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ABSTRACT 
 

AUTOMATIC IDENTIFICATION OF EVOLUTIONARY AND 

SEQUENCE RELATIONSHIPS IN LARGE SCALE PROTEIN DATA 

USING COMPUTATIONAL AND GRAPH-THEORETICAL 

ANALYSES 

 

In this study, computational methods are developed for the automatic identification of 

functional/evolutionary relationships between biomolecular sequences in large and 

diverse datasets. Different approaches were considered during the development and 

optimization of the methods. The first approach focused on the expression of gene and 

protein sequences in high dimensional vector spaces via non-linear embedding. This 

allowed statistical learning algorithms to be applied on the resulting embeddings in 

order to cluster and/or classify the sequences. The second approach revised the pairwise 

similarities between sequences following multiple sequence alignment in order to 

eliminate the unreliable connections due to remote homology and/or poor alignment. 

This is achieved by thresholding the pairwise connectivity map over 2 parameters: the 

inferred evolutionary distances and the number of gapless positions in each pairwise 

alignment. The resulting connectivity map was disjoint and consisted of clusters of 

similar proteins. The third and the final approach sought to associate the amino acid 

sequences with each other over highly conserved/shared sequence segments, as shared 

sequence segments imply conserved functional or structural attributes. An automated 

method was developed to identify these segments in large and diverse collections of 

amino acid sequences, using a combination of sequence alignment, residue conservation 

scoring and graph-theoretical approaches. The method produces a table of associations 

between the input sequences and the identified conserved regions that can reveal both 

new members to the known protein families and entirely new lines. The methods were 

applied to a dataset composed of 17793 human proteins sequences in order to obtain a 

global functional relation map. On this map, functional and evolutionary properties of 

human proteins could be found based on their relationships to the ones bearing 

functional annotations. The results revealed that conserved regions corresponded 

strongly to annotated structural domains. This suggests the method can also be useful in 

identifying novel domains on protein sequences. 
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ÖZET 
 

BÜYÜK ÇAPLI PROTEİN VERİSİNDE EVRİMSEL VE DİZİNSEL 

İLİŞKİLERİN İŞLEMSEL VE ÇİZGE TEORİSİ ANALİZLERİ İLE 

OTOMATİK OLARAK BELİRLENMESİ 

 

Bu çalışmada, yüksek oranda çeşitlilik gösteren geniş veri setlerinde bulunan 

biyomoleküler dizilerin evrimsel/fonksiyonel ilişkilerini otomatik şekilde tanımlayan 

yöntemler geliştirilmiştir. Yöntemlerin oluşturulması ve optimizasyonu sırasında farklı 

yaklaşımlar değerlendirilmiştir. İlk yaklaşım, doğrusal olmayan gömme tekniği 

kullanılarak, gen ve protein dizilerinin çok boyutlu vektör uzaylarında ifade edilmeleri 

olmuştur. Bu yaklaşım, sonuç olarak ortaya çıkan ifadeleri kümelemek ve/veya 

sınıflamak amacı ile istatistiki öğrenme algoritmalarının uygulanabilmesine olanak 

sağlamıştır. İkinci yaklaşım, uzak homoloji ve/veya yanlış hizalama sonucunda ortaya 

çıkan güvenilmez bağlantıları elemek amacı ile diziler arası ikili uzaklıkları düzeltme 

işlemine tabi tutmak olmuştur. Bu işlem, ikili bağlantı haritasının farklı 2 değişken 

üzerinden eşiklenmesi ile gerçekleştirilmiştir. Bunlar, tahmin edilen evrimsel mesafeler 

ve ikili hizalamalarda yer alan boşluksuz pozisyonların sayısı olmuştur. Sonuç olarak 

ortaya çıkan bağlantı haritası, kopuk ve benzer proteinler içeren kümelerden 

oluşmaktadır. Üçüncü ve son yaklaşım, paylaşılan dizi parçalarının korunmuş 

fonksiyonel veya yapısal özellikleri ifade etmelerinden dolayı, amino asit dizilerinin bu 

paylaşılan/korunmuş kısımlar üzerinden birbirleri ile ilişkilendirilmeleri olmuştur. Bu 

kısımların çeşitlilik içeren geniş amino asit dizi koleksiyonlarında tanımlanabilmesi 

amacı ile dizi hizalama, amino asit korunum puanlama ve çizge teorisi yaklaşımları 

kullanılarak otomatik çalışan bir yöntem geliştirilmiştir. Yöntem, çıktı olarak işleme 

verilen diziler ile tanımlanan korunmuş bölgelerin ilişkilendirildiği bir tablo 

vermektedir. Bu tablo kullanılarak hem bilinen protein ailelerinin yeni üyeleri, hem de 

tamamen yeni aileler ortaya çıkarılabilir. Geliştirilen yöntemler, genel bir fonksiyonel 

ilişki haritası elde etmek amacı ile 17793 insan protein dizisinden oluşan bir veri setine 

uygulanmıştır. Bu harita üzerinde, fonksiyonel açıklamalar içeren proteinler ile ilişkileri 

dikkate alınarak, insan proteinlerinin fonksiyonel ve evrimsel özellikleri elde edilebilir. 

Sonuçlar, korunmuş bölgelerin tanımlanmış yapısal fonksiyonel dizi kısımlarına denk 

düştüğünü göstermiştir. Buna bağlı olarak, yöntem aynı zamanda protein dizileri 

üzerinde yeni yapısal fonksiyonel dizi kısımlarının tanımlanmasında kullanılabilir. 
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1. Biomolecular Sequences and Their Analysis 

 

Large amounts of data on the molecular attributes of living organisms are being 

accumulated in databases following the availability of molecular scanning tools over the 

last decades. Methods from different fields of science are being applied to make sense 

out of this huge amount of data as well. A considerable amount of this biological data 

consists of molecular sequences. Since they contain crucial information on molecular 

functions and evolutionary relationships, biomolecular sequences remain of primary 

interest for the researchers in the area. Most frequently studied sequences within the 

field are genes, that directly reflect the hereditary properties, and gene products (mostly 

proteins) that exhibit molecular functions. 

Biomolecular sequences carry the information that make up the whole structural 

properties and the metabolism of an organism. During the course of evolution, each one 

assumes a specific task. As a result, they are highly diverse. Yet, some of them share 

common features. These features emerge as statistically significant similarities on 

different regions of the sequences. These significant similarities often indicate mutuality 

in the history of these sequences and/or commonality in metabolic functions. These 

regions remain relatively unchanged as the mutation rate acting on these segments is 

usually relatively low compared to the rest of the sequences: The shared regions tend to 

correspond to segments with molecular functions, and changes in their structure due to 

mutations may cause the loss of these functions, decreasing the organism’s fitness in the 

population. As a result, the altered sequence usually dies out due to the disadvantages 

brought by the mutation. The sequences remaining in the population contain the 

unchanged functional region, shared between these sequences.  

The information regarding the shared regions is an important instrument for the 

discovery of the molecular processes taking place during the life of an organism. Figure 

1 shows a conserved region (highlighted in yellow) between two sample amino acid 

sequences. Notice the similarity of amino acids in the highlighted positions as opposed 
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to the contrast in the rest of the positions. Since most of the information regarding the 

functions of biomolecular sequences is located on these shared regions, this topic is a 

highly active area of research, aiming to identify and classify them using both 

experimental and computational efforts. These shared regions referred to by two widely 

used terms in the literature; motifs and domains. 

 

 

Figure 1. A conserved region (in yellow color) between 2 amino acid sequences. 

 

A motif is a broad term referring to sequence segments usually composed of a 

few nucleotides or amino acids that possess biological significance. The term is often 

used for short and highly repetitive segments on sequences (D'haeseleer, 2006). Motifs 

have crucial roles in the metabolism such as phosphorylation, transcription termination, 

or acting as DNA binding sites (D'haeseleer, 2006). Identification of motifs on 

biomolecular sequences is an active field of study. There are many methods proposed in 

the literature to this purpose. Most of these methods take a set of sequences and try to 

extract some form of conservation, and compare it to a database of motifs. Some widely 

used methods are MEME Suite (Bailey et al., 2009), Gibbs Motif Sampler (Thompson 

et al., 2007) and Minimotif Miner (Rajasekaran et al., 2010). 

A structural domain refers to a part of a protein sequence that can function, 

evolve and fold independent from the rest of the protein (Phillips, 1966; Wetlaufer, 

1973). Structural domains can be up to 600 amino acids in length and are usually highly 

specific. Each domain has a specific molecular function and a protein’s role in the 

metabolism is directly determined from the domains it contains. With their discovery 

and qualitative comprehension, studies on the functions of proteins are now performed 

on the domain level and vast protein domain databases are constructed. Within these 

databases, domains are grouped under different names, rules and regulations. Protein 

families (Pfam) (Finn et al., 2010 and Punta et al., 2012), NCBI Conserved Domain 

Database (Marchler-Bauer et al., 2003), SCOP: Structural Classification of Proteins 

(Andreeva et al., 2008), CATH Protein Structure Classification (Cuff et al., 2011) and 

Simple Modular Architecture Research Tool (SMART) (Schultz et al., 1998) are some 

examples. A representation of the sequence and the structure of the multi-domain 
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protein pyruvate carboxylase are given in Figure 2 (a) and Figure 2 (b). Pyruvate 

carboxylase (PC) is a crucial enzyme for the metabolism that catalyzes the MgATP 

dependent and HCO3
−
 carboxylation of pyruvate to form oxaloacetate (Jitrapakdee et 

al., 2008). In Figure 2, the domains are represented by different colors, blue for Biotin 

Carboxylation (BC) domain, yellow for Carboxyltransferase (CT) domain, red for 

Biotin Carrier (BCCP) domain, and green for allosteric domain. Each of these domains 

contributes in different parts to the protein’s function. Notice the differences in the 3-D 

representation of domains in the figure, revealing the structural differences between 

these domains. 

 

 

Figure 2. (a) Schematic drawing of the sequence (with domains highlighted) for 

pyruvate carboxylase (b) The structure of the Staphylococcus aureus 

pyruvate carboxylase (blue: BC domain, yellow: CT domain, red: BCCP 

domain and green: allosteric domain). (Source: Jitrapakdee et al., 2008) 

 

Motifs and domains are highly conserved during the evolutionary process since 

changes in their structure may cause the loss of vital molecular functions. In order to 

extract these highly conserved/shared sequential features, biomolecular sequences 

should be compared to each other. However, biomolecular sequences carry a vast 

amount of information and due to evolution, most of them are highly diverged from 
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each other over the course of time, and it is practically impossible to analyze them 

without using proper statistical methods. 

The concept of sequence alignment was first applied to molecular biology 

decades ago to study the compositions of complex sequences in a comparative manner. 

Alignment methods aim to uncover shared features between sequences of interest by 

identifying their molecular similarities. The Needleman-Wunsch global alignment 

(Needleman and Wunsch, 1970) and the Smith–Waterman local alignment (Smith and 

Waterman, 1981) algorithms are two basic tools used primarily to that end. Many 

current sophisticated sequence analysis methods are based on these two pairwise 

alignment algorithms. Multiple sequence alignment algorithms are used for generating 

consensus sequences over a given collection, and they are also based on pairwise 

alignment. A classical multiple sequence alignment operation basically consists of 2 

steps: The first one is the all-against-all pairwise alignment of the input sequences. The 

second step is the progressive formation of the multiple alignment by gradually 

introducing the sequences to the growing chain, including the gaps inserted during the 

pairwise alignment step. Unlike pairwise alignments, however, optimal solution is not 

guaranteed in the multiple sequence alignment. Clustal family tools -one of the most 

popular multiple sequence alignment methods- (Larkin et al., 2007) are for general use 

to align both nucleotide and amino acid sequences, and belong to the class of 

progressive alignment methods. ClustalW (Larkin et al., 2007) is also used for 

phylogenetic tree construction. MUSCLE incorporates iterations during which distance 

measures are refined, and results in more accurate alignments (Edgar, 2004). T-

COFFEE (Notredame et al., 2000), another popular multiple sequence alignment 

method, uses the output from Clustal and local alignments to improve weighing factors. 

MAFFT (Katoh and Kuma, 2002) produces alignments in reduced computation times 

employing the Fast Fourier Transform (Brigham, 2002). 

The computational load of multiple sequence alignments is substantial, 

especially when the number of sequences in the datasets is high. Still results can be 

obtained in reasonable computation times for moderate numbers of sequences. 
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1.2. Evolutionary Relationships 

 

Exploring evolutionary relationships between genes and proteins is crucial for 

discovering the physiological and molecular mechanisms that govern their system. This 

is achieved by taking account of the molecular similarities and differences between gene 

and protein sequences. In other words, phylogenetic methods aim to uncover the mutual 

history of these sequences using sequence analysis tools and statistical techniques. 

The results of a phylogenetic analysis are usually displayed in the form of 

phylogenetic trees. These trees are branching diagrams projecting the inferred 

evolutionary relationships between the entities of interest. Leaf nodes at the tip of 

branches on these trees represent the samples (i.e. organisms or sequences). In a rooted 

tree, branch lengths are often correlated with time. The evolutionary time flows in the 

direction from internal nodes towards the leaves. The internal nodes (inside the trees) 

represent hypothetical common ancestors. Any two taxa bifurcating from the same 

internal node are assumed to be descended from the common ancestor represented by 

that node. An unrooted tree, however, represents the relations of leaf nodes without 

inference about common ancestry and time between the internal nodes. 

Tree estimation methods are divided in two groups, as character based and 

distance based methods. A character here represents an attribute that the input samples 

vary upon. Maximum Parsimony is an example of the character based methods. In this 

method, many different possible trees are investigated in order to determine the 

optimum one that requires “the least number of evolutionary changes to explain the 

observed data” (Felsenstein, 1978). On the other hand, distance methods are based on 

calculating the sequence divergence between the gene or protein sequence pairs and 

inferring the evolutionary distances in-between via a mathematical model. Most widely 

used models for nucleotide sequences are the Jukes-Cantor Model (Jukes and Cantor, 

1969), the Kimura’s Two Parameter Model (Kimura, 1980) and the General Time 

Reversible Model (Tavare, 1986). Also for amino acid sequences, the Poisson 

distribution (Ahrens and Dieter, 1974), the Kimura Amino Acid Substitution Model 

(Kimura, 1983) and the Dayhoff Model (Dayhoff et al., 1978) are employed frequently 

to characterize the substitution structure between the different amino acids. 
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1.3. Problem Description 

 

The key to understanding all aspects of life resides within the complex 

molecular data characterizing the living organisms. In the last decades, large quantities 

of molecular sequence data have been produced thanks to the technological 

improvements in molecular sequencing. However, a major part of this data is yet to be 

interpreted by the specialists. Since the sequencing of the human genome (Venter et al., 

2001); functions and interactions of genes and its products are being studied extensively 

as these are key to developing novel medical solutions to prevalent diseases and other 

medical complications.  

Apart from expensive and laborious experimental studies, fundamentals of 

bioinformatics are applied to the case to construct answers to outstanding questions. 

Statistical approaches are used to seek significant similarities between functionally 

known (experimentally proven) and unknown sequences. Products of these studies are 

computational tools that operate mostly on nucleic acid and amino acid sequences.  

Two of the outstanding issues concerning these tools are the lack of generality 

and standardization in the parameters. First of all, a major part of these tools are 

developed to process molecular data with very specific properties. This is a prevalent 

problem especially when the data consist of large and diverse sets. Besides, this also 

requires substantial preliminary information about the data, which is not possible in 

some cases. The second problem concerns the determination of the optimal 

configuration of the input parameters for a specific application. In many tools, the user 

is asked successive questions about the values of parameters, answers to which are not 

necessarily known in advance. The random selection of parameters (or the use of default 

ones) often concludes with poor and unreliable results. Lack of adaptive and automatic 

parameter selection rules also defeats the purpose of these tools, which is revealing the 

unknown features of the data: In most cases, the user cannot answer all of these detailed 

questions about the input data, and if they could, they would not have needed to use the 

tool in the first place.  

An additional issue associated with functional clustering methods apart from 

parameter standardization is related to clustering performance. When applied to datasets 

other than the ones they are optimized for, many of these methods exhibit poor 

clustering performances. A contributing factor to poor clustering performance is the 
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tendency to measure sequence similarities over their entire length. However, a 

biomolecular sequence is composed of segments with different properties. The regions 

with functional/evolutionary signatures are more significant when considering similarity 

searches. Evolution usually acts on these regions at lower rates compared to the rest of 

the sequences, as mutations in functional regions often cause the loss of associated 

function. However, mutations outside these regions do not affect the vital functions to 

that extent and the fitness of the sequences carrying these mutations can increase in the 

population. Consequently, the regions without functional properties are usually highly 

variable. When the sequences are compared over their entire length, these highly 

variable uninformative regions cloud the similarity that should be better focused on the 

comparison of functional regions, giving unreliable clustering results. 

 

1.4. Objectives of the Study 

 

The main objective of this study is to develop new methods for automatic 

extraction of sequential features from large biomolecular sequence datasets. These 

features correspond to functions and evolutionary relationships inferred from the 

similarities of the unknown sequences to the known ones. Within this objective, we also 

aim to eliminate the issue of parameter standardization and to construct universal 

methods with the ability to process large datasets composed of sequences with diverse 

features, such as whole proteomes.  

In our study, we prefer to apply our methods on a large dataset composed of 

thousands of human protein sequences to obtain a global functional/evolutionary 

relation map on which the properties of the unknown sequences can be inferred in order 

to make predictions on protein function, to be used towards a general understanding and 

the discovery of the biological mechanism of the human proteome. 

 

1.5. Organization of the Thesis 

 

Here in this thesis, the efforts regarding the objectives of the study are presented 

under three main chapters following the Introduction in Chapter 1. Chapter 2 presents 

the use of vector space embedding process in the analysis of biomolecular datasets. 

Following the Multiple Sequence Alignment and the inference of the evolutionary 
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distances, the sequences were expressed in high-dimensional vector spaces, and 

statistical methods were used to cluster and classify them. The method was modified 

and optimized in order to fit the biomolecular data, before it was applied to a large 

human protein dataset. 

Chapter 3 explains the construction and subsequent thresholding of the 

connectivity map of the input dataset in order to eliminate the unreliable evolutionary 

distances. The thresholding was carried out regarding 2 features, namely, the inferred 

evolutionary distances and the number of gapless positions on pairwise comparisons of 

the alignment. The method was applied on the human protein dataset and the accuracy 

of the recovered connections was evaluated based on the curated functional annotations 

from sequence databases. 

Chapter 4 details the method developed for protein function assignment by 

conserved region identification and association. The method employs sequence 

alignment, statistical grouping and conserved residue scoring; and produces a table 

presenting the associations between the recovered conserved regions and the input 

sequences along with conserved region profiles. The biological relevance of the method 

was assured with a clustering on gold standard datasets from the literature. The finalized 

method was applied to the human protein dataset and the functional relations were 

obtained between groups of proteins. In addition, the correspondence between the 

conserved regions and the curated structural domain assignments of the proteins were 

investigated to evaluate the performance of the method in identifying functional 

domains in amino acid sequences in an exhaustive and automated fashion. 
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CHAPTER 2 

 

2. EVOLUTIONARY RELATIONSHIPS BETWEEN GENE 

AND PROTEIN SEQUENCES VIA NON-LINEAR 

EMBEDDING 

 

A problem related to the inference of evolutionary relationships and 

phylogenetic trees is the calculation of evolutionary distances (mentioned in the last 

paragraph of Section 1.2). The evolutionary models provide useful information on the 

subject matter, but this information is subjected to errors that decrease the credibility of 

the results especially when the divergence is elevated. As shown in Equation 2.3 in 

Section 2.4 for Jukes-Cantor Model (Jukes and Cantor, 1969), the upper limit of the 

sequence distance is 0.75 where the inferred evolutionary distance becomes infinity. 

Moreover, as the sequence distance approaches the upper limit, the error in the resulting 

inference increases. This often results in phylogenetic trees with false relationships. 

The aim of this part of the study is to develop a method that has the ability to 

infer the accurate evolutionary relationships and classify/identify gene and protein 

families via expressing the input sequences in high dimensional vector spaces upon 

which statistical learning algorithms can be applied. 

With the application of vectorial expression, test samples are given unique 

positions in high dimensional spaces regarding their relative pairwise distances. Since 

complex biological sequences (our samples) are reduced to points with known 

coordinates, statistical methods can easily and efficiently be applied to discover their 

relations with each other. In a vectorial embedding procedure, number of points in the 

final embedding will naturally equal to the number of sequences in the dataset. Number 

of vector space dimensions equals to the length of the Multiple Sequence Alignment 

output of this dataset. In other words, each position in the alignment corresponds to a 

dimension where the value of sample on this dimension comes from the relative 

constitution of the sequences at that position. For example, if any 2 sequences have the 

same nucleotide on the position x, then these 2 sequences will have the same value at 

the dimension x in the vectorial embedding. 
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However, usually very high dimensional loads arise from the process since all 

positions (in the alignments) are taken into account leading to computational problems. 

