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Abstract. Mutation analysis is widely used as an implementation-oriented
method for software testing and 1-st adequacy assessment. It is based on
creating different versions of the sof:ware by seeding faults into its source code
and constructing test cases 10 reveal these changes. However, in case that
source code of software is not availanle, mutation analysis is not applicable. In
such cases. the approach introduced - this paper suggests the alternative use of
a model of the software under tesi The objectives of this approach are (i)
introduction of a new technique f .+ first-order and higher-order mutation
analysis using two basic mutation: operators on graph-based models, (ii)
comparison of the fault detection abi: 1y of first-order and higher-order mutants,
and (iii) vahidity assessment of the ccpling effect,

Keywords: Software Testing. Highc -Order Mutation Analysis, Coupling Ef-
fect, Basic Mutation Operators, Even: Scquence Graphs.

1 Introduction and Related Work

One of the major goals of software testing is to reveal defects/bugs by comparing the
observed behavior of the software with its expected behavior. There are many ap-
proaches used in software testing. Mut:lion analysis (MA), originally proposed by
DeMillo et al. [4] and Hamlet |7}, is a m-thod for analyzing the adequacy of a test set
to reveal faults [17], [20]. Tt bases on the idea of seeding artificial defects (mutations)
into the system under test (SUT).

MA has two main steps. In the first -icp, faults arc injected into the software by
appiying mutation operators to the original software. The mutation operators cause
syntactic changes and represent certain ault models. Each of the faulty versions of
the software generated is called a “mutant”. In the second step, a test set is executed
against the mutants. A mutant is considered "killed" il the expected output predicted
by the test set differs from the actual output of the mutant. Otherwisc, the mutant is
“live”. In that case, the fault(s) could not be revealed or the mutant is cquivalent to the
original version. If all mutants are killed by a test set, the test set is considered to be
adequate in detecting the faults that were injected into the mutants.
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MA relies on two assumptions: the competent programmer. Irypothesis and the
coupling effect [4], [15]. The competent programmer hypothesis cl:ims that experi-
enced programmers tend to implement software that is almost corret. The coupling
effect assumes that a test set that detects all simple faults defined bv first-order mu-
tants (FOM) is also able to detect complex faults defined by highcr-order mutants
(HOM) [4]. The coupling effect has been studied by many research.-rs. Offutt ([15],
[16]) described empirical investigations about the coupling effect over a specific class
of software faults and showed that the coupling effect hypothesis is valid. Wah [19]
presented a theoretical study of fault coupling, based on a simple model of fault-based
testing. He shows that fault coupling occurs infrequently, at least when only two
faults are involved. In another study, Wah [18] dealt with the coupling effect from a
theoretical standpoint and he found out that the hypothesis of a coupling effect is
largely valid.

Although many studies have shown the validity of the coupling ¢ fect, Harman et
al. [8] argued that HOMs are potentially better able to simulate real iaults. However.
higher-order mutation analysis has been believed to be expensive and impractical.
Therefore, they argue that higher-order mutation analysis can be available using a
process that searches fitter mutants from the space of all possible mutants. Jia et al.
([10], [11]) also investigated HOMs. They introduced the concept of a subsuming
HOMs that denote subtle fault combinations. The objective of that study is to seek
valuable HOMs using automated search-based optimization techniques,

MA can be very expensive since there is a great number of different mutation op-
erators for generating mutants. Therefore, another important issue of MA is the selec-
tion of appropriate mutation operators. Several studies have been carried out to find a
smaller set of mutation operators without significant loss of test effctiveness. This
idea was proposed by Mathur [12]. In his study, two mutation operators, array refer-
ence for scalar variable replacement (ASR) and scalar variable replacement (SVR)
that generated most of the mutants are omitted to reduce the number of generated
mutants. This idea was extended by omitting four mutation operators (4-selective
mutation) and omitting six mutation operators (6-selective mutation). Offutt et al. [ 14]
have shown that selective mutation is an effective alternative to non-selective muta-
tion by presenting empirical results that support the hypothesis. Mresa and Bottaci
[13] proposed a different selective mutation based on assigning a score to each muta-
tion operator.

