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Abstract

The problem of magnetic vortex dynamics in an anisotropic spin liquid model is considered. For incompressible flow
the model admits reduction to saturating Bogomolny inequality analytic projections of spin variables, subject the linear
holomorphic Schrödinger equation. It allows us to construct N vortex configurations in terms of the complex Hermite
polynomials. Using complex Galilean boost transformations, the interaction of the vortices and the vortex chain lattices
(vortex crystals) is studied. By the complexified Cole–Hopf transformation, integrable N vortex dynamics is described
by the holomorphic Burgers equation. Mapping of the point vortex problem to N-particle problem, the complexified
Calogero–Moser system, showing its integrability and the Hamiltonian structure, is given.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

As is well known the main ideas of Descartes vortex theory are represented in ‘‘Discours de la methode’’ (1637) and
in a capital work ‘‘Principia Philosophiae’’ (1644). The Cartesian cosmology is based on primordial chaos, which by
motion according to fixed laws is ordering to cosmos [1]. According to Descartes the Universe is filled by thin all-pen-
etrable fluid (similar to the ether) which is in a permanent rotational motion. The term vortex itself, ‘‘tourbillon’’, is
coming from comparison with turbulent motion of a river. Besides Descartes, the vortex models of gravity were pro-
posed by Bernoulli, Stokes and Huygens. But soon they were displaced by the Newton’s gravity theory for a long time.
Only in the middle of XIX century the interest to vortex theory revives with works of Helmholtz (1821–1894) [2],
Thompson (Lord Kelvin) [3], and Kirchhoff (1824–1887) [4] on the vortex motion of an ideal fluid. The mathematical
description of processes related with the motion of vortex in a liquid is starting from Helmholtz’s paper ‘‘Uber Integrale
der Hydrodynamischen Gleichungen Welche den Wirbelbewegungen Entsprechen’’ (1858) in which he formulated his
famous theorem on conservation of vorticity in the rotational motion of a fluid. He also notices an analogy between the
fluid motion and the magnetic action of electric fields. General equations of motion for N point vortices (Kirchhoff’s
equations) have been introduced by Kirchhoff in his lectures in mathematical physics [4]. He derived the corresponding
Hamiltonian form of equations and found all possible integrals of the motion. In contrast with Newton’s equation for
N point masses, having the second order, the Kirchhoff equations are the first order of vortex coordinates. Walter
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Gröbli in his thesis ‘‘Specille Probleme uber die Bewegung Geradliniger Parallerer Wirbelfaden’’ in 1877 [5] analyzed the
integrable problem of motion of three vortices in the plane. He obtained the system of three nonlinear equations possess-
ing two integrals of motion and allowing to get explicit quadrature. He also considered particular case of the problem of
four vortices under condition of symmetry axis and more general problem of 2N vortices with N symmetry axes.

The interest to vortex theory increases with Kelvin’s vortex theory of atoms ‘‘On Vortex Atoms’’, [3]. But soon his
model was dismissed by quantum mechanical model of atoms [6]. Kelvin also posed the problem of stability under the
stationary rotation of the system of N point vortices located at N polygon vertices. He noticed that the problem is sim-
ilar to the problem of stability for the system of equal magnets floating in external magnetic field. Experiments with
floating magnets performed by Mayer, leaded him to the conclusion that for number of vortices (magnets) exceeding
5, the rotating polygon becomes unstable (in fact the case N = 6 is stable). The linear stability of polygon has been stud-
ied by Thompson. He found that for n 6 6 the linear stability takes place, while for n P 8 is not. Stability of the case
n = 7 needs nonlinear analysis and after several failed attempts has been proved only recently. Non-integrability of the
four vortex problem in plane, indicating on chaotization of the vortex motion, was found recently [7].

Many problems involving interfacial motion [8] can be cast in the form of vortex sheet dynamics [9]. The discovery of
coherent structures in turbulence, increases expectations that the study of vortices will lead to models and an under-
standing of turbulent flow, one of the great unsolved problems of classical physics. Vortex dynamics is a natural par-
adigm for the field of chaotic motion and modern dynamical system theory [10]. The theory of line vortices and vortex
rings is a part of modern theory of liquid Helium II. Interaction of vortex structures essentially influences on processes
in atmosphere and the ocean. In techniques, complete understanding of friction to the motion, noise generation and
shock waves, is impossible without clear theory of the vortex motion. In a wide and important class of motions of ideal
inviscid fluid [11], the vortex dynamics provides physically profound examples of nonlinear Hamiltonian systems of infi-
nite dimensions, attracting much interest in relation with chaotic phenomena in dynamical systems [12].

Modern applications of vortices extend from liquid crystals and ferromagnets [13,14] to superfluids [15,16] and from
non-equilibrium patterns to Quantum Hall effect [17] and cosmic strings [18–20]. They can play essential role in the loop
gravity and quantum spacetime, leading to formation of the Cantorian Space [21], fractalization of the microspace
geometry, which has been discussed recently in the context of the fractional Quantum Hall Effect [22,23] and Cosmic
Strings [24].

