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Examining Committee Members:

Assoc. Prof. Dr. Engin BÜYÜKAŞIK
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ment during my studies and Barış ÇİÇEK for his help on solving my technical problems

including the preparation of this thesis using LATEX.

I am deeply grateful to my family for their support, love, understanding and en-

couragement in my whole life.

Finally, I would like to offer my special thanks to Müşerref Duygu SAÇAR, who
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ABSTRACT

OPERATIONS ON PROPER CLASSES RELATED TO SUPPLEMENTS

The purpose of this study is to understand the properties of the operations +, ◦,
and * defined on classes of short exact sequences and apply them to the proper classes

related to supplements. The operation ◦ on classes of short exact sequences is introduced

and it is proved that the class of extended weak supplements is the result of the operation

◦ applied to two classes one of which is the class of splitting short exact sequences. Using

the direct sum of proper classes defined by R. Alizade, G. Bilhan and A. Pancar, a direct

sum decomposition for quasi-splitting short exact sequences over the ring of integers is

obtained. Closures of classes of short exact sequences along with the one studied by C.

P. Walker, N. Hart and R. Alizade are defined over an integral domain. It is shown that

these classes are proper when the underlying class is proper and they are related to the

operation +. The closures of proper classes related to supplements are described in terms

of Ivanov classes. Closures for modules over an integral domain are also defined and it

is proved that submodules of torsion-free modules have unique closures. A closure for

classes of short exact sequences is defined over an associative ring with identity and it is

proved that this closure is proper when the underlying class is proper. Results shows that

the operation + and closures of splitting short exact sequences plays an important role on

the closures of proper classes.

iv



ÖZET

TÜMLEYENLERLE İLGİLİ ÖZ SINIFLAR ÜZERİNDE İŞLEMLER

Bu çalışmanın amacı kısa tam dizi sınıfları üzerinde tanımlanmış +, ◦, ve *

işlemlerinin özelliklerini anlamak ve bu işlemleri tümleyenlerle ilgili öz sınıflara uygu-

lamaktır. Kısa tam dizi sınıfları üzerinde ◦ işlemi tanımlanmış ve genişletilmiş zayıf

tümleyenler sınıfının, ◦ işleminin, biri parçalanan kısa tam dizilerin sınıfı olmak üzere,

iki sınıfa uygulanmasının sonucu olduğu kanıtlanmıştır. R. Alizade, G. Bilhan ve A. Pan-

car tarafından tanımlanan, öz sınıfların dik toplamı kullanılarak, tam sayılar halkası üz-

erinde yarı-parçalanan kısa tam diziler sınıfı için bir dik toplam ayrışması elde edilmiştir.

C. P. Walker, N. Hart ve R. Alizade tarafından çalışılan dahil olmak üzere kısa tam dizi

sınıflarının kapanışları tamlık bölgeleri üzerinde tanımlanmıştır. Altında yatan sınıf öz

sınıf olduğunda, bu kapanışların öz sınıf olduğu ve + işlemiyle ilişkili olduğu göster-

ilmiştir. Tümleyenlerle ilgili öz sınıfların kapanışları İvanov sınıfları cinsinden belir-

tilmiştir. Tamlık bölgeleri üzerinde modüllerin kapanışları da tanımlanmış ve burulmasız

modüllerin altmodüllerinin kapanışlarının tek olduğu kanıtlanmıştır. Birleşmeli ve birimli

halkalar üzerinde kısa tam dizi sınıfları için bir kapanış tanımlanmış ve altında yatan sınıf

öz sınıf olduğunda bu kapanışın öz sınıf olduğu kanıtlanmıştır. Elde edilen sonuçlar, +

işleminin ve parçalanan kısa tam diziler sınıfının kapanışlarının, öz sınıfların kapanışları

üzerinde önemli rol oynadıklarını göstermiştir.
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G1 the first Ulm subgroup of abelian group G: G1 =

∞∩
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nG
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HomR(M,N) all R-module homomorphisms from M to N
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T (M) the torsion submodule of the R-module M for an integral do-

main R: T (M) = {m ∈ M | rm = 0 for some 0 , r ∈ R}
M[k] the submodule {m ∈ M | km = 0 for some 0 , k ∈ R} of the

R-module M for an integral domain R

Soc M the socle of the R-module M

Rad M the radical of the R-module M

B the class of bounded R-modules

Br the class of modules bounded by a power of r for 0 , r ∈ R

Sm the class of small modules

⟨E⟩ the smallest proper class containing the class E of short exact

sequences

P a proper class of R-modules

P̂ the set {E | rE ∈ P for some 0 , r ∈ R} for a proper class P
P̂r the set {E | rtE ∈ P for some nonnegative integer t} for a

proper class P and for 0 , r ∈ R

π(P) all P-projective modules

π−1(M) the proper class of R-modules projectively generated by a

classM of R-modules

ι(P) all P-injective modules
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ι−1(M) the proper class of R-modules injectively generated by a class

M of R-modules

k(M) the proper class coprojectively generated by a classM of

R-modules

k(M) the proper class coinjectively generated by a class M of

R-modules

ExtR(C, A) = Ext1
R(C, A) the set of all equivalence classes of short exact sequences

starting with the R-module A and ending with the R-module

C

Text(C, A) the set {E ∈ Ext(C, A) | rE ≡ 0 for some 0 , r ∈ R} of equiv-

alence classes of short exact sequences of abelian groups

Pext(C, A) the set of all equivalence classes of pure-exact sequences

starting with the group A and ending with the group C

Next(C, A) the set of all equivalence classes of neat-exact sequences

starting with the group A and ending with the group C

PureZ-Mod the proper class of pure-exact sequences of abelian groups

For the category R-Mod, the following classes are defined:

Split the smallest proper class consisting only of splitting short

exact sequences in the category R-Mod

Abs the largest proper class consisting of all short exact

sequences in the category R-Mod

Compl the proper class of complements in the category R-Mod

Suppl the proper class of supplements in the category R-Mod

Neat the proper class of neats in the category R-Mod

Co-Neat the proper class of coneats in the category R-Mod

S the class of κ-exact sequences in the category R-Mod

SB the class of β-exact sequences in the category R-Mod

WS the class of weak supplements in the category R-Mod

WS the class of extend weak supplements in the category R-Mod

D the class of torsion-splitting short exact sequences in the

category R-Mod

i(M,J) the least proper class for which every module from the class

M of modules is coprojective and every module from the

class J of modules is coinjective
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CHAPTER 1

INTRODUCTION

Throughout this work, R is an associative ring identity unless otherwise stated

and all modules are unital left R-modules. Restrictions on the ring R, if there are any, are

given at the beginning of the chapter or the section. We use Ext instead of Ext1
R when there

is no ambiguity. Definitions not given here can be found in the books (Wisbauer 1991,

Anderson and Fuller 1992, Hungerford 1974, Mac Lane 1963, Fuchs 1970).

In this thesis, we study the operations +, ◦ and * on proper classes defined by A.

Pancar in (Pancar 1997) and apply them to the proper classes related to supplements.

In Chapter 2, we introduce some basic information about the alternative defini-

tion of the functor Ext and supplements in module theory. ExtR(C, A) = Ext1
R(C, A) can

be viewed as the class of short exact sequences starting with A and ending with C (see

(Fuchs 1970, §50)). With the aid of the sum called Baer sum, it turns out that ExtR(C, A)

is a group for all R-modules A and C, and it is called the group of extensions of A by C.

Results on properties of the group of extensions can be found in the books (Fuchs 1970)

and (Mac Lane 1963). Supplement submodules and some generalizations were investi-

gated by R. Alizade, E. Büyükaşık, A. I. Generalov, D. Keskin,C. Lomp, P. Smith, R.

Tribak, H. Zöschinger and many others. The main results about supplements in module

theory can be found in the books (Wisbauer 1991, Ch. 8, §41) and (Clark et al. 2006, Ch.

4).

In Chapter 3, we give the definition of a proper class (see (Buchsbaum 1959) and

(Sklyarenko 1978)). The result (Nunke 1963, Theorem 1.1) that is used many times in

this thesis is also mentioned, and it is claimed that an e-functor F gives a proper class if

the composition of two epimorphisms (monomorphisms) from F also belongs to F . The

class PureZ-Mod of pure-exact sequences and the classDZ-Mod of torsion-splitting short ex-

act sequences are important examples of proper classes in the category of abelian groups.

The proper class generated by a class of short exact sequences is defined by A. Pancar

as the least proper class that contains the given class or equivalently the intersection of

proper classes that contains the given class (see (Pancar 1997)). If M is a given class

of R-Mod for an additive functor T (M, ·) : R-Mod −→ Ab, the class of exact triples E

such that T (M,E) is exact forms a proper class. This result is helpful in the definition of

projectively and injectively generated proper classes. At the end of this part of the thesis,

1



we give two results from (Alizade 1985) which give the characterization of coprojectively

and coinjectively generated classes that are dual to the characterization of projectively and

injectively generated proper classes.

In Chapter 4, proper classes related to complements and supplements are studied.

The question if the composition of a subfunctor of the identity with the functor Ext gives

a proper class is answered with a counterexample as the composition of the functors Soc

and Ext does not give a proper class in the case of abelian groups. Following Zöschinger,

a short exact sequence E : 0 //A
f // B //C //0 of ExtR(C, A) is called κ-exact if

Im f has a supplement in B, i.e. a minimal element in the set {V ⊆ B|V + Im f = B}.
The corresponding class of short exact sequences is denoted by S. The elements of the

class SB ⊆ S are defined with an extra condition that V ∩ Im f is bounded. Similarly, the

elements of the classes Small andWS are defined with Im f being small in B and having

a weak supplement in B, that is a submodule U of B with Im f +U = B and Im f ∩U ≪ B,

respectively. We showed that over a Noetherian integral domain of Krull dimension 1, the

class SB is proper and it coincides with the class coinjectively generated by bounded

modules (see (Demirci 2008, Proposition 4.3)). Over a hereditary ring, the proper class

generated by the classes S, Small andWS coincides with the proper classWS which

consists of all images of WS-elements of Ext(C′, A) under Ext(g, 1A) : Ext(C′, A) −→
Ext(C, A) for all homomorphisms g : C −→ C′ (see (Alizade et al. 2012, Corollary 3.13)).

It is shown in the same work that over a hereditary ring the class WS is coinjectively

generated by the class of small modules (see (Alizade et al. 2012, Proposition 4.13)). A

homomorphism g : C′ −→ C is called coneat if for every decomposition g = β ◦α, where

β is a small epimorphism, β is an isomorphism. In the case of abelian groups, coneat

homomorphisms give a necessary condition for the elements of the class ExtS(C, A) to be

a subgroup of Ext(C, A).

In Chapter 5, the operations on proper classes are studied. The result of operation

+ is always a proper class while it need not be in the case of ◦, ◦ and * in general. The

operations + and * are commutative and the result of operation * is always a subgroup of

Ext(C, A). Definition of the direct sum of two proper classes are given using the operation

+. An infinite direct sum decomposition is obtained for the class of quasi-splitting short

exact sequences over the ring of integers. In the case of abelian groups, the sum of the

proper classes projectively generated and coprojectively generated by a class of groups,

which is closed under direct sums, is the class Abs all short exact sequences, provided

that the projectively generated class is projective. It is also proved that this sum is di-

rect when the generating class of abelian groups consists of reduced abelian groups (see

2



(Alizade et al. 1997, Theorem 4)).

Chapter 6 is devoted to the study of closures of classes of short exact sequences.

In the case of abelian groups, the class P̂ = {E| kE ∈ P for some 0 , k ∈ R} was studied

by C. P. Walker for P = Split, by N. Hart for P = Pure and P = D, and by R. Alizade

for P = Split, where ˆSplit was denoted by Text since Ext ˆSplit(C, A) = T (Ext(C, A)), the

torsion part of Ext(C, A), and for every proper class P (see (Walker 1964), (Alizade 1986)

and (Hart 1974)). In the case of abelian groups, the operations +, ◦ and * give the same

proper class when applied to the classes ˆSplit and D (see (Pancar 1997, Theorem 4.2)).