At the same time, it’s highly probable that some of the positions do not contribute to the 

evolutionary relations between the samples as much as the others (the ones experiencing 

high mutational rates). Apart from the heavy computational load, these positions add 

noise, clouding the information we seek.  Reducing the vector space dimensions by only 

incorporating the positions with informative evolutionary signals yields better 

representations. This is done employing dimensionality reduction methods. Multi-

Dimensional Scaling (MDS) (Kruskal and Wish, 1978) and Principle Component 

Analysis (PCA) (Jolliffe, 1986) are two of the popular ones in use for a long time. PCA 

separates correlated input variables into components orthogonal to each other. These 

components are ranked in the order of informativeness regarding the distribution of the 

input variables. C-MDS takes pairwise dissimilarity measures between test samples and 

positions the samples in multi-dimensional spaces regarding the minimization of a cost 

function. These classical methods are capable of producing successful results in 

relatively simple cases especially when the structure of the data is distributed on a linear 

plane but they usually cannot capture the nonlinear structures present in the data 

(Tenenbaum et al., 2000). In order to capture the non-linearity in the systems, non-

linear embedding methods are developed by adapting the classical techniques. 

Nonlinear mapping (NLM) (Sammon, 1969) method tries to capture the nonlinearity by 

distributing different weights to the distances inversely proportional to their values. 

Locally Linear Embedding (LLE) (Roweis and Saul, 2000) produces global maps with 

the help of local symmetries. Another novel method called Stochastic Proximity 

Embedding (SPE) (Agrafiotis and Xu, 2002) builds on the same geodesy as LLE but it 

circumvents the calculation of approximate geodesic distances between remote points 

and forms an arrangement that scales linearly with the number of data points used.  

Stochastic Proximity Embedding has been used for uncovering the evolutionary 

relationships between protein sequences. In a study, SPE is applied in order to group the 

functionally related proteins in meaningful clusters (Farnum et al., 2003). As a result, 

some of the proteins that share similar functions are grouped in a two dimensional space 

away from evolutionary distant proteins. This study revealed the potential of non-linear 

embedding methods in clustering gene and protein sequences. 

Here we propose that, by expressing the gene or protein sequences of interest in 

high dimensional vector spaces via non-linear embedding using the inferred pairwise 
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distances as the input, the errors present may be reduced significantly. Moreover, 

different statistical methods may be applied on these vectorial embeddings in order to 

cluster or classify these sequences. 

ISOMAP (Isometric Feature Mapping) is a nonlinear mapping method that 

makes use of geodesic distances induced by neighborhood graph embedded in the 

classical scaling (Tenenbaum et al., 2000). This provides the advantage of capturing the 

structure of nonlinear -curved- manifolds successfully. Input space distances are good 

approximations to the geodesic distances in neighboring points (Tenenbaum et al., 

2000). For far away points, many small jumps between these neighboring points can be 

added up to approximate the geodesic distance. ISOMAP method is frequently 

employed in geological and meteorological studies. The magnitude of the conserved 

neighborhood size is adjustable. Under the threshold, the method preserves all pairwise 

distances whereas over the margin, all distances are discarded and estimated again by 

the method. One indicator of the success of the embedding is the residual variance plot. 

It is simply a measure of the difference between the distances from the revised matrix 

and the ones at the final embedding. It is crucial here to clarify that this measure is not 

anyway related to the biological accuracy of the results in our case, it is just an indicator 

of the statistical success of the operation done. 

Another parameter arise from the vectorial embedding process is the number of 

dimensions in the final embedding. It should be chosen as the lowest number that is 

sufficient to express the data successfully. As the number of dimensions increase, the 

magnitude of the residual variance decreases. Approximately, the number of dimensions 

at the onset of the flat region of the residual variance curve is the optimum. Also the 

magnitude of the residual variance at this flat region should not exceed 0.1 or else the 

embedding is considered to be unsuccessful. 

In this part of the study, Isometric Feature Mapping (ISOMAP) algorithm is 

used in order to embed gene and protein sequences in high dimensional vector spaces 

and various classification methods are applied on these vectorial arrangements. Using 

this procedure, meaningful clusters -regarding functional similarities- are obtained. 
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2.1. Methods 

 

The information given in this section is taken from (Tenenbaum et al., 2000). 

The algorithm takes pairwise distances between the samples as input and assigns each 

of them a unique location in multi-dimensional vector spaces. When the input also 

consists of points in a high-dimensional space and the aim of using ISOMAP is the 

reduction of dimensions, Euclidean distances between the samples are computed and 

given to the algorithm. In the output space, Euclidean distances between the points 

correspond to their corrected pairwise distances. The placement of vectors in this high-

dimensional space is carried out in such a way that the output embedding represents the 

intrinsic geometry of the data as accurately as possible. 

The complete ISOMAP process consists of pre-processing step and 3 main steps. 

In the pre-processing step, distances dx(i,j) between all pairwise combinations i and j 

(from a total of N samples) are measured using Euclidean metric. The pre-processing 

step is not executed when the input already consist of distances. The first step of the 

algorithm is the construction of the neighborhood graph. The algorithm carries out the 

process with either one of the two different approaches. First one is connecting each 

point to all other points within a fixed radius named as epsilon (ϵ) and the second one is 

connecting each point to its K nearest neighbors. The user is required to select one of 

these options (ϵ-Isomap or K-Isomap) and its value at the input level. In this step, 

neighborhoods between the input samples are determined by defining the graph G on all 

input samples by connecting points with an edge i and j if dx(i,j) is less than ϵ or j is one 

i’s K nearest neighbors. The edge length is set as dG(i,j) = dx(i,j)  in the presence of an 

edge, and the remaining of the pairwise connections are equalized to infinity (dG(i,j) = 

∞). The second step is the computation of the shortest paths. For each value of               

k = 1, 2, 3, ..., N entries, i and j, dG(i,k)+dG(k,j) is computed, then dG(i,j) are replaced by 

minimum of these 2 expressions (Equation 2.1). As a result, the final matrix contains 

the shortest path (graph) distances (DG). The third and the last step is the construction of 

d-dimensional embedding (Y). It is basically the application of Classical Multi-

Dimensional Scaling (C-MDS) to the graph distances found in the previous step. 

 

      {  (   )   (   )    (   )}                                 (   ) 
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DG is the final graph distance matrix, dG represents the pairwise neighborhood 

graph distances between any point pair, i, j and k are the points corresponding to the 

samples in the dataset. 

Residual variance plot is employed in order to select the correct number of 

dimensions (d) in the output embeddings. This is the least number of dimensions that 

represent the geometric structure of the data accurately. True dimensionality of the data 

can be estimated from this plot regarding the decrease in error with increasing number 

of embedding dimensions. This measure is also employed in other dimensionality 

reduction techniques such as PCA and MDS to obtain the true dimensionality. Equation 

2.2 shows the formulation of residual variance. 

 

      
 ( ̂    )                                                  (   ) 

 

VR represents the residual variance, DY is the matrix of Euclidean distances that 

the algorithm returns, DM is the best estimate of the intrinsic manifold distances (graph 

distance matrix for ISOMAP) and R represents the standard linear correlation 

coefficient. 

Figure 3 shows the true distribution of the “Swiss roll” dataset. As observed 

from the figure, the data is distributed upon 3 dimensions. Gray/black points represent 

the samples on the 3-D space. Blue dashed line is the Euclidean distance between 2 

points (in black circles) in the space whereas the uninterrupted blue line represents the 

true geodesic distance between the same points. Notice how the line follows the non-

linear (curved) structure of the distribution. The aim of employing ISOMAP here is 

capturing this path with a lower number of dimensions. 

Figure 4 (a) shows the neighborhood graph (G) constructed on the same 

distribution (on 3-D space) using the K-Isomap procedure with the neighborhood size of 

7. Gray lines represent edges between neighboring points and the red line represents the 

graph distance between the same points referred in Figure 3, in other words, the shortest 

path between these points in G. Figure 4 (b) shows the vector space embedding after 

ISOMAP process on 2 dimensions. The red line is the same graph distance shown in 

Figure 4 (a) and the blue line is the final approximation to the true geodesic path 

between the aforementioned points. Notice that, the true structural distance between 

these far-away points were approximated successfully by many small jumps between 

the neighboring points. 
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Figure 3. The distribution of the points in the “Swiss roll” dataset in 3-D space.  

(Source: Tenenbaum et al., 2000) 

 

 

Figure 4.  (a) The neighborhood graph (G) constructed on the “Swiss roll” dataset 

distribution (b) 2-D embedding output of ISOMAP on “Swiss roll” dataset. 

(Source: Tenenbaum et al., 2000) 

 

Figure 5 shows the residual variance plot of various dimensionality reduction 

methods for the embedding the “Swiss roll” dataset. The horizontal axis represents the 

number of embedding dimensions and the vertical axis represents the residual variance 

values. The filled black arrow at the bottom of the figure indicates the reduced number 

of dimensions required to accurately represent the distribution in ISOMAP process. 

Linear dimensionality reduction methods failed to reduce the number of dimensions 

whereas ISOMAP capture the non-linearity in the manifold and embed the points in 2 

dimensions with nearly zero residual variance. 
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Figure 5.  Residual variance plot for the embedding of “Swiss roll” dataset (open 

triangles: PCA and MDS, filled circles: ISOMAP). (Source: Tenenbaum et 

al., 2000) 

 

2.2. Embedding of MAPK1 Gene Sequences 

 

First of all, in order to test the method on a crude basis and to get an idea about 

its potential in clustering gene sequences, MAPK1 gene sequences from different 

animals (human, wolf, cattle, chimpanzee, macaque, mouse, two different frog species, 

chicken and a bird) are downloaded from NCBI database. The product of MAPK1 gene 

is a protein acting as an integration point for multiple biochemical signals which is 

involved in a wide variety of cellular processes such as proliferation, differentiation, etc. 

MAPK1 gene is quite conserved through evolutionary timeline. The dataset contains 

gene fragments from the database along with full sequence genes. The reason for 

including the sequence fragments was to observe how the method behaves when there 

are un-alignable sequences in the dataset where the sequence alignment methods usually 

fail. The dataset contained a total of 20 sequences. 

Following the multiple sequence alignment, sequence distances between 

sequence pairs were calculated, evolutionary distances were inferred by Jukes-Cantor 

model (input for ISOMAP), non-linear embedding of the sequences in a multi-

dimensional vectorial space was carried out and a visual representation of evolutionary 

relationships in a 2-D or 3-D vector spaces were sought. In order to compare the results 

with a tree formed regarding the output alignment, a dendrogram was created in EMBL-

EBI website using online tree formation tool following the multiple sequence alignment 

procedure. 
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Figure 6 shows the rooted dendrogram of sequences present in the dataset which 

is drawn via the tree formation option of EMBL-EBI Multiple Sequence Alignment 

tool. Different colors are used in order to ease the understanding. Yellow color is used 

for bird and chicken, blue color for mouse and the fragments of the mouse MAPK1 

gene, red color for primates and fragments of human MAPK1 gene, green color for the 

3 different frogs and grey color for the cattle and the wolf. As seen from this figure, the 

evolutionary relationships are quite wrong. Especially gene fragments are associated 

with the other sequences inaccurately. The reason behind this case is that these methods 

try to infer a relation between all sequence pairs and use these inferences to draw trees. 

As a result, when there are un-alignable sequences in the dataset, it is usually not 

possible to infer the phylogenetic relationships. 

 

 

Figure 6.  Rooted dendrogram drawn by online tree formation tool on EMBL-EBI 

website for 20 MAPK1 gene sequences (and fragments) in different 

animals. (“frag. #” is the abbreviation for fragment number). 
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Figure 7 shows the 2 dimensional vector space arrangement for the non-linear 

embedding of MAPK1 gene in different animals. In the figure, each colored point 

represents a gene sequence and the metric distance between pairs of points correspond 

to the inferred evolutionary distance between the gene sequences. The same coloring 

style is used in this representation too for the differentiation between species. As seen 

from this figure, sequences of each species form distinct clusters. Mouse MAPK1 gene 

and the fragments form one cluster within the vector space as the human MAPK1 gene 

(including other primates) and its fragments. This is logical since the fragments belong 

to MAPK1 gene also. Another important point here is that the arrangement of the 

sequences on the vector space has directions. These directions are thought to represent 

some features of the animals present on that specific direction. For example, frogs are 

presented on a line that extends from the center where the mouse gene and its fragments 

presents to the direction of negative horizontal and vertical axes. This may correspond 

to a feature that is shared by the frogs but not the other animals in the dataset. Similarly 

another direction exists for the chicken and bird and a third one for cattle and wolf. In 

the following steps of the study this evolution-wise directionality was examined in 

detail. 

 

 

Figure 7.    2-D vector space arrangement for non-linear embedding of 20 MAPK1 gene 

sequences (and fragments) in different animals. (f # is the abbreviation for 

fragment number). 
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It was clearly observed when the Figure 6 and Figure 7 are compared that, even 

without any modification or optimization on the non-linear embedding procedure; the 

method produce promising results regarding uncovering the evolutionary relationships. 

In the next step of the study, the behavior of the algorithm on different datasets was 

tested. 

  

2.3. Non-linear Embedding of Synthetic Gene Sequences 

 

A more controlled experiment has been carried out in order to examine the non-

linear embedding applied on biological sequences using computationally created 

synthetic gene sequences. Aim of this particular experiment was to observe visual 

representation of the multi-dimensional vector space arrangement of the synthetic gene 

sequences and to see if evolutionary directions are clearly observable on the 

arrangement. 

Gene sequences are produced by applying random molecular substitutions at a 

constant average rate to the previous sequence starting from an original sequence. By 

this way the newly created sequence becomes the direct descendant of the previous one. 

A family of sequences is generated; where each one has either directly or indirectly, 

ancestor and descendant relations with the others. The evolutionary distances between 

the sequences are constant and known since the molecular substitution rate is a 

predetermined constant rate. Different evolutionary paths were formed by placing 

bifurcations at some particular locations. These paths represent the speciation event in 

the nature. 

First evolutionary pathway (“path a”) is shown in Figure 8 (a). In this path there 

were a total of 300 sequences, the average molecular substitution rate was 1% and there 

were 2 bifurcations, first one was after the 100
th

 sequence and the second one was at the 

50
th

 sequence of the left arm (the right arm ended after the 50
th

 sequence), after the 

second bifurcation the path was continued for 50 more sequences on both arms. 

Second evolutionary pathway (“path b”) is shown in Figure 8 (b). The total 

number of sequences in this path was 200 and the average molecular substitution rate 

was 2%. There was a direct quad-furcation from the original sequence and after that the 

path was continued on all 4 arms for 50 sequences. This occurrence is usually referred 

as the star formation in phylogenetic studies and treated as unresolved relationships of 
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sequences which naturally should only contain bifurcations. Even though quad-

furcation is not a natural formation, in order to observe the evolutionary directions and 

the angles between the lineages in the vector space arrangement, this simulation was 

thought to be suitable. 

 

 

Figure 8.   Tree representations of two different evolutionary pathways (“path a” and 

“path b”) created for evolutionary directionality analysis. 

 

The sequences on each evolutionary path were used as 2 different datasets and 

non-linear embedding was performed on them. Figure 9 shows 2 (a) and 3 dimensional 

(b) vector space embeddings of “path a”. In the figure, each blue dot confined with a red 

circle (vector) represents a gene sequence. As obvious from the figure, evolutionary 

directions are clearly observable and each lineage has a distinct direction. At the point 

where the first bifurcation occurs (in the green circle both for (a) and (b)) the angles 

between ancestor lineage and the 2 descendant lineages are the same and equal to 120˚. 

At the location of the second bifurcation (dashed green line in (a) and blue circle in (b)), 

the angles are again 120˚ in 3 dimensional output, though, two descendant lineages 

overlaps and cannot be distinguished visually in the 2 dimensional output. The reason of 

this occurrence was the insufficiency of the number of dimensions in the 2-D 

arrangement. The algorithm tried to preserve the distances between the sequences as 

given in the input using a 2 dimensional space and this arrangement gave the pairwise 

metric distances closest to the input. This occurrence was not observed in 3 dimensional 

output because the method preserved the distances by locating the first bifurcation 
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horizontally and the second one vertically, however, in 2 dimensions there were no 

suitable directions for the second bifurcation. 

 

 

Figure 9. (a) 2-D and (b) 3-D vector space embeddings of “path a”. 

 

Figure 10 shows 2 and 3 dimensional vector space embeddings of “path b”. The 

figure is colored similar to Figure 9. Similarly in this figure, the directions are clear and 

the same problem is valid for the 2 dimensional output. Fourth arm was placed quite 

close to the first one in the name of preserving all of the distances globally. In three 
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dimensions, 4 arms extend in different directions with the same angle between each 

arm. 

 

 

Figure 10. (a) 2-D and (b) 3-D vector space embeddings of “path b”. 

 

At the end of this analysis, we have concluded that vector space representations 

of gene sequences via non-linear embedding strongly preserve the evolutionary 

directionality. This directionality may correspond to distinct features of the organisms, 

as a result, observation of these directions and the angles in-between may give clues 

evolutionary and/or functional relationships of sequences/organisms. 



22 

 

Next, we tried to measure the abilities of non-linear embedding in accurate 

positioning and grouping of biomolecular sequences in a quantitative manner. To this 

end, an experimental setup was prepared to measure the error in the inferred 

evolutionary relationships between the sequences before and after the embedding. 

 

2.4. Error Analysis of Evolutionary Distances Obtained via Non-linear 

Embedding 

 

The biomolecular data of the organisms lived in the past is not available 

presently (especially for eukaryotic organisms). As a result, evolutionary distances 

between molecular sequences cannot be found directly. Instead, they are approximated 

regarding the sequence distances and mathematical models. However, inferring 

evolutionary distances from sequence distances may bring along errors since the 

approach is mainly probabilistic. In theory, embedding gene sequences in a vector space 

and assuming the metric distances in-between to be equivalent to the true evolutionary 

distances should be valid unless the positioning of the sequences in the vector space is 

inaccurate. Since the method takes the evolutionary distances inferred by conventional 

models as input, it should reduce the amount of error already present in the input to 

yield accurate results. Therefore, the amount of the error before and after the non-linear 

embedding process should be obtained in order to find out the error reduction capacity 

of the method. 

First of all, synthetic gene sequences are created computationally with a method 

similar to the previous experiment. New sequences are generated by placing random 

substitutions on the previous sequences. Three different paths are created and named as 

EP1, EP2 and EP3 (EP stands for evolutionary path). Each path consists of 501 

sequences. Each sequence has the length of 1000 nucleotides and the average 

substitution rate is 2%. Figure 11 shows the courses of the formation of these 

evolutionary paths. EP1 was the simplest case, starting from an original sequence and 

deriving new sequences with molecular substitutions. In EP2 two gene sequences were 

emerged from the original sequence independent from each other (bifurcation). These 

two sequences were both direct descendants of the original sequence and as both were 

formed by transforming the original gene sequence by different random changes (with 

an average substitution probability of 2%). The rest of the procedure was the same as 
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the previous one as the evolution was simulated by mutating the last gene sequence to 

form the new one. In this analysis, the evolution was maintained for 250 sequences in 

each arm giving 501 sequences in total. A more complex case was simulated in EP3. In 

this analysis, the evolutionary pathway was started again with a bifurcation at the 

beginning and continued for 100 steps (on each arm) at where bifurcations occurred on 

each arm again, a total of four arms were formed at this point. These four arms were 

continued for 75 steps more at which point the simulation ends. Again a total of 501 

gene sequences were obtained at this path. These three simulations represent different 

evolutionary pathways of a gene in a population. Usually a natural case is much more 

complicated than these ones, but analyzing simpler cases may provide the ability to 

uncover the behavior of the method more clearly. 

Second, the sequences on each path are aligned using Multiple Sequence 

Alignment procedure and the sequence distances were calculated. Following this 

procedure, evolutionary distances were inferred using the conventional Jukes-Cantor 

Model (Jukes and Cantor, 1969). The formulation of the model is given in Equation 2.3. 

Then, the embedding was processed using the inferred distances as the input. After the 

embedding procedure, the metric distances in the vector space were taken as the output 

evolutionary distances. The amounts of error in the inferred distances before and after 

the embedding were obtained regarding the known true evolutionary distances and 

compared with each other via bar graphs at different number of epoch distances (10, 10, 

50, 100 and 200 epochs). Thus, the error reduction capacity of non-linear embedding is 

determined with the inspection of the results. 

The optimum number of dimensions for the non-linear embedding of EP1 and 

EP2 was found to be 1 and the optimum epsilon values are decided to be 0.0255 and 

0.0680 for EP1 and EP2 respectively. As for EP3, the optimum number of dimensions 

was 3 and the optimum epsilon value was 0.0890. 