Recently it was shown that in ferromagnetic nanomagnets, for particles of various shapes (strips and rings), the
switching process involves domain walls which are composite objects made of two or more vortices and edge defects
with integer or fractional winding numbers [25]. It may provide a basic model of complex magnetization dynamics
in nanomagnets by reducing it to the creation, propagation, and annihilation of a few planar topological defects
[26]. The planar vortices represent important class of magnetic systems admitting topologically nontrivial solutions,
the dynamics of which is one of the most intriguing questions. Due to nonlinearity in general it is very difficult task
to construct exact analytical solution even for one vortex. This is why simplified models admitting exact treatment
are important tools to study more realistic situation. In the present paper we consider the simple model of anisotropic
planar spin liquid, admitting construction of exact N-vortex and N-vortex lattice solutions with integrable dynamics for
arbitrary N.
2. Topological spin liquid model

Inspired by superfluid motion at T = 0 in He3 � A, the model introduces the normal velocity of the fermionic liquid
as an additional hydrodynamical variable, describing the background fermionic vacuum. The magnetic fluid or spin
liquid is characterized by the local magnetization field~Sðx; y; tÞ subject to the modified Heisenberg model in the moving
frame with velocity ~vðx; y; tÞ. Moreover, for planar magnetic systems the existence of topologically nontrivial vortex
configurations requires the fluid to be rotational with non-vanishing vorticity function [28]. The system is
~St þ t1o1
~S � t2o2

~S ¼~S � ðo2
1 � o2

2Þ �~S; ð1Þ
o1t2 � o2t1 ¼ 2~Sðo1

~S � o2 �~SÞ; ð2Þ
where ~S2ðx; y; tÞ ¼ 1 is classical spin field,~v ¼ ðv1; v2Þ is velocity field. The first equation is anisotropic in x and y direc-
tions, the second equation, requiring that the fluid vorticity in the plane is proportional to the corresponding magnetic
topological current component, is known in the theory of superfluid He3 as the Mermin–Ho relation [15,16]. This sys-
tem in general should be supplied with the continuity equation qt þr � ðq~vÞ ¼ 0 for the density q(x,y, t). For incom-
pressible flow qt = 0 the last equation simplifies to r �~v ¼ 0 and allows one exclude q from consideration.
Moreover, for the fluid flow constrained by the incompressibility condition
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o1t1 þ o2t2 ¼ 0; ð3Þ

the conservation law
otJ 0 þ o2J 2 � o1J 1 ¼ 0 ð4Þ
holds [35], where
J 0 ¼ ðo1
~SÞ2 þ ðo2

~SÞ2;
J 1 ¼ �2o1

~S �~S � ðo2
1 � o2

2Þ~S þ v1J 0 þ 2~S � ðo1
~S � o2

2
~S � o1o2

~S � o2
~SÞ;

J 2 ¼ 2o2
~S �~S � ðo2

1 � o2
2Þ~S þ v2J 0 � 2~S � ðo2

1
~S � o1o2

~S � o1
~S � o2

~SÞ:
ð5Þ
Due to this, for the incompressible flow (3) the ‘‘energy’’ functional
E ¼
Z Z

J 0 d2x ¼
Z Z

fðo1
~SÞ2 þ ðo2

~SÞ2g d2x ð6Þ
is the conserved quantity. The topological charge or the winding number of a spin configuration is defined as
Q ¼ 1

4p

Z Z
~S � ðo1

~S � o2
~SÞ d2x ð7Þ
and it is also the conserved quantity. These two quantities are related by the Bogomolny type inequality
E P 8pjQj: ð8Þ
It follows from the evident one
Z Z
ðoi
~S � �ij

~S � oj
~SÞ2 d2x P 0 ð9Þ
and is saturated by time dependent spin configurations satisfying the self-duality equations
oi
~S � �ij

~S � oj
~S ¼ 0: ð10Þ
If the spin vector phase space, the 2D sphere, we consider as the Riemann sphere for a complex plane, we can project
points on this sphere to that plane by the stereographic projections
Sþ ¼ S1 þ iS2 ¼
2f

1þ jfj2
; S3 ¼

1� jfj2

1þ jfj2
; ð11Þ
where f(x,y, t) is a complex valued function. Now we rewrite the self-duality equation (10) in stereographic projection
form. By the complex derivatives, for the first sign in (10) we have the analyticity or the holomorphicity condition:
f�zðx; y; tÞ ¼ 0 ð12Þ
while for the second sign we have the anti-analyticity or the anti-holomorphicity condition:
fzðx; y; tÞ ¼ 0; ð13Þ
where z = x + iy and oz ¼ 1
2
ðox � ioyÞ, o�z ¼ 1

2
ðox þ ioyÞ. These conditions written in terms of the real Rf and imaginary

If parts of function f, representing the Cauchy–Riemann equations, describe the incompressible and irrotational fluid
flow with the velocity potential Rf and the stream function If [27].
3. Anti-holomorphic reduction

As we can see, analytic/anti-analytic configurations saturate Bogomolny inequality and have minimal energy. This
suggests to find solutions of the model (1) with holomorphic/anti-holomorphic stereographic projections. For this rea-
son we first rewrite (1) and (2) in stereographic projection form in complex coordinates z for complex velocities
v± = v1 ± iv2 and if f is anti-holomorphic fz = 0, then the system is reduced to
ift þ ivþf�z þ 2f�z�z � 4
f2

�z
�f

1þ jfj2
¼ 0; ð14Þ

ozvþ � o�zv� ¼ �8i
�fzf�z

ð1þ jfj2Þ2
: ð15Þ
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To be consistent, this anti-holomorphicity constraint must be compatible with time evolution. By direct computation
we can show that for incompressible flow (3) the anti-holomorphic constraint fz = 0 is compatible with the time evo-
lution ofz/ot = 0. For this flow from (14) and (15) we have ft þ F f�z ¼ 0 and Fz = 0, where F � vþ � 2i½ln f�z

