of them may have varying

degrees of effect on the overall strength of the com-
posite parts [1]. However, an analytical model to

describe the effects of such factors together on

the strength can be very complex [4,6]. Therefore,

an artificial neural network (ANN) approach can

be used as a powerful tool in modeling the effects

of a various parameters on ply-lay up compressive

strength of the composites. A certain amount of

experimental data is necessary to develop a well-
performing neural network, including its architec-

ture, training functions and training algorithms

[7,8]. The greatest advantage of ANN is its ability

to model complex non-linear, multi-dimensional

function relationships without any prior assump-

tions about the nature of the relationships [9,6].

As an example, Zhang et al. [8] developed an

ANN model to predict the dynamic mechanical
properties of PTFE-based composites with various

short carbon fiber contents. They found that the

number of training data set is an important

parameter in ANN predictive quality. Therefore,

an one-output neural network is suggested to be

use initially for high predictive quality before a

sufficient database is available. Wear performance

of polyethylene (PE), polyurethane (PUR), and an
epoxy modified by hygrothermally decomposed

polyurethane (EP-PUR) was also predicted by

the same authors using an ANN model [6]. They

concluded that a well-trained ANN model is the

key to design and analysis structure–property rela-

tions of the polymer composites.

In the present study, an ANN approach was

employed to predict the effects of the thermoplastic
binder concentration (Cb), fabric preform thick-

ness prior to process (t) and composite fiber vol-

ume fraction (Vf) on the ply-lay up compressive

strength of VARTM processed E-glass fiber rein-

forced polyester composites. The ANNs software

was trained and tested with sets of experimental

data consisting of Cb, t, and Vf as input and com-

posite ply-lay up compressive strength as output.
Furthermore, the predictions of the ANN model

were compared to those with a multi-linear regres-

sion (MLR) model.
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2. Experimental

Experimental procedure was described in detail

in the previous work [7]. In brief, composite parts

were fabricated using E-glass fabrics and Camelyaf
266 thermosetting polyester resins both purchased

from Cam Elyaf of Corp of Turkey. Cobalt naph-

thenate (CoNAP) in 0.3 wt.% and methyl ethyl

ketone peroxide (MEKP) in 1.5 wt.% were used

to accelerate and to polymerize the thermosetting

polyester matrix resin, respectively. A bisphenol-

A-based thermoplastic polyester (ATLAC 363E)

with fumerate groups in the backbone with a melt-
ing temperature of 60 �C was employed as pre-

forming binder. Fabric preforms containing of 25

layers of stacks with 3 and 6 wt.% of thermoplastic

polyester binder were obtained by application of

heat and pressure as described in detail elsewhere

[1,5]. The preform thickness with and without bin-

der was measured using a micrometer. The thick-

ness values of the preforms with and without
binder were the average of the measurements from

at least 10 different points and assumed as con-

stant for all samples prior to VARTM processing.

The preforms were measured to have average

thickness of 21.80, 13.15, and 16.60 mm for 0, 3

and 6 wt.% of binder, respectively. The composite

panels were manufactured by VARTM method

using the fabric preforms with and without binder
under a vacuum pressure of 10 Pa. After curing of

the resin at room temperature, the cured panels

were post-cured at 110 �C for 2 h. The fiber vol-

ume fraction values of each composite specimens

subjected to compression test were measured based

on the matrix burn-out technique. Compression

test method according to ASTM D 695-M was

used to measure the ply-lay up compressive
strength of the composite specimens with and

without binder.
Fig. 1. Illustration of three layer feed forward ANN model.
3. Artificial neural networks

ANNs are basically a data-driven black-box

model capable of solving highly non-linear com-
plex problems. They have the ability to capture

the relationship between input and output vari-

ables from given patterns (historical data or
measured data on input and output variables of

the system of the concern) and this enables them

to solve large-scale complex problems. The net-

work learns basically by finding the optimal net-

work-connection-weights that would generate an
output vector as close as possible to the target val-

ues of the output vector, with the selected accu-

racy. The optimal network-connection-weights

are found by minimising the error function. The

optimal network-connection-weights store the

relationship between the input and output vari-

ables of the system from the given patterns.