A similar definition is used for modules over an integral domain R, and it is proved that

for R-modules M ≤ N, M̂ is the unique closure of M + T (N) in N, where T (N) is the

torsion part of N. For a class P of short exact sequences over an integral domain R and

for all 0 , r ∈ R, the class P̂r = {E| rtE ∈ P for some nonnegative integer t}, which is a

closure of P, is proved to be proper when the underlying class is proper, and its relation

with the operation + is shown. The class i(M,J) for classesM and J of R-modules is

introduced for an integral domain R as the least proper class of short exact sequences for

which every module fromM is coprojective and every module from J is coinjective (see

(Ivanov 1978), (Alizade 1986)). The relation between the class i(M,J) and the closures

of the classes SB andWS is proved. The class rtP for the class P, which is included in

the class P when P is proper, is introduced over a principal ideal domain R for 0 , r ∈ R

and for every nonnegative integer t. It is proved that rtP is proper when the class P
is proper and P̂r = P. In the second section of this chapter, a closure P̂GF for a class

P is introduced for a compatible pair of classes F and G of homomorphisms over an

associative ring with an identity element (see § 6.2), and it is proved to be proper when

the underlying class P is proper. A relation between the class P̂GF and the operation + is

also given at the end of this section.

3



CHAPTER 2

PRELIMINARIES

This Chapter will consist of preliminary information about the group of extensions

by short exact sequences and supplements in module theory. One can find further informa-

tion and missing proofs in the books (Fuchs 1970), (Vermani 2003) and (Mac Lane 1963)

about the group of extensions, in the books (Anderson and Fuller 1992), (Kasch 1982)

and (Wisbauer 1991) about supplements and module theory.

2.1. Extensions as Short Exact Sequences

Given the R-modules A and C, the extension B of A by C can be visualized as a

short exact sequence

0 // A
µ // B ν // C // 0 , (2.1)

where µ is a monomorphism and ν is an epimorphism with kernel µ(A). Then there is a

category E in which the objects are the short exact sequences and a morphism between

two short exact sequences E and E′ is defined as a triple (α, β, γ) of module homomor-

phisms such that the diagram

E : 0 // A
µ //

α

��

B ν //

β

��

C //

γ

��

0

E ′ : 0 // A′
µ ′ // B′

ν ′ // C ′ // 0

(2.2)

has commutative squares.

The extensions E and E ′ with A = A ′, C = C ′ are said to be equivalent, denoted

by E ≡ E ′, if there is a morphism (1A, β, 1C), where β : B→ B ′ is an isomorphism.

If A is a fixed R-module, for a homomorphism γ : C ′ → C , to the extension E in

(2.2), there is a pullback square

4



B ′
ν ′ //

β

��

C ′

γ

��
0 // A

µ // B ν // C // 0

(2.3)

for some B ′, β and ν ′. By properties of pullback, ν ′ is epic (since ν is epic), and Ker ν ′ �

Ker ν � A, hence there is a monomorphism µ ′ : A → B ′ (i.e. µ ′a = (µa, 0) ∈ B ′ if B ′ is

defined to be a submodule of B ⊕C ′) such that the diagram

Eγ : 0 // A
µ ′ // B ′

ν ′ //

β

��

C ′ //

γ

��

0

E : 0 // A
µ // B ν // C // 0

(2.4)

with exact rows and pullback right square commutes. The top row is an extension of A by

C ′ which we denote by Eγ. Notice that γ∗ = (1A, β, γ) is a morphism Eγ → E in E .

Next let C be fixed and for a given α : A → A ′, let B ′ be defined by the pushout

square

0 // A
µ //

α

��

B ν //

β

��

C // 0

A ′
µ ′ // B ′

.

(2.5)

Here µ ′ is a monomorphism, and if B ′ is defined as the quotient module (A ′ ⊕ B)/H

where H is the submodule of A ⊕ B consisting of elements of the form (µ(a),−α(a)) for

a ∈ A, then ν′ : B ′ −→ C defined by ν′((a ′, b) + H) = ν(b) for (a ′, b) ∈ A ′ ⊕ B, makes

the diagram

E : 0 // A
µ //

α

��

B ν //

β

��

C // 0

αE : 0 // A′
µ ′ // B′

ν ′ // C // 0

(2.6)

5



with exact rows commutative. The bottom row of this diagram is an extension of A ′ by C

which we denote by αE. Here α∗ = (α, β, 1C) is a morphism E→ αE in E .

With α : A→ A ′ and γ : C ′ → C, we have the important associative law

α(Eγ) ≡ (αE)γ. (2.7)

In order to describe the group operation in the language of short exact sequences,

we make use of the diagonal map ∆G : g 7→ (g, g) and the codiagonal map ∇G : (g1, g2) 7→
g1 + g2 of a module G. If we understand by the direct sum of two extensions

Ei : 0 // Ai
µi // Bi

νi // Ci
// 0 (i = 1, 2) (2.8)

the extension

E1 ⊕ E2 : 0 // A1 ⊕ A2
µ1⊕µ2 // B1 ⊕ B2

ν1⊕ν2 // C1 ⊕C2 // 0 , (2.9)

then we have :

Theorem 2.1 ((Mac Lane 1963), Ch. III, Theorem 2.1) For given R-modules A and C,

the set ExtR(C, A) of all congruence classes of extensions of A by C is an abelian group

under the binary operation which assigns to the congruence classes of extensions E1 and

E2, the congruence class of the extension

E1 + E2 = ∇A(E1 ⊕ E2)∆C. (2.10)

The class of the split extension 0 //A //A ⊕C //C //0 is the zero element of

this group, while the inverse of any E is the extension (−1A)E. For homomorphisms α :

A −→ A′ and γ : C′ −→ C, one has

α(E1 + E2) ≡ αE1 + αE2, (E1 + E2)γ ≡ E1γ + E2γ, (2.11)

(α1 + α2)E ≡ α1E + α2E, E(γ1 + γ2) ≡ Eγ1 + Eγ2. (2.12)

6



The equivalences in (2.11) and (2.12) express the fact that α∗ : E 7→ αE and

γ∗ : E 7→ Eγ are group homomorphisms

α∗ : ExtR(C, A)→ ExtR(C, A ′), γ∗ : ExtR(C, A)→ ExtR(C ′, A), (2.13)

and that (α1 + α2)∗ = (α1)∗ + (α2)∗ and (γ1 + γ2)∗ = (γ1)∗ + (γ2)∗ for α1, α2 : A −→ A′,

γ1, γ2 : C′ −→ C.

Lemma 2.1 (see (Mac Lane 1963), Ch. III, Lemma 1.6) ExtR is an additive bifunctor

on R-Mod × R-Mod toAb which is contravariant in the first and covariant in the second

variable.

For the rest of this work, we will use Ext instead of Ext1
R and we will denote the

equivalence class of the short exact sequence E by just E. Since we are working on the

category of left R-modules, we will not use any subscript to indicate the category we are

dealing with unless it is necessary.

2.2. Supplements and Supplemented Modules

This section includes definitions and some results about supplements and supple-

mented modules. See (Wisbauer 1991, Ch. 8, §41) for more information about supple-

ments and supplemented modules.

Let U be a submodule of an R-module M. If there exists a submodule V of M

minimal with respect to the property M = U +V then V is called a supplement of U in M.

A submodule K of an R-module M is called superfluous or small in M, written

K ≪ M, if, for every submodule L ⊆ M, the equality K + L = M implies L = M. The

following lemma is used frequently while studying supplements.

Lemma 2.2 V is a supplement of U in M if and only if U + V = M and U ∩ V ≪ V.

The properties of supplements are given in the next proposition.

Proposition 2.1 ((Wisbauer 1991), 41.1) Let U, V ⊆ M and V be a supplement of U in

M.

1. If W + V = M for some W ⊆ U, then V is a supplement of W.

2. If M is finitely generated, then V is also finitely generated.
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3. If U is a maximal submodule of M, then V is cyclic and U ∩ V = Rad V is a (the

unique) maximal submodule of V.

4. If K ≪ M, then V is a supplement of U + K.

5. If K ≪ M, then V ∩ K ≪ V and Rad V = V ∩ Rad M.

6. If Rad M ≪ M, then U is contained in a maximal submodule of M.

7. If L ⊆ U, then (V + L)/L is a supplement of U/L in M/L.

8. If Rad M ≪ M or Rad M ⊆ U and p : M −→ M/Rad M is the canonical epimorphism,

then M/Rad M = p(U) ⊕ p(V).

Let M be a module. If every submodule of M has a supplement in M, then M is

called a supplemented module. Artinian modules and semisimple modules are examples

of supplemented modules. The ring Z of integers as a module over itself is an example to

show that every module need not be supplemented.

For the properties of supplemented modules, we have the following proposition

from the book (Wisbauer 1991).

Proposition 2.2 ((Wisbauer 1991), 41.2) Let M be an R-module.

1. Let U and V be submodules of M such that U is supplemented and U + V have a

supplement in M, then V has a supplement in M.

2. If M = M1 + M2 with M1 and M2 supplemented, then M is also supplemented.

3. If M is supplemented, then M/Rad M is semisimple.
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CHAPTER 3

PROPER CLASSES

3.1. Proper Classes

In this part of the thesis, the definition of proper classes along with some important

examples already known will be given.

Let P be a class of short exact sequences of R-modules and R-module homomor-

phisms. If a short exact sequence

0 //A
f // B

g //C //0 (3.1)

belongs toP, then f is said to be aP-monomorphism, and g is said to be aP-epimorphism

(both are said to be P-proper, and the short exact sequence is said to be a P-proper short

exact sequence.). The class P is said to be proper (in the sense of Buchsbaum) if it

satisfies the following conditions (see (Buchsbaum 1959), (Mac Lane 1963, Ch. 12, §4)

and (Sklyarenko 1978, Introduction)):

P-1) If a short exact sequence E is in P, then P contains every short exact sequence

isomorphic to E .

P-2) P contains all splitting short exact sequences.

P-3) The composite of two P-monomorphisms is a P-monomorphism if this composite

is defined.

P-3’) The composite of two P-epimorphisms is a P-epimorphism if this composite is

defined.

P-4) If g and f are monomorphisms, and g ◦ f is a P-monomorphism, then f is a

P-monomorphism.

P-4’) If g and f are epimorphisms, and g ◦ f is a P-epimorphism, then g is a

P-epimorphism.
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One of the most important examples for proper classes in abelian groups is

PureZ-Mod. It is the class of all short exact sequences (3.1) of abelian groups and abelian

group homomorphisms such that Im( f ) is a pure subgroup of B, where a subgroup A of a

group B is pure in B if A ∩ nB = nA for all integers n (see (Fuchs 1970, §26-30) for the

important notion of purity in abelian groups). The short exact sequences in PureZ-Mod are

called pure-exact sequences of abelian groups. The corresponding subgroup of Ext(C, A)

is denoted by Pext(C, A). The following Theorem gives the structure of Pext(C, A) in

terms of subgroups of Ext(C, A).

Theorem 3.1 (see (Fuchs 1970), Theorem 53.3) For all abelian groups A and C,

Pext(C, A) coincides with the first Ulm subgroup of Ext(C, A), i.e.

Pext(C, A) = Ext(C, A)1 =
∩
n∈Z+

n Ext(C, A). (3.2)

The smallest proper class of R-modules consists only of splitting short exact se-

quences of R-modules which we denote by Split. The largest proper class of R-modules

consists of all short exact sequences of R-modules which we denote by Abs (absolute

purity ).

A subfunctor F of Ext such that F (C, A) is a subgroup of Ext(C, A) is called an

e-functor (see (Butler and Horrocks 1961)). By (Nunke 1963, Theorem 1.1), an e-functor

F of Ext gives a proper class if it satisfies one of the properties P-3) and P-3’). This result

enables us to define a proper class in terms of subfunctors of Ext.

For a proper class P of R-modules, call a submodule A of a module B a

P-submodule of B, if the inclusion monomorphism iA : A → B, iA(a) = a, a ∈ A, is a

P-monomorphism.