In this paper we suggest reducing the broad variety of mutation operators known
from literature to two basic operators and their combination. MA is usually applied to
the source code of SUT. However, its source code is not always available or easily
modifiable in case of hardware. To overcome this problem, this paper applies muta-
tion analysis to a model that describes the relevant aspects of SUT. Belli et al. [1]
introduced event sequence graphs (ESGs) for modeling the behavior of an SUT. ESGs
consist of vertices (nodes) representing externally observable phenomena (“events’™)
and directed edges (arcs) defining allowed sequences among events. For our ap-
proach, an ESG model is mutated by using mutation operators such as insertion and
omission of directed edges or vertices. Thus, fault models of SUT are obtained. For
each mutant a model-based test case generation algorithm is used to generate a test
set. Concluding, SUT is executed against each test set and the mutants are classified
as killed or live.
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This paper focuses on an investigation of FOMs and HOMs based on mutants
generated from ESG and comparison of higher-order mutation operators with basic
mutation operators. The primary objective of this paper is to answer the following
questions:

¢ Do test sets that detect all FOMs detect most of the HOMS, i.e., does the
coupling effect hold?

*  Are basic mutation operators sufficient for measuring test effectiveness of
higher-order mutation analysis?

Now, the question might arise why ESG is used for modeling, and not UML dia-
grams. Formally speaking, ESG is directed graph enriched by elementary semantics to
represent sequential processes, having the same representative power as finite-state
automata, which are equivalent to type-3 (regular) grammars [1], [3]. The formalism
used in ESG notation enables the direct adoption of mathematical results known from
graph theory, automata theory, etc., as needed by our approach.

The rest of this paper is organized as follows: Section 2 presents modeling with
ESG. Section 3 introduces basic mutation operators for ESG and a process for ESG-
based mutation analysis. A case study in Section 4 validates the approach using a
large commercial web-based system. Section 5 concludes the paper summarizing the
results and outlines future work.

2 Modeling with Event Sequence Graphs

An event is an externally observable phenomenon, such as an environmental or a user
stimulus, or a system response punctuating different stages of system activity. ESGs
[1] represent system behavior and user-system interaction focusing on events.

Definition 1. An event sequence graph ESG=(V, E, E, T) is a directed ¢raph with V as
a finite set of vertices (events), ECVxV a finite set of arcs, and Z, 'CV as finite sets
of distinguished vertices called entry events and exit events.

The semantics of an ESG is as follows: Any ve V represents an event. For two events
vy'e V, the event v’ must be enabled after the execution of v if (v, v')e E. E(ESG),
['(ESG) represent the entry and exit events of a given ESG. To mark the entry and exit
events, every £e Z is preceded by a pseudo event [¢ V and every ye T is followed by
J& V. For each ve V there is at least one sequence of vertices (§,v,,...,v,,) from &€ Z to
v,=v and one sequence of vertices (v),...,v,,Y) from v,=v to yeI" with (v, v, )€ E, for
i=l,...,m-1 and v& and v=y. Fig. 1 shows an example of an ESG with V={a,b,c},
E={(a,b), (a,c), (b,c), (¢,b)}, Z={a}, and I'={h}.

Definition 2. Let ESG=(V, E, E, ') be an ESG. Any sequence of vertices (vy,...,v,,) is
called an event sequence (ES) if (v,v;,)eE, fori=1,...,m-1.

Let o and o be the functions to determine the entry vertex and exit vertex of an ES.
For example, given ES=(v,...,v,), the entry and exit vertices are o(ES)=v, and
a(ES)=v,, respectively. Note that the pseudo vertices [, ] are not included in the ES.
An ES = (v;.v;) of length 2 is called an event pair (EP).
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The function ! (length) determines the number of vertices of an ES. In particular, if
I(ES)=1 then it is an event sequence of length 1. The pseudo vertices [ and ] are not
included in any ES. Neither are they considered to determine the entry and exit verti-
ces, or to compute the length of an ES.

