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ABSTRACT 
 

GROWTH AND CHARACTERIZATION OF CARBON NANOTUBES 
OVER Co-Mo/MgO CATALYSTS 

 
This thesis work is focused on synthesis of high quality and high yield Carbon 

nanotubes by methane decomposition catalytic chemical vapor deposition method on 

Co-Mo/MgO catalyst prepared by gel-combustion method.  Catalyst contained  weight 

%1.06 Co and weight %0.86 Mo having a molar ratio of Co:Mo:MgO;0.5:0.25:10. 

CNTs were grown in a quartz tube. 

In this study, three different growth conditions were examined. Argon, hydrogen 

or mixture of two gases were added to methane during growth. And for all of the three 

growth conditions, four different pretreatment processes were investigated. Pretreatment 

lasted for one hour at 850 oC. Firstly hydrogen effect was examined with 200 sccm flow 

rate, then argon effect was examined with again 200 sccm flow rate. And the third 

pretreatment included both argon and hydrogen gases flow together. For these three 

pretreatment conditions cooling and heating processes also took place with the same gas 

rates. However, the last pretreatment condition was carried out with hydrogen gas at 

850 oC for just one hour, and for heating and cooling processes argon was used. The 

highest quality CNTs were sythesized under pure hydrogen atmosphere for both 

pretreatment and growth processes.  

Then, three different H2 flow rates were investigated; 100, 150 and 200 sccm. 

High hydrogen flow rate during growth was better for CNT growth in terms of quality. 

Growth temperature was performed as another important parameter. Four 

different temperatures were investigeted; 850 oC, 900 oC, 950 oC and 1000 oC. With 

increasing growth temperatures, structural quality increased and tangled CNTs 

formation decreased. It was found that 950 oC was the optimum growth tempertaure to 

obtain high yield of CNT. 

Finally, the growth time effect on CNT growth was examined for four different 

growth times; 10, 20, 30 and 40 minutes and the results showed that amount of CNTs 

increased with increasing time and CNTs became longer and graphitization was higher 

at longer growth times. Disorder also decreases with increasing time. 

 

 

  



 

 

 

v

ÖZET 

 
Co-Mo/MgO KATALİZLER ÜZERİNE KARBON NANOTÜP 

BÜYÜTÜLMESİ VE KARAKTERİZASYONU 
 

 Bu tez çalışması, yüksek saflıkta ve yüksek verimde karbon nanotüplerin metan 

dekompozisyonu termal kimyasal buhar biriktirme tekniği ile yakma yöntemi ile 

hazırlanmış Co-Mo/MgO kataliz üzerinde sentezlenmesine odaklanmıştır. Kataliz 

%1.06 Co, %0.86 Mo içermektedir ve maddelerin kataliz içindeki molar oranı 

Co:Mo:MgO;0.5:0.25:10 dur. 

 Bu çalışmada, üç farklı büyütme koşulu incelenmiştir. Argon, hidrojen ya da bu 

iki gazın karışımı büyütme süresince metana eklenmiştir. Her üç büyütme koşulu için 

dört farklı önişlem süreci incelenmiştir. Önişlem süreci 850 oC de 1 saat 

sürdürülmüştür. İlk olarak 200 sccm akış hızında hidrojen etkisi incelenmiştir, daha 

sonra 200 sccm akış hızında argon etkisi incelenmiştir. Üçüncü önişlem süreci her iki 

gazı bir arada içermektedir. Bu üç önişlem süreci için ısıtma ve soğutma işlemlerinde 

önişlem süresince yer alan gaz aynı akış hızıyla sisteme gönderilmiştir. Ancak, 

dördüncü önişlem süreci diğerlerinden farklıdır. Bu sefer, önişlem süreci hidrojen gazı 

ile 850 oC de sadece bir saat yapılmıştır ve ısıtma ve soğutma işlemlerinde argon gazı 

yer almıştır. Sonuç olarak, en yüksek kalitede karbon nanotüpler hem önişlem hem 

büyütme süreçlerinde saf hidrojen ortamında sentezlenmiştir.     

 Daha sonra üç farklı hidrojen akış hızı incelenmiştir; 200 sccm, 150 sccm ve 100 

sccm. ve yüksek akış hızında hidrojen, kalite açısından karbon nanotüp büyütülmesinde 

daha iyidir. 

 Büyütme sıcaklığı diğer bir parametre olarak uygulanmıştır. Dört farklı büyütme 

sıcaklığı incelenmiştir; 850 oC, 900 oC, 950 oC ve 1000 oC. Azalan büyütme sıcaklığıyla 

yapısal kalite düşmüş ve iç içe geçmiş karbon nanotüpler meydana gelmiştir. Verim 

açısından optimum sıcaklığın 950 oC olduğu görülmüştür. 

 Son olarak, büyütme süresinin etkisi dört farklı büyütme süresi için 

incelenmiştir; 10, 20, 30, 40 dakika ve karbon nanotüp yoğunluğu artan süre ile artmış, 

daha uzun karbon nanotüpler oluşmuş ve daha uzun büyütme sürelerinde daha yüksek 

grafitizasyon elde edilmiştir. Süre ile düzensizlik azalmıştır. 
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CHAPTER   1 

 

INTRODUCTION 

 
 Carbon nanotube (CNT) is an interesting form of pure carbon, which occurs 

when a graphene sheet rolled into a cylinder, both ends of the cylinder may be capped 

with a half of fullurene molecule. Carbon nanotubes have caught scientists attention 

with its special properties since their detailed observation TEM by Iijima in 1991 which 

started a new era of research. Large number of studies have been done on CNT 

synthesis and characterization. CNTs have been used and showed as viable potential in 

many applications.  

 Some of carbon nanotube’s excellent physical properties are high aspect ratio, 

high Young modulus, high tensile strenght, high thermal and electrical conductivity 

(Salvetat, et al. 1999). Because of their high young modulus and low weigth they are 

useful as reinforcing agents in composite materials and in a variety of applications such 

as sensors, field emission devices, flat panel displays, energy storage, electrochemical 

devices and electronic devices (Paradise, et al. 2006).  

 Carbon nanotubes divide into two groups; single wall carbon nanotubes 

(SWNTs) and multi wall carbon nanotubes (MWNTs) depending on number of 

concentric graphene cylinder  that tube contains (Dresselhaus, et al. 2001). A SWNT 

can be classified as three types with respect to the orientation of the six-membered 

carbon ring (hexagon) relative to the axis of  the nanotube; chiral, zigzag or armchair. 

Chiral vector  of tube defines its electronic band structure. Hence, a CNT can be 

semiconducting or metallic (Dresselhaus, et al. 2004).  Zigzag nanotubes can be 

semiconducting or metallic depending on n,m indices ( Ch=na1+ma2) , all armchair 

nanotubes are metallic nanotubes (Saito, et al. 1992).  

 There are three main methods to produce CNTs. These are arc discharge, laser 

vaporization and chemical vapor deposition (CVD) methods (Baddour and Briens, 

2005). Among these, CVD method is suitable for mass production.  In this method an 

energy source such as a plasma, a resistive heater or a furnace is used to transfer energy 

to a gas phase carbon precursor and carbon deposition on metal catalysts results in 

carbon nanotube formation. 
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 Catalyst material is very important for CNT growth. Transition metals are 

appropriate for CNT growth but especially Fe, Co, Ni  are the best ones according to 

many researchers. These metal particles are generally supported by an inorganic porous 

material to provide high surface area for active component. There are many methods to 

produce catalyst. Impregnation, precipitation, combustion and sol-gel are most common 

ones. Gel-combustion method has some advantages; it gives high specific surface area 

and good dispersion of the active sites for catalyst (Rashidi, et al. 2007).  

The aim of this work to sythesize effective Co-Mo/MgO catalyst particles by 

gel-combustion method and then grow high quality and large scale CNTs by optimizing 

CNT growth parameters by methane thermal chemical vapor deposition. Pretreatment 

and growth atmosphere gas composition, hydrogen flow rate, growth temperature and 

growth time are studied parameters in this study. This thesis consists of six chapters. 

The first one is a general information about carbon nanotubes and content of the thesis, 

Chapter 2 gives information about carbon nanotubes, their structure, discovery, types 

and growth methods with details. In Chapter 3, catalyst materials used for CNT growth 

are reviewed. Catalyst active component and support material and general catalyst 

preparation methods for CNT synthesis are explained and also literature survey of 

widely used catalyst materials for CNT growth is given as a table. Chapter 4 includes 

Co-Mo/MgO catalyst prepation by gel-combustion method, CNT production on this 

catalyst by chemical vapor deposition and common characterization techniques. All 

experimental results are given and discussed in Chapter 5 and conclusions of this study 

are given at Chapter 6 in the final chapter. 
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CHAPTER 2 

 

CARBON NANOTUBES 

 
2.1. Carbon Structures 
 
 Carbon is one of the special elements in the periodic table, in terms of the 

number of compounds. It can make single, double, and triple bonds. Due to the types of 

bonds it can form and the number of elements it can join in bonding, it may form an 

infinite number of compounds. Bonding in any elements takes place with only the 

valence level electrons. 

Carbon is the sixth element of periodic table and is positioned in the group IVA. 

Two electrons of carbon occupy the 1s2 orbital, these are core level electrons and are 

not available to form a bond. These 1s core level electrons do not generally affect the 

solid state properties of carbon materials, since the energy position of the 1s core levels 

is far from the Fermi energy compared with the valance level electrons. The other four 

electrons, valance electrons, occupy 2s2 and 2p2  orbitals. In the crystalline phase the 

valance electrons give rise to 2s, 2px, 2py, and 2pz orbitals which are important in 

forming covalent bonds in carbon materials. Since the energy difference between the 

upper 2p energy level and the lower 2s level is smaller compared with the binding 

energy of the chemical bonds, the electronic wave functions for these four electrons can 

easily mix with each other, so changing the occupation of the 2s and three 2p atomic 

orbitals in order to enhance the binding energy of the C atom with its neighbouring 

atoms. This mixing of 2s and 2p atomic orbitals is called hybridization. In carbon, three 

possible hybridization occur: sp, sp2, sp3.  This is the reason why carbon assumes in a 

variety structural forms such as graphite, diamond, carbon fibers, fullerenes, and carbon 

nanotubes.  

 Carbon has isomers from 0 dimension to 3 dimensions; fullerene has a zero-

dimensional structure, carbon nanotubes are one-dimensional, graphene  is two-

dimensional and diamond is three-dimensional. Isomers of carbon are given in table 2.1. 
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Table 2.1 Isomers made of carbon  
(Source:Dresselhaus, et al. 1993) 

 

Dimension 0-D 1-D 2-D 3-D 
Isomer C60 

Fullerene 
Nanotube 
Carbyne 

Graphite 
Fiber 

Diamond 
Amorphous 

Hybridization sp2 sp2 (sp) sp2 sp3 
Density 
[g/cm3] 

1.72 1.2-2.0 
2.68-3.13 

2.26 
~2 

3.515 
2-3 

Bond Lenghts 
[A0] 

1.40 (C=C) 
1.46 (C-C) 

1.44 (C=C) 1.42 (C=C) 
1.44 (C=C) 

1.54 (C-C) 

Electronic 
Properties 

Semiconductor 
Eg= 1.9 eV 

Metal or 
semiconductor 

Semimetal Insulating 
Eg=5.47 eV 

 

 

2.1.1. Diamond  
 

 There are two known three dimensional (3D) allotropes of carbon. Diamond 

which is one of the 3D allotrope of carbon, is reformed from graphite by applying  high 

temperature and high pressure and it shows a sp3 hybridization in its structure. It has a 

face centered cubic crystal structure and occurs from tetrahedrally bonded carbon 

atoms. Diamond has many uses in industry because of its excellent physical properties 

which are generally originated from strong covalent bonds between its atoms. The most 

important characteristics of diamond are its hardness, thermal conductivity, wide band 

gap, and high optical dispersion. 

 

 
Figure 2.1. Unit cell of diamond 

(Source: Stahl 2000) 
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2.1.2. Graphite 
 

 An other most common and 3D allotrope of carbon is graphite which is the most 

stable form of carbon at room temperature and atmospheric pressure (Baddour and 

Briens 2005).    Graphite is an electrical conductor unlike diamond and it is chemically 

more reactive than diamond. It has a different crystal structure from diamond. It is soft 

and grey to black in colour.  The graphite structure composes of layers of  hexagonally 

arranged carbon atoms and within these layers, each carbon atom bonds to three 

coplanar neighbour atoms by strong covalent bonds but the fourth bonding in 

perpendicular direction is a weak van der Waals bond and as a consequence planes of 

graphites can be seperated easily because the interaction between two planes in graphite 

is very weak. Figure 2.2 shows the structure of graphite. A single atomic plane of 

graphite is called 2D graphite or graphene layer , and graphene is the basic structural 

element of also fullurenes and carbon nanotubes.  

 

 
Figure 2.2. Crystalline structure of graphite 

(Source : Wissler 2006) 

 

2.1.3 Fullerene 
 

 The first discovery of fullerene, an other form of carbon, was in 1985 (Kroto, et 

al.1985) . Fullerene has the form of a hollow closed sphere or ellipsoid and can consist 

of 60, 70 or 82 carbon atoms. In the fullerene structure carbon atoms bonded to one 

another creates both hexagon and pentagon rings. The structure of a C60 molecule is 

called as Buckyminster fullerene and has the form of a soccer balls. It is the smallest 

fullerene molecule in which no two pentagons share an edge and showed in figure 2.3.  
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Pure fullerenes are not conductor but when they are doped with alkali metals their 

conductivity becomes as high as metals. They are really strong and very elastic at the 

same time. 

 

 
Figure 2.3. C60 Buckminsterfullerene 

(Source: Wissler 2006) 

 

 Hereafter, the one dimensional carbon form which is called carbon nanotube 

(CNT) which is interesting with its excellent physical and chemical properties is going 

to be introduced, as the subject of this study. 

 

2.2. Carbon Nanotubes  

 

2.2.1. Discovery 

 
By rolling a graphene sheet into a cylinder and capping both end of the cylinder 

with a half of fullurene molecule a carbon nanotube is formed. Harry Kroto discovered 

C60 molecule in 1985 (Kroto, et al. 1985) while experimenting a laser ablation system 

for the vaporization of graphite by laser beams and depositing them on a copper 

collector and it was the beginning of a new area in carbon material science. At 1990s 

arc discharge method was reported in order to make large quantities of the C60 

molecule. In 1991, Iijima experimented this technique in order to observe fullerene and 

by passing large current between two graphite rods, he vaporised them and condensed 

them on Cu tip.  When he looked at the result through an electron microscope, he 

noticed something unexpected, he  discovered carbon nanotubes (Iijima, et al. 1991) at 

the negative electrode of an arc discharge. They were tiny tubes of pure carbon with a 

large amount of other forms of carbon. These first carbon nanotubes were like Russian 
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dolls, several concentric layers with caps at the end, so they  were called multi-wall 

carbon nanotubes. TEM images of these tubes are shown in Figure 2.4. 