Let T (M, ·) : R-Mod −→ Ab be an additive functor (covariant or contravariant),

left or right exact and depending on an R-module M. If M is a given class of modules

of this category, we denote by t−1(M) the class P of short exact sequences E such that

T (M, E) is exact for all M ∈ M.

The following Lemma can be found in (Sklyarenko 1978) and for a proof see

(Demirci 2008, Lemma 3.1).

Lemma 3.1 P = t−1(M) is a proper class.
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Let t(P) be the class of all modules M for which the triples T (M, E) are exact

for all E ∈ P. As we can take the functors Hom or ⊗ for T , t(P) and t−1(P) leads us to

projectively, injectively or flatly generated proper classes.

Over an integral domain R, a short exact sequence

E : 0 //A // B //C //0 is called torsion-splitting if Eτ splits for the injection

τ : T (C) → C. The class of torsion-splitting short exact sequences will be denoted by

D as it was in (Pancar 1997). If C is torsion-free, or if E is splitting, then E is trivially

torsion-splitting. More information about torsion-splitting exact sequences can be found

in (Fuchs 1970, §58). We give one of the important results here.

Proposition 3.1 ((Fuchs 1970), 58.3) In the case of abelian groups, the exact sequence

E : 0 //A // B //C //0 is torsion-splitting if and only if it is an element of the

maximal divisible subgroup of Ext(C, A).

Let E be a class of short exact sequences. The smallest proper class containing E
is said to be generated by E and denoted by ⟨E⟩ (see (Pancar 1997)).

Since the intersection of any family of proper classes is proper, for a class E of

short exact sequences

⟨E⟩ =
∩{
P : E ⊆ P ;P is a proper class

}
. (3.3)

For more information about proper classes generated by a class of short exact

sequences see (Pancar 1997).

3.2. Objects of a Proper Class

Take a short exact sequence

E : 0 //A
f // B

g //C //0 (3.4)

of R-modules and R-module homomorphisms.

An R-module M is said to be projective with respect to the short exact sequence E,

or with respect to the epimorphism g if any of the following equivalent conditions holds:
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1. every diagram

E : 0 // A
f // B

g // C // 0

M
γ̃

``@
@

@
@

γ

OO
(3.5)

where the first row is E and γ : M −→ C is an R-module homomorphism can

be embedded in a commutative diagram by choosing an R-module homomorphism

γ̃ : M −→ B; that is, for every homomorphism γ : M −→ C, there exits a homo-

morphism γ̃ : M −→ B such that g ◦ γ̃ = γ.

2. The sequence

Hom(M, E) : 0 // Hom(M, A)
f ∗ // Hom(M, B)

g ∗ // Hom(M,C) //0

is exact.

Dually, an R-module M is said to be injective with respect to the short exact sequence

E, or with respect to the monomorphism f if any of the following equivalent conditions

holds:

1. every diagram

E : 0 // A
f //

α

��

B
g //

α̃~~~
~

~
~

C // 0

M

(3.6)

where the first row is E and α : A −→ M is an R-module homomorphism can

be embedded in a commutative diagram by choosing an R-module homomorphism

α̃ : B −→ M; that is, for every homomorphism α : A −→ M, there exists a

homomorphism α̃ : B −→ M such that α̃ ◦ f = α.
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2. The sequence

Hom(E,M) : 0 // Hom(C,M)
g ∗ // Hom(B,M)

f ∗ // Hom(A,M) //0

is exact.

An R-module M is said to be P-projective (resp. P-injective) if it is projective

(resp. injective) with respect to all short exact sequences in P. The relative projectiveness

(resp. injectiveness) of M is equivalent to the requirement that Ext1
P(M, B) = 0, for every

R-module B (resp. Ext1
P(A,M) = 0, for every R-module A). Denote all P-projective (resp.

P-injective) modules by π(P) (resp. ι(P)).

In a proper class P, there need not be a P-epimorphism from some P-projective

module to a given R-module A. For this reason, in general, it is not possible to define the

functor Ext1
P by using the derived functor of the functor Hom. However, the alternative

definition of Ext1
P may be used in this case.

For a proper class P and R-modules A, C, denote by Ext1
P(C, A) or shortly by

ExtP(C, A), the equivalence classes of all short exact sequences in P which start with A

and end with C. This turns out to be a subgroup of Ext(C, A) and a bifunctor ExtP :

R-Mod × R-Mod −→ Ab is obtained which is a subfunctor of Ext.

A classP of R-modules is said to have enough projectives if for every module A we

can find a P-epimorhism from some P-projective module P to A. A class P of R-modules

is said to have enough injectives if for every module B we can find a P-monomorphism

from B to some P-injective module J. A proper class P of R-modules with enough pro-

jectives [enough injectives] is also said to be a projective proper class [resp. injective

proper class].

The following propositions give the relation between projective (resp. injective)

modules with respect to a class E of short exact sequences and with respect to the proper

class < E > generated by E.

Proposition 3.2 ((Pancar 1997), Propositions 2.3 and 2.4)

(a) π(E) = π(< E >).

(b) ι(E) = ι(< E >).
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An R -module C is said to be P-coprojective if every short exact sequence of

R-modules and R-module homomorphisms of the form

E : 0 //A′ // B ′ //C //0 (3.7)

ending with C is in the proper class P. An R-module A is said to be P-coinjective if every

short exact sequence of R-modules and R-module homomorphisms of the form

E : 0 //A // B ′′ //C′ //0 (3.8)

starting with A is in the proper class P.

Using the subfunctor ExtP of Ext, the P-projectives, P-injectives, P-coprojectives

and P-coinjectives are simply described in terms of the subgroup ExtP(C, A) ≤ Ext(C, A)

being 0 or the whole of Ext(C, A):

1. An R-module C is P-projective if and only if ExtP(C, A) = 0 for all R-modules A.

2. An R-module C is P-coprojective if and only if ExtP(C, A) = Ext(C, A) for all

R-modules A.

3. An R-module A is P-injective if and only if ExtP(C, A) = 0 for all R-modules C.

4. An R-module A is P-coinjective if and only if ExtP(C, A) = Ext(C, A) for all R-

modules C.

3.3. Projectively Generated Proper Classes

For a given class M of modules, denote by π−1(M) the class of all short exact

sequences E of R-modules and R-module homomorphisms such that Hom(M, E) is exact

for all M ∈ M, that is,

π−1(M) = {E ∈ Abs|Hom(M, E) is exact for all M ∈ M}. (3.9)
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π−1(M) is the largest proper class P for which each M ∈ M is P-projective, and it is

called the proper class projectively generated byM.

Proof This is a consequence of Lemma 3.1. Take T (M, ·) = Hom(M, ·). �

Proposition 3.3 Let P be a proper class andM a class of modules. Then we have

1. P ⊆ π−1(π(P)),

2. M ⊆ π(π−1(M)),

3. π(P) = π(π−1(π(P))),

4. π−1(M) = π−1(π(π−1(M))).

For a proper class P, π−1(π(P)) is called the projective closure of P and it always

contains P.

3.4. Injectively Generated Proper Classes

For a given class M of modules, denote by ι−1(M) the class of all short exact

sequences E of R-modules and R-module homomorphisms such that Hom(E,M) is exact

for all M ∈ M, that is,

ι−1(M) = {E ∈ Abs|Hom(E,M) is exact for all M ∈ M}. (3.10)

ι−1(M) is the largest proper class P for which each M ∈ M is P-injective which is called

the proper class injectively generated byM.

Proof This is a consequence of Lemma 3.1. Take T (M, ·) = Hom(·, M). �

3.5. Coprojectively and Coinjectively Generated Proper Classes

LetM and J be classes of modules over some ring R. The smallest proper class

k(M) (resp. k(J)) for which all modules inM (resp. J) are coprojective (resp. coinjec-

tive) is said to be coprojectively (resp. coinjectively) generated byM (resp. J).
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Theorem 3.2 ((Alizade 1985), Theorem 1) Let M be a class of modules closed under

extensions. Consider the class R of exact triples, defined as:

ExtR(C, A) =
∪
M, α

Im
{

Ext(M, A)
α∗−→ Ext(C, A)

}
(3.11)

over all M ∈ M and all homomorphisms α : C −→ M. Then exact triples

0 //A //X //C //0 belonging to ExtR(C, A), form a proper class, and R coin-

cides with k(M).

Theorem 3.3 ((Alizade 1985), Theorem 2) Let L be a class of modules closed under

extensions. Consider the class R of exact triples, defined as:

ExtR(C, A) =
∪
I, α

Im
{

Ext(C, I)
α∗−→ Ext(C, A)

}
(3.12)

over all I ∈ L and all homomorphisms α : I −→ A. Then exact triples

0 //A //X //C //0 belonging to ExtR(C, A), form a proper class, and R coin-

cides with k(L).

For more information about coprojectively and coinjectively generated proper

classes see (Alizade 1985) and (Alizade 1986).
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CHAPTER 4

PROPER CLASSES RELATED TO SUPPLEMENTS

In this part of the study, we will give definitions and some properties of the proper

classes related to supplements. One can find further information in (Alizade et al. 2012),

(Demirci 2008), (Erdoğan 2004) and (Mermut 2004).

4.1. The ClassesCompl, Suppl, Neat and Co-Neat

The class Compl consists of all short exact sequences

0 //A
f // B

g //C //0 (4.1)

such that Im f is a complement of some submodule K of B, that is Im f ∩ K = 0 and K is

maximal with respect to this property.

The class Neat consists of all short exact sequences 4.1 such that every simple

R-module is relative projective for it, denoted by

Neat = π−1
{
S ∈ R-Mod | S is simple

}
. (4.2)

The corresponding subgroup of Ext(C, A) is denoted by Next(C, A). Over the ring

of integers, we have the following result that gives the structure of NeatZ-Mod in terms of

the subgroups of Ext(C, A).

Corollary 4.1 ((Alizade et al. 2004), Corollary 4.3) For all abelian groups A and C, we

have Next(C, A) =
∩
p

p Ext(C, A) = F(Ext(C, A)), where p ranges over the prime num-

bers, and F(Ext(C, A)) is the Frattini subgroup of Ext(C, A).

Since for an abelian group A, Rad A =
∩
p

pA, where p ranges over the prime

numbers, the question if the composition of a subfunctor of the identity with the functor

Ext gives a proper class arises. This question is answered by a counterexample in the case

of abelian groups.
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Let R be an integral domain. Let Socle be the class of short exact sequences

defined via the composition of the functors Soc and Ext, that is

E : 0 // A // B // C // 0 ∈ Socle if E ∈ Soc(Ext(C, A)).

Proposition 4.1 Socle is not a proper class in the case of abelian groups.

Proof Suppose that Socle is a proper class. The subgroup of Ext(Z/pZ,Z) generated

by the short exact sequence E : 0 // Z
α // Z // Z/pZ // 0 , where p is a prime

number and α(1) = p, is simple since pE is splitting. By (Misina and Skornjakov 1960,

Proposition 1.12), Z/pZ is Socle-coprojective. The short exact sequence

0 // Z/pZ
f // Z/p2Z

g // Z/pZ // 0 where f (1+pZ) = p+p2Z and g(1+p2Z) =

1 + pZ belongs to Socle since it ends with Z/pZ. By (Misina and Skornjakov 1960,

Proposition 1.14), Z/p2Z is Socle-coprojective. However, the short exact sequence

E ′ : 0 // Z
β // Z // Z/p2Z // 0 , where β(1) = p2, does not belong to

Soc(Ext(Z/p2Z,Z)) since the subgroup of Ext(Z/p2Z,Z) generated by E ′ is a p-group,

and pE ′ , 0. This leads us to a contradiction. �

The class Suppl, consisting of all short exact sequences 4.1 such that Im f is

a supplement of some submodule K of B, is a proper class (see (Clark et al. 2006) or

(Erdoğan 2004) for a proof). The properties of Suppl-coinjective and Suppl-coprojective

modules are investigated in (Erdoğan 2004).

