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İZMİR



We approve the thesis of Serdar TÜLÜ
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ABSTRACT

VORTEX DYNAMICS IN DOMAINS WITH BOUNDARIES

In this thesis we consider the following problems: 1) The problem of fluid ad-

vection excited by point vortices in the presence of stationary cylinders (we also add

a uniform flow to the systems). 2) The problem of motion of one vortex (or vortices)

around cylinder(s). We also investigate integrable and chaotic cases of motion of two

vortices around an oscillating cylinder in the presence of a uniform flow.

In the fluid advection problems Milne-Thomson’s Circle theorem and an analytical-

numerical solution in the form of an infinite power series are used to determine flow

fields and the forces on the cylinder(s) are calculated by the Blasius theorem. In the ”two

vortices-one cylinder” case we generalize the problem by adding independent circulation

κ0 around the cylinder itself. We then write the conditions for force to be zero on the

cylinder.

The Hamiltonian for motion of two vortices in the case with no uniform flow and

stationary cylinder is constructed and reduced. Also constant Hamiltonian (energy) curves

are plotted when the system is shown to be integrable according to Liouville’s definition.

By adding uniform flow to the system and by allowing the cylinder to vibrate, we model

the natural vibration of the cylinder in the flow field, which has applications in ocean

engineering involving tethers or pipelines in a flow field. We conclude that in the chaotic

case, forces on the cylinder may be considerably larger than those on the integrable case

depending on the initial positions of the vortices, and that complex phenomena such as

chaotic capture and escape occur when the initial positions lie in a certain region.
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ÖZET

SINIRLARI OLAN BÖLGELERDE GİRDAP DİNAMİG̃İ

Bu tezde ele alınan problemler şu şekilde özetlenebilir: 1) Noktasal girdapların

sabit silindirlerle birlikte oluşturduǧu akışkan hareketi problemi (ayrıca sisteme sabit

hızdaki akışkan da eklenerek incelenmektedir). 2) Bir ya da birden fazla girdabın, silindir-

ler etrafındaki hareketleri. Ayrıca sabit hızdaki akışkan içinde bulunan titreşimli bir

silindirin etrafındaki iki girdabın integrallenebilir durumdaki ve kaos içindeki girdap hare-

ketleri araştırılmaktadır.

Akışkan hareketi problemlerinde, akışkanın hız alanları, Milne-Thomson’un Daire

teoremi, ve analitik ve sayısal formda sonsuz seri çözümleri kullanılarak elde edilmiştir.

Blasius teoremi kullanılarak da silindirler üstündeki kuvvetler hesaplanmıştır. ”İki gir-

dap - bir silindir” problemi, silindir etrafında baǧımsız dolaşım eklenerek genişletilmiş ve

silindir üstündeki kuvvetin sıfır olduǧu durumlar bulunmuştur.

Duraǧan akışkan ve silindir olduǧunda girdap hareketinin Liouville tanımına göre

integrallenebilir olduǧu gösterilirken sistemin Hamiltoniyenleri kurulup indirgenmiştir.

Ayrıca sabit Hamilton eǧrileri çizilmiştir. Sisteme sabit akım ekleyerek ve silindire de

titreşim vererek, boru hatlarını ve baǧlantıları içeren okyanus mühendisliǧinde uygula-

maları olan doǧal silindir titreşimi modellenmiştir. Kaotik durumlarda silindire uygu-

lanan kuvvetlerin, girdapların başlangıç konumlarına baǧlı olarak, integrallenebilir sis-

temlerden daha büyük olduǧu gösterilmiş ve girdapların, başlangıç konumları belirli bir

bölgede mevcut olduklarında, bu girdapların kaçışları ve yakalanışları gösterilmiştir.
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CHAPTER 1

INTRODUCTION

1.1. Literature Review

The investigation of point vortices in domains with boundaries is a popular re-

search area with possible applications in engineering and physics such as the interaction

of tension leg platforms or semisubmersibles with vortices in a uniform flow field. The

concept of point vortex motion, a classical model in the theory of two dimensional, in-

compressible fluid mechanics, was introduced by Helmholtz in 1858. He set down the

basic laws of vortex dynamics. The simplest example of the motion of two vortices was

considered in (Helmholtz, 1858). Kirchhoff established the Hamiltonian property of the

equations of motion of N point vortices, and also found the four first integrals of this sys-

tem that are related to the time independence of the Hamiltonian and its invariance under

parallel translation and rotation of the coordinate frame (Kirchhoff, 1883). The integra-

bility of the problem of three vortices was noted in (Poincare, 1893) (there are three first

integrals in involution) and was shown in unbounded plane in (Aref 1983). The analytic

proof of the non-integrability of the set of four point vortices on a plane was given in

(Ziglin 1980, 1983). He considered the restricted problem of four vortices, that is, three

unit vortices and a fourth vortex with zero intensity (i.e., a simple particle of fluid). The

system of three identical vortices was integrated in (Aref & Pomphrey 1982) in terms

of elliptic functions and it was shown that the motion of four vortices of equal strength

is chaotic. In unbounded plane, the integrability of motion of four vortices was shown

in (Aref & Pomphrey 1982) and (Eckhardt 1988) for special arrangements of vortices.

Integrable cases of the motion of four vortices were examined in (Eckhardt 1988) using

the Poisson brackets between constants of motion.

Vortices in annular regions have also been investigated by many authors. Johnson

& McDonald solved the problem in terms of elliptic functions (Johnson & McDonald

2005). Analysis of the same problem by the method of images in terms of the q-calculus

has been examined in (Pashaev & Yilmaz 2008). Advection problem of a point vortex

in closed domains has been studied by Zannetti & Franzese. They use canonical trans-

formations to eliminate the time dependence of the Hamiltonian (Zannetti & Franzese

1993).
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In this thesis we consider two different problems: The problem of fluid advection

excited by M vortices and a uniform flow in the presence of N stationary cylinders, start-

ing with the simplest case (one vortex and single cylinder), and the problem of motion of

the vortices around the cylinders, starting with the case of one vortex and single cylinder.

In the fluid advection problems Milne-Thomson’s Circle theorem (Milne-Thomson

1968) is used to determine the flow field for the cases with one cylinder. Further an

analytical-numerical solution in the form of an infinite power series for the velocity field

is obtained using complex analysis for the cases with N stationary cylinders (Pashaev &

Yilmaz 2009). In the fluid advection problem forces are calculated by the Blasius theo-

rem. The Hamiltonian for vortex motion is constructed for all cases.

We investigate integrable and chaotic cases of vortex motion. In dynamical sys-

tems, integrability is not usual. Most of the actual problems of dynamics (say, the n-body

problem) turns out to be non-integrable. Even if the system is integrable, it is not an easy

task to reduce the system to lower space dimensions. In the case of a stationary cylinder

and two vortices, we see that the motion of vortices is integrable when the vortices have

equal strength. This system is reduced to two space dimensions and constant Hamiltonian

(energy) curves are plotted when the system is shown to be integrable according to Liou-

ville’s definition. If a uniform flow is added to the system of two vortices and a cylinder,

the symmetry is destroyed by the uniform flow and the motion of vortices is probably not

integrable.

The last case we consider involves the oscillatory perturbation of the cylinder,

uniform flow and vortices. By adding uniform flow to the system, and by allowing the

cylinder to vibrate, we model the natural vibration of the cylinder in the flow field, which

has applications in ocean engineering involving vortex induced oscillations of tethers or

pipelines in a flow field. We demonstrate that chaos exist for certain parameter values

and this results in higher forces exerted by the fluid on the cylinder. So, chaotic motion of

vortices is not only interesting in its own right, but also it has some practical consequences

such as causing increase in forces acting on the cylinder. Chaotic interaction of a cylinder

with one vortex has been studied in (Kadtke & Novikov 1993). They show the chaotic

capture and escape of vortex and gave a capture zone, shown in Figure 12 of their paper,

which is closely related to the separatrix. In our study, in the case of two vortices with a

cylinder, a capture zone plot similar to the one given by Kadtke and Novikov is given.

In most vortex induced vibration problems (Banik & Datta 2009) - (Dong, Xie &

Lou 1992), numerical and semi analytical techniques have been used to estimate stability,

modes of oscillations, displacement and vortex forces. The hydrodynamic interaction

2



between vortices and an oscillating cylinder in the presence of a uniform flow will be

considered, This may be used in understanding vortex induced vibration problems.

Hydrodynamic interaction problem has been studied by many authors in connec-

tion with free surface waves and surface piercing vertical cylinders. For example, see

(Linton & Evans 1990) and (Yilmaz 1998). The basic idea behind these studies is that,

incoming waves can be decomposed into modes and diffracted waves from cylinders can

be related to these modes. Then, the interaction takes place when we relate the coordi-

nate systems at the centre of each cylinder by using addition theorems. A similar idea

was used by Pashaev and Yilmaz to find the interaction between cylinders and a vortex in

the two dimensional plane (Pashaev & Yilmaz 2009). There are other methods such as

Abelian function theory and conformal mapping techniques used in solving vortex body

interaction problems. For these methods, see (Pashaev & Yilmaz 2008) and (Crowdy &

Marshall 2005).

1.2. Structure of the Thesis

In Chapter 2, the fundamentals of two dimensional fluid flow are given. We for-

mulate the problem of fluid advection excited by M vortices and a uniform flow in the

presence of N stationary cylinders. The formulas for the forces on the cylinders are given

by the Blasius Theorem and we generalize the problem by adding independent circulation

around the cylinder.

In Chapter 3, Hamiltonian description of motion of vortices is given. The Hamil-

tonian for the motion of vortices is constructed. We investigate integrable and chaotic

cases of vortex motion. We find an integrable system of two vortices. This system is

shown to be integrable according to Liouville’s definition, and we reduce it to two space

dimensions and plot the constant Hamiltonian curves.

In Chapter 4, we add an oscillatory perturbation to the cylinder of the system of

two vortices and a cylinder in the presence of uniform flow. Interesting cases of chaotic

capture and escape are shown. Magnitude of the force on the cylinder in the integrable

case of two vortices is compared with the non-integrable case.

In conclusions we summarize the main results in the thesis which were published

in the paper of ”Motion of vortices outside a cylinder”, (Tülü & Yilmaz 2010).
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CHAPTER 2

FLOW INDUCED BY VORTICES

We consider problems of line vortices and infinitely long cylinders. Hence, the

problem can be reduced to the two-dimensional problem of point vortices and discs. Then

we shall frequently make use of the theory of complex analytic functions. Complex ve-

locity is defined as

V (z) = u(x, y)− iv(x, y), z = x+ iy, (2.1)

where u and v are the velocity components in the x− and y−directions, respectively. We

assume the flow is incompressible and irrotational:

div V = ∇ · V =
∂u

∂x
+
∂v

∂y
= 0 (Incompressibility), (2.2)

curl V = ∇× V =

(
∂v

∂x
− ∂u

∂x

)
k = 0 (Irrotationality). (2.3)

Due to these equations
dV

dz
= 0 and V (z) is complex analytic function.

The fluid particles will follow the trajectories z(t) = x(t) + iy(t), obtained by

integrating the differential equations

dx

dt
= u(x, y),

dy

dt
= v(x, y). (2.4)

In fluid mechanics, the curves parametrized by (2.4) are known as the streamlines, i.e.,

general definition of a streamline s(τ) = z(τ) says that the tangent to the streamline

should be equal to the velocity at a given instant in time

dz(τ)

dτ
= V (z), z(0) = z0, (2.5)
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where τ is a parameter that characterizes the streamline.

Now, the complex velocity V (z) admits a complex anti-derivative, i.e., ∃ a com-

plex analytic function

ω(z) = φ(x, y) + iψ(x, y), (2.6)

which satisfies
dω

dz
= V (z). Therefore, we have

∂φ

∂x
= u,

∂φ

∂y
= v (2.7)

or, V = ∇φ, and hence the real part of the complex function, φ(x, y), defines a velocity

potential for the fluid flow. For this reason, the anti-derivative ω(z) is known as a complex

potential function for the given fluid velocity field. The harmonic conjugate ψ(x, y) to the

velocity potential is known as the stream function. Velocity vector can also be expressed

in terms of stream function, i.e., V = ∇× (ψk).