   

 
Figure 2.4. TEM images of MWNTs observed by Sumio Iijima 

(Source: Iijima 1991) 

 

 Only two years later, in 1993, single-wall carbon nanotubes could be grown 

using Co metal catalysts by arc discharge method (Iijima, et al. 1993).  
 

2.2.2  Types of Carbon Nanotubes 

 
 Type of carbon nanotube is determined by the number of the concentric 

graphene layers. Carbon nanotubes are categorized as single wall carbon nanotubes and 

multi wall carbon nanotubes. If carbon nanotube contains one graphene layer, it is 

named single wall nanotube (SWNT); whereas if it contains two or more concentric 

layer, it is called multi wall carbon nanotube (MWNT). 
 

2.2.2.1 Single Wall Carbon Nanotube  

 
 A single-wall carbon nanotube (SWNT) is defined by a graphene sheet rolled 

into a cylindrical shape with a diameter of about 0.4-10 nm and lengths extending up to 

several microns. The shape of a SWNT is depicted in figure 2.5. If we ignore two ends 

of carbon nanotube and  focus on the large aspect ratio of the tube, carbon nanotubes 
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can be considered as one-dimensional nanostructures with axial symmetry and they 

have excellent properties because of this symmetry (Baddour, et al. 2005).   

 

 
Figure 2.5. An illustration of a SWNT 

(Source :Dresselhaus 1998 ) 
 

 2.2.2.2. Multi-Wall Carbon Nanotube 
 
 The second type consists of tubes made of more than one concentric graphene 

cylinders coaxially arranged around a central hollow with a constant interlayer spacing 

which is nearly equal to 0.34 nm (Dresselhaus, et al. 2001), graphite layer spacing,  and 

called multi-shell or multi-wall carbon nanotubes (MWNT) and it is depicted in figure 

2.6. MWNTs consist in 2 to 30 concentric graphene, diameters of which range from 2.5 

to 100 nm. MWNTs are stronger than SWNTs , but they have more defects than 

SWNTs (Dai 2002).  

 

 
Figure 2.6. An illustration of a MWNT  

(Source : Iijima 1999) 
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2.2.3. Classification of Carbon Nanotubes  
 
 A single-wall carbon nanotube can be found in three different configurations 

with respect to the orientation of the six-membered carbon ring (hexagon) in  the 

honeycomb lattice relative to the axis of  the nanotube.  These configurations are 

armchair carbon nanotube, zigzag carbon nanotube and chiral carbon nanotube. In 

Figure 2.7 the formations of each of three nanotubes are depicted. 

 The basic shape of the carbon nanotube wall is a cylinder, and the terminations 

of carbon nanotubes consist of  a hemisphere of fullerene caps or end caps. However, as 

it is shown  in Figure 2.7, the direction of six-membered ring in the graphene lattice 

relative to the axis of the nanotube can be taken almost arbitrarily, without any 

distortion of the hexagons except for the distortion due to the curvature of carbon 

nanotubes. This is why carbon nanotubes occur in many different chirallities.  

 Carbon nanotube can be also classified into two groups; achiral and chiral 

nanotubes.  An achiral carbon nanotube is a carbon nanotube whose mirror image has 

an identical structure to the original one. There two types of achiral carbon nanotubes 

and these are armchair and zigzag nanotubes. Chiral nanotubes show a spiral symmetry 

whose mirror image cannot be superposed on to the original one.  

 

 
 

Figure 2.7. Classification of CNTs a) Zig-zag b) Arm-chair c) Chiral CNTs 
(Source : Dresselhaus, et al. 1995) 

 

   

 

 



 

 

 

10

The atomic structure and type of a carbon nanotube is controlled by its chiral 

vector (Ch= nâ1+mâ2)  and its chiral angle (θ) (Reich, et al. 2004).  These (n, m) values 

are pair of integers which specify the chiral vector and â1, â2  are unit vectors of the 

hexagonal honeycomb lattice of the graphene sheet. The chiral angle (θ) gives 

information about orientations of CNTs. The chiral angle (θ) , as shown in Figure 2.8, is 

defined as the angle between the chiral vector Ch and â1, with values of   θ in the range 

of 0 ≤θ≤ 30 (Rotkin and Subramoney 2005).   

 

 
Figure 2.8. An illustration of rolling graphene into a tube 

(Source: Saito, et al. 1998) 

 

 While n=m corresponds armchair type CNT at θ=0o, m=0 corresponds zigzag 

type CNT  at θ=300, and if n≠m the tube is chiral and chiral angle is between 00 and 300 

(Belin and Epron 2005).  Chirality defines also the electrical properties of carbon 

nanotube. If (2n+m) or equivalently (n-m) is a multiple of 3, a metallic nanotube occurs. 

The armchair nanotubes denoted by (n,n) are always metallic if n is a multiple of 3, and 

the zigzag nanotubes (n,0) also are metallic. In figure 2.9 which carbon nanotubes are 

metallic and which are semiconducting is shown. The encircled dots are the metallic 

nanotubes, the small dots are the semiconducting nanotubes. 
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Figure 2.9. Possible vector specified by the pairs of integers (n,m)for general CNTs 

(Source:  Dresselhaus, et al. 1993) 
 

 2.3. Carbon Nanotube Synthesis Methods 

 
There are several methods to synthesize CNT, the most common techniques are  

discharge (Journet, et al. 1997), laser ablation (Thess, et al.1996), and chemical vapor 

deposition (CVD) (Niu, et al. 2006) methods. Arc discharge method is the method in 

which first CNT growth method, but in this method CNTs are found together with large 

concentration of amorphous carbon and CNTs are not aligned. Laser ablation method is 

the second method and it can provide arrays of ordered CNTs. The last technique is 

CVD technique which is appropriate for scaling-up. While arc discharge and laser 

ablation methods require a solid target and very high temperatures to evaporate it, CVD 

method can be used at lower temperature, and the CNTs obtained from both with arc-

discharge and laser ablation methods are tangled and thus purification is not evident for 

these methods. All of these three methods have some advantages and disadvantages, 

each technique will be shortly explained below. 

 

2.3.1. Arc-Discharge Method 

 
 The first carbon nanotubes are produced with arc discharge method (Iijima 

1991). This method has been used for synthesis of single-wall carbon nanotubes, multi-

wall nanotubes, and ropes of single-wall nanotubes (Journet, et al. 1997). This method 

is the process of CNT growth on carbon (graphite) electrodes by applying direct current 
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(DC) in an inert gas such as argon or helium (Popov 2004).  Figure 2.10 is a schematic 

illustration of the arc-discharge setup. 

 

 
Figure 2.10. Cross sectional view of a arc generator  

(Source: Harris 2007) 
 

In this method, there are two high-purity graphite electrodes of 5-20 mm 

diameter separated by 1 mm. A voltage of  20-25 V is applied across the electrodes and 

a dc electric current of 50-120 A flows between the electrodes. When applying current, 

temperature reaches to about 4000oC, anode vaporises and condenses on the cathode 

surface, so the length of anode decreases with the formation of carbon nanotubes. 

During the process both electrodes are cooled with water, and the arc is generally 

operated in He atmosphere at low pressure between 50-700 mbar. By the arc discharge 

method  carbon nanotube synthesis can be done with or without catalyst in order to 

produce multi-wall carbon nanotubes and single-wall carbon nanotubes, respectively 

(Journet and Bernier 1998). 

For multi-wall carbon nanotube production, there is no catalyst need, and 

nanotubes are found in bundles in the inner region of the cathode deposit and are 

roughly aligned in the direction of electric field (Ebbesen, et al. 1993, Seraphin, et al. 

1993). Using this method Iijima produced first multi-wall carbon nanotube in 1991, and 

these nanotubes had 2 to 50 walls. However, many by products also occur at this 

method such as fullerenes, amorphous carbon, graphite sheets (Baddour 2005). By 

heating the as grown material in oxygen environment, graphitic particles can be 
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oxidized and purification is provided, but oxidation also removes an substantial amount 

of nanotubes.  

When one of the  graphite electrodes (anode) contains a transition metal catalyst 

particles such as Fe, Co, Ni, single wall carbon nanotubes can be synthesized using arc 

discharge method. First single-wall carbon nanotube synthesis by arc discharge method 

was reported in 1993 by Iijima and Ichihashi, and the used catalyst was Fe in their 

study.   In the same year Bethune et al. also syntesized single- wall carbon nanotubes 

with this method, but using Co as a catalyst. There are a lot of study about single-wall 

carbon nanotube synthesis but the results always change, it can be said that 

experimental conditions and catalyst species effects the results . 

As a conclusion, arc discharge is the most common and simplest method to 

produce carbon nanotubes, but it require a purification and the purification is the main 

disadventage of this method, since during this process carbon nanotubes might be 

damaged. 

 

2.3.2. The Laser Ablation Method 

 
 The first carbon nanotube synthesis by laser ablation method was reported by 

Guo (Guo, et al. 1995). This method utilizes an intense laser pulse (Yudasaka, et al. 

1999) or a continous laser (Maser, et al. 1998)  to ablate a Co-Ni/graphite composite 

target. The target is placed in a tube furnace heated to 1200oC. When this target 

vaporises, a cloud of C, C2, C3 and catalyst vapors occur, then cloud condenses, and the 

small amount of carbon species come together to form a larger one. The vaporized 

catalysts prevent the closing of these carbon molecules into cage structure, so the 

growth process is finished with the formation of a single-wall carbon nanotube (Scott, et 

al. 2001, Baddour and Briens 2005). During the laser ablation, an inert gas (generally 

helium or argon) flow take place in the growth chamber and provides grown carbon 

nanotubes to collect on a water-colded cupper collector as shown in figure 2.11. Laser 

has a very high energy density so this method is appropriate to evaporate materials that 

have high evaporation temperature (Ando et al. 1994). With increasing laser power, 

target temperature increases, hence the yield of carbon nanotubes improves. 
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Figure 2.11. Schematic illustration of a laser ablation apparatus 

(Source : Daenen, et al. 2003) 

 

Relatively high purity single-wall carbon nanotube synthesis is the main 

advantage of laser ablation method. With this technique, multi-wall carbon nanotube 

synthesis has not been reported yet. On the other hand, scale-up is not possible with this 

method because of very high temperature and capital cost need.  

 

2.3.3. Chemical Vapor Deposition Method 

 
 The general nanotube growth mechanism in a chemical vapor deposition process 

through the dissociation of hydrocarbon molecules over the transition metal 

nanoparticles and dissolution and saturation of carbon atoms in these nanoparticles. 

CVD method has been used first for the production of carbon filaments more than 4 

decades ago (Walker, et al. 1959), however, it was utilized to grow multi-wall carbon 

nanotubes till 1993 (Yacaman, et al. 1993). Some different CVD techniques have been 

developed for carbon nanotube growth such as plasma enhanced CVD, thermal CVD, 

alcahol catalytic CVD, laser assisted CVD and aero-gel supported CVD. Thermal CVD 

method will be explained below in details.  

Carbon nanotube growth includes two main step; the first one is the catalyst 

preparation and the other one is the nanotube growth on this catalyst. In order to 

synthesis nanocatalyst particles, a thin film layer can be used by annealing or a catalyst 

can be synhesized by some chemical methods.  At the first step, prepared catalyst 
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sample is placed in a quartz tube which is in a furnace and the temperature is set to a 

desired point. During the increase of the temperature to the set point, an inert gas flow 

takes place through the tube to prevent the oxidation of samples. When the furnace 

reaches to the desired temperature a preannealing can be done with H2 to reduce catalyst 

nano particles from oxide form to metal form. The other step is sending hydocarbon gas 

to the system as a carbon precursor. Generally used hydrocarbon gases are CH4, C2H4, 

C2H2, C6H6 for carbon nanotube growth (Cui, et al. 2003). During growth process, 

hydrocarbon gas decomposes and carbon deposits onto the catalyst. Carbon has a low 

solubility in these metals at high temperature and therefore the carbon precipitates to 

form cabon nanotubes. 

The key parameters in nanotube growth by CVD are the catalyst system, 

temperature, composition and the flow rate of the carrier and hydrocarbon gases (Biris, 

et al. 2006).  The particle structure and composition also are very important parameters 

to explain the differences observed between the nanotubes morphologies (Loiseau, et al. 

2003). In CVD method Fe, Co, Ni transition metals or their alloys are used as catalyst to 

synthesize carbon nanotubes. As support, inorganic porous materials such as silica 

(SiO2), alumina (Al2O3), zeolites and magnesium oxide (MgO) are generally used (Liu, 

et al. 2004).  

CVD is the most preferred method to produce carbon nanotubes, because this 

method is performed at low temperature compared with the other methods (Reich et al. 

2004). The other reason is this method allows to control the diameter of CNTs by 

controlling catalyst nanoparticles size (Weifeng, et al. 2003). At the same time it is easy 

to perform CVD process. An other reason is that it is suitable method for large scale 

production (Yamacan, et al. 1993, Weifeng, et al. 2003).  The schematic illustration of 

CVD system is depicted in Figure 2.12.  
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Figure 2.12. A schematic illustration of a CVD System 
 

There are two types of CNT growth mechanism. The first one is the base growth 

in which the metal catalyst particle stay at the end of the tube. The other growth type is 

the tip growth in which the metal catalyst particle might remove from the surface and 

moves at the top of the growing carbon nanotube (Dupuis 2005). The interaction 

between catalyst particle and support is stronger at base growth mechanism than tip 

growth mechanism so catalyst particle remains attached to the support (Dupuis 2005). 

The types of growth mechanisms are given at Figure 2.13.  

 

  
Figure 2.13. Schematic illustrations of carbon nanotube growth mechanisms a) Base or 

root growth b) Tip growth (Source: S.B.Sinnot, et al. 1999) 
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CHAPTER 3 

 

CATALYST USED FOR CNT GROWTH 

 
3.1. Catalyst  

 
 As explained in the previous chapter, most of the CNT synthesis methods 

require catalyst particles. A catalyst is described as a susbtance that increases the rate at 

which a chemical reaction approaches equilibrium without itself becoming permanently 

involved in the reaction (Richardson 1989). But the main role of catalyst in CNT growth 

is to decompose hydrocarbon molecules (Dupuis 2005).  

 The catalyst material is one of the most important key parameters, and 

determines the morphology, type (SWNT or MWNT), diameter and also  growth 

mechanism in the production of CNTs.  CNT formation is affected by method of 

catalyst preparation (Bonadian, et al. 2006), the nature and pore size of the support 

(Qingwen, et al. 2002),  the nature of the metal (Ago, et al. 2006), the quantity of active 

catalyst particles and size and size distribution of the active component.  
 