Co-Neat is defined as a dual notion of Neat:

Co-Neat = ι−1
{
M ∈ R-Mod | Rad M = 0

}
. (4.3)

We have the relations, Compl ⊆ Neat and Suppl ⊆ Co-Neat for an arbitrary ring

R. The following result shows a condition under which we have an equality.

Proposition 4.2 ((Mermut 2004), Proposition 5.2.6) For a Dedekind domain R,

Suppl ⊆ Co-Neat ⊆ Neat = Compl. (4.4)
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4.2. The κ-Elements of Ext(C, A)

Following Zöschinger we call a short exact sequence

E : 0 //A
f // B

g //C //0 (4.5)

κ-exact if Im f has a supplement in B. In this case we say that E ∈ Ext(C, A) is a κ-

element, and the set of all κ-elements of Ext(C, A) will be denoted by S. If Im f has a

supplement V in B with Im f ∩ V bounded, then E ∈ Ext(C, A) is called a β-element, and

the set of all β-elements of Ext(C, A) will be denoted by SB.

We denote by WS the class of short exact sequences 4.5, where Im f has (is)

a weak supplement in B, i.e. there is a submodule K of B such that Im f + K = B

and Im f ∩ K ≪ B. We denote by Small the class of short exact sequences 4.5, where

Im f ≪ B.

The κ-elements need not form a proper class in general. For instance, let R = Z,

and consider the composition β ◦α of the monomorphisms α : 2Z −→ Z and β : Z −→ Q,

where α and β are the corresponding inclusions. Then we have

0 //2Z
β◦α //Q //Q/2Z //0 is a κ-element, but 0 //2Z α //Z //Z/2Z //0

is not a κ-element as 2Z does not have a supplement in Z.

There are some cases that enables SB to form a proper class. Furthermore, the

following result shows that SB is coinjectively generated under the given condition.

Proposition 4.3 ((Demirci 2008), Proposition 4.3) Let R be a Noetherian integral do-

main of Krull dimension 1. Then SB = k(B). Hence SB is a proper class in this case.

Definition 4.1 A short exact sequence E : 0 //A // B //C //0 is said to be ex-

tend weak supplement if there is a short exact sequence

E ′ : 0 //A
f // B ′ //C ′ //0 such that Im f has (is) a weak supplement in B ′ and

there is a homomorphism g : C → C ′ such that E = g∗(E ′), i.e. there is commutative

diagram:

0 // A // B

��

// C
g

��

// 0 : E

0 // A
f // B ′ // C ′ // 0 : E ′.

(4.6)
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The class of all extend weak supplement short exact sequences will be denoted byWS.

Over a hereditary ring, it is shown in (Alizade et al. 2012) thatWS forms a proper

class. Moreover, the following result holds.

Corollary 4.2 ((Alizade et al. 2012), Corollary 3.13) ⟨Small⟩ = ⟨S⟩ = ⟨WS⟩ =WS.

Projective, injective and coinjective objects of the class WS are investigated in

the same work, it is also shown thatWS is coinjectively generated. Let us remind that a

module M is called small if it is a small submodule of some module N, or equivalently it is

small in its injective hull (see (Leonard 1966) for more information about small modules).

Proposition 4.4 ((Alizade et al. 2012), Proposition 4.13) Over a hereditary ringWS =
k(Sm), where Sm is the class of all small modules.

4.3. Coneat-Homomorphisms

The main problem with the investigation of the κ-elements in Ext(C, A) is that

they need not form a subgroup. The reason for this is the fact that, in general, for a

homomorphism g : C ′ −→ C, the induced map g∗ : Ext(C, A) −→ Ext(C ′, A) need not

preserve κ-elements. The following results hold over the ring of integers.

A homomorphism g : C ′ −→ C is called coneat if for every decomposition g =

β ◦ α, where β is a small epimorphism, β is an isomorphism.

Lemma 4.1 ((Zöschinger 1978), Lemma 2.2)

(a) An epimorphism g : C ′ −→ C is coneat if and only if Ker g is coclosed in C ′, i.e.

for any submodule X of Ker g, Ker g/X ≪ C ′/X implies X = Ker g.

(b) A splitting monomorphism g : C ′ −→ C is coneat if and only if Coker g has no

small cover.

(c) If g = g2 ◦ g1 is coneat, then g2 is also coneat.

Theorem 4.1 ((Zöschinger 1978), Theorem 2.3) For a homomorphism g : C ′ −→ C,

the following are equivalent:

(i) g is coneat.

(ii) Ker g is coclosed in C ′ and Im g ⊃ Soc C.
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(iii) g(C ′[p]) = C[p] for all prime numbers p.

(iv) If the diagram below is a pullback diagram and β is a small epimorphism, then β ′

is also a small epimorphism.

B ′
β ′ //

g ′

��

C ′

g
��

B
β

// C

(4.7)

The following result establishes a connection between coneat homomorphisms

and the κ-elements of Ext(C, A).

Corollary 4.3 ((Zöschinger 1978), Corollary 1 after Theorem 2.3) If g : C ′ −→ C is

coneat, then g∗ : Ext(C, A) −→ Ext(C ′, A) preserves κ-elements.
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CHAPTER 5

OPERATIONS ON PROPER CLASSES

In this chapter, we will define some operations defined on proper classes and give

some results. More information can be found in (Pancar 1997).

In (Pancar 1997), the following operations are defined for the classes R and L:

i) R +L = ⟨R ∪ L⟩, the sum of the classes R and L,

ii) R◦L, the class of short exact sequences whose monomorphisms are α ◦ β where α

is an R-monomorphism and β is an L-monomorphism,

iii R◦L, the class of short exact sequences whose epimorphisms are α ◦ β where α is

an R-epimorphism and β is an L-epimorphism,

iv) R ∗ L, the class of short exact sequences defined by the formula

ExtR∗L(C, A) = ExtR(C, A) + ExtL(C, A). (5.1)

From the definitions we have,

1. R +L = L + R is a proper class,

2. R ∗ L = L ∗ R,

3. R◦L ⊆ R +L, R◦L ⊆ R +L and R ∗ L ⊆ R +L.

In general, R◦L, R◦L and R ∗ L need not be proper classes, but if R◦L (R◦L or

R ∗ L) is a proper class, then R +L = R◦L (R +L = R◦L or R +L = R ∗ L).

The following theorem gives a condition under which R ∗ L ⊆ R◦L.

Theorem 5.1 ((Pancar 1997), Theorem 3.1) If the classM of modules is closed under

extensions and submodules, then R ∗ L ⊆ R◦L for R = k(M) and for every proper class

L.

Using the following proposition, it is possible to write a coprojectively generated

proper class as a composition of two classes one of which is the smallest proper class

Split. Moreover, the dual statement for which the proof is included also holds.

22



Proposition 5.1 ((Pancar 1997), Proposition 3.1) If the class of modules M is closed

under submodules and extensions, then k(M) = EM◦Split, EM being the class of all

short exact sequences ending at modules fromM.

Proposition 5.2 If the class of modules M is closed under homomorphic images and

extensions, then k(M) = Split ◦ εM, εM being the class of all short exact sequences

beginning with modules from M and Split being the class of all splitting short exact

sequences.

Proof Let E : 0 //A // B //C //0 be a short exact sequence in k(M). Since

M is closed under extensions, by Theorem 3.3, there exist M ∈ M, E1 ∈ Ext(C,M)

and a homomorphism α : M −→ A such that E = α∗(E1). Since M is closed under

homomorphic images, M/Kerα ∈ M. Therefore, α can be taken as a monomorphism.

From the cohomology sequence

· · · // Ext(C,M) α∗ // Ext(C, A)
β∗ // Ext(C, X) // · · · (5.2)

for 0 // M α // A
β // X // 0 , X = Cokerα, we have E ∈ Imα∗ = Ker β∗. Then

in the following commutative diagram with exact rows and columns, β∗(E) ∈ Split:

0

��

0

��
M
α

��

M

��
E : 0 // A //

β

��

B //

��

C // 0.

α∗(E) : 0 // X //

��

B ′ //

��

C // 0

0 0

(5.3)

On the other hand, 0 // M // B // B ′ // 0 ∈ εM by the definition of εM,

therefore E ∈ Split ◦ εM.

Conversely, since εM ⊆ ⟨εM⟩ and Split ⊆ ⟨εM⟩, we have Split ◦ εM ⊆ ⟨εM⟩ ⊆
k(M). �
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We can relate the conclusion of this proposition with the classWS using follow-

ing results.

Corollary 5.1 Over a hereditary ring R, WS = Split ◦ εSm, where Sm is the class of

small modules and εSm is the class of all short exact sequences beginning with small

modules.

Proof It is easy to show that Sm is closed under homomorphic images and extensions.

By Proposition 5.2, k(Sm) = Split ◦ εSm. Proposition 4.4 completes the proof. �

The sum of proper classes is investigated in (Alizade et al. 1997) for the case of

abelian groups. The direct sumP⊕L of proper classesP andL is defined, and an example

for a direct sum is given in the same work.

Theorem 5.2 ((Alizade et al. 1997), Theorem 1) If cl. is a class of groups closed under

direct sums such that π−1(cl.) is projective, then

π−1(cl.) + k(cl.) = Abs. (5.4)

If cl. is closed under direct products such that ι−1(cl.) is injective, then

ι−1(cl.) + k(cl.) = Abs (5.5)

Remark 5.1 ((Alizade et al. 1997), Remark after Theorem 1) Let TF be the class of

all torsion free groups. Theorem 5.2 implies that

π−1(TF ) +D = Abs (5.6)

Definition 5.1 Proper Classes P andL are said to be disjoint if P∩L = Split. A proper

class C is called a direct sum of proper classes P and L if C is a sum of disjoint classes

P and L, that is if C = P +L and P ∩ L = Split.

Theorem 5.3 ((Alizade et al. 1997), Theorem 4) Abs = π−1(red.)⊕ k(red.), where red.

is the class of all reduced groups.

24



The following theorem shows an example for which the operator ∗ does not give

a proper class.

Theorem 5.4 ((Alizade et al. 1997), Theorem 5) π−1(red.) ∗ k(red.) , Abs, and there-

fore π−1(red.) ∗ k(red.) is not a proper class.
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CHAPTER 6

CLOSURE OF PROPER CLASSES

In this chapter, we will review some results on closure of proper classes and define

new ones.

In the first section, we will work on integral domains and in the second one the

rings we consider will be associative with an identity element unless otherwise stated.

6.1. The Classes P̂ and P̂r

Let R be an integral domain throughout this section. For a class P of short exact

sequences of R-modules, we denote by P̂ the class of short exact sequences

E : 0 //A // B //C //0 of R-modules such that kE ∈ P for some 0 , k ∈ R

where k also denotes the multiplication homomorphism by k ∈ R. Thus

P̂ = {E| kE ∈ P for some 0 , k ∈ R}. (6.1)

For E ∈ P, we have 1 · E = E ∈ P, therefore P ⊆ P̂ for every class P of short

exact sequences.

In case of abelian groups, the class P̂ was studied in (Walker 1964, Alizade 1986)

for P = Split, in (Hart 1974) for P = Pure and P = D, torsion splitting short ex-

act sequences and in (Alizade 1986) for P = Split, where it was denoted by Text since

Ext ˆSplit(C, A) = T (Ext(C, A)) the torsion part of Ext(C, A) and for every proper class P.

The following result gives a general answer when R is an integral domain.

Theorem 6.1 ((Alizade et al. 2004), Theorem 3.1) For every proper classP of short ex-

act sequences of R-modules, the class P̂ is proper.

The following result is an example that shows applying the operations +, * and ◦
can give the same class.
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Theorem 6.2 ((Pancar 1997), Theorem 4.2) Let R be the ring of integers. Then

D ∗ ˆSplit = D◦ ˆSplit = D + ˆSplit = D̂. (6.2)

So, every D̂-monomorphism is a composition of a ˆSplit-monomorphism and a D-mono-

morphism.

We can also consider M̂ for R-modules M ≤ N with the definition

M̂ = {x ∈ N | kx ∈ M for some 0 , k ∈ R}. (6.3)

The following result is shown in (Pancar 1997) for the case of abelian groups.

Proposition 6.1 ((Pancar 1997), Lemma 4.1) Let Bd be the maximal divisible subgroup

and T (B) be the torsion part of a group B. Then

B̂d = Bd + T (B) = Bd + 0̂. (6.4)

The submodule M̂ of the R-module N can be used in finding closures. Let us first

define the closure of an R-module.

