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Abstract — This work presents the prototype design of a 

secure microprocessor that executes encrypted programs. The 
aim of such a secure processor is to prevent programs from 
being copied; otherwise the encrypted programs will not run 
on ordinary platforms. The idea is demonstrated through a 
concrete design of a 16-bit soft processor, namely CryptOdin, 
along with the simulations and physical implementation on 
FPGA. This processor is expected to easily hide critical 
algorithms/programs without sacrificing the performance by 
the help of a dedicated decryption unit implemented in the 
processor. 

 
 
Index Terms—VHDL, Encryption/Decryption, Soft 

Processor, Embedded Design. 
 

I. INTRODUCTION 

 
t is quite common in many embedded system designs that 
the developed algorithms generally contain the vital 

results of research and need to be hidden against potential 
reverse engineering problems. For instance, many military 
applications involve high quality research and the resulting 
algorithms or programs must be protected. 
 

There might be several methods to protect programs in 
embedded systems such as: 

(i) Storing the program in the memory-on-chip 
(ii) Implementing the algorithm in the hardware 

(iii) Encrypting the program 
 

Method (i) suffers from the lack of memory size since 
internal memory size is very limited in almost all 
microcontrollers. Method (ii) proposes implementation of 
algorithm in an FPGA or ASIC design. This truly dedicated 
chip has many advantages such as compactness and 
efficiency yet it is not flexible, i.e. the implemented 
algorithm cannot be changed, hence it is most suitable for 
mass production. Finally, method (iii) imposes encrypting 
the program to store in an external memory. 
 

In this project, physically a secure processor has been 

designed and simulated. The secure coprocessors contain 
special-purpose hardware in the CPU and memory. 
CryptOdin features an on-chip block cipher hardware 
between the cache and the bus interface. Code and data are 
decrypted on-the-fly while being fetched from RAM. Even 
someone with physical access to the printed circuit board 
cannot observe the executed software and its data flow. 
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The prototype hardware architecture for Secure 

Microprocessor is developed targeting Spartan3e - 
xc3s500e Field Programmable Gate Array (FPGA) 
development platforms. 
 
The main features of CryptOdin can be listed as follows: 

 
16 bit address and 16 bit data bus 
Harvard Architecture 
32 general purpose registers 
38 instructions 
16-bit and 32-bit long instructions 
Pipelining 
Operation at maximum 68 MHz clock frequency  

 Execution of encrypted programs 
 

Cryptodin provides utmost security by executing the 
programs that are previously encrypted and stored in the 
external memory. Please note that the power of this method 
depends on the encryption algorithm provided that the 
necessary precautions against reverse engineering are taken 
in the fabrication of integrated circuit [1]. 

 
 The organization of the text is as follows: Section II 
summarizes the background. In particular, we mention the 
secure processors, FPGA and soft processor design issues. 
We thoroughly explain the key points in the design of our 
secure processor CryptOdin in Section III, followed by the 
simulation results given in Section IV. Finally we conclude 
the paper with Section V, giving further discussion about 
limitations and future research. 

  

II. BACKGROUND 
The classification of secure processor designs is based on 
the location of the crypto-engine necessary to implement 
encryption or decryption of instructions and data. The 
crypto-engine can be placed on-chip, in a single monolithic 
architecture or it can be placed off-chip, like a field 
programmable gate array (FPGA)-based co-processor. Bus 
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encryption technique was first introduced 25 years ago. The 
CPU was considered as secure and consequently all data 
and addresses are in decrypted form inside the CPU and 
encrypted outside the processor chip. A cipher unit is 
implemented onchip and a secret cipher key is located in an 
on-chip register [1][2][3]. 
 

When we use a secure code, we can easily protect 
executables from being copied and illegally utilized by 
attackers. The code to be protected can be distributed and 
stored in encrypted form, so copying it without obtaining 
the code decryption key is futile. Our design prevents the 
execution of a program on other machines, and also 
protects software code from any access, keeps unauthorized 
reverse engineers from observing the memory and the 
execution of program instructions. 

 

A. What is a FPGA? 
 

Field-programmable gate arrays (FPGAs) fill a need in 
the design space of digital systems, complementary to the 
role played by microprocessors [4]. 

FPGA has become the main stream in complex logic 
circuit design due to its flexibility, ease of use, and short 
time to market [5]. The area filled by FPGAs has grown 
enormously in the past twenty years since their introduction 
[4]. FPGAs take advantage of complex chips to improve the 
chip design in several ways: FPGAs can be quickly 
programmed, their performance characteristics are 
predictable, and the same part can be used for several 
different logic designs [4].   