3.1.1 Literature Search 

 
In this section, number of studies about CNT growth on catalysts synthesized by 

chemical methods are given in table 3.1. An extensive literature search was done in 

order to find an ideal catalyst for CNT growth.  
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Table 3.1 List of some studies on CNT growth 
 

Reference Catalyst Preparation Method Experimental Details Results 

Kong, et al. 1998 

 

Method: Impregnation 

Materials: Fumed alumina, 

Fe(NO3)3.9H2O, Methanol 

Catalyst mass:10mg 

T:1000 C 

Methane flow: 6150sccm  

P:1.25atm 

Time: 10 min 

They obtain abundant individual SWNTs in the 

diameter range of 1.3-5.4 nm for Fe2O3/ alumina 

catalyst. 

They obtained only boundles of SWNTs for  

 silica supported catalyst. 

Cassel, et al. 1999 Method: Impregnation  

Prepared catalysts:  

Fe2(SO4)3/Al2O3, Fe(NO3)3/Al2O3,   

Fe-Mo/Al2O3 and Fe-Ru/Al2O3  

Molar ratio: 

Fe:Al2O3= 1:16 

For bimetallic (Fe/Mo and Fe/Ru) 

catalysts molar ratios:  

Catalyst mass: 100 mg,  

Quartz tube diameter: 2.54 cm 

Temperature: 900 oC  

CH4: 6000sccm 

Growth time: 2-45 min.  

For heating and cooling processes 

 Ar gas was used. 

High quality and yield of SWNTs were obtained 

 over Fe-Mo/ Al2O3 and Fe-Mo/SiO2 catalsyts. 

It was attributed to dispersion, high surface area  

 and metal support interraction. 

(cont. on next page) 
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Fe: X(Mo or Ru): Al2O3= 1:0.17:16 

For Al2O3-SiO2 hybrid support 

 material molar ratio: 

Fe: Mo: SiO2: Al2O3=1:0.17:16:16 

Calcination temperature: 500 oC 

Qingwen, et al. 

2002 

 

 

Method: Impregnation 

Active Metals: FeO, CoO and NiO 

Supports: SiO2,ZrO2,CaO. Al2O3, or 

MgO 

All the supported catalysts were 

prepared by sonicating the support  

material in aques nitrate solution of  

Fe, Co or Ni at the desired  

concentration (10-15 %) for several  

minutes. The resultant mixture was  

Catalyst mass: 1g 

Temperature: 850 oC 

Ar flow: 250 sccm 

Time :30 min 

Purification was done 4 M HCl  for 

 several hours for MgO support. 

Ar/CH4 =250 ml/min/60 ml/min. 

FeO content from 5 to 50 %. 

 

 

When Fe was used MWNTs were observed on 

SiO2, ZrO2, and CaO supported catalysts while 

SWNTs were observed on Al2O3 and MgO 

supported catalysts.  

The quality of as grown SWNTs on MgO 

supports is stable for all Fe, Ni and Co metals.  

FeO/MgO was favorouble for SWNT.  

The obtained purity after purification is higher 

 than 90%, and yield was around 10 %. 

Optimal growth temperature was found in the range 

Table 3.1 (cont.) 

(cont. on next page) 
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then dried at 115 oC for at least 5 h  

and then ground to fine powder. 

of 700-950 oC. 

Yield increased significantly  by Mo addition. 

Liu, et al. 2003 Method: Impegnation 

Materials: Fe(NO3)3.9H2O, 

Mo solution, 

MgO powder, 

DI water 

Weigth ratio: Fe:Mo:MgO=1:0.1:11 

Carbon precursor: C2H2 

Catalyst mass: 300mg 

Temperature: 800-950 oC 

Ar flow:2000 sccm 

Time: 20min 

 

High quality SWNTs with few defects and very 

small amount of  amorphous carbon coating 

 have been produced.  

It was observed that C2H2 is more reactive than 

 CH4 at the same reaction temperature.  

 

Liu, et al. 2005 Method: Impregnation 

Materials: Fe(NO3)3.9H2O, 

Co(NO3)2.6H2O, 

MgO, 

DI water 

Molar ratio: Fe:Co = 1.4:1.0 

Temperature: 1000 oC  

CH4 flow: 1000sccm 

Time: 30min 

DWNTs were obtained in diameter is about 0.5- 

5 nm. They are pure and almost no amorphous 

 carbon formation. 

Yu, et al. 2006 Method: Impregnation   Dilutent gas: H2: methane = Effect of N2 and Ar atmosphere on CNT growth  

Table 3.1 (cont.) 

(cont. on next page) 
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Materials: Fe(NO3)3.9H2O, 

(NH4)6Mo7O24, 

MgO powder, BET 27.4 m2/g. 

DI water 

Weight ratio: 1:10,  

Molar ratio: Fe/Mo=1:3.5 (Fe to Mo) 

10:1:1 

Temperature: 900 oC 

Time: 30 min 

 

was investigated as a diluting gas. 

In argon atmosphere SWCNTs were 

synthesized. 

It was observed that nitrogen is not inert in CNT 

growth by the CVD method. 

Ago, et al. 2006 Method: Impregnation 

Materials:  

Fe(NO3)3.9H2O, Co(NO3)3.6H2O, 

Ni(NO3)2.6H2O, 

MoO2(acac2), MgO powder, 

Methanol 

Metal loading : 1wt%  

Catalyst mass:1g 

Temperature:800 oC  

Ar flow: 350 ml/min 

CH4 flow: 350 ccm 

Growth time:1 hour 

Preannealing time: 1 h    

Preannealing temperature : 800 oC  

Catalytic activity decreased with the species 

 used in order to Fe-Mo>Fe>Co>Ni. 

They obtain SWCNTs and DWCNTs. 

A small amount of water vapor assist the growth 

of SWCNTs. 

Kang, et al. 2006 Method: Impregnation 

Materials: Fe(NO3)3.9H2O, 

Catalyst mass: 20 mg, 

Tube length: 850mm, diameter: 50 

They obtained 1.6-2.4nm SWNTs. 

The nanotubes composed of about %95 SWNT 

Table 3.1 (cont.) 

(cont. on next page) 
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(NH4)6Mo7O24. 4H2O, 

MgO powder 

Molar ratio: Fe:Mo=9:1 

Total metal loading: 4wt% 

Reduction at 500 oC for 10 hour  

under 40sccm H2  gas flow. 

mm 

Carbon source: CH4  

Carrier gas: H2 

Reaction temperature: 800,850, 

 900,950, and 1000 oC 

Time: 30 min 

 and %5 DWNT at 800 oC growth temperature. 

They observed that with increasing temperature 

the number of DWNTs increases. 

Bonadian, et al. 

2006 

 

Method-1: Impregnation 

Materials: 8.08 g. Fe(NO3)3.9H2O, 

0.205 g. (NH4)5Mo7O24. 4H2O, 

12.3 g. commercial magnesia, 

200 ml of DI water 

Method-2: combustion 

Materials: Mg(NO3)2.6H2O, 

(NH3)6Mo7O24.4H2O, 

Fe(NO3)3.9H2O, Citric acid, DI water 

Temperature: 950 oC 

Time: 30 min. 

Ar: 100 sccm 

CH4: 25,19,12,6,3 sccm 

The Fe-Mo/MgO catalyst produced better results 

regarding number of CNT and their diameters  

under Ar/ NG atmospheres than under H2/NG 

atmospheres, resulted in the formation of thinner  

and cleaner CNT. 

SWNTs and DWNTs formed.  

CNTs with diameter between 0.6 and 1.8 nm.  

were obtained for 25 sccm CH4. 

The diameter of MWNTs were between 40 and 

Table 3.1 (cont.) 
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Molar Ratio:  

Fe/MgO/Mo= 1:10:12 

80 nm when the catalyst is produced with  

combustion method. 

Chai, et al. 2006 Method: Impregnation 

Materials: Co(NO3)2.6H2O 

Loading amount: 10 wt.% 

Cu(NO3)2.3H2O 

Fe(NO3)2.9H2O 

(NH4)6Mo7O24.4H2O 

Ni(NO3)2.6H2O, DI water 

Supported materials: SiO2, zeolite,  

Al2O3, ceria, TiO2, MgO, CaO 

Pressure: atmospheric pressure 

Methane/Nitrogen: 1/1 

Catalyst mass: 200 mg  

Temperature : 550 oC or 700 oC 

 

At 550 oC the carbon capacity over the 

supported CoO catalyst was found to decrease in  

the order of silica> zeolite> alumina> ceria> 

titania> magnesia> calcium oxide. 

It was observed that the carbon capacity  

decreased, following the order of  alumina> 

ceria> zeolite> silica> titania> calcium oxide> 

 magnesia at 700 oC. 

The average diameter calculated was 10.7 nm. 

MoO increased the carbon capasity and the 

 selectivity of CoO/Al2O3.  

Jodin, et al. 2006 Catalyst A: Fe and Mo nanoparticles 

deposited on silicon substrates 

Carbon precursor: CH4 

Temperature: 800-1000 oC  

MWNTs formation was observed on catalsyt A, 

 no SWNT 

 Table 3.1 (cont.) 
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Catalyst B:  

Fe-Mo/ Fumed alumina catalyst 

Catalsyt C: Fe-Mo/Al203 

Time: 10 min 

Quartz tube diameter: 4 cm,  

Ar: 1000 sccm  

Catalyst B gave SWNT and DWNT.  

Catalyst C gave SWNT of different sizes and 

narrow diameter compared to SWNTs obtained 

from catalyst B. 

Yoshihara, et al. 

2007 

 

Method: Impregnation 

Materials: Fe(NO3)3.9H2O, 

MoO2(acac2), MgO powder, 

Methyl alcohol 

Fe:Mo atomic ratio : 94:6 

Total metal loading: 1wt% 

No details given. 

 

With increasing CVD temperature from 800oC  

to 900oC, the carbon yield decreased from 19 

wt% to 13 wt%. 

The precise control of water concentration and  

temperature is important for effective SWNT 

and DWNT . 

 

Wen, et al. 2007 Method: Impregnation 

Materials: Fe(NO3)3.9H2O 

(NH4)6Mo7O24. 4H2O 

MgO powder, SiO2, Al2O3 

T: 900 oC 

5% H2 and 95% CH4, with and  

without a CO2 mixture (10% CO2 + 

90% Ar, premixed). 

The synthesis in the absence of CO2 gave 

SWNT products that contained some very short 

tubes and relatively more broken carbon sheets. 

The presence of CO2 caused to decrease in size  

Table 3.1 (cont.) 
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The catalyst molar ratio:  

Fe:Mo:support=0.02:0.0013:1 . 

 

The concentration of CO2 was  

controlled to 0.1-2.0% in the  

reactant gas (CH4) 

Growth  time: 15 min. 

of the MgO support and increase specific 

surface area of the catalyst, but too much CO2  

will also react with the SWNTs and decreased 

 the yield.  

CO2 was proved operative on the catalysts using 

a MgO support but not on the catalysts using a  

Al2O3 or SiO2 support. 

Kathyayini, et al. 

2008 

Method: Dry impregnation 

Materials: Al(OH)3 : 19g 

Fe(NO3)3.9H2O: 3.6 g,  

Ni(NO3)2.6H2O,  

Co(NO3)2.6H2O: 2.5 g 

Molybdenum acetilacetonate 

Temperature: 700 oC 

Catalyst mass: 1g 

Diluting gas: N2 

N2 flow: 300 sccm (10min) 

C2H2 flow: 30 sccm (60min) 

They made trimetalic catalysts (combinations of 

Fe,Co,Mo,Ni) but as grown CNTs contained 

higher percentage of amorphous carbon. 

For Al(OH)3 support, bimetalic catalysts 

generally generated good quantity of CNT with 

high density and precence of Mo decreased the 

activity and promoted the amorphous carbon 

formation. 

Table 3.1 (cont.) 
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They obtained MWCNTs. 

Biris, et al. 2008 Method: Impregnation 

Materials: Fe(NO3)3.9H2O, 

(NH4)6Mo7O24. 4H2O, 

MgO powder, DI water 

Weight  ratio: Fe:Mo:MgO=1:0.1:12 

They use RFCVD 

Catalyst mass: 100 mg 

Temperature: 850oC  

Frequency: 350kHz 

Time:30 min 

The carbon deposit and the size of nanotube 

boundles increased with hydrogen level. 

Hidrogen gas source was used for etching the  

amorphous carbon. 

Liu, et al. 2009 Method: Impregnation 

Materials: Ammonium iron citrate  

(NH4)6Mo7O24 

MgO powder 

For MoO3 conditioning catalysts,  

(NH4)6Mo7O24.,4H2O (200 mg)  

Mass: 50g 

The mixture of CH4 and Ar  

(volume ratio: 1/1) as carbon  

source was fed at 200 sccm)  

Time: 10 min  

Temperature: 875 oC 

In the samples obtained with and without MoO3, 

the ID/IG values were about 0.200 and 0.400, 

respectively. The higher ID/IG value without 

MoO3 means that the relative purity and 

crystallinity of the products were lower than 

those obtained with MoO3. 

Fe–Mo/MgO catalyst itself showed a higher 

production yield of CNTs than the Fe/MgO 

catalyst. 

Table 3.1 (cont.) 
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Su, et al. 2000 Method: Sol-gel, supercritical 

drying. 

Materials: Aluminum tri-sec- 

butoxide, Ethanol 

Fe(SO4)3.4H2O, MoO2(acac2), 

Nitricacid Ammonium hydroxide, 

Molar ratio: 

Mo: Fe: Al=0.16:1:16 

Catalyst mass:50mg, 

Temperature: 850 oC to 1000 oC 

Before growth reduction with  100  

sccm H2 flow for 30min  

CH4 flow:1000 sccm 

Growth time: 60 min.  

Purification with 3 M HNO for 4 h.  

They obtained high-quality SWNTs. This was 

attributed to high surface area of support and 

 metal-support interraction. 

High dispersion leading to SWNT formation. 

Improvements in SWNT yield was  attributed to 

strong interractions between the aerogel support 

and the catalyst as well as the high surface are of  

the support. 

Ning, et al. 2002 Method: Sol-gel 

Materials: Citric acid,  

Mg(NO3)2 , 6H2O, Co(NO3)2.6H2O, 

DI  water, Mo powder 

T: 1000 oC 

CH4: 1000 sccm 

H2: 30sccm 

Time: 30 min 

Pores and channels might form due the high 

temperature or the force of growing tubes. They 

were parallel to each other because of the 

preferred crystallographic orientation. Anyway, 

aligned bundled carbon nanotubes grow out of 

these parallel channels. 

Mehn, et al. 2004 Methos: Sol-gel Condition A: The best results was obtained by using 

Table 3.1 (cont.) 
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Materials:  

Aluminum tri-sec-butoxide,  

Butanediol, 2-butanol,  

1,3-butanediol, Fe2(SO4)3.5H2O,  

Fe(NO3)3.9H2O, Fe(acac)2, 

(NH4)6Mo7O24.4H2O, MoO2(acac)2  

Reduction with 200 sccm H2 for 30 

min at 900 oC 

Growth tme: 30 min  

CH4: 1000 sccm 

Temperature: 900 oC 

Condition B: 

Reduction with 500 sccm H2 and 

500 sccm CH4 for 6 min at room  

temperature  

Growth time: 10 min,  

H2: 500 sccm 

CH4: 500 sccm,  

Temperature: 950 oC 

Fe(NO3)3.9H2O in methanolic as well as in 

ethanolic solutions. 

