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ABSTRACT 
 

COATING OF La1-x SrxCo1-yFeyO3-δ FILMS ON ZIRCONIA AND CGO 
(CERIUM GADOLINIUM OXIDE) BY ELECTROSTATIC SPRAY 

DEPOSITION (ESD) 
 

In this study preparation and characterization of coating of La0.6Sr0.4Co0.8Fe0.2O3-

δ and La0.6Sr0.4Co0.2Fe0.8O3-δ materials on TZ-3Y (3 mol % doped yttria) and CGO 

(Ce0.9Gd0.1Oxide) ceramic electrolytes was studied. Electrostatic spray deposition 

(ESD) was used for depositing the coatings on ceramic electrolytes to develop a well 

bonded electrolyte-cathode material for potential IT-SOFCs (intermediate temperature 

solid oxide fuel cells) applications. Precursor solutions having La0.6Sr0.4Co0.8Fe0.2O3-δ or 

La0.6Sr0.4Co0.2Fe0.8O3-δ stoichiometry were prepared from various salts before being 

sprayed on a heated ceramic substrate which rapidly evaporated the solvent in the salts 

and the droplets struck and covered its surface. A high voltage was maintained to 

accelerate the droplets to high speeds. A coating with a minimal 1 µm of thickness was 

successfully produced. Effects of experimental parameters like the flow rate of the 

solution (0.3-1.5 ml/h), distance between the nozzle and substrate (15-45 mm), 

temperature of the substrate (250-375 °C), post heat treatment temperature (900-1300 

°C) of the coated substrate and applied voltage on the quality of the coating were 

studied. Analytical tools like DTA/TGA, Scanning Electron Microscopy (SEM) and X-

ray Diffraction (XRD) were used to investigate the samples to check for the quality of 

the coating. Coating microstructures ranged from dense to porous depending on the 

deposition parameters. Sample with 30 mm distance and 0.7 ml/h of flow rate produced 

the best reticulated structure of the coating. No preferential landing effect was observed 

on any of the samples studied. Zirconia was not an effective substrate for formation of 

La0.6Sr0.4Co0.8Fe0.2O3-δ or La0.6Sr0.4Co0.2Fe0.8O3-δ. Cerium gadolinium oxide, however, 

was effective for La0.6Sr0.4Co0.8Fe0.2O3-δ but not for La0.6Sr0.4Co0.2Fe0.8O3-δ.  
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ÖZET 
 

ELEKTROSTATİK SPREY KAPLAMA (ESD) METODU İLE 
ZİRKONYA VE CGO (SERYUM GADOLİNYUM OKSİT) ÜZERİNE 

La1-x SrxCo1-yFeyO3-δ FİLMLERİNİN KAPLANMASI 
 

Bu tezde La0.6Sr0.4Co0.8Fe0.2O3-δ ve La0.6Sr0.4Co0.2Fe0.8O3-δ katot malzemelerinin 

TZ-3Y (% 3 mol yitriya katkılı zirkonya) ve CGO seramik elektrolitlerinin üzerine 

kaplanmasının karakterizasyonu çalışılmıştır. Orta sıcaklıktaki katı oksit yakıt 

hücelerine uyumlu katot ve elektrolit malzemesini geliştirebilmek için elektrostatik 

sprey kaplama tekniği kullanıldı. Çeşitli metalik tuzlar kullanılarak 

La0.6Sr0.4Co0.8Fe0.2O3-δ veya La0.6Sr0.4Co0.2Fe0.8O3-δ stokiyometrilerine sahip çözeltiler 

hazırlandı. Tuzların içinde çözündüğü bu çözeltiler, sıcak seramik yüzey üzerine 

püskürtüldü ve böylece seramik yüzey kaplandı. Püskürtme sırasında tanelere yüksek 

voltaj uygulandı. 1 µm kalınlığında kaplamalar elde edildi. Çözeltinin akış oranı (0.3-

1.5 ml/h), püskürtücü başlık ile seramik yüzey arasındaki uzaklık (15-45 mm), yüzey 

sıcaklığı (250-375 oC), kaplanmış yüzeylerin ısıl işlemi (900-1300 °C) ve uygulanan 

voltaj gibi deneysel parametrelerin etkisi çalışıldı. Numuneler  DTA/TGA, taramalı 

electron mikroskop ve X ışınları analizi kullanılarak incelendi. Kaplanan mikroyapıların 

özellikleri kaplama parametrelerine bağlı olarak  yoğun ve poroz olarak çeşitlendi. 30 

mm uzaklık ve 0.7 ml/h akış oranına sahip olan en iyi ağ şeklindeki mikroyapı elde 

edildi. Hiçbir numunede tanelerin üst üste binme etkisi gözlenmedi. % 3 mol yitriya 

katkılı zirkonya seramik yüzeyi La0.6Sr0.4Co0.8Fe0.2O3-δ ve La0.6Sr0.4Co0.2Fe0.8O3-δ katot 

üretimi için kullanışlı değildir. Fakat seryum gadolinyum oksit seramik yüzey ise 

sadece La0.6Sr0.4Co0.8Fe0.2O3-δ katot malzeme üretimi için kullanışlıdır. 
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CHAPTER 1 

 

INTRODUCTION 

 
Fuel cells can generate energy from fossil fuels more efficiently and more 

benignly than other alternatives. They convert chemical fuel into electrical energy by an 

electrochemical system without combustion of the fuel at high temperature. Hence, no 

environmentally hazardous emissions are produced. The principle of operation of fuel 

cells is simple. Fuel (hydrogen) and oxygen are fed from the two sides of an electrolyte 

through which oxygen ions pass to the other side of the electrolyte. Electrons are 

produced at the anode and consumed at the cathode while producing an electrical 

potential energy. William Grove demonstrated the basic operating principle of fuel cells 

in 1839 (Hoogers et al., 2003). The principle involved reversing water electrolysis to 

generate electricity from hydrogen to oxygen. Studies on converting chemical energy 

into electricity started around 1900s and then in the 1960s NASA projects on fuel cells 

in the USA was an important step in this area (Venkatasubramanian, 2003). 

Fuel cells are usually classified according to the nature of the electrolyte which 

runs at the optimum temperature. Fuel cells are generally named after the type of the 

electrolyte. For example, AFC (Alkaline Fuel Cell), PAFC (Phosphoric Acid Fuel Cell), 

MCFC (Molten Carbonate Fuel Cell), SOFC (Solid Oxide Fuel Cells), PEMFC (Proton 

Exchange Membrane Fuel Cell or Polymer Electrolyte Fuel Cell) and DMFC (Direct 

Methanol Fuel Cell) (Ecn, 2010). 

In the scope of this thesis an SOFC system is studied. An SOFC is composed of 

two porous electrodes (anode and cathode) interposed between them is an electrolyte 

made of a dense solid oxide ceramic material. The cathode and anode electrodes show 

electronic and ionic conductivity (Huijmans et al., 2001). The electrolyte in this fuel cell 

is a solid, nonporous metal oxide, usually Y2O3 stabilized ZrO2 (YSZ). The cell operates 

at around 1000 °C where ionic conduction by oxygen ions takes place. Typically, the 

anode is Ni-ZrO2 cermet and the cathode is Sr doped LaMnO3 (LSM) (EG&G Technical 

Services, 2004). 

A number of activities are concerned with the optimisation and development of 

cell materials and microstructures with the aim of reducing the solid oxide fuel cell 
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(SOFC) operating temperature down from 1000 °C (Huijmans et al., 1998). This group 

of SOFC is called intermediate temperature solide oxide fuel cells (IT-SOFC) which are 

better the lower the operating temperature. One of the most important reasons for 

lowering the temperature is the reduced cost of the  system. Moreover, the use of lower 

temperature can increase the lifetime of the fuel cell (Marinha et al., 2009). Decreasing 

the operating temperature leads to increased ohmic losses. To minimize the ohmic drop 

through the electrolyte research efforts are underway (Wilhelm et al., 2005). The 

development of new electrolytes with high ionic conductivity as well as efforts to 

reduce the thickness of the electrolyte are tested to decrease the ohmic resistance (Steele 

et al., 2000). Scandia stabilized zirconia (ScSZ) (Yamamato et al., 1998), TZ-2Y 

(Nguyen et al., 2001), Cerium gadolinium oxide (CGO) (Taniguchi et al., 2003; 

Marinha et al., 2009, respectively) are examples for tests on different electrolyte 

materials in order to minimize the ohmic losses. The cathode material used in the 

electrode naturally depends on the type of the electrolyte material. Therefore for SOFC 

material development, the whole system should be considered, not the performance of 

individual components (Tietz et al., 2008). Significant expertise is built now on the 

assembly of these components into an SOFC stack which produces the desired power 

(Ecn, 2010). 
In this thesis, the deposition of LSCF cathode material on CGO and yttria doped 

3% mol zirconia (TZ-3Y) electrolyte was tested. The deposition of LSCF cathode 

material on CGO was investigated earlier by Taniguchi et al and Marinha et al like 

mentioned above (Taniguchi et al., 2003; Marinha et al., 2009). In addition, LSCF films 

coated on either TZ-3Y or CGO were compared in this study.  