Definition 6.1 A submodule X of an R-module Z is closed in Z if X ≤ Y ≤ Z and X E Y

implies Y = X. For R-modules M ≤ X ≤ N, X is called a closure of M in N if M E X and

X is closed in N.

Closure of a module need not be unique in general as the following example

shows.

Example 6.1 Let R be the ring of integers and S =
{

a
b
∈ Q| (b, p) = (b, q) = 1

}
for prime

numbers p and q. Then pS and qS are both closures of the submodule pqS in S .

Proposition 6.2 Let M ≤ N be R-modules, then M̂ is the unique closure of M + T (N) in

N, where T (N) is the torsion part of N.

Proof For x ∈ M̂, rx ∈ M ≤ M + T (N) for some 0 , r ∈ R, therefore M + T (N) E M̂.

If M̂ E M ′ for some M ′ ≤ N, then for y ∈ M ′, ky ∈ M̂ for some 0 , k ∈ R which implies
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l(ky) ∈ M for some 0 , l ∈ R. Since (lk)y = l(ky) ∈ M for 0 , lk ∈ R, y ∈ M̂. Therefore,

M̂ is closed.

Let N ′ be another closure of M + T (N) in N. If z ∈ N ′, then sz ∈ M + T (N) for

some 0 , s ∈ R which shows that N ′ ≤ M̂. Since M + T (N) E N ′ ≤ M̂ and N ′ is closed

in N, N ′ = M̂. �

Corollary 6.1 Let N be a torsion-free R-module. Then for every submodule M of N, M̂

is the unique closure of M in N.

We have seen that P̂ is a closure of the class P of short exact sequences and

is indeed a proper class when the underlying class P is proper. It is possible to define

another closure of the class P that happens to be in between P and P̂.

For a class P of short exact sequences of R-modules and 0 , r ∈ R, we denote

by P̂r the class of short exact sequences E : 0 //A // B //C //0 of R-modules

such that rtE ∈ P for some for some nonnegative integer t where rt also denotes the

multiplication homomorphism by rt ∈ R. Thus

P̂r = {E| rtE ∈ P for some nonnegative integer t}. (6.5)

For E ∈ P, we have r0 · E = 1 · E = E ∈ P and clearly P̂r ⊆ P̂, therefore

P ⊆ P̂r ⊆ P̂ for every class P of short exact sequences.

For a given proper class P, the following result gives us proper classes that are

contained in P̂.

Proposition 6.3 P̂r is a proper class for every proper class P and every 0 , r ∈ R.

The proof of this result uses similar ideas used in the proof of (Alizade 1986,

Theorem 1).

Proof For any r ∈ R, let r also denote the homomorphism multiplication by r.

Let E : 0 // A // B // C // 0 ∈ P̂r with rtE ∈ P.

If f : A −→ A ′, then rt f∗(E) = (rt∗ ◦ f∗)(E) = ( f∗ ◦ rt∗)(E) = f∗(rt∗(E)) ∈ P since

ExtP is a subfunctor of Ext. Then f∗(E) ∈ P̂r.

If g : C ′ −→ C, then rtg∗(E) = (rt
∗ ◦ g∗)(E) = (g∗ ◦ rt

∗)(E) = g∗(rt
∗(E)) ∈ P since

ExtP is a subfunctor of Ext. Then g∗(E) ∈ P̂r.

Let E ′ : 0 // A // B ′ // C // 0 ∈ P̂r with rs(E ′) ∈ P. Then rt+s(E −
E ′) = rs(rtE) − rt(rsE ′) ∈ P since P is a proper class.
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These arguments show that P̂r gives an e-functor. Using (Nunke 1963, Theorem

1.1), in order to show that P̂r is a proper class, it is enough to show that the composition

of two P̂r-epimorphisms is a P̂r-epimorphism.

Let α : B −→ C and β : C −→ D be P̂r-epimorphisms. Since

E1 : 0 // A // B α // C // 0 ∈ P̂r, there is a nonnegative integer t such that

rt
∗(E1) : 0 // A // B ′ // C // 0 ∈ P. We can write the homomorphism rt as

rt = x ◦ y, where x : rtA −→ A is the inclusion and y : A −→ rtA is the standard

epimorphism. Then we obtain the following commutative diagrams with exact rows and

columns:

0

��

0

��

0

��

0

��

E4 : 0 // rtA // A ′1 //

��

A2 //

��

0

E5 : 0 // A //

y
??��������

A1 //

��

h
>>}}}}}}}

A2 //

��

~~~~~~~~

~~~~~~~~
0

E6 : 0 // rtA // B ′ //

��

C //

��

0

E1 : 0 // A //

y
>>~~~~~~~~

B α //

��

>>}}}}}}}}
C //

β

��

}}}}}}}}

}}}}}}}}
0

D

��

D

��

D

{{{{{{{{

{{{{{{{{

��

D

||||||||

||||||||

��

0 0

0 0

E E3 E2 E2

(6.6)
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0

��

0

��

0

��

0

��

0 // A // A ′′1 //

��

A2 //

��

0

E4 : 0 // rtA //

x
??��������

A ′1 //

��

f
>>}}}}}}}}

A2 //

��

��������

��������
0

E7 : 0 // A // B ′′ //

��

C //

��

0

E6 : 0 // rtA //

x
>>~~~~~~~~

B ′ //

��

=={{{{{{{{
C //

��

}}}}}}}}

}}}}}}}}
0

D

��

D

��

D

zzzzzzzz

zzzzzzzz

��

D

||||||||

||||||||

��

0 0

0 0

E3 E8 E2 E2

(6.7)

In the diagram (6.6), E4 = y∗(E5), E6 = y∗(E1), h is constructed using pushout, and

B −→ B ′ and B ′ −→ D are epimorphisms. The diagram (6.7) is constructed similarly.

Since E2 ∈ P̂r, there is a nonnegative integer s such that rs∗(E2) ∈ P. Applying the

homomorphism rs to some part of the diagram (6.7), we obtain the following commutative

diagram:
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0

��

0

��

0

��

0

��

0 // A // A ′′1 //

��

A2 //

��

0

0 // A //

��������

��������
A ′′1 //

��

xxxxxxxx

xxxxxxxx
A2 //

��

yyyyyyyyy

yyyyyyyyy
0

E7 : 0 // A // B ′′ //

��

C //

��

0

E9 : 0 // A //

��������

��������
B ′′′

γ //

η

��

;;wwwwwwwww
C ′ //

θ

��

j

<<xxxxxxxxx
0

D

��

D

��

D

��

rs

;;vvvvvvvvvv
D

��

rs

;;wwwwwwwww

0 0

0 0

rs
∗(E8) E8 rs

∗(E2) E2

(6.8)

In the diagram (6.8), the homomorphisms η, θ and j are constructed using pull-

back.

Since E7 = x∗(E6) = x∗(y∗(E1)) = (x ◦ y)∗(E1) = rt
∗(E1) ∈ P and ExtP is a

subfunctor of Ext, E9 = j∗(E7) ∈ P, that is γ : B ′′′ −→ C ′ is a P-epimorphism. θ :

C ′ −→ D is also a P-epimorphism. Then η = θ ◦ γ is a P-epimorphism, and rs∗(E8) ∈ P.

Therefore E8 ∈ P̂r.

In the diagram (6.7), we have L = Coker x � Coker f . Consider the short ex-

act sequence E10 : 0 // A ′1 // A ′′1 // L // 0 . Since rtL = 0, the short exact

sequence rt
∗(E10) : 0 // A ′1 // Y // L // 0 is splitting. Consider the following

commutative diagram:
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0

��

0

��

0

��

0

��

0 // A ′1
u //

��

Y //

��

L // 0

E10 : 0 // A ′1
f //

��

rt
>>}}}}}}}}

A ′′1 //

��

v
>>||||||||

L //

��������

��������
0

0 // X //

��

X ′ //

��

L // 0

0 // B ′ //

��

==zzzzzzzz
B ′′ //

��

<<zzzzzzzz
L //

�������

�������
0

D

��

D

��

D

��

zzzzzzzz

zzzzzzzz
D

��

yyyyyyyyy

yyyyyyyyy

0 0

0 0

E3 E11 E8 E12

(6.9)

In the diagram (6.9), we have E11 = rt
∗(E3) and E12 = (u◦ rt)∗(E3) = (v◦ f )∗(E3) =

v∗(E8) ∈ P̂r, since ExtP̂r
is a subfunctor of Ext. rtE10 is splitting, therefore E11 ∈ P̂r.

Then there is a nonnegative integer q such that rqE11 ∈ P. We also know that E11 = rtE3,

therefore rq+tE3 ∈ P and E3 ∈ P̂r.

Consider the diagram (6.6). We can write the homomorphism rt : A1 −→ A1 as

rt = ψ ◦ ϕ where ϕ : A1 −→ rtA1 is the standard epimorphism and ψ : rtA1 −→ A1 is the

inclusion. Then rt
∗ = ψ∗ ◦ ϕ∗. Let i : A ′1 −→ rtA1 be the epimorphism (note that h is also

an epimorphism). Then we have ϕ∗(E) = (i∗ ◦ h∗)(E) = i∗(E3). Since E3 ∈ P̂r and ExtP̂r
is

a subfunctor of Ext, rtE = rt
∗(E) = (ψ∗ ◦ ϕ∗)(E) ∈ P̂r. Then there is a nonnegative integer

p such that rp+tE ∈ P, hence E ∈ P̂r. �
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We have seen the direct sum of two proper classes in the previous chapter. We

say that the sum
∑
i∈ I

Li of proper classes is direct if L j

∩∑
i, j
i∈ I

Li = Split for every j ∈ I.

Since we are dealing with finite number of operations in the last equality, we can replace

this equality by L j

∩∑
i, j

i∈ F

Li = Split for every finite index set F ⊆ I with j < F.

Over the ring of integers, for every group A we have a decomposition of T (A) into

primary parts as T (A) =
⊕

p prime
Tp(A). The following result holds when R = Z, and it gives

a direct sum decomposition for the class Split of splitting short exact sequences in terms

of proper classes.

Proposition 6.4 Over the ring of integers,

ˆSplit =
⊕

p

ˆSplitp, (6.10)

where p ranges over all prime numbers.

The following theorem gives the relation between the class P̂ and the operation +.

A similar result holds for the class P̂r.

Theorem 6.3 ((Alizade et al. 2004), Theorem 3.2) Let P be a proper class. Then

P + ˆSplit = P̂. (6.11)

Theorem 6.4 Let P be a proper class. Then for every 0 , r ∈ R,

P + ˆSplitr = P̂r. (6.12)

The proof of this theorem uses similar ideas used in proving the previous one.

Proof Let E ∈ P, then E = 1 · E = r0 · E ∈ P̂r, therefore P ⊆ P̂r.Since Split ⊆ P for

every proper class, ˆSplit ⊆ P̂. Combining these inclusions we obtain P + ˆSplitr ⊆ P̂r.

Let us write P + ˆSplitr = L. We will show that P̂r ⊆ L.

Let E : 0 // A // B // C // 0 ∈ P̂r. Then there is a nonnegative inte-

ger t such that rtE ∈ P. Let us write the endomorphism of multiplication by rt on A as
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rt = α ◦ β, where β : A −→ rtA is the standard epimorphism and α : rtA −→ A is the

inclusion.

Using the homomorphisms α and β we obtain the following commutative dia-

grams with exact rows and columns (note that A[rt] =
{
a ∈ A| rta = 0

}
):

0

��

0

��
A[rt]

��

A[rt]

��
E : 0 // A //

β

��

B
µ //

θ
��

C // 0

E ′ : 0 // rtA
δ //

��

B ′ σ //

��

C // 0

0 0

(6.13)

0

��

0

��
E ′ : 0 // rtA

δ //

α

��

B ′ σ //

µ

��

C // 0

rtE : 0 // A
γ //

��

B ′′ //

��

C // 0

A/rtA

��

A/rtA

��
0 0

(6.14)

A/rtA is annihilated by rt, therefore it is ˆSplitr-coprojective, and α is an L-mono-

morphism since ˆSplitr ⊆ L. Since rtE ∈ P ⊆ L, γ is an L-monomorphism. Since L is a

proper class, µ ◦ δ = γ ◦ α is an L-monomorphism, and since ExtL is a subfunctor of Ext,

δ is an L-monomorphism, hence E ′ ∈ L.