Absence of molybdenum led to decreased 

activity and the formation metal particles in the 

size range of 4–10 nm.  

Decreasing Fe/Al ratio from 1 to 0.5 in the  

catalyst results in a small decrease of the carbon 

yield but results also in the formation of a more 

uniform product. 

Conditions B were more favorable for SWNT  

formation.  

At elevated temperatures, amorphous carbon 

covering the tubes was also be observed besides 

MWNTs. 

Tran, et al. 2006 Method: Sol-gel Catalyst mass: 0.5g TEM results showed that all catalysts produce 

Table 3.1 (cont.) 
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Materials: Fe(acac)3, Fe(NO3)3, 

Co(acac)2, Co(OAc)2, DI water, 

Ammonia,  

The total amount of metal in each  

catalyst has been kept constant at  

0.7*103 mol of metal per gram of  

catalyst 

Temp. :700 oC 

Time:15 min. 

C2H4: 0,223mmol.s-1 

He: 0,521 mmol s-1 

 

 

not only carbon nanotubes but also amorphous 

carbon. 

The catalytic activity of the metal species 

towards a carbon deposit is found to decrease in 

the order of Co > Fe > Fe–Co. 

Fe/Al2O3 catalyst synthesized with Fe(NO3)3 has 

a better activity and selectivity than synthesized 

 with Fe(acac)3.  

Rashidi, et al. 2007 

Method: Sol-gel 

Materials: Co(NO3)2.6H2O 

Mg(NO3)2.6H2O 

(NH4)6Mo7O24.4H2O 

Molar ratios:  

Co:Mo:MgO = 0.5:0.25:10 

Citric acid, tartaric acid, EDTA,  

Reduction under 200 sccm H2 flow 

rate at 850 oC for 1 h. 

Growth temperature:1000 oC 

CH4 flow:50 sccm   

H2 flow: 200 sccm 

Growth time: 40 min. 

Purification with 4 M. HCl  

The organic additives increased the BET surface 

area of the catalysts in order of tartari acid< 

citric acid< EDTA < sorbitol. 

The yield and quality of CNTs strongly depend 

on the dispersion of the cobalt-molybdenum 

catalyst on MgO. 

The size of CNTs were in the range 2-5 nm. 

Table 3.1 (cont.) 
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sorbitol 

Xuan-ke, et al. 

2008  

Method: Sol-gel 

Materials: Al(NO3)3.9H2O,  

Fe(SO4)3.6H2O, Ethanol  

Molar ratio: 30:1 

Temp: Room temp., Time: 24h  

Supercrytical drying conditions: 

250 oC and 7.5 MPa for 0.5 h. 

Catalyst mass: 1g 

Temperature:  900 oC  

CH4/H2 mixture or CH4/H2/H2O  

mixture took place on growth.  

H2: 400 sccm 

CH4: 600 sccm 

Time:30min 

SWNTs prepared under CH4/H2/H2O gases had 

higher purity and the boundaries between 

SWNT bundles were easily discernible than the 

 SWNTs prepared from CH4/H2 alone. 

Li, et al. 2004 Method: Combustion Route 

Materials: Citric acid, 

Polyethylene glycol 200, 

(NH4)6Mo7O24.4H2O, 

Mg(NO3)2.6H2O, Fe(NO3)2.9H2O 

Molar ratios: 

Fe:Mo:MgO=1:0.05:13 (catalyst A) 

Quartz tube diameter: 4mm, lenght: 

1000mm 

Temperature: 1000 oC 

Catalyst mass: 200 mg 

N2: 400 sccm (for 5 min) 

Subsequently, a mixture of 

CH4=75 sccm, H2= 300  sccm or 

Catalyst A,B,C reveal no difference between the 

 carbon fibers produced in CH4/H2 or CH4/N2 

atmospehere. 

Average CNT diameters were 0.80 nm for 

catalyst A, 0.90 nm for catalyst B, and 1.05nm  

for catalyst C. 

It was observed that the diameters increased 

(cont. on next page) 
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Fe:Mo:MgO=1:0.1:13 (catalyst B) 

Fe:Mo:MgO=2:0.1:13 (catalyst C) 

CH4= 50 sccm N2=300 sccm 

Time: 30 min 

with increasing Fe-Mo/MgO ratio. 

 

Liu, et al. 2005 Method: Combustion Route 

Materials: Mg(NO3)2.6H2O, 

Citric acid, H2O, Fe(NO3)3.9H2O 

(NH4)6Mo7O24.4H2O 

Atomic ratio Mo:Fe=1:10 

Ar: 200sccm 

200 sccm of Ar stream was 

introduced into the reactor through  

ethanol 

Time: 30min 

The diameters of CNTs were in the range of 

1.42 and 1.48 nm. 

It was found that the samples had little nanotube 

 defects, amorphous carbon and nanocrystalline 

 impurities. 

Li, et al. 2005 

 

Method: Combustion Route 

Combustion additive: Polyethylene 

glycol 200 (PEG 200) 

Mg(NO3)2.6H2O,  

Catalsyt mass: 50mg  

Quartz tube diameter:50mm, 

length: 1000mm,  

T: 1000 oC  

Fe-Mo/MgO gave higher yield of MWNT 

compared to, Mo/MgO, Ni/MgO and 

Fe/Mo/MgO catalysts. 

The purity was above 97 %. 

(cont. on next page) 
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(NH3)6Mo7O24.4H2O,  

Ni(NO3)2.6H2O   

Molar ratio: 

Mg/Mo/Ni/PEG200= 1.0/1.2/0.1/1.0 

Combusition at 650 oC for 10 min.  

CH4: 900 sccm, H2: 100 sccm   

Investigated growth times: 10, 30, 

45, 60 and 120min. 

For both heating and cooling N2 

gas was used.  

Niu, et al. 2006 Method: Combustion Route.  

Materials: Mg(NO3)2.6H2O; 

NH4)5Mo7O24. 4H2O, 

C6H8O7. H2O(citric acid), 

Fe(NO3)3.9H2O, DI water 

Molar ratio: Mo:Fe:Mg=1:10:100 

Temperature: 850 oC 

CH4 flow: 45 sccm 

Ar flow: 150 sccm 

Purification: HCl, DI water 

They observed time effect on the SWNT 

 growth. 

When the synthesis time is less than 2 min, no 

SWNT growth occured. 

They obtained optimal results for 30 min growth  

time. 

After 40 min amorphous carbon was observed. 

                                                                   

Table 3.1 (cont.) 
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3.1.1.1. Literature Outcome  

 

Majority of studies in the literature is about CNT growth. Several hydrocarbon 

gases were examined for CNT growth by CVD method. However, methane was 

reported to produce mostly SWNT material among them. Many catalysts are 

investigated for methane CVD and results show that mixture of transition metals are 

more efficient than monometallic catalyst for CNT growth. Especially, Fe-Mo and Co-

Mo catalysts are reported for high quality CNT formation. Metal-supported catalysts are 

appropriate for CNT growth. As support, inorganic porous materials such as silica 

(SiO2), alumina (Al2O3), zeolites and magnesium oxide (MgO) are generally used 

(Chai, et al. 2006). 

Common catalyst preparation methods used for CNT growth are impregnation, 

sol-gel and combustion. Among these methods, impregnation method generally give 

SWNT and DWNT. The most promising support material is MgO for this method 

because of great number of alkaline reaction sites that it possesses. It gives high yield of 

SWNT and DWNT almost without any defect when it supported Fe-Mo bimetallic 

catalyst (Yoshihara, et al. 2007). 

Sol-gel method produces catalysts with high surface area, high porosity and 

ultra-low density. The interaction between catalyst particles and support materials is 

very strong at this method, therefore it is also approriate for SWNT growth. Different 

from impregnation method, Al2O3 is the most efficient support for sol-gel method due 

to the strong Lewis acidity on the surface of Al2O3 material.  

CNTs grown over catalyst produced by combustion method are generally 

MWNTs and they are thicker than CNTs grown over catalysts prepared by 

impregnation and sol-gel methods.  

As a conclusion, Co-Mo/MgO catalyst prepared by gel-combustion method was 

chosen for  this study, this method is a modified sol-gel method (Rashidi, et al. 2007). 

The advantage of this method is to give catalyst which has a high yield of surface area 

and give a good dispersion, that is why obtained CNTs are at high quality and high 

yield. In order to increase specific surface area, different organic compounds such as 

tartaric acid, citric acid, ethylenediamine tetraacetic acid (EDTA), and sorbitol can be 

used. Among these organic additives, sorbitol derived catalyst gives the highest specific 
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surface area and the smallest metal particle size ( Rashidi, et al. 2007), therefore sorbitol 

was used in this study as a combustion additive. 

 

3.1.2. The Nature of Metal 

 
Their nanosized transition metal particles are generally used in CNT growth 

either in metallic or oxide forms. Transition metals possess some suitable properties for 

CNT production. These are melting temperature, equilibrium vapour pressure, solubility 

of carbon and carbon diffusion rate in the metal. But the most important property of the 

metals with regard to CNT formation is their ability to catalytically decompose gaseous 

carbon-containing molecules (Moisala, et al. 2003). In literature, different metal 

catalysts, e.g.  La, Cu, Gd, MgO, Ni, Co, Fe, Pd, Cr, Mn, Zn, Cd, Ti and Zr have been 

used in order to find best catalyst for CNT growth, and among all Fe, Co and Ni 

transition metals and their compounds give best results. It was reported that carbon has 

a low solubility in Fe, Co, Ni metals at high temperatures and it leads to the metal-

carbon solid state solutions formation (Dai 2002, Park, et al. 2002). The carbon 

solubility limit is between 0.5wt%-1.5wt% for a succesful catalyst  (Vecchio and Deck 

2006).  It was also suggested that only d-electron transition metals are appropriate to use 

as a catalyst in CNT synthesis. With increasing number of unfilled d orbital number, the 

ability to bond with carbon atoms increases for transition metals (Arthur and Cho 1973). 

Fe, Ni and Co have few d-vacancies so they exhibit finite solubility for carbon at high 

temperatures.  

 Ago et al. examined the effect of Fe, Co, Ni catalysts on the synthesis of CNTs. 

The reasults revealed that the catalytic activity decreased with the species used in order 

of Fe > Co > Ni (Ago, et al. 2006). MgO was used as a support material, and Fe/MgO 

catalyst showed the highest methane conversion. The use of bimetallic catalyst 

increases the CNTs yield. Co-Mo (Alvarez, et al. 2001) and Fe-Mo (Harutyunyan, et al. 

2002) are most common bimetallic catalyst for CNT growth.  Mo also prevents 

sintering of the catalyst particles (Moisala, et al. 2003). Using a co-metal enhance the 

activity, stability and selectivity of the catalysts in CNT production. Comparing with 

single metals, bimetallic catalysts show a decrease in melting temperature and an 

increase in carbon solubility. Based on several studies, Co is the best catalyst in forming 

better quality CNTs (Hernadi, et al. 1996, Fonseca, et al. 1996, Ivanov, et al. 1994). 



 

 

 

35

There are large number of studies in literature, about bimetallic (Fe/Co, Co/Ni, Fe/Ni, 

Fe/Mo, Co/Mo, Ni/Mo) and trimetallic (Fe/Co/Mo, Co/Ni/Mo, Fe/Ni/Mo) combinations 

of Fe, Co, Ni, Mo metals for CNT synthesis (Kathyayini, et al. 2008). 

  

3.1.3. The Nature of Support Material    

 
 The most important function of support material  is to provide high surface area 

and porosity for the active component. The interaction between catalyst and support 

material directly affects the dispersion and morphology of catalyst. Active component 

must be dispersed over support material in such a way that sintering is reduced.  Either 

chemical or physical interactions can occur between support and metal. Van der waals 

and electrostatic forces are the physical forces that prevent catalyst particle movement 

on the support surface. These forces also reduce thermally driven diffusion and metal 

particle sintering on the support material. Hence, catalyst particle size distribution is 

achieved during CNT sythesis (Moisala, et al. 2003). Chemical interactions also take 

place in the stabilization of size distribution. But when chemical interaction is very 

strong, particle mobility decreases, and it limits the particle coalescence.  

 In CNT growth, the catalyst needs an appropriate support material for 

selectively controlling the morphology and the yield of CNTs. Alumina (Su, et al. 

2000), magnesium oxide (Yoshihara, et al. 2007), silica, titania, and zeolites are 

commonly used as a support. Chai et al. investigated effects of different support 

material on CoO catalyst (Chai, et al. 2006). They examined silica, titania, ceria, 

magnesia, alumina, zeolite, and calcium oxide supports, using methane as a carbon 

precursor. They found that at 700 oC growth temperature, the carbon capacity decreased 

in order of alumina > ceria > zeolite > silica > titania > calcium oxide > magnesia. In an 

other study, Qingwen et al. examined silica, alumina, magnesium oxide, calcium oxide 

and zirconium oxide under the same experimental conditions and using Fe and Mo 

(Quingwen, et al. 2002). Their  Raman characterization results showed that there was no 

SWCNT formation on silica, zirconium oxide and calcium oxide supported catalysts. 

Alumina and magnesium oxide gave SWCNTs but among these support materials 

magnesium oxide was the most efficient in the production of SWCNTs. MgO possesses 

a great number of alkaline reaction sites, and some metal oxides have been verified to 

be able to disperse well over it even at high temperatures (Wang, et al. 1998). An other 
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advantage of MgO support is that it can be be removed easily with a mild acid 

treatment. 

   

3.2. Catalyst Preparation Methods 

 
 Catalyst preparation method is also very important in CNT growth. There are 

numerous catalyst preparation methods. This section covers four main catalyst 

preparation methods for CNT growth including impregnation, precipitation, 

combustion, and sol-gel methods.    

 

3.2.1. Impregnation Method 

 
Impregnation is the simplest and most direct method of deposition. In this 

method, in order  to give the correct loading, the pores are filled with a sufficient 

concentration metal salt solution (Richardson 1989). In other words, a catalyst precursor 

dissolves, and then the whole precursor deposits into the support. At the next step, 

solvent is evaporated and dried (Venegoni, et al. 2002). During drying, crystallization of 

the salt occurs on the pore surface, therefore, if this step does not perform properly, an 

irregular concentration distribution might occur. Crystallization should be slow enough 

to form uniform deposits (Richardson 1989). The last step in catalyst preparation by 

impregnation method is the calcination. Crystallized salt redisolves when the 

dehydrated catalyst is exposed to moist environment and subsequent process drying 

may violate optimum conditions. Calcination converts the salt to an oxide or metal and 

essentially stops the distribution. Drying and calcination steps are very important 

because of the tendency towards egg-shell catalyst and risk of sintering interaction 

compounds and bursting of support. 