Both the velocity potential and the stream function satisfy the Laplace equation

and are related by the Cauchy-Riemann equations

∂φ

∂x
= u =

∂ψ

∂y
,

∂φ

∂y
= v = −∂ψ

∂x
. (2.8)

The level sets of the stream function {ψ(x, y) = c} where c ∈ R are known as the level

curves of the stream function, i.e., the streamlines of the flow.

Example 2.1 Consider the complex potential

ω = iκ log z, (2.9)

where z = reiθ. Then the velocity potential and the stream function are

φ = −κθ, ψ = κ log r. (2.10)

The streamlines are concentric circles with center at the origin. This is the fluid flow
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induced by a point vortex at the origin.

Next, we give the Milne - Thomson’s Circle Theorem (Milne-Thomson 1968)

which will be useful when we consider a single cylinder.

2.1. Milne - Thomson’s Circle Theorem

Let C be the circle, |z| = a, in the z-plane. Let P be the point z = reiθ. Then if

Q is the point
a2

z
, we have

a2

z
=

a2

reiθ
=
a2

r
e−iθ. (2.11)

If we mark, on OP between O and P , the point S such that |OS| = |OQ| = a2

r
, we see

that

|OS|.|OP | = a2. (2.12)

Therefore that S and P are inverse points with respect to the circle C and the point Q is

the optical reflection of S in the x-axis regarded as a mirror. It is clear from (2.12) that if

P is outside the circle (OP > a), then S and therefore Q are inside the circle (see Figure

2.1).

-2 -1 1 2

-2

-1

1

2

Θ

Θ

P

Q

S

Figure 2.1. S is inverse point of P with respect to C.
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If, however, P is on the circumference of the circle, S coincides with P and Q

z =
a2

z
. (2.13)

Let f(z) be a function of z which is an analytic in the whole plane except at certain

isolated singular points all of which are at a distance greater than a from the origin. We

can form the conjugate complex f(z) by replacing i by −i wherever it occurs.

Definition 2.1.0.1 The function f(z) is formed from the function f(z) by first forming

f(z) then in f(z) writing z instead of z.

We now prove a general theorem which will be of great use.

Theorem 2.1.0.2 Milne-Thomson Circle Theorem

Let us consider the irrotational two-dimensional flow of an incompressible invis-

cid fluid in the z-plane. Let there be no rigid boundaries and let the complex potential of

the flow be f(z), where the singularities of f(z) are all at a distance greater than a from

the origin. If a circular cylinder, typified by its cross-section of the circle C: |z| = a is

introduced into the field of flow, the complex potential becomes

ω = f(z) + f

(
a2

z

)
= f(z) + f

(
a2

z

)
, (2.14)

with (i) the same singularities as f(z) for |z| > a and (ii) |z| = a as a streamline.

Proof 2.1.0.3 Since z =
a2

z
on the circle, we see that

ω = f(z) + f

(
a2

z

)
= f(z) + f(z) (2.15)

purely real on the circle C. Thus C is a streamline.

If the point z is outside C, all singularities of f(z) are in the region |z| > a, so all

the singularities of f
(
a2

z

)
are interior to C; in particular f

(
a2

z

)
has no singularity at

infinity, since f(z) has none at z = 0. Thus ω has exactly the same singularities as f(z).
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Example 2.2 Consider a vortex of strength κ at the point z0 and let the center of the

cylinder be at the origin. Here f(z) = iκ log(z − z0), and therefore, if |z0| > a

ω = iκ log(z − z0)− iκ log(
a2

z
− z0). (2.16)

Thus ω = iκ log(z − z0)− iκ log(z − a2

z0
) + iκ log(z)+constant. It is easy to see that on

the cylinder (|z| = a), the imaginary part of the complex potential (the stream function)

vanishes; hence the circle becomes a streamline (see Figures 2.2-2.4).

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Κ

z0=2-2i

Figure 2.2. Diagram of the physical system represented by vortex-cylinder model,
showing one vortex placed at z0 = 2 − 2i with strength κ and a cylin-
der with unit radius centred at the origin.

Next we consider the problem of a point vortex and N fixed cylinders in a two -

dimensional inviscid fluid and we obtain an analytical−numerical solution in the form of

an infinite power series for the velocity field using complex analysis. This problem has

been studied in detail by (Pashaev & Yilmaz 2009).
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2.2. Two-Dimensional Inviscid Flow around Multiple Cylinders with

a Vortex

We formulate the problem of one vortex and N stationary cylinders in an un-

bounded two-dimensional domain in several steps starting with the case of a single vortex

and a single cylinder. For simplicity, we shall take all the circulations around the cylinders

to be zero. But in one cylinder and two vortices case we add an independent circulation

to the system so that the circulation around the cylinder becomes nonzero.

2.2.1. The Case of a Vortex and a Cylinder

First, consider a vortex of strength κ at z0 and a cylinder of radius a at the origin.

Then the complex potential is given by the Circle Theorem of Milne-Thomson

ω = f(z) + f

(
a2

z

)
= iκ log(z − z0)− iκ log(

a2

z
− z0)

= iκ log(z − z0)− iκ log(z − z′0) + iκ log(z)− iκ log(−z0), (2.17)

where z′0 =
a2

z0
is the inverse point of z0 with respect to the cylinder. It is easy to see that

the imaginary part of the complex potential vanishes on the cylinder hence the boundary

condition is satisfied.

Equation (2.17) implies that the effect of the cylinder introduced at the origin is

two extra vortices; one of these is at the inverse point of z0 with negative strength, and

another at the center of the cylinder with positive strength. We shall call the vortices at

inverse points and at the centres of cylinders (or at infinity) ”vortex images”. Therefore

the effect of the cylinder, introduced at the origin, to the potential is two images, one at

the inverse point with negative strength and the other at the centre with positive strength.

In Figure 2.3, we see the images of a vortex which is given in Example 2.2.
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’
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Κ

Figure 2.3. Images of one vortex which is considered in example 2.2; one is at the
origin with positive strength and the other at the inverse point z′0 = 1/4−
1/4i with negative strength.

The complex velocity is obtained by differentiating (2.17) with respect to z

V =
iκ

z − z0
− iκ

z − z′0
+
iκ

z
, (2.18)

where V =
dω

dz
= u− iv, with u and v being rectangular components of velocity. Hence-

forth, we shall work with complex velocity and avoid dealing with the multi-valued func-

tion log.

In Figure 2.4, the flow field is shown using equation (2.18) when the vortex is at

the point z0 = 2 − 2i with strength κ = 0.4 and where the cylinder is at the origin. So

this figure represents a vector plot of the velocity field for one vortex outside a cylinder.

We see that velocity vectors are tangent to the circle so boundary condition is satisfied, as

we expected.
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Y

X

Figure 2.4. Velocity distribution about a cylinder at the origin with a vortex at (2,-2)
with strength 0.4. Velocity vectors are scaled down by a factor of 1.3.

Next we consider a vortex of strength κ at z0 and a cylinder of radius aj at zj . In

this case, the complex velocity is obtained by translating the coordinates of the origin to

zj in equation (2.18)

V =
iκ

z − z0
− iκ

z − zj − (z0 − zj)′
+

iκ

z − zj

=
iκ

ζj − ζ0j
− iκ

ζj − ζ ′0j
+
iκ

ζj
= V

I

j + V
D

j , (2.19)

where ζj = z − zj, ζ0j = z0 − zj and ζ ′0j = a2j/ζ0j . The term

V
I

j =
iκ

ζj − ζ0j
, (2.20)

11



in equation (2.19) represents the velocity field due to the vortex alone and the term

V
D

j =
iκ

ζj
− iκ

ζj − ζ ′0j
(2.21)

represents the effect of the cylinder on the velocity field.

For the general problem of arbitrary number of cylinders and vortices, we shall

need the Laurent series of the terms in (2.19) around zj . We start with the first term

V
I

j =
iκ

ζj − ζ0j
= − iκ

ζ0j

∞∑
n=0

( ζj
ζ0j

)n
, |ζj| < |ζ0j|. (2.22)

Here we assume that the centre of the vortex is outside the cylinder. In this case the

condition |ζj| < |ζ0j| is certainly true when the boundary condition is applied on the

cylinder (z = zj + aje
iθj).

The last two terms in equation (2.19) are treated together

V
D

j =
iκ

ζj
− iκ

ζj − ζ ′0j
= −iκ

∞∑
n=1

(ζ ′0j)
n

ζn+1
j

, (2.23)

where ζ ′0j = a2j/ζ0j implies |ζ ′0j| ≤ |ζj|, and corresponds to the vortex images.

In Figure 2.5 the flow field is shown when the vortex is at the point z0 = 2 + 2i

with strength κ = −0.4 and the cylinder is at the point zj = −1− i.

2.2.2. Force on the Cylinder

First we will state the Blasius’ Theorem which is used to calculate the force on

the cylinders without proof. Let a fixed cylinder be placed in an incompressible and

irrotational flow field. If ω is the complex potential then the theorem of Blasius is as

follows

F =
iρ

2

∮
C

(
dω

dz

)2

dz, (2.24)
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Y
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Figure 2.5. Velocity distribution about a cylinder at the point (−1,−1) with a vortex
at (2,2) with strength -0.4. Velocity vectors are scaled down by the factor
of 1.3.

where ρ is the mass density of the fluid and F denotes complex conjugate of the force

F = Fx + iFy on the system and the integral is taken around the cylinder. We can rewrite

equation (2.24) using

(
dω

dz

)2

= V
2
. (2.25)

Therefore, we need the square of the velocity for this purpose, namely,

V
2

= −κ2
(

1

(ζj − ζ0j)2
+

1

(ζj − ζ ′0j)
2
+

1

ζ2j
+

+
2

ζj(ζj − ζ0j)
− 2

(ζj − ζ0j)(ζj − ζ ′0j)
− 2

ζj(ζj − ζ ′0j)

)
(2.26)
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If we integrate equation (2.26) with respect to ζj around the cylinder we have

F =
iρ

2

∫
|ζj |=aj

V
2
dζj = 2πρκ2

(
1

ζ0j − ζ ′0j
− 1

ζ0j

)

= 2πρa2jκ
2

(
z0 − zj

|z0 − zj|2
(
|z0 − zj|2 − a2j

)) . (2.27)

If we write z0 = x0 + iy0 and zj = xj + iyj in equation (2.27) we have

Fx = 2πρa2jκ
2

(
x0 − xj

|z0 − zj|2
(
|z0 − zj|2 − a2j

)) (2.28)

Fy = −2πρa2jκ
2

(
y0 − yj

|z0 − zj|2
(
|z0 − zj|2 − a2j

)) . (2.29)

Now we calculate the circulation around the cylinder which is the line integral of

the tangential component of the velocity taken around the circle, given by

Γ =

∮
C

Vtds =

∮
C

udx+ vdy = Re

∮
C

V dz

 , (2.30)

where C denotes the circle and Vt = Re(V ieiθ) is the tangential component of V . Using

Cauchy’s Theorem we get

Γ = Re

 ∫
|ζj |=aj

V iaeiθdθ

 = Re

 ∫
|ζj |=aj

iκ

(
1

ζj − ζ0j
− 1

ζj − ζ ′0j
+

1

ζj

)
dζj


= Re (iκ (−2πi+ 2πi)) = 0. (2.31)

This is expected since the strengths of image at the centre and at the inverse point are of

equal in magnitude and opposite in sign. Therefore, their total effect on the boundary is

zero when evaluating equation (2.30).
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2.2.3. The Case of a Vortex and N -Cylinders

Now we assume that there are N cylinders of radii a1, ...aN placed in an un-

bounded two-dimensional fluid domain at points z1, ..., zN and that a vortex is placed at

z0 outside the cylinders (Pashaev & Yilmaz 2009). In order to apply the boundary con-

ditions at the boundaries of the cylinders, we express the total velocity near cylinder j

by

V
T

j = V
I

j + V
D

j +
N∑
i=1
i ̸=j

V
D

i , (2.32)

where

V
I

j = − iκ

ζ0j

∞∑
n=0

(
ζj
ζ0j

)n

, |ζj| < |ζ0j|, (2.33)

V
D

j = −iκ
∞∑
n=1

Aj
n

(ζ ′0j)
n

ζn+1
j

, |ζ ′0j| ≤ |ζj|, (2.34)

V
D

i = −iκ
∞∑
n=1

Ai
n

(ζ ′0i)
n

ζn+1
i

= −iκ
∞∑
n=1

Ai
n

(ζ ′0i)
n

(ζj +Rij)n+1
(2.35)

and Ai
n are unknown complex coefficients. We see that for the case of a single cylinder

the unknown coefficients Aj
n in equation (2.34) become unity. The first term in (2.32)

represents the velocity field due to the vortex, whereas the second and third terms account

for the effects of the cylinders and they describe a set of images in cylinders and the

images of images.