Fig. 1. Example of simple event sequence graph

Definition 3. An ES is a complete event sequence (CES) il a(ES)e Z and oXES)e T,

Each CES represents a walk from an entry of the ESG to an exit realized by the
form: (initial) user inputs— (interim) system responses > ... - (final) system re-
sponse. Based on the notion of CES a test case generation algorithm @ is described by
Algorithm 1. Applying algorithm @ to an ESG (denoted by ®(I:55)) delivers a test
set 7" that is an ordered pair of (input to SUT, expected output of SUT) to be executed
against SUT. Details of an algorithm as well as minimization of test sets have been
published in previous work ([1]).

Algorithm 1. Test case generation <P

Input: ESG =(V, E Z, T, len:= maximum length of CES to be covered
Qutput: Test report of succeeded and failed test cases
FOR i:=1TO len
BEGIN
Cover all ESs of ESG of length i by me:uns of CESs;
END
Apply the test cases given by CESs to SUT: Observe output of SUT;

3 ESG-Based Mutation Analysis

Based on ESG this section defines basic ([2]! and higher-order mutation operators to
generate faulty models (mutants) and defines a mutation analysis process using ESG
and these operators.

3.1 Basic Mutation Operators

A given ESG specifies the expected, desiruble behavior of SUT. An ESG can be
changed by manipulating either the arcs or the events resuiting in a faulty model ESG.
There are two basic mutation operators that can be defined for different model ele-
ments — insertion (I) and omission (O).

Definition 4. Basic Mutation operators.

e Anarc insertion operator (al) extends an ESG by inserting a new arc a¢ £
into the given ESG: al(ESG, ) :== (', Eu{a}, Z, T).
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* Anarc omission operator (aQ) removes an arc ae€ E from the given ESG:
a0(Z8G, a) := (V, E\la}, E, .

*  An cvent insertion operator (el) extends an ESG by inserting an event ¢ into
the viven ESG: el(ESG, e) := (VU[e}, E, =, ).

*  Anvent omission operator (eQ) removes an event e€ E from the given
ESC: eO(ESG, ¢) := (W(e}, E, Z, TN).

The el-operaior requires adding extra arcs to/from the inserted event from/to other
nodes. After ipplying an eQ-operator, adjacent arcs of event ¢ have to be removed.

The set of {irst-order basic mutation operators is thereby given by A, := {al, a0, el,
eO}. Higher- wder mutants are constructed as follows:

Definition 5. The set of all n-order (n>1) mutation operators are given by A, := A,”

Traditional mutation operators as defined in the literature (e.g. [5],[6]) can be directly
represented by the basic operators or as a combination. As an example, the operators
manipulating the events of an FSM as defined in [6]) can be represented as follows:
“event-missing” by basic operator eOe A,, “event-extra” by basic operator ele A,, and
“event-exchai'ged” as a second-order operator (€0, el)e A,. The direction of an arc of
an ESG is chinged by a second-order operator cdA = (a0, al).

3.2 ESG-Based Mutation Analysis

It is assumed that test cases generated by test case algorithm ® (Algorithm 1) based
on ESG do no reveal any more faults in SUT and that the source code of SUT is not
available. Therefore, mutants are constructed based on the model and not the system
itself. The go.l is to evaluate the fault detection effectiveness of algorithm @ and its
test cases gen:rated, i.e. its capability to distinguish the mutants from SUT. Algorithm
2 describes an ESG-based mutation analysis.