The impregnation method is very fast compared with other catalyst preparation 

methods. The final properties and configurations of the catalyst can be controlled in this 

method.  However, there is an disadvantage of impregnation method; it is very hard to 

obtain a high concentration catalyst. There are three different methods available to 

deposit the catalyst on the surface skin of the pore structure (egg shell) or into the inner 

pore structure (egg yolk) by a competitive chemisorption of special adsorbate. For this, 

formic acid, citric acid or hydrochloric acid can be used. 
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 In the case of a organic support and molecules, one speaks about incubation (Li, 

et al. 2001), but the method remains the same.  

 

3.2.2. Precipitation Method 

 
The aim of precipitation method is to achieve a reaction of the type;  

Metal salt solution + Support                            Metal hydroxide or Carbonate on support 

(Richardson 1989) 

 In this method, firstly, a metal salt, XmYn, solution is prepared, which will turn 

into the metal oxide MxOy. Powders or particles are slurred with an amount of this salt 

solution sufficient to give the required loading. Applying preliminary heating or 

evacuation makes easier to properly fill the pores with the solution. Most common 

solvent used to prepare this solution is water, but if necessary organic solvents can be 

used. The quantity of oxide desired determines the amount of solvent.  

In order to precipitate the solution, enough alkali solution should be added. After 

precipitation, the powder is separated and washed in order to remove alkali ions, reagent 

anions, and excess deposit on the outside of the particles. Deposition occurs at two 

steps; firstly sols precipitate in bulk and pore fluid, and then interact with support 

surface. If OH groups of the support surface enter into reaction so that the pH of the 

surface region is higher than in the bulk solution, best results can be obtained. Then, 

precipitation occurs preferentially and uniformly on the surface.  

Rapid nucleation and growth in the bulk solution may cause sols to be too large 

to enter the pores readily and associate only with the outside of the particle, so it should 

be prevented. This is most likely to occur in the vicinity of the alkali droplets entering 

the solution. Rapid mixing is very important. Dilute alkali may be added, drop by drop, 

with rapid agitation to disperse the droplets before local concentrations become 

excessive. Alternatively, both the salt and alkali mixed in a container of water (Stiles 

1983).  

To control uniform precipitation, urea can be used rather than conventional 

alkalis. Urea dissolves in water but decomposes very slowly above 90oC. Urea is added 

to the metal salt-support solution and the solution heated while stirring. At 90oC, urea 

hydrolyzes and OH groups are formed uniformly throughout the pores. Precipitation 

takes place homogenously over the surface. Since hydrolysis is slow and precipitation is 

Base 
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rapid, OH groups are consumed as soon as they are formed and the pH of the solution 

remains unchanged. This technique gives very uniform product, and can be easily 

scaled-up (Hermans, et al. 1979).  

At the next step the solution is added to distilled water for washing and mixing. 

As standing particles settling slowly desorbe foreign ions as they fall. (When a definite 

interface is visible, water is removed by decantation and the pores repeated.) After 

washing, the precipitate is filtered. 

At the final step, the treated support is dried to remove excess moisture from the 

pores. This operation is not critical as support preparation step, since the active 

component is firmly anchored to the surface. However, precautions should be taken to 

avoid rapid heating which generates large internal steam pressures. Beyond heat 

treatment, drying procedure is called as calcination. Calcination process decomposes the 

deposited hydroxides and cabonates into stable oxides or metals, depending on the 

atmosphere. At this process pore size distribution changes, active phase generation and 

surface reconditioning occurs, and mechanical properties stabilizes. 

Precipitation is the preferred deposition route for loadings higher than 10%-20%. 

Below this value, other techniques are usully practiced (Richardson 1989). 

 

3.2.3. Combustion Method 

 
In combustion method, a solvent and metal salts which are the precursors of the 

catalyst are mixed. Water is used as common solvent for this method; however, ethanol 

or another organic materials can also be used as solvent material. The mixing process is 

made at room temperature to provide uniformly dispersion for metal salts. There are 

different organic additives used for combustion such as citric acid, polyethylene glycol 

(PEG), sorbitol, tartaric acid and ethylenediamine tetraacetic acid (EDTA) (Rashidi, et 

al. 2007). After enough mixing the sample becomes gel-like. In this method, the last 

step is the combustion of gel-like sample at high temperatures. The combustion is 

generally made under 500-600 oC for 5-15 min. in a pre-heated oven (Flahaut, et al. 

2004). 
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3.2.4. Sol-Gel Method 

  

Sol-gel is a process in which a gel is formed from the particles of a sol when 

attractive forces cause them to stick together in such a way as to form a network 

(Regalbuto 2007). In other words, sol-gel process is the formation of a gel by 

aggregation of particles in a sol. This process has some remarkable properties such as 

high dispersion of metal or alloy, high porosity, easy mass transfer and thermal stability, 

and its preparation is easy, so sol-gel supported metals are appropriate as catalysts. 

Stronger anchoring of metal particles in the pores of the support is also often observed 

(Ward, et al. 1995, Heinrichs, et al. 1997, Ji, et al. 2001) and this may provides a higher 

stability at a high temperature. 

 

3.2.4.1. Dissolution of Metal Salts in the Precursory Sol-Gel Solution  

 
The synthesis of a support by the sol-gel method starts with preparation of 

homogeneous solution of precursors of that support, so an adequate precursor of the 

active species can be dissolved in that solution (Mehn, et al. 2004, Su, et al. 2000)  

The aim is to try to include the active metal precursor in the porous growing gel  

without making it inaccessible in the final catalyst. The metal to be highly dispersed is 

to maintain the metal precursor in solution at the sol-gel step, this is sometimes difficult 

with noble metals, since they are easily reduced and then precipitated.  

If metals are supported on inorganic gels, a salt of the desired metal, which is 

soluble in the initial sol-gel solution whose solvent most often is an alcohol, can be 

found (Kukovecz, et al. 2000). It is also possible to realize a dissolution of the metal salt 

in an adequate solvent and to add that metal precursor solution to the sol-gel solution 

(Armor, et al. 1985). The preliminary dissolution of the metal salt in the water which 

will be used to hydrolyze the support precursor alkoxyde is often encountered (Lopez, 

et al. 1991). 

Metal precursors in the dissolution method do not participate directly in the sol-

gel chemistry involving the oxide precursors which are usually alkoxides. In the 

dissolution method, the metal precursor is often simply encapsulated in a growing gel 

network, but its presence can still indirectly influence the sol-gel process (Ward, et al. 

1995) and leads to modifications in the structure of the final catalyst.  
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3.2.4.2. Cogelation of Metal Chelates with Support Precursors 

 
Cogelation method consists of using an alkoxysilane-functionalized ligand of the 

type (RO)3Si-X-L in which the ligand L, able to form a complex -LNM with a metal M 

(M = Pd, Ni, Ag, Cu, etc.), is connected to the alkoxide moiety (RO)3Si- via an inert 

and hydrolytically stable tethering organic group X. The concomitant hydrolysis and 

condensation of such molecules with a network-forming reagent such as Si(OC2H5)4 

(TEOS), i.e. their cogelation, result in materials in which the catalytic metal is anchored 

to the SiO2 matrix (Deschler, et al. 1986, Breitscheidel, et al. 1991).  

In general, the alkoxysilane-functionalized metal complex is formed from a 

metal precursor and an alkoxysilane-functionalized ligand in a solvent (most often in 

ethanol) before adding the silica precursor and water for gel formation. Examples of 

metal precursors are acetates (Pd(OAc)2, Co(OAc)2, Cu(OAc)2, Ni(OAc)2, Ag(OAc), 

etc.) acetylacetonates (Pd(acac)2, Pt(acac)2, etc.), and nitrates (AgNO3, etc.).  

Contrary to the metal precursor in the dissolution method, once formed, the 

alkoxysilane-functionalized metal complex is directly involved in the sol-gel chemistry. 

Indeed, as the main SiO2-network forming reagent (Si(OR)4), this complex undergoes 

hydrolysis and condensation. Besides its anchoring function, the alkoxysilane-

functionalized ligand presents two particularly interesting advantages for preparing 

metal containing as well as pure silica gels firstly it allows the solubilization of metal 

salts that are insoluble in alcohol, and whereas attempts to synthesize a pure silica gel 

by the same method as cogelled Pd/SiO2 samples failed (Heinrichs, et al. 1997), the 

introduction of ligands such as [3-(2-aminoethyl)aminopropyl] trimethoxysilane makes 

such a synthesis possible (Lambert, et al. 2004). Therefore, the use of such ligands 

allows to prepare pure silica gels by a way other than the usual acid-base method 

(Brinker, et al. 1982). 

Physico-chemical characterization of cogelled catalysts indicates that the 

introduction of alkoxysilane-functionalized ligand in the sol-gel solution influences 

strongly the characteristics of the final material. These catalysts exhibit a very particular 

structure leading to remarkable properties. 
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3.2.4.3. Drying of Wet Gel 

 
High porosity is an important parameter for an efficient heterogeneous catalyst, 

so it should be maintained as high as possible in the dried gel. Depending on whether 

the liquid in the wet gel is removed by evaporative drying or by supercritical drying, 

that is in pressure and temperature conditions beyond the critical point of the liquid, the 

resulting dry material is named xerogel or aerogel respectively. A third class of 

materials are cryogels dried by freeze-drying or lyophilization (Pajonk 1997).  

Supercritical drying has been generally used to remove alcoholic solvent in 

inorganic wet gels. In order to obtain critical conditions, autoclave is used. The critical 

conditions are  Tc = 514 K and Pc = 6.1 MPa for ethanol. The high-pressure system is 

flushed with nitrogen, fully closed, and heated slightly above the critical point of the 

solvent used. Then, the pressure is released and the autoclave is flushed with nitrogen to 

remove residual alcohol and lastly cooled to ambient temperature (Schneider, et al. 

1995). Obtained porous materials after this process are called as aerogels (Pirard, et al. 

1997). While maintaining very large pores, supercritical drying in alcohol can cause the  

closing of micropores and thus make an aerogel catalyst completely inactive because of 

active metal particle occlusion (Heinrichs, et al. 1997). 

Scaling-up at an industrial level is not possible for such a high-temperature 

process, therefore a low temperature supercritical drying in carbon dioxide has been 

developed. In this procedure, the advantage is the low critical temperature of CO2. 

Using this drying process involves a solvent exchange by liquid CO2 before achieving 

the drying step (Pajonk 1997, Schaefer, et al. 1995). Supercritical drying conditons are 

Tc = 304 K, Pc = 7.4 MPa for CO2. When drying is achieved with this process, a solvent 

exchange by liquid CO2 takes place before achieving the drying step (Suh, et al. 1998). 

Freeze drying is another possiblity for drying. At this process the pore liquid is 

frozen into a solid, then sublimes and gives an aerogel-like material which is called a 

cryogel (Ko, et al. 1997). Freze drying is used for organic gels synthesized in a aqueous 

medium (Mathieu, et al. 1997) and inorganic gels which are prepared in alcoholic 

medium (Mehn, et al. 2004). 
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CHAPTER 4 

 

EXPERIMENTAL 

 
 Experimental study details are given in this chapter. In the first section, 

nanocatalyst particles preparation by gel-combustion method was explained, and in the 

second part CNT growth by thermal chemical vapor deposition (TCVD) method is 

explained. The last section is focusing on characterization techniques which are SEM, 

TGA, TEM, XRD and Raman Spectroscopy. 
 

4.1. Catalyst Preparation Process 

 
In this work, catalyst particles synthesized by gel-combusition method was used. 

This method has some advantages; it gives high specific surface area and good 

dispersion of the active sites for catalyst,  and hence obtained CNTs have high yield and 

high quality.  

Co-Mo/MgO catalyst was prepared using gel-combustion method with sorbitol 

as organic additive and analyzed in order to find the most efficient pretreatment and 

growth conditions for high quality CNT growth. To produce Co−Mo/MgO catalyst, 

Co(NO3)2.6H2O, (NH4)5Mo7O24.4H2O, and Mg(NO3)2.6H2O salts with a molar ratio of 

Co:Mo:MgO;0.5:0.25:10 and sorbitol were dissolved in 10 ml distilled water by stirring 

until a clear solution was obtained. The solution shown in Figure 4.1(a) was dried at 100 
oC for 3 hours to form a uniform gel (Figure 4.1(b)), followed by a flash calcination of 

obtained gel in oven at 550 oC for 30 minutes. Then it was ground into a powder with 

particle sizes between 75-250 μm. Final form of Co-Mo/MgO catalyst was shown in 

Figure 4.1(c). 

 



 

 

 

43

         
                                                   (a)                                      (b)        

 

 
(c) 

Figure 4.1. a) initial solution, b) obtained gel after drying,  c) Co-Mo/MgO catalyst for 

CNT growth  

 

4.2. CNT Growth Process with Thermal Chemical Vapor Deposition 

Method 
 

In this study TCVD method was used to sythesize CNT. The TCVD system used 

for this study can be seen in Figure 4.2. The system consists of two parts, first part is a 

Lindberg/Blue M 1100 oC Split Mini Furnace and the other part is its controller. All 

expriments were done at a high temperature so samples in a quartz boat were placed in a 

1 inch diameter quartz tube. The upper temperature limit of the furnace is 1100 oC . 
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Figure 4.2. The TCVD system, CNL Lab in Physics Department IYTE 

 
 

 
 

Figure 4.3. Quartz boat used to carry catalyst particles into oven 
   

  
 In this study, CNT growth experiments were performed at atmospheric pressure. 

Firstly, a catalyst pretreatment took place with Ar, H2 or Ar-H2 mixture keeping the total 

gas flow at 200 sccm for 1 hour at 850 oC. Ar gas sent into the system to remove the 

contamination and to prevent the oxidation of the samples, and H2 gas sent into the 

system to prevent amorphous carbon formation and to provide the reduction from metal 

oxide catalyst to metal catalyst which are more suitable for CNT growth. After reaching 

to the desired temperature CH4 gas flow was started to initiate CNT growth. Ar and H2 

continued to flow during CNT growth. The total gas flow was 250 sccm at growth. 

Different gas flow rates for Ar, H2 and CH4 were investigated. In this study growth 

temperature in the range of 850 to 1000 oC was studied.  

Growth time was also another parameter for the CNT growth, 5 different growth 

times were investigated, 5 min, 10 min, 20 min, 30 min and 40 min. 
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When the growth was finished, first the hydrocarbon gas was turned off but H2 

gas and Ar gas was stil flowing through the system and the temperature was setted to 0 

OC so the system was left for cooling under again Ar, H2 or Ar-H2 mixture ambient. 

Some of as-grown CNTs were purified with 4M HCl acid treatment. The growth 

conditions studied are listed in the Table 4.1.  