 

   (  ⁄ )    [  (  ⁄ ) ]                                          (   ) 

 

D represents the sequence distance and d is the inferred evolutionary distance. 
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Figure 11. The courses of EP1, EP2 and EP3. 

 

Error values for EP1, EP2 and EP3 are calculated separately. Apart from this, 

error analysis is not carried once for all the pairwise distances exist in a path instead, 

done separately for certain number of epoch distances (selections are 10, 10, 50, 100 

and 200 epochs). The reason for this application is that the amount of error changes 

drastically with the amount of distance.  

The parameter used for the examination of the error reduction capacity was the 

average absolute error value. It’s the average of the absolute differences between the 

inferred evolutionary distances and the real distances. The parameter was calculated 

both before and after the non-linear embedding application at different epoch distances. 

Mathematical expression for average absolute error value calculation for Jukes-Cantor 

model (error before the application of non-linear embedding) is given in Equation 2.4 

and the one for the calculation following the non-linear embedding process in Equation 

2.5. 
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Ejke represents the average absolute error for Jukes-Cantor model for the epoch 

distance e whereas Eve is the one for the non-linear embedding procedure; rij is real 

distance, dij is the distance inferred by Jukes-Cantor and dvij is the distance after the 

non-linear embedding between the sequences i and j, n is the total number of sequences 

and lastly, me is the total number of sequence pair combinations for epoch distance e. 

Figure 12 shows average absolute error comparison for EP1, Figure 13 for EP2 

and Figure 14 for EP3. In these figures, the horizontal axis represents the selected epoch 

distances (10, 20, 50, 100, 200) and the vertical axis represents the corresponding 

average absolute error values. As shown in Figure 12, Figure 13 and Figure 14; 

conventional Jukes-Cantor model and non-linear embedding gave similar error values 

up to 50 epoch distance. Jukes-Cantor model gave quite low and acceptable error values 

at these distances. It is obvious from the same figures that, at 100 and 200 epoch 

distances Jukes-Cantor Model’s error increased suddenly. Besides, the non-linear 

embedding reduced the error significantly to a degree similar to the errors at 0 to 50 

epoch distances. At high distances such as 100 to 200 epochs -which corresponds to 

0.65 to 0.75 sequence distances and 1.5 to 3.0 inferred evolutionary distances- non-

linear embedding is shown to have a significant error reduction capacity. At 100 epoch 

distance, the error value was nearly 6 and 5 times (for EP1 and EP2 respectively) higher 

for Jukes-Cantor model then the one for non-linear embedding (Figure 12 & Figure 13). 

At 200 epoch distance, this difference was 19 and 17 times (for EP1 and EP2 

respectively) again higher for Jukes-Cantor model (Figure 12 & Figure 13). As 

represented in Figure 14, error values were significantly higher for non-linear 

embedding than the ones for Jukes-Cantor model for 10, 20 and 50 epoch distances. 

However, at 100 and 200 epoch distances, non-linear embedding produced significantly 

lower error values similar to the ones in the analyses for EP1 and EP2. At 100 and 200 

epoch distances, the error values are nearly 2 and 21 times (respectively) higher for 

conventional Jukes-Cantor model (Figure 14). 

At low distances (0 to 50 epoch) the amounts of error for the Jukes-Cantor 

model was reasonable, however, after this point, the error increased drastically. The 

reason of this error increment lies in the formulation of the model. Evolutionary 
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distance is calculated directly from the sequence distance and as the sequence distance 

gets closer to 0.75 (which stands as the upper limit for this model) the evolutionary 

distance value becomes unstable. Sequence distance of 0.75 produce infinite 

evolutionary distance due to the presence of natural logarithm of zero in the formula. 

 

 

Figure 12.  Average absolute error comparison at different epoch distances for EP1 (blue 

bars: Jukes-Cantor errors, red bars: non-linear embedding errors). 

 

The potential of non-linear embedding in reducing the error rates at high epoch 

distances is attributed to the re-calculation of the distance between two far-away points 

by taking small jumps between proximal points located in-between and summing these 

small distances on the output manifold Instead of taking all of the given input distances 

into consideration. 

In other words, the error arising from the distance between proximal points is 

quite low compared to the error of the distance between the far away points. While 

calculating high distances, the method adds short and reliable distances to each other 

and succeeds in keeping the error low. 
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Figure 13.  Average absolute error comparison at different epoch distances for EP2 (blue 

bars: Jukes-Cantor errors, red bars: non-linear embedding errors). 

 

To comment on the high errors observed in the analysis of EP3 at 10, 20 and 50 

epoch distances, the presence of elevated number of bifurcations in the evolutionary 

pathway increases the error especially at low epoch distances by increasing the 

complexity of the system. In order to reduce the total error globally, the algorithm 

sacrifices low distances and keep high distances accurate while operating with the 

limited number of dimensions. As a result, non-linear embedding produced reduced 

errors at high distances (100 epoch and higher). 

 

 

Figure 14.  Average absolute error comparison at different epoch distances for EP3 (blue 

bars: Jukes-Cantor errors, red bars: non-linear embedding errors). 
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This analysis showed that non-linear embedding of gene sequences clearly 

reduces the amount of error present in the calculation of evolutionary distances between 

remote sequences. It’s concluded that with selection of correct parameters, the 

algorithm has the capacity to uncover the true evolutionary relationships between 

remote gene and protein sequences. To test this argument further on real sequences, the 

method was used to cluster 3 different protein families. 

 

2.5. Clustering the Members of 3 Eukaryotic Protein Families Using   

Different Clustering Algorithms 

 

The potential of non-linear embedding in discovering evolutionary relationships 

between gene and protein sequences was observed in the previous analyses. Here in this 

analysis we tested the accuracy of the method in clustering different eukaryotic protein 

families. 

The motivation behind clustering protein sequences is that, evolutionary 

proximal sequences usually have similar functions and vice versa. In other words, 

evolutionary distances and functional similarities are strongly correlated with each 

other. As a result, it’s assumed that clustering biomolecular sequences regarding their 

evolutionary distances has a potential for revealing their functional relationships. 

To test the accuracy of non-linear embedding in separating different protein 

families, 3 eukaryotic families with unrelated functions are selected from Prosite 

(Sigrist et al., 2010), Swiss-Prot manually annotated protein database (Bairoch and 

Apweiler, 2000). For all three protein families, only function positive proteins are 

included in the experiment.  First family was “ACTININ_1” with the accession number 

of “PS00019” which was described in the database as actinin-type actin-binding domain 

signature 1. This family had 84 function positive proteins discovered so far and 

members had an average of 2000 nucleotides per sequence. Second family was “MIF” 

with the accession number of “PS01158” and described as the macrophage migration 

inhibitory factor family signature with 27 proteins with an average length of 120 

nucleotides per sequence. Third and the last family was “NNMT_PNMT_TEMT” with 

an accession number “PS01100”. This family was described as NNMT/PNMT/TEMT 

family of methyl transferases signature and it had 13 members and with an average 

length of 297 nucleotides. A total of 124 protein sequences were downloaded from 
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Prosite database and subjected to the multiple sequence alignment procedure using 

stand-alone ClustalW v2.0 package (Larkin et al., 2007) with default parameters. After 

the alignment, the evolutionary distances were inferred using Jukes-Cantor model and 

are given to non-linear embedding process using 1 to 10 dimensional vector spaces. 

Clustering algorithms such as k-Nearest Neighbor (Cover and Hart, 1967), Maximum 

Likelihood (Duda et al., 2001) and Support Vector Machines (SVM) (Cristianini and 

Shawe-Taylor, 2000) were applied on each embedding in order to cluster the output 

vectors. Then, the accuracy of the clustering was calculated regarding the true families 

of the proteins. 

Figure 15 shows the true grouping of the protein sequences marked on the 2 

dimensional non-linear embedding. It is clearly seen from this figure that, protein 

sequences are located in three visually distinguishable groups except one protein which 

is located close to the members of an unrelated family. The method can be considered 

successful regarding this figure but in order to show its accuracy on a statistical basis, 

clustering algorithms are applied on the output embeddings. 

 

 

Figure 15. 2-D non-linear vector space embedding output of 3 eukaryotic protein 

families: “ACTININ_1” (blue), “MIF” (red) and “NNMT_PNMT_TEMT” 

(green). 

 

Two different analyses were carried out regarding the k-Nearest Neighbor 

Classification algorithm. First, using leave-one-out technique and second using 50% of 

the points for the classifier training and the other 50% for testing. The selected number 

of neighbors was 1 (k=1) for the simplicity. The results appeared to be quite similar 
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(data not shown) and only the results of leave-one-out strategy were selected to be 

shown for the rest of the section. As an alternative, Maximum Likelihood Classification 

method is applied to cluster the output vectors. Employing the widely used statistical 

decision rule Maximum Likelihood, the probabilities of each vector to be included in 

each and every class were obtained and the vectors were assigned to the class with the 

highest probability. As a second alternative, Support Vector Machines (SVM) algorithm 

with radial basis function kernel was used to classify the vectors. Since SVM compares 

just 2 groups at each application, a total of 3 applications had been performed regarding 

group 1 vs. 2 and 3, 2 vs. 1 and 3; and lastly, 3 vs. 1 and 2. As in the k-Nearest 

Neighbor application, analyses were made for both leave-one-out and 50% of the points 

for the classifier training strategies. The results for these two strategies were again quite 

similar (data not shown), and the leave-one-out strategy is selected to be displayed here. 

Table 1 shows the performance of non-linear embedding process in separating 

unrelated protein families from each other by measuring the clustering accuracy (using 

different clustering algorithms) at different number of embedding dimensions. The goal 

here is to select of the minimum number of dimensions that represent the evolutionary 

relations accurately -in order to simplify the system as much as possible to get a visual 

output at 1, 2 or 3 dimensions when possible-. The two dimensional space was observed 

to be sufficient for k-Nearest Neighbor and SVM methods, whereas 6 dimensions were 

selected for the Maximum Likelihood method. Clustering success at selected number of 

dimensional spaces were over 95% for all methods. Selected numbers of dimensions 

and the accuracy are indicated as yellow highlights in Table 1. 

The clustering results of the selected algorithms are marked on 2 dimensional 

non-linear embedding output and falsely grouped proteins are pointed out in black 

circles in Figure 16 for k-Nearest Neighbor, in Figure 17 for Maximum Likelihood and 

in Figure 18 for SVM. As seen from these figures, only one protein for k-Nearest 

Neighbor and SVM classifications, and 3 proteins in Maximum Likelihood 

classification, were misclassified. 
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Table 1.  Clustering success for non-linear embedding regarding a range of embedding 

dimensions for (a) Nearest Neighbor (b) Maximum Likelihood and (c) 

Support Vector Machines methods (highest performances are highlighted in 

yellow color). 
 

(a) Nearest Neighbor (leave-one-out) 

 

Number of embedding dimensions 

 

1 2 3 4 5 6 7 8 9 10 

Clustering 

success 
0,8306 0,9919 0,9919 0,9919 0,9919 0,9919 0,9919 0,9919 0,9919 0,9919 

 

(b) Maximum Likelihood 

 

Number of embedding dimensions 

 

1 2 3 4 5 6 7 8 9 10 

Clustering 

success 
0,3145 0,8790 0,9355 0,9516 0,9597 0,9758 0,9677 0,9597 0,9435 0,9516 

 

(c) Support Vector Machine (leave-one-out) 

 

Number of embedding dimensions 

 

1 2 3 4 5 6 7 8 9 10 

Clustering 

success 
0,4879 0,9919 0,9919 0,9758 0,9758 0,9758 0,9758 0,9758 0,9758 0,9758 

 

 

 

Figure 16. k-Nearest Neighbor classification (leave-one-out) clusters shown on 2-D 

non-linear embedding of 3 eukaryotic protein families. Blue: cluster 1, red: 

cluster 2 and green: cluster 3. Black circle: falsely classified proteins. 

 

Table 2 shows the confusion matrices regarding the clustering of 3 protein 

families with the k-Nearest Neighbor algorithm (k=1) with the comparison of clustering 
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using the initial Jukes-Cantor distances and clustering using the distances after the non-

linear embedding process. The k-Nearest Neighbor algorithm (k=1) takes only the 

closest vector into consideration and the error rates of Jukes-Cantor distances are 

acceptable at low distances, as a result, leave-one-out strategy produced the same 

performance of classification before and after embedding on a 2-D vector space (Table 

2, a and b). However, when only 10% of the points were used for the classifier training 

(the procedure is repeated 100 times with random selection of points for the classifier 

training), non-linearly embedded arrangement was slightly more accurately than the 

classification on Jukes-Cantor distances (Table 2, c and d). Since only a few points were 

selected for classifier training in this case, some of the test points were classified 

regarding far-away reference vectors and in the end, the high amount error in elevated 

Jukes-Cantor distances decreased the classification accuracy. On the other hand non-

linear embedding reduced the error rates at these high epoch distances according to the 

previous experiment and this was reflected herein too. 

 

 

Figure 17. Maximum  Likelihood  Classification  clusters shown on 2-D non-linear 

embedding of 3 eukaryotic protein families. Blue: cluster 1, red: cluster 2 

and green: cluster 3. Black circle: falsely classified proteins. 
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Figure 18. SVM  classification  (leave-one-out)  clusters  shown on 2-D  non-linear 

embedding of 3 eukaryotic protein families. Blue: cluster 1, red: cluster 2 on 

each combination. Black circle: falsely classified proteins. 

 

Table 2.  Confusion matrices for the Nearest Neighbor Classification using (a) and (c): 

Jukes-Cantor distances, (b) and (d): non-linear embedding (2-D); (a) and (b): 

using leave-one-out method, (c) and (d):  using 10% of the points for 

classifier training. 

 

          (a)       (b) 

 

True Grouping 

    

True Grouping 

1 2 3 

   

1 2 3 

Nearest 

Neighbor 

Class. 

1 84 1 0 

   

Nearest 

Neighbor 

Class. 

1 84 1 0 

2 0 26 0 

   

2 0 26 0 

3 0 0 13 

   

3 0 0 13 

Clustering success: 0.9919     Clustering success: 0.9919 

 

          (c)       (d) 

 

True Grouping 

    

True Grouping 

1 2 3 

   

1 2 3 

Nearest 

Neighbor 

Class. 

1 7436 117 364 

   

Nearest 

Neighbor 

Class. 

1 7585 117 364 

2 140 2305 0 

   

2 5 2305 0 

3 14 0 824 

   

3 0 0 824 

Clustering success: 0.9433      Clustering success: 0.9566 
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From Table 1, Figure 16, Figure 17 and Figure 18; it can be concluded that the 

non-linear embedding process accurately separated the examined protein families from 

each other on the 2 dimensional vectorial plane. Also to note that, this dataset was an 

easy case as the inter distances between protein families were quite large. Though, non-

linear embedding has increased the accuracy of this separation as shown in Table 2 

when only a few (10%) of the vectors were used for classifier training. These results 

indicate the potential of non-linear embedding in uncovering the functions of unknown 

proteins and genes with respect to their distances to the known ones in the multi-

dimensional vectorial space. More complex (harder to classify) datasets was to be 

examined in order to investigate this potential further. 

 

2.6. Non-Linear Embedding of Protein Families with Similar 

Functions from Gene Ontology Database 

 

The potential of non-linear embedding in separating distant protein families was 

proved in the previous experiment. Here a new dataset consisting of protein families of 

similar functions has been prepared taking Gene Ontology (The Gene Ontology 

Consortium, 2000) associations into account.  

Gene Ontology is a project aiming to standardize the gene and gene product 

attributes by assigning controlled vocabulary terms to each of them under three main 

topics: molecular function, biological process and cellular component (The Gene 

Ontology Consortium, 2000). Molecular function is the first one and represents the 

specific function of the sequence in the metabolism; biological process is the general 

operation during which this specific function is carried out; and cellular component is 

the location where this product functions. There is a hierarchical construction of these 

terms from broad to specific and a gene (or its product) is identified more clearly with 

growing number of associations. The sequences filtered through the careful inspection 

of GO makes them reliable samples for their functional annotations and there is a clear 

indication of evolutionary and functional relatedness (homology) between biomolecular 

sequences with shared GO terms.  

AmiGO Browser (Carbon et al., 2009) was used to select 625 human proteins 

regarding molecular functions. Proteins from four different molecular function groups 

namely, sequences with lipase activity, nuclease activity, thiolester hydrolase activity 
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and phosphatase activity were collected in similar numbers from each group. Figure 19 

shows the hierarchical relationships of the selected molecular functions on AmiGO 

browser highlighted in different colors. 

First of all, the sequences were downloaded from UniProt Database (The 

UniProt Consortium, 2011) using the accession numbers obtained from Gene Ontology 

Database. After that, Multiple Sequence Alignment procedure was carried out using the 

stand-alone ClustalW v2.0 (Larkin et al., 2007) package with default parameters. Next, 

the evolutionary distances were inferred as previously and lastly, the non-linear 

embedding procedure was processed with default parameters and regarding a 

neighborhood size of 7 nearest neighbors (k=7). 

 

 

Figure 19.  The  relationships  of the selected  molecular  functions in  AmiGO browser, 

the selected protein groups are highlighted in different colors. 

 

Figure 20 shows the 2 dimensional vector space embedding output. Colors 

represent different protein families. Intertwined appearance of the protein families 

indicates that a successful separation between protein families could not be achieved on 

2-D this time. The residual variance plot was examined in order to observe the 

minimum number of dimensions sufficient to represent the data accurately. 
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Figure 21 shows the residual variance plot for the non-linear embedding process. 

It is obvious that reaching the flat region (around value of 0.1) was not possible in 10 

dimensions. This result was probably due to the high complexity of the dataset and the 

absence of the ancestral sequences that relate the proteins to each other accurately. 

Embedding the sequences in higher number of vector space dimensions might yield 

acceptable residual variance values. 

 

 

Figure 20. 2-D non-linear  embedding  output of 4 similar  protein families (yellow: 

lipase, green: nuclease, blue: thiolester hydrolase and red: phosphatase 

activities). 

 

 

Figure 21. Residual variance plot for the non-linear embedding of 4 similar protein 

families. 
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The embedding process was repeated with 1 to 200 dimensions this time. Figure 

22 shows the residual variance plot for this new batch. The variance reaches its 

minimum value at about 30 dimensions. Since a visual output could not be obtained 

from an embedding with this number of dimensions to judge on the separation accuracy, 

k-Nearest Neighbor Classification algorithm was applied with leave-one-out procedure 

to all embedding outputs from 1 to 200 dimensions. Figure 23 shows the embedding 

dimensions on the horizontal axis and the clustering accuracy on the vertical axis. At 2 

dimensions, embedding accuracy was around 0.5 and at 20 dimensions; maximum 

accuracy has been reached with 0.7 and declined to 0.65 on average for the rest of the 

dimensions. At this point, it’s obvious that an accurate separation could not be obtained 

between the protein families with similar molecular functions via non-linear embedding 

even at elevated number of vector space dimensions. 

It was concluded that, small datasets consisting of similar proteins from the same 

timeline -with nearly the same amount of diversifications from a common ancestor- 

were difficult to be classified unless ancestor sequences are included in the set. When 

the inter-cluster distances become similar to intra-cluster distances, stepwise revision of 

elevated distances cannot be processed accurately. Decreasing the neighborhood size 

might be a solution but this time; some of the vectors disconnects from the rest, forming 

components. At this point, the non-linear embedding method should be revised to be 

able to keep neighborhood size at low values without disconnecting the input sequences. 

 

 

Figure 22. Residual variance plot for the non-linear embedding of 4 similar protein 

families from 1 to 200 dimensions. 
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Figure 23. Embedding dimensions vs. classification accuracy for k-Nearest Neighbor 

Classification of non-linear embedding outputs. 

 

2.7. Revision of the Non-Linear Embedding with MST and Testing 

with Synthetic Gene Sequence Dataset 

 

In order to solve the problem of disconnection of the map at low neighborhood 

sizes, addition of Minimum Spanning Tree (MST) (Gallager et al., 1983) connectivity 

to the non-linear embedding neighborhood calculation was carried out. This addition 

was thought to prevent the component formation while keeping the neighborhood sizes 

at low values thus allowing to the step-wise revision of the distances in the case of high 

intra-cluster and low inter-cluster distances. 