In this study, three-layer feed forward artificial
neural network (ANN) model having three input

neurons, one output neuron and two hidden neu-

rons was used. The corresponding model illustra-

tion is given in Fig. 1. In a feed forward

network, the input quantities are first normalized

to a range of 0.1–0.9 with the following equation.

X i ¼ 0:1 þ 0:8�ðX i � Xmin iÞ=ðXmax i � Xmin iÞ ð1Þ
where Xmax i and Xmin i are the maximum and min-

imum values of the ith node in the input layer for

all the feed data vectors, respectively. The weights

were assigned a random value between �1 and 1.

Before its application to any problem, the network

is first trained, whereby the difference between the

target output and the calculated model output at
each output neuron is minimized by adjusting the

weights and biases through some training algo-

rithm. During training, a neuron receives inputs

from a previous layer, weights each input with a

prearranged value, and combines these weighted

inputs. The combination of weighted inputs is rep-

resented as

netj ¼
X

xivij ð2Þ



Table 1

Input (X) and output (Y) parameters of ANN [5]

Code Parameter Minimum Maximum

x1 Thermoplastic binder

amount (wt.%)

0 6

x2 Fiber preform

thickness (mm)

13.15 21.80

x3 Composite fiber

volume fraction (-)

0.34 0.57

Y Ply-lay up compressive

strength (MPa)

415 574
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where netj is the summation of the weighted input

for the jth neuron, xi is the input from the ith neu-

ron to the jth neuron, and vij is the weight from the

ith neuron in the previous layer to the jth neuron

in the current layer.
The netj is passed through a transfer function to

determine the level of activation. If the activation

of a neuron strong enough, it produces an output

that is sent as an input to the other neurons in the

successive layer. In the present study, a sigmoid

function given in Eq. (3) is employed as an activa-

tion function in the training of the network.

f ðnetjÞ ¼
1

1 þ e�netj
ð3Þ

The learning of ANNs was accomplished by a

backpropagation algorithm where the information

is processed in the forward direction from the

input layer to the hidden layer and then to the out-

put layer.

The objective of a back propagation network is,

by minimizing a predetermined error function, to
Fig. 2. Results of training: (a) ANN model prediction, (b) M
find the optimal weights that would generate an

output vector Y = (y1,y2, . . . yp) as close as possi-

ble target values of output vector

T = (t1, t2, t3 . . . tp) with a selected accuracy. A

predetermined error function has the following
form:

E ¼
X

p

X

p

ðyi � tiÞ2 ð4Þ

where yi is the component of an ANN output vec-

tor Y, ti, is the component of a target output vec-
LR prediction and (c) the model trend with data order.



A.T. Seyhan et al. / Computational Materials Science 34 (2005) 99–105 103
tor T, p is the number of output neurons and P is

the number of training patterns.

The least square error method, along with a

generalized delta rule, is used to optimize the

network weights. The gradient descent method
with momentum term, along with the chain rule

of derivatives, is employed to modify network

weights as

V ijðnÞ ¼ �d
oE
oV ij

þ aV ijðn� 1Þ ð5Þ

where d is the learning rate that is used to increase
the chance of avoiding the training process being

trapped in a local minima instead of a global min-

ima. The ANN is coded using C++.
4. Results and discussion

ANNs having three input and one output neu-
rons were used to model the ply-lay up compres-
Fig. 3. Results of testing: (a) ANN model prediction, (b) ML
sive strength of the composites. The number of

hidden neurons was taken two as a result of trying

different number of neurons. The input variables

used in the models were the amount of thermo-

plastic binder, initial fiber preform thickness prior
to VARTM process and composite fiber volume