 

Table 4.1. Growth conditions of CNTs in TCVD method 

 

Catalyst 

Pretreatment 

Conditions 

CNT Growth Conditions 

 

Sample 
Name 

H2 

(sccm) 

Ar 

(sccm) 

CH4 

(sccm) 

H2 

(sccm) 

Ar 

(sccm) 

Time 

(min) 

Temperature

(oC) 

CNT513 200 - 50 200 - 40 1000 

CNT518 150 - 50 150 - 40 1000 

CNT523 100 - 50 100 - 40 1000 

CNT524 200 - 50 200 - 40 850 

CNT525 200 - 50 200 - 40 900 

CNT526 200 - 50 200 - 40 950 

CNT527 - 200 50 200 - 40 1000 

CNT528 50 150 50 200 - 40 1000 

CNT 
529 

200 at 
850 oC 

200 
(until 
850 oC) 

50 200 - 40 1000 

CNT530 200 - 50 50 150 40 1000 

CNT531 200 - 20 20 210 40 1000 

CNT532 - 200 20 20 210 40 1000 

CNT533 10 190 20 20 210 40 1000 

CNT534 200 at 
850 oC 

200 
(until 
850 oC) 

20 20 210 40 1000 

(cont. on next page) 
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CNT535 200 - 40 - 210 40 1000 

CNT536 - 200 40 - 210 40 1000 

CNT585 10 190 40 - 210 40 1000 

CNT601 200 at 
850 oC 

200 
(until 
850 oC) 

40 - 210 40 1000 

CNT 

606 

200 - 50 200 - 30 1000 

CNT609 200 - 50 200 - 20 1000 

CNT 

615 

200 - 50 200 - 10 1000 

 

 

4.3. Characterization Techniques 

 
 This study is a parametric study whose aim is to find optimal growth and 

pretreatment conditions for high quality and high yield, therefore, through 

characterization of obtained CNTs is essential. In this study, the catalyst was 

characterized by X-ray diffraction (XRD), N2 adsorption (BET surface area) and 

scanning electron microscopy (SEM), and purified and unpurified CNT samples were 

analyzed with SEM, thermo-gravimetric analysis (TGA), Raman spectroscopy, and 

transmission electron microscopy (TEM).  

 

4.3.1. Scanning Electron Microscopy 

 
SEM (Scanning Electron Microscopy) images the sample morphology by 

scanning the surface with a high energy beam of electrons. SEM is the first step to 

characterize the CNTs. Using SEM, morphology of CNTs, their dimensions and their 

orientations can readily be seen (Thess, et al. 1996, Liu, et al. 2004, Li, et al. 2002). 

Diameters of CNTs also can be measured roughly with SEM. 

Sending an electron to the specimen surface, several signals can be detected. 

When the primary electron is sent, high energy backscattered electrons appear and 

Table 4.1 (cont.) 
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primary electron can be diffracted with large angles. secondary electrons are generated 

when these backscattered electrons emerge from the surface. These secondary electrons 

have energies between 0 and 20 eV, and can be attracted to a positively charged detector 

with high efficiency. Comparing primary elctrons number, the secondary electron 

number is high and increases as the angle φ between the electron beam and the surface 

normal increases in proportion to 1/cosφ [surface analysis methods in material 

science].  

There is a large annular detector below the final lens, facing towards the sample 

and  a proportion of the scattered electron signal can be collected with this detector. 

With increasing atomic number Z of an elemental sample, the scattering of primary 

electrons increases. Depending on the surface composition and orientation between the 

electron beam and surface, the backscattered electron signal from a flat, polished 

sample provides contrast.  

The resolution of the backscattered electron image is typically in the range 

between 0.1-1 μm, but it is possible to image very finely spaced regions showing 

compositional contrast at resolutions down to 2-3 nm using high brightness guns and 

efficient backscattered electron detectors. There is a small high resolution component in 

the backscattered signal and it is generated by incident beam electrons being scattered 

out of the sample very early in their path. The resolution of the whole backscattered 

signal can be improved by reducing the beam energy but the detectors become less 

efficient for the lower energy electrons, and so this is not appropriate.  

The SEM utilized for this study was a Philips XL 30S-FEG. 

 

4.3.2. Transmission Electron Spectroscopy 

 
The internal microstructure and crystal structure of samples which are thin 

enough to transmit electrons can be analysized with Transmission Electron Microscopy 

(TEM). TEM is used to measure outer and inner radius and linear absorption coefficient 

for CNT studies. It is the most useful instrument in order to determine the diameter of 

SWNTs and MWNTs and the number of walls. The intershell spacing of MWNTs 

(Kiang, et al. 1998) also is studied with high resolution TEM and found between the 

range of 0.34-0.39nm. An other subject studied  with TEM is SWNT’s helicity 

(Cowley, et al. 1997, Qin, et al. 1997, He, et al. 1998).  
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There are a series of magnetic lenses in TEM after electron gun to provide a 

uniform illumination of the specimen over the area of interest. The sample is mounted 

on a stage to provide suitable movement. The primary image is formed by the objective 

lens. This objective lens determines the final resolution. The final image is projected 

onto a viewing screen through two or more projection lenses, and can be recorded.  

 

4.3.3. Raman Spectroscopy  

 
Micro-Raman spectroscopy is generally used to study the quality of CNTs. This 

technique gives information with details about configuration of CNTs. Number of walls, 

the presence of crystalline and amorphous carbon and diameter of SWNTs can be 

determined with the Raman spectroscopy.  

When a beam of light passes through a transparent sample of a chemical 

compound, a small part of the light emerges in different directions than the incoming 

beam. Most of these scattered light is of unchanged wavelength, however a small part 

has wavelengths different from the incident light, and its presence is a result of Raman 

effect. The pattern of the Raman spectrum is characteristic for every molecular species 

and the intensity is proportional to the number of scattering molecules in the path of the 

light. Resonance peaks are also observed in the spectrum, which symbolyze the 

presence of a particular specie type that is in abundance. 

The characteristic spectrum of SWNTs includes three main zone. At low (100-

250 cm-1), intermediate(300-1300 cm-1) and high(1500-1600cm-1) frequencies (Journet, 

et al. 1997, Colomer, et al 2000).  

There are two main first order peaks for carbon-based materials. The first one is 

the D peak, it is observed around 1300 cm-1 for excitation He-Ne laser, or at 1350 cm-1 

for an Ar ion laser. The D peak shows the presence of defects (Geng, et al. 2002). The 

other one is the G peak and observed at about 1580 cm-1, which is related to the in-plane 

vibrations of the graphene sheet (Singh, et al. 2003, Shanov, et al. 2006). Ratios of the 

D peak to the G peak is significant for CNT characterization because it gives the 

amount of disorder within nanotubes (Tans, et al. 1997). A small ID/IG ratio,  in the 

range of 0.1-0.2, indicates that the defect level in the atomic carbon structure is low, and 

it means that reasonable crystalline quality observed (Singh, et al. 2003). 
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Low energy peaks around 191 and 216 cm-1 are the radial breathing modes of 

CNTs (Rao, et al. 1997), and can be clearly observed using He-Ne laser (Lee, et al. 

1997). The spectrum in the low frequency domain reflects the SWCNT diameter and 

can be used to calculate it. In general, the frequency increases with decreasing tube 

diameter (d). The frequency ν of these modes is  inveresly proportional to the diameter 

of the SWCNT. The diameter of the SWCNT can be determined using equation below 

(Shanov, et al. 2006),  

 

ν (cm-1) = 223.75 / d (nm)     (Eq. 4.1) 

 

 
Figure 4.4. Raman spectrum showing most characteristic features of CNTs  

(Source: Belin and Epron 2005) 
 

4.3.4. Thermogravimetric Analysis  

 
Thermogravimetric analysis (TGA) method is performed on samples to 

determine weight loss or gain by changing temperature. Every element shows different 

behaviours, for this reason their weight losses are different depending on temperature, 

so TGA is used to determine characteristics of materials. Matching with standarts is 

necessary for identification. Additional information can be obtained by using different 

reactive atmospheres, such as hydrogen, oxygen and H2S. The technique with hydrogen, 

cold temperature programmed reduction (TPR) gives information about the reducibility 

of oxides. Catalysts that are easier to reduce for examples in which oxides are bound 

less strongly to the support show reduction peaks at lower temperatures.  
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CNT has a different oxidation temperature that the other carbonaceous product. 

The oxidation temperature of amorphous carbon is between 200 oC and 450 oC (Kong, 

et al. 1998), and SWCNTs and MWCNTs are oxidized between 500 oC and 800 oC in 

air (Dai, et al. 1996). But these temperature ranges can change with atmosphere, heating 

and the presence of metallic particles between the catalyst. 

In this study, a Perkin Elmer-Diamond TGA was used.  

For these analysis CNTs were put into a platinum crucible, and heated from 25 oC to 

800 oC with 10 oC/min ramp rate, under nitrogen flow.  

   

4.3.5. X-Ray Diffraction for Catalyst Characterization 

 
In X-ray diffraction system, electrons emitted from the filament (cathode) are 

accelerated to target (anode) and X-rays characteristic of atoms in the irradiated area are 

emitted. By analyzing their energy, the atoms can be identified and by counting emitted 

X-rays number, the atom concentration in the specimen can be determined.   

X-ray diffraction (XRD) is mostly used for bulk structure analysis. Hovewer, if 

the concentration of active component is large enough, it can be appropriate for size 

determination. Quantitatively, a number average size is obtained from the equation 

below (Richardson, et al. 1989) 

 

θ
λ

cos)(
85.0

2/'122 bB
d

−
=           (Eq. 4.2) 

 

where B is the peak width for a diffraction line at angle θ, b is the value for a well 

crystallized specimen, and λ is the wavelength.  
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 
First section in this chapter focuses on Co-Mo/MgO catalyst characterization. 

SEM was used to determine catalyst morphology and X-ray diffraction method was 

used to determine the catalyst crystallinity. In the second section CNT growth results 

are analysed to determine optimal parameters for CNT growth. Different parameters 

were studied in this work to find the optimal conditions. In this section firstly, CNT 

growth and pretreatment atmosphere is discussed to obtain high quality CNT. After 

determining best pretreatment and growth atmosphere; in the following section the 

effect of hydrogen flow rates on the CNT growth is examined, and this followed by a 

part which is about the effect of growth temperature on the yield and quality of CNTs. 

At the last part, growth time effect on CNTs is discussed. For this discussion, SEM, 

TEM, TGA, and Raman spectroscopy characterization techniques were used.  

         

5.1. Characterization of Co-Mo/MgO Catalsyt  

 
Catalyst material is one of the most important parameter in CNT growth process, 

since the catalyst affects the size of CNTs, the diameter of a CNT is directly 

proportional to nanocatalyst particle size and determines also the wall number, hence, 

the type of CNT. As explained beforehand, only transition metals are suitable for 

effective CNT growth as a catalytic material, and Fe, Co, Ni are the most common and 

effective catalysts. In this thesis work, Co-Mo/MgO catalyst was used. The produced 

catalyst must have some properties which are significant for CNT growth. A catalyst 

should have a high surface area and it should show high active sites dispersion. The 

following SEM images and XRD scan give information about the catalyst obtained and 

used for CNT growth in this study. 
Figure 5.1 and Figure 5.2 show SEM images at different scales and XRD scan of 

the Co-Mo/MgO catalyst. From SEM images it was observed that catalyst material 

consist of quite large particles. Particles sizes were in the range of 75- 250 μm. XRD 

scan gave wide peaks, which means that catalyst had small crystallite sizes. There was 



 

 

 

52

no observable peak for  Co or Mo, only one phase could be identified; all XRD peaks 

belong to MgO. This indicates that Co and Mo loading is on a small scale and these 

metals show high dispersion. The high dispersion is generally consistent with high 

surface area. 

 
 

      
(a) (b) 

 

    
(b) (d) 

Figure 5.1. SEM micrographs of Co-Mo/MgO catalyst at  a) 5 μm scale 319 b) 50 μm 
scale c) 200 μm scale d) 500 μm scale 
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Figure 5.2. XRD scan of Co-Mo/MgO catalyst 

 

BET surface area of Co-Mo/MgO catalyst prepared with combusition method 

using sorbitol as an organic additive was given in literature as 205 m2g-1 (Rashidi, et al. 

2007). 

 

5.2. Characterization of Carbon Nanotubes  

 

5.2.1. CNT Formation at Different Pretreatment and Growth 

Atmosphere Composition  

 
Well controled ambient is important for obtaining high quality end product. 

Commonly used ambient gases are nitrogen, hydrogen and argon for CNT growth in the 

literature. Ambient gas effect is to control the decomposition rate in the growth process. 

 Three different growth conditions were investigated in this section. Methane 

was used as a carbon source for all experiments, however diluting gas(es) was varied. 

Argon, hydrogen and a mixture of the two gases were added to methane to adjust partial 

pressure of carbon source and control the deposition rate. For all of the three growth 

conditions, four different pretreatment processes were investigated. Pretreatment lasted 

for one hour at 850 oC. First, effect of hydrogen on CNT characteristics was examined, 

H2 flow rate fixed at 200 sccm flow rate, then effect of argon was examined with again 

200 sccm flow rate. The third pretreatment included both argon and hydrogen gases at 
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the same time. For these three pretreatment conditions heating and cooling process also 

took place with the same gas rates continued to flow during pretreatment. However, the 

last pretreatment conditions was slightly different from the others. There, pretreatment 

was done with hydrogen gas at 850 oC for just one hour, and for heating and cooling 

processes argon flow took place.  

 

5.2.1.1. CNT Growth Under H2 Ambient  

 

In the first growth conditions, hydrogen was flowed with methane. Growth 

conditions were CH4=50 sccm, H2=200 sccm and T=1000 oC and four pretreatment 

conditions were examined.  

 

Table 5.1. Studied pretreatment conditions for the first growth scheme. 

 

CNT number 
Hydrogen (sccm) Argon (sccm) 

CNT 513 
200  - 

CNT 527 
- 200 

CNT 528 
50  150  

CNT 529 
200 (for 1h at 850 oC)  200 (until 850 oC) 

 

 

SEM pictures of the as grown samples in hydrogen atmosphere for different 

pretreatment conditions are given in Figure 5.3. For the growth in hydrogen atmosphere, 

when we used 200 sccm H2 in pretreatment process, CNTs with high purity and average 

diameter of 8.3 nm were obtained (Figure5.3a). When 200 sccm argon, instead of H2, 

sent to the system for pretreatment average diameter increased to 13.1 nm and different 

carbon structures were observed due to some impurities. In the pretreatment conditions 

when argon and hydrogen was sent to the system as a mixture and as-grown CNTs 

average diameter was 9.9 nm (Figure 5.3(c)) but CNTs were tangled compared to those 

obtained from hydrogen alone pretreatment conditions. The last pretreatment results 

gave the thickest CNTs with 19.5 nm but they were not tangled. 
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(a) (b) 

 

    
(c) (d) 

Figure 5.3. SEM micrographs of (a) CNT 513 (b) CNT 527 (c) CNT 528 (d) CNT 529 
 

 
Due to CNT’s unique properties, they are used in many applications and some of 

these applications require large scale growth of CNTs. So, in this study, the other aim 

was to produce large amount of product for given amount of catalyst. The total yield of 

CNTs can be calculated using (Rashidi, et al. 2007); 

 

%100
)(
×

−
=

catalyst

catalystproduct

W
WW

Yield                (Eq.5.1) 

 

In order to calculate CNTs average diameter, large number of CNT diameters 

were measured and then the arithmetic average was calculated. 
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Table 5.2. Yield and size of CNTs for the first growth conditions 

 

Sample 
Name 

Pretreatment Mass Before 
CNT 

Growth 
(mg) 

Mass After 
CNT 

Growth 
(mg) 

Yield % Average 
Diameter 

(nm) 

CNT 513 H2 Only 50.2 197.0 292.4 8.3 

CNT 527 Ar only 15.5 30.0 93.5 13.1 

CNT 528 Ar+H2 15.0 51.5 243.3 9.9 

CNT 529 H2 for only 
one hour 

15.2 25.4 67.1 19.5 

 

The highest yield using Eq.5.1 was obtained in pure hydrogen atmosphere with 

292.4% (Table 5.2). In addition, argon-hydrogen mixture pretreatment also gave high 

yield compared to the other two conditions. The yields were below 100% for the second 

(CNT 527) and fourth (CNT 529) pretreatment conditions. In terms of CNT yield and 

structural quality, for this growth condition, pretreatment in pure hydrogen atmosphere 

had the highest yield, smallest average diameter and least amount of purities (as 

observed from SEM).  

