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econd Order Diffraction of Water
aves by a Bottom Mounted

ertical Circular Cylinder and Some
elated Numerical Problems
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Hankel transformation is used to obtain the second order dif-
raction solution of vertical cylinder of circular cross section. The
mproper integral over the free surface is tackled carefully. The
ingularity at the free surface is overcome effectively using a third
rder nonlinear transformation. Numerical results for free surface
levations compare well with the published data.
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Introduction
Many offshore structures are supported by vertical columns of a

ircular cross section, which are subjected to wave diffraction.
ven with the simplifying assumptions of ideal flow, the interac-

ion of water waves with floating bodies is a difficult nonlinear
roblem. In this paper, the solution to the second order diffraction
roblem is resolved using the Hankel transformation, which is
uitable for the hydrodynamic interaction problem, and some nu-
erical problems in the evaluation of the potential is discussed.
An expression for the second order diffraction force was, first,

erived by Lighthill �1�. He made use of an assisting potential.
olin developed the analysis into finite water depth �2�. Molin’s

olution has been extended by Eatock Taylor and Hung by devel-
ping a method for the evaluation of the free surface integral
ased on leading asymptotics �3�. Direct solution of the second
rder diffraction was considered by Kim and Yue �4�. They ob-
ained a Green’s theorem integral equation for the second order
iffraction potential involving the wave source Green’s function.
study similar to the Kim and Yue study was carried out by Chau

nd Eatock Taylor �5�. Instead of using an integral equation, a
irect solution of the boundary value problem was provided by
uang and Eatock Taylor �6�. Numerical solutions of the nonlin-

ar diffraction problem were also studied by several researchers
uch as Qiu et al. �7�. In this study, a second order diffraction
roblem of a complete cylinder was resolved using the Hankel
ransform.

Formulation of the Problem
The second order diffraction of a plane monochromatic incident

ave of frequency �, wave number k, determined by the disper-
ion relation and amplitude A by a fixed circular cylinder of radius
is considered in water of uniform depth H. A cylindrical coor-

inate system �r ,� ,z� is used with �r ,�� on the quiscent free sur-
ace and z pointing upward. Assuming irrotational flow and using
tokes perturbation procedure, the velocity potential ��r ,� ,z , t�
an be expressed as follows:
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��r,�,z,t� = Re���1��r,�,z�e−i�t + ��2��r,�,z�e−2i�t� �1�

Second order potential is divided into incident �i
�2�, “free wave”

�d1
�2� and “locked wave” �d2

�2� components. The boundary value
problem governing the second order potential consists of
Laplace’s equation in the fluid domain, homogeneous Neumann
type conditions at the cylinder surface and the sea bottom, free
surface condition, ���2� /�z−4��=q�r ,��, and a suitable radiation
condition. Here, �=�2 /g and g is the gravitational acceleration. q
is considered as an effective pressure distribution on the free sur-
face and is a function of first order incident and diffraction poten-
tials. Second order potential consists of incident, homogeneous
“free wave” and particular “locked wave” components. Incident
wave component �i

�2� should satisfy the free surface condition
with q replaced by qI which is a function of first order incident
potential alone, together with the Laplace’s equation and the sea
bottom condition. Free wave component �d1

�2�, apart from
Laplace’s and sea bottom conditions, is chosen to satisfy the ho-
mogeneous form of the free surface condition and also the body
condition which is written as follows:

��d1
�2�

�r
= −

��i
�2�

�r
�2�

It is obvious that the locked wave component �d2
�2� should satisfy

Laplace’s equation in the fluid domain, homogeneous Neumann
type conditions at the cylinder surface and the sea bottom, and the
free surface condition ���2� /�z−4��=q�r ,��−qI�r ,��. Second or-
der incident potential and the free wave components can be ob-
tained easily and will not be given here.