Algorithm 2. ESG-based mutation analysis

Input: /ZSG that describes SUT, A c AU ... UA, (set of mutation operators)
¢ 1= maximum number of mutants to be generated by each operator
‘b (test generation algorithm)
Output: Killed and live mutants
FOREA CH &e A
BEGIN
FOR ::=1TOk
BEGIN
ESG's, == 8(ESG);
T’ = D(ESG's);
Exccute SUT against 77 ;
Conipare expected output contained in T's; with actual output of SUT;
END
END
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An ESG representing SUT and a set of mutation operators A ¢ A, U ... U A, is
used to generate up to k mutants for each mutation operator 8e A. For each mutant
ESG';, test case generation algorithm ® is used to generate a test set Ty .. SUT is exe-
cuted against this set to compare the predicted output contained in T"s,; with the output
observed by SUT. If the output differs, the mutant ESG’s, is killed. Otherwise, the
mutant remains live or is equivalent to the original model.

Definition 6. Given an ESG, a set of mutation operators A, the number of mutants k,
and a test case generation algorithm @, the rest generation mutation score is defined
as: TGMS(ESG, A, k, ®) := No. of killed mutants / (all mutants — no. of equivalent
mutants).

4 Case Study

To analyze the practicability, characteristic features, and limitations of our approach,
an experimental case study based on a commercial web-based system has been
conducted. Our main focus is to answer the research questions from the introduction.

4.1 Modeling, Test Generation and Execution

SUT is a commercial web portal (ISELTA - Isik‘s System for Enterprise-Leve] Web-
Centric Tourist Applications [9]) for marketing touristic services. ISELTA enables
hotels and travel agencies to create individual search masks. These masks are
embedded in existing homepages of hotels as an interface between customers and the
system. Visitors of the website can then use these masks to select and book services,
e.g.. hotel rooms or special offers. The system also provides other search mask to book
arrangements. This part of the system will be used within the case study. Arrangements
part of system consists of two parts: additional services and special offers. To set up an
additional service and special offer, the dedicated website as shown in Fig. 1 and Fig.
2, respectively, are used. Examples of ESG model for additional services and special
offer are given Fig. 3 and Fig. 4, respectively.

Fig. 1. Website to set up additional service Fig. 2. Website to set up special offer

Test cases were generated for each mutant using the algorithm @ (as described in
Algorithm 1) for len = 2, that is, to cover all events and pairs of events by CES.
Equivalent mutants were not observed in the case study.
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Fig. 3. Example of ESG for additional service Fig. 4. Example of ESG for special offer

DO : No Special D1 :in a Special INC_DT :Incomplete Data EDIT: Click Edit
CH_DT : Change Information E_DT . Enter Complete Data
SAVE :Click Save CAN :Click Cancel OK : Click OK ADD : Click ADD

4.2 Results and Discussion
Table I, Table 2 and Table 3 summarize the results of mutation analysis, 50 of first-

order mutants, 108 of second-order mutants, and 83 of third-order mutants were
generated for analysis.

Table 1. Results of First-Order Mutation Analysis

Mutation Operator/ Mutant Type Killed Alive TGMS
All Mutation Op. 17 33 0,34

e0 0 16 0

al 17 2 0,89

a0 0 15 0

To check the validity of the coupling effect, means of TGMS with respect to the
order of the mutants was compared by using One Way ANOVA test. It is a statistical
test to determine whether there are differences between different levels of an
independent variable or not. In this case study, order of mutants (first-, second-, and
third-order) is used as the independent variable.

Coupling Effect Hypothesis (Confidence level is 95%)

Hy: Tests that find first-order mutants also find higher-order mutants
Hy: Higher-order mutation is better in revealing the mutants.
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Table 2. Results of Second-Order Mutation Analysis

Mutation Operator / Mutant Type Killed Alive TGMS
All Mutation Op. 50 58 0,46
e0, e0 4 10 0,29
e0,al 19 3 0.86
a0, al 16 5 0,76
edA 9 12 0,43
al, al 0 2 0
a0, a0 0 11 0
e0, e0 2 15 0,12

Table 3. Results of Third-Order Mutation Analysis

Mutation Operator / Mutant Type Killed Alive TGMS
All Mutation Op. 67 16 0,81
cdA, a0 12 2 0,86
cdA, al 12 1 0,92
a0, al,al 14 4 0,78
cdA, eO 11 9 0,55
al, al, eO 4 0 1

al, al, eO 14 0 1

Table 4 shows the results of One Way ANOVA. According to Table 4, H,
hypothesis can not be accepted at 95% confidence level. since sig. value (0.03) is less
than 0.05. This states that there is significant difference between first-order mutation
analysis and higher-order mutation. In other words, coupling effect does not hold at
95% confidence for this case study.