Electrostatic spray deposition (ESD) is a modern technique of depositing films 

on substrates. This process provides many advantages: experimental devices are simple 

and inexpensive, a wide range of precursor, depositing, a good control of morphology 

and stoichiometric deposited layers. Moreover, the depositing process can be done 

under air. In chapter 2 of this thesis, a description of the principle operation of ESD, its 

scope and processes on deposits of TZ-3Y and CGO will be presented. The 

experimental procedure and the results of this study are given and discussed in Chapters 

3 and 4, respectively, while the conclusions are stated in the last chapter.  
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CHAPTER 2 

 

LITERATURE SEARCH 

 
2.1. Fuel Cells 

 
Worldwide efforts to commercialize SOFCs involve numerous investigation. 

Complete cells for SOFC typically are produced by one method: electrolyte supported 

cells in which an electrolyte foil carries an anode and a cathode on opposing sides 

(Primdahl et al., 2000). 

A fuel cell is an electrochemical cell, which can convert the chemical energy of 

a fuel and an oxidant to electrical energy by a process involving electrode-electrolyte 

system. The chemical energy is provided by a fuel and an oxidant stored outside the cell 

in the fuel cell. Electricial energy is produced continuously as long as this cycle 

continues (Venkatasubramanian, 2003). In case of effcient, clean, modular and reliable 

nature of fuel cells makes them interesting candidates for energy generation (Bauen et 

al., 2000). Although fuel cells show some similarities with batteries, fuel cell do not 

need recharging, but not batteries (Hoogers et al., 2003). Fuel cells are capable of 

converting 40 % of the available fuel to electricity. This can be raised to 80 % with heat 

recovery. The fuel cell itself has no moving parts, offering a quiet and reliable source of 

power. (EG&G Technical Services, 2004). 

Fuel cells use common fuels or hydrogen as a reductant and air as the oxidant 

though fuel cells has a wide variety of fuels and oxidants (EG&G Technical Services, 

2004). Because, hydrogen has can be obtained from common fuels such as hydrocarbon, 

alcohols or coal. Oxygen is the most common oxidant because it is economically 

available from air (Minh et al., 1995). In Figure 2.1, a fuel cell can be seen 

schematically.   

Most fuel cell systems contain: 

I. Fuel preparation. Except when pure fuels (such as hydrogen) are used, some 

fuel preparation is required, usually involving the removal of impurities and thermal 

conditioning.  
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II. Air supply. In most practical fuel cell systems, this includes air compressors 

or blowers as well as air filters. 

III. Thermal management. All fuel cell systems require careful management of 

the fuel cell stack temperature. 

IV. Water management. Water is needed in some parts of the fuel cell, while 

overall water is a reaction product (EG&G Technical Services, 2004).   

 

 
Figure 2.1. Schematic picture of a fuel cell  

        (Source: Sørensen, 2005) 

 

2.1.1. Fuel Cell Types 

 
There are many different types of fuel cells. These can distinguish by commerce 

area, degree of suitability for applications and material costs (Larminie et al., 2003). 

Moreover, fuel cells vary according to using electrolyte and applying temperature. 

Table 2.1 shows the different types of fuel cells along with electrolyte used, operating 

temperature and electrode reactions.  
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Each type of fuel cell has some advantages and disadvantages. For example, 

alkaline fuel cells allow the use of nonprecious metal catalysts but suffer from the 

problem of liquid electrolyte management and electrolyte degradation. Molten 

carbonate fuel cells can tolerate high concentrations of carbon monoxide in the fuel 

stream (CO is a fuel for such fuel cells), but their high operating temperature precludes 

rapid start-up and sealing remains an issue (Ramani, 2006). Polymer electrolyte cells 

work at quite low temperature, so the problem of slow reaction rates is addressed. Direct 

methanol fuel cells use methanol as the fuel. Solid oxide fuel cells offer high 

performance owing to operating in the region of 600-1000 °C. In this way, high reaction 

rates can be achieved without expensive catalysts (Larminie et al., 2003). However, 

higher temperatures are necessary for the electrolytes to be sufficiently conductive to 

sustain fuel cell operation at reasonable power levels. Hence, these systems suffer from 

materials related problems such as system cost and lifetime (Rosa et al., 2009).  

 

Table 2.1. Classification of fuel cells  
(Source: Ramani, 2006) 

 

 

2.1.1.1. Solid Oxide Fuel Cells (SOFCs) 

 
As can be seen in Figure 2.2, a solid oxide fuel cell (SOFC) is typically 

composed of an electrolyte made of a solid oxide ceramic material and two porous 

electrodes, the anode and cathode. (Sammes et al., 2006). While hydrogen is being fed 

to anode material, oxygen is fed to cathode material. 
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Figure 2.2. Schematic picture of a solid oxide fuel cell 

                                              (Source: Sammes et al., 2006) 
 

Thanks to cathode and anode porous materials, oxygen ions migrate from the 

cathode to the anode. At this time the reduction of oxygen occurs at the cathode. At the 

anode, oxygen ions reacts with hydrogen and produce water as can be seen these steps 

in equations 2.2, 2.3 and 2.4. As reaction occurs, electrons are released at the anode and 

migrate from the cathode to an external electric circuit. In this way, an electric current 

generate (Sammes et al., 2006).  

 

                               (2.2) 
 
 

                          (2.3) 
 
 

                               (2.4) 
 

Some important properties are expected from fuel cells such as high conversion 

efficiency, enviromental compatibility and multifuel capability. When this properties is 

considering, ceramic fuel cells are appropriate devices because they prevent material 

corrosion and electrolyte management problems. Ceramic fuel cells are defined as 

SOFCs (Minh et al., 1995).  

Energy conversion using SOFCs is a highly efficient and a benign technology 

for environmental. It reduces the emission of pollutants, such as NOx, SOx, CO2 and 

dust. However, the development of SOFC for efficient power generation has still failed 

to reach commercial viability because of high operating temperature SOFCs and due to 



7 

 

the longterm degradation problems. Therefore, the development of intermediate-

temperature SOFCs (IT-SOFCs) has been started at 500-700 °C. Since the operation at 

intermediate temperatures causes an increase in the interfacial polarization losses of a 

solid state cell, as well as ohmic loss in the electrolyte, the performance of IT-SOFCs is 

strongly dependent on both the electrolyte and the cathode electrolyte interface 

(Taniguchi et al., 2003).  

Ohmic losses can be described by Ohm’s law. The correlation between voltage 

and current can be explained by resistivity. Hence, oxygen ions transition from the 

cathode to the electrolyte and transition of electrons through the cathode to the anode 

are run by ionic resistivity and electronic resistivities, respectively. Owing to these 

ohmic resistances at a given current, there is a voltage losses.  

The electrolyte causes more ohmic losses, especially in thick electrolyte 

supported cells in IT-SOFCs because, ionic resisitivity of the electrolyte is greater than 

electronic resistivity of the cathode and the anode. That is why, electrolyte material 

which has high ionic conductivity has been searched (Singhal et al., 2003). 

Polarization losses are associated with the electrochemical reactions taking place 

at the interface between the electrodes and the electrolyte. The kinetics of the electrode 

reactions (equations 2.2 and 2.3) play significant role  in determining polarizaiton losses 

in SOFCs. In practical applications, SOFCs may use gaseous mixtures that contain. For 

example, coal gas and natural gas in addition to hydrogen. These gas mixtures may 

contain sulfide impurities and the presence of significant levels of sulfur may cause an 

unacceptable loss of cell voltage (Singhal et al., 2003). 

The operation of a SOFC is based on electrical conduction in the ceramic 

components. The electrolyte conducts ions between the anode and cathode. Therefore, 

electrical conduction processes in ceramics are important for the operation of the SOFC. 

Emphasis is placed on the discussion of electrical conduction perovskite oxides which is  

the common type of oxide used in SOFCs. Perovskite type oxides of general formula is 

ABO3, A is a large cations, B is a small cations (Singhal et al., 2003). These perovskites 

are used as cathode material for ceramic fuel cells.  (Minh et al., 1995). 