3 “Locked Wave” Component
First the velocity potential due to a concentrated pressure will

be obtained and then the integration of this potential over the free
surface will give the desired velocity potential which satisfies the
nonhomogeneous free surface condition and the homogeneous
body condition. In order to determine the velocity potential due to
concentrated pressure, the problem will be divided into two parts:
�1� Water waves resulting from the pressure concentrated at the
origin of the coordinate system in the absence of the cylinder,
which satisfies

��̃

�z
− 4��̃ = ��x���y� �z = 0� �3�

where ��x� is the Dirac delta function. �2� Water waves generated
by the pressure concentrated at �x0 ,y0� with the cylinder placed at
the origin, should satisfy the following boundary conditions:

��

�r
= −

��̃

�r
�r = a, − H � z � 0� �4a�

��

�z
− 4�� = 0 �r 	 0, z = 0� �4b�

where x0=r0cos �0 and y0=r0sin �0. Both velocity potentials must
be harmonic and should satisfy the sea bottom condition and a
radiation condition. Using the Hankel transform, the first part of
the particular solution represented by the boundary value problem
�3� is given by the following formula �8�:

�̃�r,z� =
1

2
iC0H0�k0r�cosh�k0�z + H��

+
1


�
j=1

�

CjK0�kjr�cos�kj�z + H�� �5�
where
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C0 =
�2 − k0

2

H��2 − k0
2� − �

cosh�k0H� Cj =
�2 + kj

2

H��2 + kj
2� − �

cos�kjH�

�6�
he second part of the particular solution represented by Eq. �4� is
uch easier to derive since the free surface condition is homoge-

eous. The locked wave component due to the concentrated pres-
ure is the combination of the two components and after some
lgebraic manipulation it is obtained as follows:

��r,�,z� =
1


�
n=0

�

�ncos�n�� − �0���
j=0

�

CjGjn�r,r0�Z̃j�z� �7�

here Z̃0�z�=cosh�k0�z+H�� and Z̃j�z�=cos�kj�z+H��, j1. The
unction Gjn�r ,r0� is defined as follows:

1

2
i
Hn�k0r0��Jn�k0r� −

Jn��k0a�
Hn��k0a�

Hn�k0r�	 = G0n�r,r0�

Kn�kjr0��In�kjr� −
In��kja�
Kn��kja�

Kn�kjr�	 = Gjn�r,r0� �8�

quation �7� gives the velocity potential due to a concentrated
ressure at �r0 ,�0� with a cylinder placed at the origin. If the
ressure is distributed

��

�z
− 4�� = q�r,�� �z = 0, r = a� �9�

hen the solution in this case is obtained by integrating the veloc-
ty potential in Eq. �7� over the entire free surface ��0 is taken zero
or simplicity only�

�d2
�2��r,�,z� = 2�

n=0

�

�ncos�n����
j=0

�

CjZ̃j�z�

a

�

r0qn�r0�Gjn�r,r0�dr0	
�10�

here

q�r,�� = �
m=0

�

�mqm�r�cos�m�� �11�

his solution is valid when a�r�r0. But whenever r	r0, we
ust need to change everywhere r for r0 and vice versa. It can be
een immediately that Eq. �10� is the same as the one given by
uang and Eatock Taylor �6�.

Numerical Results and Discussion
There are two major numerical problems in evaluating the free

urface elevation: First, evaluation of the improper integral, sec-
nd, singularity at the free surface. To overcome these problems,
he infinite integral is divided into two parts, near and far field
ntegrals



a

�

r0qn�r0�Gjn�r,r0�dr0 =

a

rs

r0qn�r0�Gjn�r,r0�dr0

+

rs

�

r0qn�r0�Gjn�r,r0�dr0 �12�

hen j=0, the first integral on the right-hand side is calculated
sing Gaussian ten-point integration method with a high degree of
ccuracy. However, asymptotic expansions of Hankel functions
re used to evaluate the infinite integral for j=0. Whenever j
0, near field integral �first one on the right-hand side� becomes

ingular.