The boundary condition to be satisfied for each cylinder is that ”the normal com-

ponent of V
T

j = 0, when |ζj| = aj , ∀j”. This condition is equivalent to the statement

ajRe(V
T

j e
iθj) = Re(V

T

j aje
iθj) = Re(V

T

j ζj) = 0, j = 1, ..., N (2.36)

where Re(z) denotes the real part of z. In the last equality ζj = aje
iθj is used, this holds
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only on the boundary of cylinder j. Application of this condition yields

Re

(
−iκ

(
∞∑
n=0

ζn+1
j

ζn+1
0j

+
∞∑
n=1

Bj
n

ζnj
+

N∑
i=1

(1− δij)
∞∑
n=1

Bi
nζj

(ζj +Rij)n+1

))
= 0, (2.37)

where Bj
n = Aj

n

a2nj

ζn0j
and δij = 1 when i = j, δij = 0 otherwise. The last term in (2.37)

must be expanded into a series

1

(ζj +Rij)n+1
=

1

Rn+1
ij

∞∑
k=0

(n+ 1)k
k!

(
− ζj
Rij

)k

, (2.38)

where (n+1)k = (n+1)(n+2)...(n+ k) is the Pochhammer symbol and (n+1)0 = 1.

Then the algebraic system for the unknown coefficients Bs
l is

∞∑
l=1

N∑
s=1

Djs
nlB

s
l = Cj

n, j = 1, ..., N, n = 0, 1, ... (2.39)

where

Djs
nl = −δn+1,lδj,s

a2n+2
j

+
(−1)n

n!

∞∑
k=1

N∑
i=1

(1− δsi)(1− δij)

(2.40)

×(−1)k−1

(k − 1)!

a2ki (k + 1)n(l + 1)k−1

Rk+l
si R

n+k+1

ij

,

Cj
n =

−1

ζ
n+1

0j

− (−1)n

n!

N∑
i=1

(1− δij)
∞∑
k=1

(k + 1)na
2k
i

R
n+k+1

ij

1

ζk0i
. (2.41)

We notice that with a single cylinder, the above system gives Bj
n =

a2nj

ζn0j
, which is equiva-

lent to An = 1 as expected.
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In Figure 2.6 flow field is shown when the vortex is at the point z0 = 1.6i with

strength κ = 0.4 and two cylinders of unit radii, one placed at the origin and another at

the point (3, 0).

Figure 2.6. Velocity distribution about two cylinders at the points (0, 0) and (3, 0) with
a vortex at (0,1.6) with strength -0.4. Velocity vectors are scaled down by
the factor of 1.3.

In Figure 2.7 we consider an example of four disks placed at the corners of a

square, ζ1 = 2 + 2i, ζ2 = −2 + 2i, ζ2 = −2− 2i and ζ4 = 2 − 2i, when the vortex is at

the point z0 = 0 with strength κ = 0.4 and the cylinders at the points. This resembles the

legs of a Tension Leg Platform (TLP).
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Figure 2.7. Velocity distribution about four cylinders at the points (2, 2), (−2, 2),
(−2,−2) and (−2, 2) with a vortex at (0,0) with strength -0.4. Velocity
vectors are scaled down by the factor of 1.3.

We need again the square of V
T

j to calculate the force on the system

(
V

T

j

)2
=

V I

j + V
D

j +
N∑
i=1
i̸=j

V
D

i


2

=
(
V

I

j

)2
+
(
V

D

j

)2
+

N∑
i=1
i ̸=j

N∑
k=1
k ̸=j

V
D

i V
D

k

+2V
I

jV
D

j + 2V
I

j

N∑
i=1
i ̸=j

V
D

i + 2V
D

j

N∑
i=1
i̸=j

V
D

i , (2.42)

where,

18



(
V

I

j

)2
=

−κ2

ζ20j

∞∑
n=0

∞∑
m=0

(
ζj
ζ0j

)n+m

, (2.43)

(
V

D

j

)2
= −κ2

∞∑
n=1

∞∑
m=1

Aj
nA

j
m

(ζ ′0j)
n+m

ζn+m+2
j

, (2.44)

V
D

i V
D

k =
∞∑
n=1

∞∑
m=1

Aj
nA

j
m

(ζ ′0i)
n(ζ ′0j)

m

(ζj +Rij)n+1(ζj +Rkj)m+1
, (2.45)

V
I

jV
D

j =
−κ2

ζ0j

∞∑
n=0

∞∑
m=1

Aj
m

ζnj (ζ
′
0j)

m

ζn0jζ
m+1
j

, (2.46)

V
I

j

N∑
i=1
i̸=j

V
D

i =
−κ2

ζ0j

∞∑
n=0

∞∑
m=1

Ai
m

ζnj (ζ
′
0i)

m

ζn0j(ζj +Rij)m+1
, (2.47)

V
D

j

N∑
i=1
i̸=j

V
D

i = −κ2
∞∑
n=1

∞∑
m=1

Aj
nA

i
m

(ζ ′0j)
n(ζ ′0i)

m

ζn+1
j (ζj +Rij)m+1

. (2.48)

If we integrate equation (2.42) with respect to ζj around cylinder j, we see that the terms

(2.43), (2.44), (2.45) and (2.47) give a zero contribution. Then by Blasius’ Theorem, the

force on the system is given by

F =
iρ

2

∫
|ζj |=aj

(
V

T

j

)2
dζj =

2πρκ2

ζ0j

∞∑
n=1

(ζ ′0j)
n

ζn0j
Aj

n

+2πρκ2
∞∑
n=1

∞∑
m=1

(−1)nAj
nA

i
m

(ζ ′0j)
n(ζ ′0i)

m

(Rij)m+n+1

(n+ 1)n
n!

.

(2.49)

We can check that F reduces to the one cylinder case. If we have one cylinder, all coeffi-

cients Aj
n become unity and the term V

D

i become zero. Since |ζ ′0j| < |ζ0j|, F becomes

F =
2πρκ2

ζ0j

∞∑
n=1

(ζ ′0j)
n

ζn0j
=

2πρκ2

ζ0j

(
ζ0j

ζ0j − ζ ′0j
− 1

)

= 2πρκ2
(

1

ζ0j − ζ ′0j
− 1

ζ0j

)
, (2.50)
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which is the same result as in equation (2.27).

And using Cauchy’s Theorem we can calculate the circulation around the j-th

cylinder

Γ = Re

 ∮
|ζj |=aj

V
T

j dζj

 = Re

 ∮
|ζj |=aj

V I

j + V
D

j +
N∑
i=1
i̸=j

V
D

i

dζj
 = 0,

as we expected.

2.3. Flow around a Cylinder and Two Vortices

Now we assume that a cylinder is placed at zj of radius a in an unbounded two-

dimensional fluid domain and two vortices with strengths κ1, κ2 are placed at z01, z02
outside the cylinder (Tülü & Yilmaz 2010). The complex potential is given by the Circle

Theorem,

ω = f(ζj) + f

(
a2

ζj

)

= iκ1 log(ζj − ζ1j) + iκ2 log(ζj − ζ2j)

−iκ1 log
(
a2

ζj
− ζ1j

)
− iκ2 log

(
a2

ζj
− ζ2j

)
, (2.51)

where ζj = z − zj, ζ1j = z01 − zj, ζ2j = z02 − zj.

The first two terms in (2.51) are complex potentials of the two vortices and the

last two terms represent the effect of the cylinder. It is easy to see that on the cylinder,

that is when ζjζj = a2, the imaginary part of the complex potential , the stream function,

vanishes hence the boundary condition is satisfied

ω = φ+ iψ = f(ζj) + f(ζj) ∈ R. (2.52)
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After some simple manipulations we can rewrite the complex potential as

ω = iκ1 log(ζj − ζ1j)− iκ1 log(ζj − ζ ′1j) + iκ1 log(ζj)− iκ1 log(−ζ1j)

+iκ2 log(ζj − ζ2j)− iκ1 log(ζj − ζ ′2j) + iκ2 log(ζj)− iκ2 log(−ζ2j),(2.53)

where ζ ′1j =
a2

ζ1j
and ζ ′2j =

a2

ζ2j
.We notice that in equation (2.53) there are two images for

each vortex; one at the symmetric point of the vortex with respect to the cylinder, another

one at the center of the cylinder. While the first image has the negative strength, the latter

has the positive strength.

We should remark that the image vortex at the center of the cylinder is not neces-

sary to satisfy the boundary condition, for a vortex at the center of the cylinder will give

only tangential component on the boundary of the cylinder. The effect of the image at the

center which has the same strength but opposite sign to the one at the symmetric point

is to produce zero circulation on the circle. It is possible to generalize the problem by

making the strength of the image at the center different from the one at the inverse point

and therefore to have nonzero circulation around the cylinder. However, as we shall see,

zero circulation does not necessarily mean zero force.

The complex velocity is obtained by differentiating the equation (2.53)

V =
iκ1

ζj − ζ1j
− iκ1
ζj − ζ ′1j

+
iκ1
ζj

+
iκ2

ζj − ζ2j
− iκ2
ζj − ζ ′2j

+
iκ2
ζj
, (2.54)

where V =
dω

dz
= u− iv.

In Figure 2.8 flow field is shown when the two vortices have the same strength. We

see that at the bisector of the line joining the centers of two vortices, there is a stagnation

point which means the velocity is zero at this point. Whereas in Figure 2.9 where total

strength of vortices vanishes there are no stagnation points. Also the force acting on the

cylinder is 80 times higher in the latter case.
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Figure 2.8. Velocity distribution about a cylinder at the origin with two vortices of unit
strength. Velocity vectors are scaled down by the factor of 1.3.

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

y

x

Figure 2.9. Velocity distribution about a cylinder at the origin with two vortices of
vanishing total strength. Velocity vectors are scaled down by the factor of
1.3.
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Before we calculate the force on the cylinder, we shall generalize equation (2.54)

by making the strength at the center of the cylinder arbitrary

V =
iκ1

ζj − ζ1j
− iκ1
ζj − ζ ′1j

+
iκ0
ζj

+
iκ2

ζj − ζ2j
− iκ2
ζj − ζ ′2j

. (2.55)

By Blasius’ Theorem, the force on the system is given by

F =
iρ

2

∫
|ζj |=a

V
2
dz = 2πρκ21

(
1

ζ1j − ζ ′1j

)
+ 2πρκ22

(
1

ζ2j − ζ ′2j

)

+2πρκ1κ2

(
1

ζ1j − ζ ′2j
+

1

ζ2j − ζ ′1j

)
− 2πρκ0

(
κ1
ζ1j

+
κ2
ζ2j

)
.

(2.56)

Notice that the circulation around the cylinder depends on the value of κ0

Γ = Re

 ∫
|ζj |=a

iκ1

(
1

ζj − ζ1j
− 1

ζj − ζ ′1j

)
dz


+Re

 ∫
|ζj |=a

iκ2

(
1

ζj − ζ2j
− 1

ζj − ζ ′2j

)
dz


+Re

 ∫
|ζj |=a

iκ0

(
1

ζj

)
dz


= 2π(κ1 + κ2 − κ0), (2.57)

when κ0 = κ1 + κ2, circulation would be zero, as expected.

A simple analysis of equation (2.56) shows that force on the cylinder becomes zero

under certain conditions; when vortices have the same strength (κ1 = κ2), are equidistant

from the centre of the cylinder and are placed symmetrically with respect to the centre.