Thermogravimetric analysis was done to analyse thermal properties of CNTs. 

TGA curves of as grown samples were taken without any purification. CNT has a 

different oxidation temperature that the other carbonaceous product. The oxidation 

temperature of amorphous carbon is between 200 oC and 450 oC, and SWCNTs and 

MWCNTs are oxidized between 500 oC and 800 oC in air. TGA results indicated that 

there was almost no amorphous carbon formation under first, second and fourth 

pretreatment conditions, but under argon-hydrogen pretreatment atmosphere a weight 

loss step was observed in the temperature range 200-500 oC  which means some 

amorphous carbon coating on CNTs were generated when they are grown. As-grown 

CNTs under argon, hydrogen mixture pretreatment shows 87.7 % purity value, there is 

12.3 % amorphous carbon. TGA curves of hydrogen rich growth condition were given 

in Figure 5.4. 
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Figure 5.4. TGA diagrams of as grown samples in hydrogen rich growth condition 

 

As shown in Table 5.3 the lowest amorphous carbon weight was observed under 

H2 only pretreatment atmosphere and the highest transition temperature also was 

observed for this sample. Transition temperature depends on the graphitization level of 

CNTs. Amorphous carbon burns at lower temperature than CNTs because of its weaker 

bounds. Raman results supported TGA results and the lowest ID/IG ratio was calculated 

for H2 only pretreatment which indicated that the lowest disorder occurred for this 

condition. 

 

Table 5.3. Amorphous carbon amount and Raman ID/IG Ratio of CNTs for the first 
growth conditions 

 

Pretreatment Amorphous carbon % Transition Temp.(
o
C) Raman ID/IG 

Ratio 

H2 only  0.6 649 0.16 

Ar only  2.5 631 0.23 

H2-Ar 12.3 597 0.21 

Ar than H2 1.2 640 0.32 
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Transmission electron microscopy was used to analyse the structural quality of 

CNTs namely inner and outer diameters, number of walls and defects. In this study, 

TEM characterization of samples were carried out in UNAM, in Bilkent University. For 

TEM analysis, sample preparation is a significant step. CNTs were suspended in ethanol 

to carry then to a TEM grid. Samples were put in a 99.9% purity ethanol and then they 

were sonicated for 1 hour for uniform distribution. However, amorphous carbon film 

coatings were seen over and in between CNTs after ethanol evaporation. This film time 

to time prevented observation of the nanotubes clearly. 

TEM images of CNTs grown under hydrogen rich atmosphere indicated that Co-

Mo/MgO catalyst yielded a high nanotube density (Figure 5.5b). There were CNTs with 

different  wall number, inner and outer diameter. CNTs shown in Figure 5.5 were all 

multi wall, however, this was not a general result because we could get only limited 

number of TEM images.  

 

    
(a) (b) 

    
(b) (d) 

Figure 5.5. TEM micrographs of (a) CNT 513 (b) CNT 527 (c) CNT 528 (d) CNT 529 
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Raman spectra of sample CNT 513 produced under pure H2 atmosphere for both 

pretreatment and growth atmosphere, were taken with different excitation wavelenghts 

and shown in Figure 5.6. Radial Breathing Mode (RBM) in the wavenumber range of 

100-300  cm-1 is a typical feature of SWNTs and the intensity of RBM peaks of CNT 

513 indicated that high amount of SWNT occured with high purity. G-band about 1590 

cm-1 corresponds to in-plane ossilation of carbon atoms in sp2 graphite sheet of SWNT 

and D-band corresponds to the disorder features of graphite sheet, therefore the low 

intensity of D-band relative to the G-band fort his sample indicated a very low defect 

density of sample. 

 

 
Figure 5.6. Raman spectra of CNT 513 obtained three different energies. Inset show the 

detailed spectra where RBM occurs. 
 

SEM, TGA, TEM and Raman analysis all showed that hydrogen had a 

significant positive effect on CNT quality; high purity and yield of SWNTs were 

obtained under pure hydrogen atmosphere. 
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5.2.1.2. CNT Growth under H2 Rich Condition  

 
In this part of the study hydrogen and argon were flown together with methane 

during growth with the growth conditions of CH4=20 sccm, H2=20 sccm, Ar=210 sccm 

and T=1000 oC. Same four pretreatment conditions were examined for this growth 

condition.  

 

Table 5.4. Examined pretreatment conditions for hydrogen lean growth condition 

 

CNT number Hydrogen (sccm) Argon (sccm) 

CNT 531 200  - 

CNT 532 - 200  

CNT 533 10  190  

CNT 534 200  (for 1 h at 850 oC) 200  (until 850 oC) 

 

SEM pictures of the as grown samples in hydrogen rich growth condition are 

given in Figure 5.7 for different pretreatment conditions. 
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(a) (b) 

 

    
(c) (d) 

Figure 5.7. SEM micrographs of (a) CNT 531 (b) CNT 532 (c) CNT 533 (d) CNT 534 
 
 

For this growth condition, again CNTs with small diameters were obtained in 

pure hydrogen pretreatment with 9.6 nm average diameter (Table 5.4). However, this 

time as grown tubes did not have a high quality as can be seen from SEM images 

(Figure 5.7) , they were more disordered compared to the morphology of first growth 

with the same pretreatment conditions. In the second pretreatment process, when 200 

sccm argon sent to the system for pretreatment, average diameter remained the same at 

9.6 nm, but some coils, helical CNT structures were seen. As mentioned above, these 

coils occur in the presence of impurities. In argon and hydrogen mixture pretreatment 

condition, as-grown CNTs average diameter was inceased a bit. The most tangled CNTs 

were observed  at the last pretreatment conditions, under which the thickest tubes were 

also obtained.  

Hydrogen has a reduction effect and metal nanoparticles are more suitable than 

metal oxides for CNT growth. That is why the nature of product changed and the 

quality of CNTs decreased in hydrogen rich growth condition. Hydrogen also prevent 
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amorphous carbon formation, therefore when hydrogen ratio is low amorphous carbon 

covers CNTs and thicker tubes grow.   

 

Table 5.5. Yield and size of CNTs for the second growth conditions 

 

CNT 
number 

Pretreatment Mass Before 
CNT Growth 

(mg) 

Mass After 
CNT Growth 

(mg) 

Yield % Average 
Diameter 

(nm) 

CNT 531 H2 Only 15.2 36.5 140.1 9.6 

CNT 532 Ar only 15.0 21.2 41.3 9.6 

CNT 533 Ar+H2 15.1 41.5 174.8 10.9 

CNT 534 H2 for only 
one hour 

15.1 25.4 68.2 15.8 

 

 

In terms of both yield and quality the second growth conditions yielded CNTs 

with characteristics in general worse than the those of CNTs with first growth 

conditions. In these growth conditions the highest yield of product was seen in the third 

pretreatment process which included argon-hydrogen mixture. This time, pure hydrogen 

pretreatment gave  140.1% yield which is the second best in this growth condition. The 

other two conditions again remained under 100% yield. Especially pure argon 

pretreatment gave a very low yield of 41.3%.  

TGA curves of as grown samples are shown in Figure 5.8. Among  these four 

samples which give the high CNT yield is produced under pure argon pretreatment and 

which shows the largest weight loss step giving amorphous carbon yield is the forth 

sample which is produced with one hour hydrogen pretreatment.  The selectivity to 

CNTs increases in the order of CNT 534 < CNT 531 < CNT 533 < CNT 532. However, 

comparing the second growth conditions to first growth conditions, all pretreatment 

conditions give more amourphous carbon for the second growth conditions except 

sample synthesized under argon-hydrogen mixture pretreatment.  
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Figure 5.8. TGA diagrams of as grown samples in hydrogen rich growth condition 

 

Table 5.6. Amorphous carbon amount of CNTs for the second growth conditions 

  

Pretreatment Amorphous carbon %  Transition Temp.(
o
C) 

H2 only  7.1 601 

Ar only  4.6 626 

H2-Ar 7.1 626 

Ar than H2 12.6 649 

 

 

When hydrogen ratio decreased in the growth process, number of walls 

increased and therefore, outer diameter also increased as depicted in figure 5.9. Again 

amorhous carbon were observed on the outer wall of CNTs because of growth and 

possibly ethanol. The first sample, CNT 531, had 18 walls; the inner and outer 

diameters were 2.1 nm and 14.2 nm, respectively. The second sample was CNT 532 

with again 17 wall number and outer diameter was 14.2. The last one was CNT 534 

which had 12 walls and it had 3.4 nm inner diameter and 10.9 nm outer diameters, 

respectively. TEM images showed all the carbon nanotubes grown under hydrogen rich 
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atmosphere were MWNTs. All MWNTs are metallic so samples grown under this 

atmosphere were metallic. TEM results and SEM results confirmed each other in terms 

of diameters of CNTs.  

 

 

     
(a) (b) 

 
(c) 

Figure 5.9. TEM micrographs of (a) CNT 531 (b) CNT 532 (c) CNT 534 

 

5.2.1.3. CNT Growth in Absence of H2  

 

In absence of hydrogen, only argon was flowed with methane during growth, 

and growth conditions were CH4=40sccm, Ar=210sccm and T=1000oC. Applied 

pretreatment conditions were given in Table 5.7. 
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Table 5.7. Examined pretreatment conditions for the absence of hydrogen in the growth 

 

Sample Name Hydrogen (sccm) Argon (sccm) 

CNT 535 200  - 

CNT 536 - 200 

CNT 585 10  190 

CNT 601 200  (for 1h at 850 oC) 200 (until 850 oC) 

 

SEM pictures of as grown samples at the third growth conditions are given in 

Figure 5.10 for these four different pretreatment conditions. 

 

    
(a) (b) 

 

    
(c)                                                                    (d) 

Figure 5.10. SEM micrographs of (a) CNT 535 (b) CNT 536 (c) CNT 585 (d) CNT 601 
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This time CNT structural quality was higher than hydrogen lean growth 

condition (H2+Ar), but lower than the hydrogen only growth condition. They were not 

much disordered, but the highest CNT diameters were seen at this step. For the absence 

of hydrogen in growth, the thickest CNTs were obtained in argon-hydrogen mixture  

pretreatment with 27.0 nm average diameter while the thinnest ones occured in pure 

argon pretreatment with 19.2 nm. In this growth condition, at the second and forth 

pretreatment process amorphous carbon formation on tubes were observed and more 

disordered  structures were also seen at these two pretreatment conditions.  

 
 

Table 5.8. Yield and size of CNTs for the third growth conditions 
 

 
CNT 

number 
Pretreatment Mass Before 

CNT Growth 
(mg) 

Mass After 
CNT Growth 

(mg) 

Yield % Average 
Diameter 

(nm) 

CNT 535 H2 Only 15.1 67.8 349.0 22.5 

CNT 536 Ar only 15.4 - - 19.2 

CNT 585 Ar+H2 14.8 50.0 237.8 27.1 

CNT 601 H2 for only 1h. 15.0 70.3 368.6 26.0 

 

The highest yield of product were observed in tests performed in absence of 

hydrogen. However the reason of these large numbers could be amorphous carbon 

formation.   In these growth conditions the highest yield of product was obtained 

surprisingly in the forth pretreatment condition with 368.6 % yield and pure hydrogen 

pretreatment growth process also gave high yield, 349 %. The other two conditions 

again remained under 100 % yield. But, this time in all conditions yields were very 

high. 

TGA curves of as grown samples in the third growth conditions are shown in 

figure 5.11. All CNTs grown with the same pretreatment conditions show a loss step 

between 200-500 oC. However, the largest step is seen at the forth sample which 

produced under only one hour hydrogen pretreatment, and this weight loss is 7.7 %. It 

means that none of the four samples includes very much amorphous carbon yield. TGA 

analysis suggests that considering also the amorphous carbon among CNTs, the increase 

in the diameters in SEM pictures cannot be ascribed to amorphous carbon coating of 
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CNTs. All samples show high crystallinity.  The selectivity to CNTs increases in the 

order of CNT 601 < CNT 536 < CNT 535 < CNT 585 in third growth conditions. 
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Figure 5.11. TGA diagrams of as grown samples in the third growth conditions 

 

Raman results showed that highest graphitization was obtained for only one hour 

H2 pretreatment and disorder level was higher when Ar took place in the pretreatment 

process. 

 

Table 5.9. Amorphous carbon amount and Raman ID/IG Ratio of CNTs for the third 

growth conditions 

 

Pretreatment Amorphous carbon % Transition Temp.(
o
C) Raman ID/IG 

Ratio 

H2 only  3.3 664 0.51 

Ar only  3.9 648 0.74 

H2-Ar 2.5 668 0.74 

Ar than H2 5.8 642 0.42 
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Now, all growth conditions can be compared using SEM and TGA datas. The 

highest quality CNTs were sythesized under pure hydrogen atmosphere for both 

pretreatment and growth processes. In the absence of hydrogen in growth, namely under 

argon atmosphere growth the largest diameter CNTs were obtained, but these were not 

tangled and so much amorphous carbon formation did not occur under these conditions. 

It was clearly seen that the worst growth conditions was hydrogen lean growth 

condition. The most tangled CNTs and amorphous carbon formation were observed 

here. It means when argon and hydrogen mixed together during growth, it effects 

negatively CNTs quality.  

CNTs obtained in the absence of hydrogen in growth process were also 

MWNTs. CNT 536 which was produced under pure argon atmosphere in both growth 

and pretreatment processes is shown in figure 5.12 (b) and this image shows that very 

small tubes grew when there was no hydrogen in the growth ambient. This tube had 16 

walls with 1.82 nm inner diameter and 12.7 nm in outer diameter.  

 

    
(a) (b) 

Figure 5.12. TEM micrographs of (a) CNT 535 (b) CNT 536 (c) CNT 585 (d) CNT 601 

                                                                              (cont. on next page) 
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(b) (d) 

Figure 5.9. (cont.) 