A[rt] is annihilated by rt, therefore it is ˆSplitr-coinjective, and θ is an L-epimor-

phism since ˆSplitr ⊆ L. Then µ = σ ◦ θ is an L-epimorphism since L is a proper class.

Hence E ∈ L and P̂r ⊆ L. �
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In order to show the relation of the classes defined so far with the proper classes

related to supplements, let us introduce Ivanov classes and give some results over the ring

of integers (see (Ivanov 1978), (Alizade 1986)).

Definition 6.2 For the classes M and J of modules, the class i(M,J) of short exact

sequences is the least proper class for which every module from M is coprojective and

every module from J is coinjective.

LetM and J be classes of R-modules. The class i(M,J) is described in

(Ivanov 1978) whenM andJ are closed under extensions withM closed under submod-

ules, J closed under factor modules and satisfy the properties

(i) If A ≤ B, A ∈ J and B ∈ M, then B/A ∈ M,

(ii) If A ≤ B, B ∈ J and B/A ∈ M, then A ∈ J .

In (Alizade 1986) these conditions are called Ivanov conditions, and there is given

a result related to the operation * defined in the previous chapter.

Proposition 6.5 ((Alizade 1986), Lemma 5) Let R be hereditary and the classesM and

J of R-modules satisfy the Ivanov conditions. Then

i(M,J) = k̄(M) ∗ k(J). (6.15)

Theorem 6.5 ((Alizade 1986), Theorem 2) For all classesM and J of abelian groups

̂i(M,J) = i(M∪B,J ∪ B), (6.16)

where B denotes the class of bounded abelian groups.

This result is also true for modules over an integral domain since its proof can

easily be modified. It is also possible to use the proof of this result and obtain another

closure of the class i(M,J).
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Theorem 6.6 Let R be an integral domain, M and J classes of R-modules. Then for

every 0 , r ∈ R,

̂i(M,J)r = i(M∪Br,J ∪ Br), (6.17)

where Br denotes the class of R-modules bounded by a power of r.

Proof Let i(M ∪ Br,J ∪ Br) = L. It is clear that i(M,J) ⊆ L and L ⊆ ̂i(M,J)r

since every module from Br is ̂i(M,J)r-coinjective and ̂i(M,J)r-coprojective. To show

that ̂i(M,J)r ⊆ L, let E : 0 // A // B // C // 0 ∈ ̂i(M,J)r. Then there

is a nonnegative integer t such that rtE ∈ i(M,J). We can write the homomorphism

rt : C −→ C as rt = α ◦ β, where α : rtC −→ C is the inclusion and β : C −→ rtC

is the standard epimorphism. Applying these homomorphisms we obtain the following

commutative diagrams with exact rows and columns:

0

��

0

��
E ′ : 0 // A δ // B ′ σ //

θ

��

rtC //

α

��

0

E : 0 // A
γ // B //

��

C //

��

0

C/rtC

��

C/rtC

��
0 0

(6.18)
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0

��

0

��
C/rtC

��

C/rtC

��
rt∗(E) : 0 // A // B ′′

ξ //

η

��

C //

β

��

0

E ′ : 0 // A δ // B ′ σ //

��

rtC //

��

0

0 0

(6.19)

In the diagram (6.19), β is an L-epimorphism since C[rt] ∈ Br and ξ is also an

L-epimorphism. Then σ ◦ η = β ◦ ξ is an L-epimorphism since L is a proper class and

σ is an L-epimorphism since ExtL is a subfunctor of Ext. Therefore, E ′ ∈ L and δ is an

L-monomorphism.

In the diagram (6.18), θ is an L-monomorphism since C/rtC ∈ Br. Since L is a

proper class, α = θ ◦ σ is an L-monomorphism and E ∈ L. �

Corollary 6.2 Let R be a Noetherian integral domain of Krull dimension 1, and 0 , r ∈
R. Then

ŜB = i(B,B)

ŜBr = i(Br,B),
(6.20)

where B is the class of bounded R-modules and Br is the class of R-modules bounded by

a power of r.

Proof By Proposition 4.3, SB = k(B) = i(∅,B). Theorem 6.5 and Theorem 6.6 com-

plete the proof. �

Corollary 6.3 Let R be a Dedekind domain and 0 , r ∈ R. Then

ŴS = i(B,Sm)

ŴSr = i(Br,Sm),
(6.21)
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where B is the class of bounded R-modules and Br is the class of R-modules bounded by

a power of r.

Proof By Proposition 4.4, WS = k(Sm) = i(∅,Sm). By Theorem 6.5 and Theorem

6.6, we have ŴS = i(B,Sm ∪ B) and ŴSr = i(Br,Sm ∪ Br). Since over a Dedekind

domain R, Br ⊆ B ⊆ Sm for every 0 , r ∈ R, the result follows. �

Until now, we have dealt with the classes that include the given class P. In

(Alizade et al. 2004), the existence of a class that is contained in the given class P is

given using the class P̂ over a principal ideal domain. It is also possible to obtain a

similar result using the class P̂r.

Before we give the results, let us remind the following definition. Note also that

for a class P, by rP we mean the class rP = {E : E = rE ′ for some E ′ ∈ P} defined in

(Alizade et al. 2004).

Definition 6.3 Let R be a principal deal domain. An element r of R is said to be divisible

by s ∈ R (denoted as s|r) if r = ris for some ri ∈ R.

Theorem 6.7 ((Alizade et al. 2004), Theorem 4.2) Let R be a principal ideal domain.

A short exact sequence E : 0 // A α // B
β // C // 0 is divisible by a nonzero

element r ∈ R if and only if α(sA) = α(A) ∩ sB for every s ∈ R dividing r.

This result is used to prove that for a proper class P, the class rP is proper under

an extra condition.

Theorem 6.8 ((Alizade et al. 2004), Theorem 4.4) Let R be a principal ideal domain.

Then for every proper class P with P̂ = P, the class kP is proper for every k ∈ R, .

With a slight change on the condition given, we obtain the following result for the

class P̂r.

Theorem 6.9 Let R be a principal ideal domain. Then for every proper class P with

P̂r = P, the class rtP is proper for every 0 , r ∈ R and every nonnegative integer t.

Proof Let rtE, rtE ′ ∈ ExtrtP(C, A), E, E ′ ∈ ExtP(C, A) and f : A −→ A ′, g : C ′ −→ C

be homomorphisms.

Since ExtP is a subfunctor of Ext, f∗(g∗(E)) ∈ ExtP(C ′, A ′), and then f∗(g∗(rtE)) =

rt f∗(g∗(E)) ∈ ExtrtP.

Since ExtP(C, A) is a subgroup of Ext(C, A), E − E ′ ∈ ExtP(C, A). Then rtE −
rtE ′ = rt(E − E ′) ∈ ExtrtP(C, A).
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These arguments show that ExtrtP gives an e-functor. Using (Nunke 1963, Theo-

rem 1.1), to show that rtP is a proper class, it is enough to show that the composition of

two rtP-monomorphisms is a rtP-monomorphism.

Let α : A −→ B and β : B −→ C be rtP-monomorphisms. Let s ∈ R and s|rt.

The sequences 0 // A α // B // X // 0 and 0 // B
β // C // Y // 0

are divisible by rt by definition of rtP. By Theorem 4.2, α(sA) = α(A) ∩ sB and

β(sB) = β(B) ∩ sC. Then (β ◦ α)(sA) = β(α(sA)) = β(α(A) ∩ B) = (β ◦ α)(A) ∩ β(sB) =

(β ◦ α)(A) ∩ β(B) ∩ sC = (β ◦ α)(A) ∩ sC since β is a monomorphism. By Theorem

4.2, E : 0 // A
β◦α // C // Z // 0 is divisible by rt, that is E = rtE ′ for some

E ′ ∈ Ext(C, A).

The monomorphisms α and β are also P-monomorphisms, then the composition

β ◦ α is a P-monomorphism, therefore E ∈ P. Since P = P̂r and rtE ′ ∈ P, we have

E ′ ∈ P̂r = P. Hence E = rtE ′ ∈ rtP. �

6.2. The Class P̂GF

In the previous section, the classes P̂ and P̂r for the given class P of short exact

sequences are defined over an integral domain using the homomorphisms multiplication

by elements of R since multiplication by elements of R give homomorphisms when R is

an integral domain. We cannot use elements of R to obtain homomorphisms in order to

find a closure for the class P when R is an associative ring with an identity element since

the multiplication by an element of R does not give a homomorphism when R is not com-

mutative. Therefore, we turn our attention to the classes of R-module homomorphisms.

Throughout this section, we will study modules over an associative ring R with an identity

element.

Definition 6.4 Let F and G be families of homomorphisms of R-modules. We say that

F is closed under pushout diagrams if for all homomorphisms f : A −→ B, f ∈ F and

α : A −→ A ′, we have f ′ ∈ F in the pushout diagram

A
f //

α

��

B

��
A ′ f ′

// P

. (6.22)
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We say that G is closed under pullback diagrams if for all homomorphisms g : C −→ D,

g ∈ G and β : D ′ −→ D, we have g′ ∈ G in the pullback diagram

C
g // D

P ′ g′
//

OO

D ′
β

OO

. (6.23)

Lemma 6.1 Let F and G be families of homomorphisms of R-modules. Let F be closed

under pushout diagrams and G closed under pullback diagrams. Then the following hold.

(i) If f : A −→ A1 belongs to F , then the homomorphisms f ⊕ 1A : A ⊕ A −→ A1 ⊕ A

and 1A ⊕ f : A ⊕ A −→ A ⊕ A1 are also in F .

(ii) If f : A −→ B belongs to F , then the inclusion i : Im f −→ B (or the monomor-

phism ī : A/Ker f −→ B induced by f ) is also in F .

(iii) If g : C1 −→ C belongs to G, then the homomorphisms g ⊕ 1C : C1 ⊕ C −→ C ⊕ C

and 1C ⊕ g : C ⊕C1 −→ C ⊕C are also in G.

(iv) If g : C −→ D belongs to G, then the canonical epimorphism π : C −→ C/Ker g

induced by g (or the epimorphism π̄ : C −→ Im g induced by g) is also in G.

Proof (i) The diagram

A u //

f
��

A ⊕ A
f⊕1A

��
A1 v

// A1 ⊕ A

(6.24)

with u(a) = (a, 0) and v(a1) = (a1, 0) for a, a′ ∈ A, a1 ∈ A1 is commutative. Suppose that

there are homomorphisms x : A ⊕ A −→ P and y : A1 −→ P for some R-module P such

that x◦u = y◦ f . Define the homomorphism z : A1⊕A −→ P by z((a1, a)) = y(a1)+x((0, a))

for (a1, a) ∈ A1 ⊕ A. Then in the diagram
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A u //

f

��

A ⊕ A

f⊕1A

��
x

��.
..

..
..

..
..

..
..

..
..

..

A1
v //

y
))SSSSSSSSSSSSSSSSSSS A1 ⊕ A

z

##F
F

F
F

F

P

(6.25)

we have x = z ◦ ( f ⊕ 1A) and y = z ◦ v. Uniqueness of z follows from the commutativity of

the diagram (6.25), therefore the diagram (6.24) is a pushout diagram. Hence f ⊕ 1A ∈ F
by given condition on F .

Similarly, one can show that 1A ⊕ f ∈ F .

(ii) The diagram

A
f //

f ′

��

B

Im f
i

// B

(6.26)

with f ′(a) = f (a) and i being the inclusion is commutative. Suppose that there are homo-

morphisms x : B −→ P and y : Im f −→ P for some R-module P such that x ◦ f = y ◦ f ′.