1þjfj2��z.
4. Anti-holomorphic Ishimori model

The above consideration suggests to solve the incompressibility conditions explicitly. So we consider the topological
magnet model (1), (2) with incompressibility condition (3). Equation ~r �~v ¼ 0 can be solved in terms of the stream func-
tion of the flow, v1 = o2w, v2 = �o1w, so that we get the so called Ishimori model [29].
~St þ o2wo1
~S þ o1wo2

~S ¼~S � ðo2
1
~S � o2

2
~SÞ; ð16Þ

ðo2
1 þ o

2
2Þw ¼ �2~S � ðo1

~S � o2
~SÞ: ð17Þ
The Ishimori model is the first example of integrable classical spin model in 2 + 1 dimensions [36]. It was shown to be
gauge equivalent to the Davey–Stewartson equation, representing the 2 + 1 dimensional generalization of the nonlinear
Schrödinger equation [32,33,37]. Though it was solved in terms of the �o problem, for description of vortices and vortex
lattices we propose more simple and elegant method. In terms of complex variables
vþ ¼ v1 þ iv2 ¼ �2iw�z; v� ¼ v1 � iv2 ¼ 2iwz ð18Þ
for incompressible flow, preserving anti holomorphicity constraint, we have dependence f ¼ fð�z; tÞ and the model re-
duces to the system
ift þ 2w�zf�z þ 2f�z�z �
4�ff2

�z

1þ jfj2
¼ 0; ð19Þ

wz�z ¼
2�fzf�z

ð1þ jfj2Þ2
: ð20Þ
We can rearrange the first equation as
ift þ 2f�zfw� 2 lnð1þ jfj2Þ þ ln f�zg�z ¼ 0: ð21Þ
If we choose w = 2ln(1 + jfj2), then Eq. (20)
wz�z ¼ 2
�fzf

1þ jfj2

" #
�z

¼ 2
�fzf�z

ð1þ jfj2Þ2
ð22Þ
is satisfied automatically. Then from (21) for function f we have the anti-holomorphic time dependent Schrödinger
equation
ift þ 2f�z�z ¼ 0: ð23Þ
By complex analog of the Cole–Hopf transformation u ¼ 4f�z=f ¼ 4ðlog fÞ�z it implies complex Burgers’ equation
iut þ uu�z þ 2u�z�z ¼ 0: ð24Þ
In (24) u can be interpreted as the complex velocity of effective flow with the complex potential f(z) = logf4. Then every
zero of function f corresponds to the vortex solution (pole of complex velocity) of anti-holomorphic Burgers’ equation.
5. Magnetic vortices as moving zeroes of Hermite polynomials

By stereographic projection (11) at every zero of function fð�zk ; tÞ ¼ 0 we have
ðS1 þ iS2Þð�zk ; tÞ ¼ 0; S3ð�zk ; tÞ ¼ 1: ð25Þ
From another side for the polynomial fN of degree N at infinity |z|!1

ðS1 þ iS2Þð�zk ; tÞ ¼ 0; S3ð�zk ; tÞ ¼ �1: ð26Þ
It shows that every zero corresponds to the magnetic vortex located at that zero with the spin vector~S directed up, while
at infinity it is directed down (ferromagnetic type order) (see Fig. 1). With such boundary conditions the topological
charge Q in (7) is an integer valued and characterizes the number of magnetic vortices.



Fig. 1. N = 1. Magnetic vortex.
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If we calculate the topological charge (7) for N zeroes solution
fð�z; tÞ ¼
YN
k¼1

ð�z� �zkðtÞÞ ð27Þ
then we find that Q = �N. The above consideration shows that motion of zeroes of time dependent Schrödinger equa-
tion (23) describes the motion of magnetic vortices in the Ishimori model. Moreover due to (24) dynamics of these vor-
tices is described by the anti-holomorphic Burgers’ equation. To study motion of zeroes of (23) we construct the
generating function of the basic vortex solutions by considering complex plane wave solution
fð�z; tÞ ¼ ek�zþ2ik2t: ð28Þ
Let x � k
ffiffiffi
2t
i

q
, then we rewrite it as the generating function for the Hermite polynomials of complex argument
ek�zþ2ik2 t ¼ e�x2þ2 �z
ffiffi
i

8t

p� �
x ¼

X1
n¼0

H n �z

ffiffiffiffi
i

8t

r !
xn

n!
ð29Þ
or
fð�z; tÞ ¼
X1
n¼0

kn

n!
ð�2itÞn=2H n �z

ffiffiffiffi
i

8t

r !
¼
X1
n¼0

kn

n!
Wnð�z; tÞ; ð30Þ
where at every power kn we have a polynomial solution of order n:
Wnð�z; tÞ ¼
2t
i

� �n=2

H n �z

ffiffiffiffi
i

8t

r !
: ð31Þ
This polynomial has n complex roots �z1ðtÞ; . . . ;�znðtÞ describing positions of vortices. For complex zeroes of this func-
tion, by identification
WN ð�z; tÞ ¼
YN
k¼1

ð�z� �zkðtÞÞ ¼ ð�2itÞN=2H N
�z

2
ffiffiffiffiffiffiffiffiffi
�2it
p

� �
ð32Þ
we find that �z ¼ �zkðtÞ implies H N ð �zk

2
ffiffiffiffiffiffi
�2it
p Þ ¼ 0. Denoting wðNÞk , k = 1, . . . ,N as zeroes of Hermite polynomials,