Maximum force would occur in the limiting case when the same-sign vortices collide.
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Instead of κ1 = κ2, if we assume that κ1 = −κ2 then κ0 must be zero for force to be zero

under the same conditions as before.

2.4. The Vortex Doublet

First we consider the case of only two vortices placed at the points z01 and z02
satisfying |z01 − z02| < ϵ with opposite circulation κ1 = −κ2 = κ in an unbounded

two-dimensional fluid domain. The complex velocity is given by

V = iκ

(
1

z − z01
− 1

z − z02

)
=

iκϵeiθ

(z − z01)(z − z02)
, (2.58)

where θ is the angle between the line joining vortices and x−axis. Notice that when ϵ

approaches to zero vortices are merging. So if we let ϵ → 0 and choose κ =
k

ϵ
then we

get a vortex doublet with strength k, and complex velocity becomes

V =
ikeiθ

(z − z01)2
. (2.59)
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Figure 2.10. Velocity distribution of a vortex doublet where θ = π
3

and k = 0.4. Veloc-
ity vectors are scaled down by the factor of 1.3.
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In Figure 2.10 velocity distribution of a vortex doublet is shown using equation (2.59).

Here we choose the angle θ =
π

3
and the strength k = 0.4. If we integrate equation (2.59)

with respect to z we can find complex potential of the system

ω = − ikeiθ

(z − z01)
. (2.60)

Now we insert a cylinder to the system with radius a and centred at the origin.

Since we have a single cylinder we can use Milne-Thomson’s Circle Theorem to derive

the complex potential

ω = − ikeiθ

(z − z01)
+

ike−iθ(
a2

z
− z̄01

) . (2.61)

We differentiate equation (2.61) with respect to z to derive the complex velocity

V =
ikeiθ

(z − z01)2
+

ika2e−iθ

z2
(
a2

z
− z̄01

)2 . (2.62)

Thus we define a vortex doublet about a cylinder with radius a and centred at the origin.

In Figure 2.11 velocity distribution of a vortex doublet about a single cylinder is shown

using equation (2.62).

The pairing process of vortices is one of the main building blocks of fluid motion

and plays a major role in a variety of fluid phenomena. Its potential significance covers

various fields such as geophysics, meteorology, and astrophysics. The merger of two

vortices in a two-dimensional incompressible fluid has been studied by many authors. In

(Maze, Carton & Lapeyre 2004), (Meunier, Ehrenstein, Leweke & Rossi 2002) a critical

distance which vortices do not merge, has been found for a pair of equal two-dimensional

vortices. In (Maze, Carton & Lapeyre 2004) equal and positive vorticity was chosen for

the vortices and in (Meunier, Ehrenstein, Leweke & Rossi 2002) co-rotating vortices are

considered.
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Figure 2.11. Velocity distribution of a vortex doublet where θ = π
3

and k = 0.4. Veloc-
ity vectors are scaled down by the factor of 1.3.
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2.5. Uniform Flow around a Cylinder and Two Vortices

Now we formulate the problem of two vortices, a uniform flow and a stationary

cylinders in unbounded two dimensional domain. We assume that a cylinder of radius a

is placed at zj in an unbounded two-dimensional fluid domain where two point vortices

with strengths κ1, κ2 are located outside the cylinder at points z01, z02 respectively. There

is a uniform flow with velocity −iu0 at infinity. (See Figure 2.12.)
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3

Uniform Flow

Κ1

z01=1-i

Κ2

z02=-1-i

Figure 2.12. Diagram of the physical system represented by vortices-cylinder model,
showing uniform flow field, two vortices placed at z01 = 1 − i and z02 =
−1−iwith opposite strengths κ1, κ2 and a cylinder with unit radius centred
at the origin.

The complex potential is given by the Circle Theorem

ω = iu0ζj + iκ1 log(ζj − ζ1j) + iκ2 log(ζj − ζ2j)

−iu0
a2

ζj
− iκ1 log

(
a2

ζj
− ζ1j

)
− iκ2 log

(
a2

ζj
− ζ2j

)
, (2.63)

where ζj = z − zj, ζ1j = z01 − zj, ζ2j = z02 − zj and u0 is the constant fluid velocity

at infinity. The first three terms in (2.63) are complex potentials of the two vortices and

the uniform flow and the last three terms represent the effect of the cylinder. It easy to see
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that when ζjζj = a2 complex potential becomes

ω = φ+ iψ = f(ζj) + f(ζj) ∈ R, (2.64)

hence the boundary condition is satisfied. We can rewrite the complex potential as

ω = iu0

(
ζj −

a2

ζj

)
+ iκ1 log(ζj − ζ1j)− iκ1 log(ζj − ζ ′1j)

+iκ1 log(ζj)− iκ1 log(−ζ1j) + iκ2 log(ζj − ζ2j)

−iκ1 log(ζj − ζ ′2j) + iκ2 log(ζj)− iκ2 log(−ζ2j), (2.65)

where ζ ′1j =
a2

ζ1j
and ζ ′2j =

a2

ζ2j
. The complex velocity is obtained by differentiating

equation (2.65)

V = iu0

(
1 +

a2

ζ2j

)
+

iκ1
ζj − ζ1j

− iκ1
ζj − ζ ′1j

+

+
iκ1
ζj

+
iκ2

ζj − ζ2j
− iκ2
ζj − ζ ′2j

+
iκ2
ζj
, (2.66)

where V =
dω

dz
= u− iv.

Figure 2.13 shows the velocity distribution around a cylinder in uniform flow with

two vortices of opposing strengths. We see that there is a stagnation point on y axis just

below the cylinder at y = −1.815.

Again we will generalize equation (2.66) by making the strength at the center of

the cylinder arbitrary

V = iu0

(
1 +

a2

z2

)
+

iκ1
z − z01

− iκ1
z − z′1

+
iκ0
z

+
iκ2

z − z02
− iκ2
z − z′2

. (2.67)
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Figure 2.13. Velocity distribution about a cylinder at the origin with two vortices of
vanishing total strength in the presence of uniform velocity. u0 = 1.

By Blasius’ Theorem, the force on the system is given by

F =
iρ

2

∫
|z|=a

V
2
dz = 2πρκ21

(
1

ζ1j − ζ ′1j

)
+ 2πρκ22

(
1

ζ2j − ζ ′2j

)

+2πρκ1κ2

(
1

ζ1j − ζ ′2j
+

1

ζ2j − ζ ′1j

)
− 2πρκ0

(
κ1
ζ1j

+
κ2
ζ2j

)

−2πρu0

(
κ1

(
a2

ζ21j
+ 1

)
+ κ2

(
a2

ζ22j
+ 1

)
− κ0

)
. (2.68)

We see that when the vortices have same strength (κ1 = κ2), force is never zero. If

κ1 = −κ2 then for force to be zero vortices must be placed symmetrically with respect to

the centre of the cylinder and κ0 = 0.
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Notice that the circulation around the cylinder depends on the value of κ0

Γ = Re

 ∫
|ζj |=a

iκ1

(
1

ζj − ζ1j
− 1

ζj − ζ ′1j

)
dz


+Re

 ∫
|ζj |=a

iκ0

(
1

ζj

)
dz

+Re

 ∫
|ζj |=a

iu0

(
1 +

a2

ζ2j

)
dz


+Re

 ∫
|ζj |=a

iκ2

(
1

ζj − ζ2j
− 1

ζj − ζ ′2j

)
dz


= 2π(κ1 + κ2 − κ0), (2.69)

when κ0 = κ1 + κ2, circulation would be zero, as expected.

2.6. Flow around N-Cylinders and M-Vortices

Now we assume that there are N cylinders of radii a1, ...aN placed at points

z1, ..., zN and that M vortices are placed at points z01, ..., z0m outside the cylinders with

strengths of κ1, ..., κm respectively. Then the velocity field is given as

V
T

j = V
I

j + V
D

j +
N∑
i=1
i ̸=j

V
D

i , (2.70)

where

V
I

j = −
M∑

m=1

(
iκm
ζmj

∞∑
n=0

(
ζj
ζmj

)n
)

, |ζj| < |ζmj|, (2.71)

V
D

j = −
M∑

m=1

(
iκm

∞∑
n=1

Aj
n

(ζ ′mj)
n

ζn+1
j

)
, |ζ ′mj| ≤ |ζj|, (2.72)

V
D

i = −
M∑

m=1

(
iκm

∞∑
n=1

Ai
n

(ζ ′mi)
n

ζn+1
i

)
= −

M∑
m=1

(
iκm

∞∑
n=1

Ai
n

(ζ ′mi)
n

(ζj +Rij)n+1

)
(2.73)
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and Ai
n are unknown complex coefficients. We see that for the case of a single cylinder

the unknown coefficient Aj
n in (4) becomes unity.

The boundary condition to be satisfied for each cylinder is that ”the normal

component of V
T

j = 0, when |ζj| = aj , ∀j”. This condition is equivalent to the statement

ajRe(V
T

j e
iθj) = Re(V

T

j aje
iθj) = Re(V

T

j ζj) = 0, j = 1, ..., N. (2.74)

Application of this condition yields

Re

(
M∑

m=1

(
iκm

(
∞∑
n=0

ζn+1
j

ζn+1
mj

+
∞∑
n=1

Bj
nm

ζnj
+

N∑
i=1

(1− δij)
∞∑
n=1

Bi
nmζj

(ζj +Rij)n+1

)))
= 0,

(2.75)

where Bj
nm = Aj

n

a2nj

ζnmj

and δij = 1 when i = j, δij = 0 otherwise.

The last term in (2.75) must be expanded into a series

1

(ζj +Rij)n+1
=

1

Rn+1
ij

∞∑
k=0

(n+ 1)k
k!

(
− ζj
Rij

)k

, (2.76)

where (n+1)k = (n+1)(n+2)...(n+ k) is the Pochhammer symbol and (n+1)0 = 1.

Equation (2.75) is equivalent to

i

(
M∑

m=1

(
κm

(
∞∑
n=0

ζn+1
j

ζn+1
mj

+
∞∑
n=1

Bj
nm

ζnj

+
N∑
i=1

(1− δij)
∞∑
n=1

Bi
nmζj

(Rij)n+1

∞∑
k=0

(n+ 1)k
k!

(
−ζj
Rij

)k
)))

+ c.c. = 0,

(2.77)

when |ζj| = aj , where c.c. stands for the complex conjugation. Using ζjζj = a2 in (2.77)

leads to
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M∑
m=1

(
∞∑
n=0

(
ζj
ζmj

)n+1

−
∞∑
n=1

ζnj B
j

n

a2nj

+
N∑
i=1

(1− δij)
∞∑
n=1

Bi
nm

Rn+1
ij

∞∑
k=0

(−1)k
(n+ 1)k

k!

ζk+1
j

Rk
ij

)
= 0. (2.78)

Equating every coefficient for all n and for all m we have an algebraic system for the

unknown coefficients Bs
lm

∞∑
l=1

N∑
s=1

Djs
nlB

s
lm = Cj

nm, j = 1, ..., N, m = 1, ...,M, n = 0, 1, ... (2.79)

where

Djs
nl = −δn+1,lδj,s

a2n+2
j

+
(−1)n

n!

∞∑
k=1

N∑
i=1

(1− δsi)(1− δij)

(2.80)

×(−1)k−1

(k − 1)!

a2ki (k + 1)n(l + 1)k−1

Rk+l
si R

n+k+1

ij

,

Cj
nm =

−1

ζ
n+1

mj

− (−1)n

n!

N∑
i=1

(1− δij)
∞∑
k=1

(k + 1)na
2k
i

R
n+k+1

ij

1

ζkmi

. (2.81)

The only difference in the formulations of one vortex-N cylinder and M vortex-N cylin-

der is that in the latter the infinite by infinite algebraic system (2.79) should be solved for

every vortex m.

As an example consider the case of two vortices with the same strength κ1 =

κ2 = 0.4, at the points z01 = −2 + 3i, z02 = −3i and the cylinders at the points ζ1 = −2,

ζ2 = 2 then velocity field can be shown as in Figure 2.14. We observe that the slip

boundary condition is satisfied.

In another example consider the case of two vortices with strengths κ1 = 0.4,
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Figure 2.14. Velocity distribution about two cylinders at the points (−2, 0) and (2, 0)
with two vortices of same strength κ1 = κ2 = 0.4 at the points (0,−3) and
(−2, 3). Velocity vectors are scaled down by the factor of 1.3.