 

In literature there are many studies about gas composition in CNT growth. Li et 

al. compared N2 and H2 atmosphere for CNT growth (Li, et al. 2004)  and they did not 

see any difference between CNTs obtained in H2 and N2 atmosphere. They obtained 

high quaility SWNTs for both processes. However, Yu at al. compared N2 and Ar 

atmosphere (Yu, et al. 2006) and their results showed that N2 caused formation of N-

doped carbon nanofibers, they could not obtain any SWNT in N2 atmosphere, it means 

N2 is active in methane decomposition. In argon atmosphere, they were able to 

synthesize SWNTs. In this study, SWNTs could be obtained in H2 atmosphere, as 

grown samples in Ar atmosphere were all MWNTs. The reason for this difference 

observed with the Ar atmosphere in our results and those of Yu et al. are probably due 

to different growth conditions and catalyst material. In addition, in this study it was 

observed that H2 atmosphere for both pretreatment and growth processes provided the 

best atmosphere to obtain high quality CNTs. H2 reduction presentedan ideal 

environment for high quality growth. 
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5.2.2. CNT Formation  at Different Hydrogen Flow Rates  

 
 The most important role of hydrogen is to prevent amorhous carbon formation 

by etching  away amorph carbon  formation during CNT growth. Hydrogen can also 

change the surface morphology of the catalyst during pretreatment process (Baker, et 

al.1982). Hence, hydrogen flow rate is a crucial parameter for the CNT growth. 

During pretreatment and growth atmosphere composition study, it was seen that 

the pure hydrogen atmosphere yielded the highest quality CNT growth. Therefore, in 

this part of study, three different H2 flow rates were investigated: 200, 150 and 100 

sccm at growth temperature of 1000 oC for growth time of 40 min. The following table 

shows the flow rates of hydrogen.  

 

Table 5.10. Examined hydrogen flow rates at the growth temperature of 1000 oC 

 

CNT number Temperature  (oC) Hydrogen (sccm) 

CNT 513 1000 200  

CNT 518 1000 150 

CNT 523 1000 100  

 

SEM pictures of these as grown samples at different hydrogen flow rates are 

given in Figure 5.13. 
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(a) (b) 

 

 
(c) 

 
Figure 5.13. SEM micrographs of (a) CNT 513 (b) CNT 518 (c) CNT 523 

 

It is clearly observed from SEM pictures that all CNTs grown under hydrogen 

atmosphere were of high quality. However, some tangled tubes were seen with 

decreasing hydrogen rate and  it was observed that with decreasing hydrogen rate CNT 

areal density increased. In terms of tube diameter, samples studied do not show a large 

difference. All diameters were about 8.5 nm (Table 5.11).  

 

Table 5.11. Yield and size of CNTs for different hydrogen flow rates 
 

Hydrogen 
Flow Rate 

(sccm) 

Mass Before 
CNT Growth 

(mg) 

Mass After 
CNT Growth 

(mg) 

Yield % Average 
Diameter 

(nm) 

200 50.2 mg 197 mg 292.4 8.3 

150 50.2 mg 220.4 mg 339.04 8.5 

100 29.9 mg 153.3 mg 412.71 8.5 
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In terms of yield, the sample produced under 100 sccm hydrogen flow rate gave 

the highest yield. Decreasing hydrogen flow rate resulted in increase in the yield. 

Comparing 100 sccm and 200 sccm hydrogen flow rates, the yield decreased about 1.5 

fold. But, as seen from SEM pictures, the structural quality is directly proportional with 

the increasing hydrogen flow rate.  Therefore, we can say that the optimum hydrogen 

flow rate is 150-200 sccm. This rate gave both high quality and high yield of product.  

TGA curves of as grown samples in different hydrogen flow rates are shown in 

Figure 5.14. Almost there is no weight lost step between 200-500 oC for all three 

samples. However, the sample which shows highest crystallinity is produced under 200 

sccm hydrogen flow. The selectivity to CNTs increases in the order of CNT 523 < CNT 

518 < CNT 513. The weight loss for CNT 513 is only 3.8%. CNTs SEM and TGA 

analysis support each other, 200 sccm hydrogen flow is optimum for CNT growth on 

Co-Mo/MgO catalyst.     

 
 

 

 

 

 

 
 
 
 
 
 
 

Figure 5.14. TGA diagrams of as grown samples at different hydrogen flow rates 

 

Transition temperatures and amorphous carbon ratio showed that highest 

graphitization occurred for high H2 flow rates. 
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Table 5.12. Amorphous carbon amount of CNTs for different hydrogen flow rates 
 
 

H2 flow rate Amorphous carbon %  Transition Temp. (oC) 

200 0.6 649 

150 2.7 602 

100 5.1 612 

 

5.2.3. CNT Formation  at Different Growth Temperatures 

 
In this part, we studied the temperature effect to find optimum CNT growth 

temperature. Based upon the results on the growth and pretreatment atmosphere 

composition and hydrogen flow rate studies results, all experiments in this part were 

done under 200 sccm hydrogen atmosphere. Four different temperatures were 

investigeted; 850 oC, 900 oC, 950 oC and 1000 oC.  

 

Table 5.13. Examined CNT growth temperatures at 200 sccm H2 during growth 

 

CNT number Temperature (oC) Hydrogen (sccm) 

CNT 513 1000 200  

CNT 524 850 200  

CNT 525 900 200  

CNT 526 950 200  

 

SEM pictures of as grown samples grown at different temperatures are show in 

Figure 5.15. 
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(a) (b) 

 

    
(b) (d) 

Figure 5.15. SEM micrographs of samples studied at different growth temperatures  
 (a) 1000 oC (b) 850 oC (c) 900 oC (d) 950 oC 

  
 

SEM pictures shows that growth temperature is a significant parameter on CNT 

quality. It was observed that with decreasing growth temperatures, structural quality has 

also decreased and CNTs became tangled. In addition, average CNT diameter also 

decreases with decreasing temperature and very thin tubes are obtained; while the 

average tube diameter was 8.3 nm at 1000 oC growth temperatures, average diameter 

decreases about 3 nm at low growth temperatures to about 5.7 nm. 
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Table 5.14.  Yield, and average diameters of CNTs grown at 200 sccm H2 for different   
CNT growth temperatures 

 

Temperature 
(oC) 

Mass Before 
CNT Growth 

(mg) 

Mass After 
CNT Growth 

(mg) 

Yield % Average 
Diameter 

(nm) 

850 30.0  288.6 862.0 5.9 

900 15.0  189.0 1160.0 5.7 

950 15.9  264.4 1562.89 5.9 

1000 50.2 197.0 292.4 8.3 

  

Contrary to quality decreasing quality, yield increased at tempertures below 

1000 oC. Comparing yield obtained at 1000 oC with those at the lower growth 

temparatures, yield of product increased at least 4 fold.  It was observed that there was 

an optimum temperature to obtain highest yield and it was 950 oC. Below this 

temperature, the yield decreased. The reason for the low yield at high temperature can 

be explained by the behaviour of the catalyst with the temperature.  Highly reactive 

conditions occured at very high temperature; above 950 oC the catalyst was deactivated 

before all metal particles were completely reduced. Therefore, lost of catalytic activity 

occured at very high temperatures and the yield was very low compared to the lower 

growth temperatures. Below 1000 oC the number of reduced catalsyt particles increased 

with increasing temperature, which might increases yield with inceasing temperature. 

Another factor was the hydrocarbon used; methane which is stable till very high 

temperatures and does not decompose at low temperatures. Finally, it should be 

emphasized that the yield obtained from growth temperature study was unprecedently 

high compared to the current literature. 

TGA curves of as grown samples at growth different temperatures are given in 

Figure 5.16. The quality of CNTs in terms of less amorphous carbon content increases 

in the order of CNT 524 < CNT 525 < CNT 526 < CNT 513. CNT 513, CNT 525 and 

CNT 526 showed similar TGA curves with temperature. Only CNT 524 which was 

synthesized at 850 oC showed a distinct weight loss step. Generally, it can be said that 

amorphous carbon formation decreases with increasing temperature. The observed 

behaviour can be explained by that at low temperature there were not enough reduced 
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catalytic sites and carbon which was obtained from decomposition of methane can not 

precipitate on the catalyst particles, so to form amorphous carbon. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.16. TGA diagrams of as grown samples at different growth temperatures 

 

Raman spectra ID/IG ratio supported TGA and SEM datas disorder level 

decreased with increasing temperature. 

 

Table 5.15. Amorphous carbon amount and Raman ID/IG Ratio of CNTs for different 
growth temperatures 

 

 
Growth 

Temperature 

(
o
C) 

Amorphous carbon 
%  

Transition 
Temperature  

(
o
C) 

Raman ID/IG 
Ratio 

850 10.1 613 0.91 

900 3.6 607 0.29 

950 3.1 625 0.19 

1000 0.6 649 0.16 
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In this study, the first target was to synthesize high quality CNTs. So, despite of 

very high yield CNT formation at lower temperatures, the best growth temperature for 

high structured quality CNT growth was designated as 1000 oC. 

In literature Kang et al. studied temperature effect on CNT growth using Fe-

Mo/MgO catalyst (Kang, et al. 2008) and their results were different. They studied 800, 

850, 900 and 1000 oC growth temperatures and with increasing temperatures they 

observed amorphous carbon coating on CNTs and DWNT ratio to SWNT also increased 

with temperature and it depended on the agglomeration of catalyst particle in relatively 

high temperature. Our results were different because of catalyst effect. While Fe-

Mo/MgO catalyst agglomerating at high temperatures, Co-Mo/MgO catalyst might have 

not do the same. 
 

5.2.4. CNT Formation  at Different Growth Times 

 
Growth time is also considered as an important parameter in CNT synthesis and 

in the last part of this study we examined the growth time effect on CNT growth in 

order to understand growth mechanism of CNTs. Five different growth times were 

investigated; 10, 20, 30 and 40 minutes. All growth time study took place under 200 

sccm hydrogen and 50 sccm methane flow, at 1000 oC. 

 

Table 5.16. Examined growth times for CNT growth under 200 sccm H2 50 sccm  CH4   

at 1000 oC 

 

CNT number Time (min.) Hydrogen (sccm) 

CNT 513 40 200 

CNT 606 30 200  

CNT 609 20 200  

CNT 615 10 200  
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SEM pictures of as grown samples at different growth times are given in Figure 

5.17.  

 

    
(a) (b) 

 

    
(b) (d) 

Figure 5.17. SEM micrographs of growth for (a) 40 min. (b) CNT 30 min. (c) 20 min.     

(d) 10 min. 

 

SEM pictures of CNTs grown at different growth times pointed that the density 

of CNTs increases with time. CNTs became longer and graphitization was higher at 

longer growth times. Disorder also decreases with increasing time. It was seen that there 

were catalyst particles remaining on the surface at 10 min and 20 min growth and 

methane decomposition was still assumed taking place, but at 40 min no more catalytic 

sites were observed and highly ordered tubes were obtained.  
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Table 5.17. Yield and size of CNTs for different CNT growth times 

 

Time Mass Before 
CNT Growth 

(mg) 

Mass After 
CNT Growth 

(mg) 

Yield % Average 
Diameter (nm) 

40 50.2 197.0 292.4 8.3 

30 14.9 65.4 338.9 7.8 

20 15.1 65.2 331.7 8.8 

10 15.3 45.1 194.7 14.1 

 

Yield also increased with time, similar to structural quality improved as 

observed from SEM study. However, yield was above 100 % even at 10 min growth 

time. Although the yield increased continuously in time till 30 minutes, the increasing 

ratio decreased (Figure 5.18). However, after 30 minutes of growth time yield stated to 

decrease. 

             
Figure 5.18. Yield% -Time graph. 
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Table 5.18. Raman ID/IG Ratio of CNTs for different growth times 

 

Time (min.) Raman ID/IG Ratio 

40 0.16 

30 0.20 

20 0.23 

10 0.28 

 

As seen from Raman results graphitization increased with increaseing time. Niu 

et al. also studied growth time effect on CNT growth using Fe-Mo/MgO catalyst (Niu, 

et al. 2006) and their results were similar to our results. CNTs lenght and yield 

increased with time also in their study. In conslusion, the best growth time was found as 

30-40 min for high quality of product. 
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CHAPTER 6 

 

CONCLUSIONS 

 
 In this work, the aim was to grow high quality and large scale of carbon 

nanotubes on Co-Mo/MgO catalyst. Different growth parameters were studied and the 

optimum CNT growth conditions were investigated. CNT growth and pretreatment 

atmosphere composition, hydrogen flow, growth temperature and lastly growth time 

effects on CNTs were examined to optimize parameters. Then CNTs were characterized 

structurally.  

 In the first part, gas composition effect during both growth and catalyst 

pretreatment processes was examined for three different growth condition and four 

different pretreatment conditions for each growth condition and used gases were argon 

and hydrogen. This study showed that hydrogen gas was necessary for both 

pretreatment and growth atmosphere for high quality growth. It reduced catalsyt 

particles during pretreatment and prevented other carboneaous product formation during 

growth. Therefore hydrogen provided clean and high quality CNTs formation.   

In the second part of study, 200, 150 and 100 sccm H2 flow rates were 

examined. And it was seen that some disorder started to seem with decreasing hydrogen 

rate and  an increase in the density of CNTs occured with decreasing hydrogen rate. 

 Then, the temperature effect was investigated for four different temperature 

value, 850 oC, 900 oC, 950 oC, 1000 oC. Temperature study showed that CNTs quality 

increased with increasing tempertaure. However, the results for yield was different. It 

was seen that 950 oC was optimum temperature to obtain high yield, below this 

temperature the yield decreased. We saw that above 950 oC, the catalyst deactivated 

before all metal particles were completely reduced and the yield could not increase, and 

below 950 oC the reduced catalsyt particles increased with increasing temperature and 

so the yield increased with inceasing temperature. The maximum obtained yield was 

above 1500 % and average diameter was about 5 nm in this study.  

Growth time was the last parameter studied in this thesis work. To understand 

growth time effect on CNT growth five different growth time were investigated fort his 

part, these were 5, 10, 20, 30 and 40 minutes. According to results, the density and the 
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length of CNTs increased with time. The amount of tangled CNTs decreased with 

growth time.  Catalyst particles were observed on the surface at 10 min and 20 min 

growth. At 40 min highly ordered tubes were grown. Yield also increased with time 

similar to quality.  

As a conclusion, the best atmosphere for methane decomposition on Co-

Mo/MgO catalyst was hydrogen atmosphere because hydrogen provides transformation 

metal oxides to metals and metals are suitable materials for CNT growth and for high 

quality CNT synthesis the best hydrogen flow rate is 200 sccm. Moreover, from the 

temperature study results we can say that high temperature is appropriate for methane 

decomposition, so the ideal growth temperature is found as 1000 oC at this study. 

Finally, for high qulity and long tubes enough growth time is 40 minutes. 
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