A spanning tree of an undirected graph is a sub-graph that connects all the 

vertices together. A Minimum Spanning Tree (MST) is a spanning tree with the 

minimum weight. Figure 24 shows an example MST on a random distribution of points 

in a 2 dimensional space. MST connections were to be incorporated to the non-linear 

embedding process to keep all of the vectors connected at all times. Addition of MST 

connectivity to ISOMAP was done by changing the distance matrix revision procedure 

using Dijkstra's algorithm (Dijkstra, 1959). First, MST connectivity is added to the 

neighborhood graph so even if the neighborhood size was selected as zero, the number 

of connected components would still be one. After the selection of the neighborhood 

size, the desired connectivities are added on top of the MST graph. This new algorithm 

was called MST-Isomap. 
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Figure 24. Minimum Spanning Tree (red  colored  network) of a random geometric 

distribution on 2 dimensions. (Source: Csardi and Nepusz, 2006) 

 

In order to test the performance of the algorithm, a synthetic dataset of gene 

sequences were created by accumulating point mutations on an original sequence. A 

total of 162 sequences were created belonging to 4 main families. Only leaf nodes 

(sequences from present time) were included in the dataset and the distances between 

families were selected to be quite high. Figure 25 shows the tree representation of the 

sequences in the dataset with edge lengths. After that, evolutionary distances were 

inferred as previously. Normal and MST non-linear embeddings were applied on the 

evolutionary distance table using different neighborhood sizes and embedding 

dimensions. Lastly, pairwise errors were calculated and compared with each other. 

Residual variance plot of the process using k-Isomap with the neighborhood size 

of 61 is shown in Figure 26. It is obvious from this figure, 2 dimensions were sufficient 

for an accurate embedding. Figure 27 shows the 2-D embedding output for the same run 

with colors to represent different protein families. The families are separated from each 

other considerably as seen from the figure; however, the change of error in different 

runs (with k-Isomap and MST-Isomap) should be measured precisely to observe the 

effect of adding MST connections to the process. 
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Figure 25.  Tree representation of the synthetic sequence dataset, consisting of 4 protein 

families. Families are separated by colored curves, numbers in black squares 

shows the family numbers and the numbers next to edges show evolutionary 

distances. 

 

 

Figure 26. Residual  variance  plot  for the  non-linear  embedding of the synthetic 

sequences dataset (ISOMAP with k=61). 

 

Figure 28 shows the change of average absolute error (Equation 2.5) in pairwise 

distances after non-linear embedding and MST non-linear embedding processes for 

different number of embedding dimensions (only some of the runs are shown on the 

figure for the sake of visuality). It is evident that, after some degree the error falls below 

the error produced by the evolution model (the error on the distances before embedding) 
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for all parameter selections. It is shown that the process with the neighborhood size of 

61 performs the best and decreases the error present in the input matrix (0.375) to 0.22 

at the flat region (around 50 dimensions). 

 

 

Figure 27. Non-linear embedding output of synthetic sequence dataset in 2-D, colors 

represent different protein families (ISOMAP with k=61). 

 

Apart from it, the best performed MST non-linear embedding parameters were 

MST plus 45 nearest neighbors. It performed similar to Principle Component Analysis 

(which is calculated by setting the neighborhood size to infinity). Addition of MST to 

the non-linear embedding improves the results at 45 nearest neighbors but best 

performance was presented by non-linear embedding without MST at 61 nearest 

neighbors. As a result, addition of MST did not have a positive effect on decreasing the 

error. This was probably due to the high amount of error in some of the input distances 

that were conserved and carried to the output by MST. 

At this point, non-linear embedding was considered to be unsuitable for the 

analysis of small datasets consisting of evolutionary proximate gene and protein 

sequences. However, it was also thought that, using large datasets such as whole 

proteomes might result in differently. Since evolutionary rate acting on thousands of 

proteins could not be the same, step-wise revision of the distance matrix might turn out 

to be more accurate. Consequently, we decided to go directly on the whole human 

proteome which was our main interest from the beginning of the study. 
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Figure 28. The change  of the  average absolute error in the evolutionary distances, 

horizontal axis represents the number of embedding dimensions and vertical 

axis represents the error values (blue: normal embedding (k=45), green: 

normal embedding (k=61), red: MST + normal embedding (k=45), cyan: 

normal embedding (k=infinite), purple: Jukes-Cantor model). 

 

2.8. Evolutionary Analysis of Human Proteome with Non-linear 

Embedding 

 

One of the aims of this study was to observe groups of proteins specialized for 

specific tasks in human body with complete analysis of the proteome. It was shown on 

the previous analyses that the non-linear embedding process has the potential to carry 

out this task accurately. Besides, statistical methods would be applied on the output high 

dimensional vectorial embeddings, in order to classify these groups. 

Since the evolution rate was not constant and not acting exactly in the same way 

on all genes in the human genome (unlike the synthetic datasets in the previous 

analyses) stepwise formation of the distance matrix was thought to work accurately. It 

was expected that, in such a populated dataset, specialized groups of proteins should be 

separated from the bulk with perpendicular angles in the output embeddings thus 

making it easy to spot and separate them. 

First of all, to generate the dataset, the accession numbers of human proteins 

with at least 1 Gene Ontology association were collected from GO website. Since Gene 
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Ontology project aims the standard representation and documentation of genes and its 

products, the proteins annotated by GO have gone through a detailed inspection and 

examination process, as a result their functional associations are more reliable. The 

dataset was formed with the download of the human protein sequences from UniProt 

Database (The UniProt Consortium, 2011) via the accession numbers. The dataset 

contained of 18011 human proteins.  

As a second step, the Multiple Sequence Alignment procedure was carried out 

using stand-alone ClustalW v2.0 package (Larkin et al., 2007) with default parameters. 

After that, the evolutionary distances were inferred via the built-in function of ClustalW 

package using Kimura Amino Acid Substitution Model (Kimura, 1983). Following an 

optimization on the non-linear embedding algorithm for faster process and less memory 

usage, the embedding of the sequences was processed and the smallest number of 

dimensions that give an acceptable residual variance were sought. The process was 

repeated a number of times to optimize the size of the neighborhood. Lastly, various 

operations were applied on the input and the algorithm to improve the accuracy. 

First embedding was processed using 1 to 100 dimensions and a neighborhood 

size equals to 12 (k=12) which was the critical neighborhood size (i.e. the lowest size 

that yield an all connected map). Figure 29 displays the 2 dimensional (on the left) and 

3 dimensional (on the right) embeddings. As expected, some of the proteins came out 

from the bulk like spikes with perpendicular angles to each other. The bulk (nearly 

17500 proteins) remained at the intersection point of the spikes. Due to the limitation 

placed by the number of dimensions, only 2 perpendicular groups observed at 2-D and 3 

groups at 3-D. It was also observed that the number of the spikes increased 

proportionately with increasing number of dimensions. The reason for the necessity of 

new dimensions for the formation of additional spikes was to maintain the 

perpendicularity between these spikes. 
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Figure 29. 2-D (left) and 3-D (right)  vectorial  embedding  outputs  on the  human 

proteome dataset. 

 

At this point, proteins on these spikes should be inspected to find out whether 

they belong to protein groups specialized for certain functions or totally random. On 

Figure 30, the families of the proteins in these spikes are marked on the embeddings. As 

expected, proteins on each spike belonged to a certain protein family. For the first 3 

dimensions these groups were Dynein, Myosin and Collagen. The logic behind their 

perpendicularity to each other was that, functionally unrelated evolutionary 

differentiations are displayed as directional divergences from the bulk in different paths. 

Each differentiation was represented by a directional divergence on a dimension in the 

Euclidean space. In other words, 2 dimensions were required to observe 2 

differentiations and the intersection of these ended up to be perpendicular. As a result, 

the required number of dimensions was equal to the protein families in the dataset. This 

point was roughly correlated to the minimum (at the start of the flat region) of the 

residual variance plot. 

Figure 31 shows the residual variance plot for the embedding. The variance 

remained quite high even at 100 dimensions (0.78) and it was decided that the process 

should be repeated with a wider dimensional range in order to obtain acceptable 

variance values. 
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Figure 30. Major  protein  families  marked on 2-D (left) and 3-D (right) vectorial 

embedding outputs on the human proteome dataset. 

 

 

Figure 31. Residual variance plot of the non-linear embedding process on the human 

proteome dataset. 

 

The embedding process was repeated using 1 to 10000 dimensions with the 

same parameters. Residual variance plot of this new process was shown on Figure 32. 

The minimum was reached around 6000 dimensions with the value of 0.1. This result 

roughly meant there should be nearly 6000 different protein families in the dataset. This 

result was considered to be incorrect since the whole dataset consisted of nearly 18000 

proteins so each family should contain 3 proteins on average. The minimum variance 

was expected to be observed on much lower number of dimensions. 
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Figure 32. Residual variance plot of the second non-linear embedding process (1 to 

10000 dimensions) on the human proteome dataset. 

 

The reason of the high variance at lower dimensions might be due to the low 

overlap of sequences in some of the pairwise alignments (the gaps were not scored 

during the evolutionary distance calculation). After an inspection, it was discovered that 

among 162 million pairwise alignments in the Multiple Sequence Alignment process, 

there were many sequence couples that only 1 or 2 site were occupied by an amino acid 

on both sides (no gaps on both sequences) and if this had been a match, the algorithm 

gave zero distance between these 2 proteins. This information was not reliable and 

impaired the non-linear embedding distance revision step, resulting in false 

connectivities. Since the non-linear embedding does not need a full distance matrix to 

perform, these erroneous distances might be removed from the distance matrix 

confidentially if detected accurately. 

For this purpose a new parameter was created named overlap fraction. This 

parameter is defined in Equation 2.6. Input pairwise distances with overlap fractions 

lower than a pre-defined threshold were decided to be discarded. 
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Ofij represents the overlap fraction, sij is the number of sites without gap at the 

pairwise comparison between the sequences i and j; ni is the total length of sequence i 

and nj is the total length of the sequence j. 

According to the test run, the output graph remained connected below the 

threshold 0.975 so the disconnection of the map was not a problem. Using some key 

threshold values, distance matrix is revised and the non-linear embedding process was 

run. Figure 33 shows the residual variance plot for overlap fraction thresholded input 

distances. 

 

 

Figure 33.  Residual variance plot of the non-linear embedding of human proteins with 

overlap fraction threshold distances; horizontal axis: the number of 

embedding dimensions, vertical axis: variance values (blue: the original 

dataset, threshold sets: green - 0.05, red - 0.125, cyan - 0.375, black - 0.7). 

 

Excluding pairwise distances with overlap fractions under the threshold could 

produce low but unstable residual variance values. Variances significantly lower than 

the original dataset (near 0.3) were obtained by the thresholding operation around 100 

dimensions; nevertheless, these variance values were not acceptable. Moreover, after 

100 dimensions, variances started to increase. Due to this instability, instead of using 

overlap fractions, the number of overlaps (total number of sites without a gap) decided 

to be used directly for the thresholding operation. Input distances were thresholded with 

different selections and the embedding was carried out on these inputs. Figure 34 shows 

the residual variance plots for this operation. 
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Figure 34. Residual variance plot of the non-linear embedding of the human proteins 

with input distances threshold directly by the number of overlaps; horizontal 

axis: the number of embedding dimensions, vertical axis: variance values 

(blue: the original dataset, threshold sets: green – 25, red - 50, black – 100 

positions). 

 

As observed from Figure 34, thresholding the distances directly by the number 

of overlaps, yields lower residual variance values especially at the threshold of 50 

positions. This threshold yielded a residual variance lower than 0.2 around 650 

dimensions. However, the output was still not acceptable as the desired variance and the 

stability could not be obtained in any way.  

On the other hand, absence of the ancestor sequences in the datasets seriously 

altered the distance revision process and it’s nearly impossible to obtain an accurate 

separation on protein families with similar functions. A final analysis was setup in order 

to see the effect of presence and absence of the ancestor sequences on vector space 

embedding of biomolecular sequences this time with real data.  

 

2.9. Effect of the Ancestor Sequences on Non-linear Embedding  

 

We showed in the previous analyses with synthetic datasets that, non-linear 

embedding of biomolecular sequences decrease the initial error present on inferred 

pairwise distances significantly when the ancestor sequences were included in the 

dataset. However, we couldn’t test it with real data since the ancestor sequences are not 
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available and because the real evolutionary distances between the sequences are not 

known. We observed unsatisfactory results with the embeddings of large datasets and 

with the sets containing sequences from similar protein families. We attributed the case 

to the absence of ancestor sequences but couldn’t observe it experimentally. 

In this section, the setup and the results of an analysis to test our idea on ancestor 

sequences are presented. Wahlberg et al. studied the unresolved phylogeny of butterflies 

in order to make this well-emphasized species available as model organisms (Wahlberg 

et al., 2005). They combine the molecular data (from 3 important genes) with traditional 

morphological characters, exploiting the synergistic effect of using different approaches 

at the same time to solve the clades. Bayesian inference was employed to solve the 

phylogeny where the inferences are based upon posterior probabilities calculated for 

each tree using Bayes theorem (Huelsenbeck et al., 2001). MRBAYES v3.1 software 

was employed for the analysis in which Markov Chain Monte Carlo (MCMC) is used to 

solve the integrals, analytically unsolvable otherwise (Ronquist and Huelsenbeck, 

2003). Many trial runs allow the determination of the correct parameters and the 

accuracy of the results were checked regarding the distribution of butterfly families in 

the tree, with a comparison of the distribution with the other methods’. 

Figure 35 shows the resulting phylogenetic tree. The distribution of the members 

of each family to the clades appears accurate as observed from the figure. We decided to 

process the dataset containing the molecular data of the 57 taxa, as used in the 

referenced study. We subjected the sequences to Multiple Sequence Alignment and 

inferred the evolutionary distances with our standard procedure (as in the previous 

analyses). Then, the non-linear embedding procedure was run with inferred distances 

and the 2-D embeddings were examined (shown in Figure 36). It’s observed that a clear 

separation could not be obtained between the families, similar to the previous analyses. 

Next, we repeated the analysis this time with the inclusion of ancestor sequences 

inferred for each ancestral node by MRBAYES software during the careful and 

optimized Bayesian analysis of Wahlberg et al. Figure 37 shows the 2-D embedding 

results of this run (with the same parameters as the previous run). As seen from the 

figure, there is a clear separation between the families, each coming out from a shared 

point (root) with a spike-like formation. Descendant sequences are located near the tips 

of the spikes where their ancestors remain close to the root (nodes lined up in the 

hierarchical order). Even though the number of dimensions was not enough to handle 6 

spikes -for 6 families- (plus one for outliers) with equal angles in-between, separation of 
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families is clear enough and the evolutionary directionality is striking. The separation 

was much more distinct in the embedding with 6 dimensions (data not shown). 

 

 

Figure 35. Phylogenetic tree for  the  butterfly species (57 taxa)  consisting  of the 

members from 6 different families and outliers generated regarding a 

combination of molecular and morphological data; colors represent families. 

(Source: Wahlberg et al., 2005) 
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Figure 36. 2-D non-linear embedding output of the molecular data of 57 butterfly 

species (colors represent families as in Figure 35). 

 

 

Figure 37. 2-D non-linear embedding output of the molecular data of 57 butterfly 

species including the generated ancestor sequences (gray color represents 

the ancestor sequences, other colors represent families as in Figure 35). 
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2.10.  Concluding Remarks 

 

These results support our claim about the necessity of ancestor sequences to 

yield accurate embeddings with clear functional/evolutionary separations. Note that in 

our case, it is mostly not possible to use a method for the construction of the ancestral 

nodes prior to non-linear embedding due to the obscurity of the test data. In the case of 

butterfly phylogeny, there was a considerable amount of information regarding both 

molecular and morphological properties about these well-studied species and Walberg 

et al. carefully incorporated this information to the analysis along with the optimization 

of the method, and obtain the phylogenetic relations at the end. 

As a result of these analyses, we decided to discontinue the employment of non-

linear embedding in the analysis of biomolecular sequences. Instead, a more complex 

thresholding operation was decided to be set to modify the input connections and then 

the concepts of graph theory -without the vector space embedding- were employed in 

order to achieve accurate functional and/or evolutionary separation of biomolecular 

sequences. 
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CHAPTER 3 

 

3. 2-D THRESHOLDING OF THE CONNECTIVITY MAP 

FOLLOWING THE MULTIPLE SEQUENCE 

ALIGNMENTS OF DIVERSE DATASETS 

 

One key prerequisite to acquire a meaningful output from multiple sequence 

alignment procedure is to have a considerable amount of similarity between the input 

sequences. Multiple sequence alignment algorithms shape the alignments around these 

shared sequential features. If one or more of the input sequences lack this shared 

feature, these sequences cannot be aligned to the rest accurately in any way. The 

presence of non-homologous sequences sometimes misleads the propagation of the 

alignment and damage the output. This condition is especially reflected as errors on the 

phylogenetic trees drawn after the alignment. Remote sequences usually end up on 

irrelevant regions on the tree indicating false relations. Moreover, these sequences may 

lead to inaccurate branch length predictions for the whole tree. As a result only the 

sequences that contain a specific feature -or features- are given to the procedure. This 

inhibits the analysis of large datasets composed of both similar and diverse biological 

sequences such as whole genomes of proteomes of organisms. An exhaustive 

preliminary study regarding the split of the dataset into highly similar sequence groups 

is usually necessary and this often is handled in a guided manner using a BLAST like 

algorithm (Altschul, 1990) and a vast database of confirmed known sequences. Even 

when there are no remote sequences in the dataset, the presence of fragments of 

homolog sequences (frequently encountered in online databases) usually leads to the 

same occasion due to the obscurity of the relations between the fragments. 

A connectivity map shows the pairwise relations of all possible combinations of 

samples in the dataset. Presence of a connection between a sequence pair indicates a 

significant homology in-between. On the other hand, absence of a connection indicates 

the lack of a significant similarity. An accurate connectivity map may yield the accurate 

classification or clustering of input samples. After a multiple sequence alignment 

operation, pairwise evolutionary distances are inferred using an evolutionary model for 

the phylogenetic tree construction procedure. At this point, all sequence pairs are 



54 

 

assumed to be connected since usually very similar sequences are given to the multiple 

sequence alignment. As also mentioned above, if there is a remote sequence or 

sequences in the dataset (or fragments of sequences) this assumption leads to false 

homology detections, erroneous pairwise distances and finally an inaccurate 

phylogenetic tree inference. 

Here we proposed a method to make sense out of Multiple Sequence Alignments 

of datasets composed of sequences from different families (including the sequence 

fragments) using similarity thresholding with probability distribution techniques. At the 

end, the sequences are split into meaningful clusters in an unsupervised way using no 

information other than the sequences themselves. These sequence groups (consisting of 

homolog proteins) then can be subjected to the multiple sequence alignment process 

separately to obtain accurate alignments.  

This is done by first, creating a new dataset by shuffling the elements of the 

original set and subjecting both sets to Multiple Sequence Alignment procedure 

separately. Second, generating 2 dimensional histograms consisting of pairwise 

evolutionary distances and the number of pairwise overlapped sites (number of 

positions without gaps on pairwise comparisons) for the original and shuffled datasets 

separately. Third, drawing threshold curves on histograms using mean and standard 

deviation values of pairwise evolutionary distances. Fourth, calculating the probability 

distributions regarding the rejection of pairwise connectivities at each threshold; and 

decision making using a Receiver Operating Characteristics curve (Lasko et al., 2005). 

The method was applied on the Multiple Sequence Alignment output of a large 

dataset consist of 18011 human protein sequences (the same dataset from the previous 

analysis). The dataset contains both similar and considerably distant (up to 100% 

sequence divergence) proteins. At the end of the procedure, the recovered connections 

were compared with Gene Ontology associations (The Gene Ontology Consortium, 

2000) of these proteins to observe the biological relevance of the method. Finally, the 

method was employed to solve a common real world task: the functional clustering of 

protein sequences. A gold standard dataset (Brown et al., 2006) was analyzed by 

clustering the proteins sequences within, measuring the clustering performance and 

comparing it with a classical clustering operation.  

The employed methods are expressed in detail in the next part of this chapter 

followed by the results and discussion part and a conclusion. 
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3.1. Methods 

 

A flow diagram including the steps of the method is given in Figure 38. 

 

3.1.1. Shuffled Dataset Creation 

 

Shuffled dataset was created by shuffling the elements of each amino acid 

sequence from the original test dataset randomly. The shuffling operation was applied 

on the sequences separately so the length and amino acid composition of each sequence 

was preserved. The shuffled dataset contained the same number of sequences as the 

original dataset. 

The shuffled dataset was used as a reference to represent unreliable 

connectivities that should be discarded. Since the elements of the sequences in this 

dataset were shuffled randomly, any inferred evolutionary relationships between these 

sequences were assumed to be emerged purely by chance. 

 

3.1.2. Pairwise Evolutionary Distance Inference and the Calculation of 

Pairwise Alignment Overlaps 

 

Right at the beginning of the procedure, we assumed that, there was a significant 

homology between all sequence pairs in the dataset. In other words, pairwise 

connectivity map was fully connected at the starting point. Most probably, some of the 

sequence pairs have no homology in-between, yet it was not known which ones at this 

point. What sought here was an indicator to measure the pairwise similarities to decide 

the existence or absence of significant homology. Pairwise evolutionary distance was a 

suitable measure to detect this similarity. Evolutionary distances close to zero, signal 

strong homology and as the evolutionary distances increase, homology diminishes. 