  



8 

 

 
Figure 2.3. Schematic representation of structure of perovskite (ABO3) 

                                (Singhal et al., 2003) 
 

2.1.1.1.1. Electrolytes 

 
The electrolyte must be chemically and morphologically stable both reducing 

and oxidizing environments and must have high ionic conductivity. Its ionic 

conductivity must be as high as possible to minimize ohmic losses. The electrolyte must 

possess low electronic conductivity to prevent voltage losses because of the electronic 

current flowing through the electrolyte for SOFCs (Minh et al., 1995). Generally, yttria 

stabilized zirconia (YSZ) which has fluorite structure, has been the most favoured 

electrolyte. Pure ZrO2 exhibits negligible ionic conductivity at 1000°C. However, 

doping with several percent of a lower valent metal oxide Y2O3, considerably improves 

the situation. For example, since the excess charge introduced Y3+onto Zr4+ sites are 

compensated by oxygen vacancies, the high vacancy concentration leads to an ionic 

conductivity of  0.1 S/cm at 1000 °C for a Y2O3 content of 8 mol %. Therefore YSZ are 

often used (Fleig et al., 2003).  

Moreover, doped ceria electrolyte materials which has generally fluorite 

structure and also perovskite and hexagonal structure are used for SOFCs (Ishihara et 

al., 1994). At 1000 °C, CeO2 doped with 10 % Gd exhibits (CGO) a conductivity of 

0.25 S/cm which exceeds that of zirconia (Fleig et al., 2003). CGO achieves the 

required conductivity at 500 °C and therefore could be used in IT-SOFC operating at 

this temperature (Nicholas et al., 2007).   
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2.1.1.1.2. Cathodes 

 
Cathodes have to possess many properties such as high electrical conductivity to 

support electron flow in oxidizing environment. Also cathodes must be compatible with 

other components and interdiffusion between the cathode and adjacent components 

must be limited to avoid unacceptable formation as secondary phases. In order to allow 

gas transport, cathodes must have porosity structure (Minh et al., 1995). 

Platinum was used in the early stages as cathode for SOFC development, since it 

is expensive, it is not appropriate. Then the first perovskite LaCoO3 was studied by 

Tedmon et al. Because of some problems, investigation of cathode materials were 

continued. Lanthanum manganite was tried (Minh et al., 1995). LaMnO3 is one of the 

typical cathode materials (Fleig et al., 2003). Strontium doped lanthanum manganite 

(LSM) is shown good performance for cathode material (Larminie et al., 2003). 

Perovskite structured oxides that exhibit high ionic conductivity have attracted 

considerable attention due to their various applications in IT-SOFCs (Yashima et al., 

2008). Therefore, the Sr and Fe co-doped lanthanum cobaltites (LSCF) perovskite 

material has been developed for especially intermediate temperature (IT) SOFCs (Han 

et al., 1993). La1-xSrxCo1-yFeyO3-δ (LSCF) perovskite materials offer high electronic and 

ionic conductivities. These important properties make possible applications of LSCF 

perovskites as cathodes for solid oxide fuel cells operating temperatures (700–800 °C) 

are preferred (SOFC) (Petric et al., 2000). 

 

2.1.1.1.3. Anodes 

 
The anode must combine catalytic activity with electrical conductivity. Catalytic 

properties of anode are necessary for the fuel oxidation with the oxide ions coming 

through the solid electrolyte. Also, ionic conductivity allows the anode to spread the 

oxide ions and electrical conductivity must be to convey the electrons resulting from the 

electrode reaction out into the external circuit (Singhal et al., 2003). The Ni/YSZ cermet 

anode used by most SOFC developers commonly is produced by reducing an NiO/YSZ 

anode. The anode must have sufficient porosity to allow gas transport to the reaction 

sites (Minh et al., 1995). 
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2.1.1.1.4. SOFC Materials 

 
Desired characteristics properties for using materials consist of chemical 

stability under the operational conditions, high electrical conductivity for the electrodes 

and electrical interconnects, high ionic conductivity and almost zero electrical 

conductivity for the electrolyte and low cost (Sammes et al., 2006). TZ-3Y (TOSOH) 

with uniform dispersion of 3 mol % yttria and cerium gadolinium oxide 

(Ce0.9Gd0.1Oxide) (PRAXAIR) powders were used as electrolyte  in this thesis. 

. TZ-3Y exhibits superior sintering properties and higher aging resistance. TZ-

3Y show a fine crystal grain structure resulting in great improvements in strength, 

fracture toughness, as well as resistance to wear and aging. Because of these properties, 

TZ-3Y is good choice for SOFC (Tosoh, 2010). 

Ceria based ceramics are ionic conductors and are highly oxygen conductive 

when subjected to temperatures of around 600 °C. Therefore, it is desirable to reduce 

SOFC operating temperature to an intermediate temperature, while still maintaining the 

power density achieved at high temperature (Laukaitis et al., 2007).  

 

2.2. Electrostatic Spray Deposition (ESD) 

 
Electrostatic spray deposition (electrohydrodynamic spraying) is a method of 

liquid atomization by means of electrical forces (Jaworek et al., 2008). Electrostatic 

spray deposition technique compared to other film deposition techniques bears the 

advantage of high deposition efficiency (up to 80 %) as the droplets are transported by 

electrical forces (Siefert et al., 1984). The schematics of the ESD set-up are presented in 

Figure 2.3. A precursor solution is atomized by an electric field to an aerosol which is 

then directed to a heated substrate where a thin film is deposited. This process is well 

appropriated to deposit nanostructured thin and dense electrolyte films and 

nanostructured cathode films with controlled microstructures (Princivalle et al., 2008). 

ESD system have several advantages. The droplet sizes of electrospraying can 

range from hundreds micrometers down to several tens of nanometer. The size 

distribution of the droplets can be nearly monodisperse. Droplet generation and droplet 

size can be controlled to some extent via the flow rate of the liquid and the voltage at 

the capillary nozzle. The fact that the droplets are electrically charged facilitates control 
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of their motion (including their deflection and focusing) by means of an electric field 

(Jaworek et al., 2008). In addition, the process has very simple set-up, low cost and 

working under air (Marinha et al., 2009). 

 

 

 
Figure 2.4. Schematic ESD process  

(Source: Neagu et al., 2005) 
 

Spray modes is significant to obtain homogeneous structure. The precursor 

solution can be atomised in many different spray modes. Basically, a liquid is forced to 

flow through a metal nozzle which is subjected to an electric field, the liquid will leave 

the outlet of the nozzle in different modes (Chen, 1998). Types of spray modes depend 

on the applied voltage, the flow rate, and the physical properties of the liquid. Several 

attempts have been undertaken to classify the modes of electrostatic spraying. In Figure 

2.5, some different types of  modes can be seen. Usually the cone jet mode is preferred, 

because it produces single-sized droplets in the range of several micrometers (Neagu, 

2005). In the among the different cone jets, single jet mode is more appropriate than the 

others, because the cone with a straight generatrix is called Taylor cone with 49.3 ° half 

angle at the apex of the cone (Chen, 1998).  

 



12 

 

 
 

Figure 2.5. Various modes of electrospraying  
           (Source: Jaworek et al., 2008) 

 

In ESD process, possible sequential steps are shown in Figure 2.6. These are 

investigated. 

 

 
Figure 2.6. The steps of ESD process  

          (Source: Chen, 1998) 
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2.2.1. Spray Formation  

 
The precursor solution is placed in a syringe which is connected to a metal 

capillary tube. When a voltage is applied to the capillary, an electrostatic field is 

immediately set up across the capillary and plate. This field penetrates the liquid surface 

and acts on ions in the solution.  

 

2.2.2. Droplet Transport, Evaporation and Disruption 

 
 During the flight Charged droplets will be attracted towards a grounded 

substrate by three forces; 

i. a Coulomb force (F = q· Er) q is droplet charge and E is electric field strength  

ii. a gravitational force (G = mg) m is the mass of the droplet and g is gravitational 

acceleration constant 

iii. a drag force (F = d · η · ν · C) η is the dynamic viscosity of air, ν is the drop 

velocity and C is a correction coeffcient.  

Actually, the real situation  is further complicated from theoretical situation and 

these factors the flight speed and time. 

Alcohol solutions are used generally in the ESD process. Solvent evaporation 

during the flight of a solution droplet is inevitable. The disruption of a droplet usually 

occurs with the ejection of a few highly charged. Therefore, the evaporation and 

disruption can be change according to volatile alcohols as solvent, nozzle to substrate 

distance and deposition temperature (Chen, 1998). 