4.1 Singularity at Free Surface. We consider the near field

ntegral for j	0. It has been shown by Fenton that the near field
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integral becomes singular as j→� �9�. To overcome this diffi-
culty, we first subtract out the singularity and then integrate the
singularity separately

Is = �
j=1

�

2CjZ̃j�0�

a

rs

r0qn�r0�Gjn�r,r0�dr0

= �
j=1

� 

a

rs �2CjZ̃j�0�r0qn�r0�Gjn�r,r0� −
2


�r0a

e−j
/H�r0−a�

j dr0

−

a

rs 2


�r0a
ln�1 − e−
/H�r0−a��dr0 �13�

A third order nonlinear transformation is used to integrate the
singular integral �second one on the right-hand side of Eq. �13��
�10�

Is = −
rs − a


�a



−1

1
3�� + 1�2

4
�rs − a

2

�� + 1�3 − 4

4
+

rs + a

2

�qn� rs − a

2

�� + 1�3 − 4

4
+

rs + a

2
ln�


H

rs − a

2

�� + 1�3

4
	d�

�14�

The first rational expression in the integrand is the Jacobian and it
is clear that it smoothes out the singularity at −1. Two successive
transformations are used to obtain Eq. �14�. First transformation
changes the limits of the integration to −1 and 1

r0 =
rs − a

2
� +

rs + a

2

and the second transformation removes the singularity at −1

� =
�� + 1�3

4
− 1 �15�

Second order transformation can also be used to evaluate, Eq. �13�
but with third order transformation convergence is faster and the
expression �15� is simpler than the corresponding second order
transformation expression, �=1/2�2+�−1/2.

4.2 Comparison of Numerical Results. Numerical results of
free surface elevations are compared with those of Kim and Yue
�4�. In Table 1, �D

�2� is the free surface elevation due to the second

Table 1 Second order surface elevation angular modal ampli-
tudes normalized by A2 /a on the vertical cylinder „a /h=1… for
various �a values

�a 1.2 2.0 2.8

n �D
�2� �D

�2�* �D
�2� �D

�2�* �D
�2� �D

�2�*

0 0.3242 0.3254 1.1600 1.1515 0.4404 0.4352
1 0.8133 0.8165 1.1375 1.1319 2.3280 2.3037
2 0.7719 0.7721 1.1666 1.1516 1.9287 1.9093
3 0.3300 0.3247 0.9640 0.9561 1.6163 1.6078
4 1.4545 1.4473 0.2415 0.2431 1.2758 1.2661
5 1.4183 1.4129 0.8139 0.8040 0.6720 0.6665
6 0.5586 0.5567 1.2414 1.2304 0.3541 0.3482
7 0.1152 0.1147 1.0073 0.9994 1.0061 1.0015
8 0.0194 0.0193 0.5904 0.5862 1.0968 1.0833
9 0.0029 0.0029 0.2228 0.2214 0.7860 0.7767
10 0.0004 0.0004 0.0490 0.0487 0.4555 0.4500
11 0.0001 0.0001 0.0086 0.0085 0.2263 0.2233
12 0.6�10−5 0.6�10−5 0.0014 0.0014 0.0862 0.0851
13 0.6�10−6 0.6�10−6 0.0002 0.0002 0.0208 0.0209
14 0.5�10−7 0.7�10−7 0.0000 0.0000 0.0036 0.0039
order “locked wave” and “free wave” components
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�D
�2� =

2i�

g
��d1

�2� + �d2
�2��

uperscript “*” in Table 1 denotes the values obtained by the
resent method.