Since it’s usually not possible to know the real evolutionary distances between 

biological sequences, they are inferred from the pairwise sequence distances using 

substitution models -as mentioned in the previous chapters-. In this analysis, 

evolutionary distances were inferred using Kimura amino acid substitution model 

(Kimura, 1983) with the correction for multiple substitutions option. 
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Figure 38. Flow diagram of the thresholding connectivity map method. 
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In the multiple alignments of large datasets, the output alignment is usually quite 

lengthy. As a result, some of the sequences (especially short ones) may end up on 

different parts of the output alignment. It’s not possible to infer evolutionary distances 

of these proteins. In theory these sequences are diverged from a common ancestor so 

long before that the accumulated mutations makes it impossible to infer any similarity. 

At some other times, two distant sequences have matches (or mismatches) on a few 

positions (and there are gaps at the rest of the positions). After an inspection it was 

discovered that among all pairwise combinations in the output multiple alignments of 

test datasets, there were many occasions that only 1 or 2 sites were occupied by amino 

acid on both sequences -in other words gapless positions-. If this site gave a match, the 

evolutionary distance was inferred as zero between these 2 sequences since the 

remaining sites (including gaps) were not counted at all. However this information was 

not reliable as these sequences were not homologous. This case was also addressed in 

the previous chapter. Figure 39 shows a sample case for this phenomenon. The rows 

represent 2 protein sequences taken out from a test Multiple Sequence Alignment 

output. The position shown in green color is the only site available for calculating the 

evolutionary distance. Since it’s a match, the distance was calculated as zero.  

 

 

Figure 39.  A sample  case that  leading to an unreliable  evolutionary distance inference 

after the Multiple Sequence Alignment process. 

 

Unreliable cases such as this one should be eliminated together with the 

connectivities with elevated pairwise distances. The proposed solution was eliminating 

the unreliable connections by thresholding the connectivity map over both pairwise 

evolutionary distances and the number of sites without gaps (pairwise overlaps). Similar 

to the pairwise evolutionary distances, the number of sites without gaps were calculated 

for each sequence pair in the original and the shuffled datasets (e.g. the total number of 

overlapped positions for the case in Figure 39 is 1). 
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3.1.3. 2-D Histogram Formation 

 

A 2 dimensional histogram is a visual representation of the distribution of data 

just like a normal histogram. It differentiates from a normal histogram on the number of 

features the data is distributed upon. In a 2 dimensional histogram, the distribution of 

the data is shown at the intersection of two feature intervals. In the plot, the discrete 

intervals of the first feature are given on the horizontal axis and the ones for the second 

feature are located on the vertical axis. One bin is formed for each feature 1 and feature 

2 discrete interval combination and the number of points fall between the ranges of 

features for that bin appears inside. For the sake of visuality 2 dimensional histograms 

often created as intensity graphs instead of bars. 

In this study, horizontal axis of the 2 dimensional histogram represents the total 

number of sites without gaps for each pairwise comparison. Vertical axis represents the 

inferred pairwise evolutionary distances. These axes are both divided into 100 discrete 

intervals making 10000 bins in total. To create the intensity contrast, grayscale 

colormap is chosen. More populated bins are represented by a darker color and sparsely 

populated bins by lighter colors. 

First, linearly scaled intervals were used for the colormap but this resulted in 

visually poor plots. Later, a logarithmic scale was preferred for the coloring intervals 

producing satisfying visuality. Figure 40 shows a sample 2 dimensional histogram with 

the intensity scale on the right side. 

 

 

Figure 40. Sample 2-D grayscale intensity histogram (intensity scale on the right). 
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3.1.4. The Thresholding Operation 

 

Standard deviation and mean values of the distribution of “pairwise distances” 

on each “number of sites without a gap” interval were employed in order to create the 

threshold curves on the 2 dimensional histograms. Equation 3.1 shows the formulation 

of the threshold curves. 

 

                                                                  (   ) 

 

Ti is the i
th

 threshold curve (1 to 20), M is the mean pairwise distance –a constant 

value-, S is the standard deviation curve of the distribution of distances. 

Standard deviation curve creation was carried out column-wise on the 2 

dimensional histogram of the shuffled dataset. For each discrete “number of sites 

without a gap” interval, a standard deviation value was generated for the pairwise 

evolutionary distances. These successive values formed the standard deviation curve. 

Figure 41 is a representation of the standard deviation curve formation. Figure 41 (a) is 

a sample 2-D histogram, each red colored rectangle encloses a column of pairwise 

distances that a standard deviation value is calculated upon. Figure 41 (b) is the standard 

deviation curve drawn from the sample 2-D histogram. 

Use of the standard deviation curves during the formation of the threshold 

curves allowed capturing the shape of the edge of the crowded portion in the 2 

dimensional histogram of the shuffled dataset. This was useful for separating the 

meaningless/unreliable distances from the reliable distances around this edge. 

Using this method, 20 different threshold curves were created that scan the area 

below the mean distance curve. In addition to this set, 20 new curves were created to 

scan the area above the mean distance curve with the formula given in Equation 3.2, 

making 40 curves in total. 

 

                                                                  (   ) 

 

Toi is the i
th

 threshold curve (1 to 20) above the mean pairwise distance curve, M 

is the mean pairwise distance –a constant value-, S is the standard deviation curve of the 

distribution of distances. To avoid confusion in curve names, all of these 40 curves were 

named σ1,2,3,....,40. 
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Figure 41.  (a) A sample  2-D histogram,  (b) the  standard  deviation  curve drawn from 

the sample histogram. 

 

3.1.5. Decision Making Step 

 

A Receiver Operating Characteristic (ROC) curve (Lasko et al., 2005) is a plot 

of true positive vs. false positive rates, in other words a plot of sensitivity for a binary 

classifier system. It is used in order to find an optimum cut-off with the desired 

specifications between 2 classes where the distributions significantly overlap (Lasko et 

al., 2005). The two classes simply named as positives and negatives. The sole purpose 

here is to determine a point (cut-off) that the points on one side are assumed to be 

positives and to be negatives on the other side. This leads to the formation of 4 different 

groups namely true positives (TP), false positives (FP), true negatives (TN) and false 

negatives (FN). True positives are the points that belong to the positives group that are 

also labeled as positives correctly at the decision making step. False positives truly 
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belong to negatives group but incorrectly labeled as positives. “True negatives” is the 

name given to the samples in the negatives group that are also labeled correctly as 

negatives. And lastly, false negatives truly belong to positives group but marked 

incorrectly as negatives. 

As the cut-off slides from left to the right, more and more points are labeled as 

negatives. If the final cut-off is too low, nearly all of the positives may be recovered but 

along with them, many points in negatives are also labeled as positives. On the other 

hand, if the cut-off is to be selected too high, most of the negatives may be eliminated 

successfully with the cost of discarding the real positives at the same time. Generally 

the optimum cut-off is selected at the point, the slope of the ROC (true positives rate vs. 

false positives rate) curve equals to one. This point corresponds to the spot where the 

rate of eliminating real negatives and capturing real positives are equal. 

In our study, positives group corresponded to the real (from the original dataset) 

connections whereas negatives group corresponded to random connections (from the 

shuffled dataset). Motivation here was that, all connections coming from the shuffled 

dataset were assumed to be meaningless/unreliable; whereas, the ones from the original 

dataset contained both reliable and unreliable connections. In order to separate the 

reliable ones from the rest, a continuously increasing threshold was applied to the 

pairwise connections of both groups (using the previously generated curves) where the 

connections with the values exceeding the corresponding threshold were discarded. The 

presence of a pairwise connection meant, there was a significant homology between the 

sequence pair. Similarly, when a connection was discarded and absent as a result, it was 

assumed that the corresponding sequences are non-homologs. At the optimum point, 

most of the connections from the shuffled dataset should be discarded and the ones left 

from the original set were to be assumed as the reliable connections. 

To this end; TP, TN, FP and FN values were calculated from the number of real 

and random connections discarded and remained at each threshold together with the 

total number of real and random connections. The ROC curve was plotted using TP and 

FP rates. At this point, a cut-off should be decided regarding the slope of the ROC 

curve. For the automatic selection of the cut-off, the point where the slope equals to 10
5
 

or the point where all of the random connections were eliminated (whichever comes 

first) was chosen. 

At this point, the connectivity map became disjointed due to the removal of 

inter-connections. This operation forms groups of homolog sequences. 
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3.1.6. Calculation of the Statistical Performance Measures 

 

Statistical measures were employed in order to evaluate the performance of the 

method on different tasks. These parameters consist of Recall, Precision and F-score. 

Recall and Precision are composed of different combinations of TP, FP and FN values. 

F-score incorporates both recall and precision to display the performance on a single 

parameter and frequently employed in clustering studies (Paccanaro et al., 2006; 

Nepusz et al., 2010; Wittkop et al., 2007 and Apeltsin et al., 2011). The calculation of 

precision, recall (sensitivity) and F-score are given in equations 4.3, 4.4 and 4.5 

respectively. 

 

3.2. Results and Discussion 

 

3.2.1. Analysis of the Large Human Protein Dataset 

 

Human protein sequence dataset from the previous analyses was revised and 

used in this analysis as well. The revision is done by updating the sequences from Gene 

Ontology Database. Besides, the sequences with length lower than 100 amino acids and 

higher than 10000 amino acids were assumed to be outliers and removed from the 

dataset. The final dataset consisted of nearly 17793 human protein sequences. Large 

datasets with sizes similar to this one usually are hard cases for techniques that rely on 

similarity measurements. Next, the shuffled dataset was created using randomly 

permuted elements of the amino acid sequences of the original dataset as explained in 

methods part in detail.  

ClustalW2 v2.0.10 software package (Larkin et al., 2007) was used for the 

global Multiple Sequence Alignment procedure for the original and the shuffled datasets 

separately with the default options. Pairwise evolutionary distances were inferred using 

the built-in algorithm of ClustalW2 with Kimura amino acid substitution model 

(Kimura, 1983) with the correction for the multiple substitutions. 

By comparison of the resulted alignments for the original and the shuffled 

datasets, it was observed that the length of the alignment was significantly shorter -in 

other words less gappy- for the shuffled dataset. This result was expected beforehand. 

Since no meaningful alignment could be obtained from the shuffled dataset in any way, 
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Multiple Sequence Alignment algorithm has chosen not to insert as many gaps as in the 

alignment of the original dataset in order to avoid gap costs. From the resulted 

alignments, 2-D histograms were created for the original and the shuffled datasets with 

the procedure described in the methods part. 

The aim of thresholding the connectivity map was to eliminate the unreliable 

pairwise distances resulting from distant relationships or poor alignment. In a classical 

case with the Multiple Sequence Alignment of a few closely related proteins, this 

procedure would be unnecessary since the probability of getting inaccurate pairwise 

alignments between closely related sequences were quite low. Also with a few 

moderately diverged sequences, thresholding only the pairwise distance matrix to 

discard unreliable connectivities would be sufficient. For our case, where there were 

17793 sequences that span nearly the entire functional spectrum of the human proteins 

discovered so far, the resulted Multiple Sequence Alignment was so large that 

especially some of the short amino acid sequences didn’t have any overlap on each 

other to calculate a pairwise distance. As also mentioned in the previous chapters, a 

more misleading case was where some of these sequence pairs have an overlap on just 1 

or 2 residues. If there was a match on the only gapless position -since there are no 

mismatches-, pairwise distance between these sequences ended up as zero, even though 

the sequences were quite diverged from each other in their entirety. This was an 

extreme case but the connectivities between diverged sequences should be eliminated 

which still was quite frequent. To solve this problem we introduced the thresholding of 

the connectivity map regarding 2 different parameters. First parameter was the pairwise 

evolutionary distances and the second one was the overlap of the sequence pairs on the 

alignment output, in other words the total number of gapless sites on the pairwise 

comparison of the multiply aligned sequences. 

2 dimensional histograms were created for the original and the shuffled datasets 

with the procedure described in the methods part. On these 2 dimensional histograms, 

clumped regions were observed and the discrepancies between the histograms of the 

original and the shuffled datasets were tried to be extracted. 

Figure 42 represents the 2 dimensional histogram of the original dataset on the 

left and shuffled dataset on the right for the human protein dataset -both in log scale to 

increase visuality of the difference- where the horizontal axis represents the number of 

sites without gap intervals on pairwise comparisons and the vertical axis represents the 

pairwise evolutionary distance intervals. There is a visually distinct difference between 
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the histograms around 0-2000 number of overlaps and 0-2 pairwise distances. This 

region on the original dataset histogram represents the reliable connections. However 

the region was not a clear cut as the shuffled datasets histogram also has representatives 

in the region. So this gray area was handled with probability distribution techniques. 

 

 

Figure 42.  2-D  histograms of (a) the original and (b) the shuffled datasets in log scale 

formed after the Multiple Sequence Alignment of 17793 Human proteins. 

 

Standard deviation curves were calculated as explained in methods part for the 

thresholding operation. In order to eliminate the noise on the curve, a normal (Gaussian) 

distribution model is fit on the curve (Bryc, 1995). The most suitable fit was found on 

the third order General Gaussian Model as shown in Equation 3.3. The standard 

deviation curve of the shuffled dataset in this analysis and the Gaussian Model fit are 

drawn together in Figure 43. 
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Coefficients were a1=0.34, b1=-37.29, c1=139.2, a2=0.2989, b2=-399.1, 

c2=589.9, a3=121.4, b3=-41610, c3= 16360 and for the goodness of the fit, R-square was 

0.9994. 
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Figure 43.  The standard deviation curve of the shuffled dataset (blue: the original curve 

green: Gaussian fit). 

 

The threshold curves and the ROC curve are created following the procedures 

explained also in the methods part. Figure 44 shows the threshold curves σ1,2,3,....,40 used 

for the creation of the ROC curve, on the 2 dimensional histogram of the shuffled 

dataset where the horizontal axis represents the number of sites without gap intervals on 

pairwise comparisons and the vertical axis represents the pairwise distance intervals as 

before. 

In this analysis, the probability distribution of positives and negatives highly 

overlapped -shown in Figure 45 in log scale (thresholds vs. the rate of change in the 

number of connectivities left after thresholding operation in log scale)-. The ROC curve 

(shown in Figure 46) slope was selected to be 10
5
 automatically for the cut-off. This 

point is shown with the black dot in the ROC curve (Figure 46). The threshold curve 

that yielded the selected cut-off was σ26. At this cut-off 270 meaningless (≈ 0% of the 

total) and 213000 real (0.14% of the total) connectivities were left on the connectivity 

map. At this point, it appeared like most of the connections from the original dataset 

were eliminated however it’s crucial to mention that the connections from the original 

dataset were composed of false connections along with the true ones and our aim was to 

separate these two from each other.  

2-D histogram of the original dataset with the selected threshold curve plotted 

over (blue colored) is shown on Figure 47. All of the pairwise connectivities that has 
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distance and overlap values above the curve were assumed to be unreliable and 

discarded. 

 

 

Figure 44. Threshold curves σ1,2,3,....,40 on the 2-D histogram of the shuffled dataset. 

 

As expected, the threshold connectivity map became disjointed at this point due 

to the removal of inter-connections. It consisted of components of differing sizes and 

some singleton points that have no connections left to any other sequence. A component 

here is defined as a group of sequences that have either direct or indirect connections in-

between. A manual examination over some sample components revealed that, each 

component was composed of similar proteins usually with significant homology.  

Besides, the inspection over the singleton points in the connectivity map showed that, 

these were the sequences that could not be aligned to any other sequence significantly in 

the Multiple Sequence Alignment process. 
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Figure 45. Rate of change curves for the number of remaining connections (in log 

scale). Horizontal axis represents different thresholds; vertical axis is the 

rate of change in the number of connectivities left after thresholding 

operation (in log scale). The dashed vertical line corresponds to the selected 

threshold. 

 

 

Figure 46.  The ROC curve for the thresholding operation (the black dot corresponds to 

the TP and FP rate values at the selected threshold). 

 

At this point in the study it was clear that, most of the inter-group distances were 

quite large, unreliable and dumped during the thresholding operation. After the 
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thresholding, 445 components were formed with varying sizes. The largest component 

contained 476 sequences and the smallest ones contained only 2 sequences. 

 

 

Figure 47.  2-D  histogram of the original  dataset with the selected threshold curve (σ26) 

plot over. 

 

In order to examine the biological relevance of our grouping, we tested our 

recovered true connections against the GO associations of the input sequences. We 

prepared the reference connection map by searching for shared GO terms between 

sequences and assuming significant homology (existence of a connection) between 

these sequences. Any two sequences were assumed to be connected (related) when there 

is at least one shared GO term in-between. By this way, connections were formed 

between 37.9% of all possible sequence pairs. We measured performance by counting 

the true and false connections found in our analysis regarding the reference connections. 

When we got a connection that was also present in the reference map, we counted a true 

positive (TP) and when we had a connection that didn’t appear in the reference, it was a 

false positive (FP). We calculated the precision measure (positive predictive value) as 

given in Equation 4.3. A precision value of 1 meant all of the recovered connections 

were accurate. Our precision output was 0.981 whereas the same number of connections 

selected randomly resulted in 0.426 precision. Also to show how our method disposed 

meaningless connections, the same test was applied directly to the pairwise evolutionary 

distance (Kimura model) output of the multiple sequence alignment procedure (a 
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classical 1-D thresholding). The distance map was threshold with the disposal of the 

distances greater than 2. This was a reasonable value to assume homology and also the 

remaining number of connections in the map appeared to be nearly the same as our 

result providing the fair comparison of the performances. Precision for the classical 

thresholding over the pairwise distances was found as 0.799. The difference was nearly 

20% in favor of our method which was a considerably significant improvement. 

The results supported our claim as thresholding the pairwise connectivity map 

over 2 dimensions (the number of positions without gaps in the pairwise comparisons of 

aligned sequences and inferred evolutionary distances) after the multiple sequence 

alignment procedure, assures the disposal of false homology detections and help make 

sense out of multiple alignments of large and mixed datasets. In addition, the detection 

of the potential multiple sequence alignment disrupters (distant sequences and homolog 

sequence fragments in the dataset) is provided by the proposed method. 

 

3.2.2. Clustering of the Reference Dataset 

 

Clustering of biomolecular sequences is an active area of research where the 

sequences are tried to be grouped under evolutionary and/or functional constraints in 

order to infer the history and functions of the unknown sequences (regarding the known 

ones). Over the last decade, many clustering algorithms were developed employing 

different statistical approaches. Some popular methods from the literature are 

TribeMCL (Enright et al., 2002), Spectral Clustering (Paccanaro et al., 2006 and 

Nepusz et al., 2010), FORCE (Wittkop et al., 2007) and TransClust (Wittkop et al., 

2010). 

At the final step of the study, members of a standard dataset composed of 866 

manually curated enzymes (in 91 families) (Brown et al., 2006) were clustered and the 

accuracy of this application was measured (regarding the families that the sequences 

belong to) and compared with a classical thresholding operation incorporating only 

pairwise evolutionary distances. This conventional operation acting over 1 dimension 

takes part in most of the clustering methods -such as thresholding the BLAST (Altschul 

et al., 1997) e-values-. This dataset was referred as a gold standard set and frequently 

employed in the testing of clustering algorithms in the literature (Apeltsin et al., 2011; 

Wittkop et al., 2010 and Miele et al., 2012). 
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First of all, the sequences were obtained via online material published by Brown 

et al., 2006. Next, the shuffled dataset was generated and both sets were subjected to the 

multiple sequence alignment procedure using ClustalW2 v2.0.10 software package 

(Larkin et al., 2007) with the default options. Then, the pairwise evolutionary distances 

were inferred using Kimura amino acid substitution model (Kimura, 1983) with the 

correction for multiple substitutions option. After that, the numbers of overlapped 

positions on alignments were calculated, 2-D histograms were formed, and threshold 

and ROC curves were drawn as described in the Methods part. The cut-off was selected 

automatically at the point where no connections remained from the shuffled dataset. 

After the thresholding operation, sequences were clustered regarding the recovered 

pairwise connections. Since the presence of a connection between a sequence pair 

indicates a significant homology/similarity, these sequences appear in the same cluster. 

All sequences with a direct or an indirect connection in-between were grouped together. 

This approach is similar to the widely used graph theory method Connected Component 

Analysis (Diestel, 2010) that was also employed in biomolecular sequence clustering 

methods frequently. 

Figure 48 (a) and (b) show the 2-D histograms (with the threshold curves plotted 

over) of the original reference dataset and its shuffled version respectively (in log scale). 

The true/reliable connections are visible on Figure 48 with dark color just over the 

baseline of the x-axis. Figure 49 shows the curves for the classical 1-D thresholding 

operation on the 2-D histogram of the original reference dataset. Notice the curves here 

are linear and parallel to x-axis since this operation does not incorporate number of 

overlapped positions. 