 

2.2.3. Preferential Landing of Droplets  

 
Charged droplets exist on the substrate generally is not uniform in the strong 

electrostatic field or at high temperature. They tend to teh effect of preferential landing 

(Marinha et al., 2009). The charged droplets go at the places where the curvature is 

greater. Therefore when a droplet approaches the surface, it will be tend to more curved 

areas (Chen, 1998). In this way, preferential landing effect will be shown. 



14 

 

2.2.4. Droplet Spreading and Drying 

 
Spreading of droplet is significant another parameter for ESD technique. The 

shape of the liquid surface during spreading, and the size of the final splat depend on the 

size and velocity of the droplet, properties of the liquid viscosity and the contact angle 

between the substrate and the liquid. Figure 2.5 shows a possible sequence from the 

impacting droplet to the equilibrium meniscus (Neagu, 2005). 

 

 
Figure 2.7. A liquid droplet spreading on a flat, smooth surface  

                                      (Source: Marinha et al., 2009) 
 

2.2.5. Surface Diffusion, Reaction  

 
In the droplets may have occured the reaction before the droplets reach the 

substrate if the temperature is high enough and dried droplets have been formed. The 

morphology of the formed droplets on the layer can be change with rate of spreading, 

precipitation, decomposition and reaction. For example, the solubilities of the salts in 

alcohol are large for the formation of a dense layer (Chen, 1998).  

 

2.2.6. The Morphology Parameters 

 
The microstructure depends on the ESD process parameters. Deposition 

temperature, nozzle to substrate distance, flow rate of precursors solution and the 

physical and chemical characteristics of the precursor solutions are some of parameters. 

 

2.2.6.1. DepositionTemperature 

 
The formation of coating is the result of the evaporation of the solvent in ESD 

process when the solvent reaches a hot substrate. Therefore, the temperature is an 

significant parameter because the evaporation rate of the solvent and precursor 
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decomposition depend on the temperature (Djurado et al., 2005). 

 

2.2.6.2. Nozzle to Substrate Distance 

 
Changing the nozzle to subsrate distance is associated with greater solvent 

evaporation because  droplet takes longer time to reach the substrate.According to high 

or low distances, droplet size will be larger or slower and drier, respectively (Marinha et 

al., 2009). On the other hand, when same quantity of solution is sprayed to the substrate, 

droplet cover a larger area if the the distance is increased or vice versa (Djurado et al., 

2005). 

 

2.2.6.3. Precursor Solution Flow Rate 

 
The precursor solution flow rate determines the amount of the liquid at the tip of 

the nozzle and thereby determines droplet size. When the amount of the accumulation 

liquid  is increased, larged sized droplets will be generated. These droplets take longer 

time to dry (Marinha et al., 2009). 

 

2.2.6.4 Precursors and Solvents 

 
One of the advantages of the ESD technique is the largely choice of precursors. 

In order to prepare precursor solutions, some metallic nitrates and  strontium chloride 

were used as salt and ethanol, butyl carbitol and water were used as solvents in this 

study.  Some features of these salts and solvents are given Table 2.2.  

In ESD process, precursors must be soluble in an alcohol solvent, it must be 

decomposed and converted into a desired product at the deposition temperature, it 

should not contaminant or impurity. 

Moreover, a solvent must be proper physico- chemical properties for atomization 

of the precursor solution.  
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Table 2.2. Physical properties of the used salts 
Materials Molecular 

Weight  
(g/mol) 

Melting 
Point (°C) 

Decomposition 
Temperature 

(°C) 

Density 
(g/cm3) 

Source 

La(NO3)3 6H2O 433.0 40 700  2.05 Princivalle et al., 
2004 

SrCl2 6H2O 266.6 570 220  1.93 Princivalle et al., 
2004 

Fe(NO3)3 9H2O 403.9 47 > 250 1.68 Elmasry, 1998 

Co(NO3)26H2O 291.0 56 185 1.87 Ehrhardt, 2005 

C2H6O 46.0 -114 78 (b.p.)* 0.78 Chen, 1998 
 

C8H18O3 162.2 -68 231(b.p.) 0.95 Chen, 1998 
 

H2O 18.0 0 100 (b.p.) 0.99 Chen, 1998 
 

* b.p refer to boiling point  
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CHAPTER 3 

 

EXPERIMENTAL 

 
In this chapter, the materials used and the experimental procedure followed in 

this thesis were presented. The thesis is involved with the deposition and 

characterization La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF-6482), La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF-

6428) and cathode films on zirconia TZ-3Y (doped with 3 mol. % Y2O3) and cerium 

gadolinium oxide (Ce0.9Gd0.1Oxide, CGO) electrolyte materials by using electrostatic 

spray deposition (ESD) technique. Here a ceramic disc of TZ-3Y or CGO is coated with 

a sprayed solution of cathode material (Figures 3.1 or 3.4). Below are given the 

chemicals used in the preparation of the solution and the ceramic substrate disc.  
 

 
Figure 3.1. Simplified schematic of the coating process 

 

3.1. Powder Properties 

 

3.1.1. Powders Used in Preparation of Substrate 

 
First of all, cerium gadolinium oxide (Ce0.9Gd0.1Oxide, PRAXAIR, 99.9 %) and 

zirconia TZ-3Y (doped with 3 mol. % Y2O3, TOSOH, 99.9 %) were used for preparing 

the substrate of ceramic electrolyte discs to be coated by the cathode materials. 
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Figure 3.2. Flowchart of the experimental work followed in this thesis. 
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3.1.2. Precursor Solutions for Coating of Cathode 

 
Precursor solutions were prepared from mixtures of lanthanum nitrate, 

hexahydrate (RECTAPUR, 99.99 %), iron III nitrate, nonahydrate  (SIGMA-

ALDRICH, 99.99 %), cobalt II nitrate, hexahydrate (SIGMA-ALDRICH, 99.999 %) 

and strontium chloride hexahydrate (STREM CHEMICALS, 99 %) salts. The solvents 

used for dissolving these salts were either ethanol (SIGMA-ALDRICH, 99.8 %) in 

water or diethylene glycol monobutyl ether (butyl carbitol, ACROS ORGANICS, 99+ 

%). 

 

3.2. Method 

 

3.2.1. Preparation of the Substrate 

 
The CGO powders to be used for pellet preparation were first calcined 

(Carbolite Furnace HTC 1000) at 700 °C for 7 h. TZ-3Y  and CGO powders  were 

compacted by uniaxial pressing in a stainless steel die (Φ= 22.7mm) at 1000 kgf, then 

by CIP (Cold Isostatic Pressing) at 250 MPa (Figure 3.3). Samples were placed in a 

plastic bag under vacuum to avoid penetration of oil during the CIP process. The 

samples were sintered (Carbolite Furnace HTC 1500) at 1400 °C and 1450 °C for 2 and 

4 hours in air, respectively. Heating rates were 1.6 and 5 oC/min respectively. The 

surfaces of all densified substrates were machined to produce a straight polished 

surface. 6 µm, 3 µm and 0.2 µm diamond suspensions were used in polishing to obtain 

uniform surface (Presi, Mecapol 200). Finally, samples around 19 mm of diameter and 

1.2 mm of thickness, were obtained. These samples were then ready for ESD coating 

process. 

 

3.2.2. Preparation of Precursor Solutions for Cathode  

 
As can be seen in Figures 3.1, 3.4 and 3.5, a solution is sprayed up through a 

nozzle on the heated ceramic substrate. This solution is prepared from different salts to 

produce the final desired stoichiometry of the cathode. The weight of the precursor salt 
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for a particular component i is defined as mi and is diluted in the solvent as determined 

using the following equation: 

 

mi= xi ·Mi ·C· V                                                  (3.1) 

 

xi: atomic fraction 

Mi: molecular weight 

C: concentration of solution (mol/L) 

V: solution volume (L)  

 

   
Figure 3.3. Samples of pressed ceramic electrolyte discs: (a) before and (b) after    

          sintering 
 

La(NO3)3.6H2O, SrCl2.6H2O, Fe(NO3)3.9H2O, Co(NO3)2.6H2O were used as 

precursor salts. Ethanol (C2H5OH, SIGMA-ALDRICH), diethylene glycol monobutyl 

ether also known as butyl carbitol ((CH3(CH2)3OCH2- CH2OCH2CH2OH, ACROS 

ORGANICS) and H2O were used as solvents. These salts were mixed in different 

proportions as listed in Table 3.1. In this table, solution names coded as ratio of cobalt 

to iron and ethanol, H2O and butyl carbitol, respectively. Total salt concentration was 

0.02 mol/L. Solution names are given by using the first digits of their cobalt and iron 

percentages as well as their ethanol, water and butyl carbitol contents.  
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Table 3.1. Proportion of salts and solvent for all solutions. Amounts of lanthanum 
        nitrate and strontium chloride were constant. 