κ2 = −0.4 at the points z01 = 3i, z02 = −3i and the cylinders at the points ζ1 = 2 + 2i,

ζ2 = −2 + 2i, ζ3 = −2 − 2i, ζ4 = 2 − 2i then velocity field can be shown as in Figure

2.15. This configuration resembles the legs of the TLP with two vortices.

For the M vortex case by Blasius’ Theorem, the force on the system is given by

F =
iρ

2

∫
|ζj |=aj

(
V

T

j

)2
dζj

=
M∑
p=1

M∑
r=1

(
2πρκpκr
ζpj

(
∞∑
n=1

Aj
n(ζ

′
rj)

n

ζnpj

))

+
M∑
p=1

M∑
r=1

(
2πρκpκr

∞∑
n=1

∞∑
m=1

(−1)nAj
nA

i
m

(ζ ′pj)
n(ζ ′ri)

m

(Rij)m+n+1

(n+ 1)n
n!

)
. (2.82)

We can verify the above formula (2.82) by reducing it to the case of one cylinder and

two vortices case and compare it by the formula (2.56). Since we have one cylinder all

coefficients Aj
n become unity and the term V

D

i become zero. Since |ζ ′pj| < |ζrj| ∀p, r, F
becomes
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Figure 2.15. Velocity distribution about four cylinders at the points (2, 2), (−2, 2),
(−2,−2) and (2,−2) with two vortices of vanishing total strength κ1 =
−κ2 = 0.4 at the points (0, 3) and (0,−3). Velocity vectors are scaled
down by the factor of 1.3.

F =
2πρκ21
ζ1j

∞∑
n=1

(ζ ′1j)
n

ζn1j
+

2πρκ22
ζ2j

∞∑
n=1

(ζ ′2j)
n

ζn2j

+
2πρκ1κ2
ζ1j

∞∑
n=1

(ζ ′2j)
n

ζn1j
+

2πρκ1κ2
ζ2j

∞∑
n=1

(ζ ′1j)
n

ζn2j

=
2πρκ21
ζ1j

(
ζ1j

ζ1j − ζ ′1j
− 1

)
+

2πρκ22
ζ2j

(
ζ2j

ζ2j − ζ ′2j
− 1

)

+
2πρκ1κ2
ζ1j

(
ζ1j

ζ1j − ζ ′2j
− 1

)
+

2πρκ1κ2
ζ2j

(
ζ2j

ζ2j − ζ ′1j
− 1

)

= 2πρκ21

(
1

ζ1j − ζ ′1j
− 1

ζ1j

)
+ 2πρκ22

(
1

ζ2j − ζ ′2j
− 1

ζ2j

)

+2πρκ1κ2

(
1

ζ1j − ζ ′2j
+

1

ζ2j − ζ ′1j
− 1

ζ1j
− 1

ζ2j

)
, (2.83)
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which is the same result as in the equation (2.56).

And using Cauchy’s Theorem we can calculate the circulation around the j-th

cylinder

Γ = Re

 ∮
|ζj |=aj

V
T

j dζj

 = Re

 ∮
|ζj |=aj

V I

j + V
D

j +
N∑
i=1
i̸=j

V
D

i

dζj
 = 0.

(2.84)
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CHAPTER 3

MOTION OF VORTICES

3.1. Hamiltonian Dynamics

In order to integrate a system of 2n ordinary differential equations, we must know

2n first integrals. It turns out that if we are given a canonical system of differential equa-

tions, it is often sufficient to know only n first integrals, each of them allows us to reduce

the order of the system not just by one, but by two.

We will give necessary background to learn about the Hamiltonian formulation

which provides natural framework in which to investigate the integrability of the system

(Newton 2000). Let us recall that a 2n-dimensional vector field is said to be Hamiltonian

if the associated flow satisfies a system of ordinary differential equations of the form

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (3.1)

where the variable p = (p1, ..., pn) is called the momentum and q = (q1, ..., qn) is called

the position. The function H : (t, q, p) ∈ G ⊂ R × R2n → H(t, q, p) ∈ R where G is

some open set of R×R2n, is called the Hamiltonian of the system (3.1) and the equations

are known as the Hamilton equations. The variables q and p are said to be conjugate

variables, p is conjugate to q, etc. The integer n is the number of degrees of freedom of

the system and Hamiltonian is said to have n degrees of freedom. The notion of ”degrees

of freedom” as it is used for Hamiltonian systems means one canonical conjugate pair, for

example, the position, q, and its conjugate momentum, p. Hamiltonian systems always

have such pairs of variables, and so the phase space which is the collection of possible

states of a dynamical system is even dimensional.

For the general discussion, introduce the 2n vector z and the 2n × 2n skew sym-

metric matrix J and the gradient by

z =

(
q

p

)
, J =

(
0 I

−I 0

)
, ∇z = ∇H =


∂H

∂z1...
∂H

∂z2n

 ,
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where 0 is the n × n zero matrix and I is the n × n identity matrix. In this notation the

equation (3.1) becomes

ż = J∇H(t, z). (3.2)

By the existence and uniqueness theorem (Newton 2000), for continuously differentiable

H and for each (t0, z0) ∈ G, there is a unique solution z = ϕ(t, t0, z0) of (3.2) defined for

t near t0 which satisfies the initial condition ϕ(t0, t0, z0) = z0. ϕ is defined on an open

neighbourhood of the set {(t, t0, z) ∈ G : t = t0} into Rn. The function ϕ(t, t0, z0) is

called the general solution.

In the special case when H is independent of t, H : G → R where G is the some

open set in R2n, the differential equations (3.2) are autonomous and the Hamiltonian

system is called conservative. In this case the identity ϕ(t− t0, 0, z0) = ϕ(t, t0, z0) holds,

since both sides satisfy equation (3.2) and the same initial conditions. In this case usually

t0 dependence is dropped and only ϕ(t, z0) is considered, where ϕ(t, z0) is the solution

of (3.2) satisfying ϕ(0, z0) = z0. The solutions are pictured as parameterized curves in

G ⊂ R2n and the setG is called the phase space. By the existence and uniqueness theorem

(Newton 2000), there is a unique curve through each point and two such solution curves

cannot cross in G.

An integral for (3.2) is a smooth function f : G → R which is constant along the

solutions of (3.2), i.e., f (ϕ(t, z0)) = f(z0) is constant. The classical conserved quantities

of energy, momentum, etc., are integrals. The level surfaces f−1(c) ⊂ R2n, where c is a

constant, are invariant sets, i.e., if a solution starts in the set, it remains in the set. We will

give the conditions for the integrability of the system after some definitions.

Now consider the time derivative of a C1 function f(t, q, p) defined on the 2n-

dimensional phase space. By the chain rule

df

dt
=

n∑
i=1

(
∂f

∂qi

∂qi
∂t

+
∂f

∂pi

∂pi
∂t

)
+
∂f

∂t

=
n∑

i=1

(
∂f

∂qi

∂H

∂pi
+
∂f

∂pi

∂H

∂qi

)
+
∂f

∂t

= {f,H}+ ∂f

∂t
. (3.3)
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The last step defines the canonical Poisson bracket of two functions

{f, g} =
n∑

i=1

(
∂f

∂qi

∂g

∂pi
+
∂f

∂pi

∂g

∂qi

)
. (3.4)

The formula (3.3) shows that if the function f is time independent and if its Pois-

son bracket with the Hamiltonian vanishes, then it is a conserved quantity or integral for

(3.2) and also shows that H is an integral for (3.2) and {f,H} is the time rate of change

of f along the solutions of (3.2). Two functions whose Poisson bracket vanishes are said

to be involutive or in involution. Equivalently, they are said to Poisson commute.

We can now define the notion of complete integrability for a Hamiltonian system

based on the number of conserved quantities, or symmetry groups of the system:

Definition 3.1.0.1 In a Hamiltonian system with n degrees of freedom (2n-dimensional

phase space) and k ≤ n functionally independent involutive conserved quantities, one

can reduce the dimension of the phase space to (2n-k). If k=n, the system is said to be

completely integrable and in principle can be solved by quadrature.

In the Hamiltonian description there are two sets of independent variables, the

pi and qi (i = 1, ..., n). It is sometimes convenient to transform to some new set of

generalized coordinates (e.g., a transformation from cartesian to polar coordinates), from

one set of phase space variables (pi, qi) to some new set (Pi, Qi), that is,

Pi = Pi(q1, ..., qn, p1, ..., pn) (3.5)

Qi = Pi(q1, ..., qn, p1, ..., pn). (3.6)

where canonical form of Hamilton’s equations are still preserved

Q̇i =
∂

∂Pi

H ′(Q,P ), Ṗi = − ∂

∂Qi

H ′(Q,P ), (3.7)

where H ′ = H ′ (Q(q, p), P (q, p)) is the transformed Hamiltonian. These transformations

are called the canonical transformations.

The practical use of canonical transformations is to find those transformations that

make the integration of Hamilton’s equations as simple as possible. The optimal case is
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the one in which all the Qi are cyclic; that is, the transformed Hamiltonian depends only

on the new momenta Pi

H(q1, ..., qn, p1, ..., pn) → H ′(P1, ..., Pn, ), (3.8)

then Hamilton’s equations become very simple,

Ṗi = −∂H
′

∂Qi

H ′ = 0, i.e., Pi = constant, i = 1, ..., n

Q̇i =
∂H ′

∂Pi

= fi(P1, ..., Pn) (3.9)

where the fi are some time independent function of the Pi. In this case the Hamiltonian

system is called to be completely integrable.

3.2. Hamiltonian Description of Motion of Vortices

In previous chapter we have considered the fluid advection problems of vortices

and a uniform flow in the presence of cylinder(s) and also considered the velocity distri-

butions at fixed moment of time. Now we shall observe the motion of the vortices in the

time domain in which the vortices are allowed to move with the flow and try to integrate

the system.

3.2.1. Motion of a Vortex around a Cylinder

We start with a simple system. Consider a vortex of strength κ placed at z0 and a

cylinder of radius a at the origin. The complex velocity is

V =
iκ

z − z0
− iκ

z − z′0
+
iκ

z
, z = x+ iy, (3.10)
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which is defined by the equation (2.18) and the motion equation of the vortex is

dz

dt
=
dx

dt
− i

dy

dt
=

iκ

z − z0
− iκ

z − a2

z0

+
iκ

z
. (3.11)

Motion of the vortex at z0 can be found by replacing z by z0 in equation (3.11) and

omitting the effect of the vortex itself (vortex cannot move itself)

dz0
dt

= − iκ

z0 −
a2

z0

+
iκ

z0
= − iκz0

|z0|2 − a2
+
iκz0
|z0|2

. (3.12)

Letting z0 = x0 + iy0 in equation (3.12) we get

1

κ

dx0
dt

=
−a2y0

(x20 + y20)(x
2
0 + y20 − a2)

,

−1

κ

dy0
dt

=
−a2x0

(x20 + y20)(x
2
0 + y20 − a2)

.

1

κ

dz0
dt

=
−a2(y0 + ix0)

(x20 + y20)(x
2
0 + y20 − a2)

=
−a2i(x0 − iy0)

z0z0(z0z0 − a2)

=
−a2i

z0(z0z0 − a2)
. (3.13)

We can rewrite the equation (3.13) as follows

1

κ

(
z0
dz0
dt

)
=

−a2i
z0z0 − a2

,
1

κ

(
z0
dz0
dt

)
=

a2i

z0z0 − a2
,

d(z0z0)

dt
= 0. (3.14)

Thus |z0|2 = constant. Letting z0(t) = reiθ(t) and z0(0) = reiθ(0) we have the initial value

problem
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1

κ
r2θ′ =

a2

r2 − a2
, θ(0) = θ0 (3.15)

and the solution is

z0(t) = reiwt, (3.16)

where w =
a2/r2κ

r2 − a2
+ θ0 is frequency.

The trajectory of motion of a vortex around a cylinder is shown in Figure 3.1 for

different values of z0(0). We see that the streamlines are concentric circles with center at

the origin.
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2

Figure 3.1. Trajectory of motion of a vortex around single cylinder.