Table 4. One Way ANOVA

Sum of Squares Mean Square F Sig.
Between Groups 1,007 0,504 4,647 0,03
Within Groups 1,409 0,108
Total 2,416

Hy: Tests that find first-order mutants also find second-order mutants
Hy: Tests that find first-order mutants also find third-order mutants
Hy: Tests that find second-order mutants also find third-order mutants
H,: There is significant difference between test adequacies.

Table 5. Multiple Comparison Test

(D MO (J) (MO) Mean Difference (I-J)  Std. Sig.
Error
First-Order - Second Order -0,055 0,2272 0,813
- Third Order -0,555° 0,233 0,033

Second-Order -Third-Order -0,5002 0,183 0,017
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If £, hypothesis can not be accepted as a result of one way ANOVA, the question
arises “Which means of groups are significantly different from which other means of
groups”. To answer the question, Multiple Comparison Tests are used. These tests
compare all possible pairs of means of groups and produce which pairs significantly
different under selected confidence level. According to Table 5, significant difference
between first-order mutation analysis and third-order mutation analysis was found
since sig. value (0,033) is less than 0.05. Similarly, it can be said that there is signifi-
cant diffcrence between second-order mutation analysis and third-order mutation
analysis with respect to TGMS (Sig = 0.017 <0.05). Lastly, to decide whether basic
mutation operators are sufficient for measuring test effectiveness of higher-order
mutation analysis or not. mean of TGMS values are compared with 1, since the test
set is said to be effective in detecting faults that that were injected into the mutants, if
its TGMY value is 1. To carry out the comparison, One-Sample T-Test that is a
statistical test technique used to compare the mean of a sample to a known value was
performed. Table 6 shows the results of the comparison. As a result of One-Sample
T-Test (Table 0), significant difference between TGMS value of higher-order
mutation analysis and | was not found.

Table 6. One Sample T-Test

T Df Sig. (2-tailed) Mean Differcnce
_TGMS 2,134 |5 0,086 -0.1483

5 Conclusions, Future Research

This pa;:or introduced higher-order ESG-based mutation analysis by using two basic
operators, insertion and omission, and checked the validity of coupling effect. Analy-
sis was carried out on a case study using the web portal ISELTA. Test sets for first-
order, second-order, and third-order mutants were generated and executed on SUT to
determine the number of killed and live mutants. Statistical “One Way ANOVA”
method enabled following:

* Means of TGMS valucs were compared to check validity of coupling effect.

¢ There are significant differences between means of first, second, and third-order
mutants were found at 95% confidence level.

* Coupling effect could not be confirmed for this case study. However, it cannot be
excluded that the results are affected by potential bias between the operators chosen.
The coupling effect may be confirmed when using other higher-order mutation
operators or all possible combinations of basic operators as higher-order operators.

In a second step, Multiple Comparison test (LSD) was performed to answer the
question “which means of groups (order of mutants) arc significantly different from
which other means of groups”. Founding is:

* No significant di!ference between first-order and second-order mutation analysis.
* Significant diffei ence between first/second-order and third order mutation analysis.

The additionally p:rformed One-Sample T-Test concluded that higher-order mutation
analysis carried out by using combinations of basic mutation operators in this study are
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adequate in detecting the injected faults. Work planned is to combine and iterate basic
operators for creating more sophisticated mutants to be used in further empirical research.
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