H N ðwðNÞk Þ ¼ 0, we have the time dependence for vortex positions
�zkðtÞ ¼ 2wðNÞk

ffiffiffiffiffiffiffiffiffi
�2it
p

: ð33Þ
Due to reality of roots wðNÞk , the form of our solution �zkðtÞ ¼ 2wðNÞk

ffiffiffiffiffiffiffiffiffi
�2it
p

implies that all vortices are located on diagonal
lines of complex plane:
�zkðtÞ ¼ j2wðNÞk

ffiffiffiffiffiffiffiffi
�2t
p

jeip=4: ð34Þ
We note that since the time dependence includes square root of time variable t, then under time reflection, when t is re-
placed by �t, position of vortices will rotate �zk ! eip=2�zk on angle p/2. It means that under collision our vortices change
velocity in orthogonal direction and from one diagonal line would be displaced to the orthogonal one. Moreover, sum of
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vortex positions, representing the center of mass of the system, is integral of motion located at the beginning of
coordinates.

In Fig. 2 we show contour plot of basic vortex dynamics for four vortices.
In Fig. 3 interaction of two magnetic vortices in Ishimori model is shown.
Since function WN in (32) is solution of the linear equation (23) for any integer N, then any linear combination of

these functions
UN ð�z; tÞ ¼ aNWN ð�z; tÞ þ aN�1WN�1ð�z; tÞ þ � � � þ a0W0ð�z; tÞ ð35Þ
aN 5 0 is also a solution. This solution is determined by N + 1 complex constants a0,a1,a2, . . . ,aN, which are integrals
of motion of the system. The higher order coefficient aN 5 0 is not essential and could be put to one. Below we rep-
resent particular cases for N = 3 and N = 4.

(1) For N = 3 we have the general solution
Uð�z; tÞ ¼ ð�z3 þ 12�zitÞ þ a2ð�z2 þ 4itÞ þ a1�zþ a0: ð36Þ
This cubic in z equation has three complex roots �z1ðtÞ; �z2ðtÞ; �z3ðtÞ moving in plane according to the systems (76). Instead
of solving that system of differential equations we will find roots of cubic equation according Cardano formulas.
Coefficient
�a2 ¼ �z1ðtÞ þ �z2ðtÞ þ �z3ðtÞ
is integral of motion having meaning of the center of mass for three vortices. Without loss of generality we can always
choose coordinate system with the beginning at this center of mass. So we will put a2 = 0. Then our cubic equation has
the reduced Cardano form
�z3 þ p�zþ q ¼ 0; ð37Þ
where p ¼ a1 þ 12�zit, q = a0 + 4a2it. Solution of this equation is
�z1 ¼ a1 þ b1; �z2 ¼ a1x1 þ b1x2; �z3 ¼ a1x2 þ b1x1 ð38Þ
Fig. 2. N = 4. Vortex dynamics.

Fig. 3. N = 2. Magnetic vortex dynamics.



244 Z.N. Gurkan, O. Pashaev / Chaos, Solitons and Fractals 38 (2008) 238–253
where a1, b1 is one of the couple of roots
a ¼ � q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r !1=3

b ¼ � q
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r !1=3

ð39Þ
and
x1 ¼ �1=2þ i
ffiffiffi
3
p

=2 ¼ ei2p=3; x2 ¼ �1=2� i
ffiffiffi
3
p

=2 ¼ e�i2p=3
are cubic roots of 1. For particular values a0 = a2 = 0 when q = 0 our roots become
�z1 ¼
ffiffiffiffiffiffi
4it
p
ð1þ eip=3Þ; ð40Þ

�z2 ¼
ffiffiffiffiffiffi
4it
p
ðx1 þ x2eip=3Þ; ð41Þ

�z3 ¼
ffiffiffiffiffiffi
4it
p
ðx2 þ x1eip=3Þ ð42Þ
and coincide with particular cases (33) when one of the vortices, �z2 ¼ 0, is static at the beginning of coordinates. In gen-
eral case due to non-vanishing orbital momentum no one of three vortices crosses beginning of coordinates.

(2) For N = 4 case we have
Uð�z; tÞ ¼ ð�z4 þ 24�z2it þ 12ð�2itÞ2Þ þ a3ð�z3 þ 12�zitÞ þ a2ð�z2 þ 4itÞ þ a1�zþ a0 ð43Þ
and like in previous case we choose the center of mass at the beginning of coordinate system, so that the coefficient
�a3 ¼ �z1ðtÞ þ �z2ðtÞ þ �z3ðtÞ þ �z4ðtÞ ¼ 0:
Explicit form of the roots in this case can be done in radicals. Below we will write them only for special case a1 = 0.
Solving bi-quadratic equation �z4 þ �z2½a2 þ 24it� þ ½a0 þ 4a2it þ 12ð�2itÞ2� ¼ 0 we have four roots:
�z1;2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� a2