Table 3 shows the Precision, Recall and F-measure values for the clustering 

performance of the conventional 1-D thresholding operation (first column) and the 

proposed method (second column) using the threshold curve selected automatically. For 

a fair comparison between the proposed method and the conventional thresholding 

operation, the average clustering performances regarding all threshold curves are given 

in the third and fourth columns. Best F-measures are given in bold. As seen from Table 

1, the clustering performance was increased nearly 6.5% (F-measure: 0.827 to 0.882) 

when the proposed method was employed instead of the conventional thresholding with 

automatically selected threshold curve. On the other hand, the average clustering 

performance was increased around 7.9% (F-measure: 0.712 to 0.768) with our method. 
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These results indicate the effectiveness of our proposed approach in the functional 

clustering of amino acid sequences. 

 

 

Figure 48.  2-D  threshold  curves  on the 2-D  histograms  of (a) the original and (b) the 

shuffled gold standard dataset. 
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Figure 49. 1-D threshold curves on the 2-D histogram of the original gold standard 

dataset. 

 

Table 3. Clustering  performance  measures  for the standard  dataset after the 

conventional 1-D and 2-D thresholding operations. 
 

 
At the selected curve Average of all curves 

 
1-D Threshold 2-D Threshold 1-D Threshold 2-D Threshold 

Precision 0.711 0.794 0.700 0.723 

Recall 0.990 0.991 0.892 0.935 

F-measure 0.827 0.882 0.712 0.768 

 

3.3. Concluding Remarks 

 

As mentioned previously, Multiple Sequence Alignments of large datasets 

(consisting of thousands of sequences) exert enormous computational loads. The load is 

reflected to the user as elevated computation times (e.g. it took nearly 30 days to 

process 17793 human proteins). Due to this problem, parallelization of Multiple 

Sequence Alignment process on the computers with multiple cores is an active area of 

research. ClustalO package (Sievers et al., 2011) is popular parallel Multiple Sequence 

Alignment implementation. One important problem to be solved about these algorithms 

is the parallelization of the progressive alignment step of the procedure. Since this step 
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is iterative (the result of the previous operation is required to process the next one), the 

parallelization is nearly impossible.  

At this point, in order to get rid of the high amount computational load and 

achieve practical computation times, we decided to employ only pairwise alignment at 

the initial analysis of the dataset. We planned to achieve the separation of the input 

sequences into biologically meaningful groups regarding their pairwise alignments and 

focus each group individually to infer functional relationships. This method is explained 

in detail with the results of its applications of different datasets (including human 

proteins) in the next chapter. 
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CHAPTER 4 

 

4. AUTOMATIC IDENTIFICATION OF CONSERVED 

REGIONS IN LARGE DATASETS INCLUDING REMOTE 

PROTEIN SEQUENCES 

 

Graph theory concepts are frequently incorporated to the similarity based 

sequence analysis methods. In these methods, biomolecular sequences are treated as 

vertices of a graph and the presence or absence of a significant statistical sequential 

similarity between the sequences determines the existence of a path in-between forming 

a connectivity map. This significant statistical sequential similarity then corresponds to 

conserved features shared by the two sequences. 

GeneRAGE (Enright and Ouzounis, 2000) is one of the earliest methods to 

employ this concept in similarity based methods in an efficient way where sequence 

alignment and single linkage cluster-ing are combined to cluster large protein datasets in 

a simplistic way. TribeMCL (Enright et al., 2002) is more efficient and complex 

method from the same research group that incorporate Markov Clustering for rapid and 

accurate clustering of protein sequences also to address multi-domain sequences. 

Apeltsin et al., add edge weight distribution with automated threshold selection to initial 

similarity network and manage to increase the clustering performance of fast MCL to 

that of novel highly efficient clustering algorithms on a gold standard dataset (Apeltsin 

et al., 2011). However, this threshold heuristics should be tested on other datasets 

composed of different sequences. Spectral Clustering (Paccanaro et al., 2006) -and its 

modified fast implementation with user-interface SCPS (Nepusz et al., 2010)- is an 

efficient and widely used algorithm for biological sequence clustering. It also is a 

Markov Clustering algorithm with a global approach. Actually, Spectral Clustering is 

quite similar to TribeMCL. The differentiation between these methods lies within the 

propagation of the Markov chain on the graph. A comparison in-between these 

algorithms, is given in (Paccanaro et al., 2006). 

FORCE (Wittkop et al., 2007) and its user interface TransClust (Wittkop et al., 

2010) is a powerful method that use pairwise similarity measures and weighted cluster 

editing to achieve accurate clustering of large datasets. In this method the input graph is 
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edited into a transitive graph regarding the minimization of a cost function (Wittkop et 

al., 2007). The user is required to enter a similarity threshold at the input level. The 

authors have fixed a semi-automatic parameter estimation procedure (for similarity 

threshold) that works efficiently when a gold-standard subset exists for the dataset. On 

the other hand, they reported an issue about parameter standardization for the analysis 

of unknown sequences. Also the computation times are relatively higher than the 

methods mentioned beforehand. 

HiFiX (Miele et al., 2012) is a novel and efficient clustering method that acts 

over the entire length of input sequences instead of regional homogeneity. This makes 

the method suitable to analyze multi-domain proteins and partially prevent input 

parameter determination problem. It’s mainly build to process very large datasets 

composed of thousands of families to infer phylogenetic relations. In this method, the 

sequences are first assigned to clusters of pre-families (optimizing sensitivity) followed 

by merging of clusters into families with the help of qualitative multiple sequence 

alignment evaluations (Miele et al., 2012). The method performs as good as or better 

than the other novel clustering algorithms on the gold standard set and significantly 

better in clustering large multi-domain bacterial dataset. However, the first step of the 

method still contains parameters for users to decide and also the method is not suitable 

to detect relationships of partially alignable remote sequences (Miele et al., 2012). 

The Connected Component Analysis is a widely used graph theory application 

(Diestel, 2010), employed both as a stand-alone method and as an intermediary step in 

other sequence clustering methods. In an undirected graph G, two vertices a and b are 

connected if there is a path from a to b. A connected component is a connected sub-

graph of G that contains all the vertices with a path to each other directly or undirectly. 

If there are paths from a to b and b to c (even if not a to c), all of these vertices are 

located in the same connected component (Diestel, 2010). Sequences in a connected 

component are assumed to share a significant similarity and belong to the same cluster. 

Yet, when used on multi-domain proteins, unrelated sequences are usually grouped into 

the same clusters due to the domain-chaining effect (Mohseni-Zadeh et al., 2004). 

The Cluster-C (Mohseni-Zadeh et al., 2004) method efficiently avoids the 

chaining effect by incorporating maximal clique extraction on the connectivity map 

following a pairwise similarity search.  A maximal clique (fully connected sub-

component) is a subset of an undirected graph where each vertex is directly connected 

to every other vertex. Note that unlike connected components, a vertex (sequence) may 
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exist in more than one maximal clique. This allows capturing a second, third or so on 

features located on a sequence by looking at its involvement in different maximal 

cliques. Figure 50 shows a representation of three maximal cliques within a connected 

component on a 2 dimensional undirected graph. Black dots represent vertices and red 

lines represent edges in-between. Large green circle shows that all points belong to a 

single component since there is either direct or in-direct connection between all points. 

Small blue circles represent 3 maximal cliques two of which share a point. The point 

with a yellow mark inside is the shared vertex belong both to clique 2 and 3. 

 

 

Figure 50.  Representation of a connected component and 3 maximal cliques inside, on 

an undirected graph. 

 

The incorporation of maximal clique finding into clustering suffers from 

practical problems especially on large datasets, such as clique redundancy. In theory, 

sequences in each maximal clique should contain at least one unique conserved feature. 

In practice however, the maximal cliques are redundant, with a shared region 

represented in more than one maximal clique. This arises from the accidental removal of 

pairwise connections (during the thresholding) due to highly remote homology or just 

poor alignment between some of the homolog sequence pairs. This inevitably decreases 

the accuracy of the results and burdens a heavy computational load. 

Three important bottle-necks stand out in general motif discovering approaches. 

The first one is the treatment of multi-domain proteins. Most of these methods are 

optimized to process single domain sequences and the assignment of multi-domain 

proteins into clusters is sometimes problematic. The second issue is the standardization 



77 

 

of the input parameters: The behaviors of these algorithms are controlled by several 

parameters to be provided by the user at the input level. However, in the absence of a 

known standard about the input sequences, selecting the correct parameters becomes 

nearly impossible. As a result, the accuracy of the results decline. Finally, in most of the 

methods, no further processing can be applied upon remote input sequences left out as 

singleton points after the initial similarity search. In our method, we address all three of 

these issues.  

In this chapter, we propose a new method for automatic separation of large 

collections of diverse sequences into biologically relevant groups for accurate functional 

assignments by exposing highly conserved regions and associating them with the input 

sequences using statistical grouping and graph theory concepts. This is done first by 

grouping the sequences in connected components of significant similarities regarding 

their pairwise alignment e-values and then, splitting the sequences in each connected 

component into fully connected sub-components (maximal cliques) consisting of 

sequences containing a shared feature. Next, the shared/conserved regions on multiple 

sequence alignments of the member sequences of each maximal clique were located 

using a residue conservation scoring algorithm, and conserved region profiles were 

formed and queried on input sequences. Finally, the associations between the input 

sequences and the identified highly conserved key regions were presented as a table that 

can be used to infer relationships between the sequences (as well as between the 

conserved regions) and to assign functions. 

We have tested our method’s biological relevance by carrying out clustering on 

standard datasets (domain sequences) from the SCOP Database (Andreeva et al., 2008) 

that were used previously in the literature (Nepusz et al., 2010; Paccanaro et al., 2006) 

and comparing clustering performances to the widely used clustering methods. 

Finally we have applied our method on the previously analyzed human protein 

dataset of 17793 sequences to obtain a global functional relation map of human 

proteins. The dataset contained both similar and considerably distant proteins. We have 

evaluated the performance of our method in identifying the functional domains on the 

input sequences by comparing the identified conserved/shared regions and their 

associations with input sequences to the reference functional domain associations 

obtained from Protein Family (Pfam) database (Finn et al., 2010 and Punta et al., 2012) 

and NCBI Conserved Domain Database (CDD) (Marchler-Bauer et al., 2011). The 
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results revealed that, the discovered conserved regions highly correspond to structural 

domains present on the input proteins. 

The details of the proposed large-scale conserved region discovery method -

namely Protein Function Assignment by Conserved Region Identification and 

Association- are presented in the next section. The results of the comparative 

performance evaluation experiments as well as the application of the method to 17793 

human proteins is provided in Results Section, followed by the discussion of the results 

along with the significance of the method in Discussion Section. 

 

4.1. Methods 

 

The flow diagram of Protein Function Assignment by Conserved Region 

Identification and Association is given in Figure 51. We describe each step in detail 

below. 

 

4.1.1. Pairwise Sequence Alignment 

 

A stand-alone version of SSEARCH algorithm from FASTA v36.3.5 software 

package (Pearson and Lipman, 1988) was used for the Smith-Waterman pairwise all-

against-all sequence alignment (Smith and Waterman, 1981) with the default options. 

The BLAST algorithm (Altschul et al., 1997) could also be used at this step to reduce 

the computation time should need be. After that, a square matrix was formed using the 

pairwise alignment e-values and threshold with the default value of 0.01. Hence, the 

pairwise alignment e-values that exceeded 0.01 were removed from the matrix. The 

default threshold value was selected after many trial tests with reference datasets (data 

not shown), though it is possible to set a different threshold value to suite a particular 

sequence dataset. 
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Figure 51. Flow  diagram  of  Protein  Function Assignment by Conserved Region 

Identification and Association Method. 
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4.1.2. Statistical Grouping 

 

Routines provided by the MATLAB
®
 Bioinformatics Toolbox (The MathWorks 

Inc., 2010) were used for the Connected Component Analysis. The input sequences 

were grouped into components possessing a direct or an indirect connection between 

every sequence pair. This guaranteed that two sequences in different connected 

components not to have a significant similarity. 

Next, a maximal clique identification procedure was applied on each connected 

component. In order to reduce the computational load exerted by the clique 

identification process, large connected components composed of more than 100 

sequences were divided into random groups of 100 sequences and maximal cliques 

were found on each of these groups separately, using the Bron–Kerbosch algorithm 

(Bron and Kerbosch, 1973). This procedure, however, produced several redundant 

cliques that differed from each other by a few sequences, revolving around an 

underlying clique missing a few connections in the connectivity map. 

In order to detect and eliminate the redundant cliques, Hamming distances 

(Hamming, 1950) between maximal cliques were computed and divided by the total 

number of sequences in the corresponding cliques, providing the fractional Hamming 

distances between all clique pairs in the component. 

Hamming distance is a measure of difference between two strings of equal 

length. It’s basically the minimum number of substitutions to change the first string into 

the second (Hamming, 1950). We define the fractional hamming distance between a 

pair of cliques as the regular Hamming distance divided by the total number of proteins 

in both cliques. This normalization eliminated the effects of the contrast between the 

clique sizes on the distance measure. Calculation of the fractional Hamming distance is 

given in Equation 4.1. 

 

     
∑     
 
   

     
                                                     (   ) 

 

Hfab is the fractional Hamming distance between cliques a and b, mabi is a binary 

variable that represent the match or mismatch at the i
th

 position between cliques a and b 

(0 if there is a match and 1 if there is a mismatch), n is the total number of proteins in 

the test, n1 and n2 are the total number of proteins in the corresponding cliques. 
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The cliques were then clustered using a pre-defined fractional Hamming 

distance threshold of 0.3 and the redundant cliques were eliminated by selecting the 

clique with the highest number of sequences to represent each group. The default 

threshold was set according to our tests in which this value almost never eliminated a 

non-redundant clique, but separated many of the redundant ones. The remaining 

redundancy was removed using an additional procedure explained at Section 4.1.4. 

 

4.1.3. Conserved Region Identification & Search Process 

 

First, member proteins of each maximal clique were subjected to global multiple 

sequence alignment individually using the ClustalO package (Sievers et al., 2011) with 

default parameters. Then, a residue conservation scoring algorithm was employed to 

review the multiple alignment of each maximal clique. Many different residue 

conservation scoring methods exist in the literature. These methods are designed to scan 

the multiple alignments column-wise and reveal the conservation degree of each 

position in terms of the stereochemical diversity, diversity of symbols based on 

theoretical entropy, and/or amino acid frequency (Valdar, 2002). In this work, one of 

the most conventional, the valdar01 scoring method (Valdar, 2002) was used, where a 

substitution matrix is employed to evaluate the stereochemical diversity. Consequently, 

each position was scored between 0 (no conservation) and 1 (full conservation). A local 

version of ScoreCons algorithm (Valdar, 2002) was used with default parameters to 

carry out the procedure. 

Since the residue conservation scoring algorithm acts on each position 

independently, the output is inevitably noisy. In order to clearly identify the conserved 

regions, we have used the one-dimensional Median Filtering method (Boyle and 

Thomas, 1988) with order (or neighborhood size) of 50. This method was shown to 

preserve the edge regions in the original signal better than most of the linear de-

noising/smoothing methods (Boyle and Thomas, 1988), and yield a more accurate 

detection, especially around the boundaries of the conserved regions. The order of the 

median filter was set to match the minimum size of the conserved regions: Our method 

was aimed at detecting the conserved regions that are longer than 20 amino acids, since 

nearly all of the structural domains registered on the databases fall in this area. The filter 

takes the median of 50 values around the filtered position; -25 to the left and 25 to the 
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right-, and as a result, regions shorter than 25 amino acids were filtered out. Allowing 1 

or 2 amino acids at both edges to be rounded off by the filter achieved the detection of 

conserved regions of length 20 amino acids and higher. 

Another key component here is the selection of the threshold to accept the 

positions with an exceeding score as conserved positions. As discussed above, an 

uninterrupted series of conserved positions with length greater than or equal to 20 

amino acids were labeled as a conserved region. Thus, the threshold score should strike 

a critical balance to identify only the true conserved residues without missing any.

 In order to determine the threshold conservation score, reference multiple 

sequence alignments of different eukaryotic proteins that were employed for building 

NCBI-curated domain profiles were downloaded from NCBI CDD web site (Marchler-

Bauer et al., 2011). These regions were labeled as the locations of the domains on these 

alignments were known. Residue conservation scoring algorithm was applied upon 

them and the output was smoothed. After that, domain regions were extracted using 

different threshold score selections.  

Histograms consisting of the residue conservation scores of domain and non-

domain regions on original scores -(a) and (b)- and on smoothed/filtered scores -(c) and 

(d)- are drawn in Figure 52. As obvious from this figure, higher scores are heavily 

accumulated in domain regions. There were some low scored residues in domain 

regions in the original score curves but after the filtering operation the number of the 

low scored positions in domain regions were decreased by nearly 30%. To determine 

the threshold conservation score, a receiver operating characteristic (ROC) curve (Lasko 

et al., 2005) was drawn using reference labels of all positions and calculating true 

positives rate (sensitivity) and false positives rate (fall-out) at different threshold 

selections. This curve is shown in Figure 53. The optimum point for the threshold at the 

knee formation is marked as a black dot on the ROC curve. The threshold score value 

equals to 0.2 at this point. The positions that have a conservation score over 0.2 were 

assumed to be the conserved positions and a region formed by an uninterrupted series of 

conserved positions with a size of at least 20 amino acids was accepted as a 

conserved/shared region. A suitable threshold was found at a level of 0.2 at the end of 

the threshold determination procedure. 
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Figure 52. Residue  conservation  scoring  histograms  of curated multiple sequence 

alignments of different eukaryotic proteins, the original outputs: (a) the 

residues outside NCBI-curated functional domains, (b) the residues inside 

NCBI-curated functional domains. (c) and (d): the same histograms 

respectively after the smoothing operation. 

 

Profiles consisting of the frequency of amino acids as well as the gaps were 

created for all conserved/shared regions using the multiple sequence alignment and the 

conserved region identification results. These profiles were then aligned to all sequences 

in the dataset using a local version of Position Specific Iterative Blast (PSI-blast) 

algorithm (Altschul et al., 1997) using the default parameters. PSI-blast takes a query 

sequence, searches through a database, forms a profile (a PSSM) with the query and the 

significant hits, and searches the database again, this time querying the profile to 

include more remote hits. This procedure then repeats iteratively until convergence. As 

a result remote homologs are retrieved that might be missed with a normal blast search 

(Altschul et al., 1997). The queries in our case are the previously generated conserved 

region profiles. We here carried out the PSI-blast using the “querying an intermediate 

PSSM” option of the algorithm. In order to include only highly significant hits, we have 

used a threshold of 10
-5

 over the e-values and only 1 iteration of the algorithm. 
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Figure 53. ROC curve for the binary classification of residues of reference multiple 

sequence alignments as domain or non-domain regions for the determination 

of threshold score in residue conservation scoring process. Black dot 

indicates the TPR and FPR values at the selected threshold. 

 

Figure 54 shows the complete conserved region identification process. On the 

top, multiple sequence alignment output of the members of a sample clique found at the 

application of our method on human protein dataset. Each row represents a different 

sequence. Red regions represent a shared functional domain on these proteins given by 

both NCBI CDD and Pfam searches, black regions are the remaining filled positions 

and the gray ones are the gaps. The middle plot shows the residue conservation scoring 

output of the same alignment. Notice the elevated conservation scores correspond to the 

functional domain region. To eliminate the noise, median filtering was applied and the 

output and shown at the plot below. The positions with scores higher than the 

conservation threshold (0.2) form the conserved region. Also notice nearly perfect 

correspondence between our conserved region and the reference functional domain. 
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Figure 54. Representation of the conserved  region  identification  procedure. Top: 

Multiple sequence alignment output of members of a sample clique, each 

row represents a sequence, colors - black: filled positions, red: domain 

regions, gray: gaps. Middle: Residue conservation scoring process 

(ScoreCons) output (applied on the same alignment). Down: Smoothed 

output with median filtering, horizontal black line: threshold score to 

assume conservation, vertical dashed line: signifies the borders of the 

recovered conserved region (MSA: Multiple sequence alignment). 

 

4.1.4. Conserved Region Merge and Modification Step 

 

This operation was applied on the collection of conserved regions identified 

above to remove the redundant conserved regions coming from the redundant maximal 

cliques. To this end, non-gapped consensus sequences of conserved region profiles were 

generated and aligned to each other in an all-against-all manner using a Smith-

Waterman pairwise local alignment procedure (Smith and Waterman, 1981) provided 

by the SSEARCH algorithm from FASTA v36.3.5 software package (Pearson and 

Lipman, 1988) with the default options. The e-value threshold was set to 0.01. Among 

the significantly aligned regions, the ones with a higher number of associated sequences 

were then selected and the rest were removed from the results. 