Solution 

Name 

Cobalt Iron Ethanol H2O Butyl 

carbitol 

Conductivity 

(mS/cm) 

82-820 80 20 80 20 0 1.085 
28-820 20 80 80.0 20 0 1.749 
82-306 80 20 33.3 0 66.7 0.041 
28-306 20 80 33.3 0 66.7 0.050 

 
3.2.3. Experimental Setup 

 
 All LSCF films were deposited using a vertical electrostatic spray deposition 

(ESD) system located in LEPMI, Grenoble, France. Installation is vertical to avoid the 

drops and any flow of the precursors solution on the substrate. The experimental setup 

is used for depositing of the coating is shown in Figures 3.4 and 3.5. 

 
Figure 3.4. Schematic drawing of the ESD setup used in sample preparation 

ESD process consists of: 

i. Electrostatic spray unit 

ii. A liquid precursor feed unit 

iii. Temperature control unit 
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  The electrostatic spray unit comprises a high voltage power supply, a stainless 

steel nozzle and a grounded substrate holder. The liquid-precursor feed unit consists of 

syringe and a syringe pump (Kd Scientific M361). The temperature control unit for the 

deposition temperature includes a heating plate and a temperature controller connected 

to a thermocouple. Figure 3.5 shows a photograph of the entire setup. 

When a sample was ready to be deposited, it was placed on the stainless steel 

holder with a 8 mm hole in the middle to allow sprayed material to coat a small area on 

the surface of the ceramic. Top side of the ceramic rested against a heating plate. The 

precursor solution was filled inside a 10 ml syringe (Becton Dickinson) which could be 

pushed at a controlled speed to deliver the desired amount of solution through the 

nozzle. A positive high voltage was applied to the stainless steel nozzle while the 

solution was sprayed. This high voltage produced electrostatically stressed, positively 

charged conically shaped droplets also known as Taylor cone (Chen, 1998) that were 

generated and directed to the grounded substrate. Eventually, the surface of the 

electrolyte ceramic was coated with a thin layer of cathode material. Upon contact with 

the heated substrate the solvent in the solution rapidly evaporates and an LSCF film 

with desired stoichimetry forms.  

 

 
Figure 3.5. The photograph of ESD setup used in sample preparation (in LEPMI, 

          Grenoble, France) 
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The following ESD process deposition conditions were recorded: 

i. Nozzle to substrate distance  

ii. Precursor solution flow rate  

iii. Deposition temperature  

iv. Heat treatment  
 

3.2.4. Experimental Plan 

 
  Experimental conditions for all samples were listed in Table 3.2. As shown in 

Figure 3.2, two separate ceramic substrates of CGO and TZ-3Y were used. The ceramic 

substrates coded C and Z, respectively. These were dense ceramics that were previously 

fired to achieve a low porosity substrate before being polished with diamond 

suspension. Polished samples were coated by an LSCF layer by ESD process. Final 

stage of processing was post heat treatment of the coated ceramics to achieve a mature 

ceramic coating.  

 

 
Figure 3.6. Samples after coating and sintering: (a) CGO sample, (b) TZ-3Y sample 

 

3.3. Characterization 

 
In this part, characterization techniques for investigating the  

La0.6Sr0.4Co0.8Fe0.2O3-δ, La0.6Sr0.4Co0.2Fe0.8O3-δ were described. Characterization has a 

crucial role in interpreting the structure and property relationship between 

La0.6Sr0.4Co0.8Fe0.2O3-δ  and La0.6Sr0.4Co0.2Fe0.8O3-δ  on CGO and TZ-3Y. The techniques 

used were X-ray diffraction (XRD, Panalytical Xpert Pro MPD) and scanning electron 

microscopy (SEM, LEO Stereoscan S440) for microstructural characterization, 

thermogravimetric analysis (DTA/TG, Netzsch STA 409) for thermal property 

characterization. 

(a) (b)



24 

 

3.3.1. Electrical Conductivity 

 
The electrical conductivity of the precursor solutions was measured using a 

Tacussel CDRV 62 conductometer. 

 

3.3.2. Differential Thermal Analysis (DTA/ TGA) 

 
In order to determine the thermal decomposition temperatures, 

thermogravimetric analysis (TGA) was performed on La0.6Sr0.4Co0.8Fe0.2O3-δ, 

La0.6Sr0.4Co0.2Fe0.8O3-δ solutions with DTA/TGA (Netzsch STA 409) under ambient 

atmosphere. Solutions of 100-130 mg were heated from room temperature to 690 °C at 

a heating rate of 10 °C/min. 

 

3.3.3. Scanning Electron Microscopy 

 
Scanning electron microscope (SEM, LEO Stereoscan S440) was used to 

investigate the surfaces of LSCF films and for interpreting the porous and dense 

microstructures.  

 

3.3.4. X-Ray Diffraction Analysis 

 
X-ray diffraction analysis (XRD) was performed using a PANalytical X’Pert Pro 

MPD diffractometer in the Bragg–Brentano geometry from 10 ° to 120 °, step size and 

step time were 0.017 ° and 241.3 sec, respectively. 
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Table 3.2. Experimental conditions for all the samples that were studied in this thesis 
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C1 6482 15 0.3 1 250 900 82-820 

C2 6482 30 0.3 1 250 900 82-820 

C3 6482 45 0.3 1 250 900 82-820 

C4 6482 15 0.7 1 250 900 82-820 

C5 6482 30 0.7 1 250 900 82-820 

C6 6482 45 0.7 1 250 900 82-820 

C7 6482 15 1.5 1 250 900 82-820 

C8 6482 30 1.5 1 250 900 82-820 

C9 6482 45 1.5 1 250 900 82-820 

C10 6482 35 1.0 1 300 900 82-820 

C11 6482 35 1.0 1 350 900 82-820 

C12 6482 35 1.0 1 375 900 82-820 

C13 6482 35 1.0 5 350 900 82-306 

C14 6482 35 1.0 5 350 1100 82-306 

C15 6482 35 1.0 5 350 1300 82-306 

C16 6428 35 1.0 5 350 900 28-306 

C17 6428 35 1.0 5 350 1100 28-306 

C18 6428 35 1.0 5 350 1300 28-306 

Z1 6482 35 1.0 5 350 900 82-306 

Z2 6482 35 1.0 5 350 1100 82-306 

Z3 6482 35 1.0 5 350 1300 82-306 

Z4 6428 35 1.0 5 350 900 28-306 

Z5 6428 35 1.0 5 350 1100 28-306 

Z6 6428 35 1.0 5 350 1300 28-306 

RC4 6428 15 0.7 1 250 900 28-306 
* Subscripts designate compositions. For example 6482 = La0.6Sr0.4Co0.8Fe0.2O3-δ and 6428 = 
La0.6Sr0.4Co0.2Fe0.8O3-δ 
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CHAPTER 4 

 

RESULTS AND DISCUSSION  

 
In this study, the results of experiments aimed at depositing 

La0.6Sr0.4Co0.8Fe0.2O3-δ, La0.6Sr0.4Co0.2Fe0.8O3-δ films on CGO and TZ-3Y substrates 

were presented. In order to understand the process mechanisms and to interprete 

structural characterizations, the effect of nozzle to substrate distance, precursor solution 

flow rate, deposition temperature and applied voltage were tested. Also, electrical 

conductivity measurements of La0.6Sr0.4Co0.8Fe0.2O3-δ, La0.6Sr0.4Co0.2Fe0.8O3-δ precursor 

solutions were made to understand the degree of dissolution of the components. 

Moreover, thermal analysis of the precursor solutions are presented in this chapter. 

In order to see the effect of calcination treatment on the CGO powder samples 

were heat treated at 700 °C for 7 h in a laboratory box furnace (Carbolite Furnace HTC 

1000). XRD analysis of the CGO powder before and after calcination were presented in 

Figure 4.1. No change in the phases present was observed (Figure 4.1). 

  

 
Figure 4.1. XRD diagrams of Ce0.9Gd0.1Oxide powder (a) before and (b) after                 

calcination at 700 °C 7 h 

(a)

(b)



27 

 

4.1. Electrical Conductivity Measurements 

 
Electrical conductivities of all precursor solutions were measured using a 

Tacussel CDRV 62 conductometer at 18 °C. KCl salt solution with 0.1 M concentration 

was tested before these solutions were measured. The purpose was to calibrate the 

instrument. The measurements are listed in Table 4.1 where conductivities of all 

solutions were satisfactorily high indicating that they can be used in the ESD 

(Electostatic Spray Deposition) process.  