2
þ 12it

h i
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2
þ 12it

� �2

� a0 þ 4a2it þ 12ð�2itÞ2
h irs

; ð44Þ

�z3;4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� a2

2
þ 12it

h i
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2
þ 12it

� �2

� ½a0 þ 4a2it þ 12ð�2itÞ2�
rs

: ð45Þ
From dynamics of 3 and 4 vortices we can see that differences appear for the vortex motion at finite times. But for large
time the behavior of vortices is similar to the particular case (33). Explanation of this fact can be done for general
N-vortex configuration. Indeed, if we consider asymptotic form of the general N-vortex solution (35), when t!1
and �z!1 such that jzj2/t! const, then we can see that all terms of the function WN for any N have the same order.
Moreover, the dominant role in (35) plays the function WN with highest order of N. But it is exactly solution (32) which
we found before. So we proved that asymptotically our vortices will follow diagonal lines according to the low (33):
�zkðtÞ ¼ 2wk

ffiffiffiffiffiffiffiffiffi
�2it
p

. If we calculate complex velocity corresponding to k-vortex uk ¼ d�zk=dt ¼ wk

ffiffiffiffiffiffiffiffiffiffiffiffi
�2i=t

p
then at large

times t!1 the velocity of the vortex is decreasing up to zero uk! 0, as the inverse square root of time � 1=
ffiffi
t
p

.

6. Vortex solutions generating technique

In this section we propose a general method allowing us to create an arbitrary number of vortices on given back-
ground solution. In general, N vortex configuration is described by complex polynomial function degree N where coef-
ficients are represented in terms of symmetric polynomials. The polynomial P 1 ¼ �z1 þ � � � þ �zN is integral of motion
having meaning of the center of mass for N vortices. However, all other polynomials are not integrals of motion, only
proper combinations of these polynomials provide integrals of motion of the system. Moreover, to find solutions
�z1ðtÞ; . . . ;�zN ðtÞ in terms of these polynomials means solving algebraic equation degree N, which as known to be solvable
in radicals only for N 6 4. This is why to add a new zero or vortex to the system we follow another approach. In Section
4 we have constructed basic solutions in terms of Hermite polynomials of complex argument (32). Adding recurrence
relations
H Nþ1ðxÞ ¼ 2xH N ðxÞ � 2NHN�1ðxÞ; ð46Þ
0 ¼ �H 0N ðxÞ þ 2NHN�1ðxÞ ð47Þ
one can get
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H Nþ1ðxÞ ¼ 2x� d

dx

� �
H N ðxÞ: ð48Þ
Recursively it leads to following operator representation of the standard Hermite polynomials [38]
H N ðxÞ ¼ 2x� d

dx

� �N

� 1 ð49Þ
which implies for complex argument
WN ð�z; tÞ ¼ ð�2itÞN=2 �zffiffiffiffiffiffiffiffiffi
�2it
p � 2

ffiffiffiffiffiffiffiffiffi
�2it
p o

o�z

� �N

� 1 ð50Þ
and we have operator representation for our basic solution (32)
WN ð�z; tÞ ¼ �zþ 4it
o

o�z

� �N

� 1: ð51Þ
This representation suggests the form of generating operator for solutions of our Eq. (23). By direct substitution we can
prove the next, vortex generation technique for solutions of this equation. If Uð�z; tÞ is a solution of (23), then function
Wð�z; tÞ ¼ �zþ 4it
o

o�z

� �
Uð�z; tÞ ð52Þ
is also a solution of (23). This solution add one vortex to the background configuration Uð�z; tÞ. Applying it several times
one can add arbitrary number of vortices. Eq. (23) has evident solution U = 1. Then
W1ð�z; tÞ ¼ �zþ 4it
o

o�z

� �
Uð�z; tÞ ¼ �zþ 4it

o

o�z

� �
� 1 ð53Þ
is also a solution of (23). Next we have
W2ð�z; tÞ ¼ �zþ 4it
o

o�z

� �
W1 ¼ �zþ 4it

o

o�z

� �2

� 1: ð54Þ
Continuing this procedure we have solution of (23) for an arbitrary positive integer N
WN ð�z; tÞ ¼ �zþ 4it
o

o�z

� �
WN�1 ¼ � � � ¼ �zþ 4it

o

o�z

� �N

� 1: ð55Þ
This way we derived particular operator representation for N vortex solution
WN ð�z; tÞ ¼
YN
i¼1

ð�z� �ziðtÞÞ ¼ �zþ 4it
o

o�z

� �N

1: ð56Þ
Using previous result and linearity of (23) we have the next generalization. If Uð�z; tÞ is a solution of Eq. (23) then
function
Wð�z; tÞ ¼
XN

n¼0

an �zþ 4it
d

d�z

� �n

Uð�z; tÞ; ð57Þ
where a0, . . . ,aN are arbitrary constants, is also a solution of Eq. (23). As easy to see adding to the system a new vortex
in a proper way, we add an additional integral of motion. Let us suppose that we have solution Wð�z; tÞ with N-simple
zeroes at points �z1; . . . ;�zN , that means, Wð�zn; tÞ ¼ 0, n = 1, . . . ,N. Then due to
Wð�z; tÞ ¼
YN
n¼1

ð�z� �znðtÞÞ ¼
XN

n¼0

anWnð�z; tÞ ð58Þ
we have the system of N linear algebraic equations
PN

n¼0anWnð�zk ; tÞ ¼ 0, k = 1, . . . ,N. Extracting n = 0 term and divid-
ing on a0 it can be rewritten in the form of inhomogeneous system of N algebraic equations
XN

n¼1

bnWnð�zk ; tÞ ¼ �1; k ¼ 1; . . . ;N ð59Þ
on N variables bn = an/a0. Then, N integrals of motion can be found by Crammers formulas bk = Dk/D, k = 1, . . . ,N.
From the above consideration if we have Uð�z; tÞ as a solution of Eq. (23) and F ð�zÞ is anti-analytic function in some
domain D0 = {jzj < R}, then function
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Wð�z; tÞ ¼ F �zþ 4it
d

d�z

� �
Uð�z; tÞ ð60Þ
is also a solution of Eq. (23). Since coefficients an � F ðnÞð0Þ
n!