Consider the function

H =
a2κ

2

(
log
(
x20 + y20

)
− log

(
x20 + y20 − a2

))
. (3.17)
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Then we see that it satisfies the Hamiltonian equations for the vortex motion

dx0
dt

=
∂H

∂y0
,

dy0
dt

= −∂H
∂x0

. (3.18)

Hence the system is Hamiltonian and we have one degree of freedom. It is easy to see

that {H,H} = 0. The system of one vortex and single cylinder is completely integrable

according to definition (3.1.0.1). The phase portrait of equations (3.18) is obtained by the

level curves of H which is shown in the Figure 3.2.
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Figure 3.2. Level curves for one vortex around single cylinder.
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3.2.2. Motion of a Vortex around N-Cylinders

Consider a vortex of strength κ placed at z0 and N cylinders of radii a1, ...aN
placed at points z1, ..., zN . The complex velocity is

V
T

j = V
I

j + V
D

j +
N∑
i=1
i ̸=j

V
D

i ,

which is defined in the equation (2.32).

The motion of vortex at z0 can be found using the differential equation

dz0
dt

= −iκ
N∑
j=1

∞∑
n=1

Aj
n

(
ζ ′0j
)n

ζn+1
j

= −iκ
N∑
j=1

∞∑
n=1

Aj
n

ζj

(
aj
|ζ0j|

)2n

. (3.19)

Letting z0 = x0 + iy0 we have a system of nonlinear differential equations

dx0
dt

= κ
N∑
j=1

∞∑
n=1

a2nj
|ζ0j|2n+2

(
Im(Aj

n)Re(ζ0j)−Re(Aj
n)Im(ζ0j)

)
, (3.20)

dy0
dt

= κ
N∑
j=1

∞∑
n=1

a2nj
|ζ0j|2n+2

(
Re(Aj

n)Im(ζ0j) + Im(Aj
n)Re(ζ0j)

)
. (3.21)

The trajectory of motion of a vortex around two cylinders is shown in Figure

3.3, which is also given by Johnson and McDonald for cylinders of differing radii. The

trajectory of motion of a vortex around four cylinders placed at the vertices of a square is

interesting (see Figure 3.4). We notice that the centre of the geometry is a stable centre

point, whereas for two cylinders, the midpoint of the cylinders is a saddle point (unstable).

In both configurations, if the vortex is close enough to one of the cylinders, it will rotate

around that cylinder. In other words, the centre of any cylinder is a centre point.
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Figure 3.3. Trajectory of motion of a vortex around two cylinders.
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Figure 3.4. Trajectory of motion of a vortex around four cylinders.
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3.2.3. Motion of Two Vortices around a Cylinder

Consider two vortices of strengths κ1, κ2 at z01, z02 and a cylinder of radius a at the

origin (Tülü & Yilmaz 2010). Using equation (2.54), the generalized complex velocity is

given by

V =
iκ1

z − z01
− iκ1

z − a2

z01

+
iκ2

z − z02
− iκ2

z − a2

z02

+
iκ0
z
. (3.22)

The motion of vortex at z01 can be found by replacing z by z01 in (3.22) and omitting the

effect of the vortex itself

dz01
dt

=
iκ2

z01 − z02
− iκ1z01

|z01|2 − a2
− iκ2z02
z01z02 − a2

+
iκ0
z01

. (3.23)

The motion of vortex at z02 can be found similarly

dz02
dt

=
iκ1

z02 − z01
− iκ2z02

|z02|2 − a2
− iκ1z01
z02z01 − a2

+
iκ0
z02

. (3.24)

Letting z01 = x01 + iy01 and z02 = x02 + iy02 we have a system of four coupled ordinary

nonlinear differential equations

dx01
dt

=
κ2(y01 − y02)

(x01 − x02)2 + (y01 − y02)2
− κ1y01
x201 + y201 − a2

+
κ0y01

x201 + y201

+
κ2(a

2y02 − y01x
2
02 − y01y

2
02)

(a2 − x01x02 − y01y02)2 + (y01x02 − x01y02)2

=
κ2(y01 − y02)

|z01 − z02|2
− κ1y01

|z01|2 − a2
+
κ0y01
|z01|2

+
κ2(a

2y02 − y01|z02|2)
|z01z02 − a2|2

, (3.25)
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dy01
dt

= − κ2(x01 − x02)

(x01 − x02)2 + (y01 − y02)2
+

κ1x01
x201 + y201 − a2

− κ0x01
x201 + y201

− κ2(a
2x02 − x01y

2
02 − x01x

2
02)

(a2 − x01x02 − y01y02)2 + (y01x02 − x01y02)2

= −κ2(x01 − x02)

|z01 − z02|2
+

κ1x01
|z01|2 − a2

− κ0x01
|z01|2

− κ2(a
2x02 − x01|z02|2)
|z01z02 − a2|2

,(3.26)

dx02
dt

=
κ1(y02 − y01)

(x02 − x01)2 + (y02 − y01)2
− κ2y02
x202 + y202 − a2

+
κ0y02

x202 + y202

+
κ1(a

2y01 − y02x
2
01 − y02y

2
01)

(a2 − x02x01 − y02y01)2 + (y02x01 − x02y01)2

=
κ1(y02 − y01)

|z02 − z01|2
− κ2y02

|z02|2 − a2
+
κ0y02
|z02|2

+
κ1(a

2y01 − y02|z01|2)
|z02z01 − a2|2

, (3.27)

dy02
dt

= − κ1(x02 − x01)

(x02 − x01)2 + (y02 − y01)2
+

κ2x02
x202 + y202 − a2

− κ0x02
x202 + y202

− κ1(a
2x01 − x02y

2
01 − x02x

2
01)

(a2 − x02x01 − y02y01)2 + (y02x01 − x02y01)2

= −κ1(x02 − x01)

|z02 − z01|2
+

κ2x02
|z02|2 − a2

− κ0x02
|z02|2

− κ1(a
2x01 − x02|z01|2)
|z02z01 − a2|2

.(3.28)

The Hamiltonian of vortex motion easily can be written down by inspection

H =
κ1κ2
2

log
(
(x01 − x02)

2 + (y01 − y02)
2
)
− κ21

2
log
(
x201 + y201 − a2

)
−κ

2
2

2
log
(
x202 + y202 − a2

)
+
κ1κ0
2

log
(
x201 + y201

)
+
κ2κ0
2

log
(
x202 + y202

)
−κ1κ2

2
log
(
(y01x02 − x01y02)

2 +
(
y01y02 + x01x02 − a2

)2)
. (3.29)
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Then it is easy to check that the motion equations can be derived using the Hamiltonian

dx0i
dt

=
1

κi

∂H

∂y0i
,

dy0i
dt

= − 1

κi

∂H

∂x0i
, i = 1, 2. (3.30)

Thus we have two degrees of freedom (4-dimensional phase space). We know that the

Hamiltonian is an integral constant. We shall show that the angular momentum

I =
2∑

k=1

κkz0kz0k (3.31)

is also an integral constant. Since

dI

dt
=

d

dt

(
2∑

k=1

κkz0kz0k

)

= κ1

(
2x01

dx01
dt

+ 2y01
dy01
dt

)
+ κ2

(
2x02

dx02
dt

+ 2y02
dy02
dt

)
= 0, (3.32)

angular momentum is independent of time. The Poisson bracket of the Hamiltonian and

the angular momentum can be calculated as follows

{I,H} =
∂I

dx01

∂H

dy01
− ∂I

dy01

∂H

dx01
+

∂I

dx02

∂H

dy02
− ∂I

dy02

∂H

dx02

= 2κ21κ2
(x02y02 − x01y02)

|z01 − z02|2
− 2κ21κ2

(a2y01x02 − a2x01y02)

|z01z02 − a2|2

+2κ1κ
2
2

(x01y02 − x02y01)

|z02 − z01|2
− 2κ1κ

2
2

(a2x01y02 − a2x02y01)

|z01z02 − a2|2

= 2κ1κ2(κ1 − κ2)
x02y01

|z01 − z02|2
+ 2κ1κ2(κ2 − κ1)

x01y02
|z01 − z02|2

+2κ1κ2(κ1 − κ2)
a2x01y02

|z01z02 − a2|2
+ 2κ1κ2(κ2 − κ1)

a2x02y01
|z01z02 − a2|2

.

(3.33)
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It follows from the Poisson bracket if κ1 = κ2 we obtain that {I,H} = 0 then

the Hamiltonian and the angular momentum are in involution. Therefore we have two

functionally independent, involutive, conserved quantities. Hence the system is integrable

according to Liouville.

Next we consider three numerical examples where κ1 = ±κ2 = 1 and a = 1 with

different initial conditions then the motion of vortices are depicted in Figures 3.5-3.7. In

Figure 3.5 we see that when the vortices have the same strength, they rotate around each

other and also around the cylinder, whereas in the latter case vortices either translate with

a uniform velocity (Figure 3.6) or rotate around the cylinder (Figure 3.7).
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Figure 3.5. Motion of vortices of unit strength around the cylinder at the origin with
initial vortex starting positions being (1.322876, 0), (2.061553, 0) and
κ0 = κ1 + κ2. Continuous and dashed lines denote the trajectories of
vortices. The initial points correspond to the point B in Figure 3.8.
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Figure 3.6. Motion of vortices with vanishing total strength around the cylinder at the
origin with κ0 = κ1 + κ2. Initial vortex positions are (1, 4) and (−1, 4).
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Figure 3.7. Motion of vortices with vanishing total strength around the cylinder at the
origin with κ0 = κ1 + κ2. Initial positions are (1.07, 0) and (1.04, 0).
Continuous and dashed lines denote the trajectories of vortices. Small solid
dots indicate the initial positions of vortices.
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Since the system is integrable we shall try to reduce the system from four space

variables to two space variables and then plot the constant Hamiltonian curves which

gives information about the dynamical system in question. In order to put the motion

equations in the usual Hamiltonian form, we let pi =
√
|κi|x0isi and qi =

√
|κi|y0i

where si = sign(κi) then we have

dpi
dt

=
∂H ′

∂qi
,

dqi
dt

= −∂H
′

∂pii
, i = 1, 2. (3.34)

where

H ′ =
κ1κ2
2

log

(
p21 + q21
|κ1|

+
p22 + q22
|κ2|

− 2p1p2√
|κ1κ2|s1s2

− 2q1q2√
|κ1κ2|

)

−κ
2
1

2
log

(
p21 + q21
|κ1|

− a2
)
− κ22

2
log

(
p22 + q22
|κ2|

− a2
)

+
κ1κ0
2

log

(
p21 + q21
|κ1|

)
+
κ2κ0
2

log

(
p22 + q22
|κ2|

)

−κ1κ2
2

log

(
q21p

2
2 + p21q

2
2 + q21q

2
2 + p21p

2
2

|κ1κ2|
− 2a2

(
q1q2√
|κ1κ2|

+
p1p2√

|κ1κ2|s1s2

)
+ a4

)
.

(3.35)

Next we employ polar coordinates p2i + q2i = 2Ri and qi/pi = tanPi, i = 1, 2, so the

Hamiltonian and the motion equations become

H ′′ =
κ1κ2
2

log

(
2R1

|κ1|
+

2R2

|κ2|
− 4

√
R1R2√
|κ1κ2|

s1s2Cos(P1 − s1s2P2)

)

−κ
2
1

2
log

(
2R1

|κ1|
− a2

)
− κ22

2
log

(
2R2

|κ2|
− a2

)

+
κ1κ0
2

log

(
2R1

|κ1|

)
+
κ2κ0
2

log

(
2R2

|κ2|

)

−κ1κ2
2

log

(
4R1R2

|κ1κ2|
− 4a2

√
R1R2√

|κ1κ2|
s1s2Cos(P1 − s1s2P2) + a4

)
(3.36)
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and

dRi

dt
=
∂H ′′

∂Pi

,
dPi

dt
= −∂H

′′

∂Ri

, i = 1, 2. (3.37)

Finally with the new set of canonical variables

Q1(P1, P2) = P1 − s1ssP2 , Q2(P1, P2) = s2P2 , (3.38)

G1(R1, R2) = R1 , G2(R1, R2) = s1R1 + s2R2 , (3.39)

the Hamiltonian becomes

K =
κ1κ2
2

log

(
2G1

|κ1|
+

2s2(G2 − s1G1)

|κ2|

− 4s1s2√
|κ1κ2|

√
G1s2(G2 − s1G1) cosQ1

)

−κ
2
1

2
log

(
2G1

|κ1|
− a2

)
− κ22

2
log

(
2s2(G2 − s1G1)

|κ2|
− a2

)

+
κ1κ0
2

log

(
2G1

|κ1|

)
+
κ2κ0
2

log

(
2s2(G2 − s1G1)

|κ2|

)

−κ1κ2
2

log

(
4G1s2(G2 − s1G1)

|κ1κ2|

− 4a2s1s2√
|κ1κ2|

√
G1s2(G2 − s1G1) cosQ1 + a4

)
, (3.40)

and the corresponding motion equations are

∂K

∂Q1

=
dG1

dt
,

∂K

∂G1

= −dQ1

dt
(3.41)

∂K

∂G2

= −dQ2

dt
, (3.42)
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and the angular momentum becomes

I = κ1(x
2
01 + y201) + κ2(x

2
02 + y202)

= κ1

(
p21 + q21
|κ1|

)
+ κ2

(
p22 + q22
|κ2|

)

= 2(s1R1 + s2R2) = 2G2. (3.43)

Since angular momentum is constant, Hamiltonian is cyclic in Q2 and its conjugate G2,

which is angular momentum, is constant.

By employing these sets of canonical transformations we reduce the system from

four-dimensional phase space to two-dimensional phase space with G1 and Q1. The

ranges for the variables G1, Q1 and the constant G2 are, G1 >
a2

2
|κ1|, G2 >

a2

2
(s1|κ1|+

s2|κ2|) and −2π < Q1 < 2π.

We consider a numerical example when κ1 = κ2 = 1 and a = 1. In this case the

level curves of the Hamiltonian are shown in Figure 3.8 forG2 = 3 in a coordinate system

(X, Y ), where X =
√
2R1 cos(P1 − P2) and Y =

√
2R1 sin(P1 − P2). That implies we

are measuring the distance of the first vortex to the origin in the coordinate system (X, Y )

that rotates with the second vortex.

In fact Figure 3.8 corresponds to the Poincare map in the system (p, q) where the

angular momentum and the Hamiltonian are first integrals of motion. So the trajectories

are plotted when the angular momentum and P2 are fixed. We also notice that, in Figure

3.8, there are two fixed elliptic points at the points (−
√
3, 0) and (

√
3, 0) and that the

trajectories are confined to the circles with radius 1 and
√
5. The inner circle in Figure 3.8

corresponds to the cylinder and the outer one exists since the total angular momentum is

constant.
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Figure 3.8. The level curves for the Hamiltonian inXY coordinates. Vortices have unit
strength and there is no net circulation about the cylinder; κ0 = κ1 + κ2.
The coordinates of the points are: A = (1.65, 0), B = (1.322876, 0),
C = (1.2206, 0), D = (1.15, 0), E = (0, 1.5).
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In Figure 3.9, the level curves of the Hamiltonian are shown for the case when

vortices have opposite strengths. We see that when the initial position of vortices are

close to the cylinder, they rotate around the cylinder. But when they start off far enough

from the cylinder, they translate with uniform velocity (Figure 3.7).
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Figure 3.9. The level curves for the Hamiltonian in XY coordinates. Vortices have
opposite unit strengths and there is no net circulation around the cylinder;
κ0 = κ1 + κ2.
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3.2.4. Motion of Two Vortices around a Cylinder in the Presence of a

Uniform Flow

Consider two vortices of strengths κ1, κ2 at z01, z02, a uniform flow with velocity

along negative y axis u0 and a cylinder of radius a at the origin. The complex potential is

given by

V = iu0

(
1 +

a2

z2

)
+

iκ1
z − z01

− iκ1

z − a2

z01

+
iκ2

z − z02
− iκ2

z − a2

z02

+
iκ0
z

(3.44)

The motion of vortex at z01 can be found by

dz01
dt

= iu0

(
1 +

a2

z01

)
+

iκ2
z01 − z02

− iκ1z01
|z01|2 − a2

− iκ2z02
z01z02 − a2

+
iκ0
z01

. (3.45)

Similarly the motion of vortex at z02 can be found by

dz02
dt

= iu0

(
1 +

a2

z02

)
+

iκ1
z02 − z01

− iκ2z02
|z02|2 − a2

− iκ1z01
z02z01 − a2

+
iκ0
z02

. (3.46)

Letting z01 = x01+ iy01 and z02 = x02+ iy02 we have a system of four ordinary nonlinear

differential equations

dx01
dt

=
2u0a

2x01y01
(x201 + y201)

2
+

κ2(y01 − y02)

(x01 − x02)2 + (y01 − y02)2
− κ1y01
x201 + y201 − a2

+
κ0y01

x201 + y201
+

κ2(a
2y02 − y01x

2
02 − y01y

2
02)

(a2 − x01x02 − y01y02)2 + (y01x02 − x01y02)2

=
2u0a

2x01y01
|z01|4

+
κ2(y01 − y02)

|z01 − z02|2
− κ1y01

|z01|2 − a2
+
κ0y01
|z01|2

+
κ2(a

2y02 − y01|z02|2)
|z01z02 − a2|2

, (3.47)
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dy01
dt

= u0

(
a2y201 − a2x201
(x201 + y201)

2
− 1

)
− κ2(x01 − x02)

(x01 − x02)2 + (y01 − y02)2
− κ0x01
x201 + y201

+
κ1x01

x201 + y201 − a2
− κ2(a

2x02 − x01y
2
02 − x01x

2
02)

(a2 − x01x02 − y01y02)2 + (y01x02 − x01y02)2

= u0

(
a2y201 − a2x201

|z01|4
− 1

)
− κ2(x01 − x02)

|z01 − z02|2
− κ0x01

|z01|2

+
κ1x01

|z01|2 − a2
− κ2(a

2x02 − x01|z02|2)
|z01z02 − a2|2

, (3.48)

dx02
dt

=
2u0a

2x02y02
(x202 + y202)

2
+

κ1(y02 − y01)

(x02 − x01)2 + (y02 − y01)2
− κ2y02
x202 + y202 − a2

+
κ0y02

x202 + y202
+

κ1(a
2y01 − y02x

2
01 − y02y

2
01)

(a2 − x02x01 − y02y01)2 + (y02x01 − x02y01)2

=
2u0a

2x02y02
|z02|4

+
κ1(y02 − y01)

|z02 − z01|2
− κ2y02

|z02|2 − a2
+
κ0y02
|z02|2

+
κ1(a

2y01 − y02|z01|2)
|z02z01 − a2|2

, (3.49)

dy02
dt

= u0

(
a2y202 − a2x202
(x202 + y202)

2
− 1

)
− κ1(x02 − x01)

(x02 − x01)2 + (y02 − y01)2
− κ0x02
x202 + y202

+
κ2x02

x202 + y202 − a2
− κ1(a

2x01 − x02y
2
01 − x02x

2
01)

(a2 − x02x01 − y02y01)2 + (y02x01 − x02y01)2

= u0

(
a2y202 − a2x202

|z02|4
− 1

)
− κ1(x02 − x01)

|z02 − z01|2
− κ0x02

|z02|2

+
κ2x02

|z02|2 − a2
− κ1(a

2x01 − x02|z01|2)
|z02z01 − a2|2

. (3.50)
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Consider the function

H = u0κ1x01

(
1− a2

x201 + y201

)
+ u0κ2x02

(
1− a2

x202 + y202

)

+
κ1κ2
2

log
(
(x01 − x02)

2 + (y01 − y02)
2
)

−κ
2
1

2
log
(
x201 + y201 − a2

)
− κ22

2
log
(
x202 + y202 − a2

)
+
κ1κ0
2

log
(
x201 + y201

)
+
κ2κ0
2

log
(
x202 + y202

)
−κ1κ2

2
log
(
(y01x02 − x01y02)

2 + (y01y02 + x01x02 − a2)2
)
. (3.51)

Then the motion equations become

dx0i
dt

=
1

κi

∂H

∂y0i
,

dy0i
dt

= − 1

κi

∂H

∂x0i
, i = 1, 2. (3.52)

Hence the system is Hamiltonian. Consider the angular momentum

I =
2∑

k=1

κkz0kz0k. (3.53)

Since

dI

dt
=

d

dt

(
2∑

k=1

κkz0kz0k

)

= κ1

(
2x01

dx01
dt

+ 2y01
dy01
dt

)
+ κ2

(
2x02

dx02
dt

+ 2y02
dy02
dt

)
̸= 0, (3.54)

angular momentum is not independent of time and hence the system is probably not inte-

grable.

Consider the case κ1 = κ2 = 1, κ0 = 2, a = 1, and u0 = 0.1 then the motion of

vortices starting at z01 = 1.2206 and z02 = 2.1237 (corresponding to point C of Figure
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3.8) is shown in Figure 3.10.

-2 2 4
x

-4

-2

2

y

Figure 3.10. Trajectories of two vortices in uniform flow u0 = 0.1 with κ0 = κ1 + κ2
and initial points z01 = 1.2206 and z02 = 2.1237. Continuous and dashed
lines denote the trajectories of vortices. The initial points correspond to
point C in Figure 3.8.

We can see that initially vortices rotate around the cylinder in a chaotic fashion

and then escape to infinity. It can be shown that the trajectories depend on the initial

conditions drastically, for example in Figure 3.11 initial conditions are z01 = 1.322876

and z02 = 2.061553 (corresponding to point B of Figure 3.8) and vortices rotate around

the cylinder regularly as if there is no uniform flow (compare it with Figure 3.5). It is no

coincidence that in the latter case initial points correspond to a region that is inside the

grey shaded zone shown in Figure 3.8 and that in the former case we are just outside that

zone.

A capture zone where vortices rotate around the cylinder is shown in Figure 3.8.

Outside this zone, vortices escape to infinity unless they start off with initial points that

correspond to points close to the cylinder in Figure 3.8, in which case they rotate around

the cylinder just like the capture zone.

In fact, the choice of initial conditions are not arbitrary: for Figure 3.11 initial

conditions are chosen such that we are inside the capture zone in Figure 3.8 (point B) and

for Figure 3.10 initial conditions are chosen so that we are just outside the capture zone
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Figure 3.11. Trajectories of two vortices in uniform flow u0 = 0.1 with κ0 = κ1+κ2 and
initial points z01 = 1.322876 and z02 = 2.061553. Continuous and dashed
lines denote the trajectories of vortices. The initial points correspond to
point B in Fig. 3.8.

in Figure 3.8 (point C). So, we can conclude that if we are close enough to the elliptic

point of the integrable case of two vortices without uniform flow, the trajectories in both

cases would behave similarly (Figure 3.5 and Figure 3.11), but when we are far from the

elliptic points (outside the capture zone), trajectories would behave differently (Figure 3.5

and Figure 3.10).

Point E of Figure 3.8 corresponds to the physical situation that vortices are placed

such that the lines passing through the vortices and the origin are perpendicular. In this

case vortices escape to infinity. Point A of Figure 3.8 is very close to the elliptic point and

the initial positions of vortices are very close to eachother and the vortices rotate around

the cylinder.

A Poincare section of the case with uniform flow would be helpful to analyze the

system. Around the elliptical point we choose six different and arbitrary initial conditions

and plot the position of the second vortex when the first vortex crosses the positive part

of the x-axis (see Figure 3.12). For five initial conditions, the strobed trajectory points

lie on invariant tori of the elliptical point (solid dots), while for the sixth initial condi-

tion, the points are scattered and eventually vortices escape to infinity (Figure 3.10).
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Figure 3.12. Poincare section for the parameters which generates the system of Fig.
3.10. Solid dots are used for the five different initial conditions for which
the vortices lie on invariant tori of the elliptical point. Unfilled circles are
used for the sixth initial condition that vortices eventually escape to infinity
after several rotations around the cylinder.