Define the homomorphism z : B −→ P by z(b) = x(b) for b ∈ B. Then in the diagram

A
f //

f ′

��

B

x

��;
;;

;;
;;

;;
;;

;;
;;

;;
;

Im f i //

y
))TTTTTTTTTTTTTTTTTTTT B

z

&&LLLLLLL

P

(6.27)

we have x = z ◦ 1B and y = z ◦ f ′. Uniqueness of z follows from the commutativity of the

diagram (6.27), therefore the diagram (6.26) is a pushout diagram. Hence i : Im f −→ B

is in F by given condition on F .
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(iii) The diagram

C ⊕C u // C

C1 ⊕C v
//

g⊕1C

OO

C1

g

OO

(6.28)

with u((c, d)) = c and v((c1, e)) = c1 for c, d, e ∈ C, c1 ∈ C1 is commutative. Suppose

that there are homomorphisms x : P −→ C ⊕ C and y : P −→ C1 for some R-module P

such that u ◦ x = g ◦ y. Let u′ : C ⊕ C −→ C, u′((c, d)) = d for c, d ∈ C, be the standard

epimorphism and define the homomorphism z : P −→ C1 ⊕C by z(p) = (y(p), (u′ ◦ x)(p))

for p ∈ P. Then in the diagram

C ⊕C u // C

C1 ⊕C v //

g⊕1C

OO

C1

g

OO

P

x

GG���������������������
y

55kkkkkkkkkkkkkkkkkkk

z
;;w

w
w

w
w

(6.29)

we have x = (g⊕ 1C) ◦ z and y = v ◦ z. Uniqueness of z follows from the commutativity of

the diagram (6.29), therefore the diagram (6.28) is a pullback diagram. Hence (g⊕1C) ∈ G
by given condition on G.

Similarly, one can show that (1C ⊕ g) ∈ G.

(iv) The diagram

C
g // D

C π
// C/Ker g

g′
OO

(6.30)

with g′(c+Ker g) = g(c) and π being the canonical epimorphism is commutative. Suppose

that there are homomorphisms x : P −→ C and y : P −→ C/Ker g for some R-module P

such that g ◦ x = g′ ◦ y. Define the homomorphism z : P −→ C by z(p) = x(p) for p ∈ P.

Then in the diagram
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C
g // D

C π // C/Ker g

g′
OO

P

x

AA������������������
y

44iiiiiiiiiiiiiiiiiiii

z
88qqqqqqq

(6.31)

we have x = 1C ◦ z and y = π ◦ z. Uniqueness of z follows from the commutativity of

the diagram (6.31), therefore the diagram (6.30) is a pullback diagram. Hence π : C −→
C/Ker g is in G by given condition on G. �

Definition 6.5 Let R be an associative ring with identity. Let F and G be nonempty

families of homomorphisms of R-modules, and P a class of short exact sequences. We

say that the pair (F , G) is compatible for the class P if for every short exact sequence E,

there is f ∈ F such that f∗(E) ∈ P if and only if there is g ∈ G such that g∗(E) ∈ P with

one (or both) of the following conditions satisfied:

(i) F is closed under compositions and pushout diagrams,

(ii) G is closed under compositions and pullback diagrams.

For a class P of short exact sequences and a compatible pair (F , G) for P, we

define the class P̂GF as

P̂GF = {E| f∗(E) ∈ P for some f ∈ F }

= {E|g∗(E) ∈ P for some g ∈ G}.
(6.32)

Theorem 6.10 For every proper class P of short exact sequences and every compatible

pair (F , G) for P, the class P̂GF is proper.

Proof Let E : 0 // A // B // C // 0 ∈ P̂GF with f1∗(E), g∗1(E) ∈ P for f1 :

A −→ A1, f1 ∈ F and g1 : C1 −→ C, g1 ∈ G.

If f : A −→ A ′, then g∗1( f∗(E)) = (g∗1 ◦ f∗)(E) = ( f∗ ◦ g∗1)(E) = f∗(g∗1(E)) ∈ P since

ExtP is a subfunctor of Ext. Then f∗(E) ∈ P̂GF since g1 ∈ G.

If g : C ′ −→ C, then f1∗(g∗(E)) = ( f1∗ ◦ g∗)(E) = (g∗ ◦ f1∗)(E) = g∗( f1∗(E)) ∈ P
since ExtP is a subfunctor of Ext. Then g∗(E) ∈ P̂GF since f1 ∈ F .
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These arguments show that ExtP̂GF is a subfunctor of Ext.

At this point, we separate the proof into two parts because of the conditions on F
and G.

In the first case, let F be closed under compositions and pushout diagrams. Let

E : 0 // A // B // C // 0 , E ′ : 0 // A // B ′ // C // 0 ∈ P̂GF with

f1∗(E) ∈ P for f1 : A −→ A1, f1 ∈ F and f2∗(E ′) ∈ P for f2 : A −→ A2, f2 ∈ F , say

f1∗(E) : 0 // A1
// B1

// C // 0 and

f2∗(E ′) : 0 // A2 // B2 // C // 0 . We have the commutative diagrams

0 // A ⊕ A //

f1⊕1A
��

B ⊕ B ′ //

��

C ⊕C // 0

0 // A1 ⊕ A // B1 ⊕ B ′ // C ⊕C // 0

(6.33)

and

0 // A1 ⊕ A //

1A1⊕ f2
��

B1 ⊕ B ′ //

��

C ⊕C // 0

0 // A1 ⊕ A2
// B1 ⊕ B2

// C ⊕C // 0

(6.34)

with exact rows.

By Lemma 6.1, f1⊕1A and 1A1⊕ f2 are inF . SinceF is closed under compositions,

we have (1A1⊕ f2)◦( f1⊕1A) ∈ F . SinceP is a proper class, [(1A1⊕ f2)◦( f1⊕1A)]∗(E⊕E ′) ∈
P with (1A1 ⊕ f2) ◦ ( f1 ⊕ 1A) ∈ F . Therefore, (E ⊕ E ′) ∈ P̂GF .

These arguments show that P̂GF is an e-functor. Using (Nunke 1963, Theorem 1.1),

in order to show that P̂GF is a proper class, it is enough to show that the composition of

two P̂GF -epimorphisms is a P̂GF -epimorphism.

Let E1 : 0 // A // B α // C // 0 and

E2 : 0 // A2
γ // C

β // D // 0 ∈ P̂GF . Then there are homomorphisms f : A −→
A ′, f ∈ F and g : D ′ −→ D, g ∈ G such that f∗(E1) ∈ P and g∗(E2) ∈ P. We have the

following commutative diagrams with exact rows and columns:
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0

��

0

��

0

��

0

��

E4 : 0 // A ′ // A1
′ //

��

A2 //

��

0

E5 : 0 // A //

f
??��������

A1 //

f1
==||||||||

��

A2 //

}}}}}}}}

}}}}}}}}

γ

��

0

E6 : 0 // A ′ // B ′ //

��

C //

��

0

E1 : 0 // A //

f
??��������

B α //

==|||||||||

��

C //

}}}}}}}}

}}}}}}}}

β

��

0

D

��

D

��

D

��

zzzzzzzz

zzzzzzzz
D

��

||||||||

||||||||

0 0

0 0

E E3 E2 E2

(6.35)
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0

��

0

��

0

��

0

��

E4 : 0 // A ′ //

}}
}}

}}
}}

}}
}}

}}
}}

A1
′ //

zz
zz

zz
zz

zz
zz

zz
zz

��

A2 //

||
||

||
||

||
||

||
||

��

0

E4 : 0 // A ′ // A1
′ //

��

A2
//

��

0

E7 : 0 // A ′ //

}}
}}

}}
}}

}}
}}

}}
}}

B ′′ u //

||zz
zz

zz
zz

z

��

C ′ //

g1
~~||

||
||

||

v

��

0

E6 : 0 // A ′ // B ′ //

��

C //

��

0

D ′

��

g
||yy

yy
yy

yy
y

D ′

��

g
}}{{

{{
{{

{{

D

��

D

��

0 0

0 0

E3 E8 E2 E9

(6.36)

In the diagram (6.35), E6 = f∗(E1) ∈ P, E4 = f∗(E5) = f∗(γ∗(E1)) = γ∗( f∗(E1))

since ExtP is a subfunctor of Ext, and f1 ∈ F since f1 is constructed using pushout.

In the diagram (6.36), E9 = g∗(E2), E7 = g∗1(E6) ∈ P. Then u : B ′′ −→ C ′ and

v : C ′ −→ D ′ are P-epimorphisms. Since P is a proper class, v ◦ u is a P-epimorphism

and E8 ∈ P. g∗(E3) = E8 and g ∈ G implies E3 ∈ P̂GF , so there is f2 : A1
′ −→ A1

′′, f2 ∈ F
for some R-module A1

′′ such that f2∗(E3) ∈ P.

Then ( f2 ◦ f1)∗(E) = f2∗( f1∗(E)) = f2∗(E3) ∈ P and ( f2 ◦ f1) ∈ F since f1, f2 ∈ F ,

and F is closed under compositions. Hence E ∈ P̂GF .

For the second case, let G be closed under compositions and pullback diagrams.

Let E : 0 // A // B // C // 0 , E ′ : 0 // A // B ′ // C // 0 ∈ P̂GF
with g∗1(E) ∈ P for g1 : C1 −→ C, g1 ∈ G and g∗2(E ′) ∈ P for g2 : C2 −→ C, g2 ∈ G, say

g∗1(E) : 0 // A // B1
// C1

// 0 and
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g∗2(E ′) : 0 // A // B2 // C2 // 0 . We have the commutative diagrams

0 // A ⊕ A // B ⊕ B ′ // C ⊕C // 0

0 // A ⊕ A // B1 ⊕ B ′ //

OO

C1 ⊕C //

g1⊕1C

OO

0

(6.37)

and

0 // A ⊕ A // B1 ⊕ B ′ // C1 ⊕C // 0

0 // A ⊕ A // B1 ⊕ B2
//

OO

C1 ⊕C2
//

1C1⊕g2

OO

0

(6.38)

with exact rows.

By Lemma 6.1, g1⊕1C and 1C1⊕g2 are inG. SinceG is closed under compositions,

(g1 ⊕ 1C) ◦ (1C1 ⊕ g2) ∈ G. Since P is a proper class, [(g1 ⊕ 1C) ◦ (1C1 ⊕ g2)]∗(E ⊕ E ′) ∈ P
with (g1 ⊕ 1C) ◦ (1C1 ⊕ g2) ∈ G. Therefore, (E ⊕ E ′) ∈ P̂GF .

These arguments show that P̂GF is an e-functor. Using (Nunke 1963, Theorem 1.1),

in order to show that P̂GF is a proper class, it is enough to show that the composition of

two P̂GF -monomorphisms is a P̂GF -monomorphism.

Let E1 : 0 // A α // B
γ // C // 0 and

E2 : 0 // B
β // D // G // 0 ∈ P̂GF . Then there are homomorphisms f : A −→

A ′, f ∈ F and g : G ′ −→ G, g ∈ G such that f∗(E1) ∈ P and g∗(E2) ∈ P. We have the

following commutative diagrams with exact rows and columns:

47



0

��

0

��

0

��

0

��

E1 : 0 // A //

��
��

��
��

��
��

��
��

B //

��

||
||

||
||

|

||
||

||
||

| C //

��

}}
}}

}}
}}

}}
}}

}}
}}

0

E1 : 0 // A // B
γ //

��

C //

��

0

E3 : 0 // A //

��
��

��
��

��
��

��
��

D ′ //

}}||
||

||
||

��

F ′ //

g1}}||
||

||
||

��

0

E : 0 // A // D //

��

F //

��

0

G ′

g
}}{{

{{
{{

{{

��

G ′

��

g
}}{{

{{
{{

{{

G

��

G

��

0 0

0 0

E2 E4 E5 E6

(6.39)
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0

��

0

��

0

��

0

��

E7 : 0 // A ′ u // B ′ //

v

��

C //

��

0

E1 : 0 // A //

f
??��������

B //

��

f1
=={{{{{{{{{

C //

��

|||||||||

|||||||||
0

E8 : 0 // A ′ // D ′′ //

��

F ′ //

��

0

E3 : 0 // A //

f
??��������

D ′ //

��

=={{{{{{{{
F ′ //

��

||||||||

||||||||
0

G ′

��

G ′

��

G ′

zzzzzzzz

zzzzzzzz

��

G ′

{{{{{{{{

{{{{{{{{

��

0 0

0 0

E4 E9 E6 E6

(6.40)

In the diagram (6.39), E4 = g∗(E2) ∈ P, E6 = g∗(E5) = g∗(γ∗(E2)) = γ∗(g∗(E2))

since ExtP̂GF is a subfunctor of Ext, and g1 ∈ G since g1 is constructed using pullback.