 

Table 4.1. Conductivity values of all precursor solutions 

Solution 
Name 

Conductivity 
(mS/cm) 

82-820  1.085 
28-820   1.749 
82-306  0.041 
28-306   0.050 

 

To associate with films morphology and conductivity of solutions, Ganan 

Calvo’s relation can be used, because according to this relation as the electrical 

conductivity of the solution is increased, droplet size decreases ( Neagu et al., 2006).  

 

                                      (4.1) 

 

According to Equation 4.1, d is the droplet size, γ is the surface tension, є 0 is the 

electrical permittivity, ρ is the density and σ is the conductivity of the solution. In Table 

4.1, first two solution and the other two solutions are considered with themselves 

because ethanol and water are used for first two solutions while ethanol and butyl 

carbitol are used for the others. According to C. Chen (1998), the lower limit of the 

conductivity varies between 10-8 and 10-11 S/m, while the upper limit can be to 10-1 S/m. 

The electrical conductivity values of pure ethanol, butyl carbitol are 60x10-6 and 0.2x10-

6 S/cm (Lintanf et al., 2008) and water is 1x10-7 S/cm, respectively (Knovel 2008). As 

can be seen, these values of electrical conductivity of ethanol are higher than the butyl 

carbitol and water. In literature, typically, droplet size ranges from 2 to 10 µm (Neagu et 

al., 2005).  
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4.2. Differential Thermal Analysis (DTA/ TGA) 

 
Generally, instead of one solvent a mixture of two or more solvents is more 

appropriate due to increased solubility of the salts and better control of the evaporation 

over a larger temperature interval along with reduced risk of cracking of the coating 

(Neagu et al., 2005). 

Two types of LSCF solutions with La0.6Sr0.4Co0.8Fe0.2O3-δ and 

La0.6Sr0.4Co0.2Fe0.8O3-δ, stoichiometry were prepared by dissolving their precursor salts 

in three different solvents (water, ethanol and butyl carbitol). In Figure 4.2, the three 

different solvent mixture compositions are marked on a triangular plot to show the ratio 

of ethanol, butyl carbitol and water.  
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Figure 4.2. The mixtures prepared from three solvents. 

 

DTA/TGA analyses were performed on all of the solutions mentioned to study 

their thermal behavior. The temperature range for the measurements ranged from room 

temperature to 690 ºC at 10 ºC/min in air. The resulting graphs are shown in Figures 4.2 

to 4.5.  

In Figure 4.3, an endothermic peak at 118 °C was observed due to the 

evaporation of the solvent for the 82-820 and 28-820 samples. The evaporation 
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temperature of H2O is 100 °C while that of ethanol is 78 °C. TGA analyses results in 

Figure 4.4 also confirmed the DTA observations.  
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Figure 4.3. DTA analyses of 82-820 and 28-820 solutions performed under atmospheric      
conditions at a heating rate of 10 °C/min. 
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Figure 4.4. TGA analyses of 82-820 and 28-820 solutions performed under atmospheric 

conditions at a heating rate of 10 °C/min. 
 

In Figure 4.5, DTA analyses results for solutions with mixtures of ethanol and 

butyl carbitol (also see Figure 4.1) are presented. There were two main endothermic 

peaks at 136 °C and 245 °C corresponding to the evaporation of ethanol and butyl 

carbitol, respectively. The former evaporated at a range of temperatures of 95 °C to 210 
oC while the evaporation temperature range for butyl carbitol was narrower. A narrow 

evaporation temperature range may be helpful for formation of solid crust on ceramic 
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electrolyte. Weight loss as a function of temperature graph (TGA chart in Figure 4.6) of 

the solutions further confirmed the DTA observations that butyl carbitol evaporates 

faster and at higher temperature.  
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Figure 4.5. DTA analyses of 82-306 and 28-306 solutions performed under atmospheric 
conditions at a heating rate of 10 °C/min. 
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Figure 4.6. TGA analyses of 82-306 and 28-306 solutions performed under atmospheric 

conditions at a heating rate of 10 °C/min. 
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4.3. Electrostatic Spray Deposition (ESD) 

 
The ceramic electrolyte samples were coated with LSCF films using the ESD 

apparatus as explained in section 3.2.3.  A set of experiments were conducted at 5-15 

kV of voltage, 0.3-1.5 ml/hour of solution flow rate, 250-375 °C of heating temperature 

of the electrolyte and 15-45 mm of nozzle to substrate distance. Coating process was 

successfully performed without any peeling from the surface.  

 

4.4. Post Heat Treatment 

 
After the ceramic electrolyte samples were coated with LSCF films they were 

heat treated at 900°C for 2 hours in a laboratory furnace to form the well- developed 

cathode layer.  

 

4.5. Scanning Electron Microscopy 

 
After the ceramic electrolyte substrates were coated and annealed, their 

structures were investigated by using Scanning Electron Microscope. Two separate 

studies were made. First, coating surfaces and next the fracture surfaces were observed 

at high magnification.  

To understand the influence of annealing on film morphology, first the CGO 

substrate was deposited using a flow rate of 1.0 ml/h, nozzle to substrate distance of 

35mm and substrate temperature of 375 °C for 2 h. Then, this sample was annealed at 

900 °C for 2 h. The resulting structure of the coating before and after annealing was 

compared to find out if film densification increased after annealing because of 

evaporation of organic residues. The difference of the micrographs can be seen in 

Figure 4.7. SEM micrographs taken before and after annealing show that heat treatment 

in air at 900 °C for 2 h. A slight decrease in film thickness due to the film densification 

and departure of organic residues (Marinha et al., 2009). All remaining samples in this 

thesis were observed after annealing at 900 °C for  2 h. 
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Figure 4.7. SEM micrographs of the surface of the film, (a) before and (b) after  
annealing at 900 °C for 2 h and applied voltage is 14 kV 

 
LSCF films are observed to investigate the effects of some deposition 

parameters on the surface morphology of thin films. Properties of LSCF deposits can be 

modified by changing the following parameters: 

I. nozzle to substrate distances 

II. solution flow rates 

III. deposition temperatures  

IV. heat treatment. 

Applied voltage was varied within a narrow margin of 5-15 kV in all 

experiments. Its effect is expected to be insignificant under the conditions studied in this 

thesis.  

 

4.5.1. Influence of Nozzle to Substrate Distance 

 
To study the effect of spraying distance on the morphology of the LSCF films, 

depositions were carried out at nozzle to substrate distances of 15 mm, 30 mm and 45 

mm and flow rates ranged from 0.3 ml/h, 0.7 ml/h and 1.5 ml/h for 1 h at 250 °C as 

shown in Figure 4.8. According to the first column (C1, C2 and C3), second column 

(C4, C5 and C6)  or third column (C7, C8 and C9), when the distance increases, 

droplets will be smaller and drier and a very dense microstructure can be obtained, 

because higher distance will dry up the droplets. It means that, as nozzle to substrate 

distance increases, deposited particles become increasingly smaller due to larger solvent 

losses through evaporation occurring during droplet flight. A minor amount of 

a b
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evaporative cooling between the nozzle and the substrate can be expected (Marinha et 

al., 2009). 

 

 

   

   

   
Figure 4.8. SEM micrographs of La0.6Sr0.4Co0.8Fe0.2O3-δ  films deposited on CGO 

substrate using three different flow rates of 0.3 ml/h, 0.7 ml/h and 1.5 ml/h 
for 1 h and at a constant temperature 250 °C for three different nozzle to 
substrate distances of 15 mm (first line),  30 mm (second line) and 45 mm 
(last line). Applied voltage was kept constant at 14 kV 

 
The proportions of the elements displayed by EDS results helped to be sure to 

identify La0.6Sr0.4Co0.8Fe0.2O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ films on the CGO and TZ-

3Y substrates (Figures 4.9 and 4.10,  Tables 4.2, 4.3). The observed compositions of 

prepared films are also shown to be in moderately good agreement with the starting 

solutions. Some Ce and Gd also showed up in EDS measurements but these are 

removed in this table to facilitate better comparison with theoretical data in Tables 4.2 

and 4.3. 
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Figure 4.9. EDS analysis of La0.6Sr0.4Co0.8Fe0.2O3-δ on CGO substrate 

 

 
Figure 4.10. EDS analysis of La0.6Sr0.4Co0.8Fe0.2O3-δ on TZ-3Y substrate 
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Table 4.2. EDS analysis results of chemical compositions of La0.6Sr0.4Co0.8Fe0.2O3-δ   
films 

 
EDS analysis wt% Element (wt%) 

Theoretical Measured 

La 37.0 41.9 
Sr 15.6 14.2 
Co 20.9 24.3 
Fe 5.0 6.5 
O Balance Balance 

 