Finally, a table was generated that represented the identified conserved regions 

along its columns and the input sequences along its rows and, with zeros and ones 
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filling the table indicating the associations of the conserved regions with input 

sequences. This table and the profiles of the identified conserved regions constituted the 

main outputs of the method. Table 4 shows a sample output association table, the 

associated conserved region and sequences are highlighted with blue color on their 

corresponding cell. 

 

Table 4. A sample conserved region vs. input sequences association table (output). 

 

CR 1 CR 2 CR 3 CR 4 CR 5 CR 6 

Sequence 1 1  0  0  0  0  0 

Sequence 2 1  0  0  0  0  0 

Sequence 3 1  0  0  0  0  0 

Sequence 4 1  0 1  0  1  1 

Sequence 5 1  0 1  0  1  1 

Sequence 6  0 1  0  0  0  0 

Sequence 7  0 1  0  0  0  0 

Sequence 8  0 1  0  0  0  0 

Sequence 9  0 1  0  0  0  0 

Sequence 10 1 1 1  0  0  0 

Sequence 11 1 1 1  0  0  0 

Sequence 12  0  0 1  0  0  0 

Sequence 13  0  0 1  0  0  0 

Sequence 14  0  0 1  1  1  0 

Sequence 15  0  0 1  1  1  0 

 

 

4.1.5. Optional Final Clustering Procedure 

 

We offer an optional fast clustering process at the end of the method with 

Connected Component Analysis using conserved region correspondence information as 

the input similarity matrix. Conserved region correspondences of sample proteins were 

compared with each other to obtain pairwise similarities (between 0 and 1) in a manner 

similar to fractional Hamming distances. Calculation of this similarity measure is given 

in Equation 4.2. Pairwise similarities regarding conserved region correspondences are 

then threshold with a pre-defined value. This value was selected as 0.3 at the parameter 
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determination analyses. Conserved region correspondence similarities lower than 0.3 

were labeled and the associated connectivities were removed from the connectivity map. 

After that, the threshold connectivity map was given to Connected Component Analysis 

procedure as the input. 

 

     
  ∑     

 
   

∑     
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Sfxy is the fractional conserved region correspondence similarity measure 

between sequences x and y, Rxyi is a binary variable that represent the match or 

mismatch at the i
th

 conserved region between sequences x and y (1 if there is a match 

and 0 if there is a mismatch), Kxyi is also a binary variable (a contrast of R variable) that 

represent the match or mismatch at the i
th

 conserved region between sequences x and y 

(0 if there is a match and 1 if there is a mismatch) and n is the total number of conserved 

regions. 

This process gives highly accurate clustering results during the test runs when 

the input contains single domain proteins (or just domain sequences). On the other hand, 

conserved region vs. input sequence correspondence table provides a sufficient source 

for the associations of multi-domain proteins. 

 

4.1.6. Calculation of the Statistical Parameters 

 

F-score measures performance by incorporating both precision and recall 

(sensitivity), and displays it in a single number (Paccanaro et al., 2006; Nepusz et al., 

2010). Since the cluster corresponding to a gold standard superfamily was not known, 

precision and recall were calculated for all cluster and superfamily combinations. Then 

the combinations that maximize the combined F-score were selected (without 

conflictions). The calculations of precision, recall (sensitivity) and the combined F-

score are shown in equations 4.3, 4.4 and 4.5 respectively. 
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Pij and Rij are the precision and recall values respectively for superfamily i and 

cluster j. TPij is the number of proteins both present in superfamily i and cluster j. FPij is 

the number of proteins present in cluster j but not in superfamily i. FNij is the number of 

proteins present in superfamily i but not in cluster j. 

 

  ∑  
 

   
 

       

       
                                               (   ) 

 

F is the combined F-score, i represents superfamilies and j represents clusters, ni 

is the number of proteins in superfamily i, Pij and Rij are the precision and recall values 

respectively (explained above). 

 

4.1.7. Performance Test for the Proposed Method in the Identification 

of Reference Domain Hits in Human Protein Dataset 

 

At the stage of determining the reference domain hits in the test sequences, a 

total of 674 sequences in Pfam-A test and 171 sequences in NCBI CDD test were found 

to contain more than 6 significant domain hits. Due to the high number of hits these 

sequences were accepted as outliers and removed from the performance tests. The rest 

of the analyses were carried out for the proteins with 6 domain hits or less on different 

regions of the sequences -not counting multi-hits on a particular region-. 

Performance test steps for our method are given in Figure 55. In order to, to 

generate the reference domain association set, first, our dataset was first queried in 

batch-CDD search procedure in NCBI CDD web site with default parameters using 

NCBI curated domain profiles as the database and an e-value cut off of 0.05. Second, a 

standalone version of HMMER v3.0 algorithm (Finn et al., 2011) was used for querying 

the dataset through Pfam-A profile Hidden Markov Model database with the default 

options. This way, we have discovered the confirmed functional domains on the test 

sequences separately for Pfam-A and NCBI curated domain databases. 



89 

 

Next, profile alignments between the conserved regions against NCBI CDD 

domains and the conserved regions against Pfam domains were carried out. Consensus 

sequences of our conserved region profiles were generated in order to search against the 

pre-formatted functional domain database of NCBI CDD and profile HMM’s of Pfam. 

Each conserved region profile consensus sequence and domain profile were aligned to 

each other and significant matches were sought using local Reverse Position Specific 

Blast (Rps-blast) algorithm (Marchler-Bauer, 2002) for NCBI curated domains and 

HMMER v3.0 for Pfam-A domains with default parameters in both cases. Rps-blast is a 

blast type algorithm used to search a query sequence against a database of profiles in 

order to discover significant matches (Marchler-Bauer, 2002). A significant alignment 

between a conserved region profile and a reference domain indicated a high chance that 

these two represented the same functional domain. In some cases there were more than 

one significant hit. In these cases, the most significant hit -the lowest E-value- was 

accepted as the pair of the corresponding conserved region. In some other cases there 

were no significant hits to the query profile, these regions were not paired with any 

reference domains.  

 

 

Figure 55.  Flow  diagram  of  the  performance  test  for  our  method  in  identifying 

reference domains in human proteins. 
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Finally, performances were measured using sensitivity values. The domain hits 

to the input proteins found by our method (through conserved region to domain 

matching) were compared to the reference domain hits (found in the first step). True 

positive (TP) and false negative (FN) values were calculated. A true positive hit was 

obtained when the same domain was found both by our method and the reference 

domain search on a protein. When our method failed to find a domain present in 

reference search, this was counted as a false negative. This procedure was repeated for 

all proteins in the dataset and taken to the average to display a global performance of 

our method in the identification of functional domains in human proteins. 

 

4.2. Results 

 

First, to discover our methods success in functionally separating amino acid 

sequences, reference datasets from SCOP Domain Database (Andreeva et al., 2008) 

were clustered and the performance was measured and compared with the conventional 

methods. 

Second, the method was applied on the previously mentioned large human 

protein sequence dataset to obtain a global functional relation map. The accuracy of the 

identified relations was evaluated with respect to the domain assignments in Pfam (Finn 

et al., 2010 and Punta et al., 2012) and NCBI CDD (Marchler-Bauer et al., 2011) 

databases as reference. 

 

4.2.1. Clustering with Reference Datasets 

 

We tested the performance of our method in clustering amino acid sequences 

using gold standard reference datasets used in previous studies in the literature. Five 

different datasets from SCOP 1.75 Database (Andreeva et al., 2008) previously 

analyzed by (Nepusz et al., 2010) and (Paccanaro et al., 2006) to test their widely used 

method Spectral Clustering were taken exactly as they appeared in the referenced 

studies. Four of these datasets were generated by manually curating domain sequences 

from different superfamilies in the SCOP 1.75 Database and composed of 550 to 670 

sequences each, located in 5 to 6 superfamilies. The fourth dataset was composed of the 

members from 8 superfamilies and was regarded as a more difficult case for clustering 
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algorithms (Nepusz et al., 2010). The fifth dataset was composed of all domain 

sequences in SCOP 1.75 Database refined further by removing the sequences with 

pairwise identity values greater than 95% (ASTRAL-95) via ASTRAL Database 

(Chandonia et al., 2004), and by removing the members of the superfamilies with less 

than five domains (Nepusz et al., 2010). This final dataset called SCOP≥5 contained 

14309 sequences from 632 superfamilies and represented one of the most difficult cases 

for sequence clustering methods (Nepusz et al., 2010). We have applied our method to 

these datasets with the default parameters without any specific parameter tuning. Our 

method’s optional final clustering was obtained by incorporating a fast clustering 

process at the end by a Connected Component Analysis using the correspondence 

between the conserved regions and the sequences as the input similarity matrix. 

Rules about the comparisons of the results with the gold standard to assure the 

fair assessment of the methods were used as given in (Nepusz et al., 2010). Clustering 

performance was calculated via the combined F-scores, defined as the combination of 

precision and recall with equal contributions (Paccanaro et al., 2006). The combined F-

score was calculated as in (Nepusz et al., 2010) and shown in detail in Section 4.1.6. 

The clustering performances of previous methods given in (Nepusz et al., 2010) 

are shown in Table 5 with the addition of our method in the last column. The method 

listed as CCA represents the Connected Component Analysis that is also used as an 

intermediate step in our method. The others, TribeMCL and Spectral Clustering were 

described in the Introduction Section. 

 

Table 5. Clustering performance results on gold standard datasets from SCOP Database. 
 

 

Number of 

sequences 

F-scores 

 

CCA TribeMCL SCPS Our method 

Dataset 1 669 0.530 0.630 0.844 0.866 

Dataset 2 587 0.681 0.772 0.905 0.884 

Dataset 3 567 0.588 0.625 0.893 0.906 

Dataset 4 654 0.497 0.573 0.685 0.740 

Dataset 5 14309 0.530 0.576 0.607 0.641 

CCA: Connected Component Analysis, SCPS: Spectral Clustering. 

 

On the first 3 datasets representing relatively easy clustering instances, our 

method’s performance was comparable to Spectral Clustering, the top performing 

algorithm from the literature. On the fourth and fifth datasets, our method outperforms 
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all the alternatives, albeit slightly. This demonstrates the effectiveness of our approach 

based on statistical grouping over detected conserved regions. 

To supplement these results, we have carried out an additional test to verify that 

the increased performance was not due to the usage of Smith-Waterman pairwise 

alignment in the first step instead of fast Blast algorithm as used in Spectral Clustering, 

especially on the complex datasets. To this end, Blast pairwise alignment results for 

datasets 1, 2, 3 and 4 were directly taken from (Nepusz et al., 2010), and its e-values 

were used as input to our method. The results were similar to those obtained before: F-

scores of 0.894, 0.864, 0.904 and 0.724 were achieved for datasets 1, 2, 3 and 4 

respectively, indicating that our method’s better performance is not due to the use of an 

optimal pairwise alignment algorithm. In addition, even though these datasets only 

contained domain sequences from SCOP database, our method extracted the most 

conserved core regions (occasionally the whole domain sequences were identified as 

conserved regions). As a result, remote sequences were clustered more accurately, 

owing to the correspondence between conserved regions and the input samples. 

 

4.2.2. Functional Mapping of Human Proteins and Automatic Domain 

Identification 

 

Next, we have applied our method to the previously analyzed large human 

protein sequence data. The details about the preparation and specifications of the dataset 

were given in Section 3.2.1. 

Following the initial pairwise local alignment and connectivity map 

thresholding, we have identified 3592 connected components of varying sizes along 

with 2442 singleton components. Within these, 6537 maximal cliques were identified 

following the elimination of the redundant cliques. After the remaining intermediate 

steps, 4753 conserved regions were identified and presented in a table showing the 

association of each conserved region with all input sequences. Figure 56 shows the 

histogram of the all-against-all pairwise alignment e-values. The vertical black line 

represents the threshold e-value. Only the values between 0 and 0.1 are shown on the 

figure. 
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Figure 56. E-value histogram of all-against-all pairwise alignment. 

 

The statistics about the conserved region associations with 17793 human protein 

sequences at the end of the analysis are given in Table 6. As observed from the table, 

3531 sequences got no associations with any conserved regions, in other words no 

information could be recovered regarding these sequences in our analysis. An inspection 

over these sequences revealed that most of these were remote sequences, non-

homologous to every other sequence in the set. 

 

Table 6. The statistics of the numbers of conserved regions associated with test 

sequences (human protein dataset). 
 

Number of        

Conserved Regions: 

Number of  

Sequences: 

No hits: 3531 

1 hit: 4195 

2 hits: 2037 

3 hits: 1557 

>3 hits: 6473 

Out of 17793 human protein sequences. 

 

In order to validate the results on human proteins, we have evaluated the 

correspondence between the conserved regions identified above and the Pfam-A 
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domains in Protein Families Database 26.0 (Finn et al., 2010 and Punta et al., 2012) as 

well as the NCBI curated (cd) domains in Conserved Domain Database v3.07 

(Marchler-Bauer et al., 2011). Specifically, we have first queried all sequences in a 

domain search on the databases above and obtained reference domain assignments. 

Second, we paired conserved regions with reference domains by querying the conserved 

region profiles on these databases and identifying the most significant domain hit for the 

corresponding conserved region. A conserved region was not paired with any domains 

when no hits with an e-value lower than 0.01 was obtained from the search. Third, we 

compared the reference domain assignments on the sequences with the assignments we 

have recovered through sequence to conserved region and conserved region to domain 

associations. A more detailed explanation of this performance test is provided in Section 

4.1.7. 

Figure 57 shows the histograms of domain (all NCBI CDD manually curated 

domains) and conserved region sizes in (a) and (b) respectively. As observed from the 

figure, the distributions were similar, although the number domains with sizes between 

100 and 700 amino acids were higher than the number of conserved regions recovered 

during the human protein test at the same interval. On the other hand, the number of 

conserved regions with lower sizes (between 20 to 100 amino acids) was higher than the 

domains. 

 

 

Figure 57. Length Histograms  for (a) NCBI CDD  curated domains (b) conserved 

regions recovered after the human protein test. 
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HMM profile search identified a total of 24197 reference Pfam-A hits on our 

dataset, whereas Batch-CDD search in NCBI CDD web site identified 16526 reference 

hits in total. The statistics on the number of reference hits are given in Table 7. Notice 

the high number of sequences without any domain assignments. Nearly 46% of the test 

sequences got no curated functional associations in these vast domain databases. Table 

8 shows the statistics about domain assignments of the human protein dataset at the end 

of our analysis through the associations of conserved regions and NCBI CDD curated 

and Pfam-A domains (as explained in Section 4.1.7 and Figure 55). The number of 

sequences with elevated number of hits was increased with our analysis (the last 2 rows 

on Table 7 and Table 8). 

 

Table 7. The statistics of reference domain hits on human protein sequences. 

Number of domains: 
Number of sequences 

Pfam-A NCBI curated 

No hits: 7975 8281 

1 domain: 5348 6417 

2 domains: 2247 1768 

3 domains: 838 628 

>3 domains: 1385 699 

Out of 17793 human protein sequences. 

 

Table 8.  The statistics of the domain hits on human protein sequences by our analysis 

through associations between conserved regions and the domains in reference 

databases. 
 

Number of domains: 
Number of sequences 

through Pfam-A through NCBI 

No hits: 8322 8394 

1 domain: 3720 3222 

2 domains: 1476 1577 

3 domains: 1184 1406 

>3 domains: 3091 3194 

Out of 17793 human protein sequences. 

 

Another calculated statistical measure is the number of domain assignments of 

the proteins with no reference domain assignments in the human protein dataset (the 

number of these proteins are shown in the first row in Table 7) at the end of our analysis 

through the associations of conserved regions and NCBI CDD curated and Pfam-A 

domains (Table 9). The first and the second columns show the number of domain 
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assignments (through conserved region to Pfam-A domain associations) and the number 

of direct conserved region hits respectively on the sequences with zero reference 

domain associations on Pfam-A database. At the third and the fourth columns of Table 9 

the same statistics are given for the sequences with zero reference domain associations 

on NCBI CDD curated domain database. As observed from Table 9 columns 1 and 3, 

the number of proteins with no domain hits remained almost the same with respect to 

the reference hits (Table 7) regarding both databases. There were many conserved 

region associations to these proteins (Table 9, columns 2 and 4); however, these could 

not be paired with any reference domains since these regions were derived from 

sequences with no domain assignments. 

 

Table 9.  The statistics of the domain assignments and conserved regions associations 

by the proposed method on the proteins with zero reference domain 

assignments. 
 

Number 

of hits: 

Number of sequences with 0 reference domains in: 

Pfam-A NCBI CDD 

through ref. dtb. direct CR hits through ref. dtb. direct CR hits 

No hits: 6877 2408 7156 2582 

1 hit: 737 2145 742 2267 

2 hits: 128 878 193 952 

3 hits: 118 484 83 506 

>3 hits: 115 2060 107 1974 

Out of 7975 sequences for Pfam-A and 8281 sequences for NCBI CDD columns. 

 

Table 10 shows the performance measures as sensitivity values in identifying 

reference functional domains in human protein sequences. The figure was structured 

with respect to the number of curated domains on each test sequence regarding the 

reference databases. Sensitivity (recall) value of 0.744 regarding Pfam and 0.776 for 

NCBI CDD may be considered quite satisfactory. Nearly 76% of the domains on the 

reference databases were accurately recovered by our method, with more than 77% and 

61% of the reference domains on Pfam and NCBI CDD respectively being from multi-

domain proteins. Notice the highest performance with the single domain proteins, and a 

small but gradually decreasing performance with the increasing number of domains on 

sequences. 
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Table 10. Performance  of the  proposed  method  in  identifying  reference  functional 

domains in the sequences of human protein dataset. 
 

Number of domains 

in reference database: 

Sensitivity values 

Pfam ref. NCBI CDD ref. 

Single domain: 0.809 0.919 

Up to 2 domains: 0.779 0.883 

Up to 3 domains: 0.765 0.862 

Total: 0.744 0.776 

(Sensitivity: TP / (TP + FN), TP: true positives, FN: false negatives) 

 

A certain percentage of the recovered conserved regions (on average) were 

significantly aligned (and paired) with the reference curated structural domains and the 

performance of the proposed method in identifying the domains on test sequences were 

calculated regarding these conserved regions. However, a significant portion of the 

conserved regions could not be aligned with the documented domains on online 

databases. Table 11 shows the statistics about the number of conserved regions 

significantly aligned (and paired) with reference curated domains on Pfam-A and NCBI 

CDD curated domain databases. The first column shows the number for the paired 

conserved regions, whereas the second column shows the ones that could not be paired 

(the original conserved regions), out of the 4753 recovered regions. 51% and 41% of the 

conserved regions were original (did not have a correspondence on the reference 

domain databases) regarding Pfam-A and NCBI CDD curated domain databases 

respectively. At least some of these original conserved regions may correspond to new 

functional domains un-identified so far. Though it’s not possible to verify any of these 

without detailed studies focusing on each sequence (also with experimental results 

usually). Table 12 shows the number of input sequences containing at least one original 

conserved region hit and the total number of the original conserved region hits on these 

protein sequences. These are the sequences containing potential new domain 

assignments by the proposed method. 

 

Table 11. The statistics of the conserved region pairings with the reference domains. 

  Number of conserved regions: 

 

match no-match 

Pfam-A 2324 2429 

NCBI CDD 2795 1958 

Out of 4753 conserved regions. 
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Table 12. The number of proteins with potential new domain assignments and the total 

number of new conserved region hits on these proteins. 
 

  Number of 

proteins: 

Total number 

of hits: 

 Pfam-A 7381 34678 

NCBI CDD 6134 30141 

With 2429 different conserved regions for Pfam-A and 1958 regions for NCBI CDD databases. 

 

In order to observe if these original conserved regions correspond to the 

automatically generated (not manually curated) low significance domain entries in Pfam 

database, we queried the conserved region profiles against a database containing both 

Pfam-A and Pfam-B entries (we have done a similar operation using only the manually 

curated Pfam-A domains previously). Pfam-B entries were generated to supplement the 

Pfam database for the sequences where there are no Pfam-A associations (Finn et al., 

2010). Pfam-B was generated automatically using the ADDA database (Heger and 

Holm, 2003). Table 13 shows the information about the conserved region and reference 

domain pairings (regarding significant pairwise alignments) using only Pfam-A (the 

previous analysis) and both Pfam-A and Pfam-B databases. As observed from the table, 

only 27% of the original conserved regions correspond to Pfam-B domains, meaning 

most of these conserved regions (nearly 73%) were indeed original. 

 

Table 13. The statistics of the conserved  region and reference  domain pairings with 

different Pfam database types. 
 

  Number of conserved regions: 

 

match no-match 

Pfam-A 2324 2429 

Pfam-A & B 2986 1767 

Out of 4753 conserved regions. 