Agreement with the results of Kim and Yue �4� is good. Present
alculations are carried out for 50 evanescent modes and the near
eld integration is taken from a to rs=15a. This optimum value of
s for the present geometry is determined by performing many
alculations; rs should be large enough so that in the far field
ntegral we do not have to consider the evanescent modes, at the
ame time rs should be small enough so that the near field integral
an be calculated to a high degree of accuracy with reasonable
PU time spent. To achieve the desired accuracy, near field inte-
ral is carried out in 25 equal intervals. Infinite summations are
runcated after 15 terms which give quite a good convergence.
lso qs�r� is truncated at 14 terms.
Next, convergence tests for the evanescent modes and for dif-

erent rs values are presented. First, free surface calculations are
epeated for different number of evanescent modes �Table 2�. Be-
ore the last line of Table 2, relative CPU times are given for the
ifferent number of evanescent modes Ne considered in the calcu-
ations. Maximum relative errors are given in the last line of the
able. By choosing Ne=50, relative error is only 1/10,000 and the
PU time spent is one third of that of the case with Ne=150. In
able 3, the value of rs is varied to investigate the effects of near
nd far field integrals on the result. In Table 3, relative CPU times
re shown in the CPU row and the number of subintervals Np used
n the near field integral is given in the fourth row of the table. As
he upper limit of the near field integral increases, the value of Np
ncreases accordingly to achieve a desired accuracy of 1/10,000.
lso the number of terms used to calculate the asymptotic values
f the Hankel functions Ns decreases as rs increases. That means
s rs increases we need fewer terms of the asymptotic expansions
f the Hankel functions in the far field integral but we need more

able 2 Effect of evanescent modes on second order surface
levation for �a=2.8

Ne=5 10 15 25 50 100 150

=0 0.41393 0.43141 0.43388 0.43486 0.43516 0.43520 0.43521
2.21975 2.28895 2.29874 2.30260 2.30375 2.30391 2.30393
1.83821 1.89678 1.90507 1.90834 1.90932 1.90947 1.90949
1.54996 1.59775 1.60440 1.60699 1.60775 1.60787 1.60788
1.22139 1.25847 1.26355 1.26550 1.26607 1.26615 1.26615
0.64182 0.66246 0.66516 0.66618 0.66647 0.66652 0.66652
0.35313 0.34898 0.34844 0.34824 0.34818 0.34817 0.34817
0.98772 0.99883 1.00059 1.00131 1.00152 1.00156 1.00156
1.06668 1.08015 1.08221 1.08303 1.08327 1.08330 1.08331
0.76636 0.77476 0.77603 0.77654 0.77669 0.77671 0.77671

0 0.44567 0.44923 0.44977 0.44999 0.45005 0.45006 0.45006
1 0.22218 0.22309 0.22324 0.22329 0.22331 0.22331 0.22331
2 0.08520 0.08516 0.08515 0.08515 0.08515 0.08515 0.08515
3 0.02102 0.02090 0.02088 0.02088 0.02087 0.02087 0.02087
4 0.00397 0.00392 0.00391 0.00391 0.00391 0.00391 0.00391
PU 7.72 10.8 13.80 20.20 38.26 67.82 100
rror 4.9 0.87 0.31 0.08 0.01 0.0 0.0
ubintervals for the near field integral. It seems that we optimize
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the CPU time by selecting rs as 15a, in that case the desired
accuracy is satisfied and also the relative CPU time is kept at two
thirds of the maximum CPU used in the calculations.

5 Concluding Remarks
A second order diffraction problem of a vertical cylinder of

circular cross sections is treated. The locked wave component of
the second order potential is divided into two parts: potential due
to concentrated source at the free surface with no cylinder present
and potential with a cylinder placed at the free surface with ho-
mogeneous boundary condition. This form of locked wave poten-
tial will be advantageous when hydrodynamic interaction among
multiple cylinders is considered. Apart from this, with present
formulation, singularity at the free surface is tackled effectively
with a third order nonlinear transformation, which saves some
CPU time compared with the calculations which use a second
order transformation. Numerical results for the second order free
surface elevation compare well with those of Kim and Yue �Table
1�. The effect of angular and evanescent modes is investigated and
it was found that 14 angular and 50 evanescent modes are suffi-
cient to reach an accuracy of 1/10,000 �Tables 1 and 2�. In Table
3 rs, the cut-off point in the infinite integral, is varied and it was
observed that when rs=15a CPU time is optimized.
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