 
Table 4.3. EDS analysis results of chemical compositions of La0.6Sr0.4Co0.2Fe0.8O3-δ 

films 
 

EDS analysis wt% Element (wt%) 

Theoretical Measured 

La 37.4 43.0 
Sr 15.7 13.5 
Co 5.3 9.2 
Fe 20.0 20.5 
O Balance Balance 

 
4.5.2. Influence of Precursor Solution Flow Rate 

 
When influence of the flow rate is analyzed, higher flow rate will produce larger 

droplets which are more difficult to dry upon flight, because when the solution flow rate 

is increased, larger droplets are accumulated and dispatched from the nozzle. Large 

sized droplets contain more liquid which can take longer flight distances without 

complete drying.  This can be confirmed by comparing the morphology of the films 

deposited at different flow rates. Microstructures of films deposited using solution flow 

rates that were varied from 0.3 to 1.5 ml/h are shown in Figures 4.8 C1-C7, C2-C8 or 

C3-C9.  All photographs in Figure 4.8, except C7, indicated an improved reticulated 

structure upon increased solution flow rates. Sample C7 did not coat well the surface of 

the substrate because of its excessively high liquid content (Figure 4.11). As shown in 

Figure 4.9, at short  distances, many cracks are present at high flow rate because the 

droplets include larger amounts of solvent which can not find sufficient time to 

evaporate during their flight.  
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Figure 4.11. SEM image of the surface of C7 sample of La0.6Sr0.4Co0.8Fe0.2O3-δ layer 

deposited on a CGO substrate at 0.7 ml/h from a nozzle to substrate 
distance of 15 mm for 1 h  at 250 °C and applied voltage is 14 kV 

 
When the samples C3, C6 and C9 are broken and observed from their profiles, 

the effect of flow rate can be better understood (Figures 4.12 a to c). As mentioned 

before, as the flow rate of precursor solution increased, sprayed droplets increased in 

size and also increase of layer thickness can be seen, clearly. It is not possible in order 

to determine microstructure which obtain dense or porous by looking at the 

microstructure of the flow rate because degree and type of reticulation microstructure 

depend on a combination of both distance and flow rate.  
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Figure 4.12. SEM images of the fracture surfaces of La0.6Sr0.4Co0.8Fe0.2O3-δ films 

deposited on a CGO substrate at (a) 0.3 (b) 0.7 and (c) 1.5 ml/h from a 
nozzle to substrate distance of 45 mm for 1 h  at 250 °C (samples C3, C6 
and C9) by using 14 kV  

a 

b 

c 
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4.5.3. Influence of Deposition Temperature 

 
Deposition temperature (or the substrate temperature) has an important influence 

on the quality of coating because it affects the drying rate and the degree of spread of 

the droplets after impact with the substrate. It may even be speculated that the drying 

rate of the droplets during flight depends on the temperature of the substrate (Figure 

4.13). Moreover, obtaining dense or porous microstructure correlates with spreading of 

the droplets on the surface.  

In Figure 4.14, the effect of substrate temperature (300, 350 and 375 °C) on 

morphology of the deposited films was studied by keeping all other parameters 

constant. These specimens are coded C10, C11 and C12 which are listed in Table 3.2. 

As seen in Figure 4.14, at higher temperatures the droplets dried more and became 

smaller by producing a more dense structure.  

Under the subject of effect of the temperature, preferential landing effect is 

another important point to mention, because this effect is a determining factor in order 

to decide if the temperature is too high or not (Marinha et al., 2009). In this thesis, the 

temperatures were convenient and preferential landing effect was not observed. 

 

 
 

Figure 4.13. Steps of  a particle production by electrospraying 
(Source: Jaworek et al., 2008) 
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Figure 4.14. SEM micrographs of La0.6Sr0.4Co0.8Fe0.2O3-δ coated samples of CGO  

substrates using different temperatures (a) sample C10 at 300 °C, (b) 
sample C11 at 350 °C and (c) sample C12 at 375 °C. All runs were done 
at 14 kV 

 

 

a 

c 

b 
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Keeping in mind that the LSCF films are covered on ceramic electrolyte 

substrates to serve as a cathode layer, the films must be continuous with good 

reticulated structure to provide the desired electrical conductivity. One may ask what is 

the best structure for good reticulation. Figure 4.15 shows a sample (RC4) with good 

reticulated structure that was obtained with a flow rate of 0.7 ml/h at 250 °C at a 

distance of 15 mm.  

 

 

 

Figure 4.15. SEM micrographs of sample RC4 showing a well developed reticulated 
      structure by applying 5 kV 
 

4.5.4. Influence of Heat Treatment 

 
In the light of the above mentioned information, in order to see the effect of post 

annealing heat treatment temperature on the CGO and TZ-3Y microstructures, C13, 

C14, C15, Z1, Z2 and Z3 tests were conducted by keeping all other experimental 

conditions constant. The results are shown in Figure 4.16. At 900 °C both CGO and TZ-

3Y substrates showed similar microstructures. As the temperature was increased, grain 

size did not grow significantly, pores closed and surface area appeared to decrease. The 

coating showed a densified structure due to sintering as the temperature increased. 
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Figure 4.16. Influence of heat treatment temperature of La0.6Sr0.4Co0.8Fe0.2O3-δ films on  
         CGO (samples C13, C14 and C15 on left column) and TZ-3Y (samples Z1,  
         Z2 and Z3 on right column) by applying 15 kV 
 

To obtain more detailed information about the quality of coating and the degree 

of bonding in the samples C13 and Z1, their profile SEM pictures were taken from 

fracture surfaces of broken sample cross sections. These fracture surfaces are shown in 

Figures 4.17 and 4.18. A crack-free bond was found to form between the substrate and 

the coating. The coating was porous and continuous with a minimum thickness of 

CGO TZ-3Y

900 °C 

1300 °C 

1100 °C 

900 °C 

1100 °C 

1300 °C 
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roughly 1 µm for both C13 and Z1 samples which were heat treated at 900 °C for 1 hour 

(Figure 4.16).  C15 and Z3 samples that were heat treated at 1300 °C appeared to be 

highly dense and glassy and were free from pores (Figure 4.17).  

 

  
Figure 4.17. Fracture surfaces of cross sections of (a) sample C13 and (b) sample Z1 
           coatings that were both annealed at 900 °C.  
 

  
Figure 4.18. Fracture surfaces of cross sections of (a) sample C15 and (b) sample Z3
           coatings that were both annealed at 1300 °C. Glassy structure of the 
           coating is evident in both SEM photomicrographs.  
 

Figure 4.19 shows that the ceramic substrate materials of CGO and TZ-3Y had 

different grain sizes. Average  grain size of CGO sample is obviously larger than the 

TZ-3Y sample. Equation 4.2 were used to measure the average particle sizes of the 

ceramic substrates. In order to apply of equation 2.1, N1 refers to the number of the 

(a) (b) 

(a) (b) 
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total grains  in the image, N2 refers to the half grains in the image, L is length of the 

image and h is height of the image (Emre Yalamaç 2010).  Photographs in Figures 4.19 

and 4.20 were used for this purpose. Average grain sizes of the CGO and TZ-3Y 

matrices heated at 900 and 1300 °C were found to be in the range of 1.75-183 µm and 

0.35-0.40 µm, respectively.  

 

                                                                  (4.2) 

 
 

  
Figure 4.19. SEM micrographs of fracture surfaces of (a) CGO and (b) TZ-3Y 

substrates after coating and subsequent thermal treatment at 900 °C. 
 

  
Figure 4.20. SEM micrographs of fracture surfaces of (a) CGO and (b) TZ-3Y 

substrates after coating and subsequent thermal treatment at 1300 °C. 
 

(a) (b) 

(a) (b) 
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4.6. X-Ray Diffraction Analysis 

 
In this section, the results of X-ray diffraction (XRD) analyses are presented. X-

ray diffraction analyses were performed to investigate if there is any change caused by 

the temperature. Figure 4.21 shows the XRD chart for sample C13 that was heat treated 

at 900 °C. Because the x-ray irradiated area on the specimen surface was larger than the 

area covered by LSCF coating some peaks from the substrate inevitably appeared on 

XRD analysis charts. CeO2 (see also Table 4.4), for example, was observed in C13 

sample as shown in Figure 4.21. It is actually the host crystal lattice of the (Ce0.9Gd0.1O) 

CGO compound. Gadolinium is only 10 mol percent of CGO and forms the solute in the 

solid solution within CeO2 lattice. Minor amount of La2O3 and LSCF-6491 

(La0.6Sr0.4Co0.9Fe0.1O3) were also observed. But the observed compound was 6491. 

Therefore some deviation from expected compositions occurred.  