are integrals of motion, the function F can be considered as the
generating function of integrals of motion. At the end of this section we note that operator K ¼ �zþ 4ito�z in our ap-
proach is commuting with the Schrödinger operator S ¼ iot þ 2o2

�z and represent the complex boost transformation
of the Galilean group.
7. Sine-Hermite solution and stationary vortex lattice

As an application let us consider entire function
F ðwÞ ¼ sin w ¼
X1
n¼0

ð�1Þn w2nþ1

ð2nþ 1Þ! : ð61Þ
Then according to the above consideration
Uð�z; tÞ ¼
X1
n¼0

ð�1Þn

ð2nþ 1Þ! �zþ 4it
o

o�z

� �2nþ1

� 1 ð62Þ
is solution of Eq. (23). According to (51) we rewrite it as
Uð�z; tÞ ¼
X1
n¼0

ð�1Þn

ð2nþ 1Þ! W2nþ1ð�z; tÞ ¼ W1ð�z; tÞ �
W3ð�z; tÞ

3!
þW5ð�z; tÞ

5!
� � � � ð63Þ
or by (32)
Uð�z; tÞ ¼
X1
n¼0

ð�1Þn

ð2nþ 1Þ! ð�2itÞnþ
1
2H 2nþ1

�z

2
ffiffiffiffiffiffiffiffiffi
�2it
p

� �

¼ ð�2itÞnþ
1
2H 1

�z

2
ffiffiffiffiffiffiffiffiffi
�2it
p

� �
� 1

3!
ð�2itÞnþ

3
2H 3

�z

2
ffiffiffiffiffiffiffiffiffi
�2it
p

� �
þ 1

5!
ð�2itÞnþ

5
2H 5

�z

2
ffiffiffiffiffiffiffiffiffi
�2it
p

� �
� � � � ð64Þ
Writing operator
sin �zþ 4it
o

o�z

� �
¼ 1

2i
exp i �zþ 4it

o

o�z

� �	 

� exp �i �zþ 4it

o

o�z

� �	 
� �
ð65Þ
and using Baker–Hausdorff relation for non-commuting operators �z; o
o�z we have
sin �zþ 4it
o

o�z

� �
¼ � i

2
e�2it ei�ze�4to=o�z � e�i�ze4to=o�z

� �
ð66Þ
or
sin �zþ 4it
o

o�z

� �
¼ ie�2it cos�z sinh 4t

o

o�z

� �
� i sin�z cosh 4t

o

o�z

� �	 

: ð67Þ
Applying this operator to evident solution W = 1 we get
sin �zþ 4it
o

o�z

� �
� 1 ¼ e�2it sin�z: ð68Þ
It describes the time dependent stationary vortex lattice solution of (23). Positions of vortices in the lattice do not
change with time. Comparing with (62) we have the next expansion in terms of Hermite polynomials
expð�2itÞ sin�z ¼ ð�2itÞnþ
1
2H 1

�z

2
ffiffiffiffiffiffiffiffiffi
�2it
p

� �
ð69Þ

� 1

3!
ð�2itÞnþ

3
2H 3

�z

2
ffiffiffiffiffiffiffiffiffi
�2it
p

� �
þ 1

5!
ð�2itÞnþ

5
2H 5

�z

2
ffiffiffiffiffiffiffiffiffi
�2it
p

� �
� � � � ð70Þ
Then in terms of Wn it gives
Uð�z; tÞ ¼ e�2it sin�z ¼ W1ð�z; tÞ �
W3ð�z; tÞ

3!
þW5ð�z; tÞ

5!
� � � � ð71Þ
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The last formula describes decomposition of the stationary periodic lattice in terms of motion of odd
1,3,5, . . . , 2n + 1, . . . number of vortices. It shows that proper superposition of odd number basic vortex motions de-
scribed in Section 5 leads to the fixed in time periodic lattice of vortices (vortex crystal).
8. Single vortex–vortex lattice collision

As another application of the results from Section 5, now we construct a new class of solutions describing single
vortex collision with the vortex chain lattices. Consider solution of (23) in the double lattice form
fð�z; tÞ ¼ e�8it sinð�z� �z1ðtÞÞ sinð�zþ �z1ðtÞÞ; cos 2�z1ðtÞ ¼ re8it ð72Þ
then we have another solution of (23) in the form
Wð�z; tÞ ¼ ð�zþ 4it
o

o�z
Þ 1

2
ðr � e�8it cos 2�zÞ ¼ 1

2
½re8it�z� �z cos 2�zþ 8it sin 2�z�e�8it: ð73Þ
Using properties of trigonometric function of complex argument
sin 2�z ¼ sin 2x cosh 2y � i cos 2x sinh 2y ð74Þ
we have for the real and imaginary parts of function W following expressions correspondingly
RW ¼ r
2

x cos 8t þ r
2

y sin 8t þ 8t cos 2x sinh 2y � 1

2
x cos 2x cosh 2y � 1

2
y sin 2x sinh 2y;

IW ¼ r
2

x sin 8t � r
2

y cos 8t þ 8t sin 2x cosh 2y þ 1

2
y cos 2x cosh 2y � 1

2
x sin 2x sinh 2y:
In Fig. 4 we show collision of a single vortex with the double vortex lattices at positive time t > 0. As we can see, addi-
tion of the vortex leads to dimerization of the lattice vortices which propagates in both directions and creates finally the
dimerized lattice.