In the diagram (6.40), E7 = f∗(E1), E9 = f1∗(E4) ∈ P. Then u : A ′ −→ B ′ and

v : B ′ −→ D ′′ are P-monomorphisms. Since P is a proper class, v ◦ u is a

P-monomorphism and E8 ∈ P. f∗(E3) = E8 and f ∈ F implies E3 ∈ P̂GF , so there is

g2 : C ′ −→ F ′, g2 ∈ G for some R-module C ′ such that g∗2(E3) ∈ P.

Then (g1 ◦ g2)∗(E) = g∗2(g∗1(E)) = g∗2(E3) ∈ P and (g1 ◦ g2) ∈ G since g1, g2 ∈ G
and G is closed under compositions. Hence E ∈ P̂GF . �

A similar result obtained for the classes P and P̂r in the previous section also

holds for the class P̂GF under some extra conditions on the classes F and G.

Theorem 6.11 Let P be a proper class and (F , G) a compatible pair for P. Moreover,

let the inclusions i f : Ker f −→ A belong to F for all f : A −→ A′ ∈ F for R-modules

A, A′ if F is closed under pushout diagrams, and the epimorphisms πg : C −→ C/ Im g
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belong to G for all g : C′ −→ C ∈ G for R-modules C,C′ if G is closed under pullback

diagrams. Then we have

P + ˆSplit
G
F = P̂GF . (6.41)

Proof First we will show that P ⊆ P̂GF . Let E : 0 // A // B // C // 0 ∈ P.

For the first case, let F be closed under pushout diagrams. Since F is nonempty, there is

a homomorphisms h : X −→ X′ in F for some R-modules X and X′. Then in the pushout

diagram

X h //

0
��

X′

��
A

h ′
// P

(6.42)

we have h′ ∈ F since F is closed under pushout diagrams. Since ExtP is a subfunctor of

Ext, h′∗(E) ∈ P, therefore E ∈ P̂GF and P ⊆ P̂GF .

For the second case, let G be closed under pullback diagrams. Since G is nonempty, there

is a homomorphisms w : Y ′ −→ Y in G for some R-modules Y and Y ′. Then in the

pullback diagram

Y ′
w // Y

P ′ w′
//

OO

C

0

OO

(6.43)

we have w′ ∈ G since G is closed under pullback diagrams. Since ExtP is a subfunctor of

Ext, w′∗(E) ∈ P, therefore E ∈ P̂GF and P ⊆ P̂GF . These arguments show that P ⊆ P̂GF .

Since Split ⊆ P for every proper class P, ˆSplit
G
F ⊆ P̂GF . Combining these inclusions we

obtain P + ˆSplit
G
F ⊆ P̂GF .

Let us write P + ˆSplit
G
F = L. We will show that P̂GF ⊆ L.

At this point, we separate the proof into two parts because of the conditions on F
and G.

In the first case, let F be closed under compositions and pushout diagrams. Let

E : 0 // A // B // C // 0 ∈ P̂GF . Then there is a homomorphism f : A −→
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A ′, f ∈ F for some R-module A ′ such that f∗(E) ∈ P. We can write the homomorphism f

as f = i ◦ f ′, where f ′ : A −→ Im f is the epimorphism induced by f and i : Im f −→ A ′

is the inclusion.

Using the homomorphisms f ′ and i, we obtain the following commutative dia-

grams with exact rows and columns:

0

��

0

��
Ker f

��

Ker f

��
E : 0 // A //

f ′

��

B
γ //

α

��

C // 0

E ′ : 0 // Im f
µ //

��

B ′
β //

��

C // 0

0 0

(6.44)

0

��

0

��
E ′ : 0 // Im f

µ //

i
��

B ′
β //

λ

��

C // 0

f∗(E) : 0 // A ′
ν //

��

B ′′ //

��

C // 0

A ′/ Im f

��

A ′/ Im f

��
0 0

E1

(6.45)

We have i∗(E ′) = f∗(E) ∈ P, then ν is a P-monomorphism. Since P ⊆ L, ν is an

L-monomorphism. Since i ∈ F by Lemma 6.1 and i∗(E1) ∈ Split by (Mac Lane 1963,

Ch. 3, Proposition 1.7), i is a ˆSplit
G
F -monomorphism. Since ˆSplit

G
F ⊆ L, i is an L-

monomorphism. Then λ ◦ µ = ν ◦ i is an L-monomorphism since L is a proper class by
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definition, and µ is an L-monomorphism since ExtL is a subfunctor of Ext. Therefore β

is an L-epimorphism.

Since i f : Ker f −→ A and f : A −→ A′ belong to F , f ◦ i f is in F since F
is closed under compositions. Therefore, Ker f is ˆSplit

G
F -coinjective and α is a ˆSplit

G
F -

epimorphism, and α is an L-epimorphism since ˆSplit
G
F ⊆ L. Then γ = β ◦ α is an

L-epimorphism since L is a proper class by definition. Hence E ∈ L and P̂GF ⊆ L.

For the second case, let G be closed under compositions and pullback diagrams.

Let E : 0 // A // B // C // 0 ∈ P̂GF . Then there is a homomorphism g :

C ′ −→ C, g ∈ G for some R-module C ′ such that g∗(E) ∈ P. We can write the ho-

momorphism g as g = g′ ◦ j, where g′ : Im g −→ C is the inclusion and j : C ′ −→ Im g

is the epimorphism induced by g.

Using the homomorphisms j and g′, we obtain the following commutative dia-

grams with exact rows and columns:

0

��

0

��
E ′ : 0 // A θ // B ′ σ //

ξ

��

Im g //

g′

��

0

E : 0 // A
η // B //

��

C //

��

0

C/ Im g

��

C/ Im g

��
0 0

(6.46)
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0

��

0

��
X

��

X

��
g∗(E) : 0 // A // B ′′

δ //

ω

��

C ′ //

j
��

0

E ′ : 0 // A θ // B ′
σ //

��

Im g //

��

0

0 0

E2

(6.47)

We have g′∗(E ′) = g∗(E) ∈ P, then δ is a P-epimorphism. Since P ⊆ L, δ is anL-

epimorphism. Since j ∈ G by Lemma 6.1 and j∗(E2) ∈ Split by (Mac Lane 1963, Ch. 3,

Proposition 1.7), j is a ˆSplit
G
F -epimorphism. Since ˆSplit

G
F ⊆ L, j is an L-epimorphism.

Then σ◦ω = j◦δ is anL-epimorphism sinceL is a proper class by definition, and σ is an

L-epimorphism since ExtL is a subfunctor of Ext. Therefore θ is an L-monomorphism.

Since πg : C −→ C/ Im g and g : C′ −→ C belong to G, πg ◦ g is in G since G is

closed under compositions. Therefore, C/ Im g is ˆSplit
G
F -coprojective and ξ is a ˆSplit

G
F -

monomorphism, and ξ is an L-monomorphism since ˆSplit
G
F ⊆ L. Then η = ξ ◦ θ is an

L-monomorphism since L is a proper class by definition. Hence E ∈ L and P̂GF ⊆ L. �
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CHAPTER 7

CONCLUSIONS

In this thesis we applied the operations defined on classes of short exact sequences

to the classes related to supplements. We showed that the class of extended weak supple-

ments is the result of the operation ◦ applied to two classes one of which is the class of

splitting short exact sequences.

We have introduced closures for a class of short exact sequences, which are proved

to be proper when the underlying class is proper, and investigated their relation with

the proper classes related to supplements and the operations mentioned. We have given

a direct sum decomposition for the class ˆSplit of quasi-splitting short exact sequences

over the ring of integers in terms of proper classes. We have found a relation between a

proper class and its closure using the operation +. We have introduced Ivanov classes and

described the closures of proper classes SB and WS in terms of Ivanov classes under

some restrictions on the ring concerned. For a given class P of short exact sequences over

an integral domain, we have also defined other classes which are proper and included in

the class P when P is proper.

A closure of submodules of a module over an integral domain is defined using a

similar definition for modules over an integral domain (see (Pancar 1997)). Using this

definition, we have proved the uniqueness of closures for submodules of a torsion-free

module over an integral domain.

We have defined a closure for a class of short exact sequences over an associa-

tive ring with an identity element using classes of homomorphisms, and proved that this

closure is proper when the underlying class is proper. We have also proved a result that

relates the closure to the underlying class, under some conditions on the classes of homo-

morphisms used in defining the closure.

Results we have proved shows that the operation + and closures of splitting short

exact sequences plays an important role on the closures of proper classes defined in this

work.
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ules”. MSc diss., İzmir Institute of Technology, 2004.

[Fuchs 1970] Fuchs, L. Infinite Abelian Groups, Vol. I. New York, Academic Press, 1970.

55



[Hart 1974] Hart, N. “Two parallel homological algebras.” Acta math. Acad. Sci. Hung.
25 no.3-4(1974):321-327.

[Hungerford 1974] Hungerford, T. W. Algebra. Springer-Verlag, 1974.

[Ivanov 1978] Ivanov, A. V. “ω-divisible and ω-flat modules.” Mat. Zametki 24 no.6
(1978):741-747.

[Kaplansky 1969] Kaplansky, I. Infinite Abelian Groups. Michigan, University of Michi-
gan Press, 1969.

[Kasch 1982] Kasch, F. Modules and Rings. London Mathematical Society, 1982.

[Leonard 1966] Leonard, W. W. “Small Modules.” Pro. Amer. Math. Soc. 17 no. 1
(1966):527-531.

[Mac Lane 1963] Mac Lane, S. Homology. Springer-Verlag, 1963.

[Mermut 2004] Mermut, E. “Homological Approach to Complements and Supplements”.
PhD diss., Dokuz Eylül University, 2004.

[Misina and Skornjakov 1960] Misina, A. P., and L. A. Skornjakov. Abelian Groups and
Modules. American Mathematical Society, 1960.

[Nunke 1963] Nunke, R. J. “Purity and Subfunctor of the Identity.” Topics in Abelian
groups (Proc. Sympos., New Mexico State Univ., 1962):121-171.

[Pancar 1997] Pancar, A. “Generation of Proper Classes of Short Exact Sequences.” In-
ternat. J. Math. and Math. Sci. 20, no.3 (1997):465-474.

[Sklyarenko 1978] Sklyarenko, E. G. “Relative Homological Algebra in Categories of
Modules.” Russian Math. Surveys 33, no.3 (1978):97-137. Translated from Russian
from Uspehi Mat. Nauk 33, no.201 (1978):85-120.

[Vermani 2003] Vermani, L. R. An Elementary Approach to Homological Algebra. Chap-
man and Hall/CRC, 2003.

[Walker 1964] Walker, C. P. “Properties of Ext and Quasisplitting of Abelian Groups.”
Acta Math. Acad. Sci. Hung. 15 (1964):157-160.

[Wisbauer 1991] Wisbauer, R. Foundations of Module and Ring Theory. Gordon and
Breach, 1991.

[Zöschinger 1974a] Zöschinger, H. “Komplemente als direkte Summanden.” Arch. Math,
(Basel) 25 (1974):241-253.

56



[Zöschinger 1974b] Zöschinger, H. “Komplementierte Moduln über Dedekindringen.” J.
Algebra 29 (1974):42-56.

[Zöschinger 1974c] Zöschinger, H. “Moduln die in jeder Erweiterung ein Komplement
haben.” Math. Scand. 35 (1974):267-287.

[Zöschinger 1978] Zöschinger, H. “Über Torsions- und κ-Elemente von Ext(C,A).” Jour-
nal of Algebra 50 (1978):299-336.

57



VITA

Date and Place of Birth: 08.07.1981, İzmir - Turkey
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