In all numerical simulations, the Runge Kutta method with adaptive step size con-

trol is used to integrate the motion equations. Its results compare very well with the

results of some standard packages. We notice that in almost all simulations involving

chaotic behavior, it was necessary to vary the time step.
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CHAPTER 4

OSCILLATING CYLINDER IN A UNIFORM FLOW WITH

VORTICES

Oscillating cylinder problem with only one vortex has been solved (Kadtke &

Novikov 1993). Here we shall consider the case of two vortices. We consider a cylinder

of radius a at the origin interacting with two vortices which are placed at the points z01
and z02 with strengths of κ1 and κ2 in the presence of uniform flow. We add an oscillatory

perturbation to the cylinder, chosen to move along the y-axis. We let frame of reference

move with the cylinder so this perturbation results in a relative fluid velocity

u(t) = u0(1 + ϵ sinwt), (4.1)

where u(t) is the relative fluid velocity at infinity, w is the frequency and ϵ is the amplitude
of the oscillation. (See Figure 4.1.)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Perturbation

Oscillatory

Uniform Flow

Κ1

z01=2-2i

Κ2

z02=-2-2i

Figure 4.1. Diagram of the physical system represented by vortices-cylinder model,
showing uniform flow field, two vortices placed at z01 = 2− 2i and z02 =
−2− 2i with opposite strengths κ1, κ2, a cylinder with unit radius centred
at the origin and direction of perturbation.
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Then the complex potential, given by the equation (2.66), becomes

V = iu0(1 + ϵ sinwt)
(
1 +

a2

z2

)
+

iκ1
z − z01

− iκ1

z − a2

z01

+
iκ2

z − z02
− iκ2

z − a2

z02

+
iκ0
z
.(4.2)

So the equations of motion of vortices and the Hamiltonian is slightly different from the

previous case

dx01
dt

=
2u0(1 + ϵ sinwt)a2x01y01

(x201 + y201)
2

+
κ2(y01 − y02)

(x01 − x02)2 + (y01 − y02)2
− κ1y01
x201 + y201 − a2

+
κ0y01

x201 + y201
+

κ2(a
2y02 − y01x

2
02 − y01y

2
02)

(a2 − x01x02 − y01y02)2 + (y01x02 − x01y02)2

=
2u0(1 + ϵ sinwt)a2x01y01

|z01|4
+
κ2(y01 − y02)

|z01 − z02|2
− κ1y01

|z01|2 − a2
+
κ0y01
|z01|2

+
κ2(a

2y02 − y01|z02|2)
|z01z02 − a2|2

, (4.3)

dy01
dt

= u0(1 + ϵ sinwt)
(
a2y201 − a2x201
(x201 + y201)

2
− 1

)
− κ2(x01 − x02)

(x01 − x02)2 + (y01 − y02)2

− κ0x01
x201 + y201

+
κ1x01

x201 + y201 − a2
− κ2(a

2x02 − x01y
2
02 − x01x

2
02)

(a2 − x01x02 − y01y02)2 + (y01x02 − x01y02)2

= u0(1 + ϵ sinwt)
(
a2y201 − a2x201

|z01|4
− 1

)
− κ2(x01 − x02)

|z01 − z02|2
− κ0x01

|z01|2

+
κ1x01

|z01|2 − a2
− κ2(a

2x02 − x01|z02|2)
|z01z02 − a2|2

, (4.4)
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dx02
dt

=
2u0(1 + ϵ sinwt)x02y02

(x202 + y202)
2

+
κ1(y02 − y01)

(x02 − x01)2 + (y02 − y01)2
− κ2y02
x202 + y202 − a2

+
κ0y02

x202 + y202
+

κ1(a
2y01 − y02x

2
01 − y02y

2
01)

(a2 − x02x01 − y02y01)2 + (y02x01 − x02y01)2

=
2u0(1 + ϵ sinwt)a2x02y02

|z02|4
+
κ1(y02 − y01)

|z02 − z01|2
− κ2y02

|z02|2 − a2
+
κ0y02
|z02|2

+
κ1(a

2y01 − y02|z01|2)
|z02z01 − a2|2

, (4.5)

dy02
dt

= u0(1 + ϵ sinwt)
(
a2y202 − a2x202
(x202 + y202)

2
− 1

)
− κ1(x02 − x01)

(x02 − x01)2 + (y02 − y01)2

+
κ2x02

x202 + y202 − a2
− κ0x02
x202 + y202

− κ1(a
2x01 − x02y

2
01 − x02x

2
01)

(a2 − x02x01 − y02y01)2 + (y02x01 − x02y01)2

= u0(1 + ϵ sinwt)
(
a2y202 − a2x202

|z02|4
− 1

)
− κ1(x02 − x01)

|z02 − z01|2
− κ0x02

|z02|2

+
κ2x02

|z02|2 − a2
− κ1(a

2x01 − x02|z01|2)
|z02z01 − a2|2

, (4.6)

H = u0(1 + ϵ sinwt)

(
κ1x01(1−

a2

x201 + y201
) + κ2x02(1−

a2

x202 + y202
)

)

+
κ1κ2
2

log
(
(x01 − x02)

2 + (y01 − y02)
2
)

−κ
2
1

2
log
(
x201 + y201 − a2

)
− κ22

2
log
(
x202 + y202 − a2

)
+
κ1κ0
2

log
(
x201 + y201

)
+
κ2κ0
2

log
(
x202 + y202

)
−κ1κ2

2
log
(
(y01x02 − x01y02)

2 + (y01y02 + x01x02 − a2)2
)
. (4.7)

63



The motion equations can be written down using

dx0i
dt

=
1

κi

∂H

∂y0i
,

dy0i
dt

= − 1

κi

∂H

∂x0i
, i = 1, 2. (4.8)

In Figures 4.2-4.4, trajectories of the vortices are shown for different initial conditions.

For all cases, vortices’ initial positions are on y axis: In Figure 4.2 vortices are on points

z01 = (0, 1.126865), z02 = (0, 2.174897) (corresponding just to the right of point D of

Figure 3.8) initially and both vortices escape to infinity eventually after both of them

rotate around the cylinder many times.
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Figure 4.2. Trajectories of two vortices. The parameters are κ1 = 1, κ2 = 1, κ0 = 2,
ϵ = 0.1, w = 1, u0 = 0.1, z01 = (0, 1.126865), z02 = (0, 2.174897). Con-
tinuous and dashed lines denote the trajectories of vortices. Initial points
correspond to a point just to the right of point D of Fig. 3.8. Small solid
dots indicate the initial positions of vortices.

64



For the second and third case (Figures 4.3 and 4.4) vortices start at points z01 =

(0, 1.126200), z02 = (0, 2.175241) and z01 = (0, 1.126200), z02 = (0, 2.175241), respec-

tively, and there is no escape to infinity. The choice of initial conditions are not arbitrary,

they were chosen such that in Figure 3.8 we are close to the cylinder and away from the

elliptic point. Initial points for Figure 4.3 correspond to point D of Figure 3.8 which is

close to the cylinder, so vortices rotate around the cylinder. For Figure 4.4, initial points

correspond to point C of Figure 3.8 and vortices rotate around the cylinder. So we con-

clude that if we are close enough to the cylinder (Figure 4.3) or to the capture zone (Figure

4.4), vortices rotate, however, if we are just in between these regions escape occurs (Fig-

ure 4.2). So the capture zone is roughly valid (slightly enlarged) for the case of vibrating

cylinder.
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Figure 4.3. Trajectories of two vortices. The parameters are κ1 = 1, κ2 = 1, κ0 = 2,
ϵ = 0.1, w = 1, u0 = 0.1, z01 = (0, 1.126200), z02 = (0, 2.175241). Con-
tinuous and dashed lines denote the trajectories of vortices. Initial points
correspond to the point D of Fig. 3.8. Small solid dots indicate the initial
positions of vortices.
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Figure 4.4. Trajectories of two vortices. The parameters are κ1 = 1, κ2 = 1, κ0 = 2,
ϵ = 0.1, w = 1, u0 = 0.1, z01 = (0, 1.220600), z02 = (0, 2.175241). Con-
tinuous and dashed lines denote the trajectories of vortices. Initial points
correspond to the point C of Fig. 3.8. Small solid dots indicate the initial
positions of vortices.

Chaotic interaction of a cylinder with vortices could result in large forces com-

pared with the integrable case (Figures 4.5 and 4.6). Magnitude of the force on the cylin-

der in the integrable case of two vortices is shown in Figure 4.5. For chaotic cases when

there is a uniform flow together with perturbation on the cylinder and two vortices (Figure

4.6), force on the cylinder is twice as large as the force in integrable case. This has phys-

ical applications such as the interaction of tethers of Tension Leg Platforms with vortices

and uniform flow.
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Figure 4.5. Magnitude of force on the cylinder. The parameters are κ1 = 1, κ2 = 1,
κ0 = 2, u0 = 0, z01 = 1.2206, z02 = 2.1237.
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Figure 4.6. Magnitude of force on the cylinder. The parameters are κ1 = 1, κ2 = 1,
κ0 = 2, ϵ = 0.1, w = 1, u0 = 0.1, z01 = 1.2206, z02 = 2.1237.
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CHAPTER 5

CONCLUSIONS

Problems considered in this thesis are, the problem of fluid advection excited by

point vortices in the presence of stationary cylinders with and without uniform flow, the

problem of motion of vortices around cylinders, the integrability of motion of the system

of two vortices with one cylinder without uniform flow, and finally the problem of chaotic

interaction of a cylinder with vortices by adding uniform flow to the system of two vortices

with one cylinder and adding a perturbation to the cylinder.

For the first problem an analytical-numerical method has been developed, using

complex analysis, to solve hydrodynamic interaction between an arbitrary number of

cylinders and vortices. In the fluid advection problem forces are calculated. The arbi-

trary independent circulation around the cylinder, κ0, is an important parameter in force

calculations; for the case of vortices with opposite signs with or without uniform flow κ0

must be zero for force to be zero.

For the second problem the Hamiltonian for the motion of vortices without uni-

form flow is constructed, reduced and constant Hamiltonian (energy) curves are plotted

and the system is shown to be integrable according to Liouville. Motion of vortices with

unit strength are confined to a region between two concentric circles; small circle repre-

senting the cylinder and the larger one exists due to the conservation of angular momen-

tum (Figure 3.8). There are also two fixed elliptical points.

By adding uniform flow to the system the symmetry is destroyed and the system

is no longer integrable (Figure 3.10). However by choosing the initial points close to

the elliptic points of the integrable case in Figure 3.8, we are able to obtain trajectories

confined to a thick orbit around the cylinder (Figure 3.11). A Poincare section analysis

was useful to demonstrate that away from the elliptic points motions are chaotic (Figure

3.12).

Finally by allowing the cylinder to vibrate we model the natural vibration of the

cylinder in the flow field, which has applications in ocean engineering involving tethers

or pipelines in a flow field. Interesting cases of chaotic capture and escape are shown in

Figures 4.1-4.3. We also observe that chaotic interaction may cause large forces on the

cylinder depending on the initial positions of vortices (Figures 4.4 and 4.5).

There are similarities and differences between the one vortex case of (Kadtke
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& Novikov 1993) and the present investigation of two vortices. In both cases, chaotic

capture and escape of the vortex (vortices) occurs. Kadtke & Novikov gives a capture

zone in Figure 12 of their paper, which is closely related to the separatrix. In the present

case of two vortices, a capture zone plot similar to the one given by Kadtke & Novikov is

given in Fig.3.8. When u0 is small, say, less than 0.1, and there is no vibration, vortices

with initial points corresponding to a region inside the capture zone will not escape to

infinity (see Figure 3.11). So, for initial points corresponding to points that are inside

the capture zone or that are close to the cylinder in Figure 3.8, vortices rotate around the

cylinder. Outside these two regions, vortices escape to infinity.

When there is vibration of small magnitude, ϵ = 0.1, and of frequency w = 1,

the capture zone plot is still roughly valid (see Figures 4.1-4.3). For Figures 4.2 and 4.3,

the initial points correspond to the points D and C of Figure 3.8 and there is no escape.

However for Figure 4.1, the initial points are chosen to correspond just to the right of point

D (between C and D) and vortices escape. We can conclude that the effect of perturbation

is to enlarge the capture zone slightly.
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