Following the same idea we can consider solution describing interaction of N-vortices with M-vortex chain lattices
(vortex crystal) in the form
Wð�z; tÞ ¼ e�2iM2t �zþ 4it
o

o�z

� �N YM
k¼1

sinð�z� �zkðtÞÞ: ð75Þ
9. Integrable N-particle problem for N-vortex motion

In this section we show that problem of N-point vortices in the plane can be reduced to complexified version of the
Calogero–Moser model type I [30,31]. As we have seen in Section 4 the system of N point vortices is described by func-
tion (27) satisfying the anti-holomorphic Schrödinger equation (23). Then positions of vortices in the complex plane,
�z1; . . . ;�zN , are subject to the first order system
d

dt
�zj ¼ �4i

XN

k 6¼ðjÞ

1

ð�zj � �zkÞ
: ð76Þ
In one space dimension this system has been considered first in [30,39] for moving poles of Burgers’ equation, deter-
mined by zeroes of the heat equation. However, complexification of the problem has several advantages [42]. First
of all the root problem of algebraic equation degree N is complete in the complex domain as well as the moving sin-
gularity analysis of differential equations. In contrast to the one dimension, the pole dynamics in the plane becomes
time reversible (see discussion after Eq. (34)) and has interpretation of the vortex dynamics. If we differentiate (76) once
and use the system again then we have the second order Newton’s equations of motion
d2

dt2
�zj ¼

XN

k 6¼ðjÞ

16

ð�zj � �zkÞ3
: ð77Þ
These equations have Hamiltonian form



Fig. 4. Single vortex – 2 vortex lattice dynamics.
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_�zj ¼
oH
opj

¼ pj; _p ¼ � oH
o�zj

ð78Þ
with Hamiltonian function
H ¼ 1

2

XN

j¼1

p2
j þ

X
j<k

8

ð�zj � �zkÞ2
: ð79Þ
The system (77) is complexified version of the Calogero–Moser system type I, where N-particle positions, q1, . . . ,qN

should be replaced by complex vortex positions �z1; . . . ;�zN . The Hamiltonian equation (78) are equivalent to the Lax
matrix equation
i _L ¼ AL� LA; ð80Þ
where
Ljk ¼ djkpj þ igð1� djkÞ
1

�zj � �zk
; ð81Þ

Ajk ¼ g djk

X
l 6¼j

1

ð�zj � �zlÞ2
� ð1� djkÞ

1

ð�zj � �zkÞ2

" #
; ð82Þ
and the coupling constant g ¼
ffiffiffiffiffiffiffi
�4
p

. Since matrix L(t) is isospectrally deformed with time, the corresponding (complex)
eigenvalues are time independent integrals of motion. Their symmetric functions as integrals of motion are given by
Ik = trLk+1. It shows that complexified Calogero–Moser system is an integrable system and as a consequence, the
N-vortex system (76), which has been mapped to Calogero–Moser system, is also integrable.
10. Integrable N-particle problem for N-vortex crystals

Similarly to the previous case now we consider mapping of the N-vortex chain lattices (vortex crystals) to the com-
plexified Calogero–Moser system of types II and III [31] . For simplicity first we consider the system of two vortex chain
lattices described by function
fð�z; tÞ ¼ e�4it sinð�z� �z1ðtÞÞ sinð�z� �z2ðtÞÞ ð83Þ
so that position of lattices is subject to the first order system
_�z1 ¼ �4i cotð�z1 � �z2Þ; _�z2 ¼ 4i cotð�z1 � �z2Þ: ð84Þ
Differentiating once in time we get Newton’s equations in the Hamiltonian form
_�z1 ¼
oH
op1

¼ p1; _p1 ¼ �
oH
o�z1

¼ 32
cotð�z1 � �z2Þ
sin3ð�z1 � �z2Þ

; ð85Þ

_�z2 ¼
oH
op2

¼ p2; _p2 ¼ �
oH
o�z2

¼ 32
cotð�z2 � �z1Þ
sin3ð�z2 � �z1Þ

ð86Þ
with Hamiltonian function
H ¼ p2
1

2
þ p2

2

2
þ 16

sin2ð�z1 � �z2Þ
: ð87Þ
Comparing this Hamiltonian of two vortex lattices with the Calogero–Moser system, we realize that it corresponds to
complexified version of the model type III. We can generalize this result considering N vortex chain lattices in the hor-
izontal direction x. Positions of lattices are subject to the first order system
_�zj ¼ �4i
XN

k¼1;ðk 6¼jÞ
cotð�zj � �zkÞ; j ¼ 1; . . . ;N : ð88Þ
Differentiating once we get
€�zj ¼ �32
XN

k¼1;ðk 6¼jÞ

cotð�zj � �zkÞ
sin2ð�zj � �zkÞ

; j ¼ 1; . . . ;N ð89Þ
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which is complexified Calogero–Moser system type III with Hamiltonian
H ¼ 1