 

 
Figure 4.21 XRD chart for sample C13 
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Table 4.4. Phases observed in XRD analysis and their reference card numbers 

Compound code used in 
XRD chart peak labels Mineral composition JCPDS reference number 

LSCF-6491 La0.6Sr0.4Co0.9Fe0.1O3 00-049-0283 

CeO2 CeO2 34-0394 

La2O3 La2O3 03-065-3185 

LSCF-6482 La0.6Sr0.4Co0.8Fe0.2O3 00-048-0124 

ZrO2 ZrO2 50-1089 

LSC La0.5Sr0.5 (CoO3) 01-075-8571 

SZO SrZrO3 04-001-7315 

LZO La2(Zr2O7) 01-070-5602 

LaO LaO 04-007-4019 

LSCF-7337 La0.7Sr0.3Co0.3Fe0.7 01-089-1268 

SLF Sr0.6La0.4FeO3 04-007-6519 

LSC La0.6Sr0.4 (CoO3) 01-089-5717 

  

 

In order to better understand the evolution of the phase composition in the 

coating samples of CGO were analysed by high temperature XRD (HTXRD) device in 

Lille University, France. In Figure 4.22, HTXRD analysis results for sample C13 is 

given. It should be noted that the post heat treatment was not applied. Peaks from the 

substrate are obviously observed to slightly shift left toward lower 2θ values. This was 

expected because of expansion of the lattice as a result of higher atomic vibrations at 

higher temperatures (Cullity 1974). Upon heating of the sample to 500°C and higher 

LSCF was observed to form on the coating. At 1100 °C the peaks for LSCF were 

stronger. In Figure 4.23, XRD analysis of the sample C15, which was heat treated at 

1300 °C, is given. Peaks for LSCF-6482 were observed along with stronger peaks from 

the CeO2 from the substrate (see Table 4.4 and Figure 4.23). The high temperature post 

heat treatment transformed some of the phases and produced a dense microsctructure as 

shown in Figure 4.17a. The XRD chart showed that the LSCF layer was not glassy but 

dense and crystalline.  
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Figure 4.24 shows the XRD analysis result for sample Z1, which was made to 

produce LSCF coating on TZ-3Y substrate. But the post heat treatment temperature was 

900°C and some of the salts in the coating dissociated to produce an intermediate 

compound La0.5Sr0.5 (CoO3). Apparently iron was not yet accommodated in the 

structure to enable formation of LSCF. When the same sample was heated to 1300oC 

after coating LSCF-7337 (La0.7Sr0.3Co0.3Fe0.7) as well as SZO (SrZrO3), LZO 

(La2(Zr2O7) and LaO were observed in Figure 4.25. Notice that the LSCF was still not 

the intended 6482 composition but a La and Fe-rich phase formed instead. While there 

was no iron in Figure 4.24 in the LSC composition at 900oC heated sample, sample Z3 

in Figure 4.26 was able to produce an Fe-rich LSCF compound. Sample Z1, for 

example, contained CeO2 and LSC phases without much iron. When the same sample 

was heated to 1300 °C (sample Z3) iron took part in the reaction and LSCF was 

identified (Figure 4.25). Another significant observation from Figure 4.25 is that 

zirconia stole some of the La and Sr and therefore an LSCF compound with 7337 

stoichiometry formed instead of the desired 6482 compound. The substrate CGO, on the 

other hand, was able to produce complete LSCF-6482 stoichiometry after 1300 °C heat 

treatment (sample C15). A lower temperature heat treatment was insufficient to achieve 

the desired stoichiometry (sample C13).  
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Figure 4.22. HTXRD result of La0.6Sr0.4Co0.8Fe0.2O3-δ  on CGO. This sample was 
            prepared under the same conditions with C13 but without the post heat 
            treatment 
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Figure 4.23 XRD chart for sample C15 

 

 
Figure 4.24 XRD chart for sample Z1  
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Figure 4.25 XRD chart for sample Z3 

 

Figures 4.26 and 4.27 show high temperature X-ray analysis of samples prepared 

under the same conditions with Z1 and Z3. Again the peaks for the substrate ZrO2 

shifted to the left due to lattice expansion upon heating. Starting with 550 °C and higher 

formation of compounds like LSC and LSCF were observed following decomposition 

of salts in the coating. The sample heated at 1300 °C showed similar XRD pattern. 
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Figure 4.26. HTXRD analysis chart for sample with La0.6Sr0.4Co0.8Fe0.2O3-δ  coating on 
            TZ-3Y substrate. Stronger peaks belong to ZrO2 from the substrate  



51 

 

 
 

Figure 4.27. HTXRD analysis chart for sample with La0.6Sr0.4Co0.8Fe0.2O3-δ coating on 
          TZ-3Y substrate. Stronger peaks belong to ZrO2 from the substrate 
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In Figures 4.28 and 4.29, XRD analysis results of the La0.6Sr0.4Co0.2Fe0.8O3 

(LSCF-6428) coating on CGO substrate are shown. The samples were heat-treated at 

900°C and 1300°C, respectively. At 900°C, CeO2 and Sr0.6La0.4FeO3 (SLF) compounds 

were found in sample C16. In additon to these compounds, La0.6Sr0.4CoO3 compound 

was observed at 1300 °C in sample C18.  Although La0.6Sr0.4Co0.8Fe0.2O3 (LSCF-6482)  

compositon can be formed on CGO substrate, for example C15 sample, 

La0.6Sr0.4Co0.2Fe0.8O3 (LSCF-6428) did not form on the same substrate for any of the 

temperatures. Iron ions were unable to get into the LSCF structure, but formed a 

separate iron-containing compound of SLF instead.  

 As far as the formation of the intended LSCF composition is concerned, sample 

C15 was the best one. None of the other samples was able to reach the expected LSCF 

composition.  

 

 
Figure 4.28. XRD chart for sample C16 



53 

 

 
Figure 4.29. XRD chart for sample C18 

 

Based on the information provided by the XRD analysis of zirconia substrates coated 

with LSCF zirconia was found to react with the coating upon the 900-1300 °C thermal 

treatment. When considering results of XRD analyses on CGO and TZ-3Y substrates, 

CGO appeared to be more appropriate than TZ-3Y. Because at high temperature, 

La0.6Sr0.4Co0.8Fe0.2O3-δ film formed on CGO substrate, but La0.6Sr0.4Co0.8Fe0.2O3-δ film 

formed with different composition (La0.7Sr0.3Co0.3Fe0.7) on TZ-3Y substrate. XRD 

analysis was not performed on samples Z4, Z5 and Z6 but the general trend is expected 

to follow the pattern observed for samples C13, C15, Z1 and Z3. Electrical 

measurements need to be performed to conductivity rank the substrates for their 

potential effectiveness. 
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CHAPTER 5 

 

CONCLUSIONS 

 
LSCF coating on CGO and TZ-3Y substrates was successfully accomplished. 

Initially, a solution with the correct stoichiometry for La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF-

6482) was prepared by dissolving mixtures of salts of La(NO3)3.6H2O, SrCl2.6H2O, 

Fe(NO3)3.9H2O, Co(NO3)2.6H2O in ethanol-water or butyl carbitol-ethanol solvents. 

Different compositions of solvent mixtures were tested. Electrical conductivities of the 

solutions were also measured to make sure that the salts were completely dissolved. An 

ESD (electrostatic spray deposition) setup was used to spray-coat the LSCF solutions on 

heated substrates. The ceramic samples were found to be successfully coated with good 

reticulated structure in most of the samples. Especially the samples coated at 15 mm 

distance, 0.7 ml/h of flow rate and 250 °C of substrate heating temperature were 

observed to be coated best. The coating layer was continuous over the surface of the 

substrate with a minimum thickness of 1µm when they were post heat treated at 900 °C. 

The substrate type did not make any difference on the coating structure. When this heat 

treatment temperature was increased to 1300 °C the coating was found to have a fully 

dense structure with no porosity. This dense structure was not amorphous but was 

crystalline as determined by XRD to be largely composed of crystals of LSCF-6482. 

TZ-3Y was found to react with the coating and to modify its composition to deviate 

from LSCF-6482. CGO substrate appeared to be better in terms of compatibility with 

the coating during thermal treatment step. Electrical measurements need to be done to 

reach conclusions about the potential service performance of the system.  

It is suggested that electrical conductivity measurements be done on the samples. 

Another topic for potential future study is to study interface reactions between prepared 

LSCF coating and the substrate on furnace heated samples instead of ESD coated 

samples. Thermodynamic assessment of potential reactions between substrate and 

coating must be done to obtain predictive information about the suitability of different 

substrate and coating systems.  
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