The two most common languages used for FPGA design 
are VHDL and Verilog. The acronym VHDL stands for the 
VHSIC Hardware Description Language. The acronym 
VHSIC, in turn, refers to the Very High Speed Integrated 
Circuit program [6]. We have chosen to use VHDL for the 
design. 

Xilinx Integrated Software Environment (ISE) is an 
integrated design environment that allows you to design 
Xilinx FPGA. ModelSim is a tool that integrates with 
Xilinx ISE to provide simulation and testing. Two kinds of 
simulation are used for testing a design: functional 
simulation and timing simulation [7]. 

   

B. Soft Processor Design 
 

A soft processor is a microprocessor fully described in 
software, usually in VHDL or Verilog, which can be 
synthesized in programmable hardware, such as FPGAs. 
While a soft processor cannot easily match the 
performance/area/power of a hard processor, soft 
processors do have several compelling advantages. Using a 
generic FPGA chip, a designer can implement the exact 
number of soft processors required by the application, and 
the CAD tools will automatically place them within the 

design to ease routing. Since it is implemented in 
configurable logic, a soft processor can be tuned by varying 
its implementation and complexity to match the exact 
requirements of an application. While these benefits have 
resulted in wide deployment of soft processors in FPGA-
based embedded systems, the architecture of soft processors 
has yet to be studied in depth [9]. 
 

III. CRYPTODIN: 16-BIT SECURE MICROPROCESSOR 
 

In single-chip FPGA implementation of our secure 
processor, we present an implementation of a secure 
Blowfish algorithm, and standard microcontroller units on a 
single Xilinx Virtex-Spartan3E FPGA. 
 

The schematic of the designed Secure Microprocessor is 
shown in Fig. 1 in the Appendix. The secure processor 
consists of single chip microprocessor and a decryption 
circuit External Memory Access Unit with Decrypter 
(EMAD) for incoming instructions. The EMAD is placed 
between the Program Counter logic and the external main 
memory as seen in Figure 1. 

 
External memory and peripherals are assumed to be 

untrusted; they may be observed and tampered with at will 
by an adversary [1]. In our design, the cryptographic keys 
are stored in EMAD. User can not modify cryptographic 
key as the key is hardcoded in the EMAD unit. Decryption 
enable/disable behavior is selected by the CRYPTON and 
CRYPTOFF assembly commands.  

 
The instructions are stored as encrypted or plaintext in 

the ROM. The ROM has opcodes, addresses and constants 
for each operation. EMAD receives the data and 
instructions from external ROM, and sends them to internal 
units to control the operations. The Control Unit (CU) is 
used to control the internal units. The Arithmetic-Logic-
Unit (ALU) is needed for arithmetic operations. 32x16 bit 
general purpose registers are also implemented.  

 
The external instructions from ROM are decrypted by the 

Blowfish algorithm. The detailed explanation about the 
EMAD and Blowfish is given in the following subsection.  

 
The datapath consists of ALU, Multiplier, Program 

Counter, Instruction Register, Stack external ROM/RAM 
modules and Shifter logic with 32x16-bit registers as shown 
in Figure 1 in the Appendix.  

 
The secure processor has two levels of code. One of 

them is encrypted code using the defined encryption key, 
the other one is plain text. The defined CryptOdin opcodes 
are given the Table I. 
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TABLE I 
CRPYTODIN OPCODES 

Mnemoni
c Operands Comments 

Nop   NOP: instruction does nothing. 

Add Ri,Rj; 
Addition: Adds Ri to Rj and stores the results 
back in Ri 

Addi Ri, #im 
Addition (immediate): Adds a word value to 
the Ri and stores the results back in the Ri. 

Sub Ri,Rj; 
Subtaction: Subtracts Rj from the Ri and stores 
the results back in Ri. 

Subi Ri, #im 

Subtraction (immediate): Subtracts a word 
value from the Ri and stores the results back in 
the Ri. 

Mul Ri,Rj 
Multiplication: returned in the Ri. The high-
order byte of the product is returned in Rj.  