2

X
j

p2
j þ

X
j<k

16

sin2ð�zj � �zkÞ
: ð90Þ
If instead of horizontal x direction, we consider N chain lattices in the vertical y direction, it results in rotation of every
zero on angle p/2 and the replacement of complex function sin�z by sinh�z. As a result, the corresponding Calagero–Mo-
ser system would be of type II. This consideration shows also equivalence of complexified Calogero–Moser systems of
types II and III.
11. Time dependent Schrödinger problem in harmonic potential

Vorticity equation (22) is invariant under substitution w! w + U where U is an arbitrary harmonic function:
DU = 0. Choosing
w ¼ 2 lnð1þ jfj2Þ þ Uð�z; tÞ þ �Uðz; tÞ ð91Þ
and substituting to (21) we have complex Schrödinger equation with additional potential term
ift þ f�z�z þ f�zU�z ¼ 0: ð92Þ
12. Bound state of vortices

Here we choose particular form Uð�z; tÞ ¼ 1
2
�z2 so that
w ¼ 2 lnð1þ jfj2Þ þ 1

2
ð�z2 þ z2Þ: ð93Þ
Then we have time evolution subject to the equation
ift þ 2f�z�z þ �zf�z ¼ 0: ð94Þ
Looking for solution in the form [30,42]
fð�z; tÞ ¼
X

n

eintunð�zÞ ð95Þ
we find that function unð�zÞ satisfies the complex Hermite equation
u00n þ �zu0n þ un ¼ 0: ð96Þ
It gives time dependent vortex solution in the form
fð�z; tÞ ¼
XN

n¼0

eintH nð�zÞ: ð97Þ
This solution is Nth degree polynomial with periodic time dependent coefficients and it describes the bound state of N

magnetic vortices. For particular value N = 2 we have
fð�z; tÞ ¼ H 0ð�zÞ þ eitH 1ð�zÞ þ e2itH 2ð�zÞ; ð98Þ
Rf ¼ 1þ 2x cos t þ 2y sin t þ ½4ðx2 � y2Þ � 2� cos 2t þ 8xy sin 2t; ð99Þ
If ¼ �2y cos t þ 2x sin t � 8xy cos 2t þ ½4ðx2 � y2Þ � 2� sin 2t: ð100Þ
This solution is periodic in time with period T = 2p and it describes the bound state of two magnetic vortices (see
Fig. 5).
13. Static vortex crystals and the Liouville equation

From previous considerations we have seen that static vortex configurations for Eq. (23) are exist only for N = 1.
One can ask if there exist static N vortex or even N-vortex lattices-vortex crystals for the Ishimori model (16) and
(17). To answer this question we return back to (21). For static configurations of/ot = 0 implies



Fig. 5. Bound state of two magnetic vortices.
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w ¼ 2 lnð1þ jfj2Þ � ln f�z � ln �fz ¼ � ln
jf�zj2

ð1þ jfj2Þ2
ð101Þ
so that the vorticity equation (22) is satisfied automatically. But we notice that (101) is the general solution of the Liou-
ville equation
Dw ¼ 8e�w: ð102Þ
If one chooses f ¼
QN

i¼1ð�z� �ziÞ with N simple zeroes in the complex plane then it determines N static vortices located in
the plane at zeroes of this function [34]. To have static vortex lattices periodic in x direction we can consider
f ¼
YN
i¼1

sinð�z� �ziÞ: ð103Þ
It determines N time independent magnetic vortex lattices. For N = 1 the stream function
w ¼ ln
ð1þ j sin zj2Þ2

j cos zj2
ð104Þ
describes periodic in x static lattice of vortices. If we choose f ¼ �z sin�z then the stream function
w ¼ ln
ð1þ jzj2j sin zj2Þ2

j sin zþ z cos zj2
ð105Þ
describes single vortex imposed on vortex lattice.
14. Conclusions

To solve the problem of magnetic vortices in a planar spin liquid model, first we found holomorphic reductions of
the model and showed that evolution equation at this reduction becomes the linear anti-holomorphic Schrödinger equa-
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tion. Analogy of the anti-holomorphic Cole–Hopf transformation with the well known hydrodynamical relation
between the complex velocity and the complex potential, leaded us to formulation of the complex Burgers’ equation
with integrable N vortex dynamics. We found that vortices correspond to zeroes of the complex Schrödinger equation.
This allowed us to construct N vortex configurations, vortex chain lattices and their mutual dynamics in terms of the
complex Hermite polynomials. By mapping our vortex problem to N-particle problem, the complexified Calogero–
Moser system, we showed its integrability and the Hamiltonian structure.

Finally, we note that the holomorphic Hopf equation
iut þ uuz ¼ 0; ð106Þ
which corresponds to the dispersionless limit of the holomorphic Burgers’ equation (24), has been considered very re-
cently as nonlinear bosonization in quantum hydrodynamics for description of quantum shock waves in edge states of
fractional quantum Hall effect [40]. The weak solution of this equation for point vortices with strength C1, . . . ,CN, so
that
rotu ¼
XN

k¼1

Ckdðx� xkðtÞÞdðy � ykðtÞÞ ð107Þ
gives the following vortex system [43]
dzk

dt
¼ 4i

XN

l¼1;ðl 6¼kÞ

Cl

zk � zl
; k ¼ 1; . . . ;N : ð108Þ
When all the vortex strengths are equal C1 =� � �= CN then this system reduces to (76) and is integrable. However, in the
general case the system is not known to be integrable. In particular, for N = 3 the system with constraint C1 = C2 5 C3

has been studied recently in [41] to explain the transition from regular to irregular motion as travel on the Riemann
surface.
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