 

4.3. Discussion 

 

In this part of the study, we proposed a computational method to identify 

functional relations between protein sequences in large and diverse datasets over 

evolutionary conserved regions. The experimental results showed that these conserved 

regions highly correspond to the structural domains. Identification of these regions was 
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achieved in a completely unsupervised manner using only sequence data subjected to 

sequence alignment, residue conservation scoring and graph theory concepts. First, the 

method was applied on gold standard datasets and the functional clustering performance 

was measured and compared with the conventional methods. The results indicated 

highly accurate clustering. Second, we used the proposed method to process a large 

dataset composed of 17793 human protein sequences to obtain a global functional 

relation map. At the end, we obtained a table representing the correspondence of the test 

proteins with the recovered conserved key regions. Functional relations of the proteins 

are clearly observed through the connections over these regions. We also measured the 

correspondence of our conserved regions with the manually curated functional domain 

assignments of the test proteins (on Pfam and NCBI CDD databases). The results 

showed that most of the structural domains were identified even on multi-domain 

human proteins. 

As evidenced in the experiment results, the proposed method achieved a high 

performance in clustering gold standard datasets and in the automatic identification of 

the documented functional signatures (domain regions) on the human protein dataset. 

The relationships of the input sequences are reflected clearly on the output table 

showing the associations between the input sequences and the conserved regions. The 

user may perform additional procedures on this table such as clustering or the 

observation of the mutual aspects of a specific sequence with the others. Consequently, 

evolutionary and/or functional shared features can be extracted from large biological 

sequence datasets containing highly diverge sequences. 

As is well known, grouping amino acid sequences using a linkage method such 

as a Connected Component Analysis imposes a domain chaining problem: A given 

sequence pair within a component may not necessarily share a significant sequential 

similarity, but appear in the same component due to the chain effect where they may 

both possess similarity to a third sequence over different regions (Mohseni-Zadeh et al., 

2004; Joseph and Durand, 2009). As a result, being in the same component does not 

stipulate a shared feature between all sequences in the component, though appearing in 

different components guarantees the absence of any significant shared features. All 

shared features however, are to be discovered within each component. In this work, the 

detection of the fully connected sub-components (maximal cliques) was employed to 

discover this mutuality. All sequences residing in the same maximal clique were thus 
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guaranteed to share at least one significant sequential regional similarity, on top of any 

additional features shared between a smaller number of sequences in the clique. 

At this point,  component formation procedure may appear to be dispensable 

since maximal clique search discovers the feature sharing information but it is important 

to note that maximal clique finding is an NP-hard (non-deterministic polynomial-time 

hard) problem and it may take days to process a relatively small dataset of 500 

sequences with an average computational power. Pre-processing with connected 

component identification ensures the separation of sequence clusters with no inter 

cluster relationships. In our method, to further reduce the computational load associated 

with clique identification in large components, groups of 100 random sequences (in the 

corresponding component) were subjected to maximal clique finding separately. While 

this imposed an additional amount of redundancy in the identified maximal cliques, it 

was resolved later at the conserved region merge and modification step. 

Highly conserved regions often correspond to zones with functional signatures 

on amino acid sequences. Thus, the conserved regions found by our method should 

capture the known domains in the sequences. In the results on human proteins, 

conserved regions did indeed contained functional signatures, with high correspondence 

with the average sensitivity of 0.76 -including the multi-domain proteins- (Table 10). 

It’s highly probable that the performance gap between the analysis with NCBI CDD and 

Pfam databases was based on the differences in the domain assignments. 

Note that a positive predictive rate (precision) was not calculated here since it 

could be deceptive. Normally, a false positive (FP) hit should be counted when we 

obtain a hit that doesn’t exist in the reference set. In our case these hits were ambiguous. 

As shown in Table 11, nearly half of the recovered conserved regions (as the result of 

the human protein set test) did not correspond to the domains on online databases (these 

were named as the original conserved regions). And as mentioned previously, the 

reliable Pfam-A and NCBI curated domains were accepted as our reference, thus we 

suggested that some of the conserved region hits might correspond to the documented 

low significance hits (and some might be short random fragments found only by 

chance). After a second conserved region to structural domain pairing this time using 

both Pfam-A and Pfam-B domains as the database, it was observed that only 27% of the 

original conserved regions corresponded to the domains in the low quality Pfam-B 

database (Table 13). As a result, the rest of the original conserved regions (or at least 

some of them) may be potential new functional signatures that have not been discovered 
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and/or documented so far. The only way to verify this may be detailed studies directed 

to each sequence individually (also including experimental work for some cases). 

Comparative revaluation results showed that the proposed method performed 

better with single domain proteins, and the performance decreases as the proteins with 

higher number of domains included. Inspection of the results revealed that most of the 

false negative hits belonged to the consecutively located domains on multi-domain 

proteins. However, when the variety of domain distribution on sequences was 

sufficiently large, these domains were identified accurately. For an explanation of this 

statement, supposing there are two consecutive domains on a Sequence X called domain 

1 and domain 2. If there are some sequences in the dataset that contain domain 1 but not 

domain 2 and similarly some sequences that contain domain 2 but not domain 1, it is 

highly probable that our method will detect a maximal clique consist of the sequences 

with domain 1 and another clique consist of the sequences with domain 2. The profiles 

for domain 1 and domain 2 will be recovered using these cliques. When the domain 

profiles are searched through all of the sequences in the dataset, Sequence X most 

probably will give significant hits for both domain 1 and domain 2 profiles and 

therefore two consecutive domains will be identified on the sequence. A sample case 

from our tests is shown in Figure 58 and Figure 59. In Figure 58 15 amino acid 

sequences are shown (rows) with the structural domains within highlighted in different 

colors (domain 1, domain 2 and domain 3) and Sequence X (a multi-domain protein 

with 3 consecutively located domains) at the last row. In this set, apart from Sequence 

X, 13 sequences are single domain proteins and 2 were multi-domain proteins (with 2 

domains on each). Figure 59 shows the clusters of sequences after the statistical 

grouping process. From the multiple sequence alignment of the members of Clique 1, a 

conserved region (inside red circle in the figure) was identified. Similarly, 2 more 

conserved regions were identified; one from Clique 2 (inside blue circle) and one from 

Clique 3 (inside green circle). Notice that Sequence X was found in all cliques and 

during the conserved region search process, all of these conserved regions were 

identified on Sequence X. Therefore, 3 conserved regions were mapped to Sequence X 

with nearly 100% overlap with the 3 domains present in this sequence. Note that our 

method aims to divide sequence datasets in small groups of just one shared feature 

instead of trying to extract several features within a large group. As a result, it can be 

expected to perform better when a high variety of domain combinations are present on 

the sequences in the dataset. This can be achieved during the analysis of large datasets 
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consisting of both similar and diverged sequences. This makes our method a suitable 

candidate to analyze shared features on whole proteomes. 

 

 

Figure 58. Representation of  16  sample  protein  sequences  with  their  domains 

highlighted in different colors. 

 

 

Figure 59.  Representation of the sample protein sequences in different cliques after the 

statistical grouping process (circles correspond to the identified conserved 

regions). 

 

On another note, there is nothing much to do about the input sequences that do 

not align with any other sequences in similarity based sequence analysis methods. 

Generally, they are left out of the results. In our case, we have incorporated the 

singleton sequences into the analysis by searching in conserved region profiles through 
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all of the dataset. Owing to the remote homology recognition ability of profile 

alignments, features hidden inside these sequences were identified more clearly. This 

way, the reference structural domains were identified for some of the singleton 

sequences we had after the initial all-against-all pairwise alignment. 

Finally, we have carried out a manual analysis on the results of the human 

protein test for possible new functional assignments. Firstly, we noted that the 1009th 

conserved region largely overlapped with the proteins annotated with the term: 

GO:0008270 – zinc ion binding where 508 out of 513 proteins associated with the 

conserved region contained this GO term. We have examined 1 (UniProt identifier: 

‘Q14145’ and name: KEAP1 - with evidence at protein level) of the 5 proteins with no 

relation to GO:0008270 in our cluster. Kelch-like ECH-associated protein 1 (KEAP1) 

takes part in the suppression of the transcriptional activity of NFE2L2/NRF2 protein by 

targeting it for ubiquitination and degradation by the proteasome (Zhang et al., 2004). 

This protein has only 1 GO molecular function association (GO:0005515 – protein 

binding) and it has no direct ancestor-child relation to GO:0008270. They only joined at 

a high level on the hierarchical GO tree on GO:0005488 (binding). As a result, there 

appears to be no indication that this protein has a zinc ion binding function association 

in GO. Due to the high correlation between GO:0008270 term and conserved region 

1009, our results predict that this protein may have a zinc ion binding function. To test 

the validity of this prediction, the sequence was searched through Pfam database. 3 

types of structural domains were identified on the sequence, one of which is “BTB/POZ 

domain” (PF00651), found frequently in zinc finger proteins (Bardwell and Treisman, 

1994). This finding supports our prediction since zinc ion binding function is naturally 

associated with zinc finger proteins. In order to take another look at the case, we have 

analyzed our conserved regions associated with the protein. More than 1 zinc finger 

domain types are paired with these conserved regions with high confidence during the 

performance test of our method in identifying reference domains in human dataset. One 

of them is Zinc finger, C2H2 type (PF00096) on Pfam. This domain is also one of the 

mapped associations to GO:0008270 (in Gene Ontology) though not to GO:0005515, 

providing an additional support for this prediction.  

Note that in this analysis, we started from GO associations and identified a 

documented functional assignment (on Pfam) to a protein with our method that was not 

present in the GO database. Similar analyses can be made on the other proteins in the 

dataset using our results to identify also undocumented functional assignments. 
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On a final note, the correspondence table generated by our method provides the 

associations between the proteins and the conserved regions. As such, it allows inferring 

protein families as these sharing the same set of conserved regions. However, it can also 

be viewed as documenting the relationship between the conserved regions over the 

proteins that possess them simultaneously. This suggests a duality in the analysis of 

protein sequences: Just as the family of proteins associated with similar functional or 

structural attributes, one can also consider families of conserved regions that followed 

through the process of molecular evolution together. As a future work, this duality can 

be explored and exploited to aid a parallel analysis of the evolution of whole proteomes. 

Another potential future study would be the inspection of the correlation between the 

protein-protein interactions and the associations of these interacted proteins over the 

conserved regions. Since these regions correspond to highly conserved sequence 

segments with functional signatures, the interactions between the proteins may be 

occurring over these regions. A high correlation may indicate the potential use of the 

proposed method in protein interaction studies. 

The details of the proposed method (Protein function assignment by conserved 

region identification and association) along with the applications on test sets and the 

results were prepared as a manuscript and submitted to a peer-reviewed bioinformatics 

journal. It is also published as a MATLAB
®
 implementation freely available online for 

academic use together with the datasets and the results figuring in this chapter 

(including the global functional relation map of 17793 human protein sequences) at 

http://biplab.eee.iyte.edu.tr/en/projects/conregidase/. 
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CHAPTER 5 

 

CONCLUSION 

 

In this dissertation, we developed computational methods for automatic 

identification of sequence and evolutionary relationships in large datasets composed of 

diverse biomolecular sequences. These relationships usually indicate similar functional 

properties and/or common evolutionary histories of the sequences in consideration, used 

to identify unknown sequences. 

To this end, we employed sequence alignment and graph theory concepts 

combined with complementary approaches. Input sequences were treated as vertices in 

an undirected graph, and the edges between two vertices signified the existence of a 

distinct similarity between the corresponding sequences. The lengths of the edges were 

associated with the degree of this similarity, as an edge with a shorter length indicated a 

closer relationship, such as an elevated homology. After the development of each 

method, we applied them to a large dataset composed of nearly 18000 human protein 

sequences in order to obtain a global functional relation map. In this way, the 

evolutionary and functional relationships between human proteins could be identified 

on a wider perspective, helping to discover the functions and histories of unknown 

sequences. The methods employed and for each approach were presented in a separate 

chapter of this dissertation along with the results obtained from the experiments. 

The first approach focused on embedding the sequences in high dimensional 

spaces as vectors using non-linear embedding. The methods and the results of its 

applications to different cases were given in detail in Chapter 2. Among the different 

vector space embedding algorithms in the literature, Isometric Feature Mapping 

(ISOMAP) was used to express the sequences as vectors in vector spaces with 

previously unknown number of dimensions. Pairwise evolutionary distances were 

inferred using an evolution model following a multiple sequence alignment. The 

method produced a distribution of points that conserved the local neighborhood 

structure between similar sequences. The suitable number of dimensions was decided 

upon regarding a residual variance curve, as the smallest dimension that had the ability 

to express the similarity structure between the sequences accurately. Experiments on 
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synthetic sequences revealed that the method had a significant error reduction capacity 

on the input pairwise evolutionary distances. Another major observation on the results 

was the presence of a directionality in the vector space organization: Groups of 

homolog sequences were placed in tight clusters, with spike-like formations extending 

outwards from the origin in the final vector space distribution. Homologue groups were 

positioned at perpendicular angles to each other in the resulting embedding. It was also 

possible to exploit these formations with statistical methods in order to identify 

functional separations between the input sequences. 

After various optimizations and modifications, we applied the method on a large 

human protein set. The same functional directionality was also observed, but the 

necessary number of dimensions was much higher than expected. Furthermore it was 

observed that the existence of false homology detections, formed during the multiple 

sequence alignment and the following pairwise distance inference, impaired the non-

linear embedding process. In order to eliminate the false homologies, number of gapless 

positions on pairwise comparisons of the output alignment, the positions available for 

the pairwise distance computation using an evolutionary model, were calculated and 

thresholded using various cut-off values. The pairwise distances, computed using a total 

number of gapless sites smaller than the cut-off were assumed to be unreliable and 

discarded before the non-linear embedding. Following more tests and modifications, it 

was concluded that the accuracy of the method dropped significantly when the ancestor 

sequences were not included in the input sequence collection. The non-linear 

embedding procedure refined the high distances, the ones with large amounts of error by 

forming geodesic paths using small and reliable distances, and these paths went through 

the common ancestors of the sequences in the dataset. Since no information about the 

actual ancestor sequences is available today, the formation of the geodesic paths and the 

refinement of the evolutionary distances between remote sequences could not be carried 

out accurately by the non-linear embedding process. At this point in the study, we 

moved on to a different approach than the vector space embedding strategy. 

The second approach was the thresholding of the connectivity map over 2 

parameters following the multiple sequence alignment procedure in order to detect false 

homologies, and separate the input sequences into relevant clusters of significant 

similarities. The proposed method and its applications on different cases are explained 

in detail in Chapter 3. The first parameter captured the inferred pairwise evolutionary 

distances, and the second one measured the number of gapless sites at each pairwise 
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comparison of the resulted alignment, in other words, number of positions available for 

pairwise distance calculation. In order to discriminate between the true/reliable 

similarities and false/unreliable ones, a random dataset was generated by shuffling the 

elements of each sequence in the original dataset. The random/shuffled dataset was then 

subjected to the multiple sequence alignment separately and the values of the 2 

parameters were calculated as described. Two-dimensional histograms were generated 

for the original and the shuffled datasets with respect to the two parameters. The portion 

of the histogram of the original dataset corresponding to the reliable connections as 

different from the one for the shuffled dataset was identified using probability 

distribution comparisons. Numerous threshold curves were generated using the standard 

deviation and mean values of the pairwise distance distributions for different values of 

the number of gapless positions from the two-dimensional histogram of the shuffled 

dataset. ROC curves were drawn using the number of connectivities discarded and kept 

on the original and the shuffled connectivity maps at each threshold. A cut-off was 

selected automatically at the point where the slope of the ROC curve equaled 10
5
, or at 

the point where there were no connectivities left for the shuffled dataset. Connections 

with pairwise distance and number of gapless sites values above the threshold curve 

were assumed to be unreliable and discarded. As a result, the connectivity map contains 

disjoint clusters of homolog sequences. 

The procedure was then applied to a large human protein dataset of sequences, 

resulting in 445 disjoint components in the constructed connectivity map. We tested the 

accuracy of the recovered connectivities using the GO associations of the proteins in the 

dataset. A reference connectivity map was produced by assuming a connection between 

any two sequences if there was at least one shared GO term. The precision of the 

proposed method was measured at 0.981. We compared this performance with a 

conventional thresholding operation over the pairwise distances as is frequently done in 

clustering studies. This time, the precision measure was 0.799, resulting in a nearly 20% 

drop in performance. We also employed the method for the functional clustering of a 

highly cited standard protein dataset from the literature. The method was run to cluster 

866 enzymes in 91 families, and achieved an F-measure of 0.882. This performance was 

again compared with the performance of a classical thresholding operation employing 

only pairwise distances. This time, an F-measure of 0.827 was achieved at the same 

automatically selected threshold. For a fair comparison between the methods, average 

clustering performances including all threshold curves were calculated and found as 
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0.768 for the proposed method and 0.712 for the conventional thresholding operation. 

These results indicate the effectiveness of the proposed method in detecting false 

homologies between the input sequences, and its accuracy in functional separation of 

amino acid sequences following a multiple sequence alignment procedure. However, 

multiple sequence alignments on very large datasets required impractically high 

computation times. For this reason, we took a different approach for the identification of 

functional and evolutionary relationships on very large datasets. 

The third and final approach concerned the identification of the sequence 

relationships through highly conserved regions, detailed in Chapter 4. Shared regions 

between biomolecular sequences usually indicate functional similarities and/or a 

common history; as a result, the identification of these segments and their associations 

with the input sequences reveals the relationships between those sequences. An all-

against-all pairwise sequence alignment was employed as the first step of the method 

instead of the time consuming multiple sequence alignment. After the thresholding of 

the connectivity map over pairwise alignment E-values, Connected Component 

Analysis was carried out on the disjoint undirected graph followed by maximal clique 

identification on the members of each connected component. Each maximal clique was 

composed of sequences with at least one shared region. Next, a residue conservation 

scoring method was employed to scan the multiple sequence alignment of the member 

sequences of each clique and locate the highly conserved segments. Shared regions 

were identified following a smoothing operation on the output of the residue 

conservation scoring procedure. Profiles of the detected conserved/shared regions were 

generated and aligned to the input sequences using pairwise profile alignment to obtain 

all the associations across the dataset. The method produces a binary table with rows 

indexing the input sequences and columns indexing the recovered conserved regions, 

and ones indicating an association between the corresponding conserved region and 

sequence pairs. A second output of the method is the conserved region profiles 

generated for the alignment step. In addition, a clustering scheme is also supplied for 

clustering the input sequences based on their shared conserved regions. The input 

sequence - conserved region association table details the relationships between all 

sequences through the conserved regions. 

In order to observe the biological relevance of the results obtained by the 

proposed method, we have manually curated and clustered domain sequences from 

SCOP Database. The clustering performance was compared with alternative 
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biomolecular sequence clustering methods from the literature. The proposed method 

was generally comparable to the top performing method from the literature. However, 

on hard cases composed of very large and/or diverse sequences, the proposed method 

outperformed all the other methods. This result was attributed to focusing on the regions 

with functional and/or evolutionary signals during the calculation of similarities instead 

of treating the sequences globally. 

Next, the proposed method was applied to a large human protein dataset and a 

global functional relation map was obtained. One of the things we expected during the 

development of the method was a significant correspondence of the recovered 

conserved regions with the structural domains in the associated sequences, since the 

domains contain functional signatures and they are highly conserved during the course 

of evolution. The method could then be used to identify structural domains in amino 

acid sequences. In order to test the idea, the human protein dataset was queried against 

manually curated structural domain profiles in well-established online domain databases 

(Pfam and NCBI CDD). The results of these queries were used as reference to test the 

proposed method. Next, the conserved region profiles were aligned to the domain 

profiles in these databases seeking highly significant alignments to pair conserved 

regions with reference domains. Finally, the domain associations of input sequences 

were identified using sequence to conserved region and conserved region to reference 

domain correspondences. These assignments were compared to the reference 

assignments to compute performance measures. The proposed method was able to 

identify the reference domains in the human protein sequences with 0.744 and 0.776 

sensitivity measures on Pfam and NCBI CDD databases, respectively. It’s also 

important here to note that more than 77% and 61% of the reference domain hits on 

Pfam and NCBI CDD databases respectively were from multi-domain proteins, 

representing much harder cases compared to single-domain sequences. With nearly 76% 

of all domains identified in the human protein dataset, it was concluded that the 

proposed method can also be employed to discover structural domains on large amino 

acid sequence sets, such as whole proteomes. Furthermore, the conserved regions that 

could not be aligned with any reference domains during the last analysis may 

correspond to novel, undiscovered domains. Similarly, the associations of the input 

sequences over these regions may be new, undocumented relationships. It would be 

interesting to inspect these cases with specialists focused on these particular sequences 

as future work. 
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In summary, in this dissertation, a computational method was developed 

successfully for the automatic identification of sequence relationships, especially in 

large and diverse sets. The method was applied to a large human protein dataset, 

producing a global functional relation map detailing the associations between human 

proteins through shared conserved regions. This map remains to be explored in future 

studies to elucidate the organization of the molecular machinery in cells from a 

functional, structural as well as evolutionary perspective. 
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