fraction. Ply-lay up compressive strength of the

composites was used as the output for the neural

networks. The input and output parameters are

given in Table 1 with their minimum and maxi-

mum values. The ANNs algorithm written in

C++ was trained and tested with sets of experi-

mental data consisting of input and output values.
During the neural network scheme our input

parameters are presented to the input layer nodes,

input layer nodes are only used for input presenta-

tion. Then each input parameters are multiplied by

the corresponding weight parameter. After the

multiplication, results are summed and inserted

to the connected middle layer node. Presented

results are evaluated with the sigmoid activation
R prediction and (c) the model trend with data order.
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function in the each middle layer neuron. Obtained

results are multiplied again with the corresponding

output weight function to present through the out-

put layer. At this time, output layer is constructed

with one linear output node (which represents our
compressive strength estimation within the present

study). Output layer node gives us our network�s
output. The obtained result is compared with the

known target value to calculate the error value.

Obtained error value�s gradient with respect to

the corresponding weight value lead us to the opti-

mal solution by finding the optimal weights.

Bias term was not used during modeling but a
momentum term was used to help to obtain faster
Fig. 4. Prediction of the ply-lay up compressive strength of the com

prediction and (b) trend with experimental data order.
convergence during iterations. This provided the

iteration process not to get stuck in local minima,

but rapidly reached the desired global minima.

There were a total of 45 data sets that were divided

into two groups for training and testing, each con-
taining 30 and 15 sets, respectively. The program

was instructed to run for 100,000 iterations and

the optimal weights were calculated with an aver-

age percentage training error of 3.28%. In addi-

tion, MLR model with the same input data was

also employed to evaluate the results with ANN

model. Fig. 2(a) and (b) shows the training of

the ANN model and the MLR predictions, respec-
tively. ANN model predicted the experimental
posites with 3 wt.% of binder for sensitivity analysis. (a) ANN
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strength measurements with the correlation coeffi-

cient (R2) of 0.94, showing better agreement than

those of MLR with the correlation coefficient

(R2) of 0.83. Thus, as seen in Fig. 2(c), the values

with the ANN model prediction were able to fol-
low the trend better, as compared those with

MLR model prediction. Fig. 3(a) and (b) shows

the correlation coefficients (R2) of 0.97 and 0.81

for the ANN testing set and MLR model, respec-

tively. In Fig. 3(c), ANN model and MLR predic-

tions with experimental data order is given.

Furthermore, the sensitivity analysis was per-

formed by feeding ply-lay up compressive strength
of the composites with 0 and 6 wt.% of binder as

input into the developed ANN model to predict

the compressive strength for the composites with

3 wt.% of binder as output. Fig. 4(a) and (b) shows

the sensitivity analysis results. The correlation

coefficient (R2) was 0.88 (Fig. 4(a)). The exact val-

ues of the measured strengths could not be

obtained from the model as seen in (Fig. 4(b)).
This was to be expected because the model was

conservative and needed more training data to

learn the extremes.
5. Conclusion

An ANN approach was successfully applied to
predict the ply-lay up compressive strength of the

composites by considering the effects of the ther-

moplastic binder amount, fiber preform thickness

prior to VARTM process and the composite fiber

volume fraction. The comparison of the ANN pre-

dictions with the experimental measurements was

satisfactory. Moreover, the predicted values of

ANN model were compared with those of a mul-
ti-linear regression (MLR) model. It was found

that ANN had better predictions of the experimen-

tal compressive strength values than those with

MLR. Furthermore, the sensitivity analysis was

done to evaluate the performance of the ANN

model. The results were found to be consistent
with the experimental observations, but to have a

lower correlation coefficient (R2). This indicates

that the number of training dataset is critical for

the ANN model sensitivity and predictive quality.

As a result, it may be concluded that the ANN is a
useful tool in characterizing the effects of some

critical material parameters on the properties of

the polymer composites if especially a sufficient

amount of experimental data is obtained.
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