Muli Ri, #im 
Multiplication (immediate): multiplies the 
signed 16-bit integer in Ri  

Mulu Ri,Rj 
Multiplication (unsigned): multiplies the 
unsigned 16-bit integer in Ri  

Inc Ri Increment: Increments Ri by 1.  
Dec Ri Decrement: Decrements Ri by 1.  
Cmp Ri Compare: compares two operands  

Andr Ri,Rj 
AND:performs a bitwise logical AND 
operation  

Andi Ri, #im 
AND (immediate): performs a bitwise logical 
AND operation  

Orr Ri,Rj OR: performs a bitwise logical OR operation  

Ori Ri, #im 
OR (immediate): performs a bitwise logical OR 
operation  

Notr Ri ; Rxi 
NOT: logically complements the value of the 
specified destination operand 

Xorr Ri,Rj 
XOR:performs a bitwise logical XOR 
operation between the specified operands 

Xori Ri, #im 
XOR (immediate): performs a bitwise logical 
XOR operation operand. 

Sllr Ri 
Logical shift left: shifts the 16-bits in the 
register left one bit position. 

Srlr Ri 
Logical shift right: shifts the 16-bits in the 
register right one bit position. 

Slar Ri Arithmetic shift left: 
Srar Ri Arithmetic shift right: 

Lw 
Rxi,addres
s 

Load word: Load address word to register 

Sw 
Rxi,addres
s 

Store word: Store address word from register 

Syscal address System call (SW interrupt): 
Hlt   Halt: 

Beq offset 
Branch if equal to 0: Branch to the specified 
address if the value in the accumulator is 0. 

Bne offset 

Branch if not equal to 0: Branch to the 
specified address if the value in the 
accumulator is not 0. 

Ba offset 
Branch always near: Branch to the target 
address specified by offset. PC+offset 

Bf 
offset+ext
ension 

Branch always far: Branch to the target address 
specified by offset and extension. 

BL address 
Branch and Link: Branches to an instruction 
specified by the branch target address. 

Movi Ri, #im Move data (immediate): 
Movdi @Ri,Rj Move indirect/direct data between registers: 
Movsi Ri,@Rj Move direct/indriect data between registers: 
Mov Ri,Rj Move direct/direct data between registers: 
Movii @Ri,@Rj Move indriect/indriect data between registers: 
Clr Ri Clear register 
Clr @Ri Clear indirect register 

Ret   Return 

Crypton  Turns On the opcode decrypter unit 

Cryptoff  Turns Off the opcode decrypter unit 

 

A. External Memory Access Unit with Decrypter (EMAD) 
 
External Memory Access Unit with Decrypter (EMAD) 

plays the role of buffer between the external memory and 
instruction register. The second and more important duty of 
EMAD is to perform decryption and encryption on the 
program code and data. The external instructions from 
ROM are decoded in Blowfish algorithm. Similarly, the 
internal data are encoded before writing them to the 
external memory. 
 

We implement the Blowfish algorithm for 
encryption/decryption in EMAD. Blowfish is a symmetric 
block cipher that can be used as a drop-in replacement for 
DES or IDEA. It takes a variable-length key, from 32 bits 
to 448 bits, making it ideal for both domestic and 
exportable use. Blowfish was designed in 1993 by Bruce 
Schneier as a fast, free alternative to existing encryption 
algorithms. Since then it has been analyzed considerably, 
and it is slowly gaining acceptance as a strong encryption 
algorithm [10][11].  

 
Blowfish is a block cipher that encrypts data in 8-byte 

blocks. The algorithm consists of two parts: a key-
expansion part and a data-encryption part. Key expansion 
converts a variable-length key of at most 56 bytes (448 bits) 
into several subkey arrays totaling 4168 bytes. Blowfish 
has 16 rounds. Each round consists of a key-dependent 
permutation, and a key- and data-dependent substitution. 
All operations are XORs and additions on 32-bit words. 
The only additional operations are four indexed array data 
lookups per round [11]. 
 

TABLE II 
EXAMPLE ASSEMBLY PROGRAM 

Mnemonic Comment 

…  
CRYPTON Turn on the encryption in EMAD 

%ENCRYPT KEY Assembly directive to encrypt the 
following machine code using the 
key “KEY”. 

DEC     R1 Decrement R1 register 
SW       R1, 0003 Store word 
MOVI  R0, 0005 Move data (immediate) 
NOP No operation 
INC     R1 Increment R1 
CRYPTOFF Turn off the encryption in EMAD 
%PLAINTEXT Assembly directive to  disable code 

encryption 
BEQ     +02 Branch if equal to accumulator is 0 
NOP No operation 
NOP No operation 

INC     R31 Increment R31 register 

HTL Halt 
 

  
 The reason why we have chosen Blowfish is twofold. 
First, it is unpatented and license-free, and is entirely 
available for all intents and purposes. Second, both the 



> Design of a Secure Microprocessor < 
 

4

enciphered text and plain text are the same in size, which is 
an important design specification of processors. 
 

