
> Design of a Secure Microprocessor <

1

Design of a Secure Microprocessor
A. Toker, T. Ayav

Abstract — This work presents the prototype design of a

secure microprocessor that executes encrypted programs. The
aim of such a secure processor is to prevent programs from
being copied; otherwise the encrypted programs will not run
on ordinary platforms. The idea is demonstrated through a
concrete design of a 16-bit soft processor, namely CryptOdin,
along with the simulations and physical implementation on
FPGA. This processor is expected to easily hide critical
algorithms/programs without sacrificing the performance by
the help of a dedicated decryption unit implemented in the
processor.

Index Terms—VHDL, Encryption/Decryption, Soft

Processor, Embedded Design.

I. INTRODUCTION

t is quite common in many embedded system designs that
the developed algorithms generally contain the vital

results of research and need to be hidden against potential
reverse engineering problems. For instance, many military
applications involve high quality research and the resulting
algorithms or programs must be protected.

There might be several methods to protect programs in
embedded systems such as:

(i) Storing the program in the memory-on-chip
(ii) Implementing the algorithm in the hardware

(iii) Encrypting the program

Method (i) suffers from the lack of memory size since
internal memory size is very limited in almost all
microcontrollers. Method (ii) proposes implementation of
algorithm in an FPGA or ASIC design. This truly dedicated
chip has many advantages such as compactness and
efficiency yet it is not flexible, i.e. the implemented
algorithm cannot be changed, hence it is most suitable for
mass production. Finally, method (iii) imposes encrypting
the program to store in an external memory.

In this project, physically a secure processor has been

designed and simulated. The secure coprocessors contain
special-purpose hardware in the CPU and memory.
CryptOdin features an on-chip block cipher hardware
between the cache and the bus interface. Code and data are
decrypted on-the-fly while being fetched from RAM. Even
someone with physical access to the printed circuit board
cannot observe the executed software and its data flow.

Manuscript received March 30, 2010.
A. T. is with Izmir University, 35350-Izmir, Turkey. (phone: +90-232-

2464949; fax: +90-232-2240909; e-mail: atilla.toker@izmir.edu.tr).
T. A. is with Izmir Institute of Technology, Izmir, Turkey. He is now

with the Department of Computer Engineering (e-mail:
tolgaayav@iyte.edu.tr).

The prototype hardware architecture for Secure

Microprocessor is developed targeting Spartan3e -
xc3s500e Field Programmable Gate Array (FPGA)
development platforms.

The main features of CryptOdin can be listed as follows:

16 bit address and 16 bit data bus
Harvard Architecture
32 general purpose registers
38 instructions
16-bit and 32-bit long instructions
Pipelining
Operation at maximum 68 MHz clock frequency

 Execution of encrypted programs

Cryptodin provides utmost security by executing the
programs that are previously encrypted and stored in the
external memory. Please note that the power of this method
depends on the encryption algorithm provided that the
necessary precautions against reverse engineering are taken
in the fabrication of integrated circuit [1].

 The organization of the text is as follows: Section II
summarizes the background. In particular, we mention the
secure processors, FPGA and soft processor design issues.
We thoroughly explain the key points in the design of our
secure processor CryptOdin in Section III, followed by the
simulation results given in Section IV. Finally we conclude
the paper with Section V, giving further discussion about
limitations and future research.

II. BACKGROUND
The classification of secure processor designs is based on
the location of the crypto-engine necessary to implement
encryption or decryption of instructions and data. The
crypto-engine can be placed on-chip, in a single monolithic
architecture or it can be placed off-chip, like a field
programmable gate array (FPGA)-based co-processor. Bus

I

> Design of a Secure Microprocessor <

2

encryption technique was first introduced 25 years ago. The
CPU was considered as secure and consequently all data
and addresses are in decrypted form inside the CPU and
encrypted outside the processor chip. A cipher unit is
implemented onchip and a secret cipher key is located in an
on-chip register [1][2][3].

When we use a secure code, we can easily protect
executables from being copied and illegally utilized by
attackers. The code to be protected can be distributed and
stored in encrypted form, so copying it without obtaining
the code decryption key is futile. Our design prevents the
execution of a program on other machines, and also
protects software code from any access, keeps unauthorized
reverse engineers from observing the memory and the
execution of program instructions.

A. What is a FPGA?

Field-programmable gate arrays (FPGAs) fill a need in
the design space of digital systems, complementary to the
role played by microprocessors [4].

FPGA has become the main stream in complex logic
circuit design due to its flexibility, ease of use, and short
time to market [5]. The area filled by FPGAs has grown
enormously in the past twenty years since their introduction
[4]. FPGAs take advantage of complex chips to improve the
chip design in several ways: FPGAs can be quickly
programmed, their performance characteristics are
predictable, and the same part can be used for several
different logic designs [4].

The two most common languages used for FPGA design
are VHDL and Verilog. The acronym VHDL stands for the
VHSIC Hardware Description Language. The acronym
VHSIC, in turn, refers to the Very High Speed Integrated
Circuit program [6]. We have chosen to use VHDL for the
design.

Xilinx Integrated Software Environment (ISE) is an
integrated design environment that allows you to design
Xilinx FPGA. ModelSim is a tool that integrates with
Xilinx ISE to provide simulation and testing. Two kinds of
simulation are used for testing a design: functional
simulation and timing simulation [7].

B. Soft Processor Design

A soft processor is a microprocessor fully described in
software, usually in VHDL or Verilog, which can be
synthesized in programmable hardware, such as FPGAs.
While a soft processor cannot easily match the
performance/area/power of a hard processor, soft
processors do have several compelling advantages. Using a
generic FPGA chip, a designer can implement the exact
number of soft processors required by the application, and
the CAD tools will automatically place them within the

design to ease routing. Since it is implemented in
configurable logic, a soft processor can be tuned by varying
its implementation and complexity to match the exact
requirements of an application. While these benefits have
resulted in wide deployment of soft processors in FPGA-
based embedded systems, the architecture of soft processors
has yet to be studied in depth [9].

III. CRYPTODIN: 16-BIT SECURE MICROPROCESSOR

In single-chip FPGA implementation of our secure
processor, we present an implementation of a secure
Blowfish algorithm, and standard microcontroller units on a
single Xilinx Virtex-Spartan3E FPGA.

The schematic of the designed Secure Microprocessor is
shown in Fig. 1 in the Appendix. The secure processor
consists of single chip microprocessor and a decryption
circuit External Memory Access Unit with Decrypter
(EMAD) for incoming instructions. The EMAD is placed
between the Program Counter logic and the external main
memory as seen in Figure 1.

External memory and peripherals are assumed to be

untrusted; they may be observed and tampered with at will
by an adversary [1]. In our design, the cryptographic keys
are stored in EMAD. User can not modify cryptographic
key as the key is hardcoded in the EMAD unit. Decryption
enable/disable behavior is selected by the CRYPTON and
CRYPTOFF assembly commands.

The instructions are stored as encrypted or plaintext in

the ROM. The ROM has opcodes, addresses and constants
for each operation. EMAD receives the data and
instructions from external ROM, and sends them to internal
units to control the operations. The Control Unit (CU) is
used to control the internal units. The Arithmetic-Logic-
Unit (ALU) is needed for arithmetic operations. 32x16 bit
general purpose registers are also implemented.

The external instructions from ROM are decrypted by the

Blowfish algorithm. The detailed explanation about the
EMAD and Blowfish is given in the following subsection.

The datapath consists of ALU, Multiplier, Program

Counter, Instruction Register, Stack external ROM/RAM
modules and Shifter logic with 32x16-bit registers as shown
in Figure 1 in the Appendix.

The secure processor has two levels of code. One of

them is encrypted code using the defined encryption key,
the other one is plain text. The defined CryptOdin opcodes
are given the Table I.

> Design of a Secure Microprocessor <

3

TABLE I
CRPYTODIN OPCODES

Mnemoni
c Operands Comments

Nop NOP: instruction does nothing.

Add Ri,Rj;
Addition: Adds Ri to Rj and stores the results
back in Ri

Addi Ri, #im
Addition (immediate): Adds a word value to
the Ri and stores the results back in the Ri.

Sub Ri,Rj;
Subtaction: Subtracts Rj from the Ri and stores
the results back in Ri.

Subi Ri, #im

Subtraction (immediate): Subtracts a word
value from the Ri and stores the results back in
the Ri.

Mul Ri,Rj
Multiplication: returned in the Ri. The high-
order byte of the product is returned in Rj.

Muli Ri, #im
Multiplication (immediate): multiplies the
signed 16-bit integer in Ri

Mulu Ri,Rj
Multiplication (unsigned): multiplies the
unsigned 16-bit integer in Ri

Inc Ri Increment: Increments Ri by 1.
Dec Ri Decrement: Decrements Ri by 1.
Cmp Ri Compare: compares two operands

Andr Ri,Rj
AND:performs a bitwise logical AND
operation

Andi Ri, #im
AND (immediate): performs a bitwise logical
AND operation

Orr Ri,Rj OR: performs a bitwise logical OR operation

Ori Ri, #im
OR (immediate): performs a bitwise logical OR
operation

Notr Ri ; Rxi
NOT: logically complements the value of the
specified destination operand

Xorr Ri,Rj
XOR:performs a bitwise logical XOR
operation between the specified operands

Xori Ri, #im
XOR (immediate): performs a bitwise logical
XOR operation operand.

Sllr Ri
Logical shift left: shifts the 16-bits in the
register left one bit position.

Srlr Ri
Logical shift right: shifts the 16-bits in the
register right one bit position.

Slar Ri Arithmetic shift left:
Srar Ri Arithmetic shift right:

Lw
Rxi,addres
s

Load word: Load address word to register

Sw
Rxi,addres
s

Store word: Store address word from register

Syscal address System call (SW interrupt):
Hlt Halt:

Beq offset
Branch if equal to 0: Branch to the specified
address if the value in the accumulator is 0.

Bne offset

Branch if not equal to 0: Branch to the
specified address if the value in the
accumulator is not 0.

Ba offset
Branch always near: Branch to the target
address specified by offset. PC+offset

Bf
offset+ext
ension

Branch always far: Branch to the target address
specified by offset and extension.

BL address
Branch and Link: Branches to an instruction
specified by the branch target address.

Movi Ri, #im Move data (immediate):
Movdi @Ri,Rj Move indirect/direct data between registers:
Movsi Ri,@Rj Move direct/indriect data between registers:
Mov Ri,Rj Move direct/direct data between registers:
Movii @Ri,@Rj Move indriect/indriect data between registers:
Clr Ri Clear register
Clr @Ri Clear indirect register

Ret Return

Crypton Turns On the opcode decrypter unit

Cryptoff Turns Off the opcode decrypter unit

A. External Memory Access Unit with Decrypter (EMAD)

External Memory Access Unit with Decrypter (EMAD)

plays the role of buffer between the external memory and
instruction register. The second and more important duty of
EMAD is to perform decryption and encryption on the
program code and data. The external instructions from
ROM are decoded in Blowfish algorithm. Similarly, the
internal data are encoded before writing them to the
external memory.

We implement the Blowfish algorithm for
encryption/decryption in EMAD. Blowfish is a symmetric
block cipher that can be used as a drop-in replacement for
DES or IDEA. It takes a variable-length key, from 32 bits
to 448 bits, making it ideal for both domestic and
exportable use. Blowfish was designed in 1993 by Bruce
Schneier as a fast, free alternative to existing encryption
algorithms. Since then it has been analyzed considerably,
and it is slowly gaining acceptance as a strong encryption
algorithm [10][11].

Blowfish is a block cipher that encrypts data in 8-byte

blocks. The algorithm consists of two parts: a key-
expansion part and a data-encryption part. Key expansion
converts a variable-length key of at most 56 bytes (448 bits)
into several subkey arrays totaling 4168 bytes. Blowfish
has 16 rounds. Each round consists of a key-dependent
permutation, and a key- and data-dependent substitution.
All operations are XORs and additions on 32-bit words.
The only additional operations are four indexed array data
lookups per round [11].

TABLE II
EXAMPLE ASSEMBLY PROGRAM

Mnemonic Comment

…
CRYPTON Turn on the encryption in EMAD

%ENCRYPT KEY Assembly directive to encrypt the
following machine code using the
key “KEY”.

DEC R1 Decrement R1 register
SW R1, 0003 Store word
MOVI R0, 0005 Move data (immediate)
NOP No operation
INC R1 Increment R1
CRYPTOFF Turn off the encryption in EMAD
%PLAINTEXT Assembly directive to disable code

encryption
BEQ +02 Branch if equal to accumulator is 0
NOP No operation
NOP No operation

INC R31 Increment R31 register

HTL Halt

 The reason why we have chosen Blowfish is twofold.
First, it is unpatented and license-free, and is entirely
available for all intents and purposes. Second, both the

> Design of a Secure Microprocessor <

4

enciphered text and plain text are the same in size, which is
an important design specification of processors.

IV. HARDWARE REALIZATION AND SIMULATION RESULTS

 The secure processor core described in VHDL using
ModelSim simulator and compiled using Xilinx ISE8.2.
Our secure processor CrpytOdin was targeted at the
Xilinx’s Spartan3e-xc3s500e development platform.
XILINX ISE -The Xilinx Integrated Software
Environment- used for development. ISE provides the HDL
and schematic editors, logic synthesizer, fitter, and
bitstream generator software [7]. After successfully
compiling an FPGA design using the Xilinx development
software, the design can be downloaded using the iMPACT
programming software and the USB cable.

 The Spartan-3E includes several types of interconnect as
local, general-purpose, I/O, global, and clock. The key
features of the Spartan-3E Starter Kit board are: Xilinx
XC3S500E Spartan-3E FPGA, Up to 232 user-I/O pins,
320-pin FBGA package, over 10,000 logic cells, Xilinx 4
Mbit Platform Flash configuration PROM, x16 data
interface, 100 MHz, 16 MByte (128 Mbit) of parallel NOR
Flash (Intel StrataFlash), FPGA configuration storage, 16
Mbits of SPI serial Flash (STMicro), 2-line, 16-character
LCD screen.

 The designed secure processor CryptOdin has 16 bit
address and 16 bit data bus and Harvard Architecture. It has
32 general purpose registers and 38 instructions. An
instruction pipeline technique is used during design. It
operates at maximum 68 MHz clock frequency and can
execute encrypted programs.

 The sample assembly program is shown in the Table II.
Please note that the assembler of Cryptodin has built-in
encryption algorithm, hence it can produce the encrypted
code that will be loaded into the external program memory.
The programmer tells the assembler to enable and disable
the encryption using assembly directives %ENCRYPT KEY
and %PLAINTEXT respectively. The programmer does not
have to store the whole program as enciphered in the
memory. By using these assembly directives accompanied
by assembly commands CRYPTON and CRYPTOFF,
he/she can use the crypto feature just for the critical part of
the program. Please also note that assembly commands
CRYPTON and CRYPTOFF must be put right before their
associating assembly directives as can be seen in Table II.

Design statistics and resource consumption of the design
are shown in Table III.

TABLE III
FPGA DEVICE UTILIZATION FOR CRYPTO PROCESSOR

Logics Amount Percentage

Number of Slices 1020 out of 4656 21%
Number of Slice Flip Flops 815 out of 9312 8%
Number of 4 input LUTs 891 out of 9312 20%
Number of IOs 70
Number of bonded IOBs 70 out of 92 76%
IOB Flip Flops 1
Number of MULT18XSIOs 1 out of 20 5%
Number of GCLKs 1 out of 24 4%

 We report here that the hardware implementation of
CryptOdin utilizes only 21% of configurable slices, and 5%
of the dedicated multipliers and 20% of the available LUTs
on the Spartan3e-xc3s500e platform.

 The total execution time of the sample program is 34
clock cycles that is 34 * 14.511 ns. The same design
mapped to an ASIC is guaranteed to give even better rates.

V. LIMITATIONS, CONCLUSIONS AND FUTURE WORK

 A secure processor implementation was presented. The
hardware realization of our secure processor CryptOdin
was implemented using FPGAs, and verified with Xilinx
simulation and co-simulation tools. The design was
targeted at the Xilinx’s Spartan3e-xc3s500e FPGA and
simulated using ISE/ModelSim tool. The CryptOdin secure
processor is best suited for applications with frequency in
the range of 50 ~80 MHz.

 Although CryptOdin was originally designed as 16-bit, it
is quite straightforward and convenient to adapt the code as
either 32-bit for higher performance or 8-bit for lightweight
applications.

The design has several deficiencies. There is no internal
code ROM. This makes it easy for the attacker to rewrite
control programs. Also there is no internal
cryptographically secure random number generator. A
Blowfish Authentication Code modification method should
be included for this purpose.

> Design of a Secure Microprocessor <

5

APPENDIX

Fig. 1. The simplified schematic of the designed Microprocessor.

Fig. 2. The detailed schematic showing the connections between EMAD and external memory elements.

> Design of a Secure Microprocessor <

6

REFERENCES

[1] Kannavara, R.; Bourbakis, N.G, “Surveying secure processors”,

Potentials, IEEE, 2009, Volume: 28 , Issue: 1, pp. 28-34.
[2] Fan Mingyu, Wang Jinahua, and Wang Guangwei, “A design of

hardware cryptographic co-processor,” IEEE Syst., Man Cybern., June
2003, pp. 234–236.

[3] F. Crowe et al., “Single-chip FPGA implementation of a cryptographic
co-processor,” Proc. IEEE Int. Conf. Field-Programmable Tech., 2004
pp. 279–285.

[4] Carter W. S., “The future of programmable logic and its impact on
digital system design,” in IEEE Int. Conf. Computer Design: VLSI in
Computers and Processors, 1994, pp. 10–16.

[5] Wolf W. “FPGA Based System Design”, Prentice Hall PTR, New
Jersey, 2004

[6] Yalamanchili S. 2001. Introductory VHDL, From Simulation to
Synthesis, Prentice Hall.

[7] Xilinx. www.xilinx.com., 2010
[8] Anderson C. Z., d’Amore R., “A Low-cost FPGA Implementation of the

Advanced Encryption Standard Algortihm”, 15th symposium on
Integrated Circuits and Systems Design (SBCC1’02)

[9] Morris K., “Embedded Dilemma”.
http://www.fpgajournal.com/articles/embedded.htm, November 2003.

[10] Michael C.-J. Lin, Youn-Long Lin, "A VLSI Implementation of the
Blowfish Encryption/Decryption Algorithm," Asia and South Pacific
Design Automation Conference, p. 1, Asia and South Pacific Design
Automation Conference 2000 (ASP-DAC'00), 2000.

[11] Finch, P. J., “A Study of the Blowfish Encryption Algorithm”, Doctoral
Thesis. UMI Order Number: UMI Order No. GAX95-21269., City
University of New York, 1995.

[12] Schneier, Bruce, “Applied Cryptography Second Edition: Protocols,
algorithms, and source code in C.”, John Wiley & Sons, Inc., 1996

[13] Ashenden Peter J., “The Designer’s Guide To VHDL”, Academic Press,
2002

[14] Maxfield, C., “The Designer Warrior’s Guide to FPGAs, Elsevier, 2004

Kadir Atilla Toker – was born in 1964 in Izmir. He has a BSc and MSc in
Electrical and Electronics Engineering. He has worked for the Telecom-
Izmir/Turkey-Telephone Exchange Engineer-, Alcatel SEL-
Stuttgart/Germany-R&D Engineer-, Alcatel Telecom Norway-Oslo/Norway -
R&D Engineer-, Kitron Development-Oslo/Norway-R&D Engineer-, Izmir
Institute of Technology (IYTE) Izmir/Turkey-expert at the Communication
and Information Technologies Research Centre- and he joined Izmir
University in 2008, where he is working as an instructor.

He has been involved in various hardware and software development projects.
His research interests include FPGA implementation of various systems like
MIMO communication systems/Led TV, ASIC design, wind turbines,
computer architecture and firmware/software design.

Tolga Ayav – was born in 1974 in Izmir. He has a BSc in Electrical and
Electronics Engineering, MSc and PhD in Computer Engineering. He worked
for EN-KO Ltd. Co. as an industrial automation engineer and Computer
Application and Research Center at Izmir Institute of Technology as system
analyst. He is currently assistant professor in the Department of Computer
Engineering in Izmir Institute of Technology.

http://www.xilinx.com/

	I. INTRODUCTION
	II. Background
	A. What is a FPGA?
	B. Soft Processor Design
	III. Cryptodın: 16-bıt Secure Mıcroprocessor
	A. External Memory Access Unit with Decrypter (EMAD)

	IV. Hardware Realization And Sımulatıon Results
	V. Lımıtatıons, Conclusıons and Future Work