 

IV. HARDWARE REALIZATION AND SIMULATION RESULTS 
 
 The secure processor core described in VHDL using 
ModelSim simulator and compiled using Xilinx ISE8.2. 
Our secure processor CrpytOdin was targeted at the 
Xilinx’s Spartan3e-xc3s500e development platform. 
XILINX ISE -The Xilinx Integrated Software 
Environment- used for development. ISE provides the HDL 
and schematic editors, logic synthesizer, fitter, and 
bitstream generator software [7]. After successfully 
compiling an FPGA design using the Xilinx development 
software, the design can be downloaded using the iMPACT 
programming software and the USB cable. 
 
 The Spartan-3E includes several types of interconnect as 
local, general-purpose, I/O, global, and clock. The key 
features of the Spartan-3E Starter Kit board are: Xilinx 
XC3S500E Spartan-3E FPGA, Up to 232 user-I/O pins, 
320-pin FBGA package, over 10,000 logic cells, Xilinx 4 
Mbit Platform Flash configuration PROM, x16 data 
interface, 100 MHz, 16 MByte (128 Mbit) of parallel NOR 
Flash (Intel StrataFlash), FPGA configuration storage, 16 
Mbits of SPI serial Flash (STMicro), 2-line, 16-character 
LCD screen. 
 
 The designed secure processor CryptOdin has 16 bit 
address and 16 bit data bus and Harvard Architecture. It has 
32 general purpose registers and 38 instructions. An 
instruction pipeline technique is used during design. It 
operates at maximum 68 MHz clock frequency and can 
execute encrypted programs. 
 
 The sample assembly program is shown in the Table II. 
Please note that the assembler of Cryptodin has built-in 
encryption algorithm, hence it can produce the encrypted 
code that will be loaded into the external program memory. 
The programmer tells the assembler to enable and disable 
the encryption using assembly directives %ENCRYPT KEY 
and %PLAINTEXT respectively. The programmer does not 
have to store the whole program as enciphered in the 
memory. By using these assembly directives accompanied 
by assembly commands CRYPTON and CRYPTOFF, 
he/she can use the crypto feature just for the critical part of 
the program. Please also note that assembly commands 
CRYPTON and CRYPTOFF must be put right before their 
associating assembly directives as can be seen in Table II. 
 
 
Design statistics and resource consumption of the design 
are shown in Table III. 
 
 
 
 

TABLE III 
FPGA DEVICE UTILIZATION FOR CRYPTO PROCESSOR 

Logics Amount Percentage 

Number of Slices 1020  out of   4656 21% 
Number of Slice Flip Flops 815  out of   9312 8% 
Number of 4 input LUTs 891  out of   9312 20% 
Number of IOs 70  
Number of bonded IOBs 70  out of     92 76% 
IOB Flip Flops 1  
Number of MULT18XSIOs 1  out of     20 5%   
Number of GCLKs 1  out of     24 4% 
   

 
 We report here that the hardware implementation of 
CryptOdin utilizes only 21% of configurable slices, and 5% 
of the dedicated multipliers and 20% of the available LUTs 
on the Spartan3e-xc3s500e platform.  
 
 The total execution time of the sample program is 34 
clock cycles that is 34 * 14.511 ns. The same design 
mapped to an ASIC is guaranteed to give even better rates. 
  

V. LIMITATIONS, CONCLUSIONS AND FUTURE WORK 
 
 A secure processor implementation was presented. The 
hardware realization of our secure processor CryptOdin 
was implemented using FPGAs, and verified with Xilinx 
simulation and co-simulation tools.  The design was 
targeted at the Xilinx’s Spartan3e-xc3s500e FPGA and 
simulated using ISE/ModelSim tool. The CryptOdin secure 
processor is best suited for applications with frequency in 
the range of 50 ~80 MHz. 
 
 Although CryptOdin was originally designed as 16-bit, it 
is quite straightforward and convenient to adapt the code as 
either 32-bit for higher performance or 8-bit for lightweight 
applications. 
 

The design has several deficiencies. There is no internal 
code ROM. This makes it easy for the attacker to rewrite 
control programs. Also there is no internal 
cryptographically secure random number generator. A 
Blowfish Authentication Code modification method should 
be included for this purpose.   
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APPENDIX 
 

 
 

Fig. 1.  The simplified schematic of the designed Microprocessor. 
 

 
 

Fig. 2.  The detailed schematic showing the connections between EMAD and